WO2020036153A1 - 積層体の製造方法及び製造装置 - Google Patents

積層体の製造方法及び製造装置 Download PDF

Info

Publication number
WO2020036153A1
WO2020036153A1 PCT/JP2019/031749 JP2019031749W WO2020036153A1 WO 2020036153 A1 WO2020036153 A1 WO 2020036153A1 JP 2019031749 W JP2019031749 W JP 2019031749W WO 2020036153 A1 WO2020036153 A1 WO 2020036153A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
coating film
backup roll
decompression chamber
gas
Prior art date
Application number
PCT/JP2019/031749
Other languages
English (en)
French (fr)
Inventor
諭司 國安
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020537078A priority Critical patent/JP7019049B2/ja
Priority to KR1020217002101A priority patent/KR102480805B1/ko
Priority to CN201980048779.5A priority patent/CN112469508B/zh
Publication of WO2020036153A1 publication Critical patent/WO2020036153A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials

Definitions

  • the present disclosure relates to a method and an apparatus for manufacturing a laminate.
  • Japanese Patent Application Laid-Open No. 2014-188450 discloses that a coating liquid containing a resin material and a solvent is applied to one surface of a long film conveyed in a longitudinal direction. After forming the coating film, at least until the solvent volatilized from the coating film is filled in the drying device, two or more cover members are provided to cover the thickness portions at both ends in the width direction of the coating film and the film.
  • a coating control device wherein the two or more cover members are connected in the film transport direction, and one or more perforated cover members provided with holes, and one or more non-perforated members not provided with holes.
  • a cover member comprising: an exhaust means for exhausting a solvent volatilized from the coating film to the outside from the hole of the perforated cover member, and using a coating film control device capable of rearranging the installation position of the cover member. Manufacturing method disclosed To have.
  • Japanese Patent Application Laid-Open No. 2011-36803 discloses that a production process having a substrate supply step, a coating step, a drying step, and a winding step is used to form a polymer on a film substrate having at least one inorganic barrier layer.
  • the method for producing a barrier film which comprises applying a coating liquid for forming a layer and producing a barrier film having at least one polymer layer, at least the application step includes a coating chamber in a reduced-pressure environment of -0.1 kPa to -1.0 kPa.
  • a coating machine having a decompression chamber on the upstream side, wherein the degree of decompression in the decompression chamber is from -0.2 kPa to -3.0 kPa, and the relationship between the decompression degree between the decompression chamber and the application chamber is the decompression of the decompression chamber Degree> Depressurization degree of the coating chamber, and a method of manufacturing a barrier film in which the difference in depressurization degree between the depressurizing chamber and the coating chamber is 0.1 kPa to 2 kPa.
  • the substrate to be continuously transported is wound around a backup roll, and a coating solution containing an organic solvent is applied on the wound substrate using a die coater to form an intended coating layer.
  • a method of forming a laminated body by forming it is known. In such a method for producing a laminate, drying of the coating film immediately after application with the lowest solid content concentration is usually performed gently in order to make it less susceptible to disturbance (that is, the viscosity of the coating film is increased). The rise is slow). However, even if the coating film immediately after coating is gently dried, it was insufficient to suppress the occurrence of wind unevenness.
  • wind unevenness refers to a streak-like or spot-like pattern formed in a direction substantially parallel to the transport direction of the substrate on the surface of the coating layer.
  • the maximum width is 1 mm to 20 mm and the length is 30 cm or more.
  • the maximum diameter is 1 mm to 10 mm. Have.
  • an object to be solved by one embodiment of the present invention is to provide a method and an apparatus for manufacturing a laminate, which can form a coating layer on which a generation of wind unevenness is suppressed on a base material. .
  • ⁇ 1> a step of winding a substrate that is continuously conveyed around a backup roll, applying a coating liquid containing an organic solvent to the substrate on the backup roll, and forming a coating film; B) reducing the organic solvent from the coating film on the backup roll by inhaling gas on the coating film; At least The substrate on ambient pressure at the time of contact between the substrate and the coating liquid and P A in step a, if the substrate on the ambient pressure at the intake of the gas in step b was P B, following P A and P B A method for producing a laminate, which satisfies the conditions 1 and 2.
  • ⁇ 2> The method for producing a laminate according to ⁇ 1>, wherein the wind speed of the gas on the coating film in the step b is 1 m / s to 100 m / s.
  • the distance from the point of contact between the base material and the coating solution in step a to the point at which gas suction on the coating film is started in step b is 100 mm or less, according to ⁇ 1> or ⁇ 2>.
  • a method for producing the laminate according to the above. ⁇ 4> The method for producing a laminate according to any one of ⁇ 1> to ⁇ 3>, wherein in the step b, the gas on the coating film is sucked until the solid content concentration of the coating film reaches 70% by mass. .
  • a backup roll around which a continuously transported substrate is wound;
  • a die coater for applying a coating solution containing an organic solvent on a substrate wound on a backup roll to form a coating film,
  • a decompression chamber that is installed adjacent to the die coater and reduces the organic solvent from the coating film on the backup roll by sucking the gas on the coating film,
  • ⁇ 6> The apparatus for manufacturing a laminate according to ⁇ 5>, wherein the gas on the coating film in the decompression chamber has a wind velocity of 1 m / s to 100 m / s.
  • the distance from the point of contact between the base material on the backup roll and the coating liquid applied by the die coater to the point at which gas suction on the coating film is started in the decompression chamber is 100 mm or less. 5>
  • ⁇ 9> The apparatus for manufacturing a laminate according to any one of ⁇ 5> to ⁇ 8>, wherein a distance between a front end surface of a side surface of the decompression chamber and a backup roll is 0.5 mm or less.
  • ⁇ 10> The apparatus for manufacturing a laminate according to ⁇ 9>, wherein a distance between a front end surface of the decompression chamber and a backup roll is larger than a distance between a front end surface of a side surface of the decompression chamber and the backup roll.
  • ⁇ 11> The apparatus for manufacturing a laminate according to any one of ⁇ 5> to ⁇ 10>, wherein the decompression chamber includes a main body having a supply slit and an exhaust slit, and a side plate.
  • ⁇ 12> The apparatus for manufacturing a laminate according to any one of ⁇ 5> to ⁇ 11>, wherein the backup roll has a surface temperature of 40 ° C to 120 ° C.
  • a method and an apparatus for manufacturing a laminate which can form a coating layer on a base material, in which occurrence of wind unevenness is suppressed.
  • FIG. 2 is a schematic side view illustrating an example of an apparatus for manufacturing a laminated body that performs steps a and b in the present disclosure. It is a schematic side view for explaining the composition of the decompression room of a 1st mode. It is an outline side view for explaining the composition of the decompression room of a 2nd mode.
  • step is included in the term as well as an independent step, even if it cannot be clearly distinguished from other steps as long as the intended purpose of the step is achieved.
  • a numerical range indicated using “to” indicates a range including numerical values described before and after “to” as a minimum value and a maximum value, respectively.
  • the upper limit or the lower limit described in a certain numerical range may be replaced with the upper limit or the lower limit of another numerical range described in a stepwise manner.
  • the upper limit or the lower limit described in a certain numerical range may be replaced with the value shown in the embodiment.
  • symbol described in several drawing is the same, it points to the same object.
  • the description of the same configuration and reference numeral in each drawing may be omitted.
  • a combination of two or more preferred embodiments is a more preferred embodiment.
  • a substrate to be continuously conveyed is wound around a backup roll, and a coating solution containing an organic solvent is applied on the wound substrate using a die coater.
  • a method for producing a laminate by forming a coating layer as follows.
  • the coating film immediately after application having the lowest solid content concentration is normally dried gently, but is insufficient to suppress the occurrence of wind unevenness. Therefore, we examined the technology to suppress the occurrence of wind unevenness, and set a clear line from the conventional method, by inhaling the air on the coating film with the lowest solid content concentration immediately after coating. It has been found that by removing the organic solvent and speeding up the drying (that is, increasing the viscosity of the coating film), it is possible to suppress the occurrence of wind unevenness.
  • the manufacturing method of the laminate of the present disclosure is to wind a continuously transported base material around a backup roll, apply a coating solution containing an organic solvent to the base material on the backup roll, and form a coating film a B) reducing the organic solvent from the coating film on the backup roll by inhaling the gas on the coating film, and at least a step b.
  • the pressure of P a if the base material on the ambient pressure at the intake of the gas in step b was P B, the P a and P B satisfy the conditions 1 and 2 below, is a method for producing a laminate.
  • Condition 2 P B ⁇ atmospheric pressure ⁇ 100 Pa
  • the substrate on the ambient pressure P B during the intake of the gas in step b is, upon contact with the substrate in step a and the coating liquid (i.e., during coating) group in the wood on atmospheric pressure indicates that less than P a.
  • the condition 2 the substrate on the ambient pressure P B during the intake of gas in step b, or less atmospheric pressure -100Pa, indicating that a reduced pressure state.
  • the “atmospheric pressure P A on the base material” refers to the atmospheric pressure (ie, static pressure) at the time of contact between the base material and the coating liquid (for example, surrounded by the backup roll 110, the die coater 120, and the decompression chamber 130). The pressure at point a in FIG.
  • the “atmospheric pressure P B on the substrate” is the atmospheric pressure at the top of the substrate (1 mm to 10 mm above the substrate, for example, 5 mm above the substrate) while inhaling the gas on the coating film (that is, 5 mm above the substrate). Static pressure) (for example, the air pressure at point b in FIG. 1). Further, “atmospheric pressure” in the present disclosure refers to the atmospheric pressure in an indoor environment where a manufacturing apparatus that performs the method for manufacturing a laminate of the present disclosure is placed.
  • the atmospheric pressure and the atmospheric pressures P A and P B on the substrate are measured by a pressure gauge, specifically, for example, a general vacuum gauge A type (manufactured by Toyo Keiki Kogyo Co., Ltd.).
  • JP-A-2014-188450 and JP-A-2011-36803 do not describe the relationship of P A > P B in the present disclosure.
  • JP-A-2014-188450 and JP-A-2011-36803 do not disclose, from a coating film immediately after coating, removal of an organic solvent by inhaling gas on the coating film, Of course, no consideration has been given to suppressing the occurrence of wind unevenness by this method.
  • the above-described method for manufacturing a laminate according to the present disclosure is preferably performed by the following apparatus for manufacturing a laminate according to the present disclosure. That is, the apparatus for manufacturing a laminate of the present disclosure is a backup roll on which a continuously transported base material is wound, and a coating solution containing an organic solvent is applied on the base material wound on the backup roll to form a coating film.
  • a die coater and a vacuum chamber that is installed adjacent to the die coater and reduces the organic solvent from the coating film on the backup roll by inhaling gas on the coating film, If the substrate on the ambient pressure at the time of contact between the coating solution applied by the substrate and the die coater on the backup rolls and P A, a substrate on the ambient pressure at the intake of the gas in the vacuum chamber was set to P B, P a and P B satisfies the conditions 1 and 2 below, an apparatus for manufacturing a laminated body.
  • Condition 2 P B ⁇ atmospheric pressure ⁇ 100 Pa
  • the apparatus for manufacturing a laminate according to the present disclosure includes a decompression chamber, and the above conditions 1 and 2 can be satisfied by using the decompression chamber.
  • step a the continuously transported base material is wound around a backup roll, and a coating solution containing an organic solvent is applied to the base material on the backup roll to form a coating film.
  • a coating solution containing an organic solvent is applied to the base material on the backup roll to form a coating film.
  • FIGS. 1 is a schematic side view showing an example of an apparatus for manufacturing a laminate for performing the steps a and b.
  • step a a coating liquid 150 containing an organic solvent is applied to the base material 140 wound around the backup roll 110 using the die coater 120 to form a coating film 152 on the base material 140.
  • the atmosphere on the substrate pressure in step a P A is preferably in the range of atmospheric pressure -100Pa ⁇ atmospheric pressure, and more preferably atmospheric pressure.
  • Base on the ambient pressure P A is, that it is in the above range, good coating properties are obtained, it is easy to form a highly uniform film thickness coating film.
  • the backup roll 110 is configured to be rotatable, is a member that can be wound around and continuously transported, and is driven to rotate at the same speed as the transport speed of the substrate 140.
  • the backup roll 110 is not particularly limited, and a known roll can be used.
  • a roll whose surface is hard chrome plated can be preferably used as the backup roll 110.
  • the thickness of the plating is preferably 40 ⁇ m to 60 ⁇ m from the viewpoint of ensuring conductivity and strength.
  • the surface roughness of the backup roll is preferably 0.1 ⁇ m or less in terms of surface roughness Ra from the viewpoint of reducing the variation in frictional force between the base material 140 and the backup roll 110.
  • the backup roll 110 is heated from the viewpoint of enhancing the promotion of drying of the coating film, and from the viewpoint of suppressing the brushing of the coating film due to a decrease in the film surface temperature (that is, the whitening of the coating film due to the occurrence of minute dew condensation). May be.
  • the surface temperature of the backup roll 110 may be determined in accordance with the composition of the coating film, the curing performance of the coating film, the heat resistance of the substrate 140, and the like, and is preferably, for example, 40 ° C to 120 ° C, and 40 ° C to 100 ° C. Is more preferred.
