WO2019176809A1 - ロボットハンド、ロボット - Google Patents

ロボットハンド、ロボット Download PDF

Info

Publication number
WO2019176809A1
WO2019176809A1 PCT/JP2019/009484 JP2019009484W WO2019176809A1 WO 2019176809 A1 WO2019176809 A1 WO 2019176809A1 JP 2019009484 W JP2019009484 W JP 2019009484W WO 2019176809 A1 WO2019176809 A1 WO 2019176809A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot hand
robot
unit
base
light
Prior art date
Application number
PCT/JP2019/009484
Other languages
English (en)
French (fr)
Inventor
博文 長澤
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2019176809A1 publication Critical patent/WO2019176809A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • B25J15/10Gripping heads and other end effectors having finger members with three or more finger members

Definitions

  • the present invention relates to a robot hand and a robot.
  • Patent Document 1 describes a configuration including a gripping device having a claw for clamping an object, a light for illuminating a workpiece, and a camera for photographing the workpiece.
  • the center of the camera lens and the center of the light are arranged on the same line as the center of the gripping device.
  • a plurality of claws of the gripping device are provided at intervals in the circumferential direction around the center of the gripping device. The plurality of claws open and close by being displaced in the radial direction with respect to the center of the gripping device, and grip the object.
  • Patent Document 1 describes a configuration including a gripping device having a claw for clamping an object, a light for illuminating a workpiece, and a camera for photographing the workpiece.
  • the center of the camera lens and the center of the light are arranged on the same line as the center of the gripping device.
  • a plurality of claws of the gripping device are provided at intervals in the circumferential direction around the center of the gripping device. The plurality of claws open and close by being displaced in the radial direction with respect to the center of the gripping device, and grip the object.
  • the position coordinates of the object are, for example, the coordinates in the biaxial direction (X-axis direction and Y-axis direction) along the surface of the mounting table on which the object is mounted, and the direction orthogonal to the surface of the table (Z-axis direction) ) Coordinates.
  • the position coordinates of the object in the X-axis direction and the Y-axis direction are detected based on image data obtained by imaging the object with a camera.
  • operation control based on the position coordinates in the Z-axis direction of the object that has been taught in advance is performed on the side of the robot arm on which the robot hand is mounted.
  • the present invention provides a robot hand and a robot that can efficiently measure the position of an object and perform a gripping operation of the object with high accuracy even when the robot hand is rotated. Is one of the purposes.
  • an object of the present invention is to provide a robot hand and a robot that can accurately measure the position of an object and can perform a gripping operation of the object with high accuracy.
  • the following problems may occur when the operation control based on the position coordinate in the Z-axis direction of the object taught in advance is performed on the robot arm side.
  • the height of the object to be gripped changes.
  • the position coordinates previously taught to the robot arm cannot cope with the change in the height of the target object, and the gripping operation of the target object becomes difficult.
  • the positional accuracy of the robot hand with respect to the object in the Z-axis direction is It may decrease.
  • an object of the present invention is to provide a robot hand and a robot capable of improving the positional accuracy of the robot hand with respect to the object and performing the gripping operation of the object with high accuracy.
  • One aspect (first embodiment) of the robot hand according to the present invention is a robot hand that holds an object, and has a base surface facing the object, and a predetermined rotation extending in a direction orthogonal to the base surface.
  • a base part rotatable around an axis; at least two finger parts provided on the base part for gripping the object; provided on the base surface of the base part; used for measuring the position of the object
  • an optical axis of the camera unit is coaxial with the rotation axis.
  • One aspect (first embodiment) of the robot of the present invention includes the robot hand described above and an arm unit connected to the robot hand.
  • One aspect (second embodiment) of a robot hand according to the present invention is a robot hand for gripping an object, wherein the object is provided in a base part having a base surface facing the object, and the base part. And at least two unit parts provided on the base surface of the base part and used for measuring the object, the unit part having a movable range of the finger part Are located in different areas.
  • One aspect (second embodiment) of the robot of the present invention is connected to the robot hand and the robot hand.
  • One aspect (third embodiment) of the robot hand according to the present invention is a robot hand for gripping an object, wherein the object is provided on a base part having a base surface facing the object, and the base part. And at least two finger parts for gripping and a distance measuring sensor provided on the base surface of the base part for measuring a distance to the object.
  • One aspect (third embodiment) of the robot of the present invention includes the above-described robot hand and an arm unit connected to the robot hand. An arm part.
  • the robot hand can efficiently measure the position of the object and perform the gripping operation of the object with high accuracy.
  • a robot is provided.
  • a robot hand and a robot that can accurately measure the position of an object and perform a gripping operation of the object with high accuracy.
  • a robot hand and a robot capable of improving the positional accuracy of the robot hand with respect to the object and performing the gripping operation of the object with high accuracy.
  • FIG. 1 is an exploded perspective view showing the robot hand and the robot according to the first embodiment.
  • FIG. 2 is a perspective view showing the robot hand of the first embodiment.
  • FIG. 3 is a view of the robot hand according to the first embodiment as viewed from the base surface side.
  • FIG. 4 is a side view showing a robot hand according to a modification of the first embodiment.
  • FIG. 5 is an exploded perspective view showing the robot hand and the robot according to the second embodiment.
  • FIG. 6 is a perspective view showing the robot hand of the second embodiment.
  • FIG. 7 is a diagram of the robot hand according to the second embodiment viewed from the base surface side.
  • FIG. 8 is a side view showing a robot hand according to a modification of the second embodiment.
  • FIG. 9 is an exploded perspective view showing the robot hand and the robot according to the third embodiment.
  • FIG. 10 is a perspective view showing the robot hand of the third embodiment.
  • FIG. 11 is a diagram of the robot hand according to the third embodiment viewed from the base surface
  • FIG. 1 is an exploded perspective view showing a robot hand and a robot according to an embodiment. As shown in FIG. 1, the robot 100 according to this embodiment includes an arm unit 50 and a robot hand 1. *
  • the arm unit 50 is fixed to a base (not shown) on which the robot 100 is installed.
  • the arm part 50 has a six-axis configuration having, for example, six joint parts 51A to 51F.
  • the joint portions 51A to 51F can rotate around the drive shaft.
  • the arm part 50 is 6 axis
  • a connection flange 52 is provided at one end of the arm portion 50 in the length direction.
  • the connection flange 52 is connected to a base (not shown) by a bolt (not shown).
  • a hand connection flange 53 is provided at the other end of the arm portion 50 in the length direction.
  • the robot hand 1 is detachably connected to the hand connection flange 53.
  • the hand connection flange 53 includes a power supply terminal (not shown) that supplies power to the robot hand 1 and a signal terminal (not shown) that inputs and outputs electrical signals to the robot hand 1.
  • a wiring inserted into the arm unit 50 is connected to the power supply terminal and the signal terminal. *
  • FIG. 2 is a perspective view showing a robot hand according to an embodiment.
  • FIG. 3 is a diagram of the robot hand according to the embodiment as viewed from the base surface side. 2 and 3, the robot hand 1 holds the object 200.
  • the robot hand 1 includes a base unit 10, finger units 11, and a camera unit 12. *
  • the base portion 10 has a disc shape and has a joint portion 10j that is detachably connected to the hand connection flange 53 of the arm portion 50.
  • the base portion 10 has a base surface 10a on the side opposite to the joint portion 10j. *
  • the base surface 10a is planar and faces the object 200 to be grasped.
  • the base portion 10 rotates around the rotation axis O of the joint portion 51F integrally with the hand connection flange 53.
  • the rotation axis O passes through the center 10c of the disk-shaped base portion 10 and coincides with a normal line orthogonal to the base surface 10a.
  • the finger part 11 is provided on the base part 10.
  • the finger part 11 is arranged on a concentric circle C1 with the rotation axis O as the center.
  • the finger parts 11 are arranged at equal intervals in the circumferential direction around the center 10c on the radially outer side of the center 10c (rotary axis O) of the base part 10.
  • three finger portions 11 are provided. *
  • Each finger portion 11 is formed in a substantially L shape having a bent portion 11c at an intermediate portion.
  • Each finger part 11 has a base end part 11 a rotatably connected to the base part 10, and the distal end part 11 b side can be displaced (swinged) in the radial direction of the base part 10 around the base end part 11 a. That is, as shown in FIG. 3, the movable area Am of each finger portion 11 is a region extending radially from the center 10 c of the base portion 10 through the base end portion 11 a of the finger portion 11.
  • the plurality of finger portions 11 are opened and closed by being displaced in the radial direction of the base portion 10 in synchronization, for example.
  • the object 200 is grasped or released by opening and closing the plurality of finger parts 11. *
  • the camera unit 12 is provided at the center of the base surface 10 a of the base unit 10.
  • the camera unit 12 is used for measuring the position of the object 200 with respect to the robot hand 1 since the finger unit 11 holds the object 200.
  • the camera unit 12 is provided such that its optical axis 12 c is positioned coaxially with the rotation axis O serving as the rotation center of the base unit 10.
  • the camera unit 12 images the object 200.
  • Image data captured by the camera unit 12 is transferred from a signal terminal (not shown) provided on the hand connection flange 53 to a controller 55 (see FIG. 1) of the robot 100 through wiring (not shown) in the arm unit 50. Is done.
  • the controller 55 detects the position information of the target object 200 by performing image processing on the image data transferred from the camera unit 12. *
  • the robot hand 1 further includes a light 131.
  • the light 13 is provided on the base surface 10a, and irradiates the object 200 with light.
  • the light 131 is disposed between the finger portions 11 adjacent to each other in the circumferential direction on the outer side in the radial direction with respect to the center 10 c of the base portion 10. In this way, the light 131 is arranged in a region A different from the movable range Am of the finger unit 11. *
  • the camera unit 12 and the light 131 are provided on the base surface 10 a of the base unit 10. For this reason, the moment of inertia at the time of rotation of the robot hand 1 is reduced as compared with the configuration in which the camera unit 12 and the light 13 are provided on the side surface of the base portion 10. Therefore, it is possible to reduce the occurrence of a failure due to the load applied to the operation part (for example, the joint parts 51A to 51F) of the arm part 50 due to the influence of the moment of inertia. Further, disconnection of the wiring provided in the arm portion 50 due to the influence of the moment of inertia can be reduced. Also, the camera unit 12 and the light 131 provided on the base surface 10a are unlikely to come into contact with the surroundings within the movable range of the arm unit 50. Therefore, the robot 100 with less restrictions on the movable range of the arm unit 50 is provided. *
  • the arm unit 50 is driven under the control of the controller 55, and a workpiece mounting table (not shown) provided at preset coordinates.
  • the robot hand 1 is made to face the object 200 placed on the surface.
  • the robot hand 1 positions the base surface 10a of the base unit 10 in a state of being spaced from the object 200.
  • the object 200 is captured by the camera unit 12 provided in the robot hand 1, and the captured image data is transferred to the controller 55.
  • the object 200 is imaged by the camera unit 12 with the light 13 being irradiated with light by the light 13.
  • the controller 55 performs image processing on the image data transferred from the camera unit 12 and detects the position of the object 200.
  • the rotation axis O which is the center when the robot hand 1 is rotated
  • the optical axis 12c of the camera unit 12 coincide. For this reason, even when the robot hand 1 is rotated in the process until the position of the target object 200 is detected, the coordinate position of the target object 200 in the image picked up by the camera unit 12 is unlikely to occur.
  • the controller 55 drives the arm unit 50 to move the robot hand 1, and positions the plurality of finger parts 11 of the robot hand 1 on the outer peripheral side of the target object 200. Subsequently, the controller 55 displaces the tip end portions 11b of the plurality of finger portions 11 inward in the radial direction and causes the plurality of finger portions 11 to hold the object 200.
  • the arm unit 50 is driven based on a computer program set in advance, and a predetermined operation (for example, a transport operation to another place) is performed on the object 200 gripped by the robot hand 1.
  • a predetermined operation for example, a transport operation to another place
  • the plurality of finger portions 11 are displaced radially outward to release the object 200 that has been gripped.
  • the robot 100 according to the present embodiment performs the gripping / releasing operation of the object 200 in the robot hand 1.
