WO2020013291A1 - 火花点火式エンジンユニット及び車両 - Google Patents

火花点火式エンジンユニット及び車両 Download PDF

Info

Publication number
WO2020013291A1
WO2020013291A1 PCT/JP2019/027558 JP2019027558W WO2020013291A1 WO 2020013291 A1 WO2020013291 A1 WO 2020013291A1 JP 2019027558 W JP2019027558 W JP 2019027558W WO 2020013291 A1 WO2020013291 A1 WO 2020013291A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
combustion chamber
gas
exhaust
intake
Prior art date
Application number
PCT/JP2019/027558
Other languages
English (en)
French (fr)
Inventor
真往 吉野
良卓 永井
隼人 田之倉
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to EP19833340.3A priority Critical patent/EP3808952A4/en
Priority to TW108124742A priority patent/TWI755614B/zh
Publication of WO2020013291A1 publication Critical patent/WO2020013291A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10091Air intakes; Induction systems characterised by details of intake ducts: shapes; connections; arrangements
    • F02M35/10111Substantially V-, C- or U-shaped ducts in direction of the flow path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10222Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/102Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the spark plug being placed offset the cylinder centre axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/106Tumble flow, i.e. the axis of rotation of the main charge flow motion is horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4235Shape or arrangement of intake or exhaust channels in cylinder heads of intake channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a spark ignition engine unit and a vehicle.
  • an engine unit of a type that recirculates a part of exhaust gas to an intake system is known.
  • Patent Document 1 discloses a spark ignition type engine having a spark plug.
  • This engine includes two intake ports that open to the combustion chamber, an intake port connected to each of the intake ports, one exhaust port, and an exhaust port connected to the exhaust port.
  • the engine also includes an intake system connected to the intake port, and an exhaust gas recirculation path that connects the intake system and the exhaust port. Part of the exhaust gas passing through the exhaust port returns to the intake system through the exhaust return path. The recirculated exhaust gas is drawn into the combustion chamber from a pair of intake ports.
  • Patent Document 2 discloses an engine provided with an exhaust gas recirculation device.
  • This engine has two intake ports and two exhaust ports.
  • the exhaust gas recirculation device includes an intake tank to which intake gas is supplied, and an EGR tank to which exhaust gas of the engine is supplied.
  • the exhaust gas in the EGR tank is guided to the intake tank and mixed with the intake gas.
  • Patent Document 2 proposes a configuration in which exhaust gas (recirculated gas) is uniformly supplied to an intake port of an engine.
  • an EGR tank to which exhaust gas is supplied is integrally formed with an intake tank that functions as a surge tank.
  • the intake tank and the EGR tank are provided with communication holes for guiding exhaust gas from the EGR tank to the intake tank.
  • the exhaust gas passing through the communication hole and the outside air are mixed and stored in an intake tank (surge tank).
  • the exhaust gas in the gas supplied to the engine is made uniform.
  • the present invention provides a spark ignition type engine unit and a vehicle in which the degree of freedom in designing the distribution of exhaust gas in a combustion chamber is increased.
  • the gas taken into the combustion chamber is a mixture of exhaust gas (recirculated gas) and outside air.
  • the concentration of oxygen contained in the exhaust gas is lower than that of the outside air.
  • the concentration of carbon dioxide contained in the exhaust gas is higher than that of the outside air.
  • the distribution of oxygen and carbon dioxide concentrations affects the combustion in the combustion chamber and the increase in temperature associated with the combustion.
  • Patent Literature 2 proposes a configuration for uniformizing exhaust gas.
  • the exhaust gas is made uniform using the structure of the surge tank.
  • distribution here, uniformity
  • the present inventors have further studied the distribution of exhaust gas in the combustion chamber and have found the following.
  • the uniform distribution of exhaust gas in the combustion chamber is not always optimal for combustion.
  • it is preferable that the exhaust gas is unevenly distributed in the combustion chamber in accordance with the position of the ignition plug in the combustion chamber.
  • the ignition portion of the ignition plug is located at a position shifted from the center of the combustion chamber when viewed in the reciprocating direction of the piston, a large amount of outside air in the combustion chamber is distributed near the ignition portion, and exhaust gas having a high specific heat is discharged from the ignition plug. Is preferably distributed in a region away from the area.
  • a two-valve engine with one intake valve and one exhaust valve has one tumble port.
  • SCTP single center tumble port
  • the intake port of one tumble port can have a larger area as one intake port as compared with a case having a plurality of intake ports.
  • the tumble flow is a vortex in the combustion chamber
  • the gas in the combustion chamber moves quickly due to the vortex, so that a part of the gas in the combustion chamber tends to be uniform. Therefore, the exhaust gas can be evenly dispersed in the combustion chamber by adjusting the merging position of the exhaust gas in the intake pipe.
  • the present inventors have found that the degree of freedom in designing the exhaust gas distribution in the combustion chamber of the spark ignition engine can be increased.
  • the spark ignition engine of the present invention completed based on the above findings has the following configuration.
  • a spark ignition type engine unit The spark ignition engine unit, A cylinder portion in which a combustion chamber is formed; A piston portion provided reciprocally in the cylinder portion and defining the combustion chamber together with the cylinder portion; A crankshaft connected to the piston portion so as to rotate in accordance with the reciprocation of the piston portion, One exhaust port provided in the cylinder portion so as to communicate with the combustion chamber via an exhaust port, and through which exhaust gas from the combustion chamber passes;
  • the cylinder section is provided to communicate with the combustion chamber via an intake port, and generates a tumble flow around an axis extending in a direction intersecting with the reciprocating direction in the intake gas taken into the combustion chamber from the intake port.
  • a separation enhancing portion that separates gas to be sent to the suction port from a wall surface following the suction port, the suction port has a width of the suction port when viewed in a reciprocating direction of the piston portion, and One single center tumble port, which is provided so that an extension area defined as an area extending in the intake direction from the intake port overlaps with the exhaust port, One exhaust valve for opening and closing the exhaust port; One intake valve for opening and closing the intake port; An ignition plug having an ignition unit disposed in the combustion chamber, and configured to spark-ignite gas in the combustion chamber, A throttle body having a throttle valve for adjusting a flow rate of gas taken into the combustion chamber; An intake pipe that connects the throttle body and the one single center tumble port without passing through a surge tank, and allows gas to flow from the throttle body to the one single center tumble port; An exhaust pipe connected to an end of the one exhaust port opposite to the exhaust port and configured to pass exhaust gas exhausted through the one exhaust port; An exhaust gas recirculation passage connecting the exhaust pipe or the exhaust port to the intake
  • the one single center tumble port passes through the peeling enhancement part with the opening of the one intake valve.
  • an exhaust recirculation passage that supplies the recirculated gas to the intake pipe or the one single center tumble port so as to form the tumble flow in the combustion chamber by being taken in through the combustion chamber.
  • the spark ignition type engine unit of (1) includes a cylinder portion, a piston portion, a crankshaft, one exhaust port, one single center tumble port, one exhaust valve, one intake valve, and ignition.
  • a plug, a throttle body, an intake pipe, an exhaust pipe, and an exhaust recirculation passage are provided.
  • the piston is provided in the cylinder so as to be able to reciprocate.
  • the piston defines a combustion chamber with the cylinder.
  • the crankshaft is connected to the piston so as to rotate in accordance with the reciprocation of the piston.
  • the exhaust port is provided in the cylinder so as to communicate with the combustion chamber via an exhaust port. Exhaust gas from the combustion chamber passes through an exhaust port.
  • the single center tumble port is provided in the cylinder so as to communicate with the combustion chamber via an intake port.
  • the single center tumble port has a structure that generates a tumble flow around an axis extending in a direction intersecting with the reciprocating direction in the intake gas taken into the combustion chamber from the intake port.
  • the single center tumble port (SCTP) has a peel strengthening portion.
  • the exfoliation enhancer is configured to enhance exfoliation of gas from a wall surface following the intake port.
  • the separation enhancer enhances the separation of the gas from the wall surface so as to generate a tumble flow in the gas sucked into the combustion chamber.
  • the intake port of the single center tumble port is provided so that the extension area overlaps with the exhaust port.
  • the extension region is defined as a region having the width of the intake port when viewed in the reciprocating direction of the piston portion and extending from the intake port in the intake direction.
  • the exhaust valve opens and closes an exhaust port.
  • the intake valve opens and closes the intake port.
  • the ignition plug has an ignition section arranged in the combustion chamber.
  • the spark plug is configured to spark ignite the gas in the combustion chamber.
  • the throttle body has a throttle valve.
  • the throttle valve regulates the flow rate of gas taken into the combustion chamber.
  • the intake pipe connects the throttle body and the single center tumble port without passing through a surge tank.
  • the intake pipe passes gas from the throttle body to the single center tumble port.
  • the exhaust pipe is connected to an end of the exhaust port opposite to the exhaust port.
  • the exhaust pipe passes exhaust gas exhausted through an exhaust port.
  • the exhaust gas recirculation passage connects the exhaust pipe or the exhaust port to the intake pipe or the single center tumble port.
  • the exhaust gas recirculation passage supplies the recirculated gas to the intake pipe or one single center tumble port such that a part of the exhaust gas extracted from the exhaust pipe or the exhaust port forms a tumble flow in the combustion chamber as the recirculated gas. .
  • the recirculated gas is sucked together with the gas flowing through the throttle body, the intake pipe, and one single center tumble port through one single center tumble port as one intake valve is opened. As a result, the recirculated gas forms a tumble flow in the combustion chamber.
  • the gas passes through the single center tumble port (SCTP).
  • SCTP single center tumble port
  • the gas is separated from the wall surface following the intake port by the separation enhancing portion.
  • the peeling enhancement part peels gas from the wall surface so as to form a tumble flow in the cylinder part. Therefore, in the cylinder portion, a tumble flow is formed by the gas sucked from the single center tumble port (SCTP).
  • An intake port provided in one single center tumble port and opened and closed by one intake valve can have a larger area than, for example, a case having a plurality of tumble ports and a plurality of intake ports. For this reason, the flow of the gas sucked from the inlet can flow so as to form a large unity.
  • the gas flow sucked from the intake ports flows so as to form one unit, the turbulence of the gas flow near the center as viewed in the reciprocating direction is caused by, for example, the gas being drawn from a plurality of intake ports arranged side by side. It is smaller than it would be. Therefore, disturbance of the tumble flow is suppressed.
  • the recirculated gas is sucked through one single center tumble port together with the gas flowing through the throttle body. This gas is the outside air flowing through the throttle body, the intake pipe, and one single center tumble port without passing through the surge tank. In the combustion chamber, a turbulent flow with reduced turbulence is formed.
  • a gas distribution reflecting the distribution of the gas from the throttle body and the recirculated gas supplied to one single center tumble port is provided. Easy to maintain. Therefore, the degree of freedom in designing the distribution of the exhaust gas in the combustion chamber can be increased.
  • the exhaust gas can be distributed in a biased position in the combustion chamber. Further, the exhaust gas can be evenly dispersed in the combustion chamber.
  • the degree of freedom in designing the distribution of exhaust gas in the combustion chamber of the spark ignition engine can be increased.
  • the spark ignition engine unit is a first of two regions defined by dividing the combustion chamber by a center passage line passing through the center of the exhaust port and the center of the intake port when viewed in the reciprocating direction.
  • the gas in the combustion chamber is configured to be spark-ignited by the igniting portion arranged in the region so as not to overlap the center passage line.
  • the interval between the intake port and the exhaust port is formed to be shorter than the diameter of the ignition portion.
  • the igniter is located at a position distant from the center passage line.
  • the degree of freedom in designing the distribution of the exhaust gas in the combustion chamber is high, the distribution of the exhaust gas in the combustion chamber can be biased depending on the position of the ignition unit.
  • the intake port so that the interval between the intake port and the exhaust port is shorter than the diameter of the ignition section, it is possible to secure a large diameter of the intake port of the single center tumble port.
  • the gas distribution reflecting the distribution of the gas from the throttle body and the recirculated gas supplied to the single center tumble port is more easily maintained. Therefore, the degree of freedom in designing the distribution of the exhaust gas is further increased.
  • the spark ignition engine unit according to (1) or (2) is further provided with a catalyst unit that houses a catalyst that purifies exhaust gas discharged from the combustion chamber,
  • the exhaust gas recirculation passage extracts a part of the exhaust gas as the recirculated gas from a downstream side of the exhaust gas flow from the catalyst unit.
  • the exhaust gas whose pulsation due to combustion in the spark ignition type engine unit is suppressed by passing through the catalyst unit containing the catalyst is taken out to the exhaust gas recirculation passage as recirculated gas. For this reason, recirculation gas with suppressed pulsation is supplied from the exhaust gas recirculation passage to the intake pipe. Since the influence of the fluctuation caused by the combustion is suppressed, the deviation of the distribution of the recirculated gas in the combustion chamber from the assumed distribution is suppressed. Therefore, the degree of freedom in designing the distribution of the exhaust gas is further increased.
  • the exhaust gas recirculation passage may be configured to take out the recirculated gas from downstream of any of the catalyst units.
  • the exhaust gas recirculation passage may be configured to take out the recirculated gas from between the upstream catalyst unit and the downstream catalyst unit, It may be configured to take out the recirculation passage from downstream of the unit.
  • the spark ignition engine unit according to any one of (1) to (3),
  • the combustion chamber has a shorter diameter than the reciprocating stroke of the piston when viewed in the reciprocating direction.
  • the spark ignition engine unit according to (4) has a stroke volume of 0.1 L or more and less than 0.2 L.
  • the spark ignition engine unit of (5) has a simple structure including a single center tumble port functioning as one intake valve and one exhaust valve. For this reason, while suppressing the increase in the size of a small-volume engine having a stroke volume of 0.1 L or more and less than 0.2 L, the distribution of gas reflecting the distribution of gas from the throttle body and the recirculated gas in the combustion chamber is reduced. Can be maintained. Therefore, the degree of freedom in designing the distribution of exhaust gas in the combustion chamber can be increased while suppressing an increase in size.
  • (6) a spark ignition engine unit according to any one of (1) to (5), Wheels driven by the spark ignition engine unit, Vehicle equipped with.
  • the degree of freedom in designing the distribution of exhaust gas in the spark ignition engine unit is high.
  • connection and “coupled” are not limited to physical or mechanical connections or couplings, but may include direct or indirect electrical connections or couplings.
  • all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries should be construed to have a meaning consistent with the meaning in the context of the relevant art and this disclosure, and are explicitly defined herein. Unless otherwise stated, they should not be construed in an ideal or overly formal sense. In describing the present invention, it is understood that many techniques and processes are disclosed. Each of these has distinct benefits, and each can also be used with one or more, and possibly all, of the other disclosed techniques.
  • the single center tumble port (SCTP) is a passage for gas supplied to the combustion chamber, and has a function as a tumble port.
  • the function as a tumble port is a function in which the intake air generates a tumble flow (longitudinal vortex) in the combustion chamber.
  • the single center tumble port (SCTP) has a wall surface shaped to flow intake air into the combustion chamber so that the intake air generates a tumble flow in the combustion chamber.
  • the structure for generating the tumble flow of the single center tumble port (SCTP) is, for example, to separate the gas flow from the wall surface farthest from the exhaust port in the cylindrical wall surface following the intake port of the single center tumble port (SCTP). It is a structure to make it.
  • the structure for generating the tumble flow has, for example, a projection provided on the wall surface portion.
  • the structure for generating the tumble flow is not limited to this.
  • a bulging portion bulging outward from the port is provided at an upstream portion of the gas flow with respect to the wall portion.
  • the cylinder portion provided with the single center tumble port (SCTP) draws air into the cylinder bore from the only relatively large tumble port by moving the piston portion for a long stroke. Thereby, a fast tumble flow can be generated.
  • SCTP single center tumble port
  • the single center tumble port (SCTP) may be configured to satisfy, for example, at least one of the following requirements (i) to (iii).
  • the single center tumble port (SCTP) is designed such that the interval between the intake port and the exhaust port on a center passing line passing through the center of the intake port and the center of the exhaust port is shorter than the diameter of the offset ignition section. A formed air inlet may be provided. Since the offset ignition portion is offset, a large diameter of the intake port can be secured.
  • the single center tumble port (SCTP) has an inlet formed such that the center of the cylinder bore (that is, a point through which the center line of the piston passes) is located in the inlet when viewed in the reciprocating direction of the piston. May be.
  • the single center tumble port (SCTP) is formed such that, when viewed in the reciprocating direction of the piston portion, a portion where the center passage line and the intake port overlap on the center passage line in a region including the intake port is the center passage line and the intake passage.
  • An intake port formed so as to be longer than a portion that does not overlap with the mouth may be provided. Thereby, a wide intake port is secured with respect to the diameter of the cylinder bore. Further, the diameter of the intake port may be longer than the center passage line in the area including the intake port. As a result, the intake port is secured wider than the diameter of the cylinder bore.
  • the region including the intake port mainly includes the intake port when the combustion chamber is divided into two regions by a straight line that is orthogonal to the center passing line and that passes through the center of the cylinder bore when viewed in the reciprocating direction of the piston portion. Area. Further, the center passing line refers to a straight line that is parallel to the center passing line and passes through the center of the cylinder bore when viewed in the reciprocating direction of the piston portion. The center pass line may overlap the center pass line.
  • the gas is supplied from the single center tumble port (SCTP) having a large intake port to the cylinder portion, so that a faster tumble flow can be generated in the combustion chamber.
  • the single center tumble port (SCTP) may be configured to satisfy any of the following, for example.
  • the ports in the single center tumble port (SCTP) and the exhaust port indicate a gas passage formed in the cylinder portion.
  • the intake port is an opening for intake
  • the exhaust port is an opening for exhaust.
  • the intake port corresponds to a boundary between a single center tumble port (SCTP) and a combustion chamber.
  • the exhaust port corresponds to a boundary between the exhaust port and the combustion chamber.
  • the combustion chamber is a space defined by the piston and the cylinder.
  • the tumble flow is a vortex around an axis extending in a direction intersecting the reciprocating direction of the piston.
  • the combustion chamber gas generating the tumble flow may also generate vortices other than the tumble flow.
  • the combustion chamber gas may have a swirl flow that rotates about an axis extending in the reciprocating direction of the piston along with the tumble flow.
  • the tumble flow flows from the intake port to the exhaust port at the upper part of the combustion chamber (the part near the cylinder head).
  • the gas in the combustion chamber may include, for example, a flow in the upper part of the combustion chamber in a direction opposite to the flow from the intake port to the exhaust port.
  • the piston and the combustion chamber are circular when viewed in the reciprocating direction. However, at least one of the piston and the combustion chamber may be oval when viewed in the reciprocating direction, for example.
  • the shape when viewed in the reciprocating direction is not particularly limited.
  • the separation enhancer has a structure in which the gas sent to the intake port is separated from the wall surface following the intake port so as to generate a tumble flow in the gas taken into the combustion chamber from the intake port.
  • the peeling enhancement portion is, for example, a projection projecting toward a space in a single center tumble port (SCTP). The projection may have an edge. Further, the convex portion may be adjacent to a concave portion for emphasizing the convex portion. Further, the peeling enhancement portion is not limited to one convex portion, and may be, for example, a dimple provided on a wall surface, that is, a plurality of minute depressions.
  • the extension region has a width of the intake port when viewed in the reciprocating direction of the piston, and is defined as a region extending from the intake port in the intake direction.
  • the intake direction corresponds to the direction of a straight line that extends the center line of the single center tumble port (SCTP) from the intake port.
  • SCTP single center tumble port
  • the width of the intake port the width of the largest intake port in a direction perpendicular to the intake direction is used.
  • the extension region overlaps, for example, the center of the top surface of the piston.
  • the center passing line is a straight line passing through the center of the exhaust port and the center of the intake port when viewed in the reciprocating direction of the piston.
  • the ignition part of the spark ignition engine is arranged so as not to overlap the center passage line.
  • the ignition unit of the spark ignition type engine is arranged, for example, in a first region of two regions defined by being separated by a center passage line. That is, the ignition unit is an offset ignition unit.
  • the ignition part of the spark ignition type engine may be arranged so as to overlap the center passage line, for example.
  • one ignition plug is provided.
  • the spark ignition engine unit is not limited to this, and may include, for example, two or more spark plugs.
  • the exhaust recirculation passage is connected to, for example, an exhaust pipe and an intake pipe.
  • the exhaust gas recirculation passage may be connected to the exhaust port and the intake pipe.
  • the exhaust gas recirculation passage may be connected to the exhaust pipe and the single center tumble port.
  • the exhaust gas recirculation passage may be connected to the exhaust port and the single center tumble port.
  • the number of the exhaust gas recirculation passages is not limited to one, and may be plural.
  • the spark ignition type engine unit is, for example, a four-stroke engine unit.
  • the spark ignition engine unit is not limited to this, and may be, for example, a 6-stroke engine unit or an 8-stroke engine unit.
  • the number of cylinders of the engine is not particularly limited.
  • the spark ignition engine is, for example, a single cylinder engine.
  • the position where the catalyst unit at least partially overlaps the cylinder portion includes a position where the entire catalyst unit overlaps the cylinder portion.
  • the vehicle has, for example, wheels in addition to the engine.
  • the wheels include drive wheels that rotate by receiving power output from the engine.
  • the number of wheels is not particularly limited.
  • the vehicle is not particularly limited, and includes, for example, a four-wheeled vehicle and a saddle type vehicle.
  • a four-wheeled vehicle has, for example, a cabin.
  • a straddle-type vehicle is a vehicle in which a driver sits on a saddle. Examples of the straddle-type vehicle include a motorcycle, a motorcycle, and an ATV (All-Terrain @ Vehicle).
  • FIG. 1 is a side view which shows the schematic structure of the spark ignition type engine unit which concerns on one Embodiment of this invention.
  • FIG. 2A is a detailed perspective view of the spark ignition type engine shown in FIG. 1 when viewed in a reciprocating direction of a piston portion.
  • (B) is a side sectional view showing a schematic configuration of a spark ignition type engine.
  • FIG. 3 is a front sectional view of the spark ignition engine shown in FIG. 2.
  • FIG. 3 is a perspective view showing a piston portion of the spark ignition engine shown in FIG. 2.
  • FIG. 3 is an enlarged view of the inside of the spark ignition engine shown in FIG.
  • FIG. 3 is an enlarged sectional view showing a single center tumble port (SCTP) of the spark ignition type engine shown in FIG. 2 and a peripheral portion thereof.
  • FIG. 3A is a plan view of an intake stroke schematically illustrating a gas flow in a combustion chamber of the spark ignition engine shown in FIG. 2.
  • (B) is a perspective view of an intake stroke. It is a figure explaining the calculation method of a tumble ratio.
  • FIG. 4A is a plan view of an intake stroke schematically illustrating a gas flow in a combustion chamber of a spark ignition engine in a modified example of the spark ignition engine unit according to the embodiment.
  • (B) is a perspective view of an intake stroke.
  • FIG. 7 is a plan view illustrating a gas outflow state in a compression stroke in a spark ignition type four-valve engine as a comparative example.
  • 4 is a graph showing the relationship between the diameter of a combustion chamber of a spark ignition type engine and thermal efficiency.
  • 4 is a graph showing a relationship between a stroke volume and a thermal efficiency of a spark ignition engine.
  • 4 is a graph showing the relationship between the stroke capacity of a general engine and the indicated thermal efficiency.
  • FIG. 10 is a diagram illustrating a gas flow in the spark ignition engine shown in FIGS. 1 to 9.
  • (A) is a figure which shows the modification of the port in a spark ignition type engine.
  • (B) is a figure which shows another modification of the port in a spark ignition type engine.
  • FIG. 6 is a diagram for explaining a gas flow in a comparative example.
  • FIG. 17 is a graph showing a tumble ratio in the configurations shown in FIGS. 14, 15, and 16, respectively.
  • FIG. 2 is a side view showing a saddle-ride type vehicle on which the spark ignition type engine unit shown in FIG. 1 is mounted.
  • FIG. 19 is a side view showing a saddle-ride type vehicle of another type different from FIG. 18.
  • FIG. 20 is a diagram schematically showing an arrangement of engine units of the vehicle shown in FIG. 19.
  • FIG. 21 is a view schematically showing an arrangement of another engine unit different from that of FIG. 20.
  • FIG. 1A is a side view illustrating a schematic configuration of a spark ignition engine unit according to one embodiment of the present invention.
  • FIG. 1B is a perspective view illustrating the spark ignition engine included in the spark ignition engine unit, as viewed in a reciprocating direction of a piston portion.
  • the spark ignition engine unit EU1 shown in FIG. 1 is mounted on, for example, a straddle-type vehicle 100 (see FIG. 18).
  • the traveling direction of the saddle-ride type vehicle 100 on which the spark ignition engine unit EU1 is mounted is defined as front Fr, and the reverse of the front Fr is defined as rear Bk.
  • the direction including the front Fr and the rear Bk is also referred to as the front-back direction FB.
  • the spark ignition engine unit EU1 includes the spark ignition engine 1, an intake pipe 114, a throttle body 116, an exhaust pipe 118, a catalyst unit 119, and an exhaust recirculation passage 120.
  • the spark ignition engine 1 is a single cylinder engine.
  • the spark ignition type engine 1 (hereinafter, also simply referred to as the engine 1) includes a cylinder portion 4, a piston portion 5, a crankshaft 2, a single exhaust port 41e, and a single single center tumble port (SCTP) 41a.
  • SCTP single single center tumble port
  • the spark ignition type engine 1 has one cylinder portion 4.
  • a combustion chamber 4r is formed in the cylinder section 4.
  • the spark ignition engine 1 is a water-cooled engine.
  • the cylinder body portion 42 is provided with a coolant passage 42j.
  • the piston part 5 is arranged in the cylinder part 4 so as to be able to reciprocate.
  • the piston part 5 defines a combustion chamber 4r together with the cylinder part 4.
  • the direction in which the piston portion 5 reciprocates is referred to as a reciprocating direction Z.
  • the crankshaft 2 is connected to the piston 5 so as to rotate in accordance with the reciprocation of the piston 5.
  • the direction in which the crankshaft 2 extends is defined as a crankshaft direction X.
  • the figure also shows a direction Y that intersects both the crankshaft direction X and the reciprocating direction Z.
  • the single center tumble port (SCTP) 41a and the exhaust port 41e are formed in the cylinder unit 4.
  • the exhaust port 41e communicates with the combustion chamber 4r via an exhaust port 41f. Exhaust gas discharged from the combustion chamber 4r passes through the exhaust port 41e.
  • the cylinder part 4 has a stroke volume of, for example, 0.1 L or more and less than 0.2 L.
  • the spark ignition engine 1 is a naturally aspirated engine. The spark ignition engine 1 takes in air without a supercharger.
  • the single center tumble port (SCTP) 41a communicates with the combustion chamber 4r via the intake port 41b.
  • the single center tumble port (SCTP) 41a has a structure for generating a tumble flow in the gas taken into the combustion chamber 4r from the intake port 41b.
  • the gas taken into the combustion chamber 4r is also referred to as intake gas.
  • the tumble flow is a flow around an axis extending in a direction intersecting the reciprocating direction Z in the combustion chamber 4r. Details of the structure for generating the tumble flow will be described later.
  • an extended region Ae is defined as a region having the width of the intake port 41b and extending from the intake port 41b in the intake direction Y1.
  • the single center tumble port (SCTP) 41a and the intake port 41b are provided such that the extension area Ae overlaps the exhaust port 41f.
  • the intake direction Y1 is included in the direction Y.
  • the intake valve 81 opens and closes the intake port 41b.
  • the exhaust valve 82 opens and closes the exhaust port 41f.
  • the offset spark plug 7 is provided in the cylinder head 41.
  • the offset ignition plug 7 has an offset ignition section 7a.
  • the offset spark plug 7 is inserted into a plug hole 41d formed in the cylinder part 4.