  • the temperature control unit of the backup roll 110 includes a heating unit and a cooling unit.
  • the heating means induction heating, water heating, oil heating, or the like is used, and as the cooling means, cooling with cooling water is used.
  • the diameter of the backup roll 110 is 100 mm from the viewpoint that the base material 140 is easily wound around, the viewpoint of easy application by the die coater 120, the viewpoint of securing the installation position of the decompression chamber 130, and the viewpoint of the manufacturing cost of the backup roll 110. It is preferably from 1000 mm to 1000 mm, more preferably from 100 mm to 800 mm, and still more preferably from 200 mm to 700 mm.
  • the transport speed of the base material 140 by the backup roll 110 is preferably from 10 m / min to 100 m / min from the viewpoints of securing productivity and applicability.
  • the wrap angle of the base material 140 with respect to the backup roll 110 is preferably 60 ° or more, more preferably 90 ° or more, from the viewpoint of stabilizing the conveyance of the base material 140 during application and suppressing the occurrence of thickness unevenness of the coating film. .
  • the upper limit of the wrap angle may be less than 360 °, and may be set to 180 °, for example.
  • the wrap angle is an angle formed by the transport direction of the substrate 140 when the substrate 140 contacts the backup roll 110 and the transport direction of the substrate 140 when the substrate 140 separates from the backup roll 110.
  • the die coater 120 is a coating device that applies the coating liquid 150 onto the base material 140 via a manifold 124 formed in the die block main body 122 and a slit 126 communicating with the manifold 124.
  • the die coater 120 is arranged such that the tip and the discharge port face the surface of the backup roll 110.
  • the die coater 120 has a die block main body 122 composed of one block or a plurality of blocks.
  • the die block main body 122 forms a manifold 124 and a slit 126.
  • the manifold 124 is a space extending along the width direction of the die coater 120, and expands the coating liquid 150 supplied to the die coater 120 in the coating width direction (that is, the width direction of the die coater 120), thereby temporarily suspending the coating liquid 150. It is stored.
  • the slit 126 is a space that communicates with the manifold 124 and extends from the manifold 124 toward the tip of the die coater 120 along the width direction of the die coater 120. The slit 126 is opened to the outside at the tip of the die coater 120, and serves as a discharge port for discharging the coating liquid 150.
  • the distance between the tip of the die coater 120 and the backup roll 110 is determined according to the thickness of the base material, the viscosity of the coating solution, the thickness of the coating film to be formed, and the like. However, for example, it is set in the range of 0.05 mm to 0.50 mm.
  • the distance D1 indicates the shortest distance between the tip of the die coater 120 and the backup roll 110. The distance D1 can be measured with a taper gauge.
  • the substrate 140 is not particularly limited as long as it is a long substrate that can be continuously transported, and may be appropriately determined according to the use of the laminate. Considering the ease of winding around the backup roll, a polymer film is preferably used for the substrate 140. Specific examples of the substrate 140 include various polymer films described below.
  • the coating liquid 150 is a coating liquid containing an organic solvent, and may be used without limitation as long as it can form a target coating layer.
  • the coating liquid 150 may be a curable coating liquid containing a polymerizable or crosslinkable compound, or may be a non-curable coating liquid.
  • the coating liquid 150 for example, a coating liquid for forming a hard coat layer, a liquid crystal layer, a refractive index adjusting layer, and the like in an optical film, which is a thin layer having a thickness of 5 ⁇ m or less, can be used.
  • the content of the organic solvent in the coating solution is not particularly limited, but is preferably 20% by mass or more, and more preferably 30% by mass, based on the total mass of the coating solution from the viewpoint of easily forming a coating film in which the occurrence of wind unevenness is suppressed. % Or more, more preferably 40% by mass or more, and particularly preferably 50% by mass or more.
  • the upper limit of the content of the organic solvent in the coating solution may be determined according to the type of the coating solution capable of forming the target coating layer, and may be less than 100% by mass, and is preferably 80% by mass or less. preferable.
  • a coating liquid for forming a hard coat layer (hereinafter, also referred to as a coating liquid for forming a hard coat layer) will be described, but the present disclosure is not limited to this embodiment.
  • the hard coat layer is preferably formed by a crosslinking reaction or a polymerization reaction of the ionizing radiation-curable compound. That is, the coating liquid for forming a hard coat layer preferably contains, for example, a polymerizable compound such as a monomer or an oligomer, a polymerization initiator, and a solvent.
  • the polymerizable compound a compound exhibiting polymerizability with an active energy ray such as light, an electron beam, and radiation is preferable, and a compound exhibiting photopolymerizability is particularly preferable.
  • the compound exhibiting photopolymerizability include a compound having an unsaturated double bond such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group. Among them, a compound having a (meth) acryloyl group is preferable.
  • Examples of the compound having an unsaturated double bond include a monomer, an oligomer, and a polymer. Among them, a polyfunctional monomer having two or more (preferably three or more) unsaturated double bonds is preferable.
  • polyfunctional monomer having two or more unsaturated double bonds examples include (meth) acrylate diesters of alkylene glycol, (meth) acrylate diester of polyoxyalkylene glycol, and (meth) acrylate diester of polyhydric alcohol. , Ethylene oxide or propylene oxide adduct (meth) acrylic acid diesters, epoxy (meth) acrylates, urethane (meth) acrylates, polyester (meth) acrylates and the like. (Meth) acrylic acid diesters are preferred.
  • polyfunctional monomer having two or more unsaturated double bonds include, for example, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol Di (meth) acrylate, ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, ethylene oxide (EO) modified trimethylolpropane tri (meth) acrylate, propylene oxide (PO) modified trimethylolpropane tri (meth) acrylate, EO modified tri (meth) acrylate phosphate, trimethylolethane (Meth) acrylate, ditrimethylolpropane tetra (meth) acrylate
  • the compound having an unsaturated double bond can be used alone or in combination of two or more.
  • the content of the compound having an unsaturated double bond in the coating liquid for forming the hard coat layer is, from the viewpoint of giving a sufficient polymerization rate and imparting hardness, etc., the total solid content in the coating liquid for forming the hard coat layer. On the other hand, it is preferably 40% by mass to 98% by mass, and more preferably 60% by mass to 95% by mass.
  • the coating liquid for forming a hard coat layer preferably contains a polymerization initiator.
  • a photopolymerization initiator is preferable, and examples thereof include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, and 2,3-dialkyl. Examples include dione compounds, disulfide compounds, fluoroamine compounds, aromatic sulfoniums, lophine dimers, onium salts, borate salts, active esters, active halogens, inorganic complexes, and coumarins.
  • the photopolymerization initiator may be suitably used in the present disclosure. It can.
  • the polymerization initiator include “Latest UV curing technology” ⁇ Technical Information Association Ltd. ⁇ (1991), p. 159 and “Ultraviolet curing system” by Kiyomi Kato (1989, published by the General Technology Center), p. 65-148 also describe various examples, and these can also be used.
  • the polymerization initiator can be used alone or in combination of two or more.
  • the content of the polymerization initiator in the composition for the hard coat layer is set to a sufficiently large amount for polymerizing the polymerizable compound contained in the composition for the hard coat layer, and a sufficiently small amount so that the starting point is not excessively increased.
  • the content is preferably 0.5% by mass to 8% by mass, more preferably 1% by mass to 5% by mass, based on the total solids in the composition for a hard coat layer.
  • the coating liquid for forming a hard coat layer may contain various organic solvents as a solvent.
  • an ether solvent, a ketone solvent, an aliphatic hydrocarbon solvent, an aromatic hydrocarbon solvent, or the like can be used.
  • dibutyl ether dimethoxyethane, diethoxyethane, propylene oxide, 1,4-dioxane, 1,3-dioxolan, 1,3,5-trioxane, tetrahydrofuran, anisole, phenetole, methyl ethyl ketone (also MEK) ), Diethyl ketone, dipropyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone (also called anone), methylcyclohexanone, methyl isobutyl ketone, 2-octanone, 2-pentanone, 2-hexanone, ethylene glycol ethyl ether, ethylene glycol Isopropyl ether, ethylene glycol butyl ether, propylene glycol methyl ether, ethyl carbitol, butyl carbitol, hexane, hept
  • the organic solvent preferably contains, for example, a hydrophilic solvent other than the above.
  • a hydrophilic solvent an alcohol solvent, a carbonate solvent, or an ester solvent may be used.
  • the organic solvent one kind can be used alone, or two or more kinds can be used in combination.
  • the solvent in the coating liquid for forming a hard coat layer is preferably used such that the solid content of the coating liquid for forming a hard coat layer is in the range of 20% by mass to 80% by mass. That is, the content of the solvent in the coating solution for forming a hard coat layer is preferably from 20% by mass to 80% by mass, more preferably from 25% by mass to 70% by mass, based on the total mass of the coating solution for forming a hard coat layer. , 30% by mass to 60% by mass.
  • the coating liquid for forming a hard coat layer may contain a surfactant.
  • the surfactant is not particularly limited, but is preferably a fluorine-based surfactant or a silicone-based surfactant. Further, the surfactant is preferably a high molecular compound rather than a low molecular compound.
  • the surfactant one kind may be used alone, or two or more kinds may be used in combination.
  • the content of the surfactant is preferably 0.01% by mass to 0.5% by mass, and more preferably 0.01% by mass to 0.3% by mass, based on the total solid content of the coating solution for forming a hard coat layer. Is more preferable.
  • the coating liquid for forming the hard coat layer may include other components such as inorganic particles, resin particles, a monomer for adjusting the refractive index, and a conductive compound.
  • the coating liquid for forming the hard coat layer is not limited to the above composition, and for example, a coating liquid described in Japanese Patent No. 5933353, Japanese Patent No. 5331919 or the like may be applied.
  • step b the organic solvent is reduced from the coating film on the backup roll by inhaling the gas on the coating film.
  • An example of the step b will be described with reference to FIGS.
  • step b the gas on the coating film 152 is sucked into the coating film 152 on the backup roll 110 using the decompression chamber 130.
  • the atmospheric pressure P B on the base material in the step b is lower than the atmospheric pressure P A on the base material as shown in Condition 1, and is equal to or lower than the atmospheric pressure -100 Pa as shown in Condition 2.
  • the step b atmosphere on the substrate pressure at P B from the viewpoint of less susceptible to external disturbance, the higher the degree of vacuum is good and is preferably from atmospheric pressure -1000Pa, more preferably at most the atmospheric pressure -10000Pa.
  • the lower limit on the substrate ambient pressure P B only to be determined from the inhibition or the like floats, etc. from backup roll 110 of the device limit, the base 140 of the vacuum chamber 130, for example, be set to the atmospheric pressure -50000Pa be able to.
  • the decompression chamber 130 is disposed adjacent to the die coater 120 on the downstream side in the substrate transport direction. By spaced a decompression chamber 130 and the die coater 120, it is possible to adjust the on substrate ambient pressure P A in the preferred range described above.
  • the distance D2 between the die coater 120 and the decompression chamber 130A can be set in a range of 1 mm to 5 mm. Note that the distance D2 indicates the shortest distance between the side surface of the die coater 120 and the side surface of the decompression chamber 130A.
  • the contact point between the base material and the coating liquid in step a (that is, the contact point between the base material on the backup roll and the coating liquid applied by the die coater) is adjusted on the coating film in step b.
  • the distance to the point at which gas inhalation starts (that is, the point at which gas inhalation on the coating film starts in the decompression chamber) can be changed.
  • the contact point between the substrate and the coating liquid in step a is point c on the substrate 140 in FIG. 1, and the point at which the inhalation of gas on the coating film in step b is started is as shown in FIG.
  • a point d on the substrate 140 that is the shortest distance from the upstream end of the decompression chamber 130 in the transport direction of the substrate.
  • the distance between the points c and d is preferably 50 mm or less, more preferably 30 mm or less.
  • the lower limit value of the distance between the point c and the point d is considered to be about 1 mm due to the design of the device.
  • the range in which the gas on the coating film is sucked by the decompression chamber 130 is not particularly limited, and may be performed until the base material 140 is separated from the backup roll 110, or the range in which the size of the decompression chamber 130 is allowed.
  • the process may be continued until the base material 140 is separated from the backup roll 110. That is, the gas suction in the step b is performed on the coating film on the backup roll, but may be continuously performed on the coating film on the substrate separated from the backup roll.
  • the distance be within a range of 100 mm to 500 mm (more preferably, 100 mm to 200 mm) before the above-mentioned point at which the intake of the gas ends.
  • the point e is a point on the substrate located at the shortest distance from the downstream end of the substrate in the pressure reducing chamber 130 in the transport direction.
  • the length of the decompression chamber 130 in the transport direction of the substrate 140 may be adjusted. That is, the length of the decompression chamber 130 in the transport direction of the substrate 140 may be 100 mm to 500 mm.
  • the range in which the gas on the coating film is sucked in by the decompression chamber 130 is from the viewpoint of easily suppressing the occurrence of wind unevenness until the solid content concentration of the coating film reaches 60% by mass (preferably 70% by mass). It is preferred to do so. That is, in the step b, it is preferable to inhale gas on the coating film until the solid content concentration of the coating film reaches 60% by mass (preferably 70% by mass). Therefore, for example, at the point e described above, the length of the reduced-pressure chamber 130 in the transport direction of the base material 140 is set so that the solid content concentration of the coating film is 60% by mass (preferably 70% by mass) or more. I just need.
