WO2020019407A1 - Goa电路及具有该goa电路的液晶显示装置 - Google Patents

Goa电路及具有该goa电路的液晶显示装置 Download PDF

Info

Publication number
WO2020019407A1
WO2020019407A1 PCT/CN2018/103475 CN2018103475W WO2020019407A1 WO 2020019407 A1 WO2020019407 A1 WO 2020019407A1 CN 2018103475 W CN2018103475 W CN 2018103475W WO 2020019407 A1 WO2020019407 A1 WO 2020019407A1
Authority
WO
WIPO (PCT)
Prior art keywords
pull
signal
film transistor
thin film
circuit
Prior art date
Application number
PCT/CN2018/103475
Other languages
English (en)
French (fr)
Inventor
徐向阳
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US16/096,006 priority Critical patent/US10957270B1/en
Publication of WO2020019407A1 publication Critical patent/WO2020019407A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0408Integration of the drivers onto the display substrate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes

Definitions

  • the present invention requires the priority of an earlier application with an application number of 201810811705X entitled “GOA circuit and a liquid crystal display device having the GOA circuit”, which was filed on July 23, 2018, and the content of the above prior application is incorporated by way of introduction In this article.
  • the invention relates to the technical field of liquid crystal display, in particular to a GOA (Gate Driver On Array) circuit and a liquid crystal display device having the GOA circuit.
  • GOA Gate Driver On Array
  • Liquid crystal displays have the advantages of light weight, thinness, shortness, energy saving, and radiation indicators that are generally lower than those of CRT (Cathode Ray Tube) displays, which have gradually replaced CRT displays to achieve a wide range of applications in various electronic products.
  • the driving of the horizontal scanning lines of the active liquid crystal display panel is mainly completed by an integrated circuit (Integrated Circuit) of the panel.
  • the external IC can control the progressive charging and discharging of the horizontal scanning lines at all levels.
  • a gate line scan driving signal circuit is fabricated on the array substrate by using a thin film transistor (TFT) liquid crystal display array manufacturing process, so as to realize a drive mode of the gate line scan. Therefore, the liquid crystal display panel can be used.
  • TFT thin film transistor
  • the driving circuit of the horizontal scanning line is fabricated on a substrate around the display area.
  • GOA technology can reduce the bonding process of external ICs, which can increase productivity and reduce product costs, and make LCD panels more suitable for making narrow-frame or borderless display products.
  • the main architecture of the GOA circuit includes: a pull-up control circuit, a pull-up circuit, a pull-down circuit, and a pull-down sustain circuit.
  • the pull-up circuit is used to output a clock signal as a scan driving signal
  • the pull-up control circuit is used to output a pull-up control signal to control the opening time of the pull-up circuit
  • the pull-down circuit is used to control the pull-up
  • the signal and the scan driving signal are pulled low
  • the pull-down sustaining circuit is used to maintain the pull-up control signal and the scan driving signal at a low potential.
  • the more stable the low potential of the pull-up control signal is, the more stable the low potential of the scan drive signal remains. Therefore, maintaining the low-potential stability of the pull-up control signal is of great significance for improving the driving capability of the GOA circuit.
  • Embodiments of the present invention provide a GOA circuit and a liquid crystal display device having the GOA circuit.
  • a voltage stabilization circuit By adding a voltage stabilization circuit to the GOA circuit, the driving capability of the GOA circuit can be improved, and the charging rate of the liquid crystal display panel can be improved.
  • An embodiment of the present invention provides a GOA circuit including a plurality of cascaded GOA units, wherein the n-th GOA unit charges an n-th horizontal scanning line of a display area of a liquid crystal display panel, and the n-th GOA
  • the unit includes a pull-up control circuit, a pull-up circuit, a voltage stabilization circuit, a pull-down circuit, a first pull-down sustain circuit, and a second pull-down sustain circuit, where n is a positive integer;
  • the pull-up control circuit receives a start signal and outputs a pull-up control signal Q (n) according to the start signal;
  • the pull-up circuit is electrically connected to the pull-up control circuit, receives the pull-up control signal Q (n) and a first clock signal CK1, and according to the pull-up control signal Q (n) and the pull-up control signal
  • the first clock signal CK1 outputs an n-th stage transmission signal ST (n) and an n-th scan driving signal G (n);
  • the voltage stabilizing circuit is electrically connected to the pull-up control circuit and the pull-up circuit, and receives the n-th scan driving signal G (n) and a second clock signal CK2, and according to the n-th stage
  • the scan driving signal G (n) and the second clock signal CK2 maintain the stability of the pull-up control signal Q (n) at a low potential;
  • the pull-down circuit is electrically connected to the pull-up control circuit, the pull-up circuit, and the voltage stabilization circuit, receives a DC low-voltage signal Vss, and pulls down the pull-up control signal Q according to the DC low-voltage signal Vss. (n), further pulling down the n-th scanning driving signal G (n), so that the pull-up control signal Q (n) and the n-th scanning driving signal G (n) are turned off, and according to The DC low-voltage signal Vss outputs an n + 1th stage scan driving signal G (n + 1);
  • the first pull-down sustain circuit is electrically connected to the pull-up control circuit, the pull-up circuit, the voltage stabilization circuit, and the pull-down circuit, and receives a first low-frequency signal LC1 and the DC low-voltage signal Vss. And maintaining the pull-up control signal Q (n) and the n-th stage scan drive signal G (n) in an off state according to the first low-frequency signal LC1 and the DC low-voltage signal Vss;
  • the second pull-down sustain circuit is electrically connected to the pull-up control circuit, the pull-up circuit, the voltage stabilization circuit, the pull-down circuit, and the first pull-down sustain circuit, and receives a second low-frequency signal.
  • LC2 and the DC low-voltage signal Vss, and the pull-up control signal Q (n) and the n-th stage scan driving signal G (n) are maintained according to the second low-frequency signal LC2 and the DC low-voltage signal Vss In the off state.
  • first pull-down sustain circuit and the second pull-down sustain circuit alternately function to maintain the pull-up control signal Q (n) and the n-th scan driving signal G (n) in an off state;
  • the first clock signal CK1 and the second clock signal CK2 are mutually inverted signals.
  • the pull-up control circuit includes: a first thin film transistor (T11);
  • n 1
  • the control terminal and the first terminal of the first thin film transistor (T11) are input with the initial signal, and the second terminal thereof is connected to the pull-up control signal point Q for outputting all the signals according to the initial signal.
  • the pull-up control signal Q (n) is described;
  • the control terminal of the first thin film transistor (T11) inputs the n-1th stage transmission signal ST (n-1), and the first terminal thereof inputs the n-1th stage scan drive A signal G (n-1), the second end of which is connected to the pull-up control signal point Q, and is used for transmitting the signal ST (n-1) and the n-1th stage according to the n-1th stage
  • the scan driving signal G (n-1) outputs the pull-up control signal Q (n).
  • the pull-up circuit includes: a second thin-film transistor (T22) and a third thin-film transistor (T21); a control terminal of the second thin-film transistor (T22) and the pull-up control signal point Q are electrically A connection for receiving the pull-up control signal Q (n), a first end of which receives the first clock signal CK1, and a second end of which is used for receiving the pull-up control signal Q (n) and the first end A clock signal CK1 outputs the n-th stage transmission signal ST (n); the control terminal of the third thin film transistor (T21) is electrically connected to the pull-up control signal point Q for receiving the pull-up
  • the first end of the control signal Q (n) is input with the first clock signal CK1, and the second end thereof is electrically connected to the horizontal scanning line G, and is configured to be based on the pull-up control signal Q (n) and the first A clock signal CK1 outputs the n-th scanning driving signal G (n);
  • the voltage stabilizing circuit includes: a first capacitor (C1) and a second capacitor (C2); one end of the first capacitor (C1) is electrically connected to the pull-up control signal point Q for receiving all
  • the pull-up control signal Q (n) has a second clock signal CK2 input to the other end; one end of the second capacitor (C2) is electrically connected to the pull-up control signal point Q for receiving the pull-up control signal Q. Pulling the control signal Q (n), the other end of which is electrically connected to the horizontal scanning line G;
  • the pull-down circuit includes: a fifth thin film transistor (T41) and a sixth thin film transistor (T31); a first low end of the fifth thin film transistor (T41) is input with the DC low voltage signal Vss, and a second end of the fifth low voltage signal Vss is connected with The pull-up control signal point Q is electrically connected to pull down the pull-up control signal Q (n) according to the DC low-voltage signal Vss, so that the pull-up control signal Q (n) is in an off state.
  • the control terminal is electrically connected to the control terminal of the sixth thin film transistor (T31), and is configured to output an n + 1th stage scan driving signal G (n + 1) according to the DC low voltage signal Vss; the sixth thin film transistor
  • the first terminal of (T31) inputs the DC low-voltage signal Vss, and the second terminal thereof is electrically connected to the horizontal scanning line G, and is used to pull down the n-th stage scanning driving signal G (according to the DC low-voltage signal Vss. n), so that the n-th scan driving signal G (n) is in an off state.
