WO2020017075A1 - 検出装置、シートベルト、及び監視システム - Google Patents

検出装置、シートベルト、及び監視システム Download PDF

Info

Publication number
WO2020017075A1
WO2020017075A1 PCT/JP2019/001102 JP2019001102W WO2020017075A1 WO 2020017075 A1 WO2020017075 A1 WO 2020017075A1 JP 2019001102 W JP2019001102 W JP 2019001102W WO 2020017075 A1 WO2020017075 A1 WO 2020017075A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
positive electrode
detection device
negative electrode
electric field
Prior art date
Application number
PCT/JP2019/001102
Other languages
English (en)
French (fr)
Inventor
吾 根武谷
Original Assignee
Posh Wellness Laboratory株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posh Wellness Laboratory株式会社 filed Critical Posh Wellness Laboratory株式会社
Priority to EP19837292.2A priority Critical patent/EP3824807A4/en
Priority to JP2020530880A priority patent/JP7153364B2/ja
Priority to CN201980060125.4A priority patent/CN112714627A/zh
Priority to CN201980060127.3A priority patent/CN112689766A/zh
Priority to JP2020531385A priority patent/JPWO2020017636A1/ja
Priority to EP19837341.7A priority patent/EP3825704A4/en
Priority to PCT/JP2019/028462 priority patent/WO2020017636A1/ja
Publication of WO2020017075A1 publication Critical patent/WO2020017075A1/ja
Priority to US17/150,596 priority patent/US11453362B2/en
Priority to US17/150,608 priority patent/US20210236009A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/48Control systems, alarms, or interlock systems, for the correct application of the belt or harness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0809Detecting, measuring or recording devices for evaluating the respiratory organs by impedance pneumography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/256Wearable electrodes, e.g. having straps or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6893Cars
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/28Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/12Measuring electrostatic fields or voltage-potential
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0295Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/48Control systems, alarms, or interlock systems, for the correct application of the belt or harness
    • B60R2022/4808Sensing means arrangements therefor
    • B60R2022/485Sensing means arrangements therefor for sensing belt anchor position, belt orientation, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/12Construction of belts or harnesses