  • the robot hand 1 includes a base portion 10 that can rotate around a predetermined rotation axis O, and a camera unit 12 that is provided on a base surface 10a of the base portion 10, and an optical axis 12c of the camera unit 12. Is coaxial with the rotation axis O. According to such a configuration, during the operation of the robot hand 1, the rotation axis O that is the center when the robot hand 1 is rotated coincides with the optical axis 12 c of the camera unit 12. For this reason, even when the robot hand 1 is rotated, the coordinate position of the target object 200 in the image captured by the camera unit 12 is unlikely to shift.
  • the object 200 can be gripped more stably.
  • the position of the object 200 can be reliably measured based on the image captured by the camera unit 12. Thereby, the holding
  • the light 131 is provided in a region A different from the movable range Am of the finger portion 11. According to such a configuration, the shadow of the finger part 11 caused by the light irradiated by the light 131 is suppressed. As a result, the object 200 can be well illuminated and the position of the object 200 can be reliably measured based on the image captured by the camera unit 12. Therefore, the gripping operation of the target object 200 by the robot hand 1 can be performed with higher accuracy.
  • the robot 100 includes the robot hand 1 as described above and the arm unit 50 to which the robot hand 1 is connected. Thereby, even when the robot hand 1 is rotated, it is possible to provide the robot 100 that efficiently measures the position of the object 200 and performs the gripping operation of the object 200 with high accuracy.
  • the light 131 is provided in the base portion 10, but is not limited thereto.
  • a light 60 may be provided on the arm portion 50 (for example, the hand connection flange 53).
  • the light 60 is provided by the bracket 61 or the like so that the light irradiation surface 60 a is positioned closer to the object 200 than the base surface 10 a facing the object 200 in the base portion 10.
  • the object 200 is well illuminated by the light 60.
  • the position measurement of the target object 200 can be performed reliably.
  • movement of the target object 200 by the robot hand 1 can be performed more accurately.
  • the robot hand 1 (base portion 10) is rotated around the rotation axis O of the joint portion 51F integrally with the hand connection flange 53, but is not limited thereto.
  • the robot hand 1 itself may include a rotation mechanism that rotates the base unit 10 around the rotation axis O.
  • a rotation mechanism that rotates the base unit 10 around the rotation axis O may be provided between the robot hand 1 and the arm unit 50.
  • the camera unit 12 is provided for measuring the position of the object 200.
  • the camera unit provided in another part, distance measuring means such as an ultrasonic sensor, and an arm unit. In combination with the position detection function of the hand connection flange 53 at 50, the position of the object 200 may be detected.
  • the finger part 11 may be provided with 2 or 4 or more. Furthermore, although the finger part 11 is rotated about the base end part 11a, for example, the plurality of finger parts 11 slide in the direction along the base surface 10a to grasp and release the object 200. You may do it. Moreover, it is good also as a structure which can be bent because the finger part 11 has a joint part in the middle. *
  • the uses of the robot hand 1 and the robot 100 shown in the above-described embodiment are not particularly limited.
  • FIG. 5 is an exploded perspective view showing a robot hand and a robot according to an embodiment.
  • the robot 100 of the present embodiment includes an arm unit 50 and a robot hand 1. *
  • the arm unit 50 is fixed to a base (not shown) on which the robot 100 is installed.
  • the arm part 50 has a six-axis configuration having, for example, six joint parts 51A to 51F.
  • the joint portions 51A to 51F can rotate around the drive shaft.
  • the arm part 50 is 6 axis
  • a connection flange 52 is provided at one end of the arm portion 50 in the length direction.
  • the connection flange 52 is connected to a base (not shown) by a bolt (not shown).
  • a hand connection flange 53 is provided at the other end of the arm portion 50 in the length direction.
  • the robot hand 1 is detachably connected to the hand connection flange 53.
  • the hand connection flange 53 includes a power supply terminal (not shown) that supplies power to the robot hand 1 and a signal terminal (not shown) that inputs and outputs electrical signals to the robot hand 1.
  • a wiring inserted into the arm unit 50 is connected to the power supply terminal and the signal terminal. *
  • FIG. 6 is a perspective view showing a robot hand according to an embodiment.
  • FIG. 7 is a view of the robot hand according to the embodiment as viewed from the base surface side. As shown in FIGS. 6 and 7, the robot hand 1 holds the object 200.
  • the robot hand 1 includes a base unit 10, finger units 11, and a camera unit 12. *
  • the base portion 10 has a disc shape and has a joint portion 10j that is detachably connected to the hand connection flange 53 of the arm portion 50.
  • the base portion 10 has a base surface 10a on the side opposite to the joint portion 10j.
  • the base surface 10a is planar and faces the object 200 to be grasped.
  • the base portion 10 rotates around the rotation axis O of the joint portion 51F integrally with the hand connection flange 53.
  • the rotation axis O passes through the center 10c of the disk-shaped base portion 10 and coincides with a normal line orthogonal to the base surface 10a.
  • the finger part 11 is provided on the base part 10.
  • the finger parts 11 are arranged at equal intervals in the circumferential direction around the center 10c on the radially outer side of the center 10c (rotary axis O) of the base part 10.
  • three finger portions 11 are provided.
  • Each finger portion 11 is formed in a substantially L shape having a bent portion 11c at an intermediate portion.
  • Each finger part 11 has a base end part 11 a rotatably connected to the base part 10, and the distal end part 11 b side can be displaced (swinged) in the radial direction of the base part 10 around the base end part 11 a. That is, as shown in FIG.
  • the movable area Am of each finger portion 11 is a region extending radially from the center 10 c of the base portion 10 through the base end portion 11 a of the finger portion 11.
  • the plurality of finger portions 11 are opened and closed by being displaced in the radial direction of the base portion 10 in synchronization, for example.
  • the object 200 is grasped or released by opening and closing the plurality of finger parts 11.
  • the camera unit 12 is provided on the base surface 10 a of the base portion 10. Since the camera unit 12 holds the object 200 with the finger part 11, the camera unit 12 is used to detect the position, shape, size, and the like of the object 200 with respect to the robot hand 1. At least two camera units 12 are provided. In the present embodiment, three camera units 12 are provided on the base surface 10a. In the present embodiment, the camera unit 12 includes, for example, two cameras 12A and 12B and a projector 12C.
  • the cameras 12A and 12B image the object 200.
  • the cameras 12 ⁇ / b> A and 12 ⁇ / b> B send captured image data from a signal terminal (not shown) provided on the hand connection flange 53 to a controller 55 (see FIG. 5) of the robot 100 through wiring (not shown) in the arm unit 50. Forward to.
  • the controller 55 detects the position of the object 200 by performing image processing on the image data transferred from the cameras 12A and 12B.
  • an XYZ coordinate system may be used as necessary.
  • the Z-axis defines a direction along the rotation axis O
  • the X-axis defines a first direction perpendicular to the Z-axis and parallel to the base surface 10a
  • the Y-axis defines the X-axis and the Y-axis.
  • a second direction is defined along a plane that is orthogonal and parallel to the base surface 10a.
  • the position of the target 200 on the base surface 10a is, for example, in the direction of two axes (X axis and Y axis) orthogonal to each other along the base surface 10a. It can be detected as coordinates. Further, by performing position detection based on the image data captured by the two cameras 12A and 12B that are separated from each other, the position of the target object 200 is determined by trigonometry, along the X axis, the Y axis, and the base surface 10a. It can be detected as three-dimensional coordinates in the Z-axis direction orthogonal to the base surface 10a. *
  • the projector 12C projects a predetermined image on the object 200.
  • an image projected by the projector 12C for example, there is a grid pattern image.
  • the color of the target object 200 and a mounting table (not shown) on which the target object 200 is placed are similar, or the surface of the target object 200 Even when the reflectance of the object 200 is high, the shape of the object 200 is detected three-dimensionally when captured by the cameras 12A and 12B. That is, the cameras 12A and 12B can image the object 200 satisfactorily.
  • the cameras 12A and 12B and the projector 12C have a rotational axis O that is radially outward with respect to the center 10c of the base portion 10 and at equal intervals in the circumferential direction around the center 10c. It arrange
  • Each of the cameras 12A and 12B and the projector 12C is disposed between the finger portions 11 adjacent to each other in the circumferential direction. In this way, the plurality of camera units 12 are arranged in a region A different from the movable range Am of the finger part 11. Further, each of the cameras 12A, 12B and the projector 12C is embedded in the base portion 10, and only the tip portion thereof is provided to be exposed on the base surface 10a. *
  • the arm unit 50 is driven under the control of the controller 55, and a workpiece mounting table (not shown) provided at preset coordinates.
  • the robot hand 1 is made to face the object 200 placed on the surface.
  • the robot hand 1 is positioned in a state where the base surface 10 a of the base portion 10 is spaced from the object 200.
  • the object 200 is imaged by the cameras 12 ⁇ / b> A and 12 ⁇ / b> B provided in the robot hand 1, and the captured image data is transferred to the controller 55.
  • imaging with the cameras 12A and 12B is performed with the projector 12C projecting a predetermined pattern image onto the object 200.
  • the controller 55 performs image processing on the image data transferred from the cameras 12 ⁇ / b> A and 12 ⁇ / b> B and detects position information of the object 200.
  • the controller 55 drives the arm unit 50 to move the robot hand 1, and positions the plurality of finger parts 11 of the robot hand 1 on the outer peripheral side of the target object 200. Subsequently, the controller 55 displaces the tip end portions 11b of the plurality of finger portions 11 inward in the radial direction and causes the plurality of finger portions 11 to hold the object 200.
  • the arm unit 50 is driven based on a computer program set in advance, and a predetermined operation (for example, a transport operation to another place) is performed on the object 200 gripped by the robot hand 1.
  • a predetermined operation for example, a transport operation to another place
  • the plurality of finger portions 11 are displaced radially outward to release the object 200 that has been gripped.
  • the robot 100 according to the present embodiment performs the gripping / releasing operation of the object 200 in the robot hand 1.
  • the robot hand 1 includes at least two camera units 12 used for measuring the object 200, and the camera unit 12 includes a movable range Am of the plurality of fingers 11 that hold the object 200. Arranged in different areas A.
  • the robot hand 1 of the present embodiment can reduce the occurrence of blind spots due to the finger portions 11 in the camera unit 12 used for measuring the object 200. Thereby, since the position measurement of the target object 200 can be performed with high accuracy, the gripping operation of the target object 200 can be performed with high accuracy.
  • the base portion 10 is rotatable around a predetermined rotation axis O extending in a direction orthogonal to the base surface 10a, and at least two unit portions 12 are provided with a rotation axis. It is arranged on a concentric circle C1 centered on O.
  • the camera unit 12 since the camera unit 12 is arrange
  • At least two camera units 12 include two cameras 12A and 12B. As described above, by providing the two cameras 12A and 12B, it is possible to detect the three-dimensional position coordinates of the target object 200 and perform the gripping operation of the target object 200 with high accuracy. *
  • the at least two camera units 12 include the projector 12C that projects a predetermined image on the object 200.
  • the shape of the target object 200 can be measured with higher accuracy.
  • the object 200 can be gripped more stably.
  • the robot hand 1 as described above and the arm unit 50 to which the robot hand 1 is connected are provided. Accordingly, it is possible to provide the robot 100 that accurately measures the position of the target object 200 and performs the gripping operation of the target object 200 with high accuracy.
  • the camera unit 12 is embedded in the base unit 10, but the present invention is not limited to this.
  • the base surface 10a of the base unit 10 may have a movable unit 4 capable of changing the mounting angle of the camera unit 12 (cameras 12A, 12B, projector 12C) with respect to the base surface 10a.
  • the base surface 10a of the base unit 10 may have a movable unit 4 capable of changing the mounting angle of the camera unit 12 (cameras 12A, 12B, projector 12C) with respect to the base surface 10a.
  • the measurement range by the cameras 12A and 12B can be changed by changing the attachment angle of the camera unit 12 with respect to the base surface 10a by the movable part 4, for example.
  • the position control of the robot hand 1 can be performed with higher accuracy.
  • the two cameras 12A and 12B are provided as the camera unit 12.
  • the distance detecting means such as an ultrasonic sensor, the position detecting function of the hand connection flange 53 in the arm unit 50, or the like may be used to detect the position of the object 200.
  • the projector 12C is provided as the camera unit 12.
  • a light that emits illumination light may be provided.
  • the finger part 11 may be provided with 2 or 4 or more. Furthermore, although the finger part 11 is rotated about the base end part 11a, for example, the plurality of finger parts 11 slide in the direction along the base surface 10a to grasp and release the object 200. You may do it. Moreover, it is good also as a structure which can be bent because the finger part 11 has a joint part in the middle. *
  • the uses of the robot hand 1 and the robot 100 shown in the above-described embodiment are not particularly limited.
  • FIG. 9 is an exploded perspective view showing a robot hand and a robot according to an embodiment.
  • the robot 100 of the present embodiment includes an arm unit 50 and a robot hand 1. *