  • the first pull-down sustaining circuit includes: a seventh thin film transistor (T51), an eighth thin film transistor (T52), a ninth thin film transistor (T53), a tenth thin film transistor (T54), and an eleventh thin film transistor ( T42) and a twelfth thin film transistor (T32); a control terminal and a first terminal of the seventh thin film transistor (T51) input the first low-frequency signal LC1, and a second terminal thereof is respectively connected to the eighth thin film transistor ( The first terminal of T52) is electrically connected to the control terminal of the ninth thin film transistor (T53); the control terminal of the eighth thin film transistor (T52) is electrically connected to the pull-up control signal point Q for The pull-up control signal Q (n) is input, and the DC low-voltage signal Vss is input to the second terminal; the first low-frequency signal LC1 is input to the first terminal of the ninth thin film transistor (T53), and the second terminal Electrically connected to the first terminal of the tenth thin film transistor (T54), the
  • the second pull-down sustaining circuit includes: a thirteenth thin film transistor (T61), a fourteenth thin film transistor (T62), a fifteenth thin film transistor (T63), a sixteenth thin film transistor (T64), and a seventeenth thin film transistor (T43) and the eighteenth thin film transistor (T33); the control terminal and the first terminal of the thirteenth thin film transistor (T61) input the second low-frequency signal LC2, and the second terminal thereof is respectively connected to the fourteenth
  • the first terminal of the thin film transistor (T62) is electrically connected to the control terminal of the fifteenth thin film transistor (T63); the control terminal of the fourteenth thin film transistor (T62) is electrically connected to the pull-up control signal point Q.
  • the second terminal of the LC2 is electrically connected to the first terminal of the sixteenth thin film transistor (T64), the control terminal of the seventeenth thin film transistor (T43), and the control terminal of the eighteenth thin film transistor (T33).
  • the control terminal of the sixteenth thin film transistor (T64) is electrically connected to the pull-up control signal point Q Connected for inputting the pull-up control signal Q (n), the second terminal of which is the DC low voltage signal Vss;
  • the first terminal of the seventeenth thin film transistor (T43) is input of the DC low voltage signal Vss, Its second end is electrically connected to the pull-up control signal point Q, and is configured to maintain the pull-up control signal Q (n) in an off state according to the second low-frequency signal LC2 and the DC low-voltage signal Vss;
  • a first terminal of the eighteenth thin film transistor (T33) receives the DC low-voltage signal Vss, and a second terminal of the eighteenth thin film transistor (T33) is electrically connected to the horizontal scanning line G, and is configured to be based on the second low-frequency signal LC2 and the The DC low-voltage signal Vss maintains the n-th scan driving signal G (n) in an off state.
  • the pull-up control signal point Q is electrically connected to the horizontal scanning line G through a third capacitor (Cb), and the third capacitor (Cb) is a bootstrap capacitor.
  • the signal period of the first low-frequency signal LC1 and the second low-frequency signal LC2 is 200 times the frame period, the duty cycle is 1/2, and the first low-frequency signal LC1 and the second low-frequency signal LC2. The phase difference between them is 1/2 signal period.
  • the potentials of the operating points of the first pull-down sustain circuit and the second pull-down sustain circuit are the low potential of the pull-up control signal Q (n) and the high potential of the first low-frequency signal LC1 and the pull-up
  • the control signal Q (n) has a low potential and the second low-frequency signal LC2 has a high potential.
  • another embodiment of the present invention also provides a liquid crystal display device including the GOA circuit described above.
  • the GOA circuit includes a plurality of cascaded GOA units, and the GOA units correspond to the display area of the liquid crystal display panel.
  • Each horizontal GOA unit includes a pull-up control circuit, a pull-up circuit, a voltage stabilization circuit, a pull-down circuit, a first pull-down sustain circuit, and a second pull-down sustain circuit.
  • the pull-up control circuit is electrically connected to the pull-up circuit, and can maintain stability of a low potential of the pull-up control signal.
  • the present invention maintains the low-voltage stability of the pull-up control signal by adding a voltage regulator circuit to the GOA circuit, which can improve the stability of the output waveform of the scan drive signal, and further improve the driving ability of the GOA circuit, thereby improving the liquid crystal display.
  • the charging rate of the panel is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to the GOA circuit.
  • FIG. 1 is a schematic framework diagram of a GOA circuit according to an embodiment of the present invention.
  • FIG. 2 is a schematic circuit structure diagram of the GOA circuit shown in FIG. 1.
  • FIG. 3 is a waveform diagram of input and output signals in a conventional GOA circuit.
  • FIG. 4 is a waveform diagram of input and output signals in the GOA circuit shown in FIG. 1 and FIG. 2.
  • An embodiment of the present invention provides a GOA (Gate Driver On Array) circuit, which can maintain the stability of the pull-up control signal at a low potential without affecting the high-level of the pull-up control signal. Therefore, the stability of the output waveform of the scan driving signal can be improved, thereby improving the driving capability of the GOA circuit.
  • GOA Gate Driver On Array
  • FIG. 1 is a schematic diagram of a GOA circuit according to an embodiment of the present invention.
  • the GOA circuit 100 shown in FIG. 1 includes a plurality of cascaded GOA units, where the n-th GOA unit charges the n-th horizontal scanning line of the display area of the liquid crystal display panel, and the n-th GOA unit includes at least a pull-up The control circuit 10, the pull-up circuit 20, the voltage stabilization circuit 30, the pull-down circuit 40, the first pull-down sustain circuit 50, and the second pull-down sustain circuit 60, where n is a positive integer.
  • the pull-up control circuit 10 receives a start signal (not shown in the figure), and outputs a pull-up control signal Q (n) according to the start signal.
  • n 1
  • the initial signal is responsible for starting the first stage GOA unit
  • n> 1 the n-1th stage GOA unit is transmitted by the n-1th stage GOA unit
  • the ST (n-1) and the n-1th-level scanning driving signal G (n-1) are activated, so that the GOA circuit 100 is turned on step by step, and the horizontal scanning driving is realized, so that the horizontal scanning lines can be charged step by step.
  • FIG. 1 only shows a signal receiving situation of the pull-up control circuit 10 when n> 1.
  • the pull-up circuit 20 is electrically connected to the pull-up control circuit 10, and receives the pull-up control signal Q (n) and a first clock signal CK1, and according to the pull-up control signal Q (n) And the first clock signal CK1 outputs an n-th stage transmission signal ST (n) and an n-th stage scan driving signal G (n).
  • the voltage stabilization circuit 30 is electrically connected to the pull-up control circuit 10 and the pull-up circuit 20, and the voltage stabilization circuit 30 receives the n-th scan driving signal G (n) and a second clock.
  • the signal CK2 maintains the low-level stability of the pull-up control signal Q (n) according to the n-th scan driving signal G (n) and the second clock signal CK2.
  • the first clock signal CK1 and the second clock signal CK2 are mutually inverted signals, that is, when the first clock signal CK1 is in a high potential state.
  • the second clock signal CK2 is in a low potential state; and when the first clock signal CK1 is in a low potential state, the second clock signal CK2 is in a high potential state.
  • the pull-down circuit 40 is electrically connected to the pull-up control circuit 10, the pull-up circuit 20, and the voltage stabilization circuit 30.
  • the pull-down circuit 40 receives a DC low-voltage signal Vss, and according to the DC
  • the low-voltage signal Vss pulls down the pull-up control signal Q (n), and further pulls down the n-th scan drive signal G (n), so that the pull-up control signal Q (n) and the n-th scan drive
  • the signals G (n) are in an off state (ie, a low potential), and an n + 1th stage scan driving signal G (n + 1) is output according to the DC low-voltage signal Vss.
  • the first pull-down sustain circuit 50 is electrically connected to the pull-up control circuit 10, the pull-up circuit 20, the voltage stabilization circuit 30, and the pull-down circuit 40, wherein the first pull-down sustain circuit
  • the circuit 50 receives a first low-frequency signal LC1 and the DC low-voltage signal Vss, and according to the first low-frequency signal LC1 and the DC low-voltage signal Vss, the pull-up control signal Q (n) and the n-th stage
  • the scan driving signal G (n) is maintained in an off state.
  • the second pull-down sustain circuit 60 is electrically connected to the pull-up control circuit 10, the pull-up circuit 20, the voltage stabilization circuit 30, the pull-down circuit 40, and the first pull-down sustain circuit 50.
  • the second pull-down maintaining circuit 60 receives a second low-frequency signal LC2 and the DC low-voltage signal Vss, and according to the second low-frequency signal LC2 and the DC low-voltage signal Vss, the pull-up control signal Q ( n) and the n-th scan driving signal G (n) are maintained in an off state.
  • the first pull-down sustain circuit 50 and the second pull-down sustain circuit 60 alternately function to pull up the pull-up control signal Q (n) and the n-th scan driving signal G (n) Maintained in an off state (ie, maintained in a low potential state).
  • the n-th stage scan driving signal G can be improved.
  • the stability of the output waveform further improves the driving capability of the GOA circuit 100, thereby increasing the charging rate of the liquid crystal display panel.
  • FIG. 2 is a schematic diagram of a circuit structure of the GOA circuit shown in FIG. 1.