Definitions

  • the present invention relates to a detection device, a seat belt, and a monitoring system for detecting a state of a living body.
  • Patent Literature 1 discloses a driver monitoring device that can monitor the state of a driver of an automobile by applying a technique of electric impedance tomography (hereinafter, EIT (Electrical Impedance Tomography)) to a seat belt. ing.
  • EIT Electric Impedance Tomography
  • each electrode is connected to a measurement circuit provided near the end of the seat belt, and the measurement circuit relays an electric signal transmitted and received between the driver monitoring device and the electrode. .
  • the seat belt has a long shape and a length of about 3 m, noise is easily superimposed while an electric signal is transmitted between the electrode and the measurement circuit, and the measurement accuracy is reduced. There was a problem that it would. In order to accurately monitor the health condition of the driver while driving, there is a further problem that more precise measurement is required, and reduction of noise has become an urgent problem in order to cope with this problem.
  • an object of the present invention is to provide a detection device, a seatbelt, and a monitoring system that can improve the detection accuracy of the state of a living body.
  • the first aspect of the present invention is a detection device for detecting a motion of a human body.
  • the detection device is provided on the base material having flexibility, the base material, and an electrical element whose electrical characteristics change according to the movement of the human body, provided on the base material, A semiconductor element that detects a change in electrical characteristics of the electric element and outputs a detection value corresponding to the detected result.
  • the detection device has a plurality of the electric elements and a plurality of the semiconductor elements corresponding to the plurality of electric elements, and the plurality of semiconductor elements each correspond to another semiconductor element. It may be provided at a position closer to the electric element corresponding to itself.
  • the plurality of distances between each of the plurality of semiconductor elements and the electric element corresponding to each semiconductor element may be the same.
  • Each of the plurality of semiconductor elements may transmit digital data indicating the detection value via the same serial signal line.
  • the electric element may include a curvature sensor whose impedance changes according to the curvature of the base material, and the semiconductor element may detect an impedance of the curvature sensor and output a value of the detected impedance.
  • a plurality of the curvature sensors may be provided at different positions in the longitudinal direction of the base material in different directions.
  • the semiconductor element may output an electric field intensity detection value corresponding to an electric field intensity generated between the positive electrode and the negative electrode.
  • the negative electrode is smaller than the positive electrode, and the positive electrode and the negative electrode are formed on the base material such that a projection surface of the negative electrode in a thickness direction of the base material is included in a contour of the positive electrode. It may be provided.
  • the positive electrode may surround the negative electrode in a region other than a position where a wiring connecting the negative electrode and the semiconductor element is provided.
  • a guard electrode provided on the opposite side of the positive electrode and the negative electrode with respect to the base material, and a potential adjustment circuit for setting the potential of the guard electrode to the same potential as the negative electrode; Is also good.
  • the plurality of positive electrodes, the plurality of negative electrodes, and the electric field strength detection value corresponding to the strength of the electric field generated between any of the plurality of positive electrodes and any of the plurality of negative electrodes are output.
  • a plurality of the semiconductor elements, one positive electrode selected from the plurality of positive electrodes, and the electric field strength detection value corresponding to the strength of an electric field generated between one negative electrode selected from the plurality of negative electrodes And a control unit that controls the plurality of semiconductor elements so as to obtain the following.
  • a curvature sensor whose impedance changes according to the curvature of the base material, a positive electrode provided on the base material, a negative electrode different from the positive electrode, and the positive electrode and the negative electrode
  • An electric field generating unit that generates an electric field between the semiconductor device and the semiconductor device, in which the processing of detecting the intensity of the electric field generated between the positive electrode and the negative electrode and the processing of detecting the impedance are time-division May be executed while switching.
  • the curvature sensor may be provided on at least one of the positive electrode and the negative electrode.
  • the detection device a mounting unit for mounting the detection device to a seat belt mounted on a vehicle, a communication unit that wirelessly transmits data indicating an electric field strength detection value output by the semiconductor element to an external device, May be further provided.
  • the second aspect of the present invention is a seat belt mounted on a vehicle.
  • the seat belt includes a belt-shaped front side belt, a back side belt connected to the front side belt, and a detection device provided between the front side belt and the back side belt, and the detection device is flexible.
  • a base element provided on the base material, an electrical element whose electrical characteristics change in accordance with the movement of a person wearing the seat belt, and provided on the base material, A semiconductor element that detects a change in electrical characteristics and outputs a detection value corresponding to the detection result.
  • a third aspect of the present invention is a monitoring system.
  • the monitoring system includes a detection device that detects a state of a person wearing a seat belt mounted on a vehicle, and a monitoring device that controls the vehicle based on the state of the person detected by the detection device.
  • the detection device is provided on the base material having flexibility, an electric element provided on the base material, and having an electrical characteristic that changes in accordance with the movement of the person, and provided on the base material.
  • a semiconductor element that detects a change in electrical characteristics of the electric element and outputs a detection value corresponding to the detection result, and transmits a signal including the detection value output by the semiconductor element to the monitoring device. And a transmitting unit.
  • FIG. 3 is a diagram illustrating a configuration of a detection IC.
  • FIG. 4 is a diagram illustrating an intensity distribution of an electric field generated around a positive electrode and a negative electrode.
  • FIG. 3 is a diagram illustrating a configuration of a relay circuit. It is a figure showing composition of the 1st modification of an electrode.
  • FIG. 3 is a diagram illustrating a detailed configuration of a positive electrode and a negative electrode. It is a figure which shows the current density distribution which arises around a positive electrode and a negative electrode.
  • FIG. 4 is a diagram for describing a method in which a CPU controls a region where an electric field is generated.
  • FIG. 4 is a diagram illustrating another example of the flexible substrate according to the present embodiment. It is a figure which shows the shape of a curvature sensor typically.
  • FIG. 3 is a diagram illustrating a configuration of a detection IC.
  • FIG. 7 is a diagram illustrating a relationship between a change amount of ⁇ Z1 and a potential difference V1-V2.
  • FIG. 4 is a diagram illustrating a relationship between the impedance of a curvature sensor and the shape of a flexible substrate. It is a figure showing the modification of the arrangement direction of a plurality of curvature sensors. It is a figure showing composition of a modification of a mounting position of a curvature sensor. It is a figure showing typically the example of composition of the detecting device concerning a 2nd embodiment. It is CC sectional drawing of a detection apparatus. It is a schematic diagram which shows the structure of a detection apparatus. It is a figure showing composition of a detecting device as a modification.
  • FIG. 1 is a diagram for explaining an overview of the monitoring system S.
  • the monitoring system S is a system for monitoring the state of a person riding a car such as a driver and an occupant, and includes a seat belt 100 and a monitoring device 200.
  • the monitoring system S generates an electric field by the electrode pair E provided on the seat belt 100 and measures a potential difference between a plurality of electrodes included in the electrode pair E while the electric field is being generated. Identify the physical condition of the person.
  • a case where a person riding a car is a driver will be described as an example. However, the embodiment described in this specification is applied to a case where a person other than the driver wears the seat belt 100. Also applicable to
  • FIG. 2 is a schematic diagram showing the shape of the seat belt 100.
  • FIG. 2A is a plan view of the seat belt 100
  • FIG. 2B is a cross-sectional view of the seat belt 100 taken along line AA.
  • the seat belt 100 includes a belt-shaped front side belt 101, a back side belt 102 connected to the front side belt 101, and the detection device 1 provided between the front side belt 101 and the back side belt 102.
  • the detection device 1 is a sheet-like device that detects the intensity of an electric field near the driver's body.
  • the detection device 1 has a plurality of electrode pairs E (E1 to E8 in FIG. 1) provided on a flexible substrate 10, which is an example of a flexible base material, for generating an electric field.
  • the electrode pair E is an example of an electric element whose electric characteristics change according to the movement of a person wearing the seat belt 100.
  • the impedance near the electrode pair E changes according to the movement of the person wearing the seat belt 100 based on the state of the body such as breathing or heartbeat.
  • the state of the electric field generated by the electrode pair E changes, and the potential difference between the plurality of electrodes forming the electrode pair E changes.
  • a detection IC which is a semiconductor element for detecting a change in the electrical characteristics of the electrode pair E is provided.
  • the detection IC outputs a detection value indicating a change in the intensity of the electric field near the electrode pair E, for example, by detecting a change in impedance between the plurality of electrodes forming the electrode pair E.
  • the detection device 1 outputs to the monitoring device 200 an electric field strength detection value indicating a value corresponding to the electric field strength detected by the detection IC.
  • the electric field strength detection value is not limited to the value of the electric field strength itself, and may be any value as long as it changes according to the electric field strength, such as an impedance value or a combination of a current value and a resistance value. Can be used.
  • the detection device 1 may output a signal processed or processed based on the intensity of the electric field to the monitoring device 200.
  • the monitoring device 200 is, for example, an ECU (Engine Control Unit) having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the monitoring device 200 can identify the state of the driver's body by analyzing the electric field strength detection value input from the detection device 1.
  • the monitoring device 200 for example, based on the value of the potential difference between the positive electrode 11 and the negative electrode 12 acquired as a detected electric field strength value and the value of the current flowing through the positive electrode 11, By calculating the impedance between the two, the state of the driver's body is specified.
  • Monitoring device 200 controls the vehicle based on the specified physical condition. For example, when the monitoring device 200 specifies that the driver's heartbeat has stopped, the monitoring device 200 controls to stop the engine of the vehicle.
  • the monitoring device 200 may store the detected electric field strength value in the storage medium in association with the time.
  • FIG. 3 is a diagram schematically illustrating the configuration of the detection device 1.
  • FIG. 3A is a perspective view of the detection device 1
  • FIG. 3B is a cross-sectional view of the detection device 1 taken along line BB.
  • the detection device 1 has a flexible board 10 and a relay board 20. One end of the flexible board 10 is fixed to the relay board 20.
  • the relay board 20 is, for example, a printed board, and is connected to the monitoring device 200 via a cable.
  • the relay board 20 is housed under the seat together with the monitoring device 200, for example.
  • the flexible substrate 10 includes a plurality of positive electrodes 11 (positive electrodes 11a to 11c in FIG. 3), a plurality of negative electrodes 12 (negative electrodes 12a to 12c in FIG. 3), and a plurality of detection ICs 13 ( In FIG. 3, the detection ICs 13a to 13c are mounted.
  • the positive electrode 11a and the negative electrode 12a, the positive electrode 11b and the negative electrode 12b, and the positive electrode 11c and the negative electrode 12c each form an electrode pair E.
  • the detection IC 13 is provided at a position adjacent to the corresponding positive electrode 11 and the corresponding negative electrode 12 in the longitudinal direction of the seat belt 100, but the detection IC 13 is provided at another position. It may be.
  • the detection IC 13 may be provided, for example, at a position adjacent to the electrode pair E including the positive electrode 11 and the negative electrode 12 corresponding to the detection IC 13 in the short direction of the seat belt 100.
  • the flexible substrate 10 is provided with a plurality of detection ICs 13 corresponding to each of the plurality of electrode pairs E.
  • the detection IC 13 is a semiconductor element that outputs an electric field intensity detection value corresponding to the intensity of the electric field generated between the positive electrode 11 and the negative electrode 12 included in the corresponding electrode pair E.
  • the detection IC 13 outputs, for example, a value of a potential difference between the positive electrode 11 and the negative electrode 12 and a value of a current flowing through the positive electrode 11 as the electric field strength detection value.
  • FIG. 4 is a diagram showing a configuration of the detection IC 13.
  • the detection IC 13 includes an electric field generation unit 131, a voltage detection circuit 132, an A / D converter 133, and a serial communication circuit 134.
  • the electric field generator 131 generates an electric field between the positive electrode 11 and the negative electrode 12 by supplying a weak current to the positive electrode 11 based on the electric power supplied from the relay board 20.
  • the electric field generator 131 determines the timing of supplying a weak current and the current value based on the control data received from the relay board 20, for example.
  • the voltage detection circuit 132 detects a potential difference between the positive electrode 11 and the negative electrode 12 while the electric field generator 131 supplies a weak current to the positive electrode 11.
  • the potential difference between the positive electrode 11 and the negative electrode 12 has a magnitude corresponding to the strength of the electric field, and the greater the potential difference, the greater the strength of the electric field.
  • the voltage detection circuit 132 inputs a signal of a voltage corresponding to a potential difference between the positive electrode 11 and the negative electrode 12 to the A / D converter 133.
  • the A / D converter 133 converts an analog signal input from the voltage detection circuit 132 into digital data. That is, the A / D converter 133 generates digital data corresponding to the voltage value of the signal output by the voltage detection circuit 132.
  • the A / D converter 133 inputs the generated digital data to the serial communication circuit 134.
  • the serial communication circuit 134 receives the digital signal input from the A / D converter 133 in a format defined by a communication method such as SPI (Serial Peripheral Interface) or I2C (Inter-Integrated Circuit) (I2C is a registered trademark).
  • the data (voltage data) is transmitted to the relay board 20.
  • FIG. 5 is a diagram showing an intensity distribution of an electric field generated around the positive electrode 11 and the negative electrode 12.
  • the electric field strength in the dark color area is larger than the electric field strength in the light color area. It can be seen that a strong electric field region is generated between the positive electrode 11 and the negative electrode 12 by the electric field generating section 131 supplying a weak current to the positive electrode 11.
  • the detection device 1 When the detection device 1 is mounted on the driver, the driver's chest is displaced by the driver's breathing and heartbeat. Further, the magnitude of the current flowing through the body changes in synchronization with a change in impedance of blood flow due to a heartbeat or a change in impedance of a lung due to respiration. As a result, the electric field generated between the positive electrode 11 and the negative electrode 12 changes according to the driver's breathing and heartbeat. When the electric field changes, the potential difference between the positive electrode 11 and the negative electrode 12 changes.
  • the monitoring device 200 specifies the driver's respiratory and heartbeat states based on the change in the potential difference between the positive electrode 11 and the negative electrode 12 detected by the voltage detection circuit 132, and determines whether or not abnormalities have occurred. Can be monitored.
  • Each of the plurality of detection ICs 13 is provided at a position closer to the electrode pair E corresponding to itself than the electrode pair E corresponding to the other detection ICs 13.
  • the plurality of distances between each of the plurality of detection ICs 13 and the electrode pair E corresponding to each of the detection ICs 13 are the same. That is, in a plurality of sets of the detection IC 13 and the electrode pair E, the distance between the detection IC 13 and the electrode pair E (a set of a positive electrode and a negative electrode) corresponding to the detection IC 13 is constant.
  • the distance is, for example, a distance between the center position of the detection IC 13 and an intermediate position between the center position of the positive electrode 11 and the center position of the negative electrode 12 included in the electrode pair E.
  • the detection device 1 can detect a change in the electric field with high accuracy regardless of the position even in the long seat belt 100.
  • a power supply pattern 14 for supplying power to each of the plurality of detection ICs 13 and a signal pattern 15 for transmitting data output from each of the plurality of detection ICs to the relay board 20 are formed on the flexible substrate 10. .
  • the surfaces of the power supply pattern 14 and the signal pattern 15 are covered with an insulating resin layer.
  • Each of the plurality of detection ICs 13 transmits digital data indicating the electric field strength detection value to the relay board 20 in a time division manner via the signal pattern 15 which is the same serial signal line.
  • the signal pattern 15 is, for example, a serial signal line that can transmit digital data by an SPI or I2C serial communication method.
  • Each of the plurality of detection ICs 13 transmits digital data including the electric field strength detection value to the relay board 20 at a timing at which, for example, a command in which its own address is specified from the relay board 20 is received.