  • the arm unit 50 is fixed to a base (not shown) on which the robot 100 is installed.
  • the arm part 50 has a six-axis configuration having, for example, six joint parts 51A to 51F.
  • the joint portions 51A to 51F can rotate around the drive shaft.
  • the arm part 50 is 6 axis
  • a connection flange 52 is provided at the first end of the arm portion 50.
  • the connection flange 52 is connected to a base (not shown) by a bolt (not shown).
  • a hand connection flange 53 is provided at the second end of the arm unit 50.
  • the robot hand 1 is detachably connected to the hand connection flange 53.
  • the hand connection flange 53 includes a power supply terminal (not shown) that supplies power to the robot hand 1 and a signal terminal (not shown) that inputs and outputs electrical signals to the robot hand 1.
  • a wiring inserted into the arm unit 50 is connected to the power supply terminal and the signal terminal. *
  • FIG. 10 is a perspective view showing a robot hand according to an embodiment.
  • FIG. 11 is a diagram of the robot hand according to the embodiment as viewed from the base surface side. As shown in FIGS. 10 and 11, the robot hand 1 holds an object 200 placed on a placing table (not shown).
  • the robot hand 1 includes a base unit 10, a finger unit 11, a camera unit 12, and a distance measuring sensor 13. *
  • the base portion 10 has a disc shape and has a joint portion 10j that is detachably connected to the hand connection flange 53 of the arm portion 50.
  • the base portion 10 has a base surface 10a on the side opposite to the joint portion 10j.
  • the base surface 10a is planar and faces the object 200 to be grasped.
  • the base portion 10 rotates around the rotation axis O of the joint portion 51F integrally with the hand connection flange 53.
  • the rotation axis O passes through the center 10c of the disk-shaped base portion 10 and coincides with a normal line orthogonal to the base surface 10a.
  • the finger part 11 is provided on the base part 10.
  • the finger part 11 is arranged on a concentric circle C1 with the rotation axis O as the center.
  • the finger parts 11 are arranged at equal intervals in the circumferential direction around the center 10c on the radially outer side of the center 10c (rotary axis O) of the base part 10.
  • three finger portions 11 are provided. *
  • Each finger portion 11 is formed in a substantially L shape having a bent portion 11c at an intermediate portion.
  • Each finger part 11 has a base end part 11 a rotatably connected to the base part 10, and the distal end part 11 b side can be displaced (swinged) in the radial direction of the base part 10 around the base end part 11 a.
  • the plurality of finger portions 11 are opened and closed by being displaced in the radial direction of the base portion 10 in synchronization, for example.
  • the object 200 is grasped or released by opening and closing the plurality of finger parts 11. *
  • an XYZ coordinate system may be used as necessary.
  • the Z-axis defines a direction along the rotation axis O
  • the X-axis defines a first direction perpendicular to the Z-axis and parallel to the base surface 10a
  • the Y-axis defines the X-axis and the Y-axis.
  • a second direction is defined along a plane that is orthogonal and parallel to the base surface 10a.
  • the camera unit 12 is provided on the base surface 10 a of the base unit 10.
  • the camera unit 12 is disposed between the finger portions 11 adjacent to each other in the circumferential direction on the radially outer side with respect to the center 10c of the base portion 10.
  • the camera unit 12 is used for measuring the position of the object 200 with respect to the robot hand 1 because the finger unit 11 grips the object 200 on the mounting table (not shown).
  • the camera unit 12 measures the position coordinates of the object 200 in two axial directions (X-axis direction and Y-axis direction) orthogonal to each other along the surface of the mounting table (not shown). *
  • the camera unit 12 images the object 200.
  • Image data captured by the camera unit 12 is transmitted from a signal terminal (not shown) provided on the hand connection flange 53 through a wiring (not shown) in the arm unit 50, and a drive control unit 55 (see FIG. 9) of the robot 100.
  • the drive control unit 55 detects the position coordinates of the target object 200 in the X-axis direction and the Y-axis direction by performing image processing on the image data transferred from the camera unit 12.
  • the distance measuring sensor 13 is provided on the base surface 10 a of the base unit 10.
  • the distance measuring sensor 13 measures the distance to the object 200 in the Z-axis direction orthogonal to the surface of the mounting table (not shown).
  • the distance measuring sensor 13 includes a light irradiation unit 13a and a light detection unit 13b.
  • the light irradiation unit 13 a irradiates detection light (light) toward the object 200.
  • the distance measuring sensor 13 is provided so that the optical axis 13 c of the light irradiation unit 13 a is positioned coaxially with the rotation axis O that is the rotation center of the base unit 10.
  • infrared light or laser light is used as the detection light.
  • the light detection unit 13b detects reflected light (light) reflected from the object 200 by the detection light emitted from the light irradiation unit 13a.
  • the light detection unit 13b includes an image sensor such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor, and detects a light receiving position of reflected light on the image sensor.
  • the distance measuring sensor 13 receives information on the light receiving position of the reflected light detected by the light detection unit 13b from a signal terminal (not shown) provided on the hand connection flange 53 through a wiring (not shown) in the arm unit 50. It transfers to the drive control part 55 (refer FIG. 9) of the robot 100.
  • FIG. The drive control unit 55 detects the position coordinates of the object 200 in the Z-axis direction based on the information transferred from the distance measuring sensor 13. *
  • the driving of the robot hand 1 and the arm unit 50 as described above is controlled by the drive control unit 55.
  • a method for controlling the robot hand 1 and the arm unit 50 by the drive control unit 55 will be described.
  • the arm unit 50 is driven under the control of the drive control unit 55, and a mounting table (not shown) provided at preset coordinates.
  • the robot hand 1 is made to face the object 200 placed on ().
  • the robot hand 1 positions the base surface 10a of the base portion 10 with a gap in the Z-axis direction from the object 200.
  • the object 200 is captured by the camera unit 12 provided in the robot hand 1, and the captured image data is transferred to the drive control unit 55.
  • the drive control unit 55 performs image processing on the image data transferred from the camera unit 12 and detects the position coordinates of the object 200 in the X-axis direction and the Y-axis direction.
  • the light irradiation unit 13a of the distance measuring sensor 13 provided in the robot hand 1 emits detection light toward the object 200, and the reflected light from the object 200 is detected by the light detection unit 13b.
  • the distance measuring sensor 13 transfers information on the light receiving position of the reflected light detected by the image sensor of the light detection unit 13 b to the drive control unit 55.
  • the drive control unit 55 measures the distance to the object 200 in the Z-axis direction based on the information transferred from the distance measurement sensor 13 (light reception position of reflected light). In this way, the position coordinates of the object 200 in the X-axis direction, the Y-axis direction, and the Z-axis direction are detected.
  • the rotation axis O that is the center when the robot hand 1 is rotated coincides with the optical axis 13 c of the light irradiation unit 13 a of the distance measuring sensor 13. For this reason, even when the robot hand 1 is rotated in the process until the position of the object 200 is detected, the distance between the distance measuring sensor 13 and the object 200 in the Z-axis direction does not vary.
  • the drive control unit 55 drives the arm unit 50 so as to correct the movement path of the robot hand 1 based on the detection results of the camera unit 12 and the distance measuring sensor 13. That is, the drive control unit 55 drives the arm unit 50 to move the robot hand 1 based on the detected position of the target object 200, and moves the plurality of finger units 11 of the robot hand 1 around the target object 200. It is located on the outer peripheral side. Subsequently, the drive control unit 55 displaces the tip end portions 11 b of the plurality of finger portions 11 inward in the radial direction, and causes the plurality of finger portions 11 to grip the object 200. *
  • the arm unit 50 is driven based on a computer program set in advance, and a predetermined operation (for example, a transport operation to another place) is performed on the object 200 gripped by the robot hand 1.
  • a predetermined operation for example, a transport operation to another place
  • the plurality of finger portions 11 are displaced radially outward to release the object 200 that has been gripped. In this manner, the object 200 is grasped and released by the robot hand 1.
  • the robot hand 1 that grips the target object 200 is provided on the base unit 10 having the base surface 10 a facing the target object 200 and the base unit 10, and grips the target object 200.
  • At least two finger parts 11 and a distance measuring sensor 13 provided on the base surface 10a of the base part 10 and measuring the distance to the object 200 are provided.
  • the distance measuring sensor 13 on the base surface 10a, the distance between the robot hand 1 and the object 200 in the Z-axis direction can be measured with high accuracy. For example, when the objects 200 are sequentially stacked in a plurality of stages, or when the uppermost object 200 is sequentially grasped and moved from the objects 200 stacked in a plurality of stages, the height of the object 200 to be grasped is increased. Changes. Even in such a case, since the distance measuring sensor 13 is provided on the base surface 10a of the robot hand 1, the position in the Z-axis direction of the object 200 to be grasped can be accurately detected.
  • the distance measuring sensor 13 is provided on the base surface 10a of the robot hand 1. Therefore, the distance in the Z-axis direction of the object 200 to be grasped can be measured with high accuracy.
  • the positional accuracy of the robot hand 1 with respect to the object 200 can be increased, and the grasping operation of the object 200 can be performed with high accuracy.
  • the base portion 10 can rotate around a predetermined rotation axis O extending in a direction orthogonal to the base surface 10a, and the distance measuring sensor 13 can rotate the rotation axis O on the base surface 10a. It is provided on the same axis. As described above, since the distance measuring sensor 13 is arranged on the same axis as the rotation axis O, even when the robot hand 1 is rotated, the coordinate axis of the distance measuring sensor 13 is not easily displaced, and the Z of the target object 200 to be grasped is Z. Axial distance can be measured with high accuracy. *
  • the distance measuring sensor 13 includes the light irradiation unit 13 a that irradiates light toward the object 200 and the light detection unit 13 b that detects light from the object 200. Further, the distance measuring sensor 13 is provided on the base surface 10 a so that the optical axis 13 c of the light irradiation unit 13 a is positioned on the same axis as the rotation axis O.
  • the optical axis 13c of the light irradiation unit 13a is arranged on the same axis as the rotation axis O, the optical axis 13c of the light irradiation unit 13a does not shift even when the robot hand 1 is rotated. Therefore, even when the robot hand 1 is rotated, the distance in the Z-axis direction between the base surface 10a and the object 200 can be measured with high accuracy.
  • the target object 200 can be more reliably gripped.
  • the robot hand 1 as described above and the arm unit 50 connected to the robot hand 1 are provided. Accordingly, it is possible to provide the robot 100 that can improve the positional accuracy of the robot hand 1 with respect to the target object 200 and perform the gripping operation of the target object 200 with high accuracy.
  • the driving control unit 55 further controls the driving of the arm unit 50, and the driving control unit 55 corrects the movement path of the robot hand 1 based on the detection result of the distance measuring sensor 13. As described above, the arm unit 50 is driven. Thereby, the robot hand 1 can be moved with respect to the target object 200 by the shortest path. Therefore, the gripping operation of the object 200 can be performed quickly and with high accuracy.
  • the object 200 placed on the placing table is gripped.
  • the object to be conveyed by a conveying device such as a belt conveyor. 200 may be held by the robot hand 1.
  • the camera unit 12 detects the position coordinates of the object 200 in the X-axis direction and the Y-axis direction at predetermined time intervals.
  • the drive control part 55 based on the detection result of the position coordinate of the target object 200 several times, the moving speed of the target object 200 by a conveying apparatus is detected. Further, the drive control unit 55 controls the operation of the arm unit 50 based on the detected moving speed of the target object 200, and grips the target object 200 while moving the robot hand 1 following the target object 200. It can be performed.
  • the distance measurement sensor 13 may measure the distance from the object 200 at a plurality of locations in the plane including the X-axis direction and the Y-axis direction. Thereby, even if the target object 200 is inclined, the inclination degree can be detected. Therefore, by tilting the robot hand 1 in accordance with the detected tilt degree, the object 200 can be reliably gripped by the robot hand 1.
  • the robot hand 1 (base portion 10) rotates around the rotation axis O of the joint portion 51F integrally with the hand connection flange 53, but is not limited thereto.
  • the robot hand 1 itself may include a rotation mechanism that rotates the base unit 10 around the rotation axis O.
  • a rotation mechanism that rotates the base unit 10 around the rotation axis O may be provided between the robot hand 1 and the arm unit 50.
  • the finger part 11 may be provided with 2 or 4 or more. Furthermore, although the finger part 11 is rotated about the base end part 11a, for example, the plurality of finger parts 11 slide in the direction along the base surface 10a to grasp and release the object 200. You may do it. Moreover, it is good also as a structure which can be bent because the finger part 11 has a joint part in the middle. *
  • the uses of the robot hand 1 and the robot 100 shown in the above-described embodiment are not particularly limited.