  • the GOA circuit 100 shown in FIG. 2 includes a pull-up control circuit 10, a pull-up circuit 20, a voltage stabilization circuit 30, a pull-down circuit 40, a first pull-down sustain circuit 50, and a second pull-down sustain circuit 60 shown in FIG. 1. .
  • the pull-up control circuit 10 specifically includes: a first thin film transistor T11;
  • n 1, that is, when n is equal to 1, the control terminal and the first terminal of the first thin film transistor T11 input an initial signal, and the second terminal thereof is connected to the pull-up control signal point Q for The initial signal outputs a pull-up control signal Q (n);
  • the control terminal of the first thin film transistor T11 inputs the n-1th stage transmission signal ST (n-1), and the first terminal thereof enters the n-1th stage scan.
  • the second end of the driving signal G (n-1) is connected to the pull-up control signal point Q, and is used for transmitting the signal ST (n-1) and the n-1th stage according to the n-1th stage.
  • the stage scanning driving signal G (n-1) outputs a pull-up control signal Q (n).
  • FIG. 2 only shows a signal input situation of the pull-up control circuit 10 when n> 1.
  • the pull-up circuit 20 specifically includes a second thin film transistor T22 and a third thin film transistor T21.
  • the control terminal of the second thin film transistor T22 is electrically connected to the pull-up control signal point Q for receiving the pull-up control signal Q (n).
  • the first terminal of the second thin-film transistor T22 receives a first clock signal CK1.
  • the second terminal is configured to output an n-th stage transmission signal ST (n) according to the pull-up control signal Q (n) and the first clock signal CK1.
  • the control terminal of the third thin film transistor T21 is electrically connected to the pull-up control signal point Q for receiving the pull-up control signal Q (n), and the first terminal of the third thin-film transistor T21 inputs the first clock signal CK1,
  • the second end thereof is electrically connected to the horizontal scanning line G, and is configured to output an n-th scanning driving signal G (n) according to the pull-up control signal Q (n) and the first clock signal CK1.
  • the voltage stabilization circuit 30 includes a first voltage stabilization module 301 and a second voltage stabilization module 302.
  • the first voltage stabilizing module 301 specifically includes: a first capacitor (C1), one end of which is electrically connected to the pull-up control signal point Q for receiving the pull-up control signal Q (n), The other end inputs a second clock signal CK2.
  • the second voltage stabilizing module 302 specifically includes a second capacitor (C2), one end of which is electrically connected to the pull-up control signal point Q for receiving the pull-up control signal Q (n). One end is electrically connected to the horizontal scanning line G.
  • the pull-down circuit 40 specifically includes a fifth thin film transistor T41 and a sixth thin film transistor T31.
  • a first terminal of the fifth thin film transistor T41 receives a DC low-voltage signal Vss, and a second terminal thereof is electrically connected to the pull-up control signal point Q for pulling down the pull-up control according to the DC low-voltage signal Vss.
  • the DC low-voltage signal Vss outputs an n + 1-stage scanning driving signal G (n + 1); a first terminal of the sixth thin film transistor T31 is input with the DC low-voltage signal Vss, and a second terminal of the sixth thin-film transistor T31 is connected to the horizontal scanning.
  • the line G is electrically connected to pull down the n-th scanning driving signal G (n) according to the DC low-voltage signal Vss, so that the n-th scanning driving signal G (n) is in an off state (that is, low Potential).
  • the first pull-down sustaining circuit 50 specifically includes a seventh thin film transistor T51, an eighth thin film transistor T52, a ninth thin film transistor T53, a tenth thin film transistor T54, an eleventh thin film transistor T42, and a first Twelve thin film transistors T32.
  • a control terminal and a first terminal of the seventh thin film transistor T51 input a first low-frequency signal LC1, and a second terminal thereof is respectively connected to a first terminal of the eighth thin film transistor T52 and a control terminal of the ninth thin film transistor T53.
  • the control terminal of the eighth thin film transistor T52 is electrically connected to the pull-up control signal point Q for inputting the pull-up control signal Q (n), and the second end thereof is input with the DC low voltage Signal Vss;
  • the first low-frequency signal LC1 is input to the first terminal of the ninth thin-film transistor T53, and the second terminal of the ninth thin-film transistor T53 passes through the first signal point S to the first terminal of the tenth thin-film transistor T54 and the first
  • the control terminal of the eleven thin film transistor T42 and the control terminal of the twelfth thin film transistor T32 are electrically connected;
  • the control terminal of the tenth thin film transistor T54 is electrically connected to the pull-up control signal point Q for input
  • a second terminal of the pull-up control signal Q (n) is input with the DC low voltage signal Vss;
  • a first terminal of the eleventh thin film transistor T42 is input with the DC low voltage signal Vss, and a second terminal thereof is connected to the The pull-up control signal
  • the second pull-down sustaining circuit 60 specifically includes: a thirteenth thin film transistor T61, a fourteenth thin film transistor T62, a fifteenth thin film transistor T63, a sixteenth thin film transistor T64, and a seventeenth thin film transistor T43 And an eighteenth thin film transistor T33.
  • a control terminal and a first terminal of the thirteenth thin film transistor T61 input a second low-frequency signal LC2, and a second terminal thereof is respectively connected to a first terminal of the fourteenth thin film transistor T62 and the fifteenth thin film transistor T63.
  • the control terminal of the fourteenth thin film transistor T62 is electrically connected to the pull-up control signal point Q for inputting the pull-up control signal Q (n), and the second terminal is input The DC low voltage signal Vss; the first terminal of the fifteenth thin film transistor T63 is input with the second low frequency signal LC2, and the second terminal of the fifteenth thin film transistor T63 is respectively connected with the first of the sixteenth thin film transistor T64 through the second signal point N; One end, the control end of the seventeenth thin film transistor T43 and the control end of the eighteenth thin film transistor T33 are electrically connected; the control end of the sixteenth thin film transistor T64 is electrically connected to the pull-up control signal point Q Connected for inputting the pull-up control signal Q (n), the second terminal of which is the DC low voltage signal Vss; the first terminal of the seventeenth thin film transistor T43 is input of the DC low voltage signal Vss, the first Two ends are electrically connected to the pull-up control signal point Q, The pull-up control signal Q (n)
  • Vss the second end of which is electrically connected to the horizontal scanning line G, and is configured to maintain the n-th scanning driving signal G (n) to be off according to the second low-frequency signal LC2 and the DC low-voltage signal Vss status.
  • the pull-up control signal point Q is electrically connected to the horizontal scanning line G through a third capacitor (Cb).
  • the third capacitor (Cb) is a bootstrap capacitor.
  • the signal period of the first low-frequency signal LC1 and the second low-frequency signal LC2 is 200 times the frame period, the duty ratio is 1/2, and the first A phase difference between a low-frequency signal LC1 and the second low-frequency signal LC2 is 1 ⁇ 2 a signal period.
  • the operating point potentials of the first pull-down sustaining circuit 50 and the second pull-down sustaining circuit 60 are the low potential of the pull-up control signal Q (n) and
  • the first low-frequency signal LC1 (or the second low-frequency signal LC2) has a high potential.
  • FIG. 3 is a waveform diagram of input and output signals in a GOA circuit in the prior art. These include a first clock signal CK1, a pull-up control signal Q (n), and an n-th scan driving signal G (n). It should be noted that the prior art GOA circuit described in the embodiment of the present invention refers to a GOA circuit that does not include the voltage stabilization circuit 30. It can be seen from FIG.
  • FIG. 4 is a waveform diagram of input and output signals in the GOA circuit shown in FIG. 1 and FIG. 2. These include a first clock signal CK1, a second clock signal CK2, a pull-up control signal Q (n), and an n-th scan driving signal G (n). As shown in FIG. 4, the first clock signal CK1 and the second clock signal CK2 are mutually inverted signals. In addition, it can be seen from FIG. 4 that when the pull-up control signal Q (n) is pulled low, under the action of the voltage stabilization circuit 30, the GOA circuit 100 can not affect the pull-up control signal.
  • an embodiment of the present invention further provides a liquid crystal display device, which includes the GOA circuit 100 shown in FIG. 1 and FIG. 2 described above.
  • the liquid crystal display device may include, but is not limited to, a mobile phone (such as an Android mobile phone, an iOS mobile phone, and the like) having a liquid crystal display panel, a tablet computer, Mobile Internet Devices (MID), and Personal Digital Assistant (PDA). ), Laptops, TVs, electronic paper, digital photo frames, and more.
  • the embodiment of the present invention maintains the pull-up control signal Q (n) by adding a voltage stabilization circuit 30 to the GOA circuit 100.
  • the low voltage stability can improve the stability of the output waveform of the scan driving signal G (n), and then improve the driving capability of the GOA circuit 100, thereby increasing the charging rate of the liquid crystal display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种GOA电路,其包括多个级联的GOA单元,其中第n级GOA单元(100)对第n级水平扫描线充电,第n级GOA单元(100)包括:上拉控制电路(10)、上拉电路(20)、稳压电路(30)、下拉电路(60)、第一下拉维持电路(40)和第二下拉维持电路(50);上拉控制电路(10)用于输出上拉控制信号Q(n);上拉电路(20)用于输出第n级级传信号ST(n)和第n级扫描驱动信号G(n);稳压电路(30)用于维持Q(n)低电位的稳定性;下拉电路(60)用于使Q(n)和G(n)处于关闭状态;第一下拉维持电路(40)和第二下拉维持电路(50)交替起作用将Q(n)和G(n)维持在关闭状态。该GOA电路可以通过维持Q(n)低电压的稳定性来提高G(n)输出波形的稳定性,进而提高GOA电路的驱动能力,从而提高液晶显示面板的充电率。还公开了一种液晶显示装置,其具有该GOA电路。