  • the relationship between the suction time of gas on the coating film by the decompression chamber 130 and the change in the solid content concentration of the coating film is determined in advance, and the solid content concentration of the coating film is 60% by mass (preferably, , 70 mass%), the length of the decompression chamber 130 in the transport direction of the substrate 140 may be set so that the point e comes after the position.
  • the solid content concentration of the coating film can be measured by, for example, a light interference type film thickness meter.
  • the solid content concentration of the coating film is measured using, for example, an infrared spectroscopic interference type film thickness meter SI-T80 manufactured by KEYENCE CORPORATION.
  • Decompression chamber 130 has a function of intake gas on the coating film, if it is possible to make the substrate atmosphere pressure P B and subatmospheric -100Pa, no restrictions on its configuration.
  • the pressure reducing chamber 130 will be described in more detail with reference to FIGS. 2 and 3, but is not limited to this configuration.
  • FIG. 2 is a schematic side view for explaining the configuration of the decompression chamber of the first embodiment
  • FIG. 3 is a schematic side view for explaining the configuration of the decompression chamber of the second embodiment.
  • the decompression chamber 130 ⁇ / b> A of the first embodiment shown in FIG. 2 includes a decompression chamber main body 131 and an exhaust port 132.
  • the decompression chamber 130 ⁇ / b> A (decompression chamber main body 131) has a substantially rectangular parallelepiped shape in which a surface facing the surface of the backup roll 110 is opened in order to inhale gas on the coating film 152.
  • the side surface of the decompression chamber main body 131 (that is, the surface parallel to the transport direction of the base material) has an arc-shaped distal end surface 131A that matches the curvature of the backup roll 110 when viewed from the side.
  • the arc shape does not need to be strictly a partial shape of the circumference, but may be any shape similar to the partial shape of the circumference.
  • the distance D3 between the arc-shaped (an example of the distal end surface side of the vacuum chamber) front end surface 131A and the backup roll 110, an on substrate ambient pressure P B from the viewpoint of the subatmospheric -100Pa, 0.5 mm or less is preferably, in order to further reduce the substrate on the ambient pressure P B, it is preferable to reduce the distance D3, and more preferably not more than 0.4 mm. Further, from the viewpoint of suppressing the contact with the base material 140, the contact with the coating film 152, and the like, the lower limit value of the distance D3 is preferably set to 0.1 mm.
  • the distance D3 indicates the shortest distance between the arc-shaped tip surface 131A and the backup roll 110. The distance between the arc-shaped tip surface 131A and the backup roll 110 can be measured by the same method as the distance D1.
  • the decompression chamber main body 131 is connected to a blower (not shown) via an exhaust port 132.
  • a blower By operating the blower, gas is sucked in from the exhaust port 132, and the inside of the decompression chamber 130A (decompression chamber main body 131) is depressurized below the atmospheric pressure.
  • the internal pressure reduction degree of pressure reduction chamber 130A (decompression chamber body 131), so that the substrate on the ambient pressure P B during the intake of the gas is below atmospheric pressure -100Pa in the decompression chamber 130A.
  • the decompression chamber 130A A mechanism for controlling the outflow and inflow of gas into and from the apparatus may be provided. Specifically, for example, a mechanism for providing a gap such as a labyrinth to adjust the pressure loss is exemplified.
  • the labyrinth may be multistage, and the size of the gap may be changed for each stage.
  • the decompression chamber 130B of the second embodiment shown in FIG. 3 includes a decompression chamber main body 133, two side plates 136, a back plate 137, and a front plate 138.
  • the decompression chamber main body 133 has an air supply slit 134 that supplies gas to the decompression chamber 130B and an exhaust slit 135 that exhausts gas from the decompression chamber 130B.
  • the decompression chamber 130B has a space surrounded by the decompression chamber main body 133, the two side plates 136, the back plate 137, and the front plate 138, and supplies gas from the air supply slit 134 of the decompression chamber main body 133, By exhausting the gas from the exhaust slit 135, convection of the gas occurs in the space.
  • the wind speed of the gas on the coating film in the decompression chamber 130B is preferably in the range of 0.5 m / s to 100 m / s, and the range of 1 m / s to 100 m / s is obtained by adding the convection of the gas. 10 m / s to 100 m / s is a more preferable range.
  • the wind speed of the gas on the coating film is determined by measuring the wind speed at a position 1 mm above the coating film surface using a non-directional anemometer, specifically, for example, an anemomaster (Anemomaster anemometer MODEL-611 series, KANOMAX). It is a measured value.
  • a non-directional anemometer specifically, for example, an anemomaster (Anemomaster anemometer MODEL-611 series, KANOMAX). It is a measured value.
  • the pressure in the space of the decompression chamber 130B can be reduced below the atmospheric pressure. Can be. Then, by adjusting the degree of vacuum in the space of the decompression chamber 130B, so that the substrate on the ambient pressure P B during the intake of the gas is below atmospheric pressure -100Pa in the decompression chamber 130B.
  • the air supply slit 134 and the exhaust slit 135 each have a gap of, for example, 0.1 mm to 5 mm, and gas is supplied and exhausted through this gap.
  • the side plate 136 is a plate-like member arranged in contact with the side surface of the decompression chamber main body 133 (that is, the surface parallel to the substrate transport direction). As shown in FIG. 3, the side plate 136 has a distal end surface 136A (an example of a distal end surface on the side surface of the decompression chamber) which is formed in an arc shape matching the curvature of the backup roll 110 when viewed from the side.
  • the distance D3 between the arc-shaped tip surface 136A and the backup roll 110 is the same as the distance D3 between the arc-shaped tip surface 136A and the backup roll 110 in the decompression chamber 130A, and the preferred embodiment and the measuring method are also the same.
  • the back plate 137 is a plate-shaped member that is placed in contact with the back surface of the decompression chamber main body 133 (that is, a surface perpendicular to the substrate transport direction and a surface downstream in the substrate transport direction).
  • the front plate 138 is a plate-shaped member that is arranged in contact with the front of the decompression chamber main body 133 (that is, a surface perpendicular to the substrate transport direction and a surface on the upstream side in the substrate transport direction).
  • the back plate 137 and the front plate 138 have a tip surface 137A and a tip surface 138A facing the surface of the backup roll, respectively.
  • the lower limit of the distance D4 is preferably set to 0.1 mm.
  • the distance D4 refers to the shortest distance between the front end surface 137A of the back plate 137 and the backup roll 110.
  • the distance between the front end surface 137A of the back plate 137 and the backup roll 110 can be measured by the same method as the distance D1.
  • the distance D5 between 138A and the backup roll 110 (one example of a distal end surface of the front of the vacuum chamber) front end surface of the front plate 138, an on substrate ambient pressure P B from the viewpoint of the subatmospheric -100Pa, 0.5 mm preferably less, in order to further reduce the substrate on the ambient pressure P B, it is preferable to reduce the distance D5, and more preferably not more than 0.4 mm.
  • the lower limit of the distance D5 is preferably set to 0.1 mm.
  • the distance D5 is the shortest distance between the front end surface 138A of the front plate 138 and the backup roll 110.
  • the distance between the front end surface 138A of the front plate 138 and the backup roll 110 can be measured by the same method as the distance D1.
  • the distance D5 is larger than the distance D3 between the arc-shaped tip surface 136A and the backup roll 110 from the viewpoint of reducing disturbance of the coating film due to the dynamic pressure of wind at the entrance of the decompression chamber.
  • a gas inflow suppression mechanism similar to that described in the first embodiment may be provided on the outer periphery of the surfaces of the two side plates 136, the back plate 137, and the front plate 138 facing the surface of the backup roll 110. Good. By providing this gas inflow suppression mechanism, it is easy to increase the degree of decompression inside the decompression chamber 130B.
  • ⁇ Step b is performed using the above-described decompression chamber, and as a result, a coating film in which the occurrence of wind unevenness is suppressed is formed.
  • the method for producing a laminate of the present disclosure includes, in addition to the above-described steps a and b, a drying step of drying the coating film thickened in the step b, and irradiating the coating film after the drying step with an active energy ray. To cure the coating film.
  • the drying step the solvent is reduced from the coating film formed in the multilayer coating step.
  • the drying means used in the drying step is not particularly limited, and examples thereof include a method using an oven, a hot air heater, an infrared (IR) heater, and the like.
  • IR infrared
  • a configuration may be adopted in which hot air is applied from the surface of the substrate opposite to the surface on which the coating film is formed, or a configuration in which a diffusion plate is provided so that the coating film does not flow with the hot air.
  • the drying conditions may be determined according to the type of the formed coating film, the coating amount, the transport speed, and the like. For example, the drying is preferably performed at 30 ° C. to 140 ° C. for 10 seconds to 10 minutes.
  • the coating film after the drying step is irradiated with active energy rays to cure the coating film.
  • the means for irradiating the active energy ray used in the curing step is not particularly limited as long as it is a means for applying energy capable of generating active species in a coating film to be irradiated.
  • Specific examples of the active energy rays include ⁇ rays, ⁇ rays, X rays, ultraviolet rays, infrared rays, visible rays, and electron beams. Of these, ultraviolet rays are preferably used as the active energy rays from the viewpoints of curing sensitivity and availability of the apparatus.
  • the ultraviolet light source examples include lamps such as a tungsten lamp, a halogen lamp, a xenon lamp, a xenon flash lamp, a mercury lamp, a mercury xenon lamp, and a carbon arc lamp, and various lasers (eg, a semiconductor laser, a helium neon laser, an argon ion Laser, helium cadmium laser, YAG (Yttrium Aluminum Garnet) laser), light emitting diode, cathode ray tube and the like.
  • the peak wavelength of the ultraviolet light emitted from the ultraviolet light source is preferably 200 nm to 400 nm.
  • the amount of exposure energy of ultraviolet rays is preferably, for example, 100 mJ / cm 2 to 500 mJ / cm 2 .
  • a laminate in which a coating layer formed from a coating solution is provided on a substrate can be manufactured.
  • a laminate obtained by the method for producing a laminate of the present disclosure has a substrate and a target coating layer formed from a coating solution.
  • the substrate can be appropriately selected depending on the use of the laminate, and includes, for example, a polymer film.
  • the light transmittance of the substrate is preferably 80% or more.
  • the substrate include a polyester-based substrate (a film or sheet such as polyethylene terephthalate and polyethylene naphthalate), a cellulose-based substrate (a film or sheet such as diacetyl cellulose and triacetyl cellulose (TAC)), and a polycarbonate-based substrate.
  • a poly (meth) acrylic base material (a film or sheet such as polymethyl methacrylate), a polystyrene base material (a film or sheet such as polystyrene, acrylonitrile styrene copolymer), an olefin base material (polyethylene, polypropylene, cyclic or Polyolefin having a norbornene structure, film or sheet of ethylene propylene copolymer, etc.), polyamide base material (polyvinyl chloride, nylon, aromatic polyamide, etc.
  • a transparent substrate such as a substrate, a poly (meth) acrylate-based substrate, a polyoxymethylene-based substrate, and an epoxy resin-based substrate, or a substrate made of a blended polymer obtained by blending the above-mentioned polymer materials, and the like can be given.
  • a layer in which a layer is formed in advance on the above-mentioned polymer film may be used.
  • the layer formed in advance include an adhesive layer, a barrier layer against water, oxygen, and the like, a refractive index adjusting layer, and the like.
  • the intended coating layer formed from the coating liquid is not particularly limited, and includes a hard coat layer, a liquid crystal layer, a refractive index adjusting layer, and the like for optical films.
  • the thickness of the layer formed from the coating liquid varies depending on the application, but by adopting the method for manufacturing a laminate of the present disclosure, for example, 5 ⁇ m or less, more preferably in the range of 0.1 ⁇ m to 100 ⁇ m. can do.
  • a long triacetylcellulose (TAC) film (TD40UL, FUJIFILM Corporation, refractive index: 1.48) having a thickness of 60 ⁇ m and a width of 1340 mm was prepared as a substrate.
  • Step a The coating liquid for forming a hard coat layer was applied on the TAC film using a die coater. Specifically, the substrate was conveyed onto a backup roll having a surface temperature of 60 ° C. and an outer diameter of 300 mm, and the coating solution for forming a hard coat layer was applied to the substrate on the backup roll using a die coater. . At this time, the wrap angle of the substrate was 150 °. In this case, the ambient pressure P A on the substrate were as described in Table 1. Table 1 also shows the distance D1 and the distance between the point c and the point d. In step a, the temperature at the time of discharging the coating liquid was 23 ° C., the coating width was 1300 mm, and the coating speed (that is, the transport speed of the base material) was 10 m / min.
  • Step b Subsequently, the gas on the coating film was sucked using the decompression chamber shown in FIG. 2 or FIG.
  • the distance D2 between the die coater 120 and the decompression chamber 130A or the decompression chamber 130B was 20 mm.
  • Comparative Example 1 although the decompression chamber shown in FIG. 2 was provided, gas was not sucked in from the exhaust port 132, and the inside of the decompression chamber 130A (decompression chamber main body 131) was not depressurized.
  • the atmosphere pressure P B on the substrate were as described in Table 1.
  • Table 1 shows the distance D3, the distance D4, the distance D5, the distance between the point d and the point e, the solid content concentration of the coating film at the point e, and the gas velocity on the coating film.
  • each physical property is a value measured by the method described above.
  • -Wind unevenness evaluation index- 1 No wind unevenness is observed. 2: One or two weak streak-like wind irregularities were observed. 3: Strong streak-like wind unevenness was observed. 4: Streak-like and spot-like wind unevenness was observed on the entire surface.