  • the offset ignition section 7a is exposed to the combustion chamber 4r.
  • the offset ignition unit 7a spark-ignites the gas in the combustion chamber 4r.
  • the intake pipe 114 is connected to the spark ignition engine 1. More specifically, the intake pipe 114 communicates with a single center tumble port (SCTP) 41 a of the spark ignition engine 1. The intake pipe 114 connects the single center tumble port (SCTP) 41a and the throttle body 116. The spark ignition engine unit EU1 does not include a surge tank. The intake pipe 114 connects the throttle body 116 and the single center tumble port (SCTP) 41a without passing through a surge tank. The intake pipe 114 passes gas from the throttle body 116 to the single center tumble port (SCTP) 41a.
  • SCTP single center tumble port
  • the throttle body 116 controls the flow rate of outside air supplied to the spark ignition engine 1.
  • An intake passage 115 is formed by the intake pipe 114 and a portion of the throttle body 116 through which gas flows.
  • the intake passage 115 supplies outside air taken from an air filter (not shown) to a single center tumble port (SCTP) 41a.
  • the throttle body 116 has a throttle valve 116a.
  • the throttle valve 116a adjusts the flow rate of gas flowing through the intake passage 115. More specifically, the throttle valve 116a controls the amount of outside air flowing through the intake passage 115 based on the operation amount of the acceleration instruction unit 108 (see FIG. 18).
  • the throttle body 116 controls the amount of outside air supplied to the spark ignition engine 1 based on the operation amount of the acceleration instruction unit 108 of the vehicle.
  • the exhaust pipe 118 is connected to the end of the exhaust port 41e opposite to the exhaust port 41f.
  • the exhaust pipe 118 passes exhaust gas exhausted from the spark ignition engine 1 through an exhaust port 41e.
  • the exhaust pipe 118 includes a muffler 117a.
  • the silencer 117a is provided downstream of the catalyst unit 119 in the flow of the exhaust gas.
  • the catalyst unit 119 is arranged in the middle of the exhaust pipe 118.
  • the catalyst unit 119 contains a catalyst for purifying gas passing through the exhaust pipe 118.
  • a catalyst (or a catalyst unit) may be provided in the muffler 117a in addition to or instead of the catalyst unit 119.
  • the exhaust gas recirculation passage 120 is a passage for causing a part of the exhaust gas generated in the spark ignition engine 1 to be sucked into the spark ignition engine 1 again as a recirculated gas.
  • the recirculated gas has a lower oxygen concentration and a higher carbon dioxide concentration than the outside air passing through the throttle body 116.
  • the distribution of the recirculated gas in the combustion chamber 4r is designed according to a desired combustion state.
  • the exhaust gas recirculation passage 120 in the present embodiment is connected to the exhaust pipe 118 and the intake pipe 114.
  • the exhaust gas recirculation passage 120 has an exhaust gas recirculation valve 121 and an exhaust gas recirculation pipe 122.
  • the exhaust gas recirculation valve 121 is provided in the exhaust gas recirculation pipe 122.
  • the amount of recirculated gas supplied to the combustion chamber 4r is controlled by the exhaust gas recirculation valve 121.
  • the exhaust gas recirculation passage 120 extracts a part of the exhaust gas from the exhaust pipe 118 as a recirculated gas.
  • the recirculated gas is sucked into the combustion chamber 4r through the single center tumble port (SCTP) 41a with the opening of the intake valve 81 together with the gas flowing through the throttle body 116.
  • the exhaust gas recirculation passage 120 supplies recirculated gas to the intake pipe 114.
  • the exhaust gas recirculation passage 120 supplies the recirculated gas to the intake pipe 114 such that the recirculated gas forms a tumble flow with the gas flowing through the throttle body 116 in the combustion chamber 4r.
  • the exhaust gas recirculation passage 120 of the present embodiment takes out the recirculated gas from the downstream of the exhaust gas flow from the catalyst unit 119.
  • the exhaust gas recirculation pipe 122 of the exhaust gas recirculation passage 120 is connected to the muffler 117a.
  • the exhaust gas recirculation passage 120 takes out the recirculated gas from the silencer 117a.
  • the exhaust gas downstream of the catalyst unit 119 passes through the catalyst unit 119. Therefore, the pulsation of the pressure and the flow rate of the exhaust gas due to the combustion of the spark ignition type engine 1 is suppressed.
  • the exhaust gas recirculation passage 120 takes out exhaust gas in which pulsation due to combustion is suppressed as recirculated gas.
  • the exhaust gas recirculation passage 120 supplies a recirculated gas with suppressed pulsation due to combustion to the intake pipe 114.
  • the combustion chamber 4r is divided into two regions, that is, a first region A1 and a second region A2 when viewed in the reciprocating direction Z.
  • the first area A1 and the second area A2 are separated by a center passing line S passing through the center f of the exhaust port 41f and the center b of the intake port 41b.
  • the offset ignition section 7a is arranged in the first area A1 so as not to overlap the center passing line S.
  • FIG. 1 (B) also shows the center line S2 of the intake pipe 114 and the single center tumble port (SCTP) 41a.
  • the center line S2 extends from the center passage line S when viewed in the reciprocating direction Z, and extends along the intake pipe 114 and the single center tumble port (SCTP) 41a.
  • the inside of the intake pipe 114 and the single center tumble port (SCTP) 41a are also divided into two regions by the center line S2 when viewed in the reciprocating direction Z. These two regions, when viewed in the reciprocating direction Z, are continuous with the first region A1 and the second region A2 included in the combustion chamber 4r.
  • a region following the first region A1 of the combustion chamber 4r is referred to as a first region A1.
  • a region following the second region A2 of the combustion chamber 4r is referred to as a second region A2.
  • the center line S2 in the intake pipe 114 and the single center tumble port (SCTP) 41a is not always a straight line as shown in FIG.
  • the center line S2 is also bent. In that case, the first area A1 and the second area A2 are defined based on the curved center line S2.
  • the exhaust gas recirculation passage 120 in the present embodiment is connected so as to open to a second region A2 in the intake pipe 114.
  • the intake pipe 114 and the single center tumble port (SCTP) 41a most of the recirculated gas supplied from the exhaust gas recirculation passage 120 is distributed in the second region A2.
  • the gas passing through the single center tumble port (SCTP) 41a forms a tumble flow in the combustion chamber 4r.
  • a tumble flow in which turbulence is suppressed is formed. Therefore, in the combustion chamber 4r, the gas from the throttle body 116 supplied to only one single center tumble port (SCTP) 41a is mixed. The gas distribution reflecting the distribution of the recirculated gas is easily maintained.
  • FIGS. 2A and 2B are diagrams for explaining the spark ignition engine 1 shown in FIG. 1 in detail, wherein FIG. 2A is a perspective view of the inside of the piston portion viewed in a reciprocating direction, and FIG. .
  • FIG. 3 is a front sectional view of the spark ignition engine shown in FIG.
  • the spark ignition engine 1 shown in FIGS. 2 and 3 is mounted on, for example, a straddle-type vehicle 100 shown in FIG.
  • the spark ignition type engine 1 includes a crankshaft 2, a crankcase 21, a cylinder 4, a piston 5, a fuel injection unit 6, an offset ignition unit 7a (offset ignition plug 7), an intake valve 81, and an exhaust valve 82. ing.
  • the spark ignition engine 1 is a single cylinder engine.
  • the cylinder part 4 includes a cylinder head part 41 and a cylinder body part 42.
  • the crankcase part 21, the cylinder body part 42, and the cylinder head part 41 are stacked in this order and fastened to each other.
  • a cylinder bore 42b is formed inside the cylinder body 42.
  • the cylinder bore 42b is a space in the cylinder body 42.
  • the cylinder head 41 forms a ceiling 41r of the combustion chamber 4r.
  • the piston part 5 is housed in the cylinder bore 42b.
  • the piston part 5 is arranged so as to be able to reciprocate.
  • the direction in which the piston portion 5 reciprocates is referred to as a reciprocating direction Z.
  • the piston portion 5 reciprocates between a top dead center indicated by a solid line and a bottom dead center indicated by a broken line in FIG.
  • the piston part 5 defines a combustion chamber 4r together with the cylinder part 4.
  • the piston portion 5, the cylinder portion 4, the intake valve 81, and the exhaust valve 82 define a combustion chamber 4r.
  • the combustion chamber 4r has a diameter B that is shorter than the reciprocating stroke St of the piston portion 5 when viewed in the reciprocating direction Z.
  • the stroke St of the reciprocating motion of the piston portion 5 is longer than the diameter B of the combustion chamber 4r.
  • the ratio of the stroke St to the diameter B is, for example, 1.2 or more.
  • the ratio of the stroke St to the diameter B may be, for example, 1.3 or more.
  • the ratio of the stroke St to the diameter B is, for example, 1.5 or more.
  • the compression ratio of the spark ignition engine 1 is set higher than that of the conventional engine.
  • the spark ignition engine 1 can have a higher compression ratio than a conventional engine while suppressing the occurrence of knocking. This also improves the thermal efficiency of the spark ignition engine 1.
  • the maximum output rotational speed of the spark ignition engine 1 is set to less than 6000 rpm.
  • the maximum output rotation speed is a rotation speed at which the maximum output is obtained.
  • the spark ignition engine 1 has a large stroke St, the maximum movement speed of the piston portion 5 is suppressed by suppressing the maximum output rotation speed to less than 6000 rpm.
  • the diameter B of the combustion chamber 4r in the spark ignition engine 1 is set, for example, in a range from 40 mm to 60 mm.
  • the stroke St is set between 70 mm and 80 mm.
  • FIG. 4 is a perspective view showing a piston portion of the spark ignition engine shown in FIG.
  • the piston portion 5 has a concave portion 5c that is recessed from the periphery on the top surface 5t of the piston portion 5.
  • the concave portion 5c is circular when viewed in the reciprocating direction Z.
  • the concave portion 5c has a circular shape centered on the center line Lc of the piston portion 5 when viewed in the reciprocating direction Z.
  • the center of the piston portion 5 and the center of the combustion chamber 4r overlap in the reciprocating direction Z.
  • the center of the piston portion 5 and the center of the combustion chamber 4r when viewed in the reciprocating direction Z overlap the center line Lc.
  • valve recesses 5a and 5b for avoiding interference with the intake valve 81 and the exhaust valve 82 are provided on the top surface 5t of the piston portion 5.
  • the valve recesses 5a and 5b are adjacent to the recess 5c.
  • Part of the intake valve 81 and a part of the exhaust valve 82 are received in the valve recesses 5a and 5b.
  • the concave portion 5c is a portion different from the valve recesses 5a and 5b, and does not receive the intake valve 81 and the exhaust valve 82.
  • crankshaft 2 shown in FIGS. 2 and 3 is supported by the crankcase 21 via a bearing 31 (see FIG. 3).
  • the crankshaft 2 is connected to the piston 5 via a connecting rod 32.
  • One end of the connecting rod 32 is rotatably supported by the crankshaft 2, and the other end of the connecting rod 32 is rotatably supported by the piston 5. Thereby, the crankshaft 2 rotates according to the reciprocating motion of the piston portion 5.
  • the spark ignition engine 1 includes only one single center tumble port (SCTP) 41a and only one exhaust port 41e.
  • the single center tumble port (SCTP) 41a functions as an intake port.
  • the single center tumble port (SCTP) 41a and the exhaust port 41e are formed in the cylinder head 41.
  • Each of the single center tumble port (SCTP) 41a and the exhaust port 41e continues to the combustion chamber 4r.
  • the cylinder head 41 has an intake port 41b and an exhaust port 41f.
  • the intake port 41b is an opening of the single center tumble port (SCTP) 41a in the combustion chamber 4r.
  • the exhaust port 41f is an opening of the exhaust port 41e in the combustion chamber 4r.
  • the gas passing through the single center tumble port (SCTP) 41a is supplied to the combustion chamber 4r through the intake port 41b.
  • the intake port 41b of the spark ignition engine 1 is larger than the exhaust port 41f.
  • the intake port 41b is formed such that the center of the cylinder bore 42b (that is, the point where the center line Lc of the piston section 5 passes) is located inside the intake port 41b when viewed in the reciprocating direction Z of the piston section.
  • the end (upstream end) of the single center tumble port (SCTP) 41a opposite to the intake port 41b is open to the outer surface of the cylinder head portion 41.
  • An intake passage 115 (see FIG. 1) is connected to an end (upstream end) of the intake port 41b.
  • an intake pipe 114 forming an intake passage 115 is connected to an upstream end of the intake port 41b.
  • the exhaust port 41e is formed so as to extend from the exhaust port 41f of the combustion chamber 4r to the downstream in the cylinder head 41 while being bent.
  • the end (downstream end) of the exhaust port 41e opposite to the exhaust port 41f is open to the outer surface of the cylinder head 41.
  • An exhaust pipe 118 (see FIG. 1) is connected to an end (downstream end) of the exhaust port 41f.
  • the region near the intake port Ar extends from the intake port 41b in the direction opposite to the intake direction Y1 with respect to the extension area Ae. Is defined.
  • At least a peripheral portion of the ceiling portion 41r of the combustion chamber 4r that follows the cylinder body portion 42 has a non-squish region NS in the intake port vicinity region Ar.
  • the non-squish area NS is an area of the peripheral portion of the ceiling portion 41r where the protruding portion facing the combustion chamber 4r is not provided. That is, the non-squish area NS is an area in which the protrusion for generating the squish effect is not provided.
  • the separation distance between the cylinder head portion 41 and the piston portion 5 in the direction of the center line Lc of the piston portion 5 is configured to increase continuously toward the radial center of the combustion chamber 4r. I have.
  • the non-squish area NS is provided on the entire periphery of the ceiling 41r.
  • the fuel injection unit 6 is mounted with the single center tumble port (SCTP) 41a facing toward it.
  • the fuel injection unit 6 injects fuel into a single center tumble port (SCTP) 41a.
  • the fuel injection unit 6 injects fuel at a position upstream of the intake port 41b.
  • the fuel injection unit 6 injects fuel into the gas supplied into the single center tumble port (SCTP) 41a.
  • Gas containing fuel is supplied to the combustion chamber 4r through the intake port 41b.
  • the gas supplied to the combustion chamber 4r includes outside air, recirculated gas, and fuel.
  • the spark ignition engine 1 is burning at a stoichiometric air-fuel ratio (stoichiometry).
  • the fuel injection unit 6 injects fuel so that the spark ignition engine 1 burns at the stoichiometric air-fuel ratio.
  • the fuel injection unit 6 injects fuel so that the air-fuel ratio is in a range from 14.2 to 14.8. This corresponds to a range of the excess air ratio from 0.98 to 1.02.
  • the spark ignition engine 1 detects the oxygen content in the exhaust gas using, for example, an oxygen sensor (not shown), and sets the air-fuel ratio from 14.2 to 14.8 based on the detected oxygen content.
  • the fuel is injected so as to fall within the range.
  • the combustion chamber 4r when viewed in the reciprocating direction Z, the combustion chamber 4r is divided into two regions, that is, a first region A1 and a second region A2.
  • the offset ignition section 7a is arranged in the first area A1 so as not to overlap the center passing line S.
  • the intake port 41b is formed such that the interval between the intake port 41b and the exhaust port 41f on the center passage line S is shorter than the diameter of the offset ignition section 7a.
  • the offset ignition section 7a is arranged so as not to overlap with the center passage line S, and a large diameter of the intake port 41b can be secured.
  • a camshaft 41s is rotatably provided on the cylinder head 41.
  • the camshaft 41s is provided with cams 41t, 41u, 41v.
  • the camshaft 41s and the cams 41t, 41u, 41v are integrated and rotate in conjunction with the rotation of the crankshaft 2.
  • the exhaust valve 82 linearly reciprocates by the operation of the cam 41t, the exhaust port 41f is opened and closed.
  • the intake valve 41 is linearly reciprocated by the operation of the cams 41u and 41v, so that the intake port 41b is opened and closed.
  • the intake valve 81 opens the intake port 41b when the piston portion 5 moves to the bottom dead center (the position indicated by the broken line in FIG. 2), so that the intake valve 81 is sucked into the combustion chamber 4r through the single center tumble port (SCTP) 41a. A tumble flow is generated in the gas (intake gas).
  • the intake valve 81 makes the compression ratio of the spark ignition engine 1 smaller than the expansion ratio by closing the intake port 41b later than reaching the bottom dead center of the piston portion 5.
  • the spark ignition engine 1 includes a variable valve timing mechanism 43.
  • the variable valve timing mechanism 43 switches the timing at which the intake valve 81 closes under the control of a control unit (not shown). Specifically, the variable valve timing mechanism 43 switches the timing for closing the intake valve 81 by switching the cam for driving the intake valve 81 between the cams 41u and 41v.
  • the cylinder portion 4 draws gas from the single center tumble port (SCTP) 41a.
  • SCTP single center tumble port
  • the cylinder part 4 has a cylindrical cylinder bore 42b in which the piston part 5 is accommodated.
  • a combustion chamber 4r is defined by the cylinder part 4 and the piston part 5.
  • the piston part 5 moves by a stroke St longer than the diameter B of the combustion chamber 4r.
  • the gas sucked from the single center tumble port (SCTP) 41a flows mainly toward the exhaust valve 82, and is then guided to the wall surface of the cylindrical cylinder bore 42b. As a result, a tumble flow is generated.
  • the piston part 5 When the piston part 5 moves toward the top dead center, the piston part 5 pushes gas toward the top dead center.
  • the cylinder portion 4 is formed so that the gas pushed by the piston portion 5 toward the top dead center is directed to the intake port 41b in which the intake valve 81 is arranged.
  • the gas pushed by the piston portion 5 is guided by the wall surface of the cylindrical cylinder bore 42b and rises toward the intake port 41b in which the intake valve 81 is arranged. This also produces a tumble flow. Details of the tumble flow will be described later.
  • FIG. 5 is an enlarged view of the spark ignition type engine shown in FIG.
  • FIG. 5 shows the division of the combustion chamber 4r from a different viewpoint from FIG. 2 (A). That is, as shown in FIG. 5, the combustion chamber 4r has an intake port formed by a straight line T that is orthogonal to the center passing line S when viewed in the reciprocating direction Z of the piston portion 5 (see FIG. 2) and that passes through the center Lc of the cylinder bore 42b. It is divided into a region Ab including the exhaust port 41f and a region Ab including the exhaust port 41f.
  • FIG. 5 shows a center passing line passing through the center Lc of the cylinder bore when viewed in the reciprocating direction Z of the piston portion 5.
  • the intake port 41b provided in the single center tumble port (SCTP) 41a is widely secured with respect to the small-diameter cylinder bore 42b.
  • the intake port 41b is formed as follows. When viewed in the reciprocating direction Z, on the center passing line S in the region Ab including the intake port 41b, the portion where the center passing line S and the intake port 41b overlap in the region Ab is the center passing line S and the intake port 41b. Is longer than the non-overlapping parts.
  • SCTP single center tumble port
  • the length of the portion where the center passing line S does not overlap with the intake port 41b is substantially zero. That is, when viewed in the reciprocating direction Z, the intake port 41b is disposed so as to be inscribed in the combustion chamber 4r. When viewed in the reciprocating direction Z, the center Lc of the cylinder bore 42b is included in the range of the intake port 41b.
  • the intake valves 81 are arranged as follows.
  • an end point (a point overlapping with Lc in FIG. 5) of the valve surface portion 81c close to the exhaust port 41f is parallel to the center passage line S when viewed in the reciprocating direction Z. In the direction, it is closer to the exhaust port 41f than the end point d of the plug hole 41d which is closer to the intake port. Thus, a large intake port 41b is formed.
  • the diameter of the combustion chamber 4r is larger than 40 mm and smaller than 60 mm.
  • the length of the center passage line S in the region Ab including the intake port 41b is larger than 20 mm and smaller than 30 mm.
  • the portion where the center passing line S and the intake port 41b overlap is larger than 20 mm and smaller than 30 mm.
  • the length of the portion where the center passing line S and the intake port 41b overlap is larger than 20 mm and smaller than 30 mm.
  • each of the diameter of the combustion chamber 4r, the length of the center passage line S in the region Ab including the intake port 41b, the length of the portion where the center passage line S overlaps the intake port 41b, and the length of the non-overlapping portion Is not limited to the range described above.
  • FIG. 6 is an enlarged sectional view showing the single center tumble port (SCTP) of the spark ignition type engine shown in FIG. 2 and its peripheral portion.
  • FIG. 5A is a diagram showing the positions of the intake valve 81 and the fuel injection unit 6 in addition to the single center tumble port (SCTP) 41a.
  • FIG. 5B is a cross-sectional view showing only the single center tumble port (SCTP) 41a for easy viewing.
  • the spark ignition engine 1 is provided with only one single center tumble port (SCTP) 41a.
  • the single center tumble port (SCTP) 41a has an inner wall extending in a cylindrical shape.
  • the intake valve 81 has an umbrella portion 81a and a stem portion 81b.
  • the umbrella portion 81a has a disk shape.
  • the stem portion 81b has a columnar shape and continues to the umbrella portion 81a.
  • the intake valve 81 has a valve surface 81c.
  • the valve face portion 81c is a portion of the umbrella portion 81a facing the combustion chamber 4r.
  • the valve surface 81c is circular.
  • the single center tumble port (SCTP) 41a has a structure for generating a tumble flow in the gas taken into the combustion chamber 4r from the intake port 41b. More specifically, a peeling enhancement portion 41p is provided on the inner wall of the single center tumble port (SCTP) 41a.
  • the separation enhancer 41p has a structure in which the gas sent to the intake port 41b is separated from the wall surface following the intake port 41b so as to generate a tumble flow in the gas taken into the combustion chamber 4r from the intake port 41b.
  • the separation enhancing portion 41p separates gas from at least the portion 41g farthest from the exhaust port 41f (see FIG. 1) of the circumference defining the intake port 41b of the single center tumble port (SCTP) 41a. It has a structure to do. More specifically, in a cross section passing through the intake port 41b and the exhaust port 41f, the peeling-enhancing portion 41p is provided at least in an exhaust portion of an annular portion of the wall constituting the single center tumble port (SCTP) 41a adjacent to the intake port 41b. It has a folded shape provided at a portion 41g farthest from the mouth 41f.
  • the peeling enhancement portion 41p has a shape that is suddenly turned in a direction away from the center line 41c of the single center tumble port (SCTP) 41a. In other words, the peeling enhancement portion 41p has a shape that is suddenly turned in a direction away from the exhaust port 41f.
  • the peeling enhancement part 41p protrudes toward the space inside the single center tumble port (SCTP) 41a.
  • the separation enhancing portion 41p is a protrusion extending along the annular circumference of the inner wall upstream of the gas flow from the intake port 41b. That is, the separation enhancing portion 41p extends along the circumference of the intake port 41b. However, the peeling enhancement portion 41p does not go around the inner wall.
  • the single center tumble port (SCTP) 41a has a peel-enhancing portion 41p in a portion farthest from the exhaust port 41f in an annular band portion following the intake port 41b.
  • the peeling enhancement part 41p has an edge. Therefore, the inner wall of the single center tumble port (SCTP) 41a shown in FIG. 6 is discontinuous at 41p at the peeling enhancement portion along the extending direction of the single center tumble port (SCTP) 41a.
  • the peeling enhancement part 41p forms a right angle or an acute angle in the cross section shown in FIG.
  • the peeling enhancement portion 41p forms an acute angle in the cross section shown in FIG.
  • the peeling enhancement portion 41p has a folded shape, but may not necessarily have an edge as shown in FIG. 5 microscopically.
  • the gas flowing toward the intake port 41b while contacting the inside of the single center tumble port (SCTP) 41a with the wall surface is separated from the wall surface by the separation enhancing portion 41p. Gas cannot flow along the sharply folded shape. That is, the flow away from the exhaust port 41f decreases. For this reason, in the flow of gas sucked into the combustion chamber 4r through the gap between the intake port 41b and the intake valve 81, the flow from the intake port 41b to the exhaust port 41f is faster than the flow in other directions. .
  • the tumble flow is generated in the combustion chamber 4r by the flow from the intake port 41b toward the exhaust port 41f. Details of the tumble flow will be described later.
  • the spark ignition type engine 1 is an intake pipe injection type engine.
  • the fuel injection unit 6 is arranged so as to inject fuel toward the intake port 41b of the single center tumble port (SCTP) 41a.
  • SCTP single center tumble port
  • the fuel injection unit 6 injects atomized fuel into a conical injection range 6a.
  • the density of the injected fuel increases as it approaches the center 6c of the injection range.
  • the density of the fuel at the center 6c of the injection range 6a is the maximum.
  • the fuel injection unit 6 is disposed such that the center 6c of the fuel injection range 6a does not intersect with the separation enhancing portion 41p of the single center tumble port (SCTP) 41a.
  • the fuel injection section 6 is arranged such that the center 6c of the fuel injection range intersects with the stem section 81b of the intake valve 81.
  • the center 6c of the injection range 6a having the maximum fuel density does not intersect with the separation enhancing portion 41p. For this reason, it is possible to suppress the occurrence of a situation in which the fuel adheres to the separation enhancing portion 41p and aggregates near the separation enhancing portion 41p. As a result, it is possible to suppress occurrence of a situation in which the coagulated combustion becomes a large lump (droplet) and intermittently enters the combustion chamber 4r. Accordingly, unintended intermittent fluctuations in fuel supply from the single center tumble port (SCTP) 41a can be suppressed. Therefore, thermal efficiency is improved. More specifically, the fuel injection unit 6 is arranged so that the injection range 6a does not intersect with the separation enhancing portion 41p of the single center tumble port (SCTP) 41a. This further suppresses the occurrence of the situation where the fuel adheres to the separation enhancing portion 41p and aggregates in the vicinity of the separation enhancing portion 41p. Therefore, the thermal efficiency is further improved.
  • FIG. 7 is a diagram schematically illustrating the flow of gas in the combustion chamber of the spark ignition engine shown in FIG. (A) shows a plan view of the intake stroke, and (B) shows a perspective view of the intake stroke.
  • the exhaust gas recirculation passage 120 is connected to the intake pipe 114 so as to open to a second region A2 in the intake pipe 114 as shown in FIG. Therefore, most of the recirculated gas (indicated by hatched arrows) supplied from the exhaust gas recirculation passage 120 is distributed in the second area A2 of the single center tumble port (SCTP) 41a.
  • SCTP single center tumble port
  • the flow from the intake port 41b to the exhaust port 41f is directed in another direction. Many faster than the flow.
  • Most of the gas that has entered the combustion chamber 4 r from the intake port 41 b flows along the valve surface of the exhaust valve 82 and flows toward the bottom dead center of the piston 5 so as to be drawn into the piston 5.
  • a tumble flow is formed in the combustion chamber 4r.
  • the tumble flow is a vortex around an axis X1 extending in a direction intersecting the reciprocating direction Z.
  • the axis X1 is substantially parallel to the crankshaft direction X.
  • the valve surface portion is a planar portion facing the combustion chamber.
  • the spark ignition type engine 1 has an intake port 41b of only one single center tumble port (SCTP) 41a and an exhaust port 41f of only one exhaust port 41e.
  • SCTP single center tumble port
  • one intake port 41b and one exhaust port 41f are arranged so as to overlap with a common diameter of the combustion chamber 4r when viewed in the reciprocating direction Z. ing. That is, one intake port 41b and one exhaust port 41f are arranged on a straight line that passes through the center line Lc of the combustion chamber 4r and is parallel to the intake direction Y1 when viewed in the reciprocating direction Z. For this reason, the flow of the gas passing near the center line Lc is the fastest among the flows of the gas entering the combustion chamber 4r from the intake port 41b.
  • the spark ignition type engine 1 is provided with an intake port 41b which is larger than a case where a plurality of intake ports are provided, for example. Therefore, when viewed in the reciprocating direction Z, a gas flows from the intake port 41b to the exhaust port 41f. The gas flows form a unit having a wide width in the crankshaft direction X.
  • the offset ignition portion 7a (see FIG. 2) of the spark ignition type engine 1 is located in the first area A1 of the combustion chamber so as not to overlap the center passage line S. For this reason, for example, a larger intake port 41b is provided as compared with the case where the ignition section is arranged at the center of the combustion chamber 4r when viewed in the reciprocating direction Z.
  • the spark ignition engine 1 has a larger intake port 41b than one intake port in a configuration having a plurality of intake ports, for example.
  • the area of the intake port 41b is smaller than the total area of the intake ports when a plurality of intake ports are provided, for example. Since the smaller the opening, the faster the gas flows, the gas passing through the inlet 41b of the single center tumble port (SCTP) 41a generates a faster tumble flow as compared with a case having a plurality of inlets.
  • SCTP single center tumble port
  • the single center tumble port (SCTP) 41a of the spark ignition engine 1 forms a tumble flow having a tumble ratio of more than 0.3 in the cylinder portion 4.
  • the tumble ratio is an index indicating the strength of the tumble flow.
  • the tumble ratio is an index indicating the speed of the tumble flow.
  • FIG. 8 is a diagram illustrating a method of calculating the tumble ratio.
  • FIG. 8 schematically shows the internal structure of the cylinder unit 4.
  • a space called a tumble sphere TS is defined in the cylinder portion 4.
  • the tumble ratio is calculated from the angular velocity of the gas in the sphere of the tumble sphere TS.
  • a tumble flow having a wide width and having the fastest flow at the central portion in the width direction is formed in the combustion chamber 4r.
  • the tumble flow having the fastest flow at the center is formed by the movement of the piston portion 5 that moves by a stroke St longer than the diameter B of the combustion chamber 4r.
  • the tumble flow having the fastest flow at the central portion in the width direction suppresses the turbulence of the flow. In such a tumble flow, the speed is likely to be maintained for a long period of time.
  • the formation of a tumble with a tumble ratio greater than 0.3 further reduces the time required to burn the gas.
  • the piston portion 5 moves toward the top dead center. That is, the piston part 5 rises from the position of the bottom dead center.
  • the gas that has flowed out of the intake port 41b along the valve surface of the exhaust valve 82 during the intake stroke and flows toward the piston 5 is pushed by the piston 5 during the compression stroke. .
  • the gas pushed by the piston part 5 flows toward the intake port 41b. This maintains a tumble flow.
  • the stroke St in which the piston portion 5 moves is longer than the diameter B of the combustion chamber 4r. Therefore, the moving speed of the piston portion 5 in the compression stroke is also high. Therefore, a fast tumble flow is easily maintained by the gas pressed by the piston portion 5. Therefore, the distribution of the recirculated gas in the combustion chamber 4r in the crankshaft direction X is easily maintained.