Description

GOA电路及具有该GOA电路的液晶显示装置
本发明要求2018年7月23日递交的发明名称为“GOA电路及具有该GOA电路的液晶显示装置”的申请号201810811705X的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及液晶显示技术领域,尤其涉及一种GOA(Gate driver On Array,阵列基板行驱动)电路及具有该GOA电路的液晶显示装置。
背景技术
液晶显示器具有轻薄短小、节能、辐射指标普遍低于CRT(Cathode Ray Tube,阴极射线管)显示器等优点,使之逐渐代替CRT显示器实现在各类电子产品中的广泛应用。目前,主动式液晶显示面板水平扫描线的驱动,主要由面板外接的IC(Integrated Circuit,集成电路)来完成,外接的IC可以控制各级水平扫描线的逐级充电和放电。而GOA技术,利用TFT(Thin Film Transistor,薄膜晶体管)液晶显示器阵列制程将Gate行扫描驱动信号电路制作在阵列基板上,从而实现对Gate逐行扫描的驱动方式,因此,可以运用液晶显示面板的原有制程,将水平扫描线的驱动电路制作在显示区域周围的基板上。GOA技术能减少外接IC的绑定(Bonding)工序,可提升产能并降低产品成本,并使液晶显示面板更适合制作窄边框或无边框的显示产品。
GOA电路的主要架构包括:上拉控制电路、上拉电路、下拉电路以及下拉维持电路。其中,所述上拉电路用于将时钟信号输出为扫描驱动信号,所述上拉控制电路用于输出上拉控制信号以控制上拉电路的打开时间,所述下拉电路用于将上拉控制信号和扫描驱动信号拉低,所述下拉维持电路用于将上拉控制信号和扫描驱动信号维持在低电位。其中,所述上拉控制信号的低电位越稳定,扫描驱动信号的低电位保持越稳定,因此保持所述上拉控制信号的低电位稳定性对于提高GOA电路的驱动能力具有十分重要的意义。
发明内容
本发明实施例提供一种GOA电路及具有该GOA电路的液晶显示装置,其通过在GOA电路中增加稳压电路,可以提高所述GOA电路的驱动能力,进而提高液晶显示面板的充电率。
本发明的一个实施例提供了一种GOA电路,其包括多个级联的GOA单元,其中第n级GOA单元对液晶显示面板的显示区域第n级水平扫描线充电,所述第n级GOA单元包括上拉控制电路、上拉电路、稳压电路、下拉电路、第一下拉维持电路和第二下拉维持电路,其中,n为正整数;
所述上拉控制电路接收一启动信号,并根据所述启动信号输出一上拉控制信号Q(n);
所述上拉电路与所述上拉控制电路电性连接,接收所述上拉控制信号Q(n)和一第一时钟信号CK1,并根据所述上拉控制信号Q(n)和所述第一时钟信号CK1输出一第n级级传信号ST(n)和一第n级扫描驱动信号G(n);
所述稳压电路与所述上拉控制电路和所述上拉电路电性连接,接收所述第n级扫描驱动信号G(n)和一第二时钟信号CK2,并根据所述第n级扫描驱动信号G(n)和所述第二时钟信号CK2维持所述上拉控制信号Q(n)低电位的稳定性;
所述下拉电路与所述上拉控制电路、所述上拉电路以及所述稳压电路电性连接,接收一直流低压信号Vss,并根据所述直流低压信号Vss下拉所述上拉控制信号Q(n),进而下拉所述第n级扫描驱动信号G(n),以使所述上拉控制信号Q(n)和所述第n级扫描驱动信号G(n)处于关闭状态,并根据所述直流低压信号Vss输出一第n+1级扫描驱动信号G(n+1);
所述第一下拉维持电路与所述上拉控制电路、所述上拉电路、所述稳压电路以及所述下拉电路电性连接,接收一第一低频信号LC1和所述直流低压信号Vss,并根据所述第一低频信号LC1和所述直流低压信号Vss将所述上拉控制信号Q(n)和所述第n级扫描驱动信号G(n)维持在关闭状态;
所述第二下拉维持电路与所述上拉控制电路、所述上拉电路、所述稳压电路、所述下拉电路以及所述第一下拉维持电路电性连接,接收一第二低频信号LC2和所述直流低压信号Vss,并根据所述第二低频信号LC2和所述直流低压信号Vss将所述上拉控制信号Q(n)和所述第n级扫描驱动信号G(n)维持在关闭状 态。
其中,当n=1时,所述启动信号为一初始信号,所述上拉控制电路根据所述初始信号输出一上拉控制信号Q(n);当n>1时,所述启动信号为第n-1级GOA单元输出的第n-1级级传信号ST(n-1)和第n-1级扫描驱动信号G(n-1),所述上拉控制电路根据所述第n-1级级传信号ST(n-1)和所述第n-1级扫描驱动信号G(n-1)输出一上拉控制信号Q(n)。
其中,所述第一下拉维持电路和所述第二下拉维持电路交替起作用将所述上拉控制信号Q(n)和所述第n级扫描驱动信号G(n)维持在关闭状态;所述第一时钟信号CK1与所述第二时钟信号CK2之间互为反相信号。
其中,所述上拉控制电路包括:一第一薄膜晶体管(T11);
当n=1时,所述第一薄膜晶体管(T11)的控制端和第一端输入所述初始信号,其第二端与上拉控制信号点Q连接,用于根据所述初始信号输出所述上拉控制信号Q(n);
当n>1时,所述第一薄膜晶体管(T11)的控制端输入所述第n-1级级传信号ST(n-1),其第一端输入所述第n-1级扫描驱动信号G(n-1),其第二端与所述上拉控制信号点Q连接,用于根据所述第n-1级级传信号ST(n-1)和所述第n-1级扫描驱动信号G(n-1)输出所述上拉控制信号Q(n)。
其中,所述上拉电路包括:一第二薄膜晶体管(T22)和一第三薄膜晶体管(T21);所述第二薄膜晶体管(T22)的控制端与所述上拉控制信号点Q电性连接,用于接收所述上拉控制信号Q(n),其第一端输入所述第一时钟信号CK1,其第二端用于根据所述上拉控制信号Q(n)和所述第一时钟信号CK1输出所述第n级级传信号ST(n);所述第三薄膜晶体管(T21)的控制端与所述上拉控制信号点Q电性连接,用于接收所述上拉控制信号Q(n),其第一端输入所述第一时钟信号CK1,其第二端与水平扫描线G电性连接,用于根据所述上拉控制信号Q(n)和所述第一时钟信号CK1输出所述第n级扫描驱动信号G(n);
所述稳压电路包括:一第一电容(C1)和一第二电容(C2);所述第一电容(C1)的一端与所述上拉控制信号点Q电性连接,用于接收所述上拉控制信号Q(n),其另一端输入一第二时钟信号CK2;所述第二电容(C2)的一端与所述上拉控制信号点Q电性连接,用于接收所述上拉控制信号Q(n),其另一端与所述水平扫 描线G电性连接;
所述下拉电路包括:一第五薄膜晶体管(T41)和一第六薄膜晶体管(T31);所述第五薄膜晶体管(T41)的第一端输入所述直流低压信号Vss,其第二端与所述上拉控制信号点Q电性连接,用于根据所述直流低压信号Vss下拉所述上拉控制信号Q(n),以使所述上拉控制信号Q(n)处于关闭状态,其控制端与所述第六薄膜晶体管(T31)的控制端电性连接,用于根据所述直流低压信号Vss输出第n+1级扫描驱动信号G(n+1);所述第六薄膜晶体管(T31)的第一端输入所述直流低压信号Vss,其第二端与所述水平扫描线G电性连接,用于根据所述直流低压信号Vss下拉所述第n级扫描驱动信号G(n),以使所述第n级扫描驱动信号G(n)处于关闭状态。
其中,所述第一下拉维持电路包括:第七薄膜晶体管(T51)、第八薄膜晶体管(T52)、第九薄膜晶体管(T53)、第十薄膜晶体管(T54)、第十一薄膜晶体管(T42)和第十二薄膜晶体管(T32);所述第七薄膜晶体管(T51)的控制端和第一端输入所述第一低频信号LC1,其第二端分别与所述第八薄膜晶体管(T52)的第一端和所述第九薄膜晶体管(T53)的控制端电性连接;所述第八薄膜晶体管(T52)的控制端与所述上拉控制信号点Q电性连接,用于输入所述上拉控制信号Q(n),其第二端输入所述直流低压信号Vss;所述第九薄膜晶体管(T53)的第一端输入所述第一低频信号LC1,其第二端分别与所述第十薄膜晶体管(T54)的第一端、所述第十一薄膜晶体管(T42)的控制端以及所述第十二薄膜晶体管(T32)的控制端电性连接;所述第十薄膜晶体管(T54)的控制端与所述上拉控制信号点Q电性连接,用于输入所述上拉控制信号Q(n),其第二端输入所述直流低压信号Vss;所述第十一薄膜晶体管(T42)的第一端输入所述直流低压信号Vss,其第二端与所述上拉控制信号点Q电性连接,用于根据所述第一低频信号LC1和所述直流低压信号Vss将所述上拉控制信号Q(n)维持在关闭状态;所述第十二薄膜晶体管(T32)的第一端输入所述直流低压信号Vss,其第二端与所述水平扫描线G电性连接,用于根据所述第一低频信号LC1和所述直流低压信号Vss将所述第n级扫描驱动信号G(n)维持在关闭状态;
所述第二下拉维持电路包括:第十三薄膜晶体管(T61)、第十四薄膜晶体管(T62)、第十五薄膜晶体管(T63)、第十六薄膜晶体管(T64)、第十七薄膜晶体 管(T43)和第十八薄膜晶体管(T33);所述第十三薄膜晶体管(T61)的控制端和第一端输入所述第二低频信号LC2,其第二端分别与所述第十四薄膜晶体管(T62)的第一端和所述第十五薄膜晶体管(T63)的控制端电性连接;所述第十四薄膜晶体管(T62)的控制端与所述上拉控制信号点Q电性连接,用于输入所述上拉控制信号Q(n),其第二端输入所述直流低压信号Vss;所述第十五薄膜晶体管(T63)的第一端输入所述第二低频信号LC2,其第二端通过分别与所述第十六薄膜晶体管(T64)的第一端、第十七薄膜晶体管(T43)的控制端以及所述第十八薄膜晶体管(T33)的控制端电性连接;所述第十六薄膜晶体管(T64)的控制端与所述上拉控制信号点Q电性连接,用于输入所述上拉控制信号Q(n),其第二端输入所述直流低压信号Vss;所述第十七薄膜晶体管(T43)的第一端输入所述直流低压信号Vss,其第二端与所述上拉控制信号点Q电性连接,用于根据所述第二低频信号LC2和所述直流低压信号Vss将所述上拉控制信号Q(n)维持在关闭状态;所述第十八薄膜晶体管(T33)的第一端输入所述直流低压信号Vss,其第二端与所述水平扫描线G电性连接,用于根据所述第二低频信号LC2和所述直流低压信号Vss将所述第n级扫描驱动信号G(n)维持在关闭状态。
其中,所述上拉控制信号点Q通过一第三电容(Cb)与所述水平扫描线G电性连接,所述第三电容(Cb)为自举电容。
其中,所述第一低频信号LC1和所述第二低频信号LC2的信号周期为200倍帧周期,占空比为1/2,且所述第一低频信号LC1和所述第二低频信号LC2之间的相位差为1/2信号周期。
其中,所述第一下拉维持电路和所述第二下拉维持电路的工作点电位为所述上拉控制信号Q(n)低电位和所述第一低频信号LC1高电位以及所述上拉控制信号Q(n)低电位和所述第二低频信号LC2高电位。
相应地,本发明的另一个实施例还提供了一种液晶显示装置,其包括上述的GOA电路。
综上所述,在本发明实施例提供的GOA电路及具有该GOA电路的液晶显示装置中,所述GOA电路包括多个级联的GOA单元,所述GOA单元对液晶显示面板的显示区域对应的水平扫描线进行充电,每一级GOA单元包括上拉控制电路、上拉电路、稳压电路、下拉电路、第一下拉维持电路和第二下拉维持 电路,其中,所述稳压电路与所述上拉控制电路和所述上拉电路电性连接,并可以维持所述上拉控制信号低电位的稳定性。即,本发明通过在GOA电路中增加稳压电路来维持上拉控制信号低电压的稳定性,可以提高扫描驱动信号输出波形的稳定性,进而提高所述GOA电路的驱动能力,从而提高液晶显示面板的充电率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种GOA电路的框架示意图。
图2为图1所示的GOA电路的一种电路结构示意图。
图3为现有技术的GOA电路中输入输出信号的波形示意图。
图4为图1和图2所示的GOA电路中输入输出信号的波形示意图。
具体实施方式
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述。显然,所描述的实施方式是本发明的一部分实施方式,而不是全部实施方式。基在本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施方式,都应属在本发明保护的范围。
此外,以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明中所提到的方向用语,例如,“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”、“侧面”等,仅是参考附加图式的方向,因此,使用的方向用语是为了更好、更清楚地说明及理解本发明,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安 装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸地连接,或者一体地连接;可以是机械连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。若本说明书中出现“工序”的用语,其不仅是指独立的工序,在与其它工序无法明确区别时,只要能实现所述工序所预期的作用则也包括在本用语中。另外,本说明书中用“~”表示的数值范围是指将“~”前后记载的数值分别作为最小值及最大值包括在内的范围。在附图中,结构相似或相同的单元用相同的标号表示。