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Abstract

連続搬送される基材をバックアップロールに巻き掛け、バックアップロール上の基材に有機溶剤を含む塗布液を塗布し、塗膜を形成する工程aと、塗膜上の気体を吸気することで、バックアップロール上の塗膜から有機溶剤を減少させる工程bと、を少なくとも有し、工程aにおける基材と塗布液との接触時の基材上雰囲気圧をPとし、工程bにおける気体の吸気時の基材上雰囲気圧をPとした場合、P及びPが条件1:P>P、及び、条件2:P≦大気圧-100Paを満たす、積層体の製造方法、及びこの製造方法を実施する積層体の製造装置。

Description

積層体の製造方法及び製造装置
 本開示は、積層体の製造方法及び製造装置に関する。
 ロールトゥロール方式での連続プロセスにて、基材上に目的とする塗工層を形成して積層体を製造する方法が知られている。
 積層体を製造する方法の例として、特開2014-188450号公報には、樹脂材料と溶剤を含有する塗布液を、長手方向に搬送されている長尺状のフィルムの一方の面に塗布して塗膜を形成させた後から、少なくとも塗膜から揮発する溶剤が乾燥装置内に充満するまでの間に、塗膜およびフィルムの幅方向両端の厚み部分を覆う2以上のカバー部材を備えた塗膜制御装置であって、2以上のカバー部材は、フィルムの搬送方向に連結されたものであり、孔を設けた1以上の有孔カバー部材と、孔を設けていない1以上の無孔カバー部材と、を備え、塗膜から揮発する溶剤を有孔カバー部材の孔から外部に排気する排気手段を備え、カバー部材の設置箇所を組み替えることができる塗膜制御装置を用いた積層フィルムの製造方法が開示されている。
 また、特開2011-36803号公報には、基材供給工程、塗布工程、乾燥工程、巻き取り工程を有する製造工程を使用し、少なくとも1層の無機バリア層を有するフィルム基材上に、ポリマー層形成用塗布液を塗布し、少なくとも1層のポリマー層を有するバリアフィルムを製造するバリアフィルムの製造方法において、少なくとも塗布工程は、-0.1kPaから-1.0kPaの減圧環境の塗布室と、上流側に減圧室を有する塗布機とを使用し、減圧室の減圧度が-0.2kPaから-3.0kPaであり、減圧室と塗布室との減圧度の関係が、減圧室の減圧度>塗布室の減圧度、且つ、減圧室と塗布室との減圧度差が0.1kPaから2kPaであるバリアフィルムの製造方法が開示されている。
 ロールトゥロール方式での連続プロセスによって、連続搬送する基材をバックアップロールに巻き掛け、巻き掛けた基材上でダイコータを用いて有機溶剤を含む塗布液を塗布し、目的とする塗工層を形成して積層体を製造する方法が知られている。
 このような積層体の製造方法では、固形分濃度が最も低い塗布直後の塗膜の乾燥は、通常、外乱の影響を受けにくくするために穏やかに行われる(即ち、塗膜の増粘速度の上昇は緩やかである)。
 しかしながら、塗布直後の塗膜に対し穏やかな乾燥を行っていても、風ムラの発生を抑制するには不十分であった。
 ここで、「風ムラ」とは、塗工層表面において基材の搬送方向と略平行な方向に形成されるスジ状、斑点状等の模様のことである。スジ状の模様の場合、例えば、最大幅が1mm~20mmで、長さが30cm以上の大きさを有し、また、斑点状の模様の場合、例えば、最大径が1mm~10mmの大きさを有する。
 そこで、本発明の一実施形態が解決しようとする課題は、基材上に風ムラの発生が抑制された塗工層を形成しうる、積層体の製造方法及び製造装置を提供することにある。
 課題を解決するための具体的手段には、以下の態様が含まれる。
 <1> 連続搬送される基材をバックアップロールに巻き掛け、バックアップロール上の基材に有機溶剤を含む塗布液を塗布し、塗膜を形成する工程aと、
 塗膜上の気体を吸気することで、バックアップロール上の塗膜から有機溶剤を減少させる工程bと、
を少なくとも有し、
 工程aにおける基材と塗布液との接触時の基材上雰囲気圧をPとし、工程bにおける気体の吸気時の基材上雰囲気圧をPとした場合、P及びPが以下の条件1及び2を満たす、積層体の製造方法。
 条件1: P>P
 条件2: P≦大気圧-100Pa
 <2> 工程bにおける塗膜上の気体の風速が1m/s~100m/sである、<1>に記載の積層体の製造方法。
 <3> 工程aにおける基材と塗布液との接触点から、工程bにおける塗膜上の気体の吸気が開始される点までの距離が、100mm以下である、<1>又は<2>に記載の積層体の製造方法。
 <4> 工程bにて、塗膜の固形分濃度が70質量%に到達するまで塗膜上の気体を吸気する、<1>~<3>のいずれか1に記載の積層体の製造方法。
 <5> 連続搬送される基材が巻き掛けられるバックアップロールと、
 バックアップロール上に巻き掛けられた基材上に有機溶剤を含む塗布液を塗布し、塗膜を形成するダイコータと、
 ダイコータに隣接して設置され、塗膜上の気体を吸気することで、バックアップロール上の塗膜から有機溶剤を減少させる減圧室と、
を少なくとも備え、
 バックアップロール上の基材とダイコータにより塗布された塗布液との接触時の基材上雰囲気圧をPとし、減圧室における気体の吸気時の基材上雰囲気圧をPとした場合、P及びPが以下の条件1及び2を満たす、積層体の製造装置。
 条件1: P>P
 条件2: P≦大気圧-100Pa
 <6> 減圧室内における塗膜上の気体の風速が1m/s~100m/sである、<5>に記載の積層体の製造装置。
 <7> 減圧室に気体を供給する手段を更に有する、<5>又は<6>に記載の積層体の製造装置。
 <8> バックアップロール上の基材とダイコータにより塗布された塗布液との接触点から、減圧室にて塗膜上の気体の吸気が開始される点までの距離が、100mm以下である、<5>~<7>のいずれか1に記載の積層体の製造装置。
 <9> 減圧室の側面の先端面とバックアップロールとの距離が0.5mm以下である、<5>~<8>のいずれか1に記載の積層体の製造装置。
 <10> 減圧室の正面の先端面とバックアップロールとの距離が、減圧室の側面の先端面とバックアップロールとの距離よりも大きい<9>に記載の積層体の製造装置。
 <11> 減圧室が、給気スリットと排気スリットとを有する本体部及び側板を含んで構成される、<5>~<10>のいずれか1に記載の積層体の製造装置。
 <12> バックアップロールの表面温度が40℃~120℃である、<5>~<11>のいずれか1に記載の積層体の製造装置。
 本発明の一実施形態によれば、基材上に風ムラの発生が抑制された塗工層を形成しうる、積層体の製造方法及び製造装置が提供される。
本開示における工程a及び工程bを行う積層体の製造装置の一例を示す概略側面図である。 第1態様の減圧室の構成を説明するための概略側面図である。 第2態様の減圧室の構成を説明するための概略側面図である。
 以下、本開示の積層体の製造方法について詳細に説明する。
 本開示において、「工程」の語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 なお、複数の図面に記載されている符号が同一である場合、同一の対象を指す。また、各図面において重複する構成及び符号については、説明を省略する場合がある。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 既述したように、ロールトゥロール方式での連続プロセスによって、連続搬送する基材をバックアップロールに巻き掛け、巻き掛けた基材上でダイコータを用いて有機溶剤を含む塗布液を塗布し、目的とする塗工層を形成して積層体を製造する方法が知られている。
 このような積層体の製造方法では、通常、固形分濃度が最も低い塗布直後の塗膜の乾燥が穏やかに行われるが、風ムラの発生を抑制するには不十分であった。
 そこで、風ムラの発生を抑制する技術について検討を行ったところ、従来の手法から一線を画し、固形分濃度が最も低い塗布直後の塗膜に対し、塗膜上の空気を吸気することで有機溶剤を除去して、乾燥を早め(即ち、塗膜を増粘させ)ることで、風ムラの発生を抑制することができるといった知見を得た。
 上記の知見に基づく、本開示の積層体の製造方法は、以下の通りである。
 即ち、本開示の積層体の製造方法は、連続搬送される基材をバックアップロールに巻き掛け、バックアップロール上の基材に有機溶剤を含む塗布液を塗布し、塗膜を形成する工程aと、塗膜上の気体を吸気することで、バックアップロール上の塗膜から有機溶剤を減少させる工程bと、を少なくとも有し、工程aにおける基材と塗布液との接触時の基材上雰囲気圧をPとし、工程bにおける気体の吸気時の基材上雰囲気圧をPとした場合、P及びPが以下の条件1及び2を満たす、積層体の製造方法である。
 条件1: P>P
 条件2: P≦大気圧-100Pa
 本開示の積層体の製造方法における条件1は、工程bにおける気体の吸気時の基材上雰囲気圧Pが、工程aにおける基材と塗布液との接触時(即ち、塗布時)における基材上雰囲気圧をPよりも小さいことを示している。
 そして、条件2は、工程bにおける気体の吸気時の基材上雰囲気圧Pが、大気圧-100pa以下であり、減圧状態であることを示している。
 ここで、「基材上雰囲気圧P」は、基材と塗布液との接触時の雰囲気圧(即ち静圧)を指す(例えば、バックアップロール110、ダイコータ120、及び減圧室130に囲まれた、図1における点aでの気圧をいう)。
 また、「基材上雰囲気圧P」は、塗膜上の気体を吸気している間の、基材の上部(基材から1mm~10mm上部、例えば、5mm上部)での雰囲気圧(即ち静圧)を指す(例えば、図1における点bでの気圧をいう)。
 更に、本開示における「大気圧」とは、本開示の積層体の製造方法を行う製造装置が置かれる室内環境での気圧をいう。
 大気圧、基材上雰囲気圧P及びPは、圧力計、具体的には、例えば、一般真空計A型(東洋計器工業製)によって測定される。
 上記の条件1及び2を満たすことで、工程aにおける塗布液の塗布を正常に行いつつ、塗布直後の塗膜から有機溶剤の除去を素早く行い、塗膜を増粘させることができる。
 その結果、本開示の積層体の製造方法では、基材上に風ムラの発生が抑制された塗工層が形成される。
 なお、上記した特開2014-188450号公報及び特開2011-36803号公報に記載の方法には、本開示におけるP>Pの関係は記載されていない。
 また、特開2014-188450号公報及び特開2011-36803号公報には、塗布直後の塗膜から、塗膜上の気体を吸気すること有機溶剤を除去することについても記載されておらず、この方法による風ムラの発生の抑制についても勿論検討されていない。
 上記した本開示の積層体の製造方法は、以下の本開示の積層体の製造装置により実施されることが好ましい。
 即ち、本開示の積層体の製造装置は、連続搬送される基材が巻き掛けられるバックアップロールと、バックアップロール上に巻き掛けられた基材上に有機溶剤を含む塗布液を塗布し、塗膜を形成するダイコータと、ダイコータに隣接して設置され、塗膜上の気体を吸気することで、バックアップロール上の塗膜から有機溶剤を減少させる減圧室と、を少なくとも備え、
 バックアップロール上の基材とダイコータにより塗布された塗布液との接触時の基材上雰囲気圧をPとし、減圧室における気体の吸気時の基材上雰囲気圧をPとした場合、P及びPが以下の条件1及び2を満たす、積層体の製造装置である。
 条件1: P>P
 条件2: P≦大気圧-100Pa
 本開示の積層体の製造装置では、減圧室を備えており、この減圧室を用いることで、上記の条件1及び2を満たすことができる。
 以下、図面を参照して、本開示の積層体の製造方法及び製造装置について詳細に説明する。
[工程a]
 工程aでは、連続搬送される基材をバックアップロールに巻き掛け、バックアップロール上の基材に有機溶剤を含む塗布液を塗布し、塗膜を形成する。
 工程aの一例について、図1及び図2を参照して、説明する。
 ここで、図1は、工程a及び工程bを行う積層体の製造装置の一例を示す概略側面図である。
 工程aでは、バックアップロール110上に巻き掛けられた基材140に対し、ダイコータ120を用いて有機溶剤を含む塗布液150を塗布し、基材140上に塗膜152を形成する。
 ここで、工程aにおける基材上雰囲気圧Pは、大気圧-100Pa~大気圧の範囲であることが好ましく、大気圧であることがより好ましい。
 基材上雰囲気圧Pが、上記の範囲であることで、良好な塗布性が得られ、膜厚均一性の高い塗膜を形成しやすくなる。
 以下、工程aに用いられる、バックアップロール、ダイコータ、基材、及び塗布液について説明する。
(バックアップロール)
 バックアップロール110は、回転自在に構成されており、基材を巻き掛けて連続搬送することができる部材であって、基材140の搬送速度と同速度で回転駆動する。
 バックアップロール110は、特に制限無く、公知のものを用いることができる。
 バックアップロール110としては、例えば、表面が、ハードクロムメッキされたものを好ましく用いることができる。
 メッキの厚みは、導電性と強度とを確保する観点から40μm~60μmが好ましい。
 また、バックアップロールの表面粗さは、基材140とバックアップロール110との摩擦力のバラツキを低減させる点から、表面粗さRaにて0.1μm以下が好ましい。
 バックアップロール110は、塗膜の乾燥促進を高める観点から、また、膜面温度低下による塗膜のブラッシング(即ち、微細な結露が生じることによる塗膜の白化)の抑制など観点から、加温されていてもよい。
 バックアップロール110の表面温度は、塗膜の組成、塗膜の硬化性能、基材140の耐熱性等に応じて決定されればよく、例えば、40℃~120℃が好ましく、40℃~100℃がより好ましい。
 バックアップロール110は、表面温度を検知し、その温度に基づいて温度制御手段によってバックアップロール110の表面温度が維持されることが好ましい。
 バックアップロール110の温度制御手段には、加熱手段及び冷却手段がある。加熱手段としては、誘導加熱、水加熱、油加熱等が用いられ、冷却手段としては、冷却水による冷却が用いられる。
 バックアップロール110の直径としては、基材140が巻き掛け易い観点、ダイコータ120による塗布が容易な観点、及び、減圧室130の設置位置の確保の観点、バックアップロール110の製造コストの観点から、100mm~1000mmが好ましく、100mm~800mmがより好ましく、200mm~700mmが更に好ましい。
 バックアップロール110での基材140の搬送速度は、生産性の確保の観点、及び、塗布性の観点から、10m/min~100m/minであることが好ましい。
 バックアップロール110に対する基材140のラップ角は、塗布時における基材140の搬送が安定化され、塗膜の厚みムラの発生を抑制する観点から、60°以上が好ましく、90°以上がより好ましい。また、ラップ角の上限は、360°未満であればよく、例えば、180°に設定することができる。
 なお、ラップ角とは、基材140がバックアップロール110に接触する際の基材140の搬送方向と、バックアップロール110から基材140が離間する際の基材140の搬送方向と、からなる角度をいう。
(ダイコータ)
 ダイコータ120は、塗布液150を、ダイブロック本体122に形成されたマニホールド124とマニホールド124に連通するスリット126とを介して、基材140上に塗布する塗布装置をいう。
 ダイコータ120は、バックアップロール110の表面に対し、その先端及び吐出口が対向するように配置されている。
 ダイコータ120は、1つブロック又は複数のブロックから構成されるダイブロック本体122を有し、このダイブロック本体122により、マニホールド124とスリット126とが形成される。
 マニホールド124は、ダイコータ120の幅方向に沿って伸びる空間であり、ダイコータ120に供給された塗布液150を塗布幅方向(即ち、ダイコータ120の幅方向)に拡流し、塗布液150を一時的に貯留している。
 スリット126は、マニホールド124に連通し、ダイコータ120の幅方向に沿って、マニホールド124からダイコータ120の先端方向に伸びる空間である。スリット126は、ダイコータ120の先端で外部に開放され、塗布液150を吐出するための吐出口となる。
 ここで、ダイコータ120の先端とバックアップロール110との距離(即ち、図2で示される距離D1)としては、基材の厚み、塗布液の粘度、形成する塗膜の膜厚等に応じて決定されればよいが、例えば、0.05mm~0.50mmの範囲で設定される。