  • At least the peripheral edge of the ceiling 41r of the combustion chamber 4r has a non-squish area NS in the area Ar near the intake port. For this reason, the disturbance of the tumble flow in the combustion chamber 4r is suppressed. This also facilitates maintaining the distribution of the recirculated gas in the combustion chamber 4r in the crankshaft direction X.
  • the gas in the first area A1 containing a large amount of outside air burns in a short time.
  • the gas in the second area A2 remote from the offset ignition section 7a contains a large amount of recirculated gas. The escape of heat due to the combustion of the gas in the first region A1 to the piston portion 5 and the cylinder portion 4 is suppressed by the recirculated gas having a high specific heat.
  • the fast tumble flow in the combustion chamber 4r changes to a fast turbulent flow. This also allows the flame to propagate in a short period of time.
  • the combustion chamber 4r has a diameter B shorter than the reciprocating stroke St of the piston portion 5.
  • the short diameter B reduces the flatness of the combustion chamber 4r defined by the piston part 5 when the piston part 5 is at the top dead center. Therefore, when the flame propagates after the ignition by the offset ignition unit 7a, the maximum distance in which the flame propagates is reduced. This also reduces the burning time.
  • the offset ignition section 7a of the spark ignition engine 1 is disposed at a position offset from the center of the combustion chamber 4r when viewed in the reciprocating direction Z.
  • the influence on the combustion time due to the offset arrangement position of the offset ignition section 7a is suppressed by the fast tumble flow and the decrease in the maximum flame propagation distance.
  • a fast tumble flow is maintained in the combustion chamber, and the time required for burning the gas is reduced because the distance over which the flame propagates is reduced.
  • the thermal efficiency of the spark ignition engine 1 is improved.
  • the occurrence of knocking is suppressed by reducing the time required for combustion. Further, since the spark ignition engine 1 is a water-cooled engine, occurrence of knocking is suppressed. For this reason, the compression ratio of the spark ignition type engine 1 can be set higher than that of the conventional engine while suppressing the occurrence of knocking. As a result, the thermal efficiency of the spark ignition engine 1 is further improved.
  • FIG. 9 is a diagram illustrating a modified example of the spark ignition engine unit according to the present embodiment.
  • FIG. 7A is a plan view of an intake stroke schematically illustrating a flow of gas in a combustion chamber of a spark ignition type engine according to a modification.
  • (B) is a perspective view of an intake stroke.
  • the exhaust gas recirculation passage 120 is opened in the intake pipe 114 at a position overlapping with the center line S2 of the intake pipe 114 when viewed in the reciprocating direction Z.
  • the distribution of the recirculated gas supplied from the exhaust gas recirculation passage 120 in the single center tumble port (SCTP) 41a has a bias in the reciprocating direction Z.
  • the distance of the gap between the intake port 41b and the intake valve 81 corresponding to the distribution of the single center tumble port (SCTP) 41a in the reciprocating direction Z is small. The overlap between the outside air and the recirculated gas passes through the gap between the intake port 41b and the intake valve 81.
  • the recirculated gas in the combustion chamber 4r is easily mixed with the outside air.
  • the recirculated gas is uniformly dispersed in the combustion chamber 4r.
  • Such a distribution in which the recirculated gas is uniformly dispersed is obtained by setting the combustion operation such that the combustion speed of the gas is made uniform after ignition by the offset ignition unit 7a as the combustion operation characteristic of the spark ignition type engine 1. Suitable for.
  • the recirculated gas taken out of the exhaust pipe 118 by the exhaust gas recirculation passage 120 is supplied to the combustion chamber 4r together with the outside air via a single center tumble port (SCTP) 41a. It is sucked in. As a result, a tumble flow is formed in the combustion chamber 4r. Outside air flows through the throttle body 116, the intake pipe 114, and the single center tumble port (SCTP) 41a without passing through the surge tank. For this reason, as in the examples shown in FIGS. 7 and 9, by adjusting the merging position of the recirculated gas, the deviation of the distribution of the recirculated gas in the combustion chamber 4r is increased, or the distribution is eliminated without the deviation. The distribution of the circulating gas can be made uniform.
  • the recirculated gas and the outside air are mixed in the surge tank, the recirculated gas and the outside air are equalized before passing through the single center tumble port (SCTP) 41a. For this reason, it is difficult to design such that the distribution of the recirculated gas is biased in the combustion chamber. Even when the recirculated gas and the outside air are mixed downstream of the surge tank, it is difficult to design such that the distribution is biased. This is because the surge tank normally has a negative pressure period for supplying gas to the combustion chambers provided in the plurality of cylinders. The recirculated gas that has joined the outside air downstream from the surge tank may flow toward the surge tank, that is, upstream during a period in which the surge tank has a negative pressure.
  • the gas containing the recirculated gas that has flowed upstream then flows downstream and passes through the junction where it is supplied to the combustion chamber.
  • the recirculated gas and the outside air tend to be uniform. For this reason, it is difficult to design such that the distribution of the recirculated gas is biased in the combustion chamber.
  • the deviation of the distribution of the recirculated gas in the combustion chamber 4r is increased, or the distribution of the recirculated gas is eliminated without the deviation. Can be made uniform.
  • the exhaust recirculation passage is arranged so as to open at two locations in the intake pipe, that is, a first region and a second region. I do.
  • the concentration of the recirculated gas is low in the central region near the center passage line when viewed in the reciprocating direction, and the concentration of the recirculated gas is high in the region outside the central region.
  • the concentration of the recirculated gas is low in the region near the spark plug at the center of the combustion chamber, and high in the two regions away from the spark plug.
  • the merging position and the number of the recirculated gas in the circumferential direction of the intake pipe and the center tumble port are not particularly limited. Further, the merging position of the recirculated gas in the flow direction of the intake pipe and the center tumble port may be between the throttle body and the intake port, and the number of merging positions is not particularly limited. Since the time before the recirculated gas flows into the combustion chamber is shortened by merging the recirculated gas downstream, it is possible to increase the bias of the distribution of the recirculated gas in the combustion chamber.
  • the degree of freedom in designing the distribution of the recirculated gas in the combustion chamber 4r is increased.
  • FIG. 10 is a plan view illustrating the outflow state of gas of a spark ignition type 4-valve engine as a comparative example.
  • the engine 9 of the comparative example shown in FIG. 10 has four valves.
  • the flow of the gas from each of the gas inlets 941b is the same as that of the present embodiment having one air inlet 41b (see FIG. 7). Slow compared to the flow.
  • the flows obliquely directed toward the intake direction so as to approach each other are disturbed by colliding with each other at the center. Therefore, the gas sucked into the combustion chamber 94r is stirred immediately after the suction. Therefore, for example, as in the embodiment shown in FIG.
  • the bias of the distribution of the recirculated gas in the combustion chamber 4r is increased by adjusting the merging position of the recirculated gas as shown in FIG. 7 or FIG.
  • the distribution of the recirculated gas can be made uniform without bias.
  • the degree of freedom in designing the distribution of exhaust gas in the combustion chamber 4r of the spark ignition engine can be increased.
  • the combustion time is shortened by the fast tumble flow to increase the thermal efficiency, and the distribution of the exhaust gas in the combustion chamber 4r is set using the easily maintained tumble flow. be able to. Therefore, the thermal efficiency is high and the degree of freedom in designing the exhaust gas distribution is high.
  • FIG. 11 is a graph showing the relationship between the diameter of the combustion chamber and the thermal efficiency of the spark ignition engine.
  • FIG. 11 shows, as an example, a calculation result of thermal efficiency (illustrated thermal efficiency) when the stroke volume (stroke volume) is fixed to 0.15 L and the diameter of the combustion chamber and the stroke of the piston portion are changed. It is shown.
  • the spark ignition engine to be simulated has the same configuration as that shown in FIGS. 2 and 3 except for the diameter of the combustion chamber and the stroke of the piston. That is, the spark ignition engine to be calculated includes the single center tumble port (SCTP) 41a.
  • SCTP single center tumble port
  • the degree of increase in the indicated thermal efficiency is substantially saturated. That is, the illustrated thermal efficiency does not easily increase with an increase in the stroke. In the region where the stroke of the piston portion is longer than 1.2 times the diameter of the combustion chamber, the indicated thermal efficiency is higher.
  • the degree of increase in the indicated thermal efficiency is further saturated. That is, the illustrated thermal efficiency is less likely to increase with an increase in the stroke. In the region where the stroke of the piston portion is longer than 1.5 times the diameter of the combustion chamber, the increase in the indicated thermal efficiency due to the increase in the moving speed of the piston portion is more stable.
  • FIG. 12 is a graph showing the relationship between the stroke capacity of the engine and the thermal efficiency.
  • the graph of FIG. 12 shows the relationship between the stroke volume of the engine and the thermal efficiency under the condition that the compression ratio is constant.
  • the horizontal axis of the graph of FIG. 10 is the stroke volume of the engine.
  • the stroke volume is the stroke volume (displacement amount) per cylinder.
  • the vertical axis indicates thermal efficiency (illustrated thermal efficiency).
  • a solid line ⁇ 1 of the graph indicates a calculation result of the thermal efficiency based on a model of the engine having the single center tumble port (SCTP) of the present embodiment.
  • a dashed line ⁇ 2 in the graph indicates a trial calculation result of the thermal efficiency based on a model of the engine without the single center tumble port (SCTP).
  • the spark ignition engine 1 of the present embodiment in a spark ignition engine having a stroke volume of less than 0.2 L in which the thermal efficiency is apt to decrease, for example, a part of exhaust gas together with a gas flowing through a surge tank is a single center tumble port.
  • the degree of freedom in designing the distribution of exhaust gas in the combustion chamber can be increased so as to suppress a decrease in thermal efficiency as compared with the case where air is sucked through the (SCTP) 41a.
  • the degree of freedom in designing the distribution of exhaust gas in the combustion chamber can be increased while suppressing an increase in size.
  • FIG. 13 is a graph showing the relationship between the stroke volume of a general engine and the indicated thermal efficiency.
  • FIG. 13 shows the stroke volume and the indicated thermal efficiency in a general engine as a reference example.
  • the indicated thermal efficiency is a thermal efficiency that does not consider the mechanical loss.
  • the stroke of the piston portion in the reference example is equal to the diameter of the combustion chamber.
  • the indicated thermal efficiency of a general engine as represented by the reference example shown in FIG. 13 has a tendency to decrease as the size of the engine decreases, due to the relationship between volume and surface area. This is because the volume is closely related to the amount of generated heat, while the surface area is closely related to heat loss due to heat radiation. As shown in FIG.
  • the decrease in the illustrated thermal efficiency is accelerated with the decrease in the stroke volume. That is, for example, a deviation from a straight line (dashed-dotted line) ⁇ ′ indicating a tendency in a large engine of 0.4 L or more increases.
  • the decrease in the indicated thermal efficiency becomes remarkable when the stroke volume is less than 0.15 L. That is, the deviation from the straight line (dashed-dotted line) ⁇ ′ becomes apparent when the stroke volume is less than 0.2 L, and becomes remarkable when the stroke volume is less than 0.18 L.
  • the degree of freedom in designing the distribution of exhaust gas in the combustion chamber can be increased while improving the thermal efficiency of the two-valve engine.
  • the spark ignition type two-valve engine has a stroke volume of 0.125 L or more, the increase in the indicated thermal efficiency due to the formation of the tumble flow has a sufficient margin for the decrease in the indicated thermal efficiency due to the downsizing.
  • FIG. 14 is a view for explaining gas flows in the spark ignition type two-valve engine 1 shown in FIGS. 1 to 10.
  • FIG. 14 shows a simulation of a gas flow in the intake stroke of the spark ignition type two-valve engine 1 shown in FIGS.
  • the gas sucked into the cylinder part 4 from the single center tumble port (SCTP) 41a is easily separated from the wall surface by the separation enhancement part 41p.
  • the separated gas easily flows in a direction in which the single center tumble port (SCTP) 41a extends. Therefore, the flow rate and the speed of the gas flowing toward the valve surface of the exhaust valve 82 among the gas sucked into the combustion chamber 4r from the single center tumble port (SCTP) 41a increase.
  • FIG. 15A is a view showing a modified example of a port in a spark ignition type engine.
  • FIG. 15B is a diagram illustrating the flow of gas in the spark ignition engine of FIG. 15A.
  • FIG. 15B shows a simulation result of a gas flow in the intake stroke.
  • a single center tumble port (SCTP) 241a shown in FIG. 15A has a peeling enhancement part 241p.
  • the separation enhancing portion 241p has a structure in which a gas sent to the intake port 241b is separated from a wall surface following the intake port 241b so as to generate a tumble flow in the gas taken into the combustion chamber 4r (see FIG. 5) from the intake port 241b.
  • the separation enhancing portion 241p separates gas from at least a portion of the circumference defining the intake port 241b of the single center tumble port (SCTP) 241a that is farthest from the exhaust port 41f (see FIG. 2). It has such a structure.
  • the peeling-enhancing portion 241p is formed in an annular shape adjacent to the intake port 241b on the wall constituting the single center tumble port (SCTP) 241a. It has a folded shape provided at least at a portion of the band portion farthest from the exhaust port 41f.
  • the peeling enhancement part 41p has a shape that is suddenly turned in a direction away from the center line of the single center tumble port (SCTP) 241a. In other words, the peel-enhancing portion 241p has a shape that is suddenly turned in a direction away from the exhaust port 41f.
  • the peeling enhancement part 241p has a shape that is folded so as to form a right angle or an acute angle in a cross section passing through the intake port 241b and the exhaust port 41f (see FIG. 2).
  • the peeling enhancement portion 241p has a shape that is folded so as to form a substantially right angle in the cross section shown in FIG. However, the peeling enhancement part 241p does not have an edge microscopically, and has a shape folded back into a curved surface.
  • the peeling enhancement portion 241p is a projection projecting into the single center tumble port (SCTP) 241a.
  • the single center tumble port (SCTP) 241a shown in FIG. 15A has a concave portion 241v upstream of the separation enhancing portion 241p in the gas flow.
  • the concave portion 241v is adjacent to the peel-enhancing portion 241p, and has a curved surface in a cross section along the extending direction of the single center tumble port (SCTP) 241a. Since the concave portions 241v are adjacent to each other, the peeling-enhancing portion 241p has a shape that is suddenly turned in a direction away from the exhaust port 41f. Therefore, the inner wall of the single center tumble port (SCTP) 241a is substantially discontinuous at the peeling enhancement portion 241p in the extending direction of the single center tumble port (SCTP) 241a.
  • the gas is separated from the wall surface by the concave portion 241v and the separation enhancing portion 241p.
  • the gas sucked into the cylinder unit 4 from the single center tumble port (SCTP) 241a is easily separated from the wall surface by the separation enhancement part 241p.
  • the separated gas easily flows in a direction in which the single center tumble port (SCTP) 241a extends. Accordingly, the flow rate and the speed of the gas flowing toward the valve surface of the exhaust valve 82 among the gas sucked into the combustion chamber 4r from the single center tumble port (SCTP) 241a increase.
  • the amount and flow rate of the gas sucked into the combustion chamber 4r from a position farther than the intake valve 81 are reduced. As a result, after flowing along the valve surface of the exhaust valve 82, a fast tumble flow directed toward the piston portion 5 (FIG. 2) is generated.
  • FIG. 16 is a diagram illustrating the flow of gas in the comparative example.
  • the peeling enhancement part 341p single center tumble port (SCTP) shown in FIG. 16 does not have the peeling enhancement part 241p.
  • Gas passing through the single center tumble port (SCTP) is difficult to peel off from the wall.
  • SCTP single center tumble port
  • the flow rate and the speed of the gas flowing toward the valve surface of the exhaust valve 82 are small.
  • the amount and flow rate of the gas sucked into the combustion chamber 4r from a position farther than the intake valve 81 are larger than, for example, the case shown in FIG.
  • the tumble flow in the direction toward the piston portion 5 (FIG. 2) is slow.
  • FIG. 17 is a graph showing the tumble ratio in the configurations shown in FIGS. 14, 15, and 16, respectively.
  • TR1 in the graph indicates the tumble ratio in the configuration shown in FIG.
  • TR2 indicates the tumble ratio in the configuration shown in FIG.
  • TRr indicates the tumble ratio in the configuration of the comparative example shown in FIG.
  • the tumble ratio is shown under the condition that the valve lift of the intake valve 81 is different. In the case of the configuration of the embodiment shown in FIGS. 14 and 15, a larger tumble ratio is obtained than in the case of the comparative example.
  • FIG. 18 is a side view showing a straddle-type vehicle on which the spark ignition engine unit EU1 shown in FIG. 1 is mounted.
  • a straddle-type vehicle 100 shown in FIG. 18 includes a vehicle body 102 and wheels 103a and 103b. Specifically, the straddle-type vehicle 100 is a motorcycle. The straddle-type vehicle 100 is a scooter type vehicle. The rear wheel 103b is a driving wheel. The vehicle body 102 is provided with a frame 104. The frame 104 includes a down frame 104a.
  • the straddle-type vehicle 100 includes an acceleration instruction unit 108.
  • the acceleration instruction unit 108 is an operator for instructing the saddle-ride type vehicle 100 to accelerate according to an operation.
  • the acceleration instruction unit 108 is displaced according to the operation.
  • the acceleration instruction unit 108 is an accelerator grip.
  • the spark ignition type engine 1 is arranged in a saddle type vehicle 100 in a lateral direction. That is, the spark ignition engine 1 is arranged such that the angle formed between the horizontal plane and the reciprocating direction Z is smaller than the angle formed between the vertical plane perpendicular to the front-rear direction FB and the reciprocating direction Z of the piston portion 5. .
  • the angle ⁇ 1 formed between the reciprocating direction Z of the piston portion 5 and the center line 115a of the intake passage 115 in the throttle body 116 is perpendicular to the reciprocating direction Z and the center line 115a. And smaller than the angle ⁇ 2 formed by Further, the throttle body 116 is arranged at a position overlapping the cylinder portion 4 in a direction Y perpendicular to the reciprocating direction Z.
  • the catalyst unit 119 is disposed at a position overlapping the cylinder portion 4 in a direction Y perpendicular to the reciprocating direction Z. That is, the catalyst unit 119 is arranged along the cylinder portion 4. The catalyst unit 119 is disposed below the cylinder 4 in the vertical direction of the saddle-ride type vehicle 100 in the upright state.
  • the spark ignition engine unit EU1 Since the spark ignition engine unit EU1 is mounted on the straddle-type vehicle 100, it is required to be small.
  • the cylinder portion 4 of the spark ignition engine 1 provided in the spark ignition engine unit EU1 is disposed above the down frame 104a in the vertical direction.
  • an intake passage 115 and a throttle body 116 provided in the spark ignition type engine unit EU1 are also arranged above the down frame 104a.
  • a battery or a storage unit (not shown) is arranged above the spark ignition engine unit EU1.
  • the spark ignition engine unit EU1 is arranged in a limited space between the down frame 104a and the battery or the housing.
  • the size of the cylinder portion 4 defining the combustion chamber 4r in the radial direction is smaller than, for example, a configuration in which the cylinder portion 4 has a diameter longer than the stroke. For this reason, the degree of freedom in the arrangement of the throttle body 116 arranged at a position overlapping the cylinder portion 4 is high. Therefore, as shown in FIG. 1, the angle ⁇ 1 formed between the reciprocating direction Z and the center line 115a of the intake passage is the angle ⁇ 2 formed between the plane V perpendicular to the reciprocating direction Z of the piston portion 5 and the center line 115a.
  • the intake passage 115 and the single center tumble port (SCTP) 41a can be arranged along a curve having a low curvature. Therefore, the disturbance of the distribution of the recirculated gas and the outside air in the single center tumble port (SCTP) 41a is suppressed. Further, the generation of the fast tumble flow in the combustion chamber 4r is not easily hindered.
  • the spark ignition engine unit EU1 the degree of freedom in designing the distribution of exhaust gas in the combustion chamber 4r of the spark ignition engine can be increased, and the thermal efficiency can be increased by a fast tumble flow.
  • the catalyst unit 119 is disposed at a position overlapping the cylinder portion 4 in a direction Y perpendicular to the reciprocating direction Z. Thereby, the catalyst unit 119 can be arranged near the spark ignition type engine 1.
  • the catalyst unit 119 is disposed near the spark ignition type engine 1
  • higher temperature exhaust gas is supplied to the catalyst of the catalyst unit 119, so that, for example, after the engine is started, the purification performance of the catalyst can be more effectively exhibited. it can.
  • the resistance of the catalyst unit 119 to the flow of exhaust gas exhausted from the spark ignition engine 1 has a large effect.
  • the catalyst unit 119 shown in FIGS. 18 and 1 is arranged at a position that maintains the minimum ground clearance of the spark ignition engine unit EU1 in the saddle type vehicle 100. Therefore, there is a limit to the height at which the catalyst unit 119 is arranged.
  • the size of the cylinder portion 4 in the radial direction is smaller than that in the case where the cylinder portion 4 has a diameter longer than the stroke, for example. Therefore, the degree of freedom in the shape design of the catalyst unit 119 is high. For this reason, for example, by making the catalyst unit 119 large, the resistance of the catalyst unit 119 to the flow of the exhaust gas can be suppressed. In this case, the thermal efficiency of the spark ignition type engine 1 is improved by suppressing the resistance to the flow of the exhaust gas.
  • the degree of freedom of arrangement of the spark ignition type engine 1 itself is also increased.
  • the spark-ignition engine 1 can be arranged lower in the vertical direction.
  • the intake passage 115 and the single center tumble port (SCTP) 41a can be arranged along a curve with a low curvature. Therefore, the disturbance of the distribution of the recirculated gas and the outside air in the single center tumble port (SCTP) 41a is suppressed. Therefore, the degree of freedom in designing the distribution of exhaust gas in the combustion chamber of the spark ignition engine 1 can be increased.
  • the intake passage 115 and the single center tumble port (SCTP) 41a can be arranged along a curved line having a low curvature, the generation of a fast tumble flow in the combustion chamber 4r is hardly hindered. Fast tumble flow increases thermal efficiency.
  • the degree of freedom in designing the distribution of exhaust gas in the combustion chamber and the thermal efficiency can be improved while being mountable on a vehicle.
  • FIG. 19 is a side view showing another type of saddle-ride type vehicle different from FIG.
  • the straddle-type vehicle 200 shown in FIG. 19 is a so-called street type motorcycle.
  • the straddle-type vehicle 200 includes a vehicle body 202 and wheels 203a and 203b.
  • the body 204 is provided with a frame 204.
  • the frame 204 has a front frame 204f.
  • the straddle-type vehicle 200 includes a spark ignition engine unit EU2.
  • the spark ignition engine unit EU2 includes a spark ignition engine 1, an intake passage 215, a throttle body 216, an exhaust passage 217, and a catalyst unit 219.
  • the wheels 203b receive the rotational force output from the spark ignition engine 1 and drive the straddle-type vehicle 200.
  • the throttle body 216 controls the flow rate of outside air supplied to the spark ignition engine 1.
  • the exhaust passage 217 allows gas discharged from the spark ignition engine 1 to pass through.
  • the catalyst unit 219 is provided in the exhaust passage 217.
  • FIG. 20 is a diagram schematically showing an arrangement of the spark ignition type engine unit of the vehicle shown in FIG.
  • the spark ignition type engine 1 is arranged vertically in a saddle type vehicle. That is, the spark ignition engine 1 is arranged so that the angle formed between the horizontal plane and the reciprocating direction Z is larger than the angle formed between the vertical plane and the reciprocating direction Z of the piston portion 5 in the saddle type vehicle 200. ing.
  • a front frame 204f is disposed in front of the spark ignition engine 1 in the front-back direction FB of the straddle-type vehicle 200 in the front-back direction FB.
  • the throttle body 216 of the spark ignition engine unit EU2 shown in FIG. 20 is disposed such that the center line Lc of the piston portion extending in the reciprocating direction Z of the piston portion 5 intersects with the center line 215a of the intake passage 215 in the throttle body 216. ing.
  • the spark ignition type engine unit EU2 shown in FIG. 20 is disposed behind the front frame 204f Bk in the front-back direction FB.
  • the combustion chamber 4r of the spark ignition type engine has a diameter B shorter than the reciprocating stroke St of the piston portion 5 (see FIG. 2) when viewed in the reciprocating direction Z. Therefore, the size of the cylinder portion 4 defining the combustion chamber 4r in the radial direction is smaller than, for example, a configuration having a diameter longer than the stroke. For this reason, the degree of freedom in the arrangement of the throttle body 216, which is arranged so that the center line of the piston portion 5 and the center line 215a of the intake passage 215 intersect, is high.
  • the throttle body 216 can be arranged so that the generation of the fast tumble flow in the combustion chamber 4r is not easily disturbed, the fast tumble flow can be generated.
  • the degree of freedom in designing the distribution of exhaust gas in the combustion chamber 4r of the spark ignition engine 1 can be increased, and the thermal efficiency can be further increased.
  • FIG. 21 is a diagram schematically showing an arrangement of a spark ignition type engine unit which is further different from FIG.
  • the catalyst unit 319 of the spark ignition engine unit EU3 shown in FIG. 21 is arranged at a different position from the catalyst unit 219 shown in FIG.
  • illustration of the front frame 204f is omitted.
  • Other points are the same as those in FIG.
  • the catalyst unit 319 shown in FIG. 21 is disposed at a position overlapping the cylinder portion 4 in a direction Y perpendicular to the reciprocating direction Z. That is, the catalyst unit 319 is arranged along the cylinder portion 4.
  • the catalyst unit 319 is disposed forward of the cylinder unit 4 in the front-rear direction FB of the straddle-type vehicle on which the spark ignition engine unit EU3 is mounted.
  • the spark ignition engine unit EU3 shown in FIG. 21 is also required to be small because it is mounted on the straddle-type vehicle 200 (see FIG. 19), like the spark ignition engine unit EU2 shown in FIG.
  • the spark ignition type engine unit EU3 is arranged at an interval from the front wheel 203a (see FIG. 19).
  • the combustion chamber 4r of the spark ignition type engine 1 provided in the spark ignition type engine unit EU3 has a diameter B shorter than the reciprocating stroke St (see FIG. 2) of the piston portion 5 when viewed in the reciprocating direction Z. . Therefore, the size of the cylinder portion 4 defining the combustion chamber 4r in the radial direction is smaller than, for example, a configuration in which the cylinder portion 4 has a diameter longer than the stroke. For this reason, the degree of freedom of arrangement of the catalyst unit 319 arranged at a position overlapping the cylinder unit 4 is high. In the spark ignition engine unit EU3 shown in FIG. 21, by arranging the catalyst unit 319 near the spark ignition engine 1, for example, the catalyst purification performance can be more effectively exhibited after the engine is started.
  • the catalyst unit 319 is arranged along the cylinder portion 4 of the spark ignition engine 1 having the combustion chamber 4r having a diameter B shorter than the reciprocating stroke St of the piston portion 5 (see FIG. 2). Since the catalyst unit 319 can have a large diameter, the resistance of the exhaust gas discharged from the spark ignition engine 1 when passing through the catalyst unit 319 can be reduced. As described above, according to the spark ignition engine unit EU3, the degree of freedom in designing the distribution of the exhaust gas in the combustion chamber 4r of the spark ignition engine can be increased, and the resistance of the exhaust gas flow in the exhaust stroke is reduced, so that the thermal efficiency is improved. Can be improved.
  • the present invention is not limited to the above-described example, and may employ, for example, the following configurations (7) to (8).
  • the following embodiments (8) to (9) include the embodiments described above.
  • the combustion chamber of the spark ignition engine provided in the spark ignition engine unit of (8) has a diameter shorter than the reciprocating stroke of the piston when viewed in the reciprocating direction. Therefore, an increase in the size of the cylinder portion defining the combustion chamber in the radial direction is suppressed. For this reason, the degree of freedom of arrangement of the throttle body arranged at a position overlapping the cylinder portion is high. Therefore, the throttle body is arranged such that the angle formed between the reciprocating direction of the piston portion and the center line of the intake passage is smaller than the angle formed between the plane perpendicular to the reciprocating direction of the piston portion and the center line of the intake passage. In such a case, it is possible to avoid the arrangement of the intake passage that hinders the generation of the fast tumble flow. Therefore, the degree of freedom in designing the distribution of the exhaust gas in the combustion chamber of the spark ignition engine can be increased.
  • the combustion chamber of the spark ignition engine provided in the spark ignition engine unit of (9) has a diameter shorter than the reciprocating stroke of the piston when viewed in the reciprocating direction. Therefore, an increase in the size of the cylinder portion defining the combustion chamber in the radial direction is suppressed. Therefore, the degree of freedom in the arrangement of the throttle body is high. Therefore, when the throttle body is arranged so that the center line of the piston section and the center line of the intake passage intersect, it is possible to avoid the arrangement of the intake passage that prevents generation of a fast tumble flow. Therefore, the degree of freedom in designing the distribution of exhaust gas in the combustion chamber of the spark ignition engine 1 can be increased.