Abstract

本発明のロボットハンドの一つの態様は、対象物を把持するロボットハンドにおいて、前記対象物に対向するベース面を有し、前記ベース面に直交する方向に延びる所定の回転軸の周りに回転可能なベース部と、前記ベース部に設けられ、前記対象物を把持する少なくとも2つの指部と、前記ベース部の前記ベース面に設けられ、前記対象物の位置測定に用いられるカメラユニットと、を備え、前記カメラユニットの光学軸は前記回転軸と同軸上にある。本発明のロボットハンドの一つの態様は、対象物を把持するロボットハンドにおいて、前記対象物に対向するベース面を有するベース部と、前記ベース部に設けられ、前記対象物を把持する少なくとも2つの指部と、前記ベース部の前記ベース面に設けられ、前記対象物の測定に用いられる少なくとも2つのユニット部と、を備え、前記ユニット部は、前記指部の可動域と異なる領域に配置されている。本発明のロボットハンドの一つの態様は、対象物を把持するロボットハンドにおいて、前記対象物に対向するベース面を有するベース部と、前記ベース部に設けられ、前記対象物を把持する少なくとも2つの指部と、前記ベース部の前記ベース面に設けられ、前記対象物までの距離を計測する測距センサと、を備える。

Description

ロボットハンド、ロボット
本発明は、ロボットハンド、ロボットに関する。
ロボットアームの先端部等に設けられて、対象物(ワーク)を把持するロボットハンドが知られている。特許文献1には、対象物をクランプする爪を有した把持装置と、ワークを照らすライトと、ワークを撮影するカメラとを備えた構成が記載される。 
この構成において、カメラのレンズの中心とライトの中心とは、把持装置の中心と同一線上に配置される。また、把持装置の爪は、把持装置の中心の周りに周方向に間隔をあけて複数設けられる。これら複数の爪は、把持装置の中心に対して径方向に変位することで開閉し、対象物を把持する。
ロボットアームの先端部等に設けられて、対象物(ワーク)を把持するロボットハンドが知られている。特許文献1には、対象物をクランプする爪を有した把持装置と、ワークを照らすライトと、ワークを撮影するカメラとを備えた構成が記載される。 この構成において、カメラのレンズの中心とライトの中心とは、把持装置の中心と同一線上に配置される。また、把持装置の爪は、把持装置の中心の周りに周方向に間隔をあけて複数設けられる。これら複数の爪は、把持装置の中心に対して径方向に変位することで開閉し、対象物を把持する。 
ロボットハンド及びロボットアームを備えたロボットにおいて、対象物を把持するには、対象物の位置座標に基づいて、ロボットアームやロボットハンドの作動を制御する。対象物の位置座標は、例えば、対象物が載置された載置台の表面に沿った2軸方向(X軸方向、Y軸方向)の座標と、台の表面に直交する方向(Z軸方向)の座標とで表される。特許文献1に開示されたロボットハンドにおいて、対象物のX軸方向及びY軸方向の位置座標は、カメラで対象物を撮像した画像データに基づいて検出される。一方、Z軸方向においては、ロボットハンドが装着されたロボットアーム側で、予めティーチングされた対象物のZ軸方向の位置座標に基づいた作動制御が行われる。
特開2007-144546号公報
上記のような構成において、ロボットアームの先端部に設けられたロボットハンドを回転させると、ロボットハンドに設けられたカメラもロボットハンドと一体に回転する。このとき、ロボットハンドの回転によって、カメラで撮像する画像内における対象物の位置座標にずれが生じる場合がある。すると、対象物に対して指部の位置を高精度に調整するには、ロボットハンドの回転角度に応じ、対象物の位置座標を補正する等の処理が必要となり、対象物の位置測定のための処理が煩雑となるという問題がある。 
本発明は、上記事情に鑑みて、ロボットハンドを回転させた場合でも、対象物の位置測定を効率よく行い、対象物の把持動作を高精度に行うことができるロボットハンド、ロボットを提供することを目的の一つとする。
上記のような構成において、ロボットアームの先端部に設けられたロボットハンドを回転させると、ロボットハンドに設けられたカメラもロボットハンドと一体に回転する。このとき、ロボットハンドの回転によって、カメラで撮像する画像内における対象物の位置座標にずれが生じる場合がある。すると、対象物に対して指部の位置を高精度に調整するには、ロボットハンドの回転角度に応じ、対象物の位置座標を補正する等の処理が必要となり、対象物の位置測定のための処理が煩雑となるという問題がある。
本発明は、上記事情に鑑みて、対象物の位置測定を精度よく行い、対象物の把持動作を高精度に行うことができるロボットハンド、ロボットを提供することを目的の一つとする。
上記のような構成において、ロボットアーム側で、予めティーチングされた対象物のZ軸方向の位置座標に基づいた作動制御を行う場合、以下のような問題が生じる場合がある。例えば、対象物を順次複数段に積み重ねていく場合や、複数段に積み重ねた対象物から最上段の対象物を順次把持して移動させる場合、把持すべき対象物の高さが変化する。このような場合、予めロボットアームにティーチングした位置座標では、対象物の高さの変化に対応できず、対象物の把持動作が困難となる。 また、さらに、何らかの原因で、例えば、対象物を載置する載置台側とロボットアーム側との間で相対的な位置ズレが生じた場合、Z軸方向における対象物に対するロボットハンドの位置精度が低下してしまうこともある。 
本発明は、上記事情に鑑みて、対象物に対するロボットハンドの位置精度を高め、対象物の把持動作を高精度に行うことができるロボットハンド、ロボットを提供することを目的の一つとする。
本発明のロボットハンドの一つの態様(第一実施形態)は、対象物を把持するロボットハンドにおいて、前記対象物に対向するベース面を有し、前記ベース面に直交する方向に延びる所定の回転軸の周りに回転可能なベース部と、前記ベース部に設けられ、前記対象物を把持する少なくとも2つの指部と、前記ベース部の前記ベース面に設けられ、前記対象物の位置測定に用いられるカメラユニットと、を備え、前記カメラユニットの光学軸は前記回転軸と同軸上にある。 
本発明のロボットの一つの態様(第一実施形態)は、上記のロボットハンドと、前記ロボットハンドに接続されるアーム部と、を備える。
本発明のロボットハンドの一つの態様(第二実施形態)は、対象物を把持するロボットハンドにおいて、前記対象物に対向するベース面を有するベース部と、前記ベース部に設けられ、前記対象物を把持する少なくとも2つの指部と、前記ベース部の前記ベース面に設けられ、前記対象物の測定に用いられる少なくとも2つのユニット部と、を備え、前記ユニット部は、前記指部の可動域と異なる領域に配置されている。 
本発明のロボットの一つの態様(第二実施形態)は、上記のロボットハンドと、前記ロボットハンドに接続される。
本発明のロボットハンドの一つの態様(第三実施形態)は、対象物を把持するロボットハンドにおいて、前記対象物に対向するベース面を有するベース部と、前記ベース部に設けられ、前記対象物を把持する少なくとも2つの指部と、前記ベース部の前記ベース面に設けられ、前記対象物までの距離を計測する測距センサと、を備える。 
本発明のロボットの一つの態様(第三実施形態)は、上記のロボットハンドと、前記ロボットハンドに接続されるアーム部と、を備える。アーム部と、を備える。 
本発明の一つの態様(第一実施形態)によれば、ロボットハンドを回転させた場合でも、対象物の位置測定を効率よく行い、対象物の把持動作を高精度に行うことができるロボットハンド、ロボットが提供される。
本発明の一つの態様(第二実施形態)によれば、対象物の位置測定を精度よく行い、対象物の把持動作を高精度に行うことができるロボットハンド、ロボットが提供される。
本発明の一つの態様(第三実施形態)によれば、対象物に対するロボットハンドの位置精度を高め、対象物の把持動作を高精度に行うことができるロボットハンド、ロボットが提供される。
図1は、第一実施形態のロボットハンド及びロボットを示す斜視展開図である。 図2は、第一実施形態のロボットハンドを示す斜視図である。 図3は、第一実施形態のロボットハンドを、ベース面側から見た図である。 図4は、第一実施形態の変形例のロボットハンドを示す側面図である。 図5は、第二実施形態のロボットハンド及びロボットを示す斜視展開図である。 図6は、第二実施形態のロボットハンドを示す斜視図である。 図7は、第二実施形態のロボットハンドを、ベース面側から見た図である。 図8は、第二実施形態の変形例のロボットハンドを示す側面図である。 図9は、第三実施形態のロボットハンド及びロボットを示す斜視展開図である。 図10は、第三実施形態のロボットハンドを示す斜視図である。 図11は、第三実施形態のロボットハンドを、ベース面側から見た図である。
図1から図4を用いて、第一実施形態を説明する。 
図1は、一実施形態のロボットハンド及びロボットを示す斜視展開図である。 図1に示すように、本実施形態のロボット100は、アーム部50と、ロボットハンド1と、を備える。 
アーム部50は、ロボット100が設置される基台(図示無し)に固定される。アーム部50は、例えば6つの関節部51A~51Fを有した6軸構成である。アーム部50において、関節部51A~51Fがそれぞれ駆動軸の周りに回転可能とされる。なお、本実施形態において、アーム部50は6軸構成であるが、その駆動軸の数については何ら限定するものではない。 
アーム部50の長さ方向における一方端には、接続フランジ52が設けられる。接続フランジ52は、基台(図示無し)にボルト(図示無し)によって接続される。アーム部50の長さ方向における他方端には、ハンド接続フランジ53が設けられる。ハンド接続フランジ53には、ロボットハンド1が着脱可能に接続される。ハンド接続フランジ53は、ロボットハンド1に給電する給電端子(図示無し)、及びロボットハンド1に電気信号を入出力する信号端子(図示無し)を備える。給電端子及び信号端子には、アーム部50内に挿通される配線が接続される。 
図2は、一実施形態のロボットハンドを示す斜視図である。図3は、一実施形態のロボットハンドを、ベース面側から見た図である。 図2、図3に示すように、ロボットハンド1は、対象物200を把持する。ロボットハンド1は、ベース部10と、指部11と、カメラユニット12と、を備える。 
ベース部10は、円盤状で、アーム部50のハンド接続フランジ53に着脱可能に接続されるジョイント部10jを有する。ベース部10は、ジョイント部10jとは反対側に、ベース面10aを有する。 
ベース面10aは、平面状で、把持対象となる対象物200に対向する。ベース部10は、ハンド接続フランジ53と一体に、関節部51Fの回転軸O周りに回転する。本実施形態において、回転軸Oは、円盤状のベース部10の中心10cを通り、ベース面10aに直交する法線に一致する。 
指部11は、ベース部10に設けられる。指部11は回転軸Oを中心とする同心円C1上に配置されている。指部11は、ベース部10の中心10c(回転軸O)の径方向外側に、中心10c周りの周方向に等間隔をあけて配置されている。本実施形態において、指部11は、3つが設けられている。 
各指部11は、中間部に屈曲部11cを有した略L字状に形成される。各指部11は、基端部11aがベース部10に回転自在に連結され、基端部11aを中心として先端部11b側がベース部10の径方向に変位(揺動)可能である。すなわち、図3に示すように、各指部11の可動域Amは、ベース部10の中心10cから指部11の基端部11aを通り、放射状に延びる領域となる。複数の指部11は、例えば、同期してベース部10の径方向に変位することで開閉動作する。複数の指部11が開閉動作することによって、対象物200を把持又は解放する。 