 なお、距離D1は、ダイコータ120の先端とバックアップロール110との間の最短距離を指す。
 距離D1は、テーパーゲージにて測定することができる。
(基材)
 基材140としては、連続搬送しうる長尺の基材であれば特に制限はなく、積層体の用途に応じて、適宜、決定されればよい。
 バックアップロールへの巻き掛け易さを考慮すると、基材140にはポリマーフィルムが好ましく用いられる。
 基材140の具体例としては、後述する各種のポリマーフィルムが挙げられる。
(塗布液)
 塗布液150としては、有機溶剤を含む塗布液であり、目的とする塗工層を形成しうるものであれば、制限なく用いられる。
 例えば、塗布液150としては、重合性又は架橋性化合物を含む硬化性塗布液であってもよいし、非硬化性塗布液であってもよい。
 本開示の積層体の製造方法及び製造装置では、風ムラの発生が抑制された塗工層が形成できる。そのため、塗布液150として、例えば、5μm以下の薄層である、光学フィルムにおける、ハードコート層、液晶層、屈折率調整層等を形成するための塗布液を適用することもできる。
 塗布液中の有機溶剤の含有率は特に制限はないが、風ムラの発生を抑制した塗膜を形成しやすい観点から、塗布液の全質量に対して、20質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上が更に好ましく、50質量%以上が特に好ましい。塗布液中の有機溶剤の含有率の上限は、目的とする塗工層を形成しうる塗布液の種類に応じて決定されればよく、100質量%未満であればよく、80質量以下がより好ましい。
 ここで、塗布液の一例として、ハードコート層を形成するための塗布液(以下、ハードコート層形成用塗布液ともいう)について説明するが、本開示はこの態様に限定されるものではない。
 ハードコート層は、電離放射線硬化性化合物の架橋反応又は重合反応により形成されることが好ましい。つまり、ハードコート層形成用塗布液としては、例えば、モノマー、オリゴマー等の重合性化合物、重合開始剤、及び溶媒を含むことが好ましい。
 重合性化合物としては、光、電子線、放射線等の活性エネルギー線にて重合性を示す化合物が好ましく、中でも、光重合性を示す化合物が好ましい。
 光重合性を示す化合物としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和二重結合を有する化合物が挙げられ、中でも、(メタ)アクリロイル基を有する化合物が好ましい。
-不飽和二重結合を有する化合物-
 不飽和二重結合を有する化合物としては、モノマー、オリゴマー、ポリマー等が挙げられ、中でも、不飽和二重結合を2つ以上(好ましくは3つ以上)有する多官能モノマーであることが好ましい。
 不飽和二重結合を2つ以上有する多官能モノマーとしては、アルキレングリコールの(メタ)アクリル酸ジエステル類、ポリオキシアルキレングリコールの(メタ)アクリル酸ジエステル類、多価アルコールの(メタ)アクリル酸ジエステル類、エチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類、エポキシ(メタ)アクリレート類、ウレタン(メタ)アクリレート類、ポリエステル(メタ)アクリレート類等を挙げることができ、中でも、多価アルコールの(メタ)アクリル酸ジエステル類が好ましい。
 不飽和二重結合を2つ以上有する多官能モノマーとしては、具体的には、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド(EO)変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド(PO)変性トリメチロールプロパントリ(メタ)アクリレート、EO変性リン酸トリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート、カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート等が挙げられる。
 不飽和二重結合を有する化合物は、1種単独で又は2種以上を組み合わせて用いることができる。
 ハードコート層形成用塗布液中の不飽和二重結合を有する化合物の含有率は、十分な重合率を与えて硬度などを付与する観点から、ハードコート層形成用塗布液中の全固形分に対して、40質量%~98質量%が好ましく、60質量%~95質量%がより好ましい。
-重合開始剤-
 ハードコート層形成用塗布液は、重合開始剤を含むことが好ましい。
 重合開始剤としては、光重合開始剤が好ましく、例えば、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3-ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、ロフィンダイマー類、オニウム塩類、ボレート塩類、活性エステル類、活性ハロゲン類、無機錯体、クマリン類などが挙げられる。
 光重合開始剤の具体例、及び好ましい態様、市販品などは、特開2009-098658号公報の段落[0133]~[0151]に記載されており、本開示においても同様に好適に用いることができる。
 また、重合開始剤としては、「最新UV硬化技術」{(株)技術情報協会}(1991年)、p.159、及び、「紫外線硬化システム」加藤清視著(平成元年、総合技術センター発行)、p.65~148にも種々の例が記載されており、これらを用いることもできる
 重合開始剤は、1種単独で又は2種以上を組み合わせて用いることができる。
 ハードコート層用組成物中の重合開始剤の含有率は、ハードコート層用組成物に含まれる重合性化合物を重合させるのに十分多く、かつ、開始点が増えすぎないよう十分少ない量に設定するという観点から、ハードコート層用組成物中の全固形分に対して、0.5質量%~8質量%が好ましく、1質量%~5質量%がより好ましい。
-有機溶剤-
 ハードコート層形成用塗布液は、溶媒として種々の有機溶剤を含有してもよい。
 有機溶剤としては、エーテル系溶媒、ケトン系溶媒、脂肪族炭化水素系溶媒、芳香族炭化水素系溶媒等を用いることができる。
 具体的には、例えば、ジブチルエーテル、ジメトキシエタン、ジエトキシエタン、プロピレンオキシド、1,4-ジオキサン、1,3-ジオキソラン、1,3,5-トリオキサン、テトラヒドロフラン、アニソール、フェネトール、メチルエチルケトン(MEKともいう)、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン(アノンともいう)、メチルシクロヘキサノン、メチルイソブチルケトン、2-オクタノン、2-ペンタノン、2-ヘキサノン、エチレングリコールエチルエーテル、エチレングリコールイソプロピルエーテル、エチレングリコールブチルエーテル、プロピレングリコールメチルエーテル、エチルカルビトール、ブチルカルビトール、ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ベンゼン、トルエン、キシレン等が挙げられる。
 また、有機溶剤としては、上記以外の、例えば、親水性溶媒を含むことが好ましい。親水性溶媒としては、アルコール系溶媒、カーボネート系溶媒、エステル系溶媒を用いてもよい。
 具体的には、例えば、メタノール、エタノール、イソプロパノール、n-ブチルアルコール、シクロヘキシルアルコール、2-エチル-1-ヘキサノール、2-メチル-1ヘキサノール、2-メトキシエタノール、2-プロポキシエタノール、2-ブトキシエタノール、ジアセトンアルコール、ジメチルカーボーネート、ジエチルカーボネート、ジイソプロピルカーボネート、メチルエチルカーボネート、メチルn-プロピルカーボネート、蟻酸エチル、蟻酸プロピル、蟻酸ペンチル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、2-エトキシプロピオン酸エチル、アセト酢酸メチル、アセト酢酸エチル、2-メトキシ酢酸メチル、2-エトキシ酢酸メチル、2-エトキシ酢酸エチル、アセトン、1,2-ジアセトキシアセトン、アセチルアセトン、エチレングリコールモノブチルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールアセテート等が挙げられる。
 有機溶剤としては、1種単独で又は2種以上を組み合わせて用いることができる。
 ハードコート層形成用塗布液中の溶剤は、ハードコート層形成用塗布液の固形分含有率が20質量%~80質量%の範囲となるように用いるのが好ましい。即ち、ハードコート層形成用塗布液中の溶剤の含有率は、ハードコート層形成用塗布液の全質量に対して20質量%~80質量%が好ましく、25質量%~70質量%がより好ましく、30質量%~60質量%が更に好ましい。
-界面活性剤-
 ハードコート層形成用塗布液は、界面活性剤を含んでいてもよい。
 界面活性剤としては、特に制限はないが、フッ素系界面活性剤、又はシリコーン系界面活性剤が好ましい。また、界面活性剤は、低分子化合物よりも高分子化合物であることが好ましい。
 界面活性剤としては、1種単独で又は2種以上を組み合わせて用いることができる。
 界面活性剤の含有率は、ハードコート層形成用塗布液の全固形分に対し、0.01質量%~0.5質量%であることが好ましく、0.01質量%~0.3質量%であることがより好ましい。
-その他の成分-
 ハードコート層形成用塗布液は、無機粒子、樹脂粒子、屈折率調整用のモノマー、導電性化合物等のその他の成分を含んでいてもよい。
 ハードコート層形成用塗布液は、上記の組成に限定されず、例えば、特許5933353号公報、特許5331919号公報等に記載の塗布液を適用してもよい。
[工程b]
 工程bでは、塗膜上の気体を吸気することで、バックアップロール上の塗膜から有機溶剤を減少させる。
 工程bの一例について、図1~図3を参照して、説明する。
 工程bでは、バックアップロール110上にある塗膜152に対し、減圧室130を用いて、塗膜152上の気体を吸気する。減圧室130により塗膜152上の気体が吸気されることで、塗膜中の有機溶剤が減少する。
 ここで、工程bにおける基材上雰囲気圧Pは、条件1に示すように、基材上雰囲気圧Pよりも小さく、且つ、条件2に示すように、大気圧-100Pa以下である。
 これらの条件を満たすことで、風ムラの発生が抑制された塗膜が形成され、結果として、風ムラの発生が抑制された塗工層が形成される。
 工程bにおける基材上雰囲気圧Pとしては、外乱による影響を受けにくくする観点から、減圧度が高い方がよく、大気圧-1000Pa以下が好ましく、大気圧-10000Pa以下がより好ましい。
 基材上雰囲気圧Pの下限値としては、減圧室130の装置限界、基材140のバックアップロール110からの浮き等の抑制等から決定されればよく、例えば、大気圧-50000Paに設定することができる。
 以下、工程bに用いられる減圧室について説明する。
(減圧室)
 図1に示す通り、減圧室130は、ダイコータ120に対し、基材の搬送方向下流側に隣接して配置されている。
 減圧室130とダイコータ120とを離間して配置することで、基材上雰囲気圧Pを前述の好ましい範囲に調整することができる。
 例えば、図2に示すように、ダイコータ120と減圧室130Aとの離間距離D2としては、1mm~5mmの範囲に設定することができる。
 なお、距離D2は、ダイコータ120の側面と減圧室130Aの側面との間の最短距離を指す。
 離間距離D2の調整によって、工程aにおける基材と塗布液との接触点(即ち、バックアップロール上の基材とダイコータにより塗布された塗布液との接触点)から、工程bにおける塗膜上の気体の吸気が開始される点(即ち、減圧室にて塗膜上の気体の吸気が開始される点)までの距離を変更することができる。
 ここで、工程aにおける基材と塗布液との接触点は、図1における基材140上の点cであり、工程bにおける塗膜上の気体の吸気が開始される点は、図1における、減圧室130の基材の搬送方向の上流側端部から最短距離にある基材140上の点dである。
 点cと点dとの距離としては、50mm以下が好ましく、30mm以下がより好ましい。
 点cと点dとの距離の下限値としては、装置の設計上、1mm程度と考えられる。
 また、減圧室130により塗膜上の気体を吸気する範囲は、特に制限はなく、基材140がバックアップロール110から離れるまで行われてもよいし、減圧室130の大きさが許容される範囲である、また、基材140の搬送安定化が図れる範囲であれば、基材140がバックアップロール110から離れた後まで継続してもよい。
 つまり、工程bにおける気体の吸気は、バックアップロール上の塗膜に対して行われるが、バックアップロールから離れた基材上の塗膜に対してまで継続して行ってもよい。
 但し、減圧室130が大型化してしまう観点等から、図1における点d(減圧室にて塗膜上の気体の吸気が開始される点)から図1における点e(減圧室にて塗膜上の気体の吸気が終了する点)までに距離を100mm~500mm(より好ましくは100mm~200mm)の範囲とすることが好ましい。
 ここで、点eは、減圧室130の基材の搬送方向の下流側端部から最短距離にある基材上の点である。
 点dと点eとの距離を上記の範囲とするためには、減圧室130の基材140の搬送方向における長さを調節すればよい。つまり、減圧室130の基材140の搬送方向における長さは、100mm~500mmとすればよい。
 また、減圧室130により塗膜上の気体を吸気する範囲は、風ムラの発生を抑制しやすい観点から、塗膜の固形分濃度が60質量%(好ましくは、70質量%)に到達するまで行うことが好ましい。
 即ち、工程bにて、塗膜の固形分濃度が60質量%(好ましくは、70質量%)に到達するまで塗膜上の気体を吸気することが好ましい。
 そのため、例えば、上記した点eにおいて、塗膜の固形分濃度が60質量%(好ましくは、70質量%)以上となるように、減圧室130の基材140の搬送方向における長さを設定すればよい。具体的には、減圧室130による塗膜上の気体の吸気時間と、塗膜の固形分濃度の変化と、の関係を予め求めておき、塗膜の固形分濃度が60質量%(好ましくは、70質量%)となる位置以降に点eが来るよう、減圧室130の基材140の搬送方向における長さを設定すればよい。
 ここで、塗膜の固形分濃度の測定は、例えば、光干渉式膜厚計にて測定することができる。具体的には、塗膜の固形分濃度の測定は、例えば、キーエンス社製の赤外分光干渉式膜厚計SI-T80を用いて、塗布した時点から乾膜になるまでの膜の光学厚みを計測することによりオンラインで行える。
 具体的には、まず、塗布した時点から乾膜になるまでの膜の光学厚みを計測する。次いで、接触式厚み計で乾燥後の膜(即ち、乾膜)の厚みを計測する。接触式厚み計で計測した乾膜の厚みを光学厚みで除算して補正する。補正された値をもとに、光学厚みから湿潤膜(塗膜)の厚みを算出する。そして、測定点における湿潤膜(塗膜)の厚みから溶剤量を得る。そして、得られた溶剤量から溶剤質量を求め、測定点における固形分濃度の値を得る。
 減圧室130は、塗膜上の気体を吸気する機能を有しており、基材上雰囲気圧Pを大気圧-100Pa以下とすることができれば、その構成には制限はない。
 本開示においては、図2及び図3を参照して減圧室130の更なる詳細に説明するが、この構成に限定されるものではない。
 ここで、図2は、第1態様の減圧室の構成を説明するための概略側面図であり、図3は、第2態様の減圧室の構成を説明するための概略側面図である。
 図2に示す第1態様の減圧室130Aは、減圧室本体131と排気口132とから構成される。減圧室130A(減圧室本体131)は、塗膜152上の気体を吸気するため、バックアップロール110表面に対向する面が開放された略直方体形状を有している。
 減圧室本体131の側面(即ち、基材の搬送方向に平行な面)は、図2に示すように、側面視した場合に、バックアップロール110の曲率に合わせた円弧状となる先端面131Aを有する。
 ここで、円弧状とは、厳密に円周の一部形状である必要はなく、円周の一部形状に類似する形状であればよい。
 円弧状の先端面(減圧室の側面の先端面の一例)131Aとバックアップロール110との距離D3としては、基材上雰囲気圧Pを大気圧-100Pa以下とする観点から、0.5mm以下であることが好ましく、基材上雰囲気圧Pをより小さくするためには、距離D3を小さくすることが好ましく、0.4mm以下がより好ましい。