本发明实施例提供一种GOA(Gate driver On Array,阵列基板行驱动)电路,其可以在不影响上拉控制信号高电位的前提下,维持所述上拉控制信号在低电位时的稳定性,从而可以提高扫描驱动信号输出波形的稳定性,进而提高所述GOA电路的驱动能力。下面将结合图1至图4对本发明实施例提供的一种GOA电路及具有该GOA电路的液晶显示装置进行具体描述。
请参见图1,图1为本发明实施例提供的一种GOA电路的框架示意图。如图1所示的GOA电路100包括多个级联的GOA单元,其中第n级GOA单元对液晶显示面板的显示区域第n级水平扫描线充电,所述第n级GOA单元至少包括上拉控制电路10、上拉电路20、稳压电路30、下拉电路40、第一下拉维持电路50以及第二下拉维持电路60,其中,n为正整数。
其中,所述上拉控制电路10接收一启动信号(图未标),并根据所述启动信号输出一上拉控制信号Q(n)。
具体为,当n=1时,即当n等于1时,所述启动信号为一初始信号,则所述上拉控制电路10根据所述初始信号输出一上拉控制信号Q(n);当n>1时,即当n大于1时,所述启动信号为第n-1级GOA单元输出的第n-1级级传信号ST(n-1)和第n-1级扫描驱动信号G(n-1),则所述上拉控制电路10根据所述第n-1级级传信号ST(n-1)和所述第n-1级扫描驱动信号G(n-1)输出一上拉控制信号Q(n)。
可见,当n=1时,所述初始信号负责启动第一级GOA单元,而当n>1时,第n级GOA单元由第n-1级GOA单元输出的第n-1级级传信号ST(n-1)和第n-1级 扫描驱动信号G(n-1)启动,从而实现逐级打开GOA电路100,实现行扫描驱动,使得水平扫描线可以被逐级充电。
需要说明的是,图1中仅示出了当n>1时所述上拉控制电路10的信号接收情况。
所述上拉电路20与所述上拉控制电路10电性连接,并接收所述上拉控制信号Q(n)和一第一时钟信号CK1,并根据所述上拉控制信号Q(n)和所述第一时钟信号CK1输出一第n级级传信号ST(n)和一第n级扫描驱动信号G(n)。
所述稳压电路30与所述上拉控制电路10和所述上拉电路20均电性连接,所述稳压电路30接收所述第n级扫描驱动信号G(n)和一第二时钟信号CK2,并根据所述第n级扫描驱动信号G(n)和所述第二时钟信号CK2维持所述上拉控制信号Q(n)低电位的稳定性。
需要说明的是,在本发明的实施例中,所述第一时钟信号CK1与所述第二时钟信号CK2之间互为反相信号,即当所述第一时钟信号CK1处于高电位状态时,所述第二时钟信号CK2处于低电位状态;并且当第一时钟信号CK1处于低电位状态时,所述第二时钟信号CK2处于高电位状态。
所述下拉电路40与所述上拉控制电路10、所述上拉电路20以及所述稳压电路30电性连接,其中,所述下拉电路40接收一直流低压信号Vss,并根据所述直流低压信号Vss下拉所述上拉控制信号Q(n),进而下拉所述第n级扫描驱动信号G(n),以使所述上拉控制信号Q(n)和所述第n级扫描驱动信号G(n)均处于关闭状态(即为低电位),并根据所述直流低压信号Vss输出一第n+1级扫描驱动信号G(n+1)。
所述第一下拉维持电路50与所述上拉控制电路10、所述上拉电路20、所述稳压电路30以及所述下拉电路40电性连接,其中,所述第一下拉维持电路50接收一第一低频信号LC1和所述直流低压信号Vss,并根据所述第一低频信号LC1和所述直流低压信号Vss将所述上拉控制信号Q(n)和所述第n级扫描驱动信号G(n)维持在关闭状态。
所述第二下拉维持电路60与所述上拉控制电路10、所述上拉电路20、所述稳压电路30、所述下拉电路40以及所述第一下拉维持电路50电性连接,其中,所述第二下拉维持电路60接收一第二低频信号LC2和所述直流低压信号Vss, 并根据所述第二低频信号LC2和所述直流低压信号Vss将所述上拉控制信号Q(n)和所述第n级扫描驱动信号G(n)维持在关闭状态。
在本发明的实施例中,所述第一下拉维持电路50和所述第二下拉维持电路60交替起作用将所述上拉控制信号Q(n)和所述第n级扫描驱动信号G(n)维持在关闭状态(即维持在低电位状态)。
在本发明实施例提供的GOA电路100中,通过在GOA电路100中增加所述稳压电路30来维持上拉控制信号Q(n)低电压的稳定性,可以提高第n级扫描驱动信号G(n)输出波形的稳定性,进而提高所述GOA电路100的驱动能力,从而提高液晶显示面板的充电率。
请一并参见图1和图2,图2为图1所示的GOA电路的一种电路结构示意图。如图2所示的GOA电路100包括如图1所示的上拉控制电路10、上拉电路20、稳压电路30、下拉电路40、第一下拉维持电路50以及第二下拉维持电路60。
其中,所述上拉控制电路10具体包括:一第一薄膜晶体管T11;
当n=1时,即当n等于1时,所述第一薄膜晶体管T11的控制端和第一端输入一初始信号,其第二端与上拉控制信号点Q连接,用于根据所述初始信号输出一上拉控制信号Q(n);
当n>1时,即当n大于1时,所述第一薄膜晶体管T11的控制端输入第n-1级级传信号ST(n-1),其第一端输入第n-1级扫描驱动信号G(n-1),其第二端与所述上拉控制信号点Q连接,用于根据所述第n-1级级传信号ST(n-1)和所述第n-1级扫描驱动信号G(n-1)输出一上拉控制信号Q(n)。
需要说明的是,图2中仅示出了当n>1时所述上拉控制电路10的信号输入情况。
所述上拉电路20具体包括:一第二薄膜晶体管T22和一第三薄膜晶体管T21。所述第二薄膜晶体管T22的控制端与所述上拉控制信号点Q电性连接,用于接收所述上拉控制信号Q(n),其第一端输入一第一时钟信号CK1,其第二端用于根据所述上拉控制信号Q(n)和所述第一时钟信号CK1输出一第n级级传信号ST(n)。所述第三薄膜晶体管T21的控制端与所述上拉控制信号点Q电性连接,用于接收所述上拉控制信号Q(n),其第一端输入所述第一时钟信号CK1,其第二端与水平扫描线G电性连接,用于根据所述上拉控制信号Q(n)和所述第 一时钟信号CK1输出一第n级扫描驱动信号G(n)。
所述稳压电路30包括第一稳压模块301和第二稳压模块302。
其中,所述第一稳压模块301具体包括:一第一电容(C1),其一端与所述上拉控制信号点Q电性连接,用于接收所述上拉控制信号Q(n),其另一端输入一第二时钟信号CK2。
所述第二稳压模块302具体包括:一第二电容(C2),其一端与所述上拉控制信号点Q电性连接,用于接收所述上拉控制信号Q(n),其另一端与所述水平扫描线G电性连接。
所述下拉电路40具体包括:一第五薄膜晶体管T41和一第六薄膜晶体管T31。所述第五薄膜晶体管T41的第一端输入一直流低压信号Vss,其第二端与所述上拉控制信号点Q电性连接,用于根据所述直流低压信号Vss下拉所述上拉控制信号Q(n),以使所述上拉控制信号Q(n)处于关闭状态(即为低电位),其控制端与所述第六薄膜晶体管T31的控制端电性连接,用于根据所述直流低压信号Vss输出一第n+1级扫描驱动信号G(n+1);所述第六薄膜晶体管T31的第一端输入所述直流低压信号Vss,其第二端与所述水平扫描线G电性连接,用于根据所述直流低压信号Vss下拉所述第n级扫描驱动信号G(n),以使所述第n级扫描驱动信号G(n)处于关闭状态(即为低电位)。
所述第一下拉维持电路50具体包括:一第七薄膜晶体管T51、一第八薄膜晶体管T52、一第九薄膜晶体管T53、一第十薄膜晶体管T54、一第十一薄膜晶体管T42和一第十二薄膜晶体管T32。所述第七薄膜晶体管T51的控制端和第一端输入一第一低频信号LC1,其第二端分别与所述第八薄膜晶体管T52的第一端和所述第九薄膜晶体管T53的控制端电性连接;所述第八薄膜晶体管T52的控制端与所述上拉控制信号点Q电性连接,用于输入所述上拉控制信号Q(n),其第二端输入所述直流低压信号Vss;所述第九薄膜晶体管T53的第一端输入所述第一低频信号LC1,其第二端通过第一信号点S分别与所述第十薄膜晶体管T54的第一端、所述第十一薄膜晶体管T42的控制端以及所述第十二薄膜晶体管T32的控制端电性连接;所述第十薄膜晶体管T54的控制端与所述上拉控制信号点Q电性连接,用于输入所述上拉控制信号Q(n),其第二端输入所述直流低压信号Vss;所述第十一薄膜晶体管T42的第一端输入所述直流低压信号Vss, 其第二端与所述上拉控制信号点Q电性连接,用于根据所述第一低频信号LC1和所述直流低压信号Vss将所述上拉控制信号Q(n)维持在关闭状态;所述第十二薄膜晶体管T32的第一端输入所述直流低压信号Vss,其第二端与所述水平扫描线G电性连接,用于根据所述第一低频信号LC1和所述直流低压信号Vss将所述第n级扫描驱动信号G(n)维持在关闭状态。
所述第二下拉维持电路60具体包括:一第十三薄膜晶体管T61、一第十四薄膜晶体管T62、一第十五薄膜晶体管T63、一第十六薄膜晶体管T64、一第十七薄膜晶体管T43和一第十八薄膜晶体管T33。所述第十三薄膜晶体管T61的控制端和第一端输入一第二低频信号LC2,其第二端分别与所述第十四薄膜晶体管T62的第一端和所述第十五薄膜晶体管T63的控制端电性连接;所述第十四薄膜晶体管T62的控制端与所述上拉控制信号点Q电性连接,用于输入所述上拉控制信号Q(n),其第二端输入所述直流低压信号Vss;所述第十五薄膜晶体管T63的第一端输入所述第二低频信号LC2,其第二端通过第二信号点N分别与所述第十六薄膜晶体管T64的第一端、第十七薄膜晶体管T43的控制端以及所述第十八薄膜晶体管T33的控制端电性连接;所述第十六薄膜晶体管T64的控制端与所述上拉控制信号点Q电性连接,用于输入所述上拉控制信号Q(n),其第二端输入所述直流低压信号Vss;所述第十七薄膜晶体管T43的第一端输入所述直流低压信号Vss,其第二端与所述上拉控制信号点Q电性连接,用于根据所述第二低频信号LC2和所述直流低压信号Vss将所述上拉控制信号Q(n)维持在关闭状态;所述第十八薄膜晶体管T33的第一端输入所述直流低压信号Vss,其第二端与所述水平扫描线G电性连接,用于根据所述第二低频信号LC2和所述直流低压信号Vss将所述第n级扫描驱动信号G(n)维持在关闭状态。
需要说明的是,在本发明的实施例中,所述上拉控制信号点Q通过一第三电容(Cb)与所述水平扫描线G电性连接。在本发明的实施例中,所述第三电容(Cb)为自举(Boast)电容。
还需要说明的是,在本发明的实施例中,所述第一低频信号LC1和所述第二低频信号LC2的信号周期为200倍帧周期,占空比为1/2,且所述第一低频信号LC1和所述第二低频信号LC2之间的相位差为1/2信号周期。
还需要说明的是,在本发明的实施例中,所述第一下拉维持电路50和所述 第二下拉维持电路60的工作点电位为所述上拉控制信号Q(n)低电位和所述第一低频信号LC1(或所述第二低频信号LC2)高电位。
请参见图3,图3为现有技术的GOA电路中输入输出信号的波形示意图。其中包括第一时钟信号CK1、上拉控制信号Q(n)和第n级扫描驱动信号G(n)。需要说明的是,本发明实施例所描述的现有技术的GOA电路是指不包括所述稳压电路30的GOA电路。从图3中可见,在现有技术的GOA电路中,当所述上拉控制信号Q(n)被拉低时,由于所述第三薄膜晶体管T21中寄生电容的存在,在所述第一时钟信号CK1输出高电位时,所述GOA电路会产生影响所述上拉控制信号Q(n)的干扰信号,从而产生影响所述上拉控制信号Q(n)的干扰信号。
请一并参见图1至图4,图4为图1和图2所示的GOA电路中输入输出信号的波形示意图。其中包括第一时钟信号CK1、第二时钟信号CK2、上拉控制信号Q(n)和第n级扫描驱动信号G(n)。如图4所示,所述第一时钟信号CK1和所述第二时钟信号CK2互为反相信号。此外,从图4中可见,当所述上拉控制信号Q(n)被拉低时,在所述稳压电路30的作用下,所述GOA电路100可以在不影响所述上拉控制信号Q(n)高电位的前提下,维持所述上拉控制信号Q(n)低电位的稳定性,从而可以提高所述第n级扫描驱动信号G(n)输出波形的稳定性,进而提高GOA电路100的驱动能力。
相应地,本发明实施例还提供了一种液晶显示装置,其包括上述图1和图2所示的GOA电路100。例如,该液晶显示装置可以包括但不限于具有液晶显示面板的手机(如Android手机、iOS手机等)、平板电脑、MID(Mobile Internet Devices,移动互联网设备)、PDA(Personal Digital Assistant,个人数字助理)、笔记本电脑、电视机、电子纸、数码相框等等。
相较于现有技术中上拉控制信号Q(n)时低电位的稳定性较差,本发明实施例通过在GOA电路100中增加一稳压电路30来维持上拉控制信号Q(n)低电压的稳定性,可以提高扫描驱动信号G(n)输出波形的稳定性,进而提高所述GOA电路100的驱动能力,从而提高液晶显示面板的充电率。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含在本发明的至少一个实施例或示例中。在本说明书中, 对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上对本发明实施例所提供的GOA电路及具有该GOA电路的液晶显示装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (18)