図2、図3に示すように、カメラユニット12は、ベース部10のベース面10aの中心部に設けられる。カメラユニット12は、指部11で対象物200を把持するため、ロボットハンド1に対する対象物200の位置測定に用いられる。カメラユニット12は、その光学軸12cが、ベース部10の回転中心となる回転軸Oと同軸上に位置するよう設けられる。
カメラユニット12は、対象物200を撮像する。カメラユニット12で撮像した画像データは、ハンド接続フランジ53に設けられた信号端子(図示無し)から、アーム部50内の配線(図示無し)を通して、ロボット100のコントローラ55(図1参照)に転送される。コントローラ55は、カメラユニット12から転送された画像データを画像処理することで、対象物200の位置情報を検出する。 
また、本実施形態において、ロボットハンド1は、ライト131をさらに備える。ライト13は、ベース面10aに設けられ、対象物200に光を照射する。このライト131は、ベース部10の中心10cに対して径方向外側で、周方向で互いに隣り合う指部11の間に配置される。このようにして、ライト131は、指部11の可動域Amと異なる領域Aに配置される。 
本実施形態のロボットハンド1において、カメラユニット12及びライト131がベース部10のベース面10aに設けられている。このため、カメラユニット12及びライト13がベース部10の側面に設けられる構成に比べて、ロボットハンド1の回転時の慣性モーメントが低減する。よって、慣性モーメントの影響によって、アーム部50の動作部(例えば、関節部51A~51F等)に負荷が加わることによる故障の発生を低減できる。また、慣性モーメントの影響によってアーム部50に設けられた配線が断線することを低減できる。 また、ベース面10aに設けられたカメラユニット12及びライト131は、アーム部50の可動範囲内において周囲との接触が起こり難い。そのため、アーム部50の可動範囲における制限の少ないロボット100が提供される。 
このようなロボットハンド1及びロボット100で対象物200を把持するには、まず、コントローラ55の制御により、アーム部50を駆動し、予め設定された座標に設けられたワーク載置台(図示無し)に載置された対象物200に対し、ロボットハンド1を対向させる。このとき、ロボットハンド1は、ベース部10のベース面10aを、対象物200との間に間隔をあけた状態で位置させる。 
次いで、ロボットハンド1に設けられたカメラユニット12で対象物200を撮像し、撮像した画像データを、コントローラ55に転送する。このとき、必要に応じ、ライト13により光を対象物200に照射した状態で、カメラユニット12で対象物200を撮像する。そして、コントローラ55では、カメラユニット12から転送された画像データを画像処理し、対象物200の位置を検出する。 
ここで、本実施形態のロボット100では、ロボットハンド1を回転させるときの中心である回転軸Oと、カメラユニット12の光学軸12cとが一致する。このため、対象物200の位置を検出させるまでの過程でロボットハンド1を回転させた場合でも、カメラユニット12で撮像した画像内における対象物200の座標位置にずれが生じ難い。 
コントローラ55は、検出された対象物200の位置に基づき、アーム部50を駆動してロボットハンド1を移動させ、ロボットハンド1の複数の指部11を、対象物200の外周側に位置させる。 続いて、コントローラ55は、複数の指部11の先端部11bを径方向内側に変位させ、これら複数の指部11で対象物200を把持させる。 
この後は、予め設定されたコンピュータプログラムに基づいてアーム部50を駆動し、ロボットハンド1で把持した対象物200に対し、所定の動作(例えば他の場所への搬送動作)を実行させる。所定の動作完了後は、複数の指部11を径方向外側に変位させ、把持していた対象物200を解放する。 このようにして、本実施形態のロボット100は、ロボットハンド1における対象物200の把持・解放動作を行う。 
本実施形態のロボットハンド1は、所定の回転軸Oの周りに回転可能なベース部10と、ベース部10のベース面10aに設けられるカメラユニット12と、を備え、カメラユニット12の光学軸12cは回転軸Oと同軸上にある。このような構成によれば、ロボットハンド1の動作時において、ロボットハンド1を回転させるときの中心である回転軸Oと、カメラユニット12の光学軸12cとが一致する。このため、ロボットハンド1を回転させた場合でも、カメラユニット12で撮像した画像内における対象物200の座標位置にずれが生じ難い。これにより、カメラユニット12で撮像した画像に対し、ロボットハンド1の回転角度に応じて対象物200の位置座標の補正処理等を行う必要が抑えられる。したがって、対象物200の位置測定を効率良く行い、対象物200の把持動作を高精度に行うことが可能となる。 
本実施形態によれば、3つの指部11が同心円C1状に配置されるので、対象物200を、より安定的に把持することができる。 
また、本実施形態によれば、ライト131により対象物200が照明されるので、カメラユニット12で撮像した画像に基づいて対象物200の位置測定を確実に行うことができる。これにより、ロボットハンド1による対象物200の把持動作をより精度よく行うことができる。 
また、本実施形態によれば、ライト131は、指部11の可動域Amと異なる領域Aに設けられている。このような構成によれば、ライト131で照射した光によって指部11の影が生じることを抑える。これにより、対象物200を良好に照明し、カメラユニット12で撮像した画像に基づいて対象物200の位置測定を確実に行うことができる。したがって、ロボットハンド1による対象物200の把持動作をより精度よく行うことができる。 
本実施形態によれば、ロボット100は、上記のようなロボットハンド1と、ロボットハンド1が接続されるアーム部50と、を備える。これにより、ロボットハンド1を回転させた場合でも、対象物200の位置測定を効率よく行い、対象物200の把持動作を高精度に行うロボット100を提供できる。 
(実施形態の変形例) 上記実施形態では、ライト131を、ベース部10に設けたが、これに限らない。 例えば、図4に示すように、アーム部50(例えば、ハンド接続フランジ53)に、ライト60を設けてもよい。この場合、ライト60は、ブラケット61等によって、その光照射面60aが、ベース部10における対象物200と対向するベース面10aよりも対象物200側に位置するように設けられる。 
本実施形態の変形例によれば、ライト60をアーム部50に設けることによって、アーム部50によってロボットハンド1を移動させても、ライト60により対象物200が良好に照明される。これにより、カメラユニット12で撮像した画像に基づいて対象物200の位置測定を確実に行うことができる。これにより、ロボットハンド1による対象物200の把持動作をより精度よく行うことができる。 
以上に、本発明の一実施形態を説明したが、実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 
例えば、上述の実施形態において、ロボットハンド1(ベース部10)は、ハンド接続フランジ53と一体に、関節部51Fの回転軸O周りに回転するようにしたが、これに限らない。例えば、ロボットハンド1自体に、ベース部10を回転軸O周りに回転させる回転機構を備えてもよい。また、ロボットハンド1とアーム部50との間に、ベース部10を回転軸O周りに回転させる回転機構を備えてもよい。 
また、上述の実施形態において、対象物200の位置測定のため、カメラユニット12を備えるようにしたが、さらに、他の部位に設けたカメラユニット、超音波センサ等の測距手段や、アーム部50におけるハンド接続フランジ53の位置検出機能等と組み合わせて、対象物200の位置検出を行うようにしても良い。 
また、上述の実施形態において、指部11を3つ備えるようにしたが、指部11は、2つ、あるいは4つ以上を備えてもよい。さらに、指部11は、基端部11aを中心として回転するようにしたが、例えば、複数の指部11がベース面10aに沿った方向にスライドすることで、対象物200を把持・解放するようにしてもよい。また、指部11が途中に関節部を有することで折り曲げ可能な構成としてもよい。 
また、例えば、上述した実施形態に示したロボットハンド1、ロボット100の用途は、特に限定されない。
図5から図8を用いて、第二実施形態を説明する。
図5は、一実施形態のロボットハンド及びロボットを示す斜視展開図である。 図5に示すように、本実施形態のロボット100は、アーム部50と、ロボットハンド1と、を備える。 
アーム部50は、ロボット100が設置される基台(図示無し)に固定される。アーム部50は、例えば6つの関節部51A~51Fを有した6軸構成である。アーム部50において、関節部51A~51Fがそれぞれ駆動軸の周りに回転可能とされる。なお、本実施形態において、アーム部50は6軸構成であるが、その駆動軸の数については何ら限定するものではない。 
アーム部50の長さ方向における一方端には、接続フランジ52が設けられる。接続フランジ52は、基台(図示無し)にボルト(図示無し)によって接続される。アーム部50の長さ方向における他方端には、ハンド接続フランジ53が設けられる。ハンド接続フランジ53には、ロボットハンド1が着脱可能に接続される。ハンド接続フランジ53は、ロボットハンド1に給電する給電端子(図示無し)、及びロボットハンド1に電気信号を入出力する信号端子(図示無し)を備える。給電端子及び信号端子には、アーム部50内に挿通される配線が接続される。 
図6は、一実施形態のロボットハンドを示す斜視図である。図7は、一実施形態のロボットハンドを、ベース面側から見た図である。 図6、図7に示すように、ロボットハンド1は、対象物200を把持する。ロボットハンド1は、ベース部10と、指部11と、カメラユニット12と、を備える。 
ベース部10は、円盤状で、アーム部50のハンド接続フランジ53に着脱可能に接続されるジョイント部10jを有する。ベース部10は、ジョイント部10jとは反対側に、ベース面10aを有する。ベース面10aは、平面状で、把持対象となる対象物200に対向する。ベース部10は、ハンド接続フランジ53と一体に、関節部51Fの回転軸O周りに回転する。本実施形態において、回転軸Oは、円盤状のベース部10の中心10cを通り、ベース面10aに直交する法線に一致する。 
指部11は、ベース部10に設けられる。指部11は、ベース部10の中心10c(回転軸O)の径方向外側に、中心10c周りの周方向に等間隔をあけて配置されている。本実施形態において、指部11は、3つが設けられている。各指部11は、中間部に屈曲部11cを有した略L字状に形成される。各指部11は、基端部11aがベース部10に回転自在に連結され、基端部11aを中心として先端部11b側がベース部10の径方向に変位(揺動)可能である。すなわち、図7に示すように、各指部11の可動域Amは、ベース部10の中心10cから指部11の基端部11aを通り、放射状に延びる領域となる。複数の指部11は、例えば、同期してベース部10の径方向に変位することで開閉動作する。複数の指部11が開閉動作することによって、対象物200を把持又は解放する。 