 また、基材140との接触、塗膜152との接触等を抑制する観点から、距離D3の下限値は、0.1mmとすることが好ましい。
 ここで、距離D3は、円弧状の先端面131Aとバックアップロール110との間の最短距離を指す。
 なお、円弧状の先端面131Aとバックアップロール110との間の距離は、距離D1と同様の方法で測定することができる。
 減圧室本体131は、排気口132を介して図示されないブロアに接続している。ブロアを稼働させることにより、排気口132から気体を吸気して、減圧室130A(減圧室本体131)の内部を大気圧よりも減圧する。
 そして、減圧室130A(減圧室本体131)の内部の減圧度を調整することで、減圧室130Aにおける気体の吸気時の基材上雰囲気圧Pが大気圧-100Pa以下になるようにする。
 ここで、減圧室本体131のバックアップロール110表面に対向した面(円弧状の先端面131Aの他、減圧室の背面の先端面及び減圧室の正面の先端面)の外周には、減圧室130Aへの気体流出入を制御する機構を設けてもよい。具体的には、例えば、ラビリンスのような隙間を設けて圧力損失を調整する機構が挙げられる。ラビリンスは多段でもよく、各段毎に隙間の大きさを変えてもよい。
 この気体流入の抑制機構を備えることで、減圧室130A(減圧室本体131)の内部の減圧度を高め易くなる。
 図3に示す第2態様の減圧室130Bは、減圧室本体133、2つの側板136、背面板137、及び正面板138から構成される。
 そして、減圧室本体133は、減圧室130Bに気体を供給する手段である給気スリット134と、減圧室130Bから気体を排気する手段である排気スリット135と、を有する。
 減圧室130Bは、減圧室本体133、2つの側板136、背面板137、及び正面板138で囲まれた空間を有しており、減圧室本体133の給気スリット134から気体を給気し、且つ、排気スリット135から気体を排気することで、空間内に気体の対流が生じる。
 減圧室130B内における塗膜上の気体の風速は、0.5m/s~100m/sの範囲であることが好ましく、上記の気体の対流が加わることで、1m/s~100m/sの範囲とすることができ、10m/s~100m/sが更に好ましい範囲となる。
 塗膜上の気体の風速は、塗膜表面から1mm上部における風速を、無指向性の風速計、具体的には、例えば、アネモマスター(アネモマスター風速計MODEL-611シリーズ、KANOMAX社)にて測定した値である。
 また、減圧室本体133の給気スリット134から給気する気体量と、排気スリット135から排出する気体量とのバランスを調整することで、減圧室130Bの空間内を大気圧よりも減圧することができる。
 そして、減圧室130Bの空間内の減圧度を調整することで、減圧室130Bにおける気体の吸気時の基材上雰囲気圧Pが大気圧-100Pa以下になるようにする。
 なお、給気スリット134及び排気スリット135は、それぞれ、例えば、0.1mm~5mmの隙間を有しており、この隙間を通じて、気体の給気及び排気が行われる。
 側板136は、減圧室本体133の側面(即ち、基材の搬送方向に平行な面)に接触配置された板状部材である。
 側板136は、図3に示すように、側面視した場合に、バックアップロール110の曲率に合わせた円弧状となる先端面(減圧室の側面の先端面の一例)136Aを有する。
 円弧状の先端面136Aとバックアップロール110との距離D3としては、減圧室130Aにおける円弧状の先端面136Aとバックアップロール110との距離D3と同様であり、好ましい態様及び測定方法も同様である。
 背面板137は、減圧室本体133の背面(即ち、基材の搬送方向に垂直な面であって、基材の搬送方向下流側の面)に接触配置された板状部材である。
 また、正面板138は、減圧室本体133の正面(即ち、基材の搬送方向に垂直な面であって、基材の搬送方向上流側の面)に接触配置された板状部材である。
 背面板137及び正面板138は、それぞれ、バックアップロールの表面と対向する先端面137A及び先端面138Aを有する。
 背面板137の先端面(減圧室の背面の先端面の一例)137Aとバックアップロール110との距離D4としては、基材上雰囲気圧Pを大気圧-100Pa以下とする観点から、0.5mm以下であることが好ましく、基材上雰囲気圧Pをより小さくするためには、距離D4を小さくすることが好ましく、0.4mm以下がより好ましい。
 また、基材140との接触、塗膜152との接触等を抑制する観点から、距離D4の下限値は、0.1mmとすることが好ましい。
 ここで、距離D4は、背面板137の先端面137Aとバックアップロール110との間の最短距離をいう。
 なお、背面板137の先端面137Aとバックアップロール110との間の距離は、距離D1と同様の方法で測定することができる。
 正面板138の先端面(減圧室の正面の先端面の一例)138Aとバックアップロール110との距離D5としては、基材上雰囲気圧Pを大気圧-100Pa以下とする観点から、0.5mm以下であることが好ましく、基材上雰囲気圧Pをより小さくするためには、距離D5を小さくすることが好ましく、0.4mm以下がより好ましい。
 また、基材140との接触、塗膜152との接触等を抑制する観点から、距離D5の下限値は、0.1mmとすることが好ましい。
 ここで、距離D5は、正面板138の先端面138Aとバックアップロール110との間の最短距離をいう。
 なお、正面板138の先端面138Aとバックアップロール110との間の距離は、距離D1と同様の方法で測定することができる。
 更に、距離D5は、前述した円弧状の先端面136Aとバックアップロール110との距離D3よりも大きいことが、減圧室の入口において風の動圧による塗膜の乱れを小さくする観点で好ましい。
 ここで、2つの側板136、背面板137、及び正面板138のバックアップロール110表面に対向した面の外周には、第1態様で説明したものと同様の、気体流入の抑制機構を設けてもよい。
 この気体流入の抑制機構を備えることで、減圧室130Bの内部の減圧度を高め易くなる。
 以上のような減圧室を用いて工程bが行われ、その結果、風ムラの発生が抑制された塗膜が形成される。
 本開示の積層体の製造方法は、前述の工程a及び工程b以外に、工程bにて増粘された塗膜を乾燥させる乾燥工程、乾燥工程後の塗膜に対して活性エネルギー線を照射して塗膜を硬化させる硬化工程等を有していてもよい。
[乾燥工程]
 乾燥工程では、重層塗布工程で形成された塗膜から溶媒を減少させる。
 乾燥工程で用いる乾燥手段としては、特に制限はなく、例えば、オーブン、温風機、赤外線(IR)ヒーター等を用いる方法が挙げられる。
 温風機による乾燥においては、基材の塗膜形成面とは反対の面から温風を当てる構成でもよく、塗膜が温風にて流動しないよう、拡散板を設置した構成としてもよい。
 乾燥条件は、形成された塗膜の種類、塗布量、搬送速度等に応じて決定されればよく、例えば、30℃~140℃の範囲で、10秒~10分間行うことが好ましい。
[硬化工程]
 硬化工程は、乾燥工程後の塗膜に対して活性エネルギー線を照射して塗膜を硬化させる。
 硬化工程で用いる活性エネルギー線の照射手段としては、照射する塗膜中に活性種を発生させうるエネルギーを付与する手段であれば、特に制限はない。
 活性エネルギー線として、具体的には、例えば、α線、γ線、X線、紫外線、赤外線、可視光線、電子線等が挙げられる。これらのうち、硬化感度及び装置の入手容易性の観点から、活性エネルギー線としては、紫外線が好ましく用いられる。
 紫外線の光源としては、例えば、タングステンランプ、ハロゲンランプ、キセノンランプ、キセノンフラッシュランプ、水銀ランプ、水銀キセノンランプ、カーボンアークランプ等のランプ、各種のレーザー(例、半導体レーザー、ヘリウムネオンレーザー、アルゴンイオンレーザー、ヘリウムカドミウムレーザー、YAG(Yttrium Aluminum Garnet)レーザー)、発光ダイオード、陰極線管等を挙げることができる。
 紫外線の光源から発せられる紫外線のピーク波長は、200nm~400nmが好ましい。
 また、紫外線の露光エネルギー量としては、例えば、100mJ/cm~500mJ/cmが好ましい。
 以上により、基材上に塗布液から形成された塗工層が設けられた積層体を製造することができる。
[積層体]
 本開示の積層体の製造方法で得られた積層体は、基材と、塗布液から形成された目的とする塗工層と、を有する。
(基材)
 基材としては、積層体の用途に応じて、適宜選択することができ、例えば、ポリマーフィルムが挙げられる。
 光学フィルム用途であれば、基材の光透過率は、80%以上であることが好ましい。
 光学フィルム用途であれば、基材としてポリマーフィルムを用いる場合には、光学的等方性のポリマーフィルムを用いるのが好ましい。
 基材としては、例えば、ポリエステル系基材(ポリエチレンテレフタレート、ポリエチレンナフタレート等のフィルム若しくはシート)、セルロース系基材(ジアセチルセルロース、トリアセチルセルロース(TAC)等のフィルム若しくはシート)、ポリカーボネート系基材、ポリ(メタ)アクリル系基材(ポリメチルメタクリレート等のフィルム若しくはシート)、ポリスチレン系基材(ポリスチレン、アクリロニトリルスチレン共重合体等のフィルム若しくはシート)、オレフィン系基材(ポリエチレン、ポリプロピレン、環状若しくはノルボルネン構造を有するポリオレフィン、エチレンプロピレン共重合体等のフィルム若しくはシート)、ポリアミド系基材(ポリ塩化ビニル、ナイロン、芳香族ポリアミド等のフィルム若しくはシート)、ポリイミド系基材、ポリスルホン系基材、ポリエーテルスルホン系基材、ポリエーテルエーテルケトン系基材、ポリフェニレンスルフィド系基材、ビニルアルコール系基材、ポリ塩化ビニリデン系基材、ポリビニルブチラール系基材、ポリ(メタ)アクリレート系基材、ポリオキシメチレン系基材、エポキシ樹脂系基材等の透明基材、又は上記のポリマー材料をブレンドしたブレンドポリマーからなる基材等が挙げられる。
 基材としては、上記のポリマーフィルム上に予め層が形成されたものであってもよい。
 予め形成される層としては、接着層、水、酸素等に対するバリア層、屈折率調整層等が挙げられる。
(目的とする塗工層)
 塗布液から形成される目的とする塗工層としては、特に制限はなく、光学フィルム用途であれば、ハードコート層、液晶層、屈折率調整層等が挙げられる。
 塗布液から形成される層の厚さとしては、用途に応じて異なるが、本開示の積層体の製造方法を採用することで、例えば、5μm以下、より好ましくは0.1μm~100μmの範囲とすることができる。
(その他の層)
 塗布液から形成される層上には、更に、用途に応じて、その他の層を有していてもよい。
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。
(基材の準備)
 基材として、厚み60μm、幅1340mmの長尺状のトリアセチルセルロース(TAC)フィルム(TD40UL、富士フイルム(株)、屈折率1.48)を用意した。
(ハードコート層形成用塗布液1の調製)
 以下に記載の各成分の混合物をミキシングタンクに投入し、攪拌し、孔径0.4μmのポリプロピレン製フィルターで濾過して、ハードコート層形成用塗布液(固形分含有率50質量%、粘度2.9mPa・s)を調製した。
-ハードコート層形成用塗布液1-
・重合性化合物:ペンタエリスリトールテトラアクリレート(新中村化学工業(株)NKエステル) : 48.4質量%
・光重合開始剤:Omnirad 184(IGM Resins B.V.社) : 1.5質量%
・界面活性剤:以下に示されるフッ素系界面活性剤 : 0.1質量%
・有機溶剤:メチルエチルケトン : 50質量%
Figure JPOXMLDOC01-appb-C000001
(ハードコート層形成用塗布液2の調製)
 以下に記載の各成分の混合物をミキシングタンクに投入し、攪拌し、孔径0.4μmのポリプロピレン製フィルターで濾過して、ハードコート層形成用塗布液(固形分含有率50質量%、粘度3.6mPa・s)を調製した。
-ハードコート層形成用塗布液2-
・重合性化合物:ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)) : 48.5質量%
・光重合開始剤:Omnirad 907(IGM Resins B.V.社) : 1.5質量%
・有機溶剤:メチルエチルケトン : 35質量%
・有機溶剤:シクロヘキサノン : 15質量%
(実施例1~8及び比較例1、2)
(工程a)
 ダイコータを用いて、TACフィルム上にハードコート層形成用塗布液の塗布を行った。
 具体的には、表面温度60℃、外径300mmのバックアップロール上に、基材を搬送し、バックアップロール上の基材に対し、ダイコータを用い、ハードコート層形成用塗布液の塗布を行った。このとき、基材のラップ角は150°であった。
 このときの、基材上雰囲気圧Pは表1に記載の通りであった。また、距離D1及び点cと点dとの距離も、表1に記載の通りであった。
 また、工程aにおいて、塗布液の吐出時の温度は23℃、塗布幅は1300mm、塗布速度(即ち、基材の搬送速度)は10m/minであった。
(工程b)
 続いて、図2又は図3に記載の減圧室を用いて、塗膜上の気体の吸気を行った。なお、ダイコータ120と減圧室130A又は減圧室130Bとの離間距離D2は、20mmであった。
 また、比較例1では、図2に示す減圧室を備えているものの、排気口132から気体を吸気せず、減圧室130A(減圧室本体131)の内部を減圧させなかった。
 このときの、基材上雰囲気圧Pは表1に記載の通りであった。
 また、距離D3、距離D4、距離D5、点dと点eとの距離、点eにおける塗膜の固形分濃度、塗膜上の気体の風速は、表1に記載の通りであった。
(乾燥工程及び硬化工程)
 続いて、塗膜を60℃1分間で乾燥した後、紫外線を露光エネルギー200mJ/cmにて照射して塗膜の硬化を行った。
 その結果、厚み5μmのハードコート層が形成された。
 ハードコート層が形成されたTACフィルムはロール状に巻き取られた。
 以上のようにして、各例の積層体を製造した。
 なお、工程a及び工程bにおける各物性(雰囲気圧、距離、及び風速)は、前述の方法にて測定した値である。
(評価:風ムラの評価)
 上記で製造した積層体の、末端(巻き終わり側の端部)から1m~10mまで間のハードコート層について、その表面を目視にて観察し、風ムラを評価した。
 評価指標は以下の通りである。
-風ムラの評価指標-
1:風ムラがみられない。
2:弱いスジ状の風ムラが1本~2本見られた。
3:強いスジ状の風ムラが見られた。
4:スジ状及び班点状の風ムラが全面に見られた。
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例の製造方法によれば、いずれも、風ムラの発生が抑制された塗工層を有する積層体が得られることが分かる。
 特に、図3に示す減圧室のように、給気及び排気を行い、塗膜上の気体の風速を速めると、風ムラは更に抑制できることがわかる。
[符号の説明]
 110 バックアップロール
 120 ダイコータ
 122 ダイブロック本体
 124 マニホールド
 126 スリット
 130、130A、130B 減圧室
 131 減圧室本体
 131A 円弧状の先端面
 132 排気口
 133 減圧室本体
 136 側板
 136A 側板の先端面
 137 背面板
 138 正面板
 140 基材
 150 塗布液
 152 塗膜
 a   基材上雰囲気圧Pを測定する位置
 b   基材上雰囲気圧Pを測定する位置
 c   基材と塗布液との接触点
 d   塗膜上の気体の吸気が開始される点
 e   塗膜上の気体の吸気が終了する点
 D1  ダイコータの先端とバックアップロールとの距離
 D2  ダイコータと減圧室との離間距離
 D3  減圧室の側面の先端面とバックアップロールとの距離
 D4  減圧室の背面の先端面とバックアップロールとの距離
 D5  減圧室の正面の先端面とバックアップロールとの距離
 2018年8月15日に出願された日本出願2018-152978の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (12)