Abstract

本発明は、燃焼室内における排ガスの分布の設計自由度が高められた火花点火式エンジンユニット、及び車両を提供する。火花点火式エンジンユニットは、シリンダ部と、ピストン部と、クランクシャフトと、1つの排気ポートと、1つのシングルセンタータンブルポートと、1つの排気バルブと、1つの吸気バルブと、点火プラグと、スロットルボディと、吸気管と、排気管と、排気再循環通路と、を備える。排気再循環通路は、排ガスの一部が、再循環ガスとして、サージタンクを通らずにスロットルボディ、吸気管及び前記1つのシングルセンタータンブルポートを流れるガスと共に、吸気バルブの開放に伴ってシングルセンタータンブルポートを介して吸気されることにより、燃焼室内においてタンブル流を成すように、再循環ガスを吸気管又はシングルセンタータンブルポートに供給する。

Description

火花点火式エンジンユニット及び車両
 本発明は、火花点火式エンジンユニット及び車両に関する。
 火花点火式エンジンユニットとして、排ガスの一部を吸気系に還流するタイプのエンジンユニットが知られている。
 例えば特許文献1には、点火プラグを有する火花点火式エンジンが示されている。このエンジンは、燃焼室に開口する2つの吸気口と、吸気口のそれぞれに連なる吸気ポートと、1つの排気口と、排気口に連なる排気ポートとを備えている。エンジンはまた、吸気ポートに接続される吸気系と、この吸気系及び排気ポートを結ぶ排気再循環通路としての排気還流路とを備えている。排気ポートを通る排ガスの一部は、排気還流路を通って吸気系に還流する。還流した排ガスは、一対の吸気口から燃焼室に吸気される。
 また、例えば特許文献2には、排ガス再循環装置が設けられたエンジンが示されている。このエンジンは、2つの吸気ポートと2つの排気ポートを備えている。排ガス再循環装置は、吸気ガスが供給される吸気タンクと、エンジンの排ガスが供給されるEGRタンクとを備えている。EGRタンク内の排ガスは、吸気タンクに導かれ、吸気ガスと混合される。
 特許文献2では、エンジンの吸気ポートに排ガス(再循環ガス)を均一に供給するような構成が提案されている。特許文献2の排ガス再循環装置では、具体的には、排ガスが供給されるEGRタンクが、サージタンクとして機能する吸気タンクと一体形成されている。また吸気タンク及びEGRタンクには、排ガスをEGRタンクから吸気タンクに導く連通孔が設けられている。連通孔を通った排ガスと外気は混合されて吸気タンク(サージタンク)に蓄えられる。エンジンに供給されるガス中の排ガスが均一化する。
特許4119281号公報 特開2009-144653号公報
 排気再循環通路を有する火花点火式エンジンユニットにおいて、排気再循環通路を通った排ガスと外気の燃焼室における分布を所望の燃焼状態に適するようにすることが望まれる場合がある。このため、排気再循環通路を有する火花点火式エンジンユニットでは、燃焼室内における排ガスの分布の設計自由度を高めることが求められている。
 本発明は、燃焼室内における排ガスの分布の設計自由度が高められた火花点火式エンジンユニット、及び車両を提供する。
 燃焼室に吸気されるガスは、排ガス(再循環ガス)と外気の混合である。排ガスに含まれる酸素濃度は外気と比べて少ない。また排ガスに含まれる二酸化炭素濃度は外気と比べて多い。酸素及び二酸化炭素の濃度の分布は、燃焼室における燃焼及び燃焼に伴う温度の増大に影響を与える。
 このため、例えば特許文献2では、排ガスを均一化する構成が提案されている。特許文献2に示すエンジンでは、サージタンクの構造を利用した排ガスの均一化が図られている。
 しかし、エンジン又はエンジンユニットにサージタンクが設けられていない場合、サージタンクの構造を利用した分布(ここでは均一化)が実現できない。
 本発明者らは、燃焼室内における排ガスの分布についてさらに検討した結果、次のことに気づいた。
 燃焼室における排ガスの分布が均一であることは、必ずしも燃焼にとって最適であるとは限らない。例えば、燃焼室における点火プラグの位置に対応して、排ガスが燃焼室内で偏在する方が好ましい場合もある。例えば、ピストンの往復方向に見て燃焼室の中心からずれた位置に点火プラグの点火部が配置されている場合、燃焼室内の外気が点火部付近に多く分布し、比熱の高い排ガスが点火プラグから離れた領域に分布していることが好ましい。
 そこで、本発明者らは、燃焼室内での排ガスの分布を敢えて偏らせることを検討した。そして本発明者らは、タンブルポートによって形成されるタンブル流を利用することによって燃焼室内における排ガスの分布の偏りを維持しやすくなることに気づいた。
 1つの吸気バルブと1つの排気バルブとを備えた2バルブエンジンは、1つのタンブルポートを有する。燃焼室にガスを送るシングルセンタータンブルポート(SCTP)に、ガスを壁面から剥離するための剥離強化部を設けることによって、燃焼室に送られるガスによる速いタンブル流を生成することができる。1つのタンブルポートの吸気口は、複数の吸気口を有する場合と比べて1つの吸気口としてより大きい面積を有することができる。このため、1つの吸気バルブが開放する吸気口を有する1つの吸気ポートつまりシングルタンブルポートを通って燃焼室に入ったガスの主な部分は、ピストンの往復方向に見て吸気口から排気口に向かって1つの大きな流れを形成する。
 例えば、特許文献1及び特許文献2に示されるような、複数の吸気口、及び各吸気口に続く複数のタンブルポートを有する構成の場合、ピストンの往復方向に見て燃焼室の中心部分では、複数の吸気口のそれぞれから吸気されるガスで形成される複数の流れがぶつかり合う。このため気流が乱れ、ガスが混合されやすい。
 これに対し、エンジンが1つのシングルタンブルポートを備えた2バルブ構成では、乱れの抑えられたタンブル流が形成される。これによって、タンブルポートに供給された排ガスの分布を反映した、排ガスと外気による成層状態が形成されやすい。つまり、タンブル流の乱れが抑えられやすい。このため、タンブルポートよりガスの流れの上流に配置され、サージタンクが設けられない吸気管に排ガスを供給することで、吸気管からシングルセンタータンブルポートに供給された排ガスの分布が、燃焼室内の排ガスの分布に反映されやすい。
 またこの逆に、タンブル流は燃焼室内の渦なので、渦によって燃焼室内のガスが速く移動するため、燃焼室内のガスの一部は均一になりやすい。このため、吸気管における排ガスの合流位置を調整することによって、燃焼室内で排ガスを均一に分散することも可能である。
 このようにして本発明者らは、火花点火式エンジンの燃焼室内における排ガスの分布の設計自由度を高めることができることに気づいた。
 以上の知見に基づいて完成した本発明の火花点火式エンジンは、次の構成を備える。
 (1) 火花点火式エンジンユニットであって、
 前記火花点火式エンジンユニットは、
 燃焼室が形成されたシリンダ部と、
 シリンダ部内に往復動可能に設けられ、シリンダ部とともに前記燃焼室を画定するピストン部と、
 前記ピストン部の往復動に応じて回転するようピストン部と連結されたクランクシャフトと、
 前記燃焼室に排気口を介して連通するよう前記シリンダ部に設けられ、前記燃焼室からの排ガスが通る1つの排気ポートと、
 前記燃焼室に吸気口を介して連通するよう前記シリンダ部に設けられ、前記吸気口から前記燃焼室へ吸気された吸気ガスに前記往復方向と交わる方向に延びた軸線周りのタンブル流を生成させるように前記吸気口に送るガスを前記吸気口に続く壁面から剥離する剥離強化部を有し、前記吸気口は、前記ピストン部の往復方向に見たときに前記吸気口の幅を有し且つ前記吸気口から吸気方向へ延びる領域として定義される延長領域が前記排気口と重なるように設けられた、1つのシングルセンタータンブルポートと、
 前記排気口を開放及び閉鎖する1つの排気バルブと、
 前記吸気口を開放及び閉鎖する1つの吸気バルブと、
 前記燃焼室に配置された点火部を有し、前記燃焼室のガスに火花点火するように構成された点火プラグと、
 前記燃焼室へ吸気されるガスの流量を調節するスロットル弁を有するスロットルボディと、
 前記スロットルボディ及び前記1つのシングルセンタータンブルポートを、サージタンクを介すること無しに接続し、前記スロットルボディから前記1つのシングルセンタータンブルポートまでガスを通す吸気管と、
 前記1つの排気ポートのうちの前記排気口とは反対の端に接続され、前記1つの排気ポートを介して排気される排ガスを通す排気管と、
 前記排気管又は前記排気ポートと前記吸気管又は前記シングルセンタータンブルポートとを接続する排気再循環通路であって、前記排気管又は前記排気ポートから取り出される排ガスの一部が、再循環ガスとして、前記サージタンクを通らずに前記スロットルボディ、前記吸気管及び前記1つのシングルセンタータンブルポートを流れるガスと共に、前記1つの吸気バルブの開放に伴って前記剥離強化部を経て前記1つのシングルセンタータンブルポートを介して吸気されることにより、前記燃焼室内において前記タンブル流を成すように、前記再循環ガスを前記吸気管又は前記1つのシングルセンタータンブルポートに供給する排気再循環通路と、を備える。
 (1)の火花点火式エンジンユニットは、シリンダ部と、ピストン部と、クランクシャフトと、1つの排気ポートと、1つのシングルセンタータンブルポートと、1つの排気バルブと、1つの吸気バルブと、点火プラグと、スロットルボディと、吸気管と、排気管と、排気再循環通路とを備える。
 ピストン部は、シリンダ部内に往復動可能に設けられている。ピストン部は、シリンダ部とともに燃焼室を画定する。クランクシャフトは、ピストン部の往復動に応じて回転するようピストン部と連結されている。排気ポートは、燃焼室に排気口を介して連通するようシリンダ部に設けられている。燃焼室からの排ガスが排気ポートを通る。シングルセンタータンブルポートは、燃焼室に吸気口を介して連通するようシリンダ部に設けられている。シングルセンタータンブルポートは、吸気口から燃焼室へ吸気された吸気ガスに往復方向と交わる方向に延びた軸線周りのタンブル流を生成させる構造を有している。シングルセンタータンブルポート(SCTP)は、剥離強化部を有している。剥離強化部は、吸気口に続く壁面からのガスの剥離を強化するように構成される。剥離強化部は、燃焼室へ吸気されたガスにタンブル流を生成させるように、壁面からのガスの剥離を強化する。シングルセンタータンブルポートの吸気口は、延長領域が排気口と重なるように設けられている。ここで、延長領域は、ピストン部の往復方向に見たときに吸気口の幅を有し且つ吸気口から吸気方向へ延びる領域として定義される。排気バルブは、排気口を開放及び閉鎖する。吸気バルブは、吸気口を開放及び閉鎖する。
 点火プラグは、燃焼室に配置された点火部を有する。点火プラグは、燃焼室のガスに火花点火するように構成されている。スロットルボディは、スロットル弁を有する。スロットル弁は、燃焼室へ吸気されるガスの流量を調節する。
 吸気管は、スロットルボディ及びシングルセンタータンブルポートを、サージタンクを介すること無しに接続している。吸気管は、スロットルボディからシングルセンタータンブルポートまでガスを通す。排気管は、排気ポートのうちの排気口とは反対の端に接続されている。排気管は、排気ポートを介して排気される排ガスを通す。
 排気再循環通路は、排気管又は排気ポートと、吸気管又はシングルセンタータンブルポートとを接続する。排気再循環通路は、排気管又は排気ポートから取り出される排ガスの一部が再循環ガスとして燃焼室内でタンブル流を成すように、再循環ガスを、吸気管又は1つのシングルセンタータンブルポートに供給する。再循環ガスは、スロットルボディ、吸気管及び1つのシングルセンタータンブルポートを流れるガスと共に、1つの吸気バルブの開放に伴って1つのシングルセンタータンブルポートを介して吸気される。これにより、再循環ガスが燃焼室内においてタンブル流を成す。
 (1)の火花点火式エンジンユニットによれば、燃焼室では、ピストン部が下死点へ移動する時、ガスがシングルセンタータンブルポート(SCTP)を通る。ガスは、剥離強化部によって、吸気口に続く壁面から剥離する。剥離強化部は、シリンダ部でタンブル流を形成するように、壁面からガスを剥離する。このため、シリンダ部では、シングルセンタータンブルポート(SCTP)から吸気されたガスによるタンブル流が形成される。1つのシングルセンタータンブルポートに設けられ1つの吸気バルブで開放及び閉鎖される吸気口は、例えば複数のタンブルポート及び複数の吸気口を有する場合と比べて、大きい面積を有することができる。このため、吸気口から吸気されるガスの流れは大きなまとまりを成すように流れることができる。従って、タンブル流の乱れが抑えられる。また、吸気口から吸気されるガスの流れは1つのまとまりを成すように流れるので、往復方向に見た中心付近でのガスの流れの乱れは、例えば互いに並んだ複数の吸気口からガスが吸気される場合と比べて小さい。このため、タンブル流の乱れが抑えられる。
 再循環ガスは、スロットルボディを流れるガスと共に、1つのシングルセンタータンブルポートを介して吸気される。このガスは、サージタンクを通らずにスロットルボディ、吸気管、及び1つのシングルセンタータンブルポートを流れる外気である。燃焼室内では、乱れが抑えられたタンブル流が形成されるので、燃焼室内には、1つのシングルセンタータンブルポートに供給されたスロットルボディからのガスと再循環ガスの分布を反映したガスの分布が維持しやすい。このため、燃焼室における排ガスの分布の設計自由度を高めることができる。例えば、排ガスを燃焼室内における偏った位置に分布させることもできる。また、排ガスを燃焼室において均一に分散することもできる。
 このように(1)の火花点火式エンジンユニットによれば、火花点火式エンジンの燃焼室内部における排ガスの分布の設計自由度を高めることができる。
 (2) (1)の火花点火式エンジンユニットであって、
 前記点火プラグは、前記往復方向に見たときに前記排気口の中心及び前記吸気口の中心を通る中心通過線により前記燃焼室が区分されることにより定義される2つの領域のうち第1の領域に、前記中心通過線と重ならないように配置される前記点火部により、前記燃焼室のガスに火花点火するように構成されている。
 (2)の構成によれば、点火プラグの点火部が中心通過線と重ならないように配置されているため、吸気口と排気口の間隔を点火部の径よりも短くなるように形成することができる。点火部は、中心通過線から離れた位置にずれて配置されている。この場合でも、燃焼室における排ガスの分布の設計自由度が高いので、燃焼室内の排ガスの分布を点火部の位置に応じて偏らせることができる。また、吸気口と排気口の間隔を点火部の径よりも短くなるように吸気口を形成することで、シングルセンタータンブルポートの吸気口の径を大きく確保することができる。シングルセンタータンブルポートに供給されたスロットルボディからのガスと再循環ガスの分布を反映したガスの分布がさらに維持されやすい。従って、排ガスの分布の設計自由度が更に高い。
 (3) (1)又は(2)の火花点火式エンジンユニットであって、
 前記排気管には、前記燃焼室から排出された排ガスを浄化する触媒を収容する触媒ユニットが更に設けられ、
 前記排気再循環通路は、前記触媒ユニットよりも排ガスの流れにおける下流から、排ガスの一部を前記再循環ガスとして取り出す。
 (3)の構成によれば、触媒を収容する触媒ユニットを通過することによって、火花点火式エンジンユニットにおける燃焼による脈動が抑えられた排ガスが、再循環ガスとして排気再循環通路に取り出される。このため、排気再循環通路から吸気管に、脈動が抑えられた再循環ガスが供給される。燃焼に起因した変動の影響が抑えられるため、想定された分布に対する、燃焼室での再循環ガスの分布のずれが抑えられる。従って、排ガスの分布の設計自由度が更に高い。なお、排気管内の複数箇所に触媒ユニットが設けられる場合、排気再循環通路は、いずれの触媒ユニットの下流から再循環ガスを取り出すように構成されていてもよい。例えば、排気管内に上流触媒ユニット及び下流触媒ユニットが設けられる場合、排気再循環通路は、上流触媒ユニットと下流触媒ユニットとの間から再循環ガスを取り出すように構成されていてもよく、下流触媒ユニットより下流から再循環通路を取り出すように構成されていてもよい。
 (4) (1)から(3)いずれか1の火花点火式エンジンユニットであって、
 前記燃焼室は、前記往復方向に見たときに、前記ピストン部の往復動のストロークより短い径を有する。
 (4)の構成によれば、ピストン部が下死点へ向かって移動する時、シングルセンタータンブルポート(SCTP)から吸気されたガスによるタンブル流が形成される。ピストン部が移動するストロークが燃焼室の径より長いため、ピストン部の移動速度が大きい。さらに、ピストン部が上死点に向かって移動する時、燃焼室では、ピストン部に押されたガスがピストン部の上死点に向かうことによって、タンブル流が増強ないし維持される。ピストン部が移動するストロークは燃焼室の径より長いため、ピストン部の移動速度は大きい。移動速度が大きいピストン部にガスが押し戻されることによって、速いタンブル流が維持されやすい。速いタンブル流によって燃焼時間を短くして熱効率を高めるとともに、維持されやすいタンブル流を利用して燃焼室内の排ガスの分布を設定することができる。従って、熱効率が高くしかも排ガスの分布の設計自由度が高い。
 (5) (4)の火花点火式エンジンユニットであって、
 前記シリンダ部は、0.1L以上0.2L未満の行程容積を有する。
 (5)の火花点火式エンジンユニットは、1つの吸気バルブとして機能するシングルセンタータンブルポートと1つの排気バルブを備えた簡潔な構造を有している。このため、0.1L以上0.2L未満の行程容積を有する小容積エンジンが大型化するのを抑えつつ、燃焼室内で、スロットルボディからのガスと再循環ガスの分布を反映したガスの分布を維持することができる。このため、大型化を抑えつつ燃焼室における排ガスの分布の設計自由度を高めることができる。
 (6) (1)から(5)いずれか1の火花点火式エンジンユニットと、
 前記火花点火式エンジンユニットに駆動される車輪と、
を備える車両。
 (6)の車両によれば、(1)から(5)いずれか1の火花点火式エンジンユニットを備えるので、火花点火式エンジンユニットにおける排ガスの分布の設計自由度が高い。
 本明細書にて使用される専門用語は特定の実施例のみを定義する目的であって発明を制限する意図を有しない。本明細書にて使用される用語「および/または」はひとつの、または複数の関連した列挙された構成物のあらゆるまたはすべての組み合わせを含む。本明細書中で使用される場合、用語「含む、備える(including)」「含む、備える(comprising)」または「有する(having)」およびその変形の使用は、記載された特徴、工程、操作、要素、成分および/またはそれらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、および/またはそれらのグループのうちの1つまたは複数を含むことができる。本明細書中で使用される場合、用語「取り付けられた」、「接続された」、「結合された」および/またはそれらの等価物は広く使用され、直接的および間接的な取り付け、接続および結合の両方を包含する。さらに、「接続された」および「結合された」は、物理的または機械的な接続または結合に限定されず、直接的または間接的な電気的接続または結合を含むことができる。他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的または過度に形式的な意味で解釈されることはない。本発明の説明においては、多くの技術および工程が開示されていると理解される。これらの各々は個別の利益を有し、それぞれは、他の開示された技術の1つ以上、または、場合によっては全てと共に使用することもできる。したがって、明確にするために、この説明は、不要に個々のステップの可能な組み合わせをすべて繰り返すことを控える。それにもかかわらず、明細書および特許請求の範囲は、そのような組み合わせがすべて本発明および請求項の範囲内にあることを理解して読まれるべきである。
 本明細書では、新しい火花点火式エンジンユニットについて説明する。以下の説明では、説明の目的で、本発明の完全な理解を提供するために多数の具体的な詳細を述べる。しかしながら、当業者には、これらの特定の詳細なしに本発明を実施できることが明らかである。本開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面または説明によって示される特定の実施形態に限定することを意図するものではない。
 シングルセンタータンブルポート(SCTP)は、燃焼室へ供給されるガスの通路であり、タンブルポートとしての機能を有する。タンブルポートとしての機能は、燃焼室内で吸気がタンブル流(縦渦流)を発生させる機能である。シングルセンタータンブルポート(SCTP)は、燃焼室内で吸気がタンブル流を発生させるように吸気を燃焼室内に流す形状の壁面を有する。シングルセンタータンブルポート(SCTP)が有するタンブル流を生成させる構造は、例えば、シングルセンタータンブルポート(SCTP)の吸気口に続く筒状の壁面のうち、排気口から最も遠い壁面部分からガス流を剥離させる構造である。タンブル流を生成させる構造は、例えば、上記壁面部分に設けた突起を有する。タンブル流を生成させる構造は、これに限られず、例えば、壁面部分よりもガス流での上流部分に、ポートの外向きに膨らんだ膨出部を有する。シングルセンタータンブルポート(SCTP)を備えたシリンダ部は、ロングストローク分のピストン部の移動により、比較的大きな唯一のタンブルポートからシリンダボア内へ吸気を行う。これにより、速いタンブル流を生じさせることができる。
 シリンダ部では、ボア径よりもストロークが長い。また、シリンダでは、ボア径よりもストロークが長い。ボア径に対するストロークの割合は、例えば、1.2以上である。
 また、シングルセンタータンブルポート(SCTP)は、例えば、下記(i)~(iii)の少なくとも1つの要件を満たすように構成されてもよい。
 (i)シングルセンタータンブルポート(SCTP)は、吸気口の中心と排気口の中心とを通る中心通過線上における吸気口と排気口との間の間隔がオフセット点火部の径よりも短くなるように形成された吸気口を備えてもよい。オフセット点火部がオフセットしているため、吸気口の径が大きく確保され得る。
 (ii)シングルセンタータンブルポート(SCTP)は、ピストン部の往復方向に見た時にシリンダボアの中心(即ちピストン部の中心線が通る点)が吸気口内に位置するように形成された吸気口を備えてもよい。
 (iii)シングルセンタータンブルポート(SCTP)は、ピストン部の往復方向に見て、吸気口を含む領域内の中心通過線上において、中心通過線と吸気口とが重なる部分が、中心通過線と吸気口とが重ならない部分よりも長くなるように形成された吸気口を備えてもよい。これにより、シリンダボアの径に対して吸気口が広く確保される。また、吸気口の径が吸気口を含む領域内の中心通過線よりも長くてもよい。これにより、シリンダボアの径に対して吸気口がより広く確保される。なお、吸気口を含む領域とは、ピストン部の往復方向に見て上記中心通過線と直交し且つシリンダボアの中心を通る直線によって燃焼室が2つの領域に区分された場合において主として吸気口が含まれる領域をいう。また、中心通過線とは、ピストン部の往復方向に見た時に、中心通過線と平行であり且つシリンダボアの中心を通る直線をいう。中心通過線は中心通過線と重複してもよい。
 上述したように大きな吸気口を有するシングルセンタータンブルポート(SCTP)からシリンダ部へガスが供給されることにより、燃焼室でより速いタンブル流を生じさせることができる。シングルセンタータンブルポート(SCTP)は、例えば、以下のいずれかを満たすように構成されていてもよい。
 ・上記(i)~(iii)の全て
 ・上記(i)及び(ii)
 ・上記(ii)及び(iii)
 ・上記(i)及び(iii)
 ・上記(i)
 ・上記(ii)
 ・上記(iii)
 本明細書において、シングルセンタータンブルポート(SCTP)及び排気ポートにおけるポートは、シリンダ部に形成されるガスの通路を指す。一方、吸気口は、吸気のための開口であり、排気口は、排気のための開口である。吸気口は、シングルセンタータンブルポート(SCTP)と燃焼室との境界に相当する。排気口は、排気ポートと燃焼室との境界に相当する。
 燃焼室は、ピストン部及びシリンダ部によって画定された空間である。
 タンブル流は、ピストンの往復方向と交わる方向に延びた軸線周りの渦である。タンブル流を生成している燃焼室ガスは、タンブル流以外の渦も生成していてよい。例えば、燃焼室ガスは、タンブル流とともに、ピストンの往復方向に延びる軸回りに回転するスワール流を有してもよい。
 また、タンブル流は、燃焼室の上部(シリンダヘッドに近い部分)で吸気口から排気口へ向かって流れる。但し、タンブル流が形成されているとき、燃焼室内のガスは、例えば燃焼室の上部で吸気口から排気口へ向かう流れとは逆向きの流れを含んでもよい。
 ピストン部及び燃焼室は、往復方向に見たときに円形である。但し、ピストン及び燃焼室の少なくとも一方は、例えば往復方向に見たときに長円形であってもよい。往復方向に見た時の形状は、特に限定されない。
 剥離強化部は、吸気口から燃焼室へ吸気されたガスにタンブル流を生成させるように、吸気口に送るガスを吸気口に続く壁面から剥離する構造を有する。剥離強化部は、例えばシングルセンタータンブルポート(SCTP)内の空間に向かって突出している凸部である。凸部は、エッジを有していてもよい。また、凸部は、この凸部を強調するための凹部に隣接してもよい。また、剥離強化部は、1つの凸部に限られず、例えば壁面に設けられたディンプル、即ち、複数の微少な窪みでもよい。
