WO2011125208A1 - 内燃機関の燃焼制御装置 - Google Patents

内燃機関の燃焼制御装置 Download PDF

Info

Publication number
WO2011125208A1
WO2011125208A1 PCT/JP2010/056394 JP2010056394W WO2011125208A1 WO 2011125208 A1 WO2011125208 A1 WO 2011125208A1 JP 2010056394 W JP2010056394 W JP 2010056394W WO 2011125208 A1 WO2011125208 A1 WO 2011125208A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
valve
fresh air
egr gas
combustion
Prior art date
Application number
PCT/JP2010/056394
Other languages
English (en)
French (fr)
Inventor
金子 真也
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/056394 priority Critical patent/WO2011125208A1/ja
Priority to US13/639,888 priority patent/US9097190B2/en
Priority to CN201080065902.3A priority patent/CN102834601B/zh
Priority to JP2012509251A priority patent/JP5278600B2/ja
Priority to EP10849451.9A priority patent/EP2557300B8/en
Publication of WO2011125208A1 publication Critical patent/WO2011125208A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0226Variable control of the intake valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0257Independent control of two or more intake or exhaust valves respectively, i.e. one of two intake valves remains closed or is opened partially while the other is fully opened
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0269Controlling the valves to perform a Miller-Atkinson cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0057Specific combustion modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/07Mixed pressure loops, i.e. wherein recirculated exhaust gas is either taken out upstream of the turbine and reintroduced upstream of the compressor, or is taken out downstream of the turbine and reintroduced downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/20Feeding recirculated exhaust gases directly into the combustion chambers or into the intake runners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/108Swirl flow, i.e. the axis of rotation of the main charge flow motion is vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B2031/006Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a combustion control device for an internal combustion engine that performs stratified combustion by stratifying (stratifying) an EGR gas and an air-fuel mixture or fresh air in a combustion chamber.
  • EGR device that recirculates a part of the exhaust gas of an internal combustion engine to the internal combustion engine as EGR gas.
  • EGR gas is supplied to the combustion chamber together with the air-fuel mixture or fresh air, thereby reducing NOx in the exhaust gas and improving fuel consumption.
  • a technique for stratifying (stratifying) the EGR gas and the mixture or fresh air in a combustion chamber is known.
  • the opening / closing characteristic changing unit shifts the opening and closing timings of the two intake valves, first causes EGR gas to flow into the combustion chamber from the intake port having the swirl control valve, and then burns fresh air from the other intake port. Let flow into the chamber. Thereby, in the combustion chamber, the EGR gas layer is used as the lower layer, and the fresh air layer is used as the upper layer, so that the EGR gas and the fresh air are stratified.
  • JP 2004-144052 A Japanese Patent Laid-Open No. 06-200836 JP-A-63-162933
  • the present invention has been made in view of the above circumstances, and in the combustion control device for an internal combustion engine, even when the engine load is high as the operating state of the internal combustion engine, the EGR gas and the mixture or fresh air
  • An object of the present invention is to provide a technology that enables stratification and enables introduction of a large amount of EGR gas.
  • the present invention A first intake passage and a second intake passage that are independently connected to the combustion chamber of the internal combustion engine and supply intake air to the combustion chamber;
  • An EGR device that recirculates EGR gas that is part of exhaust gas from an exhaust passage of the internal combustion engine to an EGR gas supply port provided in the first intake passage;
  • a fresh air blocking portion for blocking fresh air from flowing into the first intake passage;
  • a supercharger that supercharges fresh air upstream of the first intake passage and the second intake passage;
  • the valve opening timing is set between a first intake valve that controls intake air flowing into the combustion chamber from the first intake passage and a second intake valve that controls intake air flowing into the combustion chamber from the second intake passage.
  • An opening / closing characteristic changer that can be different, When introducing EGR gas and performing stratified combustion, fresh air is supercharged by the supercharger, fresh air is prevented from flowing into the first intake passage by the fresh air prevention unit, and the switching characteristic changing unit And a controller that opens the first intake valve prior to the second intake valve and then opens the second intake valve; Is a combustion control device for an internal combustion engine.
  • EGR gas and stratified combustion means that the EGR gas and the mixture or fresh air are stratified in the combustion chamber to reduce NOx in the exhaust gas and improve fuel efficiency. It is a driving state.
  • intake is a general term for fresh air, air-fuel mixture, and EGR gas flowing into an internal combustion engine.
  • New air is fresh air supplied from the outside of the internal combustion engine.
  • the “air mixture” is a gas in which fresh air and fuel are mixed.
  • EGR gas is a part of the inert gas discharged from the internal combustion engine.
  • the fresh air blocking unit prevents fresh air from flowing into the first intake passage
  • the opening / closing characteristic changing unit opens the first intake valve prior to the second intake valve.
  • EGR gas flowing through the first intake passage flows into the combustion chamber.
  • the EGR gas descends while forming a swirl flow in the combustion chamber.
  • the air-fuel mixture or fresh air flowing through the second intake passage flows into the combustion chamber.
  • This air-fuel mixture or fresh air forms a layer that forms a swirl flow on the layer of EGR gas that has flown in the combustion chamber.
  • stratification can be achieved with the EGR gas layer as the lower layer and the air-fuel mixture or fresh air layer as the upper layer.
  • the EGR gas flows into the combustion chamber first, so that the air-fuel mixture or fresh air that flows in later is burned at the negative pressure due to the lowering of the piston in the intake stroke. It becomes difficult to enter the room.
  • the air-fuel mixture or fresh air is supercharged and flows into the combustion chamber not only in the intake stroke but also in the compression stroke. Can do. Thereby, even when the engine load is high, stratification of EGR gas and air-fuel mixture or fresh air can be achieved without deteriorating intake efficiency, and a large amount of EGR gas can be introduced. .
  • the air-fuel mixture or fresh air that flows in later forms a swirl flow in the combustion chamber in the latter half of the intake stroke or the compression stroke. For this reason, since the stratified state of the combustion chamber is easily maintained until ignition occurs, the effect of stratification can be exhibited to the maximum.
  • the control unit is configured to increase a supercharging pressure of fresh air to be supercharged by the supercharger during a period from when the first intake valve is closed to when the second intake valve is closed. It should be higher than the internal pressure.
  • the supercharged air-fuel mixture or fresh air is pushed back by the in-cylinder pressure of the internal combustion engine and can flow into the combustion chamber without flowing back.
  • the supercharger is a turbocharger;
  • the EGR device may include an EGR passage that connects the exhaust passage downstream of the turbine of the turbocharger and the EGR gas supply port.
  • EGR gas which is part of the exhaust gas in the exhaust passage downstream from the turbine of the turbocharger, has decreased since it has been used to drive the turbine.
  • the EGR gas is caused to flow into the combustion chamber from the beginning of the intake stroke at a negative pressure due to the lowering of the piston during the intake stroke.
  • the negative pressure is sufficiently secured, even this EGR gas whose temperature and pressure are reduced can be sufficiently supplied to the combustion chamber.
  • the first intake passage and the second intake passage may be a helical port or a tangential port in which intake air flowing into the combustion chamber forms a swirl flow in the same direction.
  • the control unit introduces EGR gas and performs stratified combustion
  • the intake air flowing through the second intake passage in the compression stroke is caused to flow into the combustion chamber
  • fresh air is supercharged by the supercharger
  • fresh air flows into the first intake passage at the fresh air blocking portion.
  • the opening / closing characteristic changing unit opens the first intake valve prior to the second intake valve, and then opens the second intake valve
  • the first air is prevented from being supercharged by the supercharger, and the first air prevention unit performs the first air prevention.
  • fresh air is prevented from flowing into the intake passage, the first intake valve is opened prior to the second intake valve by the opening / closing characteristic changing unit, and then the second intake valve is opened.
  • the fresh air blocking unit may switch the intake air flowing through the first intake passage to either fresh air flowing from the upstream side of the first intake passage or EGR gas flowing from the EGR gas supply port.
  • the amount of EGR gas can be controlled by the valve opening timing and the lift amount of the first intake valve, and it is not necessary to provide an EGR valve in the EGR device.
  • the control of the amount of EGR gas can be simplified, and the cost can be reduced by reducing the number of parts by eliminating the EGR valve.
  • the EGR gas amount is controlled by the first intake valve, the distance between the EGR gas amount control portion and the combustion chamber becomes zero, so there is no response delay of the EGR gas and the internal combustion engine Misfire, torque fluctuation, etc. are suppressed and drivability can be stabilized.
  • the volume of the first intake passage from the fresh air blocking section to the combustion chamber is such that stratified combustion is performed by introducing EGR gas in at least one of the operating states of a high engine load or a high engine speed. Sometimes approximately equal to the amount of EGR gas supplied to the combustion chamber,
  • the control unit switches from stratified combustion to non-stratified combustion that does not introduce EGR gas having a high required torque
  • the cylinder that first enters the intake stroke after the switching request starts inflow of intake air into the combustion chamber
  • the intake air flowing through the first intake passage is switched to fresh air flowing from the upstream side of the first intake passage in the fresh air blocking section, and then the intake air to the combustion chamber of the first one cycle of the other cylinders other than the cylinder is changed.
  • the control unit may keep the first intake valve closed by the opening / closing characteristic changing unit when non-stratified combustion is performed with a low engine load without introducing EGR gas.
  • the second intake valve which is one intake valve, is opened to allow the mixture or fresh air to flow into the combustion chamber. .
  • a strong swirl flow can be formed in the combustion chamber, and combustion is stabilized.
  • the first intake valve is opened to allow EGR gas to flow in from the first intake passage, and the second is the same as before switching.
  • the intake valve is opened to allow the mixture or fresh air to flow into the combustion chamber. Since there is no change in the amount of air-fuel mixture or fresh air supplied to the combustion chamber before and after the switching, the transition from the non-stratified combustion to the stratified combustion can be performed without causing a torque step.
  • the present invention in the combustion control device for an internal combustion engine, even when the engine load is high as the operating state of the internal combustion engine, stratification of the EGR gas and the air-fuel mixture or fresh air can be achieved, and the EGR A large amount of gas can be introduced.
  • FIG. 1 is a diagram illustrating a schematic configuration of an internal combustion engine according to Embodiment 1 of the present invention.
  • 1 is a diagram illustrating a schematic configuration of an internal combustion engine and an intake system and an exhaust system thereof according to a first embodiment. It is a figure which shows an example of the valve timing of the intake valve and exhaust valve at the time of stratified combustion which concerns on Example 1, and the cylinder pressure and supercharging pressure at that time.
  • 2 is a diagram illustrating a stratified state in a combustion chamber according to Embodiment 1.
  • FIG. It is a figure which shows an example of the valve timing of the intake valve and exhaust valve at the time of the non-stratified combustion which concerns on Example 1.
  • FIG. 3 is a flowchart illustrating a combustion control routine for the internal combustion engine according to the first embodiment.
  • FIG. 3 is a diagram illustrating a schematic configuration of an internal combustion engine and an intake system and an exhaust system thereof according to another example of the first embodiment.
  • 2 is a diagram illustrating a schematic configuration of an internal combustion engine according to another example of Embodiment 1.
  • FIG. It is a figure which shows the state which used the helical port or the tangential port for the 1st intake port and 2nd intake port which concern on Example 2.
  • FIG. 6 is a diagram showing a stratified state in a combustion chamber according to Embodiment 2.
  • FIG. 10 is a diagram illustrating an example of valve timings of an intake valve and an exhaust valve at the time of stratified combustion when it is not necessary for the air-fuel mixture flowing through the second intake port to flow into the combustion chamber in the compression stroke according to the third embodiment.
  • FIG. 6 is a diagram showing a schematic configuration of an internal combustion engine and an intake system and an exhaust system thereof according to a fourth embodiment.
  • FIG. 10 is a diagram showing a pattern of proper use of stratified combustion of EGR gas and air-fuel mixture and non-stratified combustion without introducing EGR gas, corresponding to the operating state of the internal combustion engine according to the fourth embodiment. It is a figure which shows the control timing in the case of switching from stratified combustion which concerns on Example 4 to non-stratified combustion.
  • FIG. 1 It is a figure which shows an example of the valve timing of an intake valve and an exhaust valve in the case of switching from stratified combustion which concerns on Example 4 to non-stratified combustion. It is a figure which shows an example of the valve timing of the intake valve and exhaust valve at the time of the non-stratified combustion which concerns on Example 5.
  • FIG. 1 shows an example of the valve timing of an intake valve and an exhaust valve in the case of switching from stratified combustion which concerns on Example 4 to non-stratified combustion. It is a figure which shows an example of the valve timing of the intake valve and exhaust valve at the time of the non-stratified combustion which concerns on Example 5.
  • FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating a schematic configuration of the internal combustion engine and the intake system and the exhaust system thereof according to the first embodiment.
  • the internal combustion engine 1 shown in FIGS. 1 and 2 is a spark ignition type 4-stroke cycle gasoline engine for driving a vehicle having four cylinders 2.
  • a piston 3 is slidably disposed in the cylinder 2 of the internal combustion engine 1.
  • a combustion chamber 4 is defined by the upper wall and inner peripheral wall of the cylinder 2 and the top surface of the piston 3.
  • Connected to the upper portion of the combustion chamber 4 are a first intake port 5a and a second intake port 5b, and a first exhaust port 6a and a second exhaust port 6b.
  • the first intake port 5 a and the second intake port 5 b are independently connected to the combustion chamber 4 and supply intake air to the combustion chamber 4.
  • the first exhaust port 6 a and the second exhaust port 6 b exhaust exhaust gas after combustion in the combustion chamber 4.
  • a spark plug 7 for igniting the air-fuel mixture in the combustion chamber 4 is disposed at the center of the upper portion of the cylinder 2.
  • the opening to the combustion chamber 4 of the first intake port 5a on the upper wall of the cylinder 2 is opened and closed by the first intake valve 8a.
  • the opening of the second intake port 5b to the combustion chamber 4 on the upper wall of the cylinder 2 is opened and closed by the second intake valve 8b.
  • the opening part to the combustion chamber 4 of the 1st exhaust port 6a in the upper wall of the cylinder 2 is opened and closed by the 1st exhaust valve 9a.
  • the opening to the combustion chamber 4 of the second exhaust port 6b on the upper wall of the cylinder 2 is opened and closed by a second exhaust valve 9b.
  • the first intake valve 8a and the second intake valve 8b are provided with variable valve mechanisms 10 that change the open / close characteristics of the intake valves.
  • the variable valve mechanism 10 continuously changes the valve opening period (lift amount), which is the opening / closing characteristic of each intake valve, and continuously changes the opening / closing timing (valve timing), which is the opening / closing characteristic of each intake valve. Do it.
  • the variable valve mechanism 10 can vary the valve opening timing between the first intake valve 8a and the second intake valve 8b.
  • the variable valve mechanism 10 of the present embodiment corresponds to the opening / closing characteristic changing unit of the present invention.
  • the first intake port 5a and the second intake port 5b are respectively provided with first and second fuel injection valves 11a and 11b for injecting fuel into the intake air flowing through each intake port.
  • An EGR gas supply port 12 is provided in the first intake port 5a upstream of the first fuel injection valve 11a.
  • a fresh air shutoff valve 13 is provided in the first intake port 5 a upstream from the EGR gas supply port 12. When the fresh air shutoff valve 13 is closed, fresh air is prevented from flowing into the first intake port 5a from the upstream side.
  • the fresh air cutoff valve 13 of the present embodiment corresponds to the fresh air blocking portion of the present invention.
  • One intake pipe 14 is upstream of the first intake port 5a upstream of the fresh air cutoff valve 13 and the second intake port 5b upstream of the second fuel injection valve 11b.
  • the first intake port 5a of the present embodiment corresponds to the first intake passage of the present invention.
  • the second intake port 5b of the present embodiment corresponds to the second intake passage of the present invention.
  • a single exhaust pipe 15 is provided downstream of the first exhaust port 6a and the second exhaust port 6b.
  • a compressor 16a of the turbocharger 16 is installed in the middle of the intake pipe 14.
  • a turbine 16b of the turbocharger 16 is installed in the middle of the exhaust pipe 15.
  • the turbocharger 16 is a supercharger that rotates the turbine 16b using the energy of the exhaust gas flowing through the exhaust pipe 15, and drives the compressor 16a with the rotational force of the turbine 16b to supercharge fresh air.
  • the turbine 16b is provided with a waste gate valve 16c for adjusting the amount of exhaust flowing into the turbine 16b.
  • a throttle valve 17 is provided in the intake pipe 14 upstream of the compressor 16a.
  • the amount of fresh air flowing through the intake pipe 14 is adjusted by the throttle valve 17.
  • the throttle valve 17 is controlled to open and close by an electric actuator.
  • An intercooler 18 is provided in the intake pipe 14 downstream of the compressor 16a.
  • the intercooler 18 cools fresh air flowing through the intake pipe 14 by exchanging heat with outside air.
  • a surge tank 19 is provided in the intake pipe 14 downstream of the intercooler 18.
  • the surge tank 19 temporarily accumulates fresh air flowing through the intake pipe 14.
  • the surge tank 19 is provided with a pressure sensor 20 that detects the pressure of fresh air in the surge tank 19.
  • An intake pipe 14 downstream of the surge tank 19 branches into a first intake port 5a and a second intake port 5b.
  • An oxidation catalyst 21 as a start catalyst is provided in the exhaust pipe 15 downstream of the turbine 16b.
  • the internal combustion engine 1 is provided with an EGR device 22.
  • the EGR device 22 includes an EGR passage 23, an EGR valve 24, and an EGR cooler 25.
  • One end of the EGR passage 23 is connected to the exhaust pipe 15 downstream of the oxidation catalyst 21, and the other end is connected to the EGR gas supply port 12 of the first intake port 5a.
  • the EGR device 22 circulates the EGR gas as part of the exhaust gas from the exhaust pipe 15 of the internal combustion engine 1 to the EGR gas supply port 12 provided in the first intake port 5a by circulating the EGR gas through the EGR passage 23.
  • Let The EGR valve 24 and the EGR cooler 25 are provided in the EGR passage 23.
  • the amount of EGR gas introduced into the first intake port 5a from the exhaust pipe 15 through the EGR passage 23 is adjusted by the EGR valve 24.
  • the EGR cooler 25 cools the EGR gas flowing through the EGR passage 23 by exchanging heat with the engine cooling water.
  • the internal combustion engine 1 configured as described above is provided with an electronic control unit (hereinafter referred to as ECU) 26.
  • ECU electronice control unit
  • a crank position sensor 27 and an accelerator opening sensor 28 are electrically connected to the ECU 26. These output signals are input to the ECU 26.
  • the crank position sensor 27 is a sensor that detects the crank angle of the internal combustion engine 1.
  • the accelerator opening sensor 28 