  • the plurality of detection ICs 13 measure the potential difference between the positive electrode 11 and the negative electrode 12 at the same timing, for example, based on a control signal input from the relay board 20. Each of the plurality of detection ICs 13 temporarily holds the electric field strength detection value indicating the measured potential difference until the time when the detection IC 13 itself transmits the electric field strength detection value.
  • the digital data including the detected value is transmitted to the monitoring device 200 via the relay board 20. By doing so, the monitoring device 200 can simultaneously specify the driver's body state near a plurality of different positions on the seat belt 100 at each measurement timing.
  • the relay circuit 21 is mounted on the relay board 20.
  • the relay circuit 21 supplies power to each of the plurality of detection ICs 13 via the power supply pattern 14. Further, the relay circuit 21 receives the digital data transmitted from each of the plurality of detection ICs 13 via the signal pattern 15 and transfers the received digital data to the monitoring device 200.
  • FIG. 6 is a diagram showing a configuration of the relay circuit 21.
  • the relay circuit 21 includes a power supply unit 211, a serial communication unit 212, a CPU 213, a storage unit 214, and a communication unit 215.
  • the power supply unit 211 generates power for operating the plurality of detection ICs 13, and starts power supply to the plurality of detection ICs 13 based on the control of the CPU 213.
  • the serial communication unit 212 has a communication controller for transmitting and receiving digital data in a time-division multiplexed manner with a plurality of detection ICs 13 in a format defined by a communication method such as SPI or I2C.
  • the serial communication unit 212 transmits control data for controlling each of the plurality of detection ICs 13. Further, the serial communication unit 212 receives digital data indicating a voltage value detected by each of the plurality of detection ICs 13.
  • the serial communication unit 212 notifies the CPU 213 of the digital data received from the detection IC 13 in association with the identification information for identifying each detection IC 13.
  • the CPU 213 causes the communication unit 215 to temporarily store digital data received from the detection IC 13 via the serial communication unit 212.
  • the CPU 213 transmits the temporarily stored digital data to the monitoring device 200 via the communication unit 215.
  • the storage unit 214 has, for example, a ROM and a RAM, and stores the digital data received by the CPU 213 from the detection IC 13.
  • the storage unit 214 also stores a program executed by the CPU 213.
  • the communication unit 215 transmits the digital data stored in the storage unit 214 to the monitoring device 200 based on an instruction from the CPU 213. Further, the communication unit 215 receives control data from the monitoring device 200 and notifies the CPU 213 of the received control data.
  • the communication unit 215 transmits and receives data to and from the monitoring device 200 via, for example, a USB (Universal Serial Bus).
  • the communication unit 215 may transmit and receive data to and from the monitoring device 200 via a wireless channel such as Bluetooth (registered trademark). Further, the monitoring device 200 may transmit the measurement data to a data storage / analysis device such as a cloud server via a mobile communication network or the like.
  • FIG. 7 is a diagram illustrating a configuration of a first modification of the electrode.
  • the detection device 1 shown in FIG. 7 has a positive electrode 31 and a negative electrode 32 instead of the positive electrode 11 and the negative electrode 12 shown in FIG.
  • the negative electrode 32 is surrounded by the positive electrode 31.
  • the negative electrode 32 is smaller than the positive electrode 31, and the positive electrode 31 and the negative electrode 32 are such that the projection surface of the negative electrode 32 in the thickness direction of the flexible substrate 10 is included in the contour of the positive electrode 31. Is provided on the flexible substrate 10.
  • FIG. 8 is a diagram showing a detailed configuration of the positive electrode 31 and the negative electrode 32.
  • FIG. 8A is a plan view of the positive electrode 31 and the negative electrode 32
  • FIG. 8B is a sectional view taken along the line BB.
  • the positive electrode 31 shown in FIG. 8 has a square outline and a square void area inside which the negative electrode 32 can be accommodated, but the contour shape of the positive electrode 31 and the shape of the internal void area are arbitrary. .
  • FIG. 9 is a diagram showing a current density distribution generated around the positive electrode 31 and the negative electrode 32.
  • the current density distribution is proportional to the intensity distribution of the electric field generated around the positive electrode 31 and the negative electrode 32.
  • the current density in the dark color region is higher than the current density in the light color region. It can be seen that a strong electric field region is generated between the positive electrode 31 and the negative electrode 32 when the electric field generating unit 131 supplies a weak current to the positive electrode 31. Since the positive electrode 31 and the negative electrode 32 are configured as shown in FIG. 7, it is possible to detect a change in the electric field in a narrower range than the configuration shown in FIG. It should be noted that the positional relationship between the positive electrode 31 and the negative electrode 32 may be reversed, that is, the negative electrode 32 may surround the positive electrode 31.
  • FIG. 10 is a diagram showing a state in which the impedance between the positive electrode 31 and the negative electrode 32 changes when the positive electrode 31 and the negative electrode 32 shown in FIG.
  • the contour shape of the used positive electrode 31 was a square having a side of 40 mm.
  • FIG. 10 shows a change in impedance synchronized with the heartbeat (a in FIG. 10) and a change in impedance synchronized with respiration (b in FIG. 10). It can also be confirmed that when deep breathing is performed, the amount of change in impedance is large (c in FIG. 10), and while the breathing is stopped, the amount of change in impedance is small (d in FIG. 10).
  • the detection IC 13 is provided at a position adjacent to the corresponding positive electrode 31 in the longitudinal direction of the seat belt 100, but the detection IC 13 may be provided at another position. Good.
  • the detection IC 13 may be provided at a position adjacent to the positive electrode 31 corresponding to the detection IC 13 in the short direction of the seat belt 100, for example.
  • the detection IC 13 may be provided on the back surface of the positive electrode 31 or the negative electrode 32 via a shield surface or the like. When the detection IC 13 is provided at such a position, the positive electrode 31 can be arranged at a high density, so that the resolution of the detection device 1 can be improved.
  • FIG. 11 is a diagram illustrating a configuration of a second modification of the electrode.
  • FIG. 11A is a plan view of the positive electrode 33 and the negative electrode 32 according to the present modification
  • FIG. 11B is a view of the positive electrode 33 and the negative electrode 32 from the direction of D.
  • the positive electrode 33 surrounds the negative electrode 32 in a region other than the position where the wiring 34 connecting the negative electrode 32 and the detection IC 13 is provided.
  • the positive electrode 33 is not provided at the position where the wiring 34 is provided, and the wiring 34 does not overlap with the positive electrode 33.
  • the detection device 1 can suppress the loss of energy, so that the measurement accuracy of the potential difference between the negative electrode 32 and the positive electrode 33 is improved. Can be done.
  • FIG. 12 is a diagram showing a configuration of a third modification of the electrode.
  • FIG. 12A is a plan view of the positive electrode 35 and the negative electrode 32 according to this modification
  • FIG. 12B is a cross-sectional view taken along the line EE.
  • the shape of the positive electrode 35 is square, and the negative electrode 32 is provided above the positive electrode 35 with the insulating member 36 interposed therebetween. With such a configuration, an electric field equivalent to that of the positive electrode 31 and the negative electrode 32 shown in FIG. 8 can be generated.
  • the detection device 1 may further include a guard electrode provided on the opposite side of the flexible substrate 10 from the positive electrode and the negative electrode.
  • the detection IC 13 has a potential adjustment circuit that makes the potential of the guard electrode the same as the potential of the negative electrode.
  • FIG. 13 is a diagram showing a configuration example in which a guard electrode is provided.
  • FIG. 13A shows an example of an electrode pair E in which a guard electrode 37 is provided on the opposite side of the flexible substrate 10 shown in FIG.
  • the guard electrode 37 is connected to a potential adjusting circuit constituted by an operational amplifier 135.
  • the potential adjusting circuit in the example shown in FIG. 13A is a voltage follower. Since the positive electrode 11 is connected to the positive input terminal of the operational amplifier 135 and the guard electrode 37 is connected to the output terminal of the operational amplifier 135, the potential of the guard electrode 37 is equal to the potential of the positive electrode 11. .
  • the detection device 1 is configured such that the guard electrode provided on the side opposite to the negative electrode 12 with respect to the flexible substrate 10 and the potential of the guard electrode is equal to the potential of the negative electrode 12. And a potential adjustment circuit for performing the adjustment.
  • FIG. 13B shows an example in which a guard electrode 37a and a guard electrode 37b are provided on the flexible substrate 10 on opposite sides of the positive electrode 31 and the negative electrode 32 shown in FIG.
  • FIG. 13C shows an example in which a guard electrode 37c is provided on the flexible substrate 10 on the side opposite to the positive electrode 35 shown in FIG.
  • a guard electrode 37d is provided between the positive electrode 35 and the negative electrode 32 via an insulator 36a and an insulator 36b.
  • the detection device 1 has a potential adjustment circuit for making the potential of the guard electrode 37 a equal to the potential of the positive electrode 31, and the potential of the guard electrode 37 b is negative.
  • a potential adjusting circuit for equalizing the potential of the electrode 32 and a potential adjusting circuit for equalizing the potential of the guard electrode 37c to the potential of the positive electrode 35 may be provided.
  • the shape of the electrode is not limited to a square or a rectangle, but may be a circle, an ellipse, or a polygon other than a square and a rectangle.
  • a shield layer (ground potential layer) may be provided on at least one of the back surfaces of the positive electrode 31, the negative electrode 32, and the guard electrode 37.
  • an insulating member may be provided below the guard electrode 37 (that is, a side far from the flexible substrate 10), and the shield layer may be provided below the insulating member. That is, in this case, the configuration is such that an insulating member is provided between the guard electrode 37 and the shield layer. With such a configuration, the electric field intensity on the positive electrode 11, the positive electrode 31, or the positive electrode 35 side is further increased.
  • the monitoring system S can control a region in which an electric field is generated by controlling which electrode of the plurality of electrodes provided in the detection device 1 is supplied with current. Specifically, for example, based on an instruction from the monitoring device 200, the CPU 213 generates an electric field generated between one positive electrode selected from a plurality of positive electrodes and one negative electrode selected from a plurality of negative electrodes. And functions as a control unit that controls the plurality of detection ICs 13 so as to obtain the electric field intensity detection value corresponding to the intensity of the detection IC. The plurality of detection ICs 13 output electric field strength detection values corresponding to the strength of the electric field generated between any of the plurality of positive electrodes and any of the plurality of negative electrodes.
  • FIG. 14 is a diagram for explaining a method in which the CPU 213 controls a region where an electric field is generated.
  • a weak current flows in a white region among the positive electrode 31a, the positive electrode 31b, and the positive electrode 31c, and a hatched region among the positive electrode 31a, the positive electrode 31b, and the positive electrode 31c is set to the ground potential, No weak current is flowing.
  • FIG. 14A since a weak current flows through each of the positive electrode 31a, the positive electrode 31b, and the positive electrode 31c, the space between the positive electrode 31a and the negative electrode 32a, and between the positive electrode 31b and the negative electrode 32b. Between the positive electrode 31c and the negative electrode 32c, an electric field as shown in FIG. 9 is generated.
  • the detection IC 13a, the detection IC 13b, and the detection IC 13c can change the region in which the electric field is generated by switching the electrodes through which the current flows based on the control signal received from the CPU 213.
  • the region where the electric field is generated by the monitoring system S the displacement state of the human body can be measured using various electric field generation states, so that substantial measurement resolution can be improved.
  • FIG. 15 is a diagram illustrating another example of the flexible substrate 10 according to the present embodiment.
  • the flexible substrate 10 illustrated in FIG. 15 further includes a plurality of shape sensor units 17 (a shape sensor unit 17a, a shape sensor unit 17b, a shape sensor unit 17c, and a shape sensor unit 17d). And different.
  • the shape sensor unit 17 includes a curvature sensor 171 (also referred to as a strain gauge) whose impedance changes according to the curvature of the flexible substrate 10 at a position where the shape sensor unit 17 is provided.
  • a curvature sensor 171 also referred to as a strain gauge
  • FIG. 16 is a diagram schematically showing the shape of the curvature sensor 171.
  • the curvature sensor 171 has a conductive wiring having a plurality of portions in the X direction and a plurality of portions in the Y direction.
  • the length of each part in the Y direction is larger than the length of each part in the X direction, and the wiring is formed in a comb shape.
  • FIG. 16B is a symbol indicating the curvature sensor 171 shown in FIG.
  • the arrow shown in FIG. 16B corresponds to the Y direction in FIG. 16A, that is, the direction in which the wiring is long.
  • FIG. 16C is a schematic diagram illustrating a state where a plurality of curvature sensors 171 are arranged on the flexible substrate 10.
  • a curvature sensor 171a, a curvature sensor 171b, a curvature sensor 171c, and a curvature sensor 171d are arranged at equal intervals.
  • the impedance change of each of the plurality of shape sensor units 17 A plurality of detection ICs 16 each having a circuit for detecting a potential difference generated therewith are provided. Each of the plurality of detection ICs 16 transmits digital data indicating the impedance to the relay board 20 via the same serial signal line.
  • FIG. 17 is a diagram showing a configuration of the detection IC 16.
  • the detection IC 16 includes an impedance detection unit 161 and an A / D converter 162 in addition to the electric field generation unit 131, the voltage detection circuit 132, the A / D converter 133, and the serial communication circuit 134 included in the detection IC 13. And a serial communication circuit 163.
  • the impedance detection unit 161 detects the impedance of the curvature sensor 171. Specifically, the impedance detector 161 calculates the impedance of the curvature sensor 171 and inputs the calculated impedance to the A / D converter 162.
  • the A / D converter 162 converts an analog signal corresponding to the input impedance into digital data, and inputs the digital data to the serial communication circuit 163.
  • the serial communication circuit 163 has a function equivalent to that of the serial communication circuit 134 and transmits digital data (impedance data) input from the A / D converter 162 via a serial communication line such as SPI or I2C. .
  • the monitoring device 200 further determines the driver's body based on the electric field strength detection value output from the detection IC 16 and the impedance of the curvature sensor 171 output from the detection IC 16. Identify the state. Because the shape of the chest slightly changes due to breathing or heartbeat, identifying the driver's body state by changing the curvature of the shape sensor unit 17 may be affected by changes in the electric field due to external electric devices and the like. It is suitable when there is.
  • the detection sensitivity of the body state due to the change in the curvature of the shape sensor unit 17 is often lower than that of the electric field intensity detection method, it is advantageous in a case where a bad influence by applying an electric field such as a pacemaker wearer is concerned. Effects are expected.
  • the monitoring apparatus 200 may use the electric field strength to specify the body state.
  • the detection value and the impedance may not be used.
  • the monitoring device 200 needs to stop the vehicle when the plurality of body states do not match, or when one of them indicates an abnormality in the body state, in order to enhance the safety of the vehicle traveling. May be determined.
  • FIG. 17 shows an example in which the detection IC 16 has the serial communication circuit 134 and the serial communication circuit 163.
  • the detection IC 16 does not have the serial communication circuit 163, and the A / D converter 162 Digital data indicating the impedance may be input to the serial communication circuit 134.
  • the serial communication circuit 134 multiplexes digital data indicating the potential difference input from the A / D converter 133 and digital data indicating the impedance input from the A / D converter 162, and transmits the multiplexed data.
  • the A / D converter 133 and the A / D converter 162 are used so that the monitoring device 200 can specify the potential difference between the positive electrode 11 and the negative electrode 12 detected at the same timing and the impedance of the shape sensor unit 17. May obtain an analog signal indicating a potential difference and an analog signal indicating impedance based on the same sampling clock. Further, the serial communication circuit 134 may transmit digital data indicating the potential difference and digital data indicating the impedance sampled at a change point of the sampling clock at the same timing in association with each other. The serial communication circuit 134 transmits, for example, digital data indicating a potential difference and digital data indicating an impedance as continuous 2-byte data.
  • FIG. 18 is a diagram showing the configuration of the shape sensor unit 17 and the impedance detection unit 161.
  • the impedance detection unit 161 has a power supply unit 164 and a calculation unit 165.
  • the power supply unit 164 functions as a power supply that supplies power to the shape sensor unit 17.
  • the shape sensor unit 17 includes a resistor R1 connected in parallel with the curvature sensor 171 between the power supply and the reference potential, and a resistor R1 provided in parallel with the resistor R1 and the curvature sensor 171. R2 and a resistor R3.
  • the arithmetic unit 165 acquires a first potential V1 between the resistor R1 and the curvature sensor 171 and a second potential V2 between the resistor R2 and the resistor R3 when power is supplied to the shape sensor unit 17. Then, the impedance of the curvature sensor 171 is calculated based on the acquired first potential V1 and second potential V2.
  • V1 ⁇ V2 Vcc ⁇ ((Z1 / (R1 + Z1)) ⁇ (R3 / (R2 + R3))) (1) If Vcc, R1, R2, and R3 are known, the calculation unit 165 can calculate the impedance of the curvature sensor 171 by using the relationship of Expression (1).
  • the shape sensor unit 17 has a curvature sensor 171a instead of R3 in FIG. 18A.