 延長領域は、ピストンの往復方向に見たときに吸気口の幅を有し、吸気口から吸気方向に延びる領域として定義される。吸気方向は、吸気口からシングルセンタータンブルポート(SCTP)の中心線を延長した直線の向きに相当する。吸気口の幅としては、吸気方向と垂直な方向において最も大きい吸気口の幅が用いられる。ピストンの往復方向に見たときに、延長領域は、例えば、ピストンの頂面の中心と重なる。
 また、中心通過線は、ピストンの往復方向に見て排気口の中心及び吸気口の中心を通る直線である。
 火花点火式エンジンの点火部は、中心通過線と重ならないように配置される。火花点火式エンジンの点火部は、例えば、中心通過線で区分されることにより定義される2つの領域のうち第1の領域に配置される。即ち、点火部はオフセット点火部である。但し、火花点火式エンジンの点火部は、例えば中心通過線と重なるように配置されてもよい。また、点火プラグは、1つ設けられる。但し、火花点火式エンジンユニットは、これに限られず、例えば、2つ以上の点火プラグを備えていてもよい。
 排気再循環通路は、例えば、排気管と吸気管とに接続される。但し、排気再循環通路は、排気ポートと吸気管とに接続されてもよい。また、排気再循環通路は、排気管とシングルセンタータンブルポートとに接続されてもよい。また、排気再循環通路は、排気ポートとシングルセンタータンブルポートとに接続されてもよい。排気再循環通路の数は、1つに限定されず、複数であってもよい。
 火花点火式エンジンユニットは、例えば、4ストロークエンジンユニットである。但し、火花点火式エンジンユニットは、これに限られず、例えば、6ストロークエンジンユニット又は8ストロークエンジンユニットであってもよい。エンジンの気筒数は、特に限定されない。火花点火式エンジンは、例えば、単気筒エンジンである。
 触媒ユニットがシリンダ部と少なくとも部分的に重なる位置は、触媒ユニットの全体がシリンダ部と重なる位置を含む。
 車両は、エンジンに加え、例えば、車輪を有する。車輪には、エンジンから出力される動力を受けて回転する駆動輪が含まれる。車輪の数は、特に限定されない。車両としては、特に限定されず、例えば、四輪自動車、鞍乗型車両などが挙げられる。四輪自動車は、例えば、車室を有する。鞍乗型車両とは、運転者がサドルに跨って着座する形式の車両をいう。鞍乗型車両としては、例えば、自動二輪車、自動三輪車、ATV(All-Terrain Vehicle)が挙げられる。
 本発明によれば、燃焼室内における排ガスの分布の設計自由度が高められた火花点火式エンジンを提供できる。
(A)は、本発明の一実施形態に係る火花点火式エンジンユニットの概略構成を示す側面図である。(B)は、火花点火式エンジンユニットに含まれる火花点火式エンジンを説明する、ピストン部の往復方向に見た内部の透視図である。 (A)は、図1に示す火花点火式エンジンを詳細に説明する、ピストン部の往復方向に見た内部の透視図である。(B)は、火花点火式エンジンの概略構成を示す側面断面図である。 図2に示す火花点火式エンジンの正面断面図である。 図2に示す火花点火式エンジンのピストン部を示す斜視図である。 図2(A)に示す火花点火式エンジン内部の拡大図である。 図2に示す火花点火式エンジンのシングルセンタータンブルポート(SCTP)及びその周辺部分を拡大して示す断面図である。 (A)は、図2に示す火花点火式エンジンの燃焼室内のガスの流れを模式的に説明する、吸気行程の平面図である。(B)は吸気行程の斜視図である。 タンブル比の計算方法を説明する図である。 (A)は、本実施形態に係る火花点火式エンジンユニットの変形例における火花点火式エンジンの燃焼室内のガスの流れを模式的に説明する、吸気行程の平面図である。(B)は吸気行程の斜視図である。 比較例としての火花点火式4バルブエンジンでの圧縮行程におけるガスの流出の状況を説明する平面図である。 火花点火式エンジンの燃焼室の径と熱効率の関係を示すグラフである。 火花点火式エンジンの行程容積と熱効率の関係を示すグラフである。 一般的なエンジンの行程容積と図示熱効率の関係を示すグラフである。 図1から図9に示す火花点火式エンジンにおけるガスの流れを説明する図である。 (A)は、火花点火式エンジンにおけるポートの変形例を示す図である。(B)は、火花点火式エンジンにおけるポートの別の変形例を示す図である。 比較例におけるガスの流れを説明する図である。 図14、図15、及び図16それぞれに示す構成におけるタンブル比を示すグラフである。 図1に示す火花点火式エンジンユニットが搭載された鞍乗型車両を示す側面図である。 図18とは別の種類の鞍乗型車両を示す側面図である。 図19に示す車両のエンジンユニットの配置を概略的に示す図である。 図20とは更に別のエンジンユニットの配置を概略的に示す図である。
 図1(A)は、本発明の一実施形態に係る火花点火式エンジンユニットの概略構成を示す側面図である。図1(B)は、火花点火式エンジンユニットに含まれる火花点火式エンジンを説明する、ピストン部の往復方向に見た内部の透視図である。
 図1に示す火花点火式エンジンユニットEU1は、例えば鞍乗型車両100(図18参照)に搭載される。火花点火式エンジンユニットEU1が搭載される鞍乗型車両100の走行方向を前方Frとし、前方Frの逆を後方Bkとする。また、前方Fr及び後方Bkを含む方向を前後方向FBとも称する。
 火花点火式エンジンユニットEU1は、火花点火式エンジン1、吸気管114、スロットルボディ116、排気管118、及び触媒ユニット119、及び排気再循環通路120を備えている。
 火花点火式エンジン1は、単気筒エンジンである。火花点火式エンジン1(以降、単にエンジン1とも称する)は、シリンダ部4と、ピストン部5と、クランクシャフト2と、ただ1つの排気ポート41eと、ただ1つのシングルセンタータンブルポート(SCTP)41aと、ただ1つの吸気バルブ81と、ただ1つの排気バルブ82と、オフセット点火プラグ7と、を備えている。つまり、火花点火式エンジンユニットEU1は、ピストン部5と、クランクシャフト2と、ただ1つの排気ポート41eと、ただ1つのシングルセンタータンブルポート(SCTP)41aと、ただ1つの吸気バルブ81と、ただ1つの排気バルブ82と、オフセット点火プラグ7と、を備えている。火花点火式エンジン1は、1つのシリンダ部4を有する。
 シリンダ部4には、燃焼室4rが形成されている。火花点火式エンジン1は、水冷エンジンである。シリンダボディ部42には、冷却液通路42jが設けられている。
 ピストン部5は、シリンダ部4内に往復動可能に配置されている。ピストン部5は、シリンダ部4とともに燃焼室4rを画定している。ピストン部5が往復する方向を往復方向Zと称する。
 クランクシャフト2は、ピストン部5の往復動に応じて回転するようにピストン部5と連結されている。
 図1(B)において、クランクシャフト2が延びる方向をクランクシャフト方向Xとする。図には、クランクシャフト方向X及び往復方向Zの双方と交わる方向Yも示されている。
 シングルセンタータンブルポート(SCTP)41aと排気ポート41eは、シリンダ部4に形成されている。排気ポート41eは、排気口41fを介して燃焼室4rに連通している。燃焼室4rから排出される排ガスは排気ポート41eを通る。
 シリンダ部4は、例えば、0.1L以上0.2L未満の行程容積を有する。火花点火式エンジン1は、自然吸気式のエンジンである。火花点火式エンジン1は、過給器無しに吸気する。
 シングルセンタータンブルポート(SCTP)41aは、吸気口41bを介して燃焼室4rに連通している。シングルセンタータンブルポート(SCTP)41aは、吸気口41bから燃焼室4rへ吸気されたガスに、タンブル流を生成させる構造を有している。燃焼室4rへ吸気されたガスを吸気ガスとも称する。タンブル流は、燃焼室4r内で、往復方向Zと交わる方向に延びた軸線周りの流れである。タンブル流を生成させる構造の詳細は後述する。
 図2(A)に示すように、シリンダ部4を往復方向Zに見たとき、吸気口41bの幅を有し且つ吸気口41bから吸気方向Y1へ延びる領域として、延長領域Aeが定義される。シングルセンタータンブルポート(SCTP)41a及び吸気口41bは、延長領域Aeが排気口41fと重なるように設けられている。本実施形態において吸気方向Y1は、方向Yに含まれる。
 吸気バルブ81は、吸気口41bを開放及び閉鎖する。排気バルブ82は、排気口41fを開放及び閉鎖する。
 オフセット点火プラグ7は、シリンダヘッド部41に設けられている。オフセット点火プラグ7は、オフセット点火部7aを有する。オフセット点火プラグ7は、シリンダ部4に形成されたプラグ穴41dに差し込まれている。オフセット点火部7aは、燃焼室4rに露出している。オフセット点火部7aは、燃焼室4rのガスに火花点火する。
 吸気管114は、火花点火式エンジン1と接続されている。より詳細には、吸気管114は、火花点火式エンジン1のシングルセンタータンブルポート(SCTP)41aに連通している。吸気管114は、シングルセンタータンブルポート(SCTP)41aとスロットルボディ116とを接続している。火花点火式エンジンユニットEU1は、サージタンクを備えていない。吸気管114は、スロットルボディ116及びシングルセンタータンブルポート(SCTP)41aを、サージタンクを介すること無しに接続している。吸気管114は、スロットルボディ116からシングルセンタータンブルポート(SCTP)41aまでガスを通す。
 スロットルボディ116は、火花点火式エンジン1に供給される外気の流量を制御する。吸気管114と、スロットルボディ116のうちガスを流す部分とによって、吸気通路115が形成される。吸気通路115は、図示しないエアフィルタから取り込んだ外気をシングルセンタータンブルポート(SCTP)41aに供給する。
 スロットルボディ116は、スロットル弁116aを備えている。スロットル弁116aは、吸気通路115を流れるガスの流量を調節する。より詳細には、スロットル弁116aは、加速指示部108(図18参照)の操作量に基づいて吸気通路115を流れる外気の量を制御する。スロットルボディ116は、車両の、加速指示部108の操作量に基づいて火花点火式エンジン1に供給される外気の量を制御する。 
 排気管118は、排気ポート41eのうちの排気口41fとは反対の端に接続されている。排気管118は、排気ポート41eを介して火花点火式エンジン1から排気される排ガスを通す。排気管118は、消音器117aを含んでいる。消音器117aは、触媒ユニット119よりも排ガスの流れにおける下流に設けられている。
 触媒ユニット119は、排気管118の途中に配置されている。触媒ユニット119は、排気管118を通るガスを浄化する触媒を収容している。なお、触媒ユニット119に加えて又は替えて、消音器117a内に触媒(又は触媒ユニット)が設けられてもよい。
 排気再循環通路120は、火花点火式エンジン1で発生する排ガスの一部を、再循環ガスとして火花点火式エンジン1に再度吸気させるための通路である。例えば、火花点火式エンジン1の部分負荷時に排気再循環通路120から再循環ガスが供給されることによって、吸気管114の負圧が減少する。このため、スロットル弁116aによるポンピング損失が抑えられる。
 再循環ガスは、スロットルボディ116を通る外気と比べ低い酸素濃度と高い二酸化炭素濃度を有する。本実施形態では、燃焼室4rにおける再循環ガスの分布が、所望の燃焼状態に合わせて設計される。
 本実施形態における排気再循環通路120は、排気管118と吸気管114とに接続される。排気再循環通路120は、排気再循環弁121と排気再循環管122とを有する。排気再循環弁121は排気再循環管122の途中に設けられている。排気再循環弁121によって、再循環ガスが燃焼室4rに供給される量が制御される。
 排気再循環通路120は、排気管118から排ガスの一部を再循環ガスとして取り出す。再循環ガスは、スロットルボディ116を流れるガスと共に、吸気バルブ81の開放に伴ってシングルセンタータンブルポート(SCTP)41aを介して燃焼室4rに吸気される。
 排気再循環通路120は、再循環ガスを吸気管114に供給する。排気再循環通路120は、再循環ガスがスロットルボディ116を流れるガスと共に燃焼室4r内においてタンブル流を成すように、再循環ガスを吸気管114に供給する。
 本実施形態の排気再循環通路120は、触媒ユニット119よりも排ガスの流れにおける下流から再循環ガスを取り出す。詳細には、排気再循環通路120の排気再循環管122は、消音器117aに接続されている。排気再循環通路120は、消音器117aから再循環ガスを取り出す。触媒ユニット119よりも下流の排ガスは、触媒ユニット119を通過している。このため、火花点火式エンジン1の燃焼に起因する排ガスの圧力と流量の脈動が抑えられている。排気再循環通路120は、燃焼による脈動が抑えられた排ガスを再循環ガスとして取り出す。排気再循環通路120は、燃焼による脈動が抑えられた再循環ガスを吸気管114に供給する。
 図1(B)に示すように、燃焼室4rは、往復方向Zに見たときに、2つの領域即ち第1の領域A1と第2の領域A2に区分される。第1の領域A1及び第2の領域A2は、排気口41fの中心f及び吸気口41bの中心bを通る中心通過線Sにより区分される。オフセット点火部7aは、第1の領域A1に、中心通過線Sと重ならないように配置される。
 図1(B)には、吸気管114及びシングルセンタータンブルポート(SCTP)41aの中心線S2も示されている。この中心線S2は、往復方向Zに見たときに、中心通過線Sから延長し、吸気管114及びシングルセンタータンブルポート(SCTP)41aに沿って延びる。吸気管114及びシングルセンタータンブルポート(SCTP)41aの内部も、往復方向Zに見たときに、中心線S2によって2つの領域に区分される。これらの2つの領域は、往復方向Zに見たときに、燃焼室4rに含まれる第1の領域A1及び第2の領域A2に続いている。吸気管114及びシングルセンタータンブルポート(SCTP)41aに含まれる2つの領域のうち、燃焼室4rの第1の領域A1に続く領域を第1の領域A1と称する。また、吸気管114及びシングルセンタータンブルポート(SCTP)41aに含まれる2つの領域のうち、燃焼室4rの第2の領域A2に続く領域を第2の領域A2と称する。なお、往復方向Zに見たときに、吸気管114及びシングルセンタータンブルポート(SCTP)41aにおける中心線S2は、必ずしも、図1(B)に示すような直線であるとは限らない。吸気管114及びシングルセンタータンブルポート(SCTP)41aが曲がっている場合には、中心線S2も曲がる。その場合、曲がった中心線S2を基準として、第1の領域A1及び第2の領域A2が定義される。
 本実施形態における排気再循環通路120は、吸気管114内の第2の領域A2に開口するように接続されている。吸気管114及びシングルセンタータンブルポート(SCTP)41aにおいて、排気再循環通路120から供給された再循環ガスの多くは、第2の領域A2に分布している。シングルセンタータンブルポート(SCTP)41aを通ったガスは、燃焼室4r内においてタンブル流を成す。本実施形態における燃焼室内4rでは、乱れが抑えられたタンブル流が形成されるので、燃焼室内4rには、ただ1つのシングルセンタータンブルポート(SCTP)41aに供給されたスロットルボディ116からのガスと再循環ガスの分布を反映したガスの分布が維持されやすい。つまり、排気再循環通路120から供給された再循環ガスの多くは、燃焼室内4rの第2の領域A2に分布し、この分布が維持されやすい。
 乱れが抑えられたタンブル流の形成、及び、再循環ガスの分布の詳細については、後述する。
 図2は、図1に示す火花点火式エンジン1を詳細に説明する図であり、(A)はピストン部の往復方向に見た内部の透視図であり、(B)は側面断面図である。
 図3は、図2に示す火花点火式エンジンの正面断面図である。
 図2及び図3に示す火花点火式エンジン1は、例えば図18に示す鞍乗型車両100に搭載される。
 火花点火式エンジン1は、クランクシャフト2、クランクケース部21、シリンダ部4、ピストン部5、燃料噴射部6、オフセット点火部7a(オフセット点火プラグ7)、吸気バルブ81、及び排気バルブ82を備えている。火花点火式エンジン1は、単気筒エンジンである。
 シリンダ部4は、シリンダヘッド部41、及びシリンダボディ部42を備えている。クランクケース部21、シリンダボディ部42、及びシリンダヘッド部41は、この順で積み上げられ、互いに締結されている。
 シリンダボディ部42の内部には、シリンダボア42bが形成されている。シリンダボア42bは、シリンダボディ部42内の空間である。
 シリンダヘッド部41は、燃焼室4rの天井部41rを形成している。
 ピストン部5は、シリンダボア42bに収容されている。ピストン部5は、往復動可能に配置されている。ピストン部5が往復する方向を往復方向Zと称する。ピストン部5は、図2の実線で示す上死点と、破線で示す下死点の間で往復動する。ピストン部5は、シリンダ部4とともに燃焼室4rを画定している。ピストン部5、シリンダ部4、吸気バルブ81、及び排気バルブ82は、燃焼室4rを画定している。
 燃焼室4rは、往復方向Zに見たときに、ピストン部5の往復動のストロークStより短い径Bを有している。即ち、ピストン部5の往復動のストロークStは、燃焼室4rの径Bよりも長い。径Bに対するストロークStの割合は、例えば、1.2以上である。径Bに対するストロークStの割合は、例えば、1.3以上でもよい。また、径Bに対するストロークStの割合は、例えば1.5以上である。
 また、火花点火式エンジン1における圧縮比は、従来のエンジンに比べて高く設定されている。火花点火式エンジン1では、ノッキングの発生を抑えつつ従来のエンジンに比べて高い圧縮比を有することができる。このことによっても、火花点火式エンジン1における熱効率が向上する。
 火花点火式エンジン1の最高出力回転速度は、6000rpm未満に設定されている。最高出力回転速度は、最高出力が得られる回転速度である。火花点火式エンジン1は、大きなストロークStを有するが、最高出力回転速度が6000rpm未満に抑えられることによって、ピストン部5の最大移動速度が抑えられる。
 火花点火式エンジン1における燃焼室4rの径Bは、例えば、40mmから60mmまでの範囲に設定される。ストロークStは、70mmから80mmの間に設定される。
 図4は、図2に示す火花点火式エンジンのピストン部を示す斜視図である。
 ピストン部5は、ピストン部5の頂面5tに、周囲よりも窪んだ凹部5cを有している。凹部5cは、往復方向Zに見た時に円状である。凹部5cは、往復方向Zに見た時にピストン部5の中心線Lcを中心とした円状である。
 なお、本実施形態では、往復方向Zに見てピストン部5の中心及び燃焼室4rの中心は重なっている。また、往復方向Zに見てピストン部5の中心及び燃焼室4rの中心は、中心線Lcと重なっている。従って、往復方向Zに見てピストン部5の中心、燃焼室4rの中心、及び中心線について、同じ符号Lcを付して参照する。
 また、ピストン部5の頂面5tには、吸気バルブ81及び排気バルブ82との干渉を避けるためのバルブリセス5a,5bも設けられている。バルブリセス5a,5bは、凹部5cと隣り合っている。バルブリセス5a,5bには、吸気バルブ81及び排気バルブ82の一部が受け入れられる。凹部5cは、バルブリセス5a,5bとは別の部分であり、吸気バルブ81及び排気バルブ82を受け入れない。
 図2及び図3に示すクランクシャフト2は、軸受31(図3参照)を介してクランクケース部21に支持されている。クランクシャフト2は、コンロッド32を介してピストン部5と連結されている。コンロッド32の一端は、クランクシャフト2に回転自在に支持されており、コンロッド32の他端は、ピストン部5に回転自在に支持されている。これによって、クランクシャフト2は、ピストン部5の往復動に応じて回転する。
 火花点火式エンジン1は、ただ1つのシングルセンタータンブルポート(SCTP)41aとただ1つの排気ポート41eを備えている。シングルセンタータンブルポート(SCTP)41aは吸気ポートとして機能する。シングルセンタータンブルポート(SCTP)41aと排気ポート41eは、シリンダヘッド部41に形成されている。シングルセンタータンブルポート(SCTP)41a及び排気ポート41eのそれぞれは、燃焼室4rに続いている。シリンダヘッド部41は、吸気口41b及び排気口41fを有している。吸気口41bは、シングルセンタータンブルポート(SCTP)41aの燃焼室4rにおける開口部である。排気口41fは、排気ポート41eの燃焼室4rにおける開口部である。シングルセンタータンブルポート(SCTP)41aを通るガスは、吸気口41bを通り燃焼室4rへ供給される。火花点火式エンジン1における吸気口41bは、排気口41fよりも大きい。吸気口41bは、ピストン部の往復方向Zに見た時にシリンダボア42bの中心(即ちピストン部5の中心線Lcが通る点)が吸気口41b内に位置するように形成されている。
 シングルセンタータンブルポート(SCTP)41aにおける吸気口41bとは反対の端(上流端)は、シリンダヘッド部41の外面に開口している。吸気口41bの端(上流端)に、吸気通路115(図1参照)が接続されている。詳細には、吸気口41bの上流端に、吸気通路115を構成する吸気管114が連結されている。
 排気ポート41eは、燃焼室4rの排気口41fから曲がりながらシリンダヘッド部41内を下流へ向けて延びるように形成されている。排気ポート41eにおける排気口41fの反対の端(下流端)は、シリンダヘッド部41の外面に開口している。排気口41fの端(下流端)に、排気管118(図1参照)が連結される。
 図2(A)に示すように、シリンダ部4を往復方向Zに見たとき、延長領域Aeに対し、吸気口41bから吸気方向Y1とは逆方向へ延びた領域として、吸気口近傍領域Arが定義される。少なくとも燃焼室4rの天井部41rのうちシリンダボディ部42に続く周縁部は、吸気口近傍領域Arに非スキッシュ領域NSを有している。非スキッシュ領域NSは、天井部41rの周縁部のうち、燃焼室4rに向いた突状部が設けられていない領域である。つまり、非スキッシュ領域NSは、スキッシュ効果の発生のための突状部が設けられていない領域である。
 非スキッシュ領域NSでは、ピストン部5の中心線Lc方向におけるシリンダヘッド部41とピストン部5との離間距離が、燃焼室4rの径方向における中心に向かって連続的に大きくなるように構成されている。
 本実施形態では、非スキッシュ領域NSが、天井部41rの周縁部の全体に設けられている。
 燃料噴射部6は、シングルセンタータンブルポート(SCTP)41aを向け取付けられている。燃料噴射部6は、シングルセンタータンブルポート(SCTP)41aに燃料を噴射する。燃料噴射部6は、吸気口41bよりも上流の位置で燃料を噴射する。燃料噴射部6は、シングルセンタータンブルポート(SCTP)41a内に供給されたガスに燃料を噴射する。燃料を含むガスは、吸気口41bを通って燃焼室4rに供給される。燃焼室4rに供給されるガスは、詳細には、外気と再循環ガスと燃料とを含んでいる。
 火花点火式エンジン1は、理論空燃比(ストイキオメトリー)で燃焼している。燃料噴射部6は、火花点火式エンジン1が理論空燃比で燃焼するように、燃料を噴射する。燃料噴射部6は、空燃比が14.2から14.8までの範囲となるように燃料を噴射する。これは、空気過剰率で0.98から1.02までの範囲に相当する。より詳細には、火花点火式エンジン1は、例えば、図示しない酸素センサで排ガス中の酸素含有量を検出し、検出される酸素含有量に基づいて、空燃比が14.2から14.8までの範囲となるように燃料を噴射する。
 図2(A)に示すように燃焼室4rは、往復方向Zに見たときに、2つの領域即ち第1の領域A1と第2の領域A2に区分される。オフセット点火部7aは、第1の領域A1に、中心通過線Sと重ならないように配置される。
 吸気口41bは、中心通過線S上における吸気口41bと排気口41fとの間の間隔がオフセット点火部7aの径よりも短くなるように形成されている。オフセット点火部7aが、中心通過線Sと重ならないよう配置され、吸気口41bの径が大きく確保され得る。
 シリンダヘッド部41には、カムシャフト41sが回転自在に設けられている。カムシャフト41sにはカム41t,41u,41vが設けられている。カムシャフト41s及びカム41t,41u,41vは一体で、クランクシャフト2の回転と連動して回転する。カム41tの動作によって排気バルブ82が直線往復動することにより、排気口41fが開放及び閉鎖する。また、カム41u,41vの動作によって吸気バルブ81が直線往復動することにより、吸気口41bが開放及び閉鎖する。
 吸気バルブ81は、ピストン部5が下死点(図2の破線で示す位置)に移動する時に吸気口41bを開放することによって、シングルセンタータンブルポート(SCTP)41aを通して燃焼室4rに吸気されるガス(吸気ガス)にタンブル流を生成させる。
 吸気バルブ81は、吸気口41bの閉鎖をピストン部5の下死点への到達より遅くすることによって、火花点火式エンジン1の圧縮比を膨張比よりも小さくする。火花点火式エンジン1は、可変バルブタイミング機構43を備えている。可変バルブタイミング機構43は、図示しない制御部の制御に応じて、吸気バルブ81が閉鎖するタイミングを切換える。詳細には、可変バルブタイミング機構43は、吸気バルブ81を駆動するカムを、カム41uと41vとで切換えることによって、吸気バルブ81が閉鎖するタイミングを切換える。