  1. 一种GOA电路,其中,包括多个级联的GOA单元,其中第n级GOA单元对液晶显示面板的显示区域第n级水平扫描线充电,所述第n级GOA单元包括上拉控制电路、上拉电路、稳压电路、下拉电路、第一下拉维持电路和第二下拉维持电路,其中,n为正整数;
    所述上拉控制电路接收一启动信号,并根据所述启动信号输出一上拉控制信号Q(n);
    所述上拉电路与所述上拉控制电路电性连接,接收所述上拉控制信号Q(n)和一第一时钟信号CK1,并根据所述上拉控制信号Q(n)和所述第一时钟信号CK1输出一第n级级传信号ST(n)和一第n级扫描驱动信号G(n);
    所述稳压电路与所述上拉控制电路和所述上拉电路电性连接,接收所述第n级扫描驱动信号G(n)和一第二时钟信号CK2,并根据所述第n级扫描驱动信号G(n)和所述第二时钟信号CK2维持所述上拉控制信号Q(n)低电位的稳定性;
    所述下拉电路与所述上拉控制电路、所述上拉电路以及所述稳压电路电性连接,接收一直流低压信号Vss,并根据所述直流低压信号Vss下拉所述上拉控制信号Q(n),进而下拉所述第n级扫描驱动信号G(n),以使所述上拉控制信号Q(n)和所述第n级扫描驱动信号G(n)处于关闭状态,并根据所述直流低压信号Vss输出一第n+1级扫描驱动信号G(n+1);
    所述第一下拉维持电路与所述上拉控制电路、所述上拉电路、所述稳压电路以及所述下拉电路电性连接,接收一第一低频信号LC1和所述直流低压信号Vss,并根据所述第一低频信号LC1和所述直流低压信号Vss将所述上拉控制信号Q(n)和所述第n级扫描驱动信号G(n)维持在关闭状态;
    所述第二下拉维持电路与所述上拉控制电路、所述上拉电路、所述稳压电路、所述下拉电路以及所述第一下拉维持电路电性连接,接收一第二低频信号LC2和所述直流低压信号Vss,并根据所述第二低频信号LC2和所述直流低压信号Vss将所述上拉控制信号Q(n)和所述第n级扫描驱动信号G(n)维持在关闭状态。
  2. 如权利要求1所述的GOA电路,其中,当n=1时,所述启动信号为一初始信号,所述上拉控制电路根据所述初始信号输出一上拉控制信号Q(n);当n>1时,所述启动信号为第n-1级GOA单元输出的第n-1级级传信号ST(n-1)和第n-1级扫描驱动信号G(n-1),所述上拉控制电路根据所述第n-1级级传信号ST(n-1)和所述第n-1级扫描驱动信号G(n-1)输出一上拉控制信号Q(n)。
  3. 如权利要求1所述的GOA电路,其中,所述第一下拉维持电路和所述第二下拉维持电路交替起作用将所述上拉控制信号Q(n)和所述第n级扫描驱动信号G(n)维持在关闭状态;所述第一时钟信号CK1与所述第二时钟信号CK2之间互为反相信号。
  4. 如权利要求2所述的GOA电路,其中,所述上拉控制电路包括:一第一薄膜晶体管(T11);其中,
    当n=1时,所述第一薄膜晶体管(T11)的控制端和第一端输入所述初始信号,其第二端与上拉控制信号点Q连接,用于根据所述初始信号输出所述上拉控制信号Q(n);
    当n>1时,所述第一薄膜晶体管(T11)的控制端输入所述第n-1级级传信号ST(n-1),其第一端输入所述第n-1级扫描驱动信号G(n-1),其第二端与所述上拉控制信号点Q连接,用于根据所述第n-1级级传信号ST(n-1)和所述第n-1级扫描驱动信号G(n-1)输出所述上拉控制信号Q(n)。
  5. 如权利要求4所述的GOA电路,其中,
    所述上拉电路包括:一第二薄膜晶体管(T22)和一第三薄膜晶体管(T21);所述第二薄膜晶体管(T22)的控制端与所述上拉控制信号点Q电性连接,用于接收所述上拉控制信号Q(n),其第一端输入所述第一时钟信号CK1,其第二端用于根据所述上拉控制信号Q(n)和所述第一时钟信号CK1输出所述第n级级传信号ST(n);所述第三薄膜晶体管(T21)的控制端与所述上拉控制信号点Q电性连接,用于接收所述上拉控制信号Q(n),其第一端输入所述第一时钟信号CK1,其第二端与水平扫描线G电性连接,用于根据所述上拉控制信号Q(n)和所述第 一时钟信号CK1输出所述第n级扫描驱动信号G(n);
    所述稳压电路包括:一第一电容(C1)和一第二电容(C2);所述第一电容(C1)的一端与所述上拉控制信号点Q电性连接,用于接收所述上拉控制信号Q(n),其另一端输入一第二时钟信号CK2;所述第二电容(C2)的一端与所述上拉控制信号点Q电性连接,用于接收所述上拉控制信号Q(n),其另一端与所述水平扫描线G电性连接;
    所述下拉电路包括:一第五薄膜晶体管(T41)和一第六薄膜晶体管(T31);所述第五薄膜晶体管(T41)的第一端输入所述直流低压信号Vss,其第二端与所述上拉控制信号点Q电性连接,用于根据所述直流低压信号Vss下拉所述上拉控制信号Q(n),以使所述上拉控制信号Q(n)处于关闭状态,其控制端与所述第六薄膜晶体管(T31)的控制端电性连接,用于根据所述直流低压信号Vss输出第n+1级扫描驱动信号G(n+1);所述第六薄膜晶体管(T31)的第一端输入所述直流低压信号Vss,其第二端与所述水平扫描线G电性连接,用于根据所述直流低压信号Vss下拉所述第n级扫描驱动信号G(n),以使所述第n级扫描驱动信号G(n)处于关闭状态。
  6. 如权利要求5所述的GOA电路,其中,
    所述第一下拉维持电路包括:一第七薄膜晶体管(T51)、一第八薄膜晶体管(T52)、一第九薄膜晶体管(T53)、一第十薄膜晶体管(T54)、一第十一薄膜晶体管(T42)和一第十二薄膜晶体管(T32);所述第七薄膜晶体管(T51)的控制端和第一端输入所述第一低频信号LC1,其第二端分别与所述第八薄膜晶体管(T52)的第一端和所述第九薄膜晶体管(T53)的控制端电性连接;所述第八薄膜晶体管(T52)的控制端与所述上拉控制信号点Q电性连接,用于输入所述上拉控制信号Q(n),其第二端输入所述直流低压信号Vss;所述第九薄膜晶体管(T53)的第一端输入所述第一低频信号LC1,其第二端分别与所述第十薄膜晶体管(T54)的第一端、所述第十一薄膜晶体管(T42)的控制端以及所述第十二薄膜晶体管(T32)的控制端电性连接;所述第十薄膜晶体管(T54)的控制端与所述上拉控制信号点Q电性连接,用于输入所述上拉控制信号Q(n),其第二端输入所述直流低压信号Vss;所述第十一薄膜晶体管(T42)的第一端输入所述直流低压信号 Vss,其第二端与所述上拉控制信号点Q电性连接,用于根据所述第一低频信号LC1和所述直流低压信号Vss将所述上拉控制信号Q(n)维持在关闭状态;所述第十二薄膜晶体管(T32)的第一端输入所述直流低压信号Vss,其第二端与所述水平扫描线G电性连接,用于根据所述第一低频信号LC1和所述直流低压信号Vss将所述第n级扫描驱动信号G(n)维持在关闭状态;
    所述第二下拉维持电路包括:一第十三薄膜晶体管(T61)、一第十四薄膜晶体管(T62)、一第十五薄膜晶体管(T63)、一第十六薄膜晶体管(T64)、一第十七薄膜晶体管(T43)和一第十八薄膜晶体管(T33);所述第十三薄膜晶体管(T61)的控制端和第一端输入所述第二低频信号LC2,其第二端分别与所述第十四薄膜晶体管(T62)的第一端和所述第十五薄膜晶体管(T63)的控制端电性连接;所述第十四薄膜晶体管(T62)的控制端与所述上拉控制信号点Q电性连接,用于输入所述上拉控制信号Q(n),其第二端输入所述直流低压信号Vss;所述第十五薄膜晶体管(T63)的第一端输入所述第二低频信号LC2,其第二端与所述第十六薄膜晶体管(T64)的第一端、第十七薄膜晶体管(T43)的控制端以及所述第十八薄膜晶体管(T33)的控制端电性连接;所述第十六薄膜晶体管(T64)的控制端与所述上拉控制信号点Q电性连接,用于输入所述上拉控制信号Q(n),其第二端输入所述直流低压信号Vss;所述第十七薄膜晶体管(T43)的第一端输入所述直流低压信号Vss,其第二端与所述上拉控制信号点Q电性连接,用于根据所述第二低频信号LC2和所述直流低压信号Vss将所述上拉控制信号Q(n)维持在关闭状态;所述第十八薄膜晶体管(T33)的第一端输入所述直流低压信号Vss,其第二端与所述水平扫描线G电性连接,用于根据所述第二低频信号LC2和所述直流低压信号Vss将所述第n级扫描驱动信号G(n)维持在关闭状态。
  7. 如权利要求6所述的GOA电路,其中,所述上拉控制信号点Q通过一第三电容(Cb)与所述水平扫描线G电性连接,所述第三电容(Cb)为自举电容。
  8. 如权利要求1所述的GOA电路,其中,所述第一低频信号LC1和所述第二低频信号LC2的信号周期为200倍帧周期,占空比为1/2,且所述第一低频信号LC1和所述第二低频信号LC2之间的相位差为1/2信号周期。
  9. 如权利要求6所述的GOA电路,其中,所述第一下拉维持电路和所述第二下拉维持电路的工作点电位为所述上拉控制信号Q(n)低电位和所述第一低频信号LC1高电位以及所述上拉控制信号Q(n)低电位和所述第二低频信号LC2高电位。
  10. 一种液晶显示装置,其中,包括GOA电路,所述GOA电路包括多个级联的GOA单元,其中第n级GOA单元对液晶显示面板的显示区域第n级水平扫描线充电,所述第n级GOA单元包括上拉控制电路、上拉电路、稳压电路、下拉电路、第一下拉维持电路和第二下拉维持电路,其中,n为正整数;
    所述上拉控制电路接收一启动信号,并根据所述启动信号输出一上拉控制信号Q(n);