  • the curvature sensor 171a is provided, for example, on the opposite side of the flexible substrate 10 from the curvature sensor 171.
  • the impedance of the curvature sensor 171a is Z2
  • the relationship represented by the following equation (2) holds.
  • V1 ⁇ V2 Vcc ⁇ ((Z1 / (R1 + Z1)) ⁇ (Z2 / (R2 + Z2)))... (2)
  • V1 ⁇ V2 Vcc ⁇ (((Z1 + ⁇ Z1) / (R + (Z1 + ⁇ Z1))) ⁇ ((Z1 ⁇ Z1) / (R + (Z1 ⁇ Z1)))) ⁇ ⁇ (3)
  • equation (1) can be modified as follows.
  • V1 ⁇ V2 Vcc ⁇ (((Z1 + ⁇ Z1) / (R1 + (Z1 + ⁇ Z1))) ⁇ (R3 / (R2 + R3)))) (4)
  • FIG. 19 is a diagram showing the relationship between the amount of change in ⁇ Z1 and the potential difference V1-V2.
  • the solid line in FIG. 19 shows the case where the curvature sensor 171 and the curvature sensor 171a are used, and the broken line shows the case where only the curvature sensor 171 is used.
  • Equation (3) using the curvature sensor 171 and the curvature sensor 171a has twice the amount of change in the potential difference V1-V2 with respect to the amount of change in ⁇ Z1 compared to the case of Equation (4) using only the curvature sensor 171. You can see that it is getting bigger. That is, the impedance change ⁇ Z1 can be measured and calculated as a double change.
  • FIG. 20 is a diagram illustrating the relationship between the impedance of the curvature sensor 171 and the shape of the flexible substrate 10.
  • the horizontal axis in FIG. 20A indicates the position of each of the plurality of curvature sensors 171, and the vertical axis indicates the impedance.
  • a black circle ( ⁇ ) in FIG. 20A indicates the impedance when the curvature sensor 171 is not deformed.
  • a white triangle ( ⁇ ) in FIG. 20A indicates the impedance when each of the curvature sensors 171 is deformed with the same curvature.
  • FIG. 20B is a schematic diagram of the shape of the flexible substrate 10 when the plurality of curvature sensors 171 have an impedance indicated by ⁇ in FIG. 20A.
  • FIG. 20C is a schematic diagram of the shape of the flexible substrate 10 when the plurality of curvature sensors 171 have the impedance indicated by ⁇ in FIG. 20A.
  • the monitoring device 200 can specify the shape of the flexible substrate 10 based on the impedance values of the plurality of curvature sensors 171 received via the relay circuit 21 by using such a relationship between the impedance and the curvature. it can.
  • Each of the plurality of detection ICs 16 performs a process of detecting the intensity of the electric field generated between the positive electrode and the negative electrode (the positive electrode 11 and the negative electrode 12 in the example of FIG. 17) and a process of detecting the impedance. It may be executed while switching in time division. Specifically, while the detection IC 16 is generating an electric field between the positive electrode and the negative electrode, the impedance detection unit 161 does not measure the impedance of the curvature sensor 171 and the voltage detection circuit 132 The potential difference between the electrode and the negative electrode is measured.
  • the detection IC 16 while no electric field is generated between the positive electrode and the negative electrode, the voltage detection circuit 132 does not measure the potential difference, and the impedance detection unit 161 measures the impedance of the curvature sensor 171. As described above, since the detection IC 16 performs the electric field strength detection processing and the impedance detection processing in a time-division manner, while one detection processing is being performed, the other does not have an electrical influence on the other. Is improved.
  • FIG. 21 is a diagram illustrating a modification of the arrangement direction of the plurality of curvature sensors 171.
  • the detection device 1 illustrated in FIG. 21 includes a plurality of curvature sensors 171 provided at different positions in the longitudinal direction of the flexible substrate 10 in different directions. More specifically, the flexible substrate 10 shown in FIG. 21 has a curvature sensor 171 in which the Y direction, which is the direction in which the wiring is long, coincides with the short direction of the flexible substrate 10, and the Y direction coincides with the longitudinal direction of the flexible substrate 10. And the curvature sensors 171 are sequentially arranged one by one.
  • the curvature sensor 171a, the curvature sensor 171c, and the curvature sensor 171e are provided so that the Y direction coincides with the short direction of the flexible substrate 10, and the curvature sensor 171b, the curvature sensor 171d, and the curvature sensor 171f are provided. Are provided so that the Y direction coincides with the longitudinal direction of the flexible substrate 10.
  • the curvature sensor 171a, the curvature sensor 171c, and the curvature sensor 171e change their impedance when the flexible substrate 10 is deformed in the short direction of the flexible substrate 10, and the curvature sensor 171b, the curvature sensor 171d, and the curvature sensor 171f When the flexible substrate 10 is deformed in the longitudinal direction, the impedance changes. Therefore, the monitoring device 200 can specify various deformation states at the position where each of the plurality of curvature sensors 171 is provided, based on the impedance of each of the plurality of curvature sensors 171.
  • FIG. 22 is a diagram illustrating a configuration of a modification of the mounting position of the curvature sensor 171.
  • the curvature sensor 171 is mounted on the positive electrode 33. Since the curvature sensor 171 is mounted on either the positive electrode or the negative electrode, the mounting density of the electrode pair and the curvature sensor 171 can be increased, so that the measurement resolution can be improved.
  • the detection device 1 has the relay board 20 and the data is transmitted and received by the serial communication between the detection IC 13 and the relay board 20 is illustrated. It is not necessary to have.
  • the detection IC 13 directly transmits the electric field strength detection value to the monitoring device 200 using a serial communication method such as SPI or I2C.
  • the monitoring device 200 detects the plurality of electric field strength detection values output by the plurality of detection ICs 13 corresponding to the plurality of electrode pairs E provided on both surfaces of the flexible substrate 10 at the same position in the longitudinal direction of the seat belt 100. To determine the electric field strength at the same location. By doing so, the monitoring device 200 can appropriately identify the driver's state even when the driver wears the seat belt 100 face down.
  • the monitoring device 200 determines, for example, that the electric field intensity detection value output by the detection IC 13 provided on the side closer to the driver and the other detection IC 13
  • the common mode noise component included in the output electric field strength detection value may be removed. Since the influence of noise can be reduced by the above configuration, the monitoring device 200 can improve the accuracy of specifying the driver's state.
  • the detection device 1 is provided on the flexible substrate 10 and the electric field generating unit 131 that generates an electric field between the positive electrode and the negative electrode, and is generated between the positive electrode and the negative electrode. And a detection IC 13 that outputs a detected electric field strength value corresponding to the electric field strength to the monitoring device 200.
  • the detection IC 13 specifies the detection value corresponding to the electric field strength, so that even when the distance between the electrode pair E including the positive electrode and the negative electrode and the monitoring device 200 is large, the influence of the line resistance is not affected. , The measurement error of the potential difference between the positive electrode and the negative electrode can be reduced.
  • the plurality of detection ICs 13 corresponding to the plurality of electrode pairs E transmit the electric field strength detection value to the relay board 20 via the same serial communication signal line. Therefore, even when the detection device 1 has a large number of electrode pairs E, the number of wirings to the monitoring device 200 can be reduced, and the density at which the electrode pairs E are provided in the seat belt 100 having a limited area is reduced. Can be enhanced. As a result, the detection device 1 can increase the resolution when detecting the electric field strength.
  • ⁇ Second embodiment> [Detection device that can be worn on seat belt]
  • the positive electrode 11 and the negative electrode 12 are provided on the seat belt 100.
  • the positive electrode and the negative electrode are provided on the detection device 2 that is detachable from the seat belt. It differs from the first embodiment in that it is provided.
  • FIG. 23 is a diagram schematically illustrating a configuration example of the detection device 2 according to the second embodiment.
  • FIG. 23A is a plan view of the detection device 2 before the detection device 2 is attached to the seat belt 110.
  • FIG. The detection device 2 has a first area 41 and a second area 42.
  • the first area 41 is an area provided with electrodes, sensors, and semiconductor elements for detecting the state of the driver's body.
  • FIG. 24 is a cross-sectional view taken along the line FF of the detection device 2 in the state shown in FIG.
  • FIG. 25 is a schematic diagram illustrating a configuration of the detection device 2.
  • the detection device 2 includes, for example, the flexible substrate 10 and the relay substrate 50 provided in the first area 41.
  • the flexible substrate 10 is equivalent to the flexible substrate 10 shown in the first embodiment, and may have a positive electrode 11, a negative electrode 12, and a detection IC 13 as shown in FIG. 3, and as shown in FIG. It may have a positive electrode 31, a negative electrode 32, and a detection IC 13, and may have a positive electrode 31, a negative electrode 32, a detection IC 16, and a shape sensor 17 as shown in FIG.
  • the detection IC 13 and the detection IC 16 transmit digital data including a measured value indicating the electric field intensity or a measured value indicating the shape to the relay board 50 by a serial communication method such as SPI or I2C.
  • the relay board 50 transfers the digital data received from the flexible board 10 to the monitoring device 200, similarly to the relay board 20. Since the detection device 2 is detachably provided on the seat belt 110, the relay board 50 desirably transmits digital data to the monitoring device 200 using a wireless channel such as Bluetooth. Therefore, the relay board 50 has a relay circuit 51 that converts digital data received from the flexible board 10 into wireless data.
  • the relay circuit 51 has the same configuration as the relay circuit 21 shown in FIG. 6, but has a wireless communication function in which the communication unit 215 wirelessly transmits data indicating the electric field strength detection value output from the detection IC 13 to an external device. It differs from the relay circuit 21 in that it has
  • the relay board 50 can supply power to the elements provided on the flexible board 10.
  • a battery 52 is provided on the relay board 50.
  • the battery 52 is, for example, a rechargeable secondary battery.
  • the relay board 50 may include a wireless charging circuit.
  • the first area 41 and the second area 42 are provided with connecting parts 43a and 43b such as a hook-and-loop fastener or a button for connecting the first area 41 and the second area 42.
  • the coupling portions 43a and 43b function as attachment portions for attaching the detection device 2 to the seat belt 110.
  • a user such as a driver or a staff member of a company where the driver works, bends the detection device 2 so as to sandwich the seat belt 110 between the first region 41 and the second region 42, and connects the detection device 2 with the coupling portions 43a and 43b.
  • the displacement of the body can be quantitatively detected by adding a sensor such as an acceleration sensor or a gyro sensor to the relay board 50 or the like.
  • the electrode pair E is provided so as to generate an electric field on the driver's body side. That is, the electrode pair E is provided so as to be located on the side opposite to the side of the second region 42 with respect to the flexible substrate 10 in a state where the detection device 2 is bent. Further, as illustrated in FIG. 24, the detection device 2 may include a cover portion 44 that covers the flexible substrate 10 so that the flexible substrate 10 is not visible.
  • the configuration in which the flexible substrate 10 and the relay substrate 50 are provided in the first region 41 is illustrated, but the flexible substrate 10 and the relay substrate 50 are provided in the first region 41 and the second region 42, respectively. May be provided.
  • the monitoring system S determines whether the driver wears the detection device 2 on the seat belt 110 or the surface on which the driver wears the seat belt 110 regardless of the direction in which the driver wears the detection belt 2. The condition can be monitored.
  • the monitoring device 200 may not be fixed to the vehicle and may be portable by the driver. Further, the monitoring device 200 may transmit the data received from the relay board 50 to another device (for example, a computer).
  • another device for example, a computer
  • a mark for positioning is attached to the seat belt 110. It may be.
  • the alignment mark is, for example, a mark that enables the detection device 2 to be attached so that the center position of the detection device 2 matches the center position of the chest of the person when the person wears the seat belt 110. It is.
  • the alignment mark is provided at a position separated from the tip of the seat belt 110 by a predetermined distance.
  • the predetermined distance is, for example, a distance from the front end of the seat belt 110 to the center position of the chest in a state where the average person wears the seat belt 110, and is half the length in the longitudinal direction of the detection device 2. This is the distance added or subtracted.
  • the seat belt 110 may be provided with a coupling member for coupling with the detection device 2 at a predetermined position together with or instead of the mark.
  • the coupling member is, for example, a snap button that couples with a snap button provided on the detection device 2 or a surface fastener that couples with a surface fastener provided on the detection device 2.
  • the detection device 2 is configured to be detachable from the seat belt 110, and when the driver wears the seat belt 110 in a state where the detection device 2 is worn on the seat belt 110, the detection device 2 Can be transmitted to the monitoring device 200. Since the detection device 2 is configured to be detachable from the seat belt 110 in this manner, the monitoring system S attaches the detection device 2 to the seat belt 110 even in a vehicle in which the detection device 1 is not provided. This makes it possible to monitor the state of the driver.
  • the detection device provided with the electrode pair E that generates an electric field as an electric element whose electric characteristics change in accordance with the movement of the human body has been illustrated, but the detection device does not include the electrode pair E. You may.
  • the detecting device is provided with, as an electric element, for example, a curvature sensor whose impedance changes according to the curvature of the base material.
  • the detection IC as a semiconductor element detects the impedance of the curvature sensor and outputs a value of the detected impedance.
  • FIG. 26 is a diagram showing a configuration of a detection device 3 as a modification.
  • the detection device 3 includes a flexible substrate 10 as a base material, and a plurality of curvature sensors 171 (curvature sensors 171a to 171c in FIG. 26) provided on the flexible substrate 10.
  • the plurality of curvature sensors 171 are provided at different positions in the longitudinal direction of the flexible substrate 10. In the plurality of curvature sensors 171, for example, adjacent curvature sensors 171 are provided in directions different from each other.
  • the impedance of the curvature sensor 171 changes according to the curvature. Therefore, the impedance of the curvature sensor 171 changes as the curvature of the flexible substrate 10 changes according to the movement of a person.
  • a detection IC 16 (in FIG. 26, detection ICs 16a to 16c) that detects the impedance of the curvature sensor 171 and outputs a detection value corresponding to the detection result is provided near each of the plurality of curvature sensors 171.
  • the impedance of the curvature sensor 171 can be detected with high accuracy. And can detect minute movements such as human breathing or heartbeat.
  • the detection device 3 has the relay board 20 similarly to the detection device 1 shown in FIG. Further, a power supply pattern 14 and a signal pattern 15 are formed on the flexible substrate 10 in the same manner as the flexible substrate 10 shown in FIG.
  • the flexible substrate 10 is exemplified as the base material, but another member may be used as the base material.
  • the substrate may be a cloth-like member made of fibers.
  • the base material is a cloth-like member in which non-conductive fibers and conductive fibers that transmit an electric signal are knitted, and the conductive fibers are used as the power supply pattern 14 and the signal pattern 15.
  • the electrode pair E a conductive fiber woven in a base material in a rectangular shape may be used as the electrode pair E.
  • a part of the non-conductive fiber may be made of a fiber that functions as a curvature sensor whose impedance changes according to the curvature.
  • the fiber functioning as the curvature sensor is configured, for example, as a fiber in which a conductive fiber is spirally wound around a linear polymer.
  • the detection IC may be provided on the cloth-like member, or the detection IC may not be provided.
  • the cloth-like member made of fiber is used as the base material, and the fiber constituting the cloth-like member functions as a curvature sensor, so that the thickness of the detection device can be reduced.
  • the case where the flexible board 10 and the relay board 20 and the relay board 50 are separate boards is illustrated, but the relay board 20 and the relay board 50 are integrated with the flexible board 10,
  • the components mounted on the relay board 20 and the relay board 50 may be mounted on the flexible board 10.
  • the components mounted on the flexible board 10 may be mounted on the relay boards 20 and 50.
  • the present invention has been described using the embodiment.
  • the technical scope of the present invention is not limited to the scope described in the above embodiment, and various modifications and changes can be made within the scope of the gist. is there.
  • the specific embodiment of the dispersion / integration of the apparatus is not limited to the above-described embodiment, and all or a part of the apparatus may be functionally or physically dispersed / integrated in an arbitrary unit. Can be.
  • new embodiments that are generated by arbitrary combinations of the plurality of embodiments are also included in the embodiments of the present invention. The effect of the new embodiment caused by the combination has the effect of the original embodiment.
  • the detection device is provided on the seat belt to specify the state of the driver's body is illustrated, but the configuration and use of the detection device are not limited thereto.
  • INDUSTRIAL APPLICABILITY The present invention can be applied to any type of detection device that can be worn on a human body.
  • the positive electrode, the negative electrode, the shape sensor, and various wirings are not limited to the above embodiments.
  • the positive electrode, the negative electrode, the shape sensor, and various wirings can be made of, for example, conductive fibers.
  • the detection device may include one electrode pair and one detection IC 13 that detects a change in an electric field generated by the electrode pair. Further, the detection device may include one curvature sensor 171 and one detection IC 16 that detects a change in voltage or current by the curvature sensor 171.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Pulmonology (AREA)
  • Textile Engineering (AREA)
  • Psychiatry (AREA)
  • Educational Technology (AREA)
  • Social Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Automotive Seat Belt Assembly (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