 シリンダ部4は、往復方向Zに見たときの燃焼室4rの径Bより長いストローク分ピストン部5が下死点へ向けて移動する時に、シングルセンタータンブルポート(SCTP)41aから吸気されたガスにタンブル流を生成させる。具体的には、シリンダ部4は、ピストン部5が収容された円筒状のシリンダボア42bを有している。シリンダ部4及びピストン部5によって燃焼室4rが画定されている。シリンダ部4の中で、ピストン部5は、燃焼室4rの径Bより長いストロークStだけ移動する。シングルセンタータンブルポート(SCTP)41aから吸気されたガスは、主に排気バルブ82の方へ向かって流れ、次に筒状のシリンダボア42bの壁面に案内される。これによって、タンブル流が生成される。ピストン部5が上死点に向かって移動する時、ピストン部5は、上死点に向かってガスを押す。シリンダ部4は、上死点に向かってピストン部5に押されたガスを吸気バルブ81が配置された吸気口41bに向かわせるように形成されている。ピストン部5に押されたガスは、筒状のシリンダボア42bの壁面に案内され、吸気バルブ81が配置された吸気口41bに向かって上昇する。これによっても、タンブル流が生成される。タンブル流の詳細については後述する。
 図5は、図2(A)に示す火花点火式エンジンの拡大図である。
 図5には、図2(A)とは別の観点による燃焼室4rの区分が示されている。即ち、燃焼室4rは、図5に示すように、ピストン部5(図2参照)の往復方向Zに見て中心通過線Sと直交し且つシリンダボア42bの中心Lcを通る直線Tによって、吸気口41bを含む領域Abと排気口41fを含む領域Afとに区分される。また、図5には、ピストン部5の往復方向Zに見た時にシリンダボアの中心Lcを通る中心通過線が示されている。
 本実施形態において、シングルセンタータンブルポート(SCTP)41aに備えられた吸気口41bは、小径のシリンダボア42bに対して広く確保されている。具体的には、吸気口41bは、次のように形成されている。往復方向Zに見て、吸気口41bを含む領域Ab内の中心通過線S上において、領域Ab内で中心通過線Sと吸気口41bとが重なる部分が、中心通過線Sと吸気口41bとが重ならない部分よりも長い。
 このように、大きな吸気口41bを有するシングルセンタータンブルポート(SCTP)41aからシリンダ部4へガスが供給されることにより、燃焼室4rで速いタンブル流を生じさせることができる。
 例えば、図5に示す例において、中心通過線Sと吸気口41bとが重ならない部分の長さは実質的に0である。即ち、往復方向Zに見て、吸気口41bは、燃焼室4rに内接するように配置されている。また、往復方向Zに見て、シリンダボア42bの中心Lcは、吸気口41bの範囲に含まれている。
 また、本実施形態において、吸気バルブ81は、次のように配置されている。吸気バルブ81のバルブ面部81cが吸気口41bを閉鎖する時、バルブ面部81cにおける排気口41fに近い端点(図5ではLcと重なる点)が、往復方向Zに見て中心通過線Sと平行な方向において、プラグ穴41dにおける吸気口に近い端点dよりも、排気口41fに近い。これによって、大きな吸気口41bが形成されている。
 例えば、燃焼室4rの直径は、40mmより大きく60mmより小さい。この場合、吸気口41bを含む領域Ab内の中心通過線Sの長さは20mmより大きく30mmより小さい。このうち、中心通過線Sと吸気口41bとが重なる部分は、20mmより大きく30mmより小さい。図5に示す例では、吸気口41bを含む領域Ab内の中心通過線S上において、中心通過線Sと吸気口41bとが重なる部分の長さは、20mmより大きく30mmより小さい。但し、燃焼室4rの直径、吸気口41bを含む領域Ab内の中心通過線Sの長さ、中心通過線Sと吸気口41bとが重なる部分の長さ、及び重ならない部分の長さのそれぞれは、上述した範囲に限られない。
 図6は、図2に示す火花点火式エンジンのシングルセンタータンブルポート(SCTP)及びその周辺部分を拡大して示す断面図である。図5(A)は、シングルセンタータンブルポート(SCTP)41aに加え吸気バルブ81及び燃料噴射部6の位置も示す図である。図5(B)は、シングルセンタータンブルポート(SCTP)41aのみを見やすく示す断面図である。
 先に説明したように、火花点火式エンジン1には、ただ1つのシングルセンタータンブルポート(SCTP)41aが設けられている。シングルセンタータンブルポート(SCTP)41aは、筒状に延びる内壁を有する。
 吸気バルブ81は、傘部81a及びステム部81bを有している。傘部81aは円盤状である。ステム部81bは柱状であり、傘部81aに続いている。吸気バルブ81は、バルブ面部81cを有している。バルブ面部81cは、傘部81aのうち、燃焼室4rに向いた部分である。バルブ面部81cは、円状である。吸気バルブ81が吸気口41bを閉鎖するとき、バルブ面部81cが吸気口41bを塞ぐ。吸気バルブ81が吸気口41bを閉鎖するとき、バルブ面部81cと吸気口41bの間の隙間がなくなり、バルブ面部81cとシリンダ部4とピストン部5とによって燃焼室4rが完全に画定される。
 シングルセンタータンブルポート(SCTP)41aは、吸気口41bから燃焼室4rへ吸気されたガスに、タンブル流を生成させる構造を有している。詳細には、シングルセンタータンブルポート(SCTP)41aの内壁に、剥離強化部41pが設けられている。剥離強化部41pは、吸気口41bから燃焼室4rへ吸気されたガスにタンブル流を生成させるように、吸気口41bに送るガスを吸気口41bに続く壁面から剥離する構造を有する。より詳細には、剥離強化部41pは、シングルセンタータンブルポート(SCTP)41aの吸気口41bを画定する円周のうち、少なくとも排気口41f(図1参照)に対し最も遠い部分41gからガスを剥離するような構造を有する。より詳細には、吸気口41b及び排気口41fを通る断面において、剥離強化部41pは、シングルセンタータンブルポート(SCTP)41aを構成する壁面の、吸気口41bに隣接する環状の部分の、少なくとも排気口41fから最も遠い部分41gに設けられた、折り返した形状を有する。剥離強化部41pは、急激にシングルセンタータンブルポート(SCTP)41aの中心線41cから遠ざかる向きに折り返した形状である。言い換えると、剥離強化部41pは、急激に排気口41fから遠ざかる向きに折り返した形状である。
剥離強化部41pは、シングルセンタータンブルポート(SCTP)41a内の空間に向かって突出している。剥離強化部41pは、吸気口41bよりもガスの流れの上流の内壁の環状の周に沿って延びる突条である。即ち、剥離強化部41pは、吸気口41bの円周に沿って延びる。但し、剥離強化部41pは内壁を一周していない。シングルセンタータンブルポート(SCTP)41aは、吸気口41bに続く環状の帯部分のうち、排気口41fから最も遠い部分に剥離強化部41pを有している。剥離強化部41pはエッジを有している。従って図6に示すシングルセンタータンブルポート(SCTP)41aの内壁は、シングルセンタータンブルポート(SCTP)41aの延伸方向に沿って剥離強化部で41pにおいて不連続である。剥離強化部41pは図5に示す断面において直角又は鋭角を成している。
 剥離強化部41pは図6に示す断面において鋭角を成している。
 剥離強化部41pは折り返した形状であるが、微視的には図5に示すようなエッジを必ずしも有していなくともよい。
 シングルセンタータンブルポート(SCTP)41a内を壁面に接しながら吸気口41bに向かって流れるガスは、剥離強化部41pで壁面から剥離する。ガスは、急激に折り返した形状に沿って流れることができない。つまり、排気口41fから遠ざかる向きの流れが減少する。このため、吸気口41bと吸気バルブ81と間の隙間を通って燃焼室4rに吸気されるガスの流れのうち、吸気口41bから排気口41fに向かう流れが、他の向きの流れよりも速い。吸気口41bから排気口41fに向かう流れにより、燃焼室4rの中でタンブル流が生成される。タンブル流の詳細については、後述する。
 火花点火式エンジン1は、吸気管噴射式のエンジンである。燃料噴射部6は、シングルセンタータンブルポート(SCTP)41aの吸気口41bに向かって燃料を噴射するように配置されている。燃料噴射部6は、霧化した燃料を円錐状の噴射範囲6aに噴射する。噴射される燃料の密度は、噴射範囲の中心6cに近づくほど大きい。噴射範囲6aの中心6cにおける燃料の密度は最大である。
 燃料噴射部6は、燃料の噴射範囲6aの中心6cが、シングルセンタータンブルポート(SCTP)41aの剥離強化部41pと交わらないように配置されている。燃料噴射部6は、燃料の噴射範囲の中心6cが、吸気バルブ81のステム部81bと交わるように配置されている。最大の燃料の密度を有する噴射範囲6aの中心6cが剥離強化部41pと交わらない。このため、燃料が剥離強化部41pに付着して剥離強化部41p付近に凝集する事態の発生が抑えられる。この結果、凝集した燃焼が大きな塊(液滴)となって間欠的に燃焼室4rに入るといった事態の発生が抑えられる。従って、シングルセンタータンブルポート(SCTP)41aからの意図しない間欠的な燃料供給の変動が抑えられる。従って、熱効率が向上する。
 より詳細には、燃料噴射部6は、噴射範囲6aがシングルセンタータンブルポート(SCTP)41aの剥離強化部41pと交わらないように配置されている。これにより、燃料が剥離強化部41pに付着して剥離強化部41p付近に凝集する事態の発生がさらに抑えられる。従って、熱効率がより向上する。
 図7は、図2に示す火花点火式エンジンの燃焼室内のガスの流れを模式的に説明する図である。(A)は吸気行程の平面図を示し、(B)は吸気行程の斜視図を示す。
 図7(B)に示すように、吸気行程ではピストン部5が上死点から下死点へ向かって移動する。また、吸気行程では、吸気バルブ81が吸気口41bを開放する。この結果、ガスがシングルセンタータンブルポート(SCTP)41a及び吸気口41bを通って燃焼室4rに流入する。
 本実施形態における、排気再循環通路120は、図7(A)に示すように、吸気管114内の第2の領域A2に開口するように吸気管114に接続されている。このため、排気再循環通路120から供給された再循環ガス(斜線付き矢印で示す)の多くは、シングルセンタータンブルポート(SCTP)41aの第2の領域A2に分布している。
 図7(A)に示すように、往復方向Zに見たときに吸気口41bから吸気方向Y1へ延びる延長領域Aeは、排気口41fと重なる。従って図7(A)に示すようにシングルセンタータンブルポート(SCTP)41aを吸気方向Y1に流れ、吸気口41bから燃焼室4rに入ったガスの多くは、シングルセンタータンブルポート(SCTP)41aの構造によって、特に排気口41fが配置された方向、即ち吸気方向Y1に流れる。より詳細には、シングルセンタータンブルポート(SCTP)41a内を流れるガス流が、剥離強化部41pによって、ガス流がシングルセンタータンブルポート(SCTP)41aの壁面から剥離する。このため、吸気口41bと吸気バルブ81との間の円環状の隙間を通って燃焼室4rに吸気されるガスの流れのうち、吸気口41bから排気口41fに向かう流れは、他の向きの流れよりも速く多い。吸気口41bから燃焼室4rに入ったガスの多くは、排気バルブ82のバルブ面部に沿って流れ、ピストン部5に引き込まれるようにピストン部5の下死点に向かって流れる。この結果、燃焼室4r内でタンブル流が形成される。タンブル流は、往復方向Zと交わる方向に延びた軸線X1の周りの渦である。図7に示す本実施形態の例では、軸線X1は、クランクシャフト方向Xと実質的に平行である。なお、バルブ面部は、燃焼室に臨む面状の部分である。
 火花点火式エンジン1は、ただ1つのシングルセンタータンブルポート(SCTP)41aの吸気口41bと、ただ1つの排気ポート41eの排気口41fを備えている。例えば3つ以上の吸気口及び排気口を有するエンジンとは異なり、1つの吸気口41bと1つの排気口41fは、往復方向Zに見たとき燃焼室4rの共通の直径と重なるように配置されている。即ち、1つの吸気口41bと1つの排気口41fは、往復方向Zに見たとき燃焼室4rの中心線Lcを通り吸気方向Y1と平行な直線上に配置されている。このため、吸気口41bから燃焼室4rに入ったガスの流れのうち、中心線Lc付近を通るガスの流れが最も速い。
 火花点火式エンジン1には、例えば複数の吸気口を備える場合と比べて大きな吸気口41bが設けられている。このため、往復方向Zに見たとき吸気口41bから排気口41fの方へ流れるガスの流れが生じる。このガスの流れは、クランクシャフト方向Xで広い幅を有するまとまりを成している。
 火花点火式エンジン1のオフセット点火部7a(図2参照)は、燃焼室の第1の領域A1に中心通過線Sと重ならないように位置している。このため、例えば往復方向Zに見て点火部が燃焼室4rの中心に配置される場合と比べて大きな吸気口41bが設けられている。このことによっても、吸気口41bから排気口41fの方へ幅の広いガスの流れが生じる。
 このようにして、吸気口41bから燃焼室4rに入ったガスによって、広い幅を有し幅方向(本実施形態では軸線X1方向)での中央部分の流れが速いタンブル流が形成される。
 火花点火式エンジン1には、例えば複数の吸気口を備える構成における1つの吸気口と比べて、大きな吸気口41bが確保されている。但し、吸気口41bの面積は、例えば複数の吸気口が設けられる場合の吸気口の面積の総計と比べて小さい。開口が小さいほど速い流速でガスが通過するので、シングルセンタータンブルポート(SCTP)41aの吸気口41bを通過するガスは、複数の吸気口を有する場合と比べて速いタンブル流を生じさせる。
 火花点火式エンジン1のシングルセンタータンブルポート(SCTP)41aは、シリンダ部4内で、タンブル比が0.3よりも大きいタンブル流を形成する。
 タンブル比は、タンブル流の強度を示す指標である。タンブル比は、タンブル流の速度を示す指標である。
 図8は、タンブル比の計算方法を説明する図である。図8には、シリンダ部4の内部構造が模式的に示されている。
 タンブル比の計算では、シリンダ部4内にタンブル球TSという空間が定義される。タンブル球TSの球体内におけるガスの角速度からタンブル比が計算される。
 このようにして、図7(B)に示すように、燃焼室4r内では、幅が広く、しかも幅方向での中央部分で最も速い流れを有するタンブル流が形成される。中心部分が最も速い流れを有するタンブル流が、燃焼室4rの径Bよりも長いストロークSt分移動するピストン部5の移動によって形成される。幅方向での中央部分で最も速い流れを有するタンブル流によって、流れの乱れが抑えられる。このようなタンブル流では、長い期間、速度が維持されやすい。タンブル比が0.3よりも大きいタンブルが形成されることによって、ガスの燃焼に要する時間がより減少する。
 焼室内4rでは、乱れが抑えられたタンブル流が形成されるため、燃焼室4r内におけるクランクシャフト方向Xでの再循環ガスの分布の傾向は、シングルセンタータンブルポート(SCTP)41a内におけるガスにおける分布の傾向と近似する。
 また、燃焼室4r内で、広い幅を有し幅方向(本実施形態では軸線X1方向)での中央部分の流れが速いタンブル流が形成されるため、流れの乱れが抑えられる。このようなタンブル流は、長い期間、速度が維持されやすい。従って、燃焼室4r内における再循環ガスのクランクシャフト方向Xでの分布の傾向が維持されやすい。この結果、再循環ガスの多くは、燃焼室4r内の第2の領域A2に分布している。
 吸気行程に続く圧縮行程ではピストン部5が上死点に向かって移動する。即ち、ピストン部5が下死点の位置から上昇する。吸気行程で図7(B)に示すように吸気口41bから出て排気バルブ82のバルブ面に沿って流れ、そしてピストン部5に向かって流れたガスが、圧縮行程でピストン部5に押される。ピストン部5に押されたガスが吸気口41bに向かって流れる。これによってタンブル流が維持される。ピストン部5が移動するストロークStは、燃焼室4rの径Bより長い。従って、圧縮行程におけるピストン部5の移動速度も大きい。このため、ピストン部5に押されたガスによって速いタンブル流が維持されやすい。
 このため、燃焼室4r内における再循環ガスのクランクシャフト方向Xでの分布が維持されやすい。
 また、図2(A)に示すように、少なくとも燃焼室4rの天井部41rの周縁部は、吸気口近傍領域Arに非スキッシュ領域NSを有している。このため、燃焼室4rにおけるタンブル流の乱れが抑えられる。これによっても、燃焼室4r内における再循環ガスのクランクシャフト方向Xでの分布が維持されやすい。
 燃焼室4r内における再循環ガスの分布が維持される結果、火花点火の時点で、再循環ガスの多くが燃焼室4rの第2の領域A2に分布している。この結果、高い酸素濃度を有する外気の多くが、燃焼室4r内におけるオフセット点火部7a付近の第1の領域A1に分布している。そして、高い比熱を有する再循環ガスの多くが、オフセット点火部7aから離れた第2の領域A2に分布している。
 このような再循環ガスの偏在は、火花点火式エンジン1の特性として、オフセット点火部7aによる点火後、燃焼を急速に進めつつ燃焼室4rの外部に逃げる熱を抑制するような燃焼動作を設定する場合に適している。第1の領域A1に配置されたオフセット点火部7aによる点火によって、多くの外気を含んだ第1の領域A1のガスが短時間で燃焼する。オフセット点火部7aから離れた第2の領域A2のガスには、多くの再循環ガスが含まれている。第1の領域A1のガスの燃焼による熱の、ピストン部5およびシリンダ部4への逃げが、高い比熱を有する再循環ガスによって抑えられる。
 火花点火の時点で、燃焼室4r内の速いタンブル流が、速い乱流に変化する。これによっても、火炎が短い期間で伝播する。
 また、燃焼室4rが、往復方向Zに見たときに、ピストン部5の往復動のストロークStより短い径Bを有している。短い径Bによって、ピストン部5が上死点にある時にピストン部5によって画定される燃焼室4rの扁平度が低下する。従って、オフセット点火部7aによる点火後、火炎が伝播する時に、火炎が伝播する最大距離が減少する。このことによっても、燃焼時間が減少する。
 火花点火式エンジン1のオフセット点火部7aは、往復方向Zに見て燃焼室4rの中心からオフセットした位置に配置されている。しかし、本実施形態の火花点火式エンジン1では、速いタンブル流と、火炎伝播の最大距離の減少とによって、オフセット点火部7aのオフセットした配置位置に起因する燃焼時間への影響が抑えられる。
 このように、燃焼室内で速いタンブル流が維持されるとともに、火炎が伝播する距離が減少するため、ガスの燃焼に要する時間が減少する。燃焼に要する時間が減少することによって、火花点火式エンジン1の熱効率が向上する。
 火花点火式エンジン1では、燃焼に要する時間が減少することによって、ノッキングの発生が抑えられる。また、火花点火式エンジン1は、水冷エンジンであるため、ノッキングの発生が抑えられる。このため、ノッキングの発生を抑えつつ火花点火式エンジン1の圧縮比を従来のエンジンよりも高く設定することができる。この結果、火花点火式エンジン1の熱効率がさらに向上する。
 図9は、本実施形態に係る火花点火式エンジンユニットの変形例を説明する図である。(A)は、変形例における火花点火式エンジンの燃焼室内のガスの流れを模式的に説明する吸気行程の平面図である。(B)は吸気行程の斜視図である。
 図9に示す変形例では、排気再循環通路120は、往復方向Zに見て吸気管114の中心線S2と重なる位置で吸気管114内に開口している。この場合、シングルセンタータンブルポート(SCTP)41aにおける、排気再循環通路120から供給された再循環ガスの分布は、往復方向Zで偏りを有する。
 但し、シングルセンタータンブルポート(SCTP)41aの往復方向Zの分布に対応する、吸気口41bと吸気バルブ81と間の隙間の距離は小さい。吸気口41bと吸気バルブ81との間の隙間を、外気と再循環ガスの重なりが通過する。このため、燃焼室4rにおける再循環ガスが外気と混合されやすい。この結果、燃焼室4r内で再循環ガスが均一に分散する。
 このように再循環ガスが均一に分散した分布は、火花点火式エンジン1の燃焼動作特性として、オフセット点火部7aによる点火後、ガスの燃焼の速度を均一化するような燃焼動作を設定する場合に適している。
 図7に示す本実施形態、及び図9に示す変形例では、排気再循環通路120によって排気管118から取り出される再循環ガスが、外気と共にシングルセンタータンブルポート(SCTP)41aを介して燃焼室4rに吸気される。これによって燃焼室4r内においてタンブル流が形成される。外気は、サージタンクを通らずにスロットルボディ116、吸気管114及びシングルセンタータンブルポート(SCTP)41aを流れる。
 このため、図7及び図9に示す例のように、再循環ガスの合流位置を調整することによって、燃焼室4r内で再循環ガスの分布の偏りを増大したり、あるいは偏りをなくして再循環ガスの分布を均一化したりすることができる。
 例えば、再循環ガスと外気がサージタンクで混合される場合、再循環ガスと外気はシングルセンタータンブルポート(SCTP)41aを通過する前に均一化される。このため、燃焼室内で再循環ガスの分布の偏りを生じさせるような設計が困難である。再循環ガスと外気がサージタンクより下流で混合される場合でも、分布の偏りを生じさせるような設計は困難である。なぜなら、サージタンクは、通常複数のシリンダに設けられた燃焼室にガスを供給するため、負圧となる期間を有する。サージタンクより下流で外気に合流した再循環ガスは、サージタンクが負圧となる期間サージタンク即ち上流に向かって流れる場合がある。上流に流れた再循環ガスを含むガスは、その後下流に流れ、合流位置を通過して燃焼室に供給される。混合された再循環ガスが一旦上流に流れ下流に流れることによって、再循環ガスと外気が均一化されやすい。このため、燃焼室内で再循環ガスの分布の偏りを生じさせるような設計が困難である。
 これに対し、本実施形態によれば、再循環ガスの合流位置を調整することによって、燃焼室4r内で再循環ガスの分布の偏りを増大したり、あるいは偏りをなくして再循環ガスの分布を均一化したりすることができる。
 シングルセンタータンブルポートによるタンブル流によって再循環ガスの分布を維持しやすくする構成は、図7及び図9に示す例以外にも適用される。
 例えば、往復方向Zに見て、点火プラグが燃焼室の中央に配置されている場合、排気再循環通路を、吸気管内の第1の領域と第2の領域の2箇所に開口するように配置する。この場合、燃焼室内では、往復方向に見て中心通過線付近の中央領域で再循環ガスの濃度が低く、中央領域の外部の領域で再循環ガスの濃度が高い。このような燃焼室内の分布が、シングルセンタータンブルポートで形成されるタンブル流によって点火時期まで維持されやすい。
 往復方向Zに見て、燃焼室の中央の点火プラグの付近の領域では、再循環ガスの濃度が低く、点火プラグから離れた2つの領域では再循環ガスの濃度が高い。
 このように、吸気管及びセンタータンブルポートの周方向における再循環ガスの合流位置及びその数は、特に限定されない。また、吸気管及びセンタータンブルポートの流れ方向における再循環ガスの合流位置は、スロットルボディと吸気口との間であればよく、合流位置の数も特に限定されない。再循環ガスが、より下流で合流されることにより、再循環ガスが燃焼室に流入するまでの時間が短くなるので、燃焼室内での再循環ガスの分布の偏りを増大させることが可能になる。再循環ガスが、より上流で合流されることにより、再循環ガスが燃焼室に流入するまでの時間が長くなるので、燃焼室内での再循環ガスの分布の偏りを緩やかにできる。
 このように、再循環ガスの合流位置を調整することによって、燃焼室4r内における再循環ガスの分布の設計自由度が高められる。
 図10は、比較例としての火花点火式4バルブエンジンのガスの流出の状況を説明する平面図である。
 図10に示す比較例のエンジン9は、4つのバルブを備えている。比較例のエンジン9は、ガスの吸気口941bが2つに分散しているため、それぞれの吸気口941bからのガスの流れは、1つの吸気口41b(図7参照)を備える本実施形態の流れと比べて遅い。
 また、吸気口941bのそれぞれから燃焼室94rに入ったガスの流れのうち、互いに近づくよう吸気方向に対し斜めに向いた流れは、中心部分で互いにぶつかることによって乱れる。このため、燃焼室94rに吸気されたガスは、吸気直後に撹拌される。このため、例えば図7に示す形態と同じように、再循環ガスの分布をクランクシャフト方向で偏らせても、再循環ガスが外気と混合されてしまう。また、燃焼室94rに吸気されたガスが撹拌される程度は、2つの吸気口941bから流入するガスのぶつかり合いによるため、程度の調整が困難である。従って、比較例のエンジン9では、燃焼室内における排ガスの分布の設計自由度が低い。
 これに対し、本実施形態によれば、図7あるは図9に示すように再循環ガスの合流位置を調整することによって、燃焼室4r内で再循環ガスの分布の偏りを増大したり、逆に、偏りをなくして再循環ガスの分布を均一化したりすることができる。
 このように、本実施形態の火花点火式エンジンユニットEU1によれば、火花点火式エンジンの燃焼室4r内における排ガスの分布の設計自由度を高めることができる。