  1.  連続搬送される基材をバックアップロールに巻き掛け、バックアップロール上の基材に有機溶剤を含む塗布液を塗布し、塗膜を形成する工程aと、
     塗膜上の気体を吸気することで、バックアップロール上の塗膜から有機溶剤を減少させる工程bと、
    を少なくとも有し、
     工程aにおける基材と塗布液との接触時の基材上雰囲気圧をPとし、工程bにおける気体の吸気時の基材上雰囲気圧をPとした場合、P及びPが以下の条件1及び2を満たす、積層体の製造方法。
     条件1: P>P
     条件2: P≦大気圧-100Pa
  2.  工程bにおける塗膜上の気体の風速が1m/s~100m/sである、請求項1に記載の積層体の製造方法。
  3.  工程aにおける基材と塗布液との接触点から、工程bにおける塗膜上の気体の吸気が開始される点までの距離が、100mm以下である、請求項1又は請求項2に記載の積層体の製造方法。
  4.  工程bにて、塗膜の固形分濃度が70質量%に到達するまで塗膜上の気体を吸気する、請求項1~請求項3のいずれか1項に記載の積層体の製造方法。
  5.  連続搬送される基材が巻き掛けられるバックアップロールと、
     バックアップロール上に巻き掛けられた基材上に有機溶剤を含む塗布液を塗布し、塗膜を形成するダイコータと、
     ダイコータに隣接して設置され、塗膜上の気体を吸気することで、バックアップロール上の塗膜から有機溶剤を減少させる減圧室と、
    を少なくとも備え、
     バックアップロール上の基材とダイコータにより塗布された塗布液との接触時の基材上雰囲気圧をPとし、減圧室における気体の吸気時の基材上雰囲気圧をPとした場合、P及びPが以下の条件1及び2を満たす、積層体の製造装置。
     条件1: P>P
     条件2: P≦大気圧-100Pa
  6.  減圧室内における塗膜上の気体の風速が1m/s~100m/sである、請求項5に記載の積層体の製造装置。
  7.  減圧室に気体を供給する手段を更に有する、請求項5又は請求項6に記載の積層体の製造装置。
  8.  バックアップロール上の基材とダイコータにより塗布された塗布液との接触点から、減圧室にて塗膜上の気体の吸気が開始される点までの距離が、100mm以下である、請求項5~請求項7のいずれか1項に記載の積層体の製造装置。
  9.  減圧室の側面の先端面とバックアップロールとの距離が0.5mm以下である、請求項5~請求項8のいずれか1項に記載の積層体の製造装置。
  10.  減圧室の正面の先端面とバックアップロールとの距離が、減圧室の側面の先端面とバックアップロールとの距離よりも大きい請求項9に記載の積層体の製造装置。
  11.  減圧室が、給気スリットと排気スリットとを有する本体部及び側板を含んで構成される、請求項5~請求項10のいずれか1項に記載の積層体の製造装置。
  12.  バックアップロールの表面温度が40℃~120℃である、請求項5~請求項11のいずれか1項に記載の積層体の製造装置。
PCT/JP2019/031749 2018-08-15 2019-08-09 積層体の製造方法及び製造装置 WO2020036153A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020537078A JP7019049B2 (ja) 2018-08-15 2019-08-09 積層体の製造方法及び製造装置
KR1020217002101A KR102480805B1 (ko) 2018-08-15 2019-08-09 적층체의 제조 방법 및 제조 장치
CN201980048779.5A CN112469508B (zh) 2018-08-15 2019-08-09 层叠体的制造方法及制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-152978 2018-08-15
JP2018152978 2018-08-15