図6、図7に示すように、カメラユニット12は、ベース部10のベース面10aに設けられる。カメラユニット12は、指部11で対象物200を把持するため、ロボットハンド1に対する対象物200の位置や形状、大きさ等の検出に用いられる。カメラユニット12は、少なくとも2つが設けられる。本実
施形態において、カメラユニット12は、3つがベース面10aに設けられる。本実施形態において、カメラユニット12は、例えば2つのカメラ12A,12Bと、プロジェクタ12Cと、を含む。 
カメラ12A、12Bは、対象物200を撮像する。カメラ12A、12Bは、撮像した画像データを、ハンド接続フランジ53に設けられた信号端子(図示無し)から、アーム部50内の配線(図示無し)を通して、ロボット100のコントローラ55(図5参照)に転送する。コントローラ55は、カメラ12A、12Bから転送された画像データを画像処理することで、対象物200の位置を検出する。 
以下の説明では、必要に応じてXYZ座標系を用いることもある。Z軸は、回転軸Oに沿った方向を規定し、X軸はZ軸に直交するとともにベース面10aに平行な面に沿う第1の方向を規定し、Y軸はX軸及びY軸に直交するとともにベース面10aに平行な面に沿う第2の方向を規定する。 
カメラ12A、12Bのそれぞれにおいては、撮像した画像データに基づき、ベース面10a上における対象物200の位置を、例えばベース面10aに沿って互いに直交する2つの軸(X軸、Y軸)方向の座標として検出することができる。さらに、互いに離間した2つのカメラ12A、12Bで撮像した画像データに基づいて位置検出を行うことで、三角法により、対象物200の位置を、ベース面10aに沿ったX軸、Y軸、及びベース面10aに直交するZ軸方向の三次元座標として検出することができる。 
プロジェクタ12Cは、対象物200に所定の像を投影する。プロジェクタ12Cで投影する像としては、例えば格子状(グリッド)のパターン像がある。このようなパターン像をプロジェクタ12Cから対象物200に投影すると、対象物200と対象物200が載置される載置台(図示無し)との色が類似している場合や、対象物200の表面の反射率が高い場合等であっても、カメラ12A、12Bで撮像したときに対象物200の形状が立体的に検出される。すなわち、カメラ12A、12Bが対象物200を良好に撮像できる。 
図7に示すように、これらのカメラ12A、12Bとプロジェクタ12Cとは、ベース部10の中心10cに対して径方向外側で、中心10c周りの周方向に等間隔をあけて、回転軸Oを中心とする同心円C1上に配置される。カメラ12A、12B、およびプロジェクタ12Cのそれぞれは、周方向で互いに隣り合う指部11の間に配置される。このようにして、複数のカメラユニット12は、指部11の可動域Amと異なる領域Aに配置される。 また、カメラ12A、12B、およびプロジェクタ12Cのそれぞれは、ベース部10に埋設され、その先端部のみがベース面10aに露出するよう設けられる。 
このようなロボットハンド1及びロボット100で対象物200を把持するには、まず、コントローラ55の制御により、アーム部50を駆動し、予め設定された座標に設けられたワーク載置台(図示無し)に載置された対象物200に対し、ロボットハンド1を対向させる。このとき、ロボットハンド1は、ベース部10のベース面10aを、対象物200との間に間隔をあけた状態で位置する。 
次いで、ロボットハンド1に設けられたカメラ12A、12Bで対象物200を撮像し、撮像した画像データを、コントローラ55に転送する。このとき、プロジェクタ12Cにより、所定のパターン像を対象物200に投影した状態で、カメラ12A、12Bにおける撮像を行う。 コントローラ55では、カメラ12A、12Bから転送された画像データを画像処理し、対象物200の位置情報を検出する。 
コントローラ55は、検出された対象物200の位置に基づき、アーム部50を駆動してロボットハンド1を移動させ、ロボットハンド1の複数の指部11を、対象物200の外周側に位置させる。 続いて、コントローラ55は、複数の指部11の先端部11bを径方向内側に変位させ、これら複数の指部11で対象物200を把持させる。 
この後は、予め設定されたコンピュータプログラムに基づいてアーム部50を駆動し、ロボットハンド1で把持した対象物200に対し、所定の動作(例えば他の場所への搬送動作)を実行させる。所定の動作完了後は、複数の指部11を径方向外側に変位させ、把持していた対象物200を解放する。 このようにして、本実施形態のロボット100は、ロボットハンド1における対象物200の把持・解放動作を行う。 
本実施形態によれば、ロボットハンド1は、対象物200の測定に用いられる少なくとも2つのカメラユニット12を備え、カメラユニット12は、対象物200を把持する複数の指部11の可動域Amと異なる領域Aに配置される。このような構成により、本実施形態のロボットハンド1は、対象物200の測定に用いられるカメラユニット12において、指部11による死角の発生を低減できる。これにより、対象物200の位置測定を精度よく行うことができるので、対象物200の把持動作を高精度に行うことが可能となる。 
また、本実施形態のロボットハンド1によれば、ベース部10は、ベース面10aに直交する方向に延びる所定の回転軸Oの周りに回転可能であり、少なくとも2つのユニット部12は、回転軸Oを中心とする同心円C1上に配置される。このように、カメラユニット12が同心円C1上に配置されるので、ベース部10上にカメラユニット12をコンパクトに配置できる。これにより、ロボットハンド1を小型化且つ軽量化できる。 
また、本実施形態のロボットハンド1によれば、少なくとも2つのカメラユニット12は、2つのカメラ12A,12Bを含む。このように、2つのカメラ12A,12Bを備えることで、対象物200の3次元位置座標を検出し、対象物200の把持動作を高精度に行うことが可能となる。 
また、本実施形態のロボットハンド1によれば、少なくとも2つのカメラユニット12は、対象物200に所定の像を投影するプロジェクタ12Cを含む。このように、対象物200に像を投影することで、対象物200の形状を、より高精度に計測できる。 
また、本実施形態のロボットハンド1によれば、指部11を3つ以上備えるので、対象物200を、より安定的に把持できる。 
また、本実施形態のロボット100によれば、上記のようなロボットハンド1と、ロボットハンド1が接続されるアーム部50と、を備える。これにより、対象物200の位置測定を精度よく行い、対象物200の把持動作を高精度に行うロボット100を提供することができる。 
(実施形態の変形例) 上記実施形態では、カメラユニット12を、ベース部10に埋設するようにしたが、これに限らない。 例えば、図8に示すように、ベース部10のベース面10aに、ベース面10aに対するカメラユニット12(カメラ12A,12B、プロジェクタ12C)の取り付け角度を変更可能な可動部4を有するようにしてもよい。 
本実施形態の変形例によれば、可動部4によってベース面10aに対するカメラユニット12の取り付け角度を変更することで、例えば、カメラ12A,12Bによる測定範囲を変更できる。これにより、ベース面10aにより近い位置で対象物200を計測できるので、より高精度にロボットハンド1の位置制御を行うことができる。 
以上に、本発明の一実施形態を説明したが、実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 
例えば、上述の実施形態において、カメラユニット12として、2つのカメラ12A、12Bは、を備えるようにしたが、1台のみ、または3台以上のカメラを備えることもできる。さらに、カメラだけでなく、超音波センサ等の測距手段や、アーム部50におけるハンド接続フランジ53の位置検出機能等と組み合わせて、対象物200の位置検出を行うようにしても良い。 
また、上述の実施形態において、カメラユニット12として、プロジェクタ12Cを備えるようにしたが、これに代えて、照明光を照射するライトを備えるようにしてもよい。 
また、上述の実施形態において、指部11を3つ備えるようにしたが、指部11は、2つ、あるいは4つ以上を備えてもよい。さらに、指部11は、基端部11aを中心として回転するようにしたが、例えば、複数の指部11がベース面10aに沿った方向にスライドすることで、対象物200を把持・解放するようにしてもよい。また、指部11が途中に関節部を有することで折り曲げ可能な構成としてもよい。 
また、例えば、上述した実施形態に示したロボットハンド1、ロボット100の用途は、特に限定されない。
図9から図11を用いて、第三実施形態を説明する。
図9は、一実施形態のロボットハンド及びロボットを示す斜視展開図である。 図9に示すように、本実施形態のロボット100は、アーム部50と、ロボットハンド1と、を備える。 
アーム部50は、ロボット100が設置される基台(図示無し)に固定される。アーム部50は、例えば6つの関節部51A~51Fを有した6軸構成である。アーム部50において、関節部51A~51Fがそれぞれ駆動軸の周りに回転可能とされる。なお、本実施形態において、アーム部50は6軸構成であるが、その駆動軸の数については何ら限定するものではない。 
アーム部50の第一端部には、接続フランジ52が設けられる。接続フランジ52は、基台(図示無し)にボルト(図示無し)によって接続される。アーム部50の第二端部には、ハンド接続フランジ53が設けられる。ハンド接続フランジ53には、ロボットハンド1が着脱可能に接続される。ハンド接続フランジ53は、ロボットハンド1に給電する給電端子(図示無し)、及びロボットハンド1に電気信号を入出力する信号端子(図示無し)を備える。給電端子及び信号端子には、アーム部50内に挿通される配線が接続される。 
図10は、一実施形態のロボットハンドを示す斜視図である。図11は、一実施形態のロボットハンドを、ベース面側から見た図である。 図10、図11に示すように、ロボットハンド1は、図示しない載置台上に載置された対象物200を把持する。ロボットハンド1は、ベース部10と、指部11と、カメラユニット12と、測距センサ13と、を備える。 
ベース部10は、円盤状で、アーム部50のハンド接続フランジ53に着脱可能に接続されるジョイント部10jを有する。ベース部10は、ジョイント部10jとは反対側に、ベース面10aを有する。ベース面10aは、平面状で、把持対象となる対象物200に対向する。ベース部10は、ハンド接続フランジ53と一体に、関節部51Fの回転軸O周りに回転する。本実施形態において、回転軸Oは、円盤状のベース部10の中心10cを通り、ベース面10aに直交する法線に一致する。 
指部11は、ベース部10に設けられる。指部11は回転軸Oを中心とする同心円C1上に配置されている。指部11は、ベース部10の中心10c(回転軸O)の径方向外側に、中心10c周りの周方向に等間隔をあけて配置されている。本実施形態において、指部11は、3つが設けられている。 
各指部11は、中間部に屈曲部11cを有した略L字状に形成される。各指部11は、基端部11aがベース部10に回転自在に連結され、基端部11aを中心として先端部11b側がベース部10の径方向に変位(揺動)可能である。複数の指部11は、例えば、同期してベース部10の径方向に変位することで開閉動作する。複数の指部11が開閉動作することによって、対象物200を把持又は解放する。 