検出装置は、人体の動きを検出する装置である。検出装置は、可撓性を有する基材と、基材に設けられており、人体の動きに応じて電気的特性が変化する電気素子と、基材に設けられており、電気素子の電気的特性の変化を検出し、検出した結果に対応する検出値を出力する半導体素子と、を有する。基材は、例えばフレキシブル基板又は導電性繊維を含む布状の部材である。

Description

検出装置、シートベルト、及び監視システム
 本発明は、生体の状態を検出するための検出装置、シートベルト、及び監視システムに関する。
 従来、体表面上に貼付した電極対から微弱電流を流すとともに、体表面上に生じた電位差から、生体内の導電率分布又は導電率変化の分布を画像化する技術が知られている。特許文献1には、電気インピーダンストモグラフィ(以下、EIT(Electrical Impedance Tomography))の技術をシートベルトに適用することにより、自動車の運転手の状態を監視することができる運転手監視装置が開示されている。
特開2017-136304号公報
 従来の技術においては、各電極が、シートベルトの端部付近に設けられた測定回路に接続されており、運転手監視装置と電極との間で送受信する電気信号を測定回路が中継していた。ところが、シートベルトは長尺形状をしており、約3mの長さであるので、電極と測定回路との間で電気信号が伝送される間にノイズが重畳されやすく、測定精度が低下してしまうという問題があった。運転中の運転者の健康状態を正確にモニターするためには、より精密な測定をしたいというさらなる課題もあり、この課題に対応するためにはノイズの低減は喫緊の課題になっている。
 そこで、本発明はこれらの点に鑑みてなされたものであり、生体の状態の検出精度を向上させることができる検出装置、シートベルト、及び監視システムを提供することを目的とする。
 本発明の第1の態様は、人体の動きを検出する検出装置である。当該検出装置は、可撓性を有する基材と、前記基材に設けられており、前記人体の動きに応じて電気的特性が変化する電気素子と、前記基材に設けられており、前記電気素子の電気的特性の変化を検出し、検出した結果に対応する検出値を出力する半導体素子と、を有する。
 前記検出装置は、複数の前記電気素子と、前記複数の電気素子に対応する複数の前記半導体素子と、を有し、複数の前記半導体素子のそれぞれが、他の半導体素子に対応する前記電気素子よりも自身に対応する前記電気素子に近い位置に設けられていてもよい。
 前記複数の半導体素子のそれぞれと、それぞれの半導体素子に対応する前記電気素子との間の複数の距離が同一であってもよい。
 前記複数の半導体素子のそれぞれは、前記検出値を示すデジタルデータを、同一のシリアル信号線を介して送信してもよい。
 前記電気素子として、前記基材の曲率に応じてインピーダンスが変化する曲率センサを有し、前記半導体素子は、前記曲率センサのインピーダンスを検出し、検出したインピーダンスの値を出力してもよい。複数の前記曲率センサが、前記基材の長手方向における異なる位置に、それぞれ異なる方向に設けられていてもよい。
 前記電気素子として、前記基材に設けられた正電極と、前記正電極と異なる負電極と、前記正電極と前記負電極との間に電界を発生させる電界発生部と、を有し、前記半導体素子は、前記正電極と前記負電極との間に発生した電界の強度に対応する電界強度検出値を出力してもよい。
 前記負電極が前記正電極よりも小さく、前記正電極及び前記負電極が、前記基材の厚み方向における前記負電極の投影面が前記正電極の輪郭線内に含まれるように前記基材に設けられていてもよい。
 前記正電極が、前記負電極と前記半導体素子とを接続する配線が設けられている位置を除く領域において前記負電極を包囲していてもよい。
 前記基材に対して前記正電極及び前記負電極の側と反対側に設けられたガード電極と、前記ガード電極の電位を前記負電極と同電位にする電位調整回路と、をさらに有してもよい。
 複数の前記正電極と、複数の前記負電極と、前記複数の正電極のいずれか及び前記複数の負電極のいずれかとの間に発生した電界の強度に対応する前記電界強度検出値を出力する複数の前記半導体素子と、複数の前記正電極から選択した1つの正電極と、複数の前記負電極から選択した1つの負電極との間に発生した電界の強度に対応する前記電界強度検出値を取得するように前記複数の半導体素子を制御する制御部と、を有してもよい。
 前記電気素子として、前記基材の曲率に応じてインピーダンスが変化する曲率センサと、前記基材に設けられた正電極と、前記正電極と異なる負電極と、前記正電極と前記負電極との間に電界を発生させる電界発生部と、を有し、前記半導体素子は、前記正電極と前記負電極との間に発生した電界の強度の検出処理と、前記インピーダンスの検出処理とを時分割で切り替えながら実行してもよい。
 前記曲率センサは、前記正電極又は前記負電極の少なくともいずれかに設けられていてもよい。
 前記検出装置は、車両に搭載されたシートベルトに前記検出装置を装着するための装着部と、前記半導体素子が出力した電界強度検出値を示すデータを無線で外部装置に送信する通信部と、をさらに有してもよい。
 本発明の第2の態様は、車両に搭載されるシートベルトである。当該シートベルトは、帯状の表側ベルトと、前記表側ベルトと結合された裏側ベルトと、前記表側ベルトと前記裏側ベルトとの間に設けられた検出装置と、を備え、前記検出装置は可撓性を有する基材と、前記基材に設けられており、前記シートベルトを装着した人の動きに応じて電気的特性が変化する電気素子と、前記基材に設けられており、前記電気素子の電気的特性の変化を検出し、検出した結果に対応する検出値を出力する半導体素子と、を有する。
 本発明の第3の態様は監視システムである。当該監視システムは、車両に搭載されるシートベルトを装着した人の状態を検出する検出装置と、前記検出装置が検出した前記人の状態に基づいて前記車両を制御する監視装置と、を備える監視システムであって、前記検出装置は、可撓性を有する基材と、前記基材に設けられており、前記人の動きに応じて電気的特性が変化する電気素子と、前記基材に設けられており、前記電気素子の電気的特性の変化を検出し、検出した結果に対応する検出値を出力する半導体素子と、前記半導体素子が出力した前記検出値を含む信号を前記監視装置に送信する送信部と、を有する。
 本発明によれば、生体の状態の検出精度を向上させることができるという効果を奏する。
監視システムの概要を説明するための図である。 シートベルトの形状を示す模式図である。 検出装置の構成を模式的に示す図である。 検出ICの構成を示す図である。 正電極及び負電極の周辺に生じる電界の強度分布を示す図である。 中継回路の構成を示す図である。 電極の第1変形例の構成を示す図である。 正電極及び負電極の詳細構成を示す図である。 正電極及び負電極の周辺に生じる電流密度分布を示す図である。 正電極及び負電極を人の胸に装着した状態での正電極と負電極との間のインピーダンスが変化する様子を示す図である。 電極の第2変形例の構成を示す図である。 電極の第3変形例の構成を示す図である。 ガード電極が設けられた構成例を示す図である。 CPUが電界を発生する領域を制御する方法について説明するための図である。 本実施の形態に係るフレキシブル基板の他の例を示す図である。 曲率センサの形状を模式的に示す図である。 検出ICの構成を示す図である。 形状センサ部及びインピーダンス検出部の構成を示す図である。 ΔZ1の変化量に対する電位差V1-V2との関係を示す図である。 曲率センサのインピーダンスとフレキシブル基板の形状との関係を示す図である。 複数の曲率センサの配置方向の変形例を示す図である。 曲率センサの搭載位置の変形例の構成を示す図である。 第2の実施形態に係る検出装置の構成例を模式的に示す図である。 検出装置のC-C線断面図である。 検出装置の構成を示す模式図である。 変形例としての検出装置の構成を示す図である。
<第1の実施形態>
[監視システムSの概要]
 図1は、監視システムSの概要を説明するための図である。監視システムSは、運転手及び乗員等のように自動車に乗っている人の状態を監視するためのシステムであり、シートベルト100及び監視装置200を備える。監視システムSは、シートベルト100に設けられた電極対Eにより電界を発生させ、電界を発生させている間に電極対Eに含まれる複数の電極間の電位差を測定することにより、自動車に乗っている人の身体の状態を特定する。以下の説明においては、自動車に乗っている人が運転手である場合を例にして説明するが、本明細書に記載した実施の形態は、運転手以外の人がシートベルト100を装着する場合にも適用できる。
 図2は、シートベルト100の形状を示す模式図である。図2(a)は、シートベルト100の平面図であり、図2(b)は、シートベルト100のA-A線断面図である。シートベルト100は、帯状の表側ベルト101と、表側ベルト101と結合された裏側ベルト102と、表側ベルト101と裏側ベルト102との間に設けられた検出装置1と、を有する。検出装置1は、運転手の身体付近の電界の強度を検出するシート状のデバイスである。検出装置1は、可撓性を有する基材の一例であるフレキシブル基板10に設けられた、電界を発生する複数の電極対E(図1におけるE1~E8)を有する。
 電極対Eは、シートベルト100を装着した人の動きに応じて電気的特性が変化する電気素子の一例である。シートベルト100を装着した人の呼吸又は心拍等の身体の状態に基づく動きに応じて電極対Eの近傍のインピーダンスが変化する。その結果、電極対Eが発生する電界の状態が変化し、電極対Eを構成する複数の電極間の電位差が変化する。
 詳細については後述するが、フレキシブル基板10におけるそれぞれの電極対Eの近傍には、電極対Eの電気的特性の変化を検出するための半導体素子である検出ICが設けられている。検出ICは、例えば電極対Eを構成する複数の電極間のインピーダンスの変化を検出することにより、電極対Eの近傍の電界の強度の変化を示す検出値を出力する。検出装置1は、検出ICが検出した電界の強度に対応する値を示す電界強度検出値を監視装置200に対して出力する。電界強度検出値としては、電界の強度の値そのものに限定されず、インピーダンス値、又は電流値と抵抗値の組み合わせ等のように、電界強度に応じて変化する値であれば、任意の値を用いることができる。検出装置1は、電界の強度に基づき処理若しくは加工された信号を監視装置200に対して出力してもよい。
 監視装置200は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等を有するECU(Engine Control Unit)である。監視装置200は、検出装置1から入力された電界強度検出値を解析することにより、運転手の身体の状態を特定することができる。監視装置200は、例えば、電界強度検出値として取得した正電極11と負電極12との間の電位差の値、及び正電極11に流した電流の値に基づいて、正電極11と負電極12との間のインピーダンスを算出することにより、運転手の身体の状態を特定する。監視装置200は、特定した身体の状態に基づいて車両を制御する。監視装置200は、例えば、運転手の心拍が停止したことを特定すると、車両のエンジンを停止させるように制御する。監視装置200は、電界強度検出値を時刻に関連付けて記憶媒体に記憶させてもよい。
[検出装置1の構成]
 図3は、検出装置1の構成を模式的に示す図である。図3(a)は、検出装置1の透視図であり、図3(b)は、検出装置1のB-B線断面図である。
 検出装置1は、フレキシブル基板10と中継基板20とを有する。フレキシブル基板10は、一端が中継基板20に固定されている。中継基板20は、例えばプリント基板であり、ケーブルを介して監視装置200に接続されている。中継基板20は、例えば監視装置200とともに座席の下部に収容されている。
 フレキシブル基板10には、複数の正電極11(図3においては正電極11a~正電極11c)、複数の負電極12(図3においては負電極12a~負電極12c)、及び複数の検出IC13(図3においては検出IC13a~検出IC13c)が実装されている。正電極11aと負電極12a、正電極11bと負電極12b、及び正電極11cと負電極12cは、それぞれが電極対Eを構成する。
 なお、図3に示す例においては、検出IC13が、シートベルト100の長手方向において、対応する正電極11及び負電極12に隣接する位置に設けられているが、検出IC13は他の位置に設けられていてもよい。検出IC13は、例えば、シートベルト100の短手方向において、検出IC13に対応する正電極11及び負電極12により構成される電極対Eに隣接する位置に設けられていてもよい。このような位置に検出IC13が設けられている場合、シートベルト100において電極対Eを配置する密度を高めることができるので、検出装置1の分解能を高めることができる。
 フレキシブル基板10には、複数の電極対Eのそれぞれに対応する複数の検出IC13が設けられている。検出IC13は、対応する電極対Eに含まれる正電極11と負電極12との間に発生した電界の強度に対応する電界強度検出値を出力する半導体素子である。検出IC13は、電界強度検出値として、例えば正電極11と負電極12との間の電位差の値、及び正電極11に流した電流の値を出力する。
 図4は、検出IC13の構成を示す図である。検出IC13は、電界発生部131と、電圧検出回路132と、A/D変換器133と、シリアル通信回路134とを有する。電界発生部131は、中継基板20から供給される電力に基づいて、正電極11に微弱電流を供給することにより、正電極11と負電極12との間に電界を発生させる。電界発生部131は、例えば中継基板20から受信した制御データに基づいて、微弱電流を供給するタイミング、及び電流値を決定する。
 電圧検出回路132は、電界発生部131が正電極11に微弱電流を供給している間における正電極11と負電極12との間の電位差を検出する。正電極11と負電極12との間の電位差は、電界の強度に対応する大きさとなり、電位差が大きければ大きいほど電界の強度が大きくなる。電圧検出回路132は、正電極11と負電極12との間の電位差に相当する電圧の信号をA/D変換器133に入力する。
 A/D変換器133は、電圧検出回路132から入力されたアナログ信号をデジタルデータに変換する。すなわち、A/D変換器133は、電圧検出回路132が出力した信号の電圧値に対応するデジタルデータを生成する。A/D変換器133は、生成したデジタルデータをシリアル通信回路134に入力する。
 シリアル通信回路134は、例えばSPI(Serial Peripheral Interface)又はI2C(Inter-Integrated Circuit)(I2Cは登録商標)等の通信方式により定められているフォーマットにより、A/D変換器133から入力されたデジタルデータ(電圧データ)を中継基板20に送信する。
 図5は、正電極11及び負電極12の周辺に生じる電界の強度分布を示す図である。図5において、色が濃い領域の電界強度は、色が薄い領域の電界強度よりも大きい。電界発生部131が正電極11に微弱電流を供給することにより、正電極11と負電極12との間に強電界領域が生じていることがわかる。
 検出装置1が運転手に装着された状態においては、運転手の呼吸及び心臓の鼓動によって、運転手の胸が変位する。また、心拍による血流のインピーダンス変化、又は呼吸による肺のインピーダンス変化に同期して、身体内を流れる電流の大きさが変化する。その結果、運転手の呼吸及び心臓の鼓動に応じて、正電極11と負電極12との間に生じた電界が変化する。電界が変化すると、正電極11と負電極12との間の電位差が変化する。監視装置200は、電圧検出回路132が検出した正電極11と負電極12との間の電位差の変化に基づいて、運転手の呼吸及び心臓の鼓動の状態を特定し、異状の発生の有無を監視することができる。
 複数の検出IC13のそれぞれは、他の検出IC13に対応する電極対Eよりも自身に対応する電極対Eに近い位置に設けられている。また、複数の検出IC13のそれぞれと、それぞれの検出IC13に対応する電極対Eとの間の複数の距離は同一である。すなわち、検出IC13及び電極対Eの複数の組において、検出IC13と、当該検出IC13に対応する電極対E(正極及び負極のセット)との距離が一定である。当該距離は、例えば検出IC13の中心位置と、電極対Eに含まれる正電極11の中心位置と負電極12の中心位置との中間位置と、の間の距離である。このように複数の検出IC13のそれぞれと、対応する電極対Eとの距離が一定であることにより、複数の検出IC13のそれぞれの電界強度の検出感度(すなわち、電界強度に対する電界強度検出値の大きさ)が略同一になる。したがって、検出装置1は、長尺状のシートベルト100においても、位置によらず高い精度で電界の変化を検出することができる。
 フレキシブル基板10には、複数の検出IC13のそれぞれに給電するための電源パターン14、及び複数の検出ICのそれぞれから出力されるデータを中継基板20に伝送するための信号パターン15が形成されている。電源パターン14及び信号パターン15の表面は絶縁性を有する樹脂層により覆われている。
 複数の検出IC13のそれぞれは、電界強度検出値を示すデジタルデータを、同一のシリアル信号線である信号パターン15を介して時分割で中継基板20に送信する。信号パターン15は、例えばSPI又はI2Cのシリアル通信方式でデジタルデータを伝送できるシリアル信号線である。複数の検出IC13のそれぞれは、例えば、中継基板20から自身のアドレスが指定されたコマンドを受信したタイミングで、電界強度検出値を含むデジタルデータを中継基板20に送信する。
 複数の検出IC13は、例えば、中継基板20から入力される制御信号に基づいて、同一のタイミングで、正電極11と負電極12との間の電位差を測定する。複数の検出IC13のそれぞれは、自身が電界強度検出値を送信するタイミングまで、測定した電位差を示す電界強度検出値を一時的に保持し、自身が電界強度検出値を送信するタイミングで、電界強度検出値を含むデジタルデータを、中継基板20を介して監視装置200に送信する。このようにすることで、監視装置200は、各測定タイミングにおいて、シートベルト100における複数の異なる位置の近傍の運転手の身体の状態を同時に特定することができる。
 中継基板20には、中継回路21が実装されている。中継回路21は、電源パターン14を介して複数の検出IC13のそれぞれに給電する。また、中継回路21は、信号パターン15を介して複数の検出IC13のそれぞれから送信されたデジタルデータを受信し、受信したデジタルデータを監視装置200に転送する。
 図6は、中継回路21の構成を示す図である。中継回路21は、給電部211と、シリアル通信部212と、CPU213と、記憶部214と、通信部215とを有する。
 給電部211は、複数の検出IC13を動作させるための電力を発生し、CPU213の制御に基づいて複数の検出IC13への給電を開始する。
 シリアル通信部212は、例えばSPI又はI2C等の通信方式で定められているフォーマットにより、複数の検出IC13との間でデジタルデータを時分割多重化して送受信するための通信コントローラを有する。シリアル通信部212は、複数の検出IC13それぞれを制御するための制御データを送信する。また、シリアル通信部212は、複数の検出IC13それぞれが検出した電圧値を示すデジタルデータを受信する。シリアル通信部212は、それぞれの検出IC13を識別するための識別情報に関連付けて、検出IC13から受信したデジタルデータをCPU213に通知する。