    所述上拉电路与所述上拉控制电路电性连接,接收所述上拉控制信号Q(n)和一第一时钟信号CK1,并根据所述上拉控制信号Q(n)和所述第一时钟信号CK1输出一第n级级传信号ST(n)和一第n级扫描驱动信号G(n);
    所述稳压电路与所述上拉控制电路和所述上拉电路电性连接,接收所述第n级扫描驱动信号G(n)和一第二时钟信号CK2,并根据所述第n级扫描驱动信号G(n)和所述第二时钟信号CK2维持所述上拉控制信号Q(n)低电位的稳定性;
    所述下拉电路与所述上拉控制电路、所述上拉电路以及所述稳压电路电性连接,接收一直流低压信号Vss,并根据所述直流低压信号Vss下拉所述上拉控制信号Q(n),进而下拉所述第n级扫描驱动信号G(n),以使所述上拉控制信号Q(n)和所述第n级扫描驱动信号G(n)处于关闭状态,并根据所述直流低压信号Vss输出一第n+1级扫描驱动信号G(n+1);
    所述第一下拉维持电路与所述上拉控制电路、所述上拉电路、所述稳压电路以及所述下拉电路电性连接,接收一第一低频信号LC1和所述直流低压信号Vss,并根据所述第一低频信号LC1和所述直流低压信号Vss将所述上拉控制信号Q(n)和所述第n级扫描驱动信号G(n)维持在关闭状态;
    所述第二下拉维持电路与所述上拉控制电路、所述上拉电路、所述稳压电路、所述下拉电路以及所述第一下拉维持电路电性连接,接收一第二低频信号 LC2和所述直流低压信号Vss,并根据所述第二低频信号LC2和所述直流低压信号Vss将所述上拉控制信号Q(n)和所述第n级扫描驱动信号G(n)维持在关闭状态。
  11. 如权利要求10所述的液晶显示装置,其中,当n=1时,所述启动信号为一初始信号,所述上拉控制电路根据所述初始信号输出一上拉控制信号Q(n);当n>1时,所述启动信号为第n-1级GOA单元输出的第n-1级级传信号ST(n-1)和第n-1级扫描驱动信号G(n-1),所述上拉控制电路根据所述第n-1级级传信号ST(n-1)和所述第n-1级扫描驱动信号G(n-1)输出一上拉控制信号Q(n)。
  12. 如权利要求10所述的液晶显示装置,其中,所述第一下拉维持电路和所述第二下拉维持电路交替起作用将所述上拉控制信号Q(n)和所述第n级扫描驱动信号G(n)维持在关闭状态;所述第一时钟信号CK1与所述第二时钟信号CK2之间互为反相信号。
  13. 如权利要求11所述的液晶显示装置,其中,所述上拉控制电路包括:一第一薄膜晶体管(T11);其中,
    当n=1时,所述第一薄膜晶体管(T11)的控制端和第一端输入所述初始信号,其第二端与上拉控制信号点Q连接,用于根据所述初始信号输出所述上拉控制信号Q(n);
    当n>1时,所述第一薄膜晶体管(T11)的控制端输入所述第n-1级级传信号ST(n-1),其第一端输入所述第n-1级扫描驱动信号G(n-1),其第二端与所述上拉控制信号点Q连接,用于根据所述第n-1级级传信号ST(n-1)和所述第n-1级扫描驱动信号G(n-1)输出所述上拉控制信号Q(n)。
  14. 如权利要求13所述的液晶显示装置,其中,
    所述上拉电路包括:一第二薄膜晶体管(T22)和一第三薄膜晶体管(T21);所述第二薄膜晶体管(T22)的控制端与所述上拉控制信号点Q电性连接,用于接收所述上拉控制信号Q(n),其第一端输入所述第一时钟信号CK1,其第二端用 于根据所述上拉控制信号Q(n)和所述第一时钟信号CK1输出所述第n级级传信号ST(n);所述第三薄膜晶体管(T21)的控制端与所述上拉控制信号点Q电性连接,用于接收所述上拉控制信号Q(n),其第一端输入所述第一时钟信号CK1,其第二端与水平扫描线G电性连接,用于根据所述上拉控制信号Q(n)和所述第一时钟信号CK1输出所述第n级扫描驱动信号G(n);
    所述稳压电路包括:一第一电容(C1)和一第二电容(C2);所述第一电容(C1)的一端与所述上拉控制信号点Q电性连接,用于接收所述上拉控制信号Q(n),其另一端输入一第二时钟信号CK2;所述第二电容(C2)的一端与所述上拉控制信号点Q电性连接,用于接收所述上拉控制信号Q(n),其另一端与所述水平扫描线G电性连接;
    所述下拉电路包括:一第五薄膜晶体管(T41)和一第六薄膜晶体管(T31);所述第五薄膜晶体管(T41)的第一端输入所述直流低压信号Vss,其第二端与所述上拉控制信号点Q电性连接,用于根据所述直流低压信号Vss下拉所述上拉控制信号Q(n),以使所述上拉控制信号Q(n)处于关闭状态,其控制端与所述第六薄膜晶体管(T31)的控制端电性连接,用于根据所述直流低压信号Vss输出第n+1级扫描驱动信号G(n+1);所述第六薄膜晶体管(T31)的第一端输入所述直流低压信号Vss,其第二端与所述水平扫描线G电性连接,用于根据所述直流低压信号Vss下拉所述第n级扫描驱动信号G(n),以使所述第n级扫描驱动信号G(n)处于关闭状态。
  15. 如权利要求14所述的液晶显示装置,其中,
    所述第一下拉维持电路包括:一第七薄膜晶体管(T51)、一第八薄膜晶体管(T52)、一第九薄膜晶体管(T53)、一第十薄膜晶体管(T54)、一第十一薄膜晶体管(T42)和一第十二薄膜晶体管(T32);所述第七薄膜晶体管(T51)的控制端和第一端输入所述第一低频信号LC1,其第二端分别与所述第八薄膜晶体管(T52)的第一端和所述第九薄膜晶体管(T53)的控制端电性连接;所述第八薄膜晶体管(T52)的控制端与所述上拉控制信号点Q电性连接,用于输入所述上拉控制信号Q(n),其第二端输入所述直流低压信号Vss;所述第九薄膜晶体管(T53)的第一端输入所述第一低频信号LC1,其第二端分别与所述第十薄膜晶体管(T54) 的第一端、所述第十一薄膜晶体管(T42)的控制端以及所述第十二薄膜晶体管(T32)的控制端电性连接;所述第十薄膜晶体管(T54)的控制端与所述上拉控制信号点Q电性连接,用于输入所述上拉控制信号Q(n),其第二端输入所述直流低压信号Vss;所述第十一薄膜晶体管(T42)的第一端输入所述直流低压信号Vss,其第二端与所述上拉控制信号点Q电性连接,用于根据所述第一低频信号LC1和所述直流低压信号Vss将所述上拉控制信号Q(n)维持在关闭状态;所述第十二薄膜晶体管(T32)的第一端输入所述直流低压信号Vss,其第二端与所述水平扫描线G电性连接,用于根据所述第一低频信号LC1和所述直流低压信号Vss将所述第n级扫描驱动信号G(n)维持在关闭状态;
    所述第二下拉维持电路包括:一第十三薄膜晶体管(T61)、一第十四薄膜晶体管(T62)、一第十五薄膜晶体管(T63)、一第十六薄膜晶体管(T64)、一第十七薄膜晶体管(T43)和一第十八薄膜晶体管(T33);所述第十三薄膜晶体管(T61)的控制端和第一端输入所述第二低频信号LC2,其第二端分别与所述第十四薄膜晶体管(T62)的第一端和所述第十五薄膜晶体管(T63)的控制端电性连接;所述第十四薄膜晶体管(T62)的控制端与所述上拉控制信号点Q电性连接,用于输入所述上拉控制信号Q(n),其第二端输入所述直流低压信号Vss;所述第十五薄膜晶体管(T63)的第一端输入所述第二低频信号LC2,其第二端与所述第十六薄膜晶体管(T64)的第一端、第十七薄膜晶体管(T43)的控制端以及所述第十八薄膜晶体管(T33)的控制端电性连接;所述第十六薄膜晶体管(T64)的控制端与所述上拉控制信号点Q电性连接,用于输入所述上拉控制信号Q(n),其第二端输入所述直流低压信号Vss;所述第十七薄膜晶体管(T43)的第一端输入所述直流低压信号Vss,其第二端与所述上拉控制信号点Q电性连接,用于根据所述第二低频信号LC2和所述直流低压信号Vss将所述上拉控制信号Q(n)维持在关闭状态;所述第十八薄膜晶体管(T33)的第一端输入所述直流低压信号Vss,其第二端与所述水平扫描线G电性连接,用于根据所述第二低频信号LC2和所述直流低压信号Vss将所述第n级扫描驱动信号G(n)维持在关闭状态。
  16. 如权利要求15所述的液晶显示装置,其中,所述上拉控制信号点Q通过一第三电容(Cb)与所述水平扫描线G电性连接,所述第三电容(Cb)为自举电容。
  17. 如权利要求10所述的液晶显示装置,其中,所述第一低频信号LC1和所述第二低频信号LC2的信号周期为200倍帧周期,占空比为1/2,且所述第一低频信号LC1和所述第二低频信号LC2之间的相位差为1/2信号周期。
  18. 如权利要求15所述的液晶显示装置,其中,所述第一下拉维持电路和所述第二下拉维持电路的工作点电位为所述上拉控制信号Q(n)低电位和所述第一低频信号LC1高电位以及所述上拉控制信号Q(n)低电位和所述第二低频信号LC2高电位。
PCT/CN2018/103475 2018-07-23 2018-08-31 Goa电路及具有该goa电路的液晶显示装置 WO2020019407A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/096,006 US10957270B1 (en) 2018-07-23 2018-08-31 GOA circuit and liquid crystal display device having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810811705.X 2018-07-23
CN201810811705.XA CN108962166A (zh) 2018-07-23 2018-07-23 Goa电路及具有该goa电路的液晶显示装置