 また、本実施形態の火花点火式エンジン1によれば、速いタンブル流によって燃焼時間を短くして熱効率を高めるとともに、維持されやすいタンブル流を利用して燃焼室4r内の排ガスの分布を設定することができる。従って、熱効率が高くしかも排ガスの分布の設計自由度が高い。
 図11は、火花点火式エンジンの燃焼室の径と熱効率の関係を示すグラフである。
 図11には、例として、行程容積(行程容積)を0.15Lに固定した火花点火式エンジンにおいて、燃焼室の径とピストン部のストロークを変えた場合における熱効率(図示熱効率)の計算結果が示されている。シミュレーションの対象の火花点火式エンジンは、燃焼室の径とピストン部のストローク以外は、図2及び図3に示す構成と同じ構成を有している。つまり、計算対象の火花点火式エンジンは、シングルセンタータンブルポート(SCTP)41aを備えている。
 図11のグラフにおいて、燃焼室の径がR1より小さい領域、即ち図中でR1より左の領域は、ピストン部のストロークが燃焼室の径よりも長い。
 図11のグラフにおいて、燃焼室の径がR2より小さい領域、即ち図中でR2より左の領域は、ピストン部のストロークが燃焼室の径の1.2倍よりも長い。
 図11のグラフにおいて、燃焼室の径がR3より小さい領域、即ち図中でR2より左の領域は、ピストン部のストロークが燃焼室の径の1.5倍よりも長い。
 シングルセンタータンブルポート(SCTP)41a及びオフセット点火部7aを備える火花点火式エンジン1では、図11に示すように、ピストン部のストロークStが燃焼室の径Bよりも長いことによって、高い熱効率が得られる。従って、熱効率が高い。
 ピストン部のストロークが燃焼室の径の1.2倍よりも長い領域では、図示熱効率の増大の度合いが実質的に飽和する。即ち、ストローク増大に対し、図示熱効率が増大しにくい。ピストン部のストロークが燃焼室の径の1.2倍よりも長い領域では、図示熱効率がより高い。
 ピストン部のストロークが燃焼室の径の1.5倍よりも長い領域では、図示熱効率の増大の度合いが更に飽和する。即ち、ストローク増大に対し、図示熱効率が更に増大しにくい。ピストン部のストロークが燃焼室の径の1.5倍よりも長い領域では、ピストン部の移動速度の増大による図示熱効率の増大がより安定している。
 ピストン部のストロークを設定することにより、熱効率を増大しつつ燃焼室における排ガスの分布の設計自由度を高めることができる。
 図12は、エンジンの行程容積と熱効率の関係を示すグラフである。
 図12のグラフは、圧縮比が一定の条件におけるエンジンの行程容積と熱効率の関係を示している。図10のグラフの横軸はエンジンの行程容積である。行程容積は、1気筒当たりの行程容積(排気量)である。縦軸は、熱効率(図示熱効率)を示している。グラフの実線η1は、本実施形態のシングルセンタータンブルポート(SCTP)を備えたエンジンのモデルによる熱効率の試算結果を示す。グラフの破線η2は、シングルセンタータンブルポート(SCTP)を備えないエンジンのモデルによる熱効率の試算結果を示す。
 本実施形態の火花点火式エンジン1では、熱効率が低下しやすい0.2L未満のストローク容積を有する火花点火式エンジンにおいて、例えば、サージタンクを通って流れるガスとともに排ガスの一部がシングルセンタータンブルポート(SCTP)41aを介して吸気される場合と比べ、熱効率の低下を抑えるような、燃焼室の排ガスの分布の設計自由度を高めることができる。つまり、熱効率の低下を抑える設計において、大型化を抑えつつ燃焼室における排ガスの分布の設計自由度を高めることができる。
 図13は、一般的なエンジンの行程容積と図示熱効率の関係を示すグラフである。
 図13には、参考例として、一般的なエンジンにおける行程容積と図示熱効率が示されている。図示熱効率は、機械損失を考慮しない熱効率である。参考例におけるピストン部のストロークは燃焼室の径と等しい。
 図13に示す参考例に代表されるような一般的なエンジンの図示熱効率は、体積と表面積の関係に起因して、エンジンの大きさが小さくなるほど減少する傾向を有する。体積は発生熱量に密に関連するのに対し、表面積は放熱による熱損失に密に関連するためである。
 図13に示すように、エンジンの行程容積が0.2L未満の場合、行程容積の減少に対し図示熱効率の低下が加速する。つまり、例えば0.4L以上の大型エンジンにおける傾向を表す直線(一点鎖線)η’からの乖離が大きくなる。図示熱効率の低下は、行程容積が0.15L未満で顕著になる。即ち、直線(一点鎖線)η’からの乖離は、0.2L未満で顕在化し、行程容積が0.18L未満で顕著になる。
 図1から図10に示す火花点火式2バルブエンジン1は、剥離強化部41p(図5参照)を有するシングルセンタータンブルポート(SCTP)41aからシリンダ部4に吸気されたガスによる速いタンブル流が形成されるため、図示熱効率が増大する。図示熱効率の増大は、一般的なエンジンが0.1Lの行程容積まで小型化した場合の、小型化による図示熱効率の低下を補うことができる。このため、図1から図10に示す構成によれば、剥離強化部41pを有するシングルセンタータンブルポート(SCTP)41aとシリンダ部4を備え、行程容積が0.1L以上0.2L未満の火花点火式2バルブエンジンの熱効率を向上しつつ燃焼室における排ガスの分布の設計自由度を高めることができる。
 火花点火式2バルブエンジンが0.125L以上の行程容積を有する場合、タンブル流形成による図示熱効率の増大が、小型化による図示熱効率の低下に対し十分な余裕を有する。
 図1から図10に示す構成によれば、燃焼室における排ガスの分布の設計自由度を高めつつ、参考例に示すような0.2L未満の行程容積で顕著な低下が見られる、火花点火式2バルブエンジンの熱効率を向上することができる。
 図14は、図1から図10に示す火花点火式2バルブエンジン1におけるガスの流れを説明する図である。図14には、図1から図10に示す火花点火式2バルブエンジン1の吸気行程におけるガスの流れのシミュレーションが示されている。表示濃度の濃い部分(暗い部分)ほど、速い流速を示している。
 シングルセンタータンブルポート(SCTP)41aからシリンダ部4に吸気されたガスは、剥離強化部41pで壁面から剥離しやすい。剥離したガスは、シングルセンタータンブルポート(SCTP)41aが延伸する向きに流れやすい。従ってシングルセンタータンブルポート(SCTP)41aから燃焼室4rに吸気されるガスのうち、排気バルブ82のバルブ面に向かって流れるガスの流量及び速度が増加する。
これに対し、排気バルブ82から見て、吸気バルブ81よりも遠い位置から燃焼室4rに吸気されるガスの量及び流速が減少する。
 この結果、排気バルブ82のバルブ面に沿って流れた後、ピストン部5(図1)に向かう向きの速いタンブル流が生成される。
 図15(A)は、火花点火式エンジンにおけるポートの変形例を示す図である。図15(B)は、図15(A)の火花点火式エンジンにおけるガスの流れを説明する図である。図15(B)には、吸気行程におけるガスの流れのシミュレーション結果が示されている。
 図15(A)に示すシングルセンタータンブルポート(SCTP)241aは、剥離強化部241pを有している。剥離強化部241pは、吸気口241bから燃焼室4r(図5参照)へ吸気されたガスにタンブル流を生成させるように、吸気口241bに送るガスを吸気口241bに続く壁面から剥離する構造を有する。より詳細には、剥離強化部241pは、シングルセンタータンブルポート(SCTP)241aの吸気口241bを画定する円周のうち、少なくとも排気口41f(図2参照)に対し最も遠い部分からガスを剥離するような構造を有する。より詳細には、吸気口241b及び排気口41f(図2参照)を通る断面において、剥離強化部241pは、シングルセンタータンブルポート(SCTP)241aを構成する壁面の、吸気口241bに隣接する環状の帯部分の、少なくとも排気口41fから最も遠い部分に設けられた、折り返した形状を有する。剥離強化部41pは、急激にシングルセンタータンブルポート(SCTP)241aの中心線から遠ざかる向きに折り返した形状である。言い換えると、剥離強化部241pは、急激に排気口41fから遠ざかる向きに折り返した形状である。剥離強化部241pは、吸気口241b及び排気口41f(図2参照)を通る断面において、直角又は鋭角を成すように折り返した形状である。剥離強化部241pは、図15(A)に示す断面において、実質的に直角を成すように折り返した形状である。ただし、剥離強化部241pは、微視的にはエッジを有しておらず、曲面状に折り返した形状である。
 剥離強化部241pは、シングルセンタータンブルポート(SCTP)241a内部に突出している凸部である。
 図15(A)に示すシングルセンタータンブルポート(SCTP)241aは、ガスの流れにおける剥離強化部241pよりも上流に、凹部241vを有している。凹部241vは、剥離強化部241pに隣接しており、シングルセンタータンブルポート(SCTP)241aの延伸方向に沿った断面において曲面を成している。凹部241vが隣接することによって、剥離強化部241pは、急激に排気口41fから遠ざかる向きに折り返した形状である。
 従って、シングルセンタータンブルポート(SCTP)241aの内壁は、シングルセンタータンブルポート(SCTP)241aの延伸方向で剥離強化部241pにおいて実質的に不連続である。凹部241v及び剥離強化部241pにより、ガスは壁面から剥離する。
 図15(B)に示すように、シングルセンタータンブルポート(SCTP)241aからシリンダ部4に吸気されたガスは、剥離強化部241pで壁面から剥離しやすい。剥離したガスは、シングルセンタータンブルポート(SCTP)241aが延伸する向きに流れやすい。従って、シングルセンタータンブルポート(SCTP)241aから燃焼室4rに吸気されるガスのうち、排気バルブ82のバルブ面に向かって流れるガスの流量及び速度が増加する。これに対し、排気バルブ82から見て、吸気バルブ81よりも遠い位置から燃焼室4rに吸気されるガスの量及び流速が減少する。
 この結果、排気バルブ82のバルブ面に沿って流れた後、ピストン部5(図2)に向かう向きの速いタンブル流が生成される。
 図16は、比較例におけるガスの流れを説明する図である。
 図16に示す剥離強化部341pシングルセンタータンブルポート(SCTP)は、剥離強化部241pを有さない。シングルセンタータンブルポート(SCTP)を通るガスは、壁面から剥離しがたい。この結果、シングルセンタータンブルポート(SCTP)241aから燃焼室4rに吸気されるガスのうち、排気バルブ82のバルブ面に向かって流れるガスの流量及び速度が小さい。これに対し、排気バルブ82から見て、吸気バルブ81よりも遠い位置から燃焼室4rに吸気されるガスの量及び流速が、例えば図15(B)に示す場合と比べて大きい。
 この結果、排気バルブ82のバルブ面に沿って流れた後、ピストン部5(図2)に向かう向きのタンブル流は遅い。
 図17は、図14、図15、及び図16それぞれに示す構成におけるタンブル比を示すグラフである。
 グラフのTR1は、図14に示す構成におけるタンブル比を示している。また、TR2は、図15に示す構成におけるタンブル比を示している。また、TRrは、図16に示す比較例の構成におけるタンブル比を示している。タンブル比は、吸気バルブ81のバルブリフトが異なる条件で示されている。
 図14、図15に示す実施形態の構成の場合には、比較例の場合よりも大きいタンブル比が得られる。
 図18は、図1に示す火花点火式エンジンユニットEU1が搭載された鞍乗型車両を示す側面図である。
 図18に示す鞍乗型車両100は、車体102及び車輪103a,103bを備えている。詳細には、鞍乗型車両100は、自動二輪車である。鞍乗型車両100は、スクータタイプの車両である。後ろの車輪103bは駆動輪である。車体102には、フレーム104が設けられている。フレーム104は、ダウンフレーム104aを含んでいる。
 また、鞍乗型車両100は、加速指示部108を備えている。加速指示部108は、操作に応じて鞍乗型車両100の加速を指示するための操作子である。加速指示部108は、操作に応じて変位する。加速指示部108は、アクセルグリップである。
 図1を参照して、火花点火式エンジンユニットEU1の各部の配置について説明する。
火花点火式エンジン1は、鞍乗型車両100に横向きで配置されている。即ち、火花点火式エンジン1は、前後方向FBに垂直な鉛直面とピストン部5の往復方向Zとで成す角よりも、水平面と往復方向Zとで成す角が小さくなるように配置されている。
 火花点火式エンジンユニットEU1のスロットルボディ116は、ピストン部5の往復方向Zとスロットルボディ116における吸気通路115の中心線115aとで成す角θ1が、往復方向Zに垂直な面Vと中心線115aとで成す角θ2よりも小さくなるように配置されている。また、スロットルボディ116は、往復方向Zと垂直な方向Yでシリンダ部4と重なる位置に配置されている。
 また、触媒ユニット119は、往復方向Zと垂直な方向Yでシリンダ部4と重なる位置に配置されている。つまり、触媒ユニット119は、シリンダ部4に沿うように配置されている。触媒ユニット119は、直立状態における鞍乗型車両100の鉛直方向でシリンダ部4よりも下に配置されている。
 火花点火式エンジンユニットEU1は、鞍乗型車両100へ搭載されるため、小型であることが求められる。例えば、火花点火式エンジンユニットEU1に備えられる火花点火式エンジン1のシリンダ部4は、鉛直方向で、ダウンフレーム104aより上に配置される。また、火花点火式エンジンユニットEU1に備えられる吸気通路115及びスロットルボディ116もダウンフレーム104aより上に配置される。
 火花点火式エンジンユニットEU1より上には、例えば図示しないバッテリ又は収納部が配置される。火花点火式エンジンユニットEU1は、ダウンフレーム104aと、バッテリ又は収納部との間の限られた空間に配置される。
 図1に示す火花点火式エンジンユニットEU1が備える火花点火式エンジンの燃焼室4rは、往復方向Zに見たときにピストン部5の往復動のストロークSt(図2参照)より短い径Bを有している。このため、燃焼室4rを画定するシリンダ部4の径方向へのサイズは、例えばストロークより長い径を有している場合の構成と比べて小さい。このため、シリンダ部4と重なる位置に配置されているスロットルボディ116の配置の自由度が高い。
 従って、図1に示されているように、往復方向Zと吸気通路の中心線115aとで成す角θ1が、ピストン部5の往復方向Zに垂直な面Vと中心線115aとで成す角θ2よりも小さくなるようにスロットルボディ116が配置されている場合に、吸気通路115及びシングルセンタータンブルポート(SCTP)41aを曲率の低い曲線に沿って配置することができる。このため、シングルセンタータンブルポート(SCTP)41a内における、再循環ガスと外気の分布の乱れが抑えられる。また、燃焼室4r内における速いタンブル流の生成が妨げられにくい。火花点火式エンジンユニットEU1によれば、火花点火式エンジンの燃焼室4r内における排ガスの分布の設計自由度を高めることができるとともに、速いタンブル流によって熱効率を増大することができる。
 また、触媒ユニット119は、往復方向Zと垂直な方向Yでシリンダ部4と重なる位置に配置されている。これによって、触媒ユニット119を火花点火式エンジン1の近くに配置することができる。触媒ユニット119が火花点火式エンジン1の近くに配置される場合、より高温の排ガスが触媒ユニット119の触媒に供給されるので、例えばエンジン始動後に触媒の浄化性能をより効果的に発揮することができる。ただし、触媒ユニット119が火花点火式エンジン1の近くに配置されると、火花点火式エンジン1から排気される排ガスの流れに対する触媒ユニット119の抵抗の影響が大きい。
 図18及び図1に示す触媒ユニット119は、鞍乗型車両100における火花点火式エンジンユニットEU1の最低地上高を維持するような位置に配置されている。従って、触媒ユニット119が配置される低さには制限がある。しかし、シリンダ部4の径方向でのサイズは、例えばストロークより長い径を有している場合と比べて小さい。このため、触媒ユニット119の形状設計の自由度が高い。このため、例えば、触媒ユニット119を太径とすることによって、排ガスの流れに対する触媒ユニット119の抵抗を抑えることができる。この場合、排ガスの流れに対する抵抗が抑えられることによって、火花点火式エンジン1の熱効率が向上する。
 また、シリンダ部4の径方向でのサイズが小さいことによって、火花点火式エンジン1自体の配置の自由度も高められる。例えば、触媒ユニット119の位置と形状を維持したまま、火花点火式エンジン1を鉛直方向で、より下方に配置することができる。この結果、吸気通路115及びシングルセンタータンブルポート(SCTP)41aを曲率の低い曲線に沿って配置することができる。このため、シングルセンタータンブルポート(SCTP)41a内における、再循環ガスと外気の分布の乱れが抑えられる。従って、火花点火式エンジン1の燃焼室内における排ガスの分布の設計自由度を高めることができる。
 また、吸気通路115及びシングルセンタータンブルポート(SCTP)41aを曲率の低い曲線に沿って配置することができるので、燃焼室4r内における速いタンブル流の生成が妨げられにくい。速いタンブル流によって熱効率がより増大する。
 このように、図1に示す火花点火式エンジンユニットEU1によれば、車両への搭載性を有しつつ、燃焼室内における排ガスの分布の設計自由度を向上するとともに熱効率を向上することができる。
 図19は、図18とは別の種類の鞍乗型車両を示す側面図である。
 図19に示す鞍乗型車両200は、いわゆるストリートタイプの自動二輪車である。鞍乗型車両200は、車体202、車輪203a,203bを備えている。車体202には、フレーム204が設けられている。フレーム204は、フロントフレーム204fを有する。
 鞍乗型車両200は、火花点火式エンジンユニットEU2を備えている。火花点火式エンジンユニットEU2は、火花点火式エンジン1、吸気通路215、スロットルボディ216、排気通路217、及び触媒ユニット219を備えている。車輪203bは、火花点火式エンジン1から出力される回転力を受け鞍乗型車両200を駆動する。
 スロットルボディ216は、火花点火式エンジン1に供給される外気の流量を制御する。
 排気通路217は、火花点火式エンジン1から排出されるガスを通す。触媒ユニット219は、排気通路217に設けられている。
 図20は、図19に示す車両の火花点火式エンジンユニットの配置を概略的に示す図である。
 火花点火式エンジン1は、鞍乗型車両に縦向きで配置されている。即ち、火花点火式エンジン1は、鞍乗型車両200における鉛直面とピストン部5の往復方向Zとで成す角よりも、水平面と往復方向Zとで成す角の方を大きくするように配置されている。
 鞍乗型車両200における前後方向FBで火花点火式エンジン1よりも前Frに、フロントフレーム204fが配置されている。
 図20に示す火花点火式エンジンユニットEU2のスロットルボディ216は、ピストン部5の往復方向Zに延びるピストン部の中心線Lcとスロットルボディ216における吸気通路215の中心線215aとが交わるように配置されている。
 図20に示す火花点火式エンジンユニットEU2は、前後方向FBでフロントフレーム204fよりも後ろBkに配置されている。火花点火式エンジンの燃焼室4rは、往復方向Zに見たときにピストン部5の往復動のストロークSt(図2参照)より短い径Bを有している。従って、燃焼室4rを画定するシリンダ部4の径方向へのサイズは、例えばストロークより長い径を有している場合の構成と比べて小さい。このため、ピストン部5の中心線と吸気通路215の中心線215aとが交わるよう配置されるスロットルボディ216の配置の自由度が高い。燃焼室4r内における速いタンブル流の生成が妨げられ難いようにスロットルボディ216を配置することができるので、速いタンブル流を生じさせることができる。
 このように、火花点火式エンジンユニットEU2によれば、火花点火式エンジン1の燃焼室4r内における排ガスの分布の設計自由度を高めることができるとともに、熱効率をより増大することができる。
 図21は、図20とは更に別の火花点火式エンジンユニットの配置を概略的に示す図である。
 図21に示す火花点火式エンジンユニットEU3の触媒ユニット319は、図19に示す触媒ユニット219とは異なる位置に配置されている。触媒ユニット319の位置を分かりやすく示すため、フロントフレーム204fの図示は省略されている。その他の点は、図20と同じである。
 図21に示す触媒ユニット319は、往復方向Zと垂直な方向Yでシリンダ部4と重なる位置に配置されている。つまり、触媒ユニット319は、シリンダ部4に沿うように配置されている。触媒ユニット319は、火花点火式エンジンユニットEU3が搭載される鞍乗型車両の前後方向FBでシリンダ部4よりも前Frに配置されている。
 図21に示す火花点火式エンジンユニットEU3も、図20に示す火花点火式エンジンユニットEU2と同様に、鞍乗型車両200(図19参照)へ搭載されるため小型であることが求められる。例えば、火花点火式エンジンユニットEU3は、前の車輪203a(図19参照)と間隔をあけて配置される。
 火花点火式エンジンユニットEU3が備える火花点火式エンジン1の燃焼室4rは、往復方向Zに見たときにピストン部5の往復動のストロークSt(図2参照)より短い径Bを有している。このため、燃焼室4rを画定するシリンダ部4の径方向へのサイズは、例えばストロークより長い径を有している場合の構成と比べて小さい。このため、シリンダ部4と重なる位置に配置されている触媒ユニット319の配置の自由度が高い。
 図21に示す火花点火式エンジンユニットEU3において、触媒ユニット319が火花点火式エンジン1の近くに配置されることによって、例えばエンジン始動後に触媒の浄化性能をより効果的に発揮することができる。また、ピストン部5の往復動のストロークSt(図2参照)より短い径Bを有する燃焼室4rを備えた火花点火式エンジン1のシリンダ部4に沿うように触媒ユニット319が配置されているので、触媒ユニット319に太い径を採用することができるため、火花点火式エンジン1から排出された排ガスが触媒ユニット319を通過するときの抵抗を減少することができる。このように、火花点火式エンジンユニットEU3によれば、火花点火式エンジンの燃焼室4r内における排ガスの分布の設計自由度を高めることができるとともに、排気行程における排ガス流の抵抗が減少するので熱効率を向上することができる。
 本発明は、上述した例に限定されず、例えば、下記(7)~(8)の構成を採用し得る。下記(8)~(9)の実施形態としては、上述した実施形態が挙げられる。
 (8) (1)から(6)いずれか1の火花点火式エンジンユニットであって
 前記スロットルボディは、前記ピストン部の往復方向と前記スロットルボディにおける前記吸気通路の中心線とで成す角が、前記ピストン部の往復方向に垂直な面と前記中心線とで成す角よりも小さくなるように、前記ピストン部の往復方向と垂直な方向で前記シリンダ部と重なる位置に配置されている。
 (8)の火花点火式エンジンユニットが備える火花点火式エンジンの燃焼室は、往復方向に見たときにピストン部の往復動のストロークより短い径を有している。このため、燃焼室を画定するシリンダ部の径方向へのサイズの増大が抑えられる。このため、シリンダ部と重なる位置に配置されているスロットルボディの配置の自由度が高い。従って、ピストン部の往復方向と吸気通路の中心線とで成す角が、ピストン部の往復方向に垂直な面と吸気通路の中心線とで成す角よりも小さくなるようにスロットルボディが配置される場合に、速いタンブル流の生成を妨げるような吸気通路の配置を避けることができる。従って、火花点火式エンジンの燃焼室内における排ガスの分布の設計自由度を高めることができる。
 (9) (1)から(6)いずれか1の火花点火式エンジンユニットであって
 前記スロットルボディは、前記ピストン部の往復方向に延びる前記ピストン部の中心線と前記スロットルボディにおける前記吸気通路の中心線とが交わるように配置されている。
 (9)の火花点火式エンジンユニットが備える火花点火式エンジンの燃焼室は、往復方向に見たときにピストン部の往復動のストロークより短い径を有している。このため、燃焼室を画定するシリンダ部の径方向へのサイズの増大が抑えられる。このため、スロットルボディの配置の自由度が高い。従って、ピストン部の中心線と吸気通路の中心線とが交わるようスロットルボディが配置される場合に、速いタンブル流の生成を妨げるような吸気通路の配置を避けることができる。従って、火花点火式エンジン1の燃焼室内における排ガスの分布の設計自由度を高めることができる。
 1   火花点火式エンジン
 2   クランクシャフト
 4   シリンダ部
 4r  燃焼室
 5   ピストン部
 7   オフセット点火プラグ(点火プラグ)
 7a  オフセット点火部(点火部)
 41  シリンダヘッド部
 42  シリンダボディ部
 41a,241a,341a シングルセンタータンブルポート(SCTP)
 41b 吸気口
 41e 排気ポート
 41f 排気口
 81  吸気バルブ
 82  排気バルブ
 81c バルブ面部
 100,200 鞍乗型車両
 114  吸気管
 115,215    吸気通路
 116,216 スロットルボディ
 116a スロットル弁
 117  排気通路
 118  排気管
 119,219,319  触媒ユニット
 120  排気再循環通路
 EU1,EU2,EU3  火花点火式エンジンユニット
 NS  非スキッシュ領域