 CPU213は、シリアル通信部212を介して検出IC13から受信したデジタルデータを一時的に通信部215に記憶ささせる。CPU213は、一時的に記憶させたデジタルデータを、通信部215を介して監視装置200に送信する。
 記憶部214は、例えばROM及びRAMを有しており、CPU213が検出IC13から受信したデジタルデータを記憶する。また、記憶部214は、CPU213が実行するプログラムも記憶する。
 通信部215は、CPU213からの指示に基づいて、記憶部214に記憶されたデジタルデータを監視装置200に送信する。また、通信部215は、監視装置200からの制御データを受信し、受信した制御データをCPU213に通知する。通信部215は、例えばUSB(Universal Serial Bus)を介して監視装置200との間でデータを送受信する。通信部215は、Bluetooth(登録商標)等の無線チャネルを介して監視装置200との間でデータを送受信してもよい。さらに監視装置200は、携帯通信網等を介してクラウドサーバー等のデータ蓄積・解析装置に測定データを送信してもよい。
[電極形状の変形例]
(第1変形例)
 図7は、電極の第1変形例の構成を示す図である。図7に示す検出装置1は、図1に示した正電極11及び負電極12の代わりに正電極31及び負電極32を有する。負電極32は正電極31に包囲されている。具体的には、負電極32が正電極31よりも小さく、正電極31及び負電極32が、フレキシブル基板10の厚み方向における負電極32の投影面が正電極31の輪郭線内に含まれるようにフレキシブル基板10に設けられている。
 図8は、正電極31及び負電極32の詳細構成を示す図である。図8(a)は、正電極31及び負電極32の平面図であり、図8(b)は、B-B線断面図である。図8に示す正電極31は、輪郭が正方形であり、内側に負電極32を収容可能な正方形の空隙領域を有するが、正電極31の輪郭線形状及び内側の空隙領域の形状は任意である。
 図9は、正電極31及び負電極32の周辺に生じる電流密度分布を示す図である。電流密度分布は、正電極31及び負電極32の周辺に生じている電界の強度分布と比例する。図9において、色が濃い領域の電流密度は、色が薄い領域の電流密度よりも大きい。電界発生部131が正電極31に微弱電流を供給することにより、正電極31と負電極32との間に強電界領域が生じていることがわかる。正電極31及び負電極32が図7に示すように構成されていることにより、図1に示す構成よりも狭い範囲における電界の変化を検出することができる。なお、正電極31と負電極32との位置関係が逆になるように、すなわち負電極32が正電極31を包囲するように構成されていてもよい。
 図10は、図8に示した正電極31及び負電極32を人の胸に装着した状態での正電極31と負電極32との間のインピーダンスが変化する様子を示す図である。正電極31及び負電極32を人の胸の部分の衣服に貼り付けた状態で、正電極31に周波数1MHzの微弱電流を流している間の正電極31と負電極32との間の電位差を測定した。そして、正電極31及び負電極32に流す微弱電流の大きさ(電流値)と測定した電位差とに基づいて、インピーダンスを算出した。使用した正電極31の輪郭線形状は、一辺が40mmの正方形であった。
 図10には、心拍に同期したインピーダンスの変化(図10におけるa)、及び呼吸に同期したインピーダンスの変化(図10におけるb)が示されている。深呼吸をした際にはインピーダンスの変化量が大きくなり(図10におけるc)、呼吸を停止している間はインピーダンスの変化量が小さくなること(図10におけるd)も確認できる。
 なお、図7に示す例においては、検出IC13が、シートベルト100の長手方向において、対応する正電極31に隣接する位置に設けられているが、検出IC13は他の位置に設けられていてもよい。検出IC13は、例えば、シートベルト100の短手方向において、検出IC13に対応する正電極31に隣接する位置に設けられていてもよい。検出IC13は、シールド面等を介して正電極31又は負電極32の裏面に設けられていてもよい。このような位置に検出IC13が設けられている場合、正電極31を高い密度で配置することができるので、検出装置1の分解能を高めることができる。
(第2変形例)
 図11は、電極の第2変形例の構成を示す図である。図11(a)は、本変形例に係る正電極33及び負電極32の平面図であり、図11(b)は、Dの向きから正電極33及び負電極32を見た図である。正電極33が、負電極32と検出IC13とを接続する配線34が設けられている位置を除く領域において負電極32を包囲している。配線34が設けられている位置には正電極33が設けられておらず、配線34が正電極33と重ならない。配線34と正電極33とが重なっていると、配線34と正電極33とが重なっている領域で電界が生じることでエネルギーの損失が発生する。負電極32及び正電極33が図11に示すように構成されていることで、検出装置1はエネルギーの損失を抑制できるので、負電極32と正電極33との間の電位差の測定精度を向上させることができる。
(第3変形例)
 図12は、電極の第3変形例の構成を示す図である。図12(a)は、本変形例に係る正電極35及び負電極32の平面図であり、図12(b)は、E-E線断面図である。正電極35の形状は正方形であり、負電極32は、絶縁部材36を挟んで正電極35の上方に設けられている。このような構成によっても、図8に示した正電極31及び負電極32と同等の電界を発生させることができる。
[ガード電極]
 検出装置1は、フレキシブル基板10に対して正電極及び負電極の側と反対側に設けられたガード電極をさらに有してもよい。この場合、検出IC13は、ガード電極の電位を負電極と同電位にする電位調整回路を有する。
 図13は、ガード電極が設けられた構成例を示す図である。図13(a)は、図3に示したフレキシブル基板10に対して正電極11と反対側にガード電極37が設けられた電極対Eの例を示している。ガード電極37は、オペアンプ135により構成される電位調整回路に接続されている。
 図13(a)に示す例における電位調整回路はボルテージフォロワである。正電極11がオペアンプ135の正側入力端子に接続されており、ガード電極37はオペアンプ135の出力端子に接続されていることにより、ガード電極37の電位は正電極11の電位と等しくなっている。図13(a)には示していないが、検出装置1は、フレキシブル基板10に対して負電極12と反対側に設けられたガード電極と、当該ガード電極の電位を負電極12の電位と等しくするための電位調整回路とをさらに有してもよい。
 図13(b)は、フレキシブル基板10に対して、図8に示した正電極31及び負電極32それぞれの反対側にガード電極37a及びガード電極37bが設けられた例を示している。図13(c)は、フレキシブル基板10に対して、図12に示した正電極35の反対側にガード電極37cが設けられた例を示している。図13(c)に示す例においては、正電極35と負電極32との間に、絶縁体36a及び絶縁体36bを介してガード電極37dが設けられている。
 図13(b)及び図13(c)には示していないが、検出装置1は、ガード電極37aの電位を正電極31の電位と等しくするための電位調整回路、ガード電極37bの電位を負電極32の電位と等しくするための電位調整回路、ガード電極37cの電位を正電極35の電位と等しくするための電位調整回路を有してもよい。このように検出装置1にガード電極及び電位調整回路が設けられていることにより、正電極11、正電極31又は正電極35に電流が流れることにより発生した電界がフレキシブル基板10の反対側に漏れないので、正電極11、正電極31又は正電極35の側の電界強度が大きくなる。その結果、監視システムSは、人体の変位量の検出精度を向上させることができる。
 なお、電極形状は、正方形又は長方形に限らず、円、楕円、又は正方形及び長方形以外の多角形でもよい。さらに、正電極31、負電極32、及びガード電極37の少なくともいずれかの裏面にシールド層(グランド電位層)を設けてもよい。
 また、シールド層が設けられる場合、ガード電極37の下方(すなわちフレキシブル基板10から遠い側)に絶縁部材を設け、絶縁部材の下方にシールド層を設けてもよい。すなわち、この場合、ガード電極37とシールド層との間に絶縁部材が設けられた構成となる。このような構成により、正電極11、正電極31又は正電極35の側の電界強度がさらに大きくなる。
[電界発生領域の制御]
 監視システムSは、検出装置1に設けられた複数の電極のうち、どの電極に電流を流すかを制御することにより、電界を発生する領域を制御することができる。具体的には、CPU213は、例えば監視装置200からの指示に基づいて、複数の正電極から選択した1つの正電極と、複数の負電極から選択した1つの負電極との間に発生した電界の強度に対応する電界強度検出値を取得するように複数の検出IC13を制御する制御部として機能する。複数の検出IC13は、複数の正電極のいずれか及び複数の負電極のいずれかとの間に発生した電界の強度に対応する電界強度検出値を出力する。
 図14は、CPU213が電界を発生する領域を制御する方法について説明するための図である。図14において、正電極31a、正電極31b、正電極31cのうち白い領域には微弱電流が流され、正電極31a、正電極31b、正電極31cのうち斜線の領域はグランド電位に設定され、微弱電流が流されていない。図14(a)に示す状態においては、正電極31a、正電極31b、正電極31cのそれぞれに微弱電流が流されるので、正電極31aと負電極32aとの間、正電極31bと負電極32bとの間、正電極31cと負電極32cとの間のそれぞれにおいて図9に示したような電界が発生する。
 これに対して、図14(b)に示す状態においては、正電極31a及び正電極31cからは微弱電流が流れない。したがって、正電極31bと負電極32bとの間、正電極31bと正電極31aとの間、及び正電極31bと正電極31cとの間に電界が発生する。その結果、図14(a)に示す状態と異なる態様の電界が発生する。
 図14(c)に示す状態においては、負電極32bにも正電極31bと同じ微弱電流が流れるように制御されている。この状態においては、正電極31b及び負電極32bと正電極31a及び負電極32aとの間、並びに正電極31b及び負電極32bと正電極31c及び負電極32cとの間に電界が生じる。なお、図14におけるグランド電位は、交流電圧における負電位であってもよい。
 このように、検出IC13a、検出IC13b、検出IC13cのそれぞれが、CPU213から受信する制御信号に基づいて、電流を流す対象とする電極を切り替えることにより、電界を発生する領域を変化させることができる。監視システムSが、このように電界を発生する領域を変化させることで、さまざまな電界発生状態を用いて人体の変位状態を測定できるので、実質的な測定分解能を高めることができる。
[形状センサによる変位量の検出]
 図15は、本実施の形態に係るフレキシブル基板10の他の例を示す図である。図15に示すフレキシブル基板10は、複数の形状センサ部17(形状センサ部17a、形状センサ部17b、形状センサ部17c、形状センサ部17d)をさらに有する点で、図7に示したフレキシブル基板10と異なる。形状センサ部17は、自身が設けられた位置におけるフレキシブル基板10の曲率に応じてインピーダンスが変化する曲率センサ171(歪ゲージともいう)を含む。
 図16は、曲率センサ171の形状を模式的に示す図である。図16(a)に示すように、曲率センサ171は、X方向の複数の部分とY方向の複数の部分を有する導電性を有する配線を有する。当該配線は、X方向の各部分の長さよりもY方向の各部分の長さの方が大きく、櫛形に形成されている。曲率センサ171が、Y方向の異なる位置におけるZ方向の位置が異なるように曲げられると、曲率センサ171を構成する複数の配線間の距離が変化することにより、曲率センサ171のインピーダンスが変化する。
 図16(b)は、図16(a)に示した曲率センサ171を示す記号である。図16(b)に示す矢印は、図16(a)におけるY方向、すなわち配線が長い方向に対応している。図16(c)は、複数の曲率センサ171をフレキシブル基板10に配置した状態を示す模式図である。図16(c)に示す例においては、曲率センサ171a、曲率センサ171b、曲率センサ171c、曲率センサ171dが等間隔に配置されている。
 フレキシブル基板10においては、図3における検出IC13の代わりに、曲率センサ171を含む回路に定電圧又は定電流を印加することによって電位差を検出する回路とともに、複数の形状センサ部17それぞれのインピーダンス変化に伴って生じた電位差を検出する回路を有する複数の検出IC16が設けられている。複数の検出IC16のそれぞれは、インピーダンスを示すデジタルデータを、同一のシリアル信号線を介して中継基板20に送信する。
 図17は、検出IC16の構成を示す図である。検出IC16は、検出IC13が有していた電界発生部131、電圧検出回路132、A/D変換器133及びシリアル通信回路134に加えて、インピーダンス検出部161と、A/D変換器162と、シリアル通信回路163とを有する。
 インピーダンス検出部161は、曲率センサ171のインピーダンスを検出する。具体的には、インピーダンス検出部161は、曲率センサ171のインピーダンスを算出し、算出したインピーダンスをA/D変換器162に入力する。A/D変換器162は、入力されたインピーダンスに対応するアナログ信号をデジタルデータに変換し、デジタルデータをシリアル通信回路163に入力する。シリアル通信回路163は、シリアル通信回路134と同等の機能を有しており、A/D変換器162から入力されたデジタルデータ(インピーダンスデータ)としてSPI又はI2C等のシリアル通信線を介して送信する。
 このように検出装置1が形状センサ部17を有する場合、監視装置200は、検出IC16が出力した電界強度検出値とともに、検出IC16が出力した曲率センサ171のインピーダンスにさらに基づいて運転手の身体の状態を特定する。呼吸や心拍によって胸部形状が僅かに変化するため、形状センサ部17の曲率変化により運転手の身体の状態を特定することは、外部の電気機器等に起因する電界の変化の影響を受ける可能性がある場合に好適である。形状センサ部17の曲率変化による身体の状態の検出感度は電界強度検出方法よりも減少する場合が多いが、ペースメーカー装着者等のように電界を印加することによる悪影響が懸念される事例では、有利な効果が見込まれる。
 監視装置200は、同一のタイミングで検出装置1が取得した電界強度検出値及びインピーダンスのそれぞれに基づいて特定される複数の身体の状態が一致していない場合、身体の状態の特定に当該電界強度検出値及びインピーダンスを使用しないようにしてもよい。監視装置200は、車両走行の安全性を高めるために、複数の身体の状態が一致していない場合、いずれか一方が、身体の状態の異常を示している場合、車両を停止させる必要があると判定してもよい。
 なお、図17においては、検出IC16がシリアル通信回路134及びシリアル通信回路163を有する例を示しているが、検出IC16がシリアル通信回路163を有しておらず、A/D変換器162が、インピーダンスを示すデジタルデータをシリアル通信回路134に入力してもよい。この場合、シリアル通信回路134は、A/D変換器133から入力された電位差を示すデジタルデータと、A/D変換器162から入力されたインピーダンスを示すデジタルデータとを多重化して送信する。
 監視装置200が、同一のタイミングで検出された正電極11と負電極12との電位差、及び形状センサ部17のインピーダンスを特定できるように、A/D変換器133とA/D変換器162とは、同一のサンプリングクロックに基づいて、電位差を示すアナログ信号及びインピーダンスを示すアナログ信号を取得してもよい。また、シリアル通信回路134は、同一のタイミングのサンプリングクロックの変化点でサンプリングされた電位差を示すデジタルデータ及びインピーダンスを示すデジタルデータを関連付けて送信してもよい。シリアル通信回路134は、例えば、電位差を示すデジタルデータ及びインピーダンスを示すデジタルデータを、連続する2バイトのデータとして送信する。
 図18は、形状センサ部17及びインピーダンス検出部161の構成を示す図である。インピーダンス検出部161は、電源部164及び演算部165を有する。電源部164は、形状センサ部17に電力を供給する電源として機能する。図18(a)に示す例において、形状センサ部17は、電源と基準電位との間に曲率センサ171と並列に接続された抵抗R1、並びに抵抗R1及び曲率センサ171と並列に設けられた抵抗R2及び抵抗R3を有する。演算部165は、形状センサ部17に電源が供給されている状態において、抵抗R1と曲率センサ171との間の第1電位V1、及び抵抗R2と抵抗R3との間の第2電位V2を取得し、取得した第1電位V1及び第2電位V2に基づいて、曲率センサ171のインピーダンスを算出する。
 電源部164が供給する電圧をVcc、曲率センサ171のインピーダンスをZ1とすると、以下の式(1)の関係が成り立つ。
 V1-V2=Vcc×((Z1/(R1+Z1))-(R3/(R2+R3)))・・(1)
 Vcc、R1、R2及びR3が既知であれば、この式(1)の関係を用いることで、演算部165は曲率センサ171のインピーダンスを算出することができる。
 図18(b)に示す例においては、形状センサ部17が、図18(a)におけるR3の代わりに曲率センサ171aを有する。曲率センサ171aは、例えばフレキシブル基板10に対して曲率センサ171と反対側に設けられている。この場合、曲率センサ171aのインピーダンスをZ2とすると、2以下の式(2)の関係が成り立つ。
 V1-V2=Vcc×((Z1/(R1+Z1))-(Z2/(R2+Z2)))・・(2)
 曲率センサ171と曲率センサ171aとが、同じ曲率で互いに反対側に曲がるように設けられている場合、曲率センサ171におけるインピーダンスZ1の変化量をΔZ1、曲率センサ171aにおけるインピーダンスZ2の変化量をΔZ2とするとΔZ1=-ΔZ2となる。R1=R2=Rで既知、初期のZ1が既知でZ1=Z2の場合、曲率センサ171を一定量曲げた後の電位差は上記の式(2)に代入することで以下の式(3)を得られる。
 V1-V2=Vcc×(((Z1+ΔZ1)/(R+(Z1+ΔZ1)))-((Z1-ΔZ1)/(R+(Z1-ΔZ1))))・・(3)
 となる。
 一方、式(1)は、以下のように変形することができる。
 V1-V2=Vcc×(((Z1+ΔZ1)/(R1+(Z1+ΔZ1)))-(R3/(R2+R3)))・・(4)
 ここで、Vcc=1V、R1=100Ω、R2=100Ω、R3=100Ω、Z1=100Ω(基準値)、Z2=Z1=100Ω(基準値)として、ΔZ1を1%ずつ±10%まで変化させた場合におけるΔZ1の変化量に対する電位差V1-V2との関係をシミュレーションした。図19は、ΔZ1の変化量に対する電位差V1-V2との関係を示す図である。図19における実線は、曲率センサ171と曲率センサ171aとを使用した場合を示しており、破線は、曲率センサ171のみを使用した場合を示している。
 曲率センサ171のみを使用した式(4)の場合に比べて、曲率センサ171及び曲率センサ171aを用いた式(3)の方が、ΔZ1の変化量に対する電位差V1-V2の変化量が2倍大きくなっていることがわかる。すなわちインピーダンス変化量ΔZ1を2倍の変化量として測定・算出することができる。