Publications (1)

Publication Number Publication Date
WO2020019407A1 true WO2020019407A1 (zh) 2020-01-30

Family

ID=64464266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103475 WO2020019407A1 (zh) 2018-07-23 2018-08-31 Goa电路及具有该goa电路的液晶显示装置

Country Status (3)

Country Link
US (1) US10957270B1 (zh)
CN (1) CN108962166A (zh)
WO (1) WO2020019407A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114743482A (zh) * 2022-03-28 2022-07-12 Tcl华星光电技术有限公司 基于goa的显示面板

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110111715B (zh) * 2019-04-22 2023-02-28 深圳市华星光电半导体显示技术有限公司 Goa电路及显示面板
CN110047438B (zh) * 2019-04-29 2020-09-01 深圳市华星光电技术有限公司 Goa电路
CN110223648B (zh) * 2019-05-09 2020-07-10 深圳市华星光电半导体显示技术有限公司 用于显示屏的驱动电路
CN111477157B (zh) * 2020-05-15 2021-10-08 武汉华星光电技术有限公司 显示驱动电路
US11250765B2 (en) 2020-06-15 2022-02-15 Wuhan China Star Optoelectronics Technology Co., Ltd. Display driving circuit
CN112838109A (zh) * 2020-08-28 2021-05-25 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置
TWI746343B (zh) * 2021-01-06 2021-11-11 友達光電股份有限公司 閘極驅動電路
TWI780760B (zh) * 2021-06-10 2022-10-11 友達光電股份有限公司 影像顯示器及其驅動電路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110150169A1 (en) * 2009-12-22 2011-06-23 Au Optronics Corp. Shift register
CN105390115A (zh) * 2015-12-24 2016-03-09 深圳市华星光电技术有限公司 液晶显示设备及goa电路
CN106710550A (zh) * 2016-12-30 2017-05-24 深圳市华星光电技术有限公司 一种用于大尺寸面板的goa级联电路
CN206322458U (zh) * 2016-10-31 2017-07-11 合肥鑫晟光电科技有限公司 移位寄存器、显示装置
CN107909980A (zh) * 2017-12-27 2018-04-13 深圳市华星光电技术有限公司 Goa电路及具有该goa电路的液晶显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6919874B1 (en) * 1994-05-17 2005-07-19 Thales Avionics Lcd S.A. Shift register using M.I.S. transistors and supplementary column
TWI404036B (zh) * 2009-06-04 2013-08-01 Au Optronics Corp 液晶顯示器
CN103050106B (zh) * 2012-12-26 2015-02-11 京东方科技集团股份有限公司 栅极驱动电路、显示模组和显示器
CN104008742B (zh) * 2014-05-20 2016-06-29 深圳市华星光电技术有限公司 一种扫描驱动电路及一种液晶显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110150169A1 (en) * 2009-12-22 2011-06-23 Au Optronics Corp. Shift register
CN105390115A (zh) * 2015-12-24 2016-03-09 深圳市华星光电技术有限公司 液晶显示设备及goa电路
CN206322458U (zh) * 2016-10-31 2017-07-11 合肥鑫晟光电科技有限公司 移位寄存器、显示装置
CN106710550A (zh) * 2016-12-30 2017-05-24 深圳市华星光电技术有限公司 一种用于大尺寸面板的goa级联电路
CN107909980A (zh) * 2017-12-27 2018-04-13 深圳市华星光电技术有限公司 Goa电路及具有该goa电路的液晶显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114743482A (zh) * 2022-03-28 2022-07-12 Tcl华星光电技术有限公司 基于goa的显示面板

Also Published As

Publication number Publication date
US20210090516A1 (en) 2021-03-25
US10957270B1 (en) 2021-03-23
CN108962166A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
WO2020019407A1 (zh) Goa电路及具有该goa电路的液晶显示装置
CN107909980B (zh) Goa电路及具有该goa电路的液晶显示装置
WO2020019443A1 (zh) Goa电路及具有该goa电路的液晶显示装置
WO2016106830A1 (zh) 一种goa电路及液晶显示装置
WO2020019442A1 (zh) Goa电路及具有该goa电路的液晶显示装置
CN105957480B (zh) 栅极驱动电路及液晶显示装置
US8049704B2 (en) Liquid crystal display device
WO2016173017A1 (zh) 具有正反向扫描功能的goa电路
WO2018120330A1 (zh) 栅极驱动电路以及液晶显示装置
WO2020019433A1 (zh) 包括goa电路的液晶面板及其驱动方法
CN107358931B (zh) Goa电路
WO2020113767A1 (zh) Goa电路及显示面板
WO2018014381A1 (zh) Goa电路及液晶显示器
CN107331360B (zh) Goa电路及液晶显示装置
CN104700801B (zh) Pmos栅极驱动电路
CN107689221B (zh) Goa电路
WO2021203471A1 (zh) 显示面板和电子设备
WO2020155453A1 (zh) 显示驱动电路及显示装置
WO2021168965A1 (zh) Goa 电路及显示面板
CN107610668A (zh) 一种goa电路及液晶面板、显示装置
CN111627404B (zh) 一种goa电路、显示面板和显示装置
WO2020140321A1 (zh) Goa扫描电路和液晶显示装置
US10386663B2 (en) GOA circuit and liquid crystal display device
WO2021196283A1 (zh) Goa 电路及显示面板
WO2020228188A1 (zh) Goa电路及液晶显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927830

Country of ref document: EP

Kind code of ref document: A1