Publications (1)

Publication Number Publication Date
WO2020036153A1 true WO2020036153A1 (ja) 2020-02-20

Family

ID=69524736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031749 WO2020036153A1 (ja) 2018-08-15 2019-08-09 積層体の製造方法及び製造装置

Country Status (4)

Country Link
JP (1) JP7019049B2 (ja)
KR (1) KR102480805B1 (ja)
CN (1) CN112469508B (ja)
WO (1) WO2020036153A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445458A (en) * 1982-07-21 1984-05-01 E. I. Du Pont De Nemours And Company Beveled edge metered bead extrusion coating apparatus
JP3012856U (ja) * 1994-01-04 1995-06-27 ミネソタ マイニング アンド マニュファクチャリング カンパニー 被膜形成装置用エンクロージャ
JP2002059061A (ja) * 2000-08-24 2002-02-26 Toppan Printing Co Ltd スロットダイ塗布装置
JP2003211052A (ja) * 2002-01-23 2003-07-29 Fuji Photo Film Co Ltd 塗布装置及び塗布方法
JP2003245595A (ja) * 2002-02-22 2003-09-02 Fuji Photo Film Co Ltd 塗布方法
JP2006099081A (ja) * 2004-09-06 2006-04-13 Fuji Photo Film Co Ltd 光学フィルム及び反射防止フィルムの製造方法、光学フィルム及び反射防止フィルム、偏光板、並びにそれらを用いた画像表示装置
JP2008264765A (ja) * 2007-03-28 2008-11-06 Hitachi Chem Co Ltd 塗工用ダイ、非接触ダイ塗工装置及び塗工方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186966A (ja) * 1986-02-12 1987-08-15 Fuji Photo Film Co Ltd 塗布方法及び装置
JP2000176345A (ja) * 1998-12-15 2000-06-27 Konica Corp 塗布方法および塗布装置
JP2003200097A (ja) * 2002-01-09 2003-07-15 Fuji Photo Film Co Ltd 塗布方法及びスロットダイ
JP2011036803A (ja) * 2009-08-11 2011-02-24 Konica Minolta Holdings Inc バリアフィルムの製造方法
CN203375501U (zh) * 2013-05-26 2014-01-01 东莞市正幸电器有限公司 一种平衡气流的低噪声吸油烟装置
CN107848286B (zh) * 2015-08-11 2019-10-01 富士胶片株式会社 功能性薄膜的制造方法以及制造装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445458A (en) * 1982-07-21 1984-05-01 E. I. Du Pont De Nemours And Company Beveled edge metered bead extrusion coating apparatus
JP3012856U (ja) * 1994-01-04 1995-06-27 ミネソタ マイニング アンド マニュファクチャリング カンパニー 被膜形成装置用エンクロージャ
JP2002059061A (ja) * 2000-08-24 2002-02-26 Toppan Printing Co Ltd スロットダイ塗布装置
JP2003211052A (ja) * 2002-01-23 2003-07-29 Fuji Photo Film Co Ltd 塗布装置及び塗布方法
JP2003245595A (ja) * 2002-02-22 2003-09-02 Fuji Photo Film Co Ltd 塗布方法
JP2006099081A (ja) * 2004-09-06 2006-04-13 Fuji Photo Film Co Ltd 光学フィルム及び反射防止フィルムの製造方法、光学フィルム及び反射防止フィルム、偏光板、並びにそれらを用いた画像表示装置
JP2008264765A (ja) * 2007-03-28 2008-11-06 Hitachi Chem Co Ltd 塗工用ダイ、非接触ダイ塗工装置及び塗工方法

Also Published As

Publication number Publication date
CN112469508A (zh) 2021-03-09
JPWO2020036153A1 (ja) 2021-05-13
KR102480805B1 (ko) 2022-12-22
JP7019049B2 (ja) 2022-02-14
KR20210022714A (ko) 2021-03-03
CN112469508B (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
JP2017062458A (ja) 波長変換部材、バックライトユニット、液晶表示装置、および量子ドット含有重合性組成物
US10479931B2 (en) Polymer molding composition, wavelength converter, backlight unit, and liquid crystal display device
US9312516B2 (en) Functional film and organic EL device
KR102153459B1 (ko) 파장 변환 부재, 백라이트 유닛, 및 액정 표시 장치, 및 양자 도트 함유 중합성 조성물
JP2016111292A (ja) 波長変換部材、バックライトユニット、液晶表示装置、および波長変換部材の製造方法
EP2228463B1 (en) Method for manufacturing a functional film
JP2016095426A (ja) 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置並びに波長変換部材の製造方法
TWI378862B (en) Method of forming multi-layer films using corona treatments
JP6475842B2 (ja) 機能性フィルムの製造方法及び製造装置
WO2020036153A1 (ja) 積層体の製造方法及び製造装置
TWI376302B (ja)
CN102207558A (zh) 硬涂膜、偏振片和图像显示装置
JP5461245B2 (ja) 積層体の製造方法
JP2008302297A (ja) 塗布膜の乾燥装置および乾燥方法、それらを用いた塗布物の製造装置および製造方法
JP2010201773A (ja) 表面機能性光硬化シートの製造方法
WO2018088048A1 (ja) 電子デバイス及び有機エレクトロルミネッセンス素子
JP2008246415A (ja) 塗布物の製造装置及び塗布物の製造方法
JP2009221321A (ja) 積層体の製造方法
JP2008168286A (ja) 硬化塗膜の製造方法
JP5347256B2 (ja) 塗布物の製造装置および製造方法
JP2013226758A (ja) ガスバリア性フィルムの製造方法
KR20240096346A (ko) 도막의 제조 방법, 및 광학 필름의 제조 방법
TW201826584A (zh) 氣體阻障性膜及可撓性電子裝置
JP2012150460A (ja) 光学フィルムの製造方法、偏光板および画像表示装置
JP6108556B2 (ja) 塗膜付きフィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020537078

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217002101

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19849703

Country of ref document: EP

Kind code of ref document: A1