 また、フレキシブル基板10の両側に曲率センサ171及び曲率センサ171aが設けられており、かつR1=R2である場合、温度によりZ1及びZ2が変化したとしても、温度によるインピーダンス変化量は、それぞれΔZ1=ΔZ2となる。この場合、上記の式(2)における(Z1/(R1+Z1))-(Z2/(R2+Z2)は略一定となる。したがって、演算部165は、温度変化の影響を補償して曲率センサ171及び曲率センサ171aのインピーダンス変化を高感度で算出することができる。
 図20は、曲率センサ171のインピーダンスとフレキシブル基板10の形状との関係を示す図である。図20(a)の横軸は複数の曲率センサ171それぞれの位置を示しており、縦軸はインピーダンスを示している。図20(a)における黒い丸(●)は、曲率センサ171が変形していない状態のインピーダンスを示している。図20(a)における白い三角(△)は、それぞれの曲率センサ171が同一の曲率で変形している状態のインピーダンスを示している。
 図20(b)は、複数の曲率センサ171が図20(a)における●が示すインピーダンスを有する場合のフレキシブル基板10の形状の模式図である。図20(c)は、複数の曲率センサ171が図20(a)における△が示すインピーダンスを有する場合のフレキシブル基板10の形状の模式図である。監視装置200は、このようなインピーダンスと曲率との関係を用いることにより、中継回路21を介して受信した複数の曲率センサ171それぞれのインピーダンス値に基づいて、フレキシブル基板10の形状を特定することができる。
 なお、複数の検出IC16のそれぞれは、正電極と負電極(図17の例では、正電極11と負電極12)との間に発生した電界の強度の検出処理と、インピーダンスの検出処理とを時分割で切り替えながら実行してもよい。具体的には、検出IC16は、正電極と負電極との間に電界を発生させている間には、インピーダンス検出部161が曲率センサ171のインピーダンスを測定せず、電圧検出回路132が、正電極と負電極との間の電位差を測定する。検出IC16は、正電極と負電極との間に電界を発生させていない間には、電圧検出回路132が電位差を測定せず、インピーダンス検出部161が曲率センサ171のインピーダンスを測定する。このように、検出IC16が時分割で電界強度の検出処理とインピーダンスの検出処理とを実行することで、一方の検出処理をしている間に他方に電気的な影響が及ばないので、測定精度が向上する。
[複数の曲率センサ171の配置方向の変形例]
 図21は、複数の曲率センサ171の配置方向の変形例を示す図である。図21に示す検出装置1は、フレキシブル基板10の長手方向における異なる位置に、それぞれ異なる方向に設けられた複数の曲率センサ171を有する。具体的には、図21に示すフレキシブル基板10には、配線が長い方向であるY方向がフレキシブル基板10の短手方向と一致する曲率センサ171と、Y方向がフレキシブル基板10の長手方向と一致する曲率センサ171とが、1個ずつ順番に配置されている。より具体的には、曲率センサ171a、曲率センサ171c及び曲率センサ171eが、Y方向がフレキシブル基板10の短手方向と一致するように設けられており、曲率センサ171b、曲率センサ171d及び曲率センサ171fが、Y方向がフレキシブル基板10の長手方向と一致するように設けられている。
 曲率センサ171a、曲率センサ171c及び曲率センサ171eは、フレキシブル基板10の短手方向においてフレキシブル基板10が変形することによりインピーダンスが変化し、曲率センサ171b、曲率センサ171d及び曲率センサ171fは、フレキシブル基板10の長手方向においてフレキシブル基板10が変形することによりインピーダンスが変化する。したがって、監視装置200は、複数の曲率センサ171それぞれのインピーダンスに基づいて、複数の曲率センサ171それぞれが設けられた位置における多様な変形状態を特定することができる。
[曲率センサ171の搭載位置の変形例]
 以上の説明においては、曲率センサ171がフレキシブル基板10に直接実装されている場合を例示したが、曲率センサ171は、正電極又は負電極のいずれかに実装されていてもよい。図22は、曲率センサ171の搭載位置の変形例の構成を示す図である。図22においては、曲率センサ171が正電極33に実装されている。このように、曲率センサ171が正電極又は負電極のいずれかに実装されていることで、電極対及び曲率センサ171の実装密度を高めることができるので、測定分解能を向上させることができる。
[他の変形例]
 上記の説明においては、検出装置1が中継基板20を有し、検出IC13と中継基板20との間でシリアル通信によりデータの送受信が行われる場合を例示したが、検出装置1は中継基板20を有していなくてもよい。この場合、検出IC13は、SPI又はI2C等のシリアル通信方式を用いて、電界強度検出値を監視装置200に直接送信する。
 また、上記の説明においては、検出装置1がフレキシブル基板10の一方の面に電極対E及び検出IC13を有する場合を例示したが、検出装置1は、フレキシブル基板10の両方の面に電極対E及び検出IC13を有してもよい。この場合、監視装置200は、シートベルト100の長手方向における同一の位置のフレキシブル基板10の両面に設けられた複数の電極対Eに対応する複数の検出IC13が出力した複数の電界強度検出値を用いて、同一の位置における電界強度を特定する。このようにすることで、監視装置200は、運転手が裏向きにシートベルト100を装着した場合であっても、運転手の状態を適切に特定することができる。
 フレキシブル基板10の両面に電極対E及び検出IC13が設けられている場合、監視装置200は、例えば、運転手に近い側に設けられた検出IC13が出力した電界強度検出値と他方の検出IC13が出力した電界強度検出値とに含まれている同相ノイズ成分を除去してもよい。上記の構成によりノイズの影響を軽減できるので、監視装置200は、運転手の状態を特定する精度を向上させることができる。
[検出装置1による効果]
 以上説明したように、検出装置1は、正電極と負電極との間に電界を発生させる電界発生部131と、フレキシブル基板10に設けられており、正電極と負電極との間に発生した電界の強度に対応する電界強度検出値を監視装置200に出力する検出IC13とを有する。このように、検出IC13が、電界強度に対応する検出値を特定することにより、正電極及び負電極を含む電極対Eと監視装置200との距離が大きい場合であっても、線路抵抗の影響による正電極と負電極との間の電位差の測定誤差を軽減することができる。
 また、検出装置1は、複数の電極対Eに対応する複数の検出IC13が、同一のシリアル通信信号線を介して、電界強度検出値を中継基板20に送信する。したがって、検出装置1が多数の電極対Eを有する場合であっても、監視装置200までの配線数を少なくすることができるので、面積が限られたシートベルト100において電極対Eを設ける密度を高めることができる。その結果、検出装置1は、電界強度を検出する際の分解能を高めることができる。
<第2の実施形態>
[シートベルトに装着可能な検出装置]
 第1の実施形態においては、シートベルト100に正電極11及び負電極12が設けられていたが、第2の実施形態においては、シートベルトに着脱可能な検出装置2に正電極及び負電極が設けられている点で第1の実施形態と異なる。
 図23は、第2の実施形態に係る検出装置2の構成例を模式的に示す図である。図23(a)は、検出装置2がシートベルト110に装着される前の検出装置2の平面図である。検出装置2は、第1領域41と第2領域42とを有する。第1領域41は、運転手の身体の状態を検出するための電極、センサ、及び半導体素子が設けられている領域である。図24は、図23(b)に示した状態の検出装置2のF-F線断面図である。図25は、検出装置2の構成を示す模式図である。
 検出装置2は、例えば第1領域41に設けられたフレキシブル基板10と中継基板50とを有する。フレキシブル基板10は、第1の実施形態に示したフレキシブル基板10と同等であり、図3に示すように正電極11、負電極12及び検出IC13を有してもよく、図8に示すように正電極31、負電極32及び検出IC13を有してもよく、図15に示すように正電極31、負電極32、検出IC16及び形状センサ部17を有してもよい。これらのいずれにおいても、検出IC13及び検出IC16は、SPI又はI2C等のシリアル通信方式により、電界強度を示す測定値又は形状を示す測定値を含むデジタルデータを中継基板50へと送信する。
 中継基板50は、中継基板20と同様に、フレキシブル基板10から受信したデジタルデータを監視装置200に転送する。検出装置2は、シートベルト110に着脱可能に設けられることから、中継基板50は、Bluetooth等の無線チャネルを用いてデジタルデータを監視装置200に送信することが望ましい。そこで、中継基板50は、フレキシブル基板10から受信したデジタルデータを無線データに変換する中継回路51を有する。中継回路51は、図6に示した中継回路21と同等の構成を有するが、通信部215が、検出IC13が出力した電界強度検出値を示すデータを無線で外部装置に送信する無線通信機能を有する点で中継回路21と異なる。
 また、中継基板50が監視装置200とケーブルで接続されておらず、中継基板50が電力の供給を受けない場合にも中継基板50がフレキシブル基板10に設けられた素子に電力を供給できるように、中継基板50には電池52が設けられている。電池52は、例えば充電可能な二次電池である。電源コンセントに中継基板50を接続することなく電池52を充電可能にするために、中継基板50は、無線充電用回路を有してもよい。
 第1領域41と第2領域42には、第1領域41と第2領域42とを結合させるための面ファスナー又はボタン等の結合部43a、43bが設けられている。結合部43a、43bは、検出装置2をシートベルト110に装着させるための装着部として機能する。運転手又は運転手が勤務する会社の職員等のユーザは、第1領域41と第2領域42との間にシートベルト110を挟み込むように検出装置2を折り曲げて、結合部43a、43bにより第1領域41と第2領域42とを結合させることで、第1の実施形態の検出装置1と同等の機能を実現することができる。なお、検出装置2の長さが短い場合、身体の状態(例えば胸の位置)によってシートベルト形状が十分に変化しないことが想定される。この場合、中継基板50などに加速度センサやジャイロセンサなどのセンサを追加することで、身体の変位を定量的に検出することが可能となる。
 図24に示すように、検出装置2においては、電極対Eが運転手の身体側に電界を発生させるように設けられている。すなわち、電極対Eは、検出装置2が折り曲げられた状態でフレキシブル基板10に対して第2領域42の側と反対の側に位置するように設けられている。また、図24に示すように、検出装置2は、フレキシブル基板10が視認されないようにフレキシブル基板10を覆うカバー部44を有してもよい。
 また、以上の説明においては、第1領域41にフレキシブル基板10及び中継基板50が設けられている構成を例示したが、第1領域41及び第2領域42のそれぞれにフレキシブル基板10及び中継基板50が設けられていてもよい。検出装置2がこのように構成されている場合、運転手が検出装置2をシートベルト110に装着する向き、又は運転手がシートベルト110を装着する面によらず、監視システムSが運転手の状態を監視することができる。
 また、第2の実施形態においては、監視装置200が車両に固定されておらず、運転手が持ち運びできるものであってもよい。さらに、監視装置200は、中継基板50から受信したデータを他の装置(例えばコンピュータ)に送信してもよい。
 シートベルト110を装着する人が、シートベルト110において、検出装置2が心拍や呼吸を検出しやすい位置に検出装置2を取り付けられるようにするために、シートベルト110に位置合わせ用のマークが付されていてもよい。位置合わせ用のマークは、例えば、人がシートベルト110を装着した状態で、検出装置2の中心位置が人の胸の中心位置と一致するように検出装置2を取り付けられるようにするためのマークである。
 すなわち、位置合わせ用のマークは、シートベルト110の先端から所定の距離だけ離れた位置に設けられている。所定の距離は、例えばシートベルト110の先端から平均的な人がシートベルト110を装着した状態での胸の中心位置までの距離に、検出装置2の長手方向の長さの半分の長さを加算又は減算した距離である。このようなマークがシートベルト110に設けられていることにより、検出装置2はシートベルト110を装着した人の身体の状態の検出精度を向上させることができる。
 シートベルト110には、マークとともに、又はマークに代えて、所定の位置において検出装置2と結合するための結合部材が設けられていてもよい。結合部材は、例えば、検出装置2に設けられたスナップボタンと結合するスナップボタン、又は検出装置2に設けられた面ファスナーと結合する面ファスナーである。
[検出装置2による効果]
 検出装置2は、シートベルト110に着脱可能に構成されており、検出装置2がシートベルト110に装着された状態で運転手がシートベルト110を着用した場合に、検出装置2は運転手の身体の状態を示す信号を監視装置200に送信することができる。このように検出装置2がシートベルト110に着脱可能に構成されていることで、監視システムSは、検出装置1が設けられていない車両であっても、検出装置2をシートベルト110に装着することにより、運転手の状態を監視することが可能になる。
<変形例>
[電気素子の変形例]
 以上の説明においては、人体の動きに応じて電気的特性が変化する電気素子として電界を発生する電極対Eが設けられた検出装置を例示したが、検出装置に電極対Eが設けられていなくてもよい。この場合、検出装置には、電気素子として、例えば基材の曲率に応じてインピーダンスが変化する曲率センサが設けられている。この場合、半導体素子としての検出ICは、曲率センサのインピーダンスを検出し、検出したインピーダンスの値を出力する。
 図26は、変形例としての検出装置3の構成を示す図である。検出装置3は、基材としてのフレキシブル基板10と、フレキシブル基板10に設けられた複数の曲率センサ171(図26においては曲率センサ171a~曲率センサ171c)とを有する。複数の曲率センサ171は、フレキシブル基板10の長手方向における異なる位置に設けられている。複数の曲率センサ171は、例えば、隣接する曲率センサ171が互いに異なる方向に設けられている。曲率センサ171は、曲率に応じてインピーダンスが変化する。したがって、曲率センサ171は、人の動きに応じてフレキシブル基板10の曲率が変化することに伴ってインピーダンスが変化する。
 複数の曲率センサ171それぞれの近傍には、曲率センサ171のインピーダンスを検出し、検出した結果に対応する検出値を出力する検出IC16(図26においては検出IC16a~検出IC16c)が設けられている。このように、検出装置3においては、複数の曲率センサ171それぞれの近傍に検出IC16が設けられているため、高い精度で曲率センサ171のインピーダンスを検出することができるので、電極対Eを用いることなく、人の呼吸又は心拍等の微小な動きを検出することができる。
 検出装置3は、図3に示す検出装置1と同様に、中継基板20を有する。また、フレキシブル基板10には、図3に示すフレキシブル基板10と同様に、電源パターン14、及び信号パターン15が形成されている。
[基材の種類]
 以上の説明においては、基材としてフレキシブル基板10を例示したが、基材として他の部材が使用されてもよい。例えば、基材が、繊維により構成された布状の部材であってもよい。この場合、基材は、非導電性繊維と、電気信号を伝達する導電性繊維とが編まれた布状の部材であり、電源パターン14及び信号パターン15として導電性繊維が用いられる。また、電極対Eとして、長方形状に基材に編み込まれた導電性繊維が用いられてもよい。
 さらに、非導電性繊維の一部が、曲率によってインピーダンスが変化する曲率センサとして機能する繊維により構成されていてもよい。曲率センサとして機能する繊維は、例えば、直線状のポリマーの周囲に導電性繊維が螺旋状に巻かれた繊維として構成される。この場合、布状の部材に検出ICが設けられていてもよく、検出ICが設けられていなくてもよい。このように、基材として繊維により構成された布状の部材が用いられ、布状の部材を構成する繊維が曲率センサとして機能することにより、検出装置の厚みを小さくすることができる。
 また、以上の説明においては、フレキシブル基板10と中継基板20、中継基板50とが別体の基板である場合を例示したが、中継基板20、中継基板50がフレキシブル基板10と一体化しており、中継基板20、中継基板50に搭載されている部品がフレキシブル基板10に搭載されていてもよい。逆に、フレキシブル基板10に搭載されている部品が中継基板20、中継基板50に搭載されていてもよい。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の分散・統合の具体的な実施の形態は、以上の実施の形態に限られず、その全部又は一部について、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本発明の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を合わせ持つ。
 例えば、以上の説明においては、シートベルトに検出装置を設けて運転手の身体の状態を特定する場合を例示したが、検出装置の構成及び用途はこれに限らない。本発明は、人体に装着可能な任意の態様の検出装置に適用することができる。
 また、正電極、負電極、形状センサ及び各種の配線は、上記の形態に限定されない。正電極、負電極、形状センサ及び各種の配線は、例えば導電性繊維により構成することもできる。
 また、以上の説明においては、検出装置に複数の検出IC、複数の電極対、又は複数の曲率センサが設けられている構成を例示したが、検出装置の構成はこのような構成に限らない。検出装置が、1つの電極対と、当該電極対により生じた電界の変化を検出する1つの検出IC13を有してもよい。また、検出装置が、1つの曲率センサ171と、当該曲率センサ171による電圧又は電流の変化を検出する1つの検出IC16を有してもよい。
1 検出装置
2 検出装置
3 検出装置
10 フレキシブル基板
11 正電極
12 負電極
13 検出IC
14 電源パターン
15 信号パターン
16 検出IC
17 形状センサ部
20 中継基板
21 中継回路
31 正電極
32 負電極
33 正電極
34 配線
35 正電極
36 絶縁部材
37 ガード電極
41 第1領域
42 第2領域
43 結合部
44 カバー部
50 中継基板
51 中継回路
52 電池
100 シートベルト
101 表側ベルト
102 裏側ベルト
110 シートベルト
131 電界発生部
132 電圧検出回路
133 A/D変換器
134 シリアル通信回路
135 オペアンプ
161 インピーダンス検出部
162 A/D変換器
163 シリアル通信回路
164 電源部
165 演算部
171 曲率センサ
200 監視装置
211 給電部
212 シリアル通信部
214 記憶部
215 通信部
 

Claims (16)

  1.  人体の動きを検出する検出装置であって、
     可撓性を有する基材と、
     前記基材に設けられており、前記人体の動きに応じて電気的特性が変化する電気素子と、
     前記基材に設けられており、前記電気素子の電気的特性の変化を検出し、検出した結果に対応する検出値を出力する半導体素子と、
     を有する検出装置。
  2.  複数の前記電気素子と、
     前記複数の電気素子に対応する複数の前記半導体素子と、
     を有し、
     複数の前記半導体素子のそれぞれが、他の半導体素子に対応する前記電気素子よりも自身に対応する前記電気素子に近い位置に設けられている、
     請求項1に記載の検出装置。
  3.  前記複数の半導体素子のそれぞれと、それぞれの半導体素子に対応する前記電気素子との間の複数の距離が同一である、
     請求項2に記載の検出装置。
  4.  前記複数の半導体素子のそれぞれは、前記検出値を示すデジタルデータを、同一のシリアル信号線を介して送信する、
     請求項2又は3に記載の検出装置。
  5.  前記電気素子として、前記基材の曲率に応じてインピーダンスが変化する曲率センサを有し、
     前記半導体素子は、前記曲率センサのインピーダンスを検出し、検出したインピーダンスの値を出力する、
     請求項1から4のいずれか一項に記載の検出装置。
  6.  複数の前記曲率センサが、前記基材の長手方向における異なる位置に、それぞれ異なる方向に設けられている、
     請求項5に記載の検出装置。
  7.  前記電気素子として、
     前記基材に設けられた正電極と、
     前記正電極と異なる負電極と、
     前記正電極と前記負電極との間に電界を発生させる電界発生部と、
     を有し、
     前記半導体素子は、前記正電極と前記負電極との間に発生した電界の強度に対応する電界強度検出値を出力する、
     請求項1から6のいずれか一項に記載の検出装置。
  8.  前記負電極が前記正電極よりも小さく、前記正電極及び前記負電極が、前記基材の厚み方向における前記負電極の投影面が前記正電極の輪郭線内に含まれるように前記基材に設けられている、
     請求項7に記載の検出装置。
  9.  前記正電極が、前記負電極と前記半導体素子とを接続する配線が設けられている位置を除く領域において前記負電極を包囲している、
     請求項7又は8に記載の検出装置。
  10.  前記基材に対して前記正電極及び前記負電極の側と反対側に設けられたガード電極と、
     前記ガード電極の電位を前記負電極と同電位にする電位調整回路と、
     をさらに有する、
     請求項7から9のいずれか一項に記載の検出装置。
  11.  複数の前記正電極と、
     複数の前記負電極と、
     前記複数の正電極のいずれか及び前記複数の負電極のいずれかとの間に発生した電界の強度に対応する前記電界強度検出値を出力する複数の前記半導体素子と、
     複数の前記正電極から選択した1つの正電極と、複数の前記負電極から選択した1つの負電極との間に発生した電界の強度に対応する前記電界強度検出値を取得するように前記複数の半導体素子を制御する制御部と、
     を有する、
     請求項7から10のいずれか一項に記載の検出装置。
  12.  前記電気素子として、
     前記基材の曲率に応じてインピーダンスが変化する曲率センサと、
     前記基材に設けられた正電極と、
     前記正電極と異なる負電極と、
     前記正電極と前記負電極との間に電界を発生させる電界発生部と、
     を有し、
     前記半導体素子は、前記正電極と前記負電極との間に発生した電界の強度の検出処理と、前記インピーダンスの検出処理とを時分割で切り替えながら実行する、
     請求項1から11のいずれか一項に記載の検出装置。
  13.  前記曲率センサは、前記正電極又は前記負電極の少なくともいずれかに設けられている、
     請求項12に記載の検出装置。
  14.  車両に搭載されたシートベルトに前記検出装置を装着するための装着部と、
     前記半導体素子が出力した電界強度検出値を示すデータを無線で外部装置に送信する通信部と、
     をさらに有する、
     請求項1から13のいずれか一項に記載の検出装置。
  15.  車両に搭載されるシートベルトであって、
     帯状の表側ベルトと、
     前記表側ベルトと結合された裏側ベルトと、
     前記表側ベルトと前記裏側ベルトとの間に設けられた検出装置と、
     を備え、
     前記検出装置は
     可撓性を有する基材と、
     前記基材に設けられており、前記シートベルトを装着した人の動きに応じて電気的特性が変化する電気素子と、
     前記基材に設けられており、前記電気素子の電気的特性の変化を検出し、検出した結果に対応する検出値を出力する半導体素子と、
     を有するシートベルト。
  16.  車両に搭載されるシートベルトを装着した人の状態を検出する検出装置と、
     前記検出装置が検出した前記人の状態に基づいて前記車両を制御する監視装置と、
     を備える監視システムであって、
     前記検出装置は、
     可撓性を有する基材と、
     前記基材に設けられており、前記人の動きに応じて電気的特性が変化する電気素子と、
     前記基材に設けられており、前記電気素子の電気的特性の変化を検出し、検出した結果に対応する検出値を出力する半導体素子と、
     前記半導体素子が出力した前記検出値を含む信号を前記監視装置に送信する送信部と、
     を有する監視システム。
     

     
PCT/JP2019/001102 2018-07-19 2019-01-16 検出装置、シートベルト、及び監視システム WO2020017075A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP19837292.2A EP3824807A4 (en) 2018-07-19 2019-01-16 DETECTION DEVICE, SEAT BELT AND SURVEILLANCE SYSTEM
JP2020530880A JP7153364B2 (ja) 2018-07-19 2019-01-16 検出装置、シートベルト、及び監視システム
CN201980060125.4A CN112714627A (zh) 2018-07-19 2019-01-16 检测装置、座椅安全带以及监视系统
CN201980060127.3A CN112689766A (zh) 2018-07-19 2019-07-19 检测装置、测定系统、监视系统以及程序
JP2020531385A JPWO2020017636A1 (ja) 2018-07-19 2019-07-19 検出装置、測定システム、監視システム、およびプログラム
EP19837341.7A EP3825704A4 (en) 2018-07-19 2019-07-19 DETECTION DEVICE, MEASURING SYSTEM, MONITORING SYSTEM AND PROGRAM
PCT/JP2019/028462 WO2020017636A1 (ja) 2018-07-19 2019-07-19 検出装置、測定システム、監視システム、およびプログラム
US17/150,596 US11453362B2 (en) 2018-07-19 2021-01-15 Detection apparatus, seat belt, and monitoring system
US17/150,608 US20210236009A1 (en) 2018-07-19 2021-01-15 Detection apparatus, measurement system, and monitoring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/027196 WO2020017013A1 (ja) 2018-07-19 2018-07-19 検出装置、シートベルト、及び運転手監視システム
JPPCT/JP2018/027196 2018-07-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/150,596 Continuation US11453362B2 (en) 2018-07-19 2021-01-15 Detection apparatus, seat belt, and monitoring system

Publications (1)

Publication Number Publication Date
WO2020017075A1 true WO2020017075A1 (ja) 2020-01-23

Family

ID=69164442

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2018/027196 WO2020017013A1 (ja) 2018-07-19 2018-07-19 検出装置、シートベルト、及び運転手監視システム
PCT/JP2019/001102 WO2020017075A1 (ja) 2018-07-19 2019-01-16 検出装置、シートベルト、及び監視システム
PCT/JP2019/028462 WO2020017636A1 (ja) 2018-07-19 2019-07-19 検出装置、測定システム、監視システム、およびプログラム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027196 WO2020017013A1 (ja) 2018-07-19 2018-07-19 検出装置、シートベルト、及び運転手監視システム

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028462 WO2020017636A1 (ja) 2018-07-19 2019-07-19 検出装置、測定システム、監視システム、およびプログラム

Country Status (5)

Country Link
US (2) US20210236009A1 (ja)
EP (2) EP3824807A4 (ja)
JP (2) JP7153364B2 (ja)
CN (2) CN112714627A (ja)
WO (3) WO2020017013A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145617A1 (ja) * 2022-01-28 2023-08-03 住友電気工業株式会社 検知装置および検知方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11541842B2 (en) * 2020-10-12 2023-01-03 Ford Global Technologies, Llc Seatbelt assembly including proximity sensor and marker
CA199392S (en) * 2020-11-17 2022-06-06 Cybeart Inc Chair

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233619A (ja) * 2013-06-04 2014-12-15 学校法人北里研究所 電気インピーダンストモグラフィ測定装置
WO2015002210A1 (ja) * 2013-07-02 2015-01-08 学校法人北里研究所 Eit測定装置、eit測定方法及びプログラム
JP2017500093A (ja) * 2013-11-22 2017-01-05 エムシー10 インコーポレイテッドMc10,Inc. 心臓活動の検知および分析のためのコンフォーマルセンサシステム
JP2017136304A (ja) 2016-02-05 2017-08-10 学校法人北里研究所 運転手監視装置、監視装置、監視方法、プログラム、シートベルト
JP2018121700A (ja) * 2017-01-30 2018-08-09 Simplex Quantum株式会社 心電センサ、心電データ管理システム、及び車両管理システム

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6864677B1 (en) * 1993-12-15 2005-03-08 Kazuhiro Okada Method of testing a sensor
JPH08140952A (ja) * 1994-11-24 1996-06-04 Tokin Corp 医用計測用プローブ
TWI252592B (en) * 2000-01-17 2006-04-01 Semiconductor Energy Lab EL display device
GB0129390D0 (en) * 2001-12-07 2002-01-30 Clark Terrence D Electrodynamic sensors and applications thereof
US6980852B2 (en) * 2002-01-25 2005-12-27 Subqiview Inc. Film barrier dressing for intravascular tissue monitoring system
WO2005023105A1 (ja) * 2003-09-02 2005-03-17 Matsushita Electric Industrial Co., Ltd. 生体センサ及びこれを用いた支援システム
JP2005227243A (ja) * 2004-02-16 2005-08-25 Honda Motor Co Ltd 静電容量型センサ
JP4229071B2 (ja) * 2005-01-24 2009-02-25 株式会社デンソー 静電容量式センサおよび乗員検知システム
JP5568206B2 (ja) * 2006-09-15 2014-08-06 東海ゴム工業株式会社 変形センサ
JP5069491B2 (ja) * 2007-04-10 2012-11-07 ミドリ安全株式会社 イオンバランス調整電極およびこれを備えた除電装置
JP2009108451A (ja) * 2007-10-31 2009-05-21 Japan Atomic Energy Agency 防護服着用作業員のための熱中症警告装置
WO2013075270A1 (zh) * 2011-11-25 2013-05-30 Yang Chang-Ming 一种侦测心跳或电极接触良好与否的物品、方法及系统
TW201511099A (zh) * 2013-09-02 2015-03-16 Wintek Corp 觸控面板
JP6215644B2 (ja) * 2013-10-17 2017-10-18 日本電信電話株式会社 心拍・心電計
JP6245516B2 (ja) * 2014-01-17 2017-12-13 株式会社ケーヒン 電圧検出装置
WO2015111656A1 (ja) * 2014-01-24 2015-07-30 独立行政法人情報通信研究機構 電界検知出力装置、電界調整システム及び電界調整方法
DE102014211501A1 (de) * 2014-03-19 2015-09-24 Takata AG Sicherheitsgurtanordnungen und Verfahren zum Bestimmen einer Information bezüglich der Herz- und/oder Atemaktivität eines Benutzers eines Sicherheitsgurtes
DE102014210302A1 (de) * 2014-04-07 2015-10-08 Brose Fahrzeugteile Gmbh & Co. Kg, Coburg Verfahren zur Einstellung eines Sicherungsgurtes und Verstellvorrichtung für einen Sicherheitsgurt
CA2962750A1 (en) * 2014-10-16 2016-04-21 Teijin Limited Protective equipment comprising alarm system
KR20160066081A (ko) * 2014-12-01 2016-06-10 참엔지니어링(주) 생체신호 측정 센서모듈
US20160184180A1 (en) * 2014-12-26 2016-06-30 Sumitomo Riko Company Limited Cardiopulmonary resuscitation support device
JP6384415B2 (ja) * 2015-07-08 2018-09-05 株式会社豊田中央研究所 シートベルト、センサユニット、及び乗員保護装置
US10923217B2 (en) * 2015-11-20 2021-02-16 PhysioWave, Inc. Condition or treatment assessment methods and platform apparatuses
US20180348235A1 (en) 2015-11-27 2018-12-06 B.R.A.H.M.S Gmbh MR-proADM as marker for the extracellular volume status of a subject
JP6871541B2 (ja) * 2016-01-12 2021-05-12 学校法人北里研究所 輪郭形状推定装置
JP6803679B2 (ja) * 2016-04-14 2020-12-23 Joyson Safety Systems Japan株式会社 バックル及び車載システム
US10572088B2 (en) * 2016-08-30 2020-02-25 Tactual Labs Co. Vehicular components comprising sensors
JP6915830B2 (ja) * 2016-09-28 2021-08-04 学校法人北里研究所 センサ装置、保険証、会員証
JP6839127B2 (ja) * 2018-04-16 2021-03-03 日本メクトロン株式会社 圧力センサ、圧力センサの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233619A (ja) * 2013-06-04 2014-12-15 学校法人北里研究所 電気インピーダンストモグラフィ測定装置
WO2015002210A1 (ja) * 2013-07-02 2015-01-08 学校法人北里研究所 Eit測定装置、eit測定方法及びプログラム
JP2017500093A (ja) * 2013-11-22 2017-01-05 エムシー10 インコーポレイテッドMc10,Inc. 心臓活動の検知および分析のためのコンフォーマルセンサシステム
JP2017136304A (ja) 2016-02-05 2017-08-10 学校法人北里研究所 運転手監視装置、監視装置、監視方法、プログラム、シートベルト
JP2018121700A (ja) * 2017-01-30 2018-08-09 Simplex Quantum株式会社 心電センサ、心電データ管理システム、及び車両管理システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145617A1 (ja) * 2022-01-28 2023-08-03 住友電気工業株式会社 検知装置および検知方法
JP7416338B2 (ja) 2022-01-28 2024-01-17 住友電気工業株式会社 検知装置および検知方法

Also Published As

Publication number Publication date
EP3825704A1 (en) 2021-05-26
JPWO2020017636A1 (ja) 2021-08-12
CN112689766A (zh) 2021-04-20
EP3825704A4 (en) 2021-09-08
EP3824807A1 (en) 2021-05-26
WO2020017013A1 (ja) 2020-01-23
US11453362B2 (en) 2022-09-27
EP3824807A4 (en) 2021-09-15
WO2020017636A1 (ja) 2020-01-23
JP7153364B2 (ja) 2022-10-14
JPWO2020017075A1 (ja) 2021-08-26
US20210206345A1 (en) 2021-07-08
CN112714627A (zh) 2021-04-27
US20210236009A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
US11453362B2 (en) Detection apparatus, seat belt, and monitoring system
US20180271380A1 (en) Respiration rate monitoring by multiparameter algorithm in a device including integrated belt sensor
JP6754110B2 (ja) 運転手監視装置
EP3634206B1 (en) Multifunctional device for remote monitoring of a patient's condition
KR101828068B1 (ko) 차량 운전자 상태 모니터링을 위한 사용자 맞춤형 손목시계형 밴드 및 그 방법
WO2007112527A2 (en) Devices constructive arrangement and methods applied to thoraxic cirtometry
EP3461401A1 (en) Apparatus and electronic circuitry for sensing biosignals
JP2006247075A (ja) 生体電気信号測定装置、及び電極装置
WO2015189476A1 (en) Electrode band for sensing bio-electrical signal
TWM463109U (zh) 生理感測織物
WO2020148828A1 (ja) シートベルトおよび状態特定装置
KR102367715B1 (ko) 보행 측정 시스템
KR102202015B1 (ko) 생체 신호 측정 장치
US20170188948A1 (en) Wearing method and apparatus thereof
KR101828067B1 (ko) 차량 운전자 상태 감시용 손목 밴드
US10881305B2 (en) Wearable thoracic element for detecting, monitoring and reporting the physiological status of an individual
WO2010097726A1 (en) A magnetic induction tomography system
KR101694757B1 (ko) 웨어러블 산소포화도 측정 시스템
TWI740253B (zh) 智慧防駝系統
JP2020195784A (ja) 監視装置、監視方法、プログラム、身体当接部材
CN215191484U (zh) 一种可穿戴在线监测装置
WO2019235361A1 (ja) 筐体及び測定装置
Rapin et al. A wearable EIT system based on cooperative sensors
WO2020148827A1 (ja) 検出装置、状態特定装置、および測定方法
CN114947248A (zh) 一种实时监测体型的服装及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530880

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019837292

Country of ref document: EP

Effective date: 20210219