以下の説明では、必
要に応じてXYZ座標系を用いることもある。Z軸は、回転軸Oに沿った方向を規定し、X軸はZ軸に直交するとともにベース面10aに平行な面に沿う第1の方向を規定し、Y軸はX軸及びY軸に直交するとともにベース面10aに平行な面に沿う第2の方向を規定する。 
図10、図11に示すように、カメラユニット12は、ベース部10のベース面10aに設けられる。カメラユニット12は、例えば、ベース部10の中心10cに対して径方向外側で、周方向で互いに隣り合う指部11の間に配置される。カメラユニット12は、指部11で載置台(図示無し)上の対象物200を把持するため、ロボットハンド1に対する対象物200の位置測定に用いられる。カメラユニット12は、載置台(図示無し)の表面に沿って互いに直交する2軸方向(X軸方向及びY軸方向)における対象物200の位置座標を測定する。 
カメラユニット12は、対象物200を撮像する。カメラユニット12で撮像した画像データは、ハンド接続フランジ53に設けられた信号端子(図示無し)から、アーム部50内の配線(図示無し)を通して、ロボット100の駆動制御部55(図9参照)に転送される。駆動制御部55は、カメラユニット12から転送された画像データを画像処理することで、対象物200のX軸方向及びY軸方向における位置座標を検出する。 
測距センサ13は、ベース部10のベース面10aに設けられる。測距センサ13は、載置台(図示無し)の表面に直交するZ軸方向における、対象物200までの距離を計測する。測距センサ13は、光照射部13aと、光検出部13bとを備える。光照射部13aは、対象物200に向けて検出光(光)を照射する。測距センサ13は、光照射部13aの光軸13cが、ベース部10の回転中心となる回転軸Oと同軸上に位置するように設けられる。検出光としては、例えば赤外線やレーザ光が用いられる。光検出部13bは、光照射部13aから照射した検出光が対象物200で反射した反射光(光)を検出する。光検出部13bは、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の撮像素子を有し、撮像素子上における反射光の受光位置を検出する。測距センサ13は、光検出部13bで検出した反射光の受光位置の情報を、ハンド接続フランジ53に設けられた信号端子(図示無し)から、アーム部50内の配線(図示無し)を通して、ロボット100の駆動制御部55(図9参照)に転送する。駆動制御部55は、測距センサ13から転送された情報に基づき、対象物200のZ軸方向における位置座標を検出する。 
上記のようなロボットハンド1及びアーム部50は、駆動制御部55によりその駆動が制御される。以下、駆動制御部55によるロボットハンド1及びアーム部50の制御方法について説明する。 このようなロボットハンド1及びロボット100で対象物200を把持するには、まず、駆動制御部55の制御により、アーム部50を駆動し、予め設定された座標に設けられた載置台(図示無し)に載置された対象物200に対し、ロボットハンド1を対向させる。このとき、ロボットハンド1は、ベース部10のベース面10aを、対象物200との間にZ軸方向に間隔をあけた状態で位置させる。 
次いで、ロボットハンド1に設けられたカメラユニット12で対象物200を撮像し、撮像した画像データを、駆動制御部55に転送する。駆動制御部55では、カメラユニット12から転送された画像データを画像処理し、X軸方向及びY軸方向における対象物200の位置座標を検出する。 
また、ロボットハンド1に設けられた測距センサ13の光照射部13aで対象物200に向けて検出光を照射し、対象物200からの反射光を光検出部13bで検出する。測距センサ13は、光検出部13bの撮像素子で検出した反射光の受光位置の情報を、駆動制御部55に転送する。駆動制御部55では、測距センサ13から転送された情報(反射光の受光位置)に基づき、Z軸方向における、対象物200までの距離を計測する。 このようにして、X軸方向、Y軸方向、及びZ軸方向における対象物200の位置座標が検出される。 
ここで、本実施形態のロボットハンド1において、ロボットハンド1を回転させるときの中心である回転軸Oと、測距センサ13の光照射部13aの光軸13cとが一致する。このため、対象物200の位置を検出させるまでの過程でロボットハンド1を回転させた場合でも、測距センサ13と対象物200とのZ軸方向における距離は変動しない。 
駆動制御部55は、カメラユニット12及び測距センサ13の検出結果に基づいて、ロボットハンド1の移動経路を補正するように、アーム部50を駆動する。すなわち、駆動制御部55は、検出された対象物200の位置に基づき、アーム部50を駆動してロボットハンド1を移動させ、ロボットハンド1の複数の指部11を、対象物200を中心としてその外周側に位置させる。 続いて、駆動制御部55は、複数の指部11の先端部11bを径方向内側に変位させ、これら複数の指部11で対象物200を把持させる。 
この後は、予め設定されたコンピュータプログラムに基づいてアーム部50を駆動し、ロボットハンド1で把持した対象物200に対し、所定の動作(例えば他の場所への搬送動作)を実行させる。所定の動作完了後は、複数の指部11を径方向外側に変位させ、把持していた対象物200を解放する。 このようにして、ロボットハンド1における対象物200の把持・解放動作を行う。 
本実施形態のロボット100によれば、対象物200を把持するロボットハンド1が、対象物200に対向するベース面10aを有するベース部10と、ベース部10に設けられ、対象物200を把持する少なくとも2つの指部11と、ベース部10のベース面10aに設けられ、対象物200までの距離を計測する測距センサ13と、を備える。 
このように、ベース面10aに測距センサ13を備えることによって、ロボットハンド1と対象物200とのZ軸方向における距離を高精度に測定することができる。例えば、対象物200を順次複数段に積み重ねていく場合や、複数段に積み重ねた対象物200から最上段の対象物200を順次把持して移動させる場合には、把持すべき対象物200の高さが変化する。 このような場合においても、ロボットハンド1のベース面10aに測距センサ13が設けられるので、把持対象となる対象物200のZ軸方向の位置を正確に検出することができる。また、何らかの原因で、対象物200を載置する載置台側とアーム部50側との間で相対的な位置ズレが生じた場合でも、ロボットハンド1のベース面10aに測距センサ13が設けられているので、把持対象となる対象物200のZ軸方向の距離を高精度に計測できる。 その結果、本実施形態のロボットハンド1によれば、対象物200に対するロボットハンド1の位置精度を高め、対象物200の把持動作を高精度に行うことができる。 
また、本実施形態によれば、ベース部10は、ベース面10aに直交する方向に延びる所定の回転軸Oの周りに回転可能であり、測距センサ13は、ベース面10aにおける回転軸Oの同軸上に設けられている。 このように、測距センサ13が回転軸Oの同軸上に配置されるので、ロボットハンド1を回転させた場合でも、測距センサ13の座標軸がずれ難く、把持対象となる対象物200のZ軸方向の距離を高精度に計測できる。 
また、本実施形態によれば、測距センサ13は、対象物200に向けて光を照射する光照射部13aと、対象物200からの光を検出する光検出部13bとを含む。さらに、測距センサ13は、光照射部13aの光軸13cが回転軸Oの同軸上に位置するように、ベース面10aに設けられる。 このように、光照射部13aの光軸13cが回転軸Oの同軸上に配置されるので、ロボットハンド1を回転させた場合でも、光照射部13aの光軸13cがずれない。そのため、ロボットハンド1を回転させた場合でも、ベース面10aと対象物200とのZ軸方向の距離を高精度に計測できる。 
また、本実施形態によれば、指部11を3つ備えるので、対象物200をより確実に把持できる。 
また、本実施形態によれば、上記のようなロボットハンド1と、ロボットハンド1に接続されるアーム部50と、を備える。これにより、対象物200に対するロボットハンド1の位置精度を高め、対象物200の把持動作を高精度に行うことができるロボット100を提供できる。 
また、本実施形態によれば、アーム部50の駆動を制御する駆動制御部55をさらに備え、駆動制御部55は、測距センサ13の検出結果に基づいて、ロボットハンド1の移動経路を補正するように、アーム部50を駆動する。これにより、対象物200に対してロボットハンド1を最短経路で移動させることができる。よって、対象物200の把持動作を迅速かつ高精度に行うことができる。 
(実施形態の変形例) 上記実施形態のロボットハンド1においては、載置台上に載置された対象物200を把持するようにしたが、例えば、ベルトコンベア等の搬送装置によって搬送される対象物200をロボットハンド1で把持するようにしてもよい。この場合、カメラユニット12によって、対象物200のX軸方向及びY軸方向の位置座標の検出を、所定の時間間隔をあけて行う。駆動制御部55では、複数回の対象物200の位置座標の検出結果に基づき、搬送装置による対象物200の移動速度を検出する。さらに、駆動制御部55は、検出した対象物200の移動速度に基づき、アーム部50の作動を制御し、ロボットハンド1を、対象物200に追従して移動させながら、対象物200の把持動作を行うことができる。 
また、測距センサ13で、対象物200との距離を、X軸方向及びY軸方向を含む面内の複数個所で行うようにしてもよい。これにより、対象物200が傾いている場合であっても、その傾斜度合いを検出することができる。したがって、検出された傾斜度合いに合わせてロボットハンド1を傾斜させることで、ロボットハンド1により対象物200を確実に把持することができる。 
以上に、本発明の一実施形態を説明したが、実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 例えば、上述の実施形態において、ロボットハンド1(ベース部10)は、ハンド接続フランジ53と一体に、関節部51Fの回転軸O周りに回転するようにしたが、これに限らない。例えば、ロボットハンド1自体に、ベース部10を回転軸O周りに回転させる回転機構を備えてもよい。また、ロボットハンド1とアーム部50との間に、ベース部10を回転軸O周りに回転させる回転機構を備えてもよい。 
また、上述の実施形態において、指部11を3つ備えるようにしたが、指部11は、2つ、あるいは4つ以上を備えてもよい。さらに、指部11は、基端部11aを中心として回転するようにしたが、例えば、複数の指部11がベース面10aに沿った方向にスライドすることで、対象物200を把持・解放するようにしてもよい。また、指部11が途中に関節部を有することで折り曲げ可能な構成としてもよい。 
また、例えば、上述した実施形態に示したロボットハンド1、ロボット100の用途は、特に限定されない。
1…ロボットハンド、10…ベース部、10a…ベース面、11…指部、12…カメラユニット、12c…光学軸、12A…カメラ、12B…カメラ、12C…プロジェクタ、131…ライト、13…測距センサ、13a…光照射部、13b…光検出部、13c…光軸、50…アーム部、55…駆動制御部、60…ライト、60a…光照射面、100…ロ
ボット、200…対象物、A…領域、Am…可動域、C1…同心円、O…回転軸。