Claims (6)

  1.  火花点火式エンジンユニットであって、
     前記火花点火式エンジンユニットは、
     燃焼室が形成されたシリンダ部と、
     シリンダ部内に往復動可能に設けられ、シリンダ部とともに前記燃焼室を画定するピストン部と、
     前記ピストン部の往復動に応じて回転するようピストン部と連結されたクランクシャフトと、
     前記燃焼室に排気口を介して連通するよう前記シリンダ部に設けられ、前記燃焼室からの排ガスが通る1つの排気ポートと、
     前記燃焼室に吸気口を介して連通するよう前記シリンダ部に設けられ、前記吸気口から前記燃焼室へ吸気された吸気ガスに前記往復方向と交わる方向に延びた軸線周りのタンブル流を生成させるように前記吸気口に送るガスを前記吸気口に続く壁面から剥離する剥離強化部を有し、前記吸気口は、前記ピストン部の往復方向に見たときに前記吸気口の幅を有し且つ前記吸気口から吸気方向へ延びる領域として定義される延長領域が前記排気口と重なるように設けられた、1つのシングルセンタータンブルポートと、
     前記排気口を開放及び閉鎖する1つの排気バルブと、
     前記吸気口を開放及び閉鎖する1つの吸気バルブと、
     前記燃焼室に配置された点火部を有し、前記燃焼室のガスに火花点火するように構成された点火プラグと、
     前記燃焼室へ吸気されるガスの流量を調節するスロットル弁を有するスロットルボディと、
     前記スロットルボディ及び前記1つのシングルセンタータンブルポートを、サージタンクを介すること無しに接続し、前記スロットルボディから前記1つのシングルセンタータンブルポートまでガスを通す吸気管と、
     前記1つの排気ポートのうちの前記排気口とは反対の端に接続され、前記1つの排気ポートを介して排気される排ガスを通す排気管と、
     前記排気管又は前記排気ポートと前記吸気管又は前記シングルセンタータンブルポートとを接続する排気再循環通路であって、前記排気管又は前記排気ポートから取り出される排ガスの一部が、再循環ガスとして、前記サージタンクを通らずに前記スロットルボディ、前記吸気管及び前記1つのシングルセンタータンブルポートを流れるガスと共に、前記1つの吸気バルブの開放に伴って前記剥離強化部を経て前記1つのシングルセンタータンブルポートを介して吸気されることにより、前記燃焼室内において前記タンブル流を成すように、前記再循環ガスを前記吸気管又は前記1つのシングルセンタータンブルポートに供給する排気再循環通路と、を備える。
  2.  請求項1に記載の火花点火式エンジンユニットであって、
     前記点火プラグは、前記往復方向に見たときに前記排気口の中心及び前記吸気口の中心を通る中心通過線により前記燃焼室が区分されることにより定義される2つの領域のうち第1の領域に、前記中心通過線と重ならないように配置される前記点火部により、前記燃焼室のガスに火花点火するように構成されている。
  3.  請求項1又は2に記載の火花点火式エンジンユニットであって、
     前記排気管には、前記燃焼室から排出された排ガスを浄化する触媒を収容する触媒ユニットが更に設けられ、
     前記排気再循環通路は、前記触媒ユニットよりも排ガスの流れにおける下流から、排ガスの一部を前記再循環ガスとして取り出す。
  4.  請求項1から3いずれか1項に記載の火花点火式エンジンユニットであって、
     前記燃焼室は、前記往復方向に見たときに、前記ピストン部の往復動のストロークより短い径を有する。
  5.  請求項1から4いずれか1項に記載の火花点火式エンジンユニットであって、
     前記シリンダ部は、0.1L以上0.2L未満の行程容積を有する。
  6.  請求項1から5いずれか1項に記載の火花点火式エンジンユニットと、
     前記火花点火式エンジンユニットに駆動される車輪と、
    を備える車両。
PCT/JP2019/027558 2018-07-12 2019-07-11 火花点火式エンジンユニット及び車両 WO2020013291A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19833340.3A EP3808952A4 (en) 2018-07-12 2019-07-11 GASOLINE ENGINE UNIT AND VEHICLE
TW108124742A TWI755614B (zh) 2018-07-12 2019-07-12 火花點火式引擎單元及車輛

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-132368 2018-07-12
JP2018132368A JP2021169770A (ja) 2018-07-12 2018-07-12 火花点火式エンジンユニット及び車両

Publications (1)

Publication Number Publication Date
WO2020013291A1 true WO2020013291A1 (ja) 2020-01-16

Family

ID=69142986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027558 WO2020013291A1 (ja) 2018-07-12 2019-07-11 火花点火式エンジンユニット及び車両

Country Status (4)

Country Link
EP (1) EP3808952A4 (ja)
JP (1) JP2021169770A (ja)
TW (1) TWI755614B (ja)
WO (1) WO2020013291A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7433403B1 (ja) 2022-12-06 2024-02-19 本田技研工業株式会社 内燃機関及び鞍乗型車両

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256778A (ja) * 2004-03-12 2005-09-22 Nissan Motor Co Ltd 排気ガス還流装置を備えたエンジン
JP4119281B2 (ja) 2003-02-28 2008-07-16 本田技研工業株式会社 エンジンの排気還流装置
JP2008274868A (ja) * 2007-04-27 2008-11-13 Honda Motor Co Ltd 内燃機関
JP2009144653A (ja) 2007-12-17 2009-07-02 Aisin Seiki Co Ltd 排気ガス再循環装置
WO2011125208A1 (ja) * 2010-04-08 2011-10-13 トヨタ自動車株式会社 内燃機関の燃焼制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004293484A (ja) * 2003-03-28 2004-10-21 Mazda Motor Corp 火花点火式エンジン
JP2004316609A (ja) * 2003-04-18 2004-11-11 Toyota Motor Corp タンブル流形成用の吸気ポートを備えた内燃機関
JP3153075U (ja) * 2008-07-29 2009-08-20 ヤマハ発動機株式会社 車両用エンジンユニットおよび鞍乗り型車両
JP5894520B2 (ja) * 2012-03-30 2016-03-30 本田技研工業株式会社 内燃機関
JP6000785B2 (ja) * 2012-09-28 2016-10-05 本田技研工業株式会社 内燃機関の吸気装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4119281B2 (ja) 2003-02-28 2008-07-16 本田技研工業株式会社 エンジンの排気還流装置
JP2005256778A (ja) * 2004-03-12 2005-09-22 Nissan Motor Co Ltd 排気ガス還流装置を備えたエンジン
JP2008274868A (ja) * 2007-04-27 2008-11-13 Honda Motor Co Ltd 内燃機関
JP2009144653A (ja) 2007-12-17 2009-07-02 Aisin Seiki Co Ltd 排気ガス再循環装置
WO2011125208A1 (ja) * 2010-04-08 2011-10-13 トヨタ自動車株式会社 内燃機関の燃焼制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3808952A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7433403B1 (ja) 2022-12-06 2024-02-19 本田技研工業株式会社 内燃機関及び鞍乗型車両

Also Published As

Publication number Publication date
JP2021169770A (ja) 2021-10-28
EP3808952A4 (en) 2021-05-26
TWI755614B (zh) 2022-02-21
TW202006244A (zh) 2020-02-01
EP3808952A1 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
US6009849A (en) Direct fuel injection engine
JP5925878B2 (ja) 内燃機関の吸気装置
JP2008531916A (ja) 改善されたシリンダヘッド組立体
CN104033233B (zh) 内燃机的燃烧室结构
EP1749997B1 (en) Fuel injection type internal combustion engine
WO2020013291A1 (ja) 火花点火式エンジンユニット及び車両
CN110446834B (zh) 火花点火式内燃机
JP2001248447A (ja) 筒内燃料噴射式エンジンにおける燃焼室構造
WO2020013289A1 (ja) 火花点火式2バルブエンジン、エンジンユニット、及び車両
WO2020013290A1 (ja) 火花点火式エンジン及び車両
JP2018044511A (ja) 内燃機関のピストン
JP2005325736A (ja) 内燃機関
CN110446835B (zh) 火花点火式内燃机
JP3580026B2 (ja) 筒内直噴式内燃機関
JP4294188B2 (ja) エンジン用ピストン
JP2022136397A (ja) エンジンの燃焼室構造
JP2022136399A (ja) エンジンの燃焼室構造
JP2022136398A (ja) エンジンの燃焼室構造
JP2717960B2 (ja) エンジンの燃焼室
WO2021191920A1 (en) A power unit and an intake member thereof
JP2022071404A (ja) エア供給装置
JP2012036732A (ja) 4サイクルエンジン及びそれを備える車両
JP2006307691A (ja) 直接噴射式内燃機関およびその燃焼方法
JP2010038073A (ja) 内燃機関の吸気制御装置
JP2002317639A (ja) 内燃機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019833340

Country of ref document: EP

Effective date: 20210112

NENP Non-entry into the national phase

Ref country code: JP