Claims (20)

  1. 対象物を把持するロボットハンドにおいて、 前記対象物に対向するベース面を有するベース部と、 前記ベース部に設けられ、前記対象物を把持する少なくとも2つの指部と、 前記ベース部の前記ベース面に設けられ、 前記対象物の測定に用いられる測定部と、を備えるロボットハンド。
  2. 前記ベース部は、前記ベース面に直交する方向に延びる所定の回転軸の周りに回転可能であり、 前記測定部として、前記対象物の位置測定に用いられるカメラユニットと、を備え、 前記カメラユニットの光学軸は前記回転軸と同軸上にある 請求項1に記載のロボットハンド。
  3. 前記指部を3つ以上備えており、 前記3つ以上の指部は前記回転軸を中心とする同心円上に配置されている 請求項2に記載のロボットハンド。
  4. 前記ベース面に設けられ、前記対象物に光を照射するライトをさらに備えている 請求項2又は3に記載のロボットハンド。
  5. 前記ライトは、前記指部の可動域と異なる領域に設けられている 請求項4に記載のロボットハンド。
  6. 請求項1乃至5のいずれか一項に記載のロボットハンドと、 前記ロボットハンドに接続されるアーム部と、を備える ロボット。
  7. 前記アーム部に設けられ、前記対象物に光を照射するライトをさらに備え、 前記ライトの光照射面は、前記ベース部における前記対象物と対向するベース面よりも前記対象物側に位置する 請求項6に記載のロボット。
  8. 前記測定部として、少なくとも2つのカメラユニットと、を備え、 前記カメラユニットは、前記指部の可動域と異なる領域に配置されている 請求項1に記載のロボットハンド。
  9. 前記ベース部は、前記ベース面に直交する方向に延びる所定の回転軸の周りに回転可能であり、 前記少なくとも2つのカメラユニットは、前記回転軸を中心とする同心円上に配置されている 請求項8に記載のロボットハンド。
  10. 請求項9に記載のロボットハンドであって、その特徴は、 前記少なくとも2つのカメラユニットは、2つのカメラを含む 請求項1又は2に記載のロボットハンド。
  11. 前記少なくとも2つのカメラユニットは、前記対象物に所定の像を投影するプロジェクタを含む 請求項10に記載のロボットハンド。
  12. 前記ベース面に対する前記カメラユニットの取り付け角度を変更可能な可動部を有する 請求項8乃至11のいずれか一項に記載のロボットハンド。
  13. 前記指部を3つ以上備える 請求項8乃至12のいずれか一項に記載のロボットハンド。
  14. 請求項8乃至12のいずれか一項に記載のロボットハンドと、 前記ロボットハンドに接続されるアーム部と、を備える ロボット。
  15. 前記測定部として、前記対象物までの距離を計測する測距センサと、を備える 請求項1に記載のロボットハンド。
  16. 前記ベース部は、前記ベース面に直交する方向に延びる所定の回転軸の周りに回転可能であり、 前記測距センサは、前記ベース面における前記回転軸の同軸上に設けられている 請求項15に記載のロボットハンド。
  17. 前記測距センサは、前記対象物に向けて光を照射する光照射部と、前記対象物からの前記光を検出する光検出部とを含み、 前記測距センサは、前記光照射部の光軸が前記回転軸の同軸上に位置するように、前記ベース面に設けられる 請求項16に記載のロボットハンド。
  18. 前記指部を3つ以上備える 請求項15乃至17のいずれか一項に記載のロボットハンド。
  19. 請求項15乃至18のいずれか一項に記載のロボットハンドと、 前記ロボットハンドに接続されるアーム部と、を備える ロボット。
  20. 前記アーム部の駆動を制御する駆動制御部をさらに備え、 前記駆動制御部は、前記測距センサの検出結果に基づいて、前記ロボットハンドの移動経路を補正するように、前記アーム部を駆動する 請求項19に記載のロボット。
PCT/JP2019/009484 2018-03-14 2019-03-08 ロボットハンド、ロボット WO2019176809A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-047237 2018-03-14
JP2018046912 2018-03-14
JP2018046913 2018-03-14
JP2018-046913 2018-03-14
JP2018-046912 2018-03-14
JP2018047237 2018-03-14

Publications (1)

Publication Number Publication Date
WO2019176809A1 true WO2019176809A1 (ja) 2019-09-19

Family

ID=67907095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009484 WO2019176809A1 (ja) 2018-03-14 2019-03-08 ロボットハンド、ロボット

Country Status (1)

Country Link
WO (1) WO2019176809A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113319873A (zh) * 2021-06-07 2021-08-31 湖南城市学院 一种智能机械手

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155192A (ja) * 1982-03-11 1983-09-14 三菱電機株式会社 ロボツトハンド
JPS61182786A (ja) * 1985-02-08 1986-08-15 株式会社日立製作所 平行グリツパによる物体自動把持方式
JPH0523989A (ja) * 1991-07-15 1993-02-02 Hitachi Ltd 宇宙ロボツト用のマグネツト式エンドエフエクタ
JPH0631666A (ja) * 1992-07-15 1994-02-08 Fujitsu Ltd 知能ロボット
JP2005205519A (ja) * 2004-01-21 2005-08-04 Mitsubishi Electric Engineering Co Ltd ロボットハンド装置
JP2005271182A (ja) * 2004-03-26 2005-10-06 Fujinon Corp ロボット用マニピュレータ
JP2007144546A (ja) * 2005-11-28 2007-06-14 Kondo Seisakusho:Kk 外観検査用把持装置
JP2009078310A (ja) * 2007-09-25 2009-04-16 Seiko Epson Corp ロボット用ハンド及びロボット用ハンドの制御方法並びにロボット用ハンドの制御システム
JP2009274204A (ja) * 2008-05-13 2009-11-26 Samsung Electronics Co Ltd ロボット、ロボットハンド及びロボットハンドの制御方法
JP2015506850A (ja) * 2011-11-09 2015-03-05 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 関節器具に好適な姿勢を取らせるような命令をするように入力装置のオペレータを促す、入力装置での力フィードバックの適用
JP2015160264A (ja) * 2014-02-26 2015-09-07 株式会社Ihi 把持方法および把持装置
JP2017152651A (ja) * 2016-02-26 2017-08-31 富士電機株式会社 部品検査装置及び部品実装装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155192A (ja) * 1982-03-11 1983-09-14 三菱電機株式会社 ロボツトハンド
JPS61182786A (ja) * 1985-02-08 1986-08-15 株式会社日立製作所 平行グリツパによる物体自動把持方式
JPH0523989A (ja) * 1991-07-15 1993-02-02 Hitachi Ltd 宇宙ロボツト用のマグネツト式エンドエフエクタ
JPH0631666A (ja) * 1992-07-15 1994-02-08 Fujitsu Ltd 知能ロボット
JP2005205519A (ja) * 2004-01-21 2005-08-04 Mitsubishi Electric Engineering Co Ltd ロボットハンド装置
JP2005271182A (ja) * 2004-03-26 2005-10-06 Fujinon Corp ロボット用マニピュレータ
JP2007144546A (ja) * 2005-11-28 2007-06-14 Kondo Seisakusho:Kk 外観検査用把持装置
JP2009078310A (ja) * 2007-09-25 2009-04-16 Seiko Epson Corp ロボット用ハンド及びロボット用ハンドの制御方法並びにロボット用ハンドの制御システム
JP2009274204A (ja) * 2008-05-13 2009-11-26 Samsung Electronics Co Ltd ロボット、ロボットハンド及びロボットハンドの制御方法
JP2015506850A (ja) * 2011-11-09 2015-03-05 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 関節器具に好適な姿勢を取らせるような命令をするように入力装置のオペレータを促す、入力装置での力フィードバックの適用
JP2015160264A (ja) * 2014-02-26 2015-09-07 株式会社Ihi 把持方法および把持装置
JP2017152651A (ja) * 2016-02-26 2017-08-31 富士電機株式会社 部品検査装置及び部品実装装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113319873A (zh) * 2021-06-07 2021-08-31 湖南城市学院 一种智能机械手

Similar Documents

Publication Publication Date Title
JP5293442B2 (ja) ロボットシステム及び物品並置方法
JP5290324B2 (ja) 空間内において少なくとも1つのオブジェクトを最終姿勢に高精度で位置決めするための方法およびシステム
US5783834A (en) Method and process for automatic training of precise spatial locations to a robot
EP3173194B1 (en) Manipulator system, image capturing system, transfer method of object, and carrier medium
US20140277694A1 (en) Robot system and method for producing to-be-processed material
US20040162639A1 (en) Workpiece conveying apparatus
JP5272617B2 (ja) ロボット装置及びロボット装置の制御方法
JP4390758B2 (ja) ワーク取出し装置
TW201012608A (en) Method of teaching conveying robot
JP6252597B2 (ja) ロボットシステム
JP2004276151A (ja) 搬送用ロボットおよび搬送用ロボットの教示方法
JP6924112B2 (ja) 基板搬送装置及び基板搬送ロボットと基板載置部との位置関係を求める方法
US20160349730A1 (en) Robotic system and method for processing aircraft component
WO2019176809A1 (ja) ロボットハンド、ロボット
JP6404957B2 (ja) 加工機にワークを搬送するロボットを備える加工システム
WO2020044760A1 (ja) 動作装置のキャリブレーション方法、動作装置システムおよび制御装置
JP2009078310A (ja) ロボット用ハンド及びロボット用ハンドの制御方法並びにロボット用ハンドの制御システム
JP2006297559A (ja) キャリブレーションシステムおよびロボットのキャリブレーション方法
JP2006159399A (ja) 作業用移動ロボット
JP2011177863A (ja) 把持装置
US6633046B1 (en) Method and apparatus for detecting that two moveable members are correctly positioned relatively to one another
KR20110011627A (ko) 부품 핸들러
JP4056662B2 (ja) 外観検査装置
WO2022092285A1 (ja) はんだ付け装置及びはんだ付けシステム、並びに、加工装置
JP5522532B2 (ja) 切削部を有するワークの把持装置及び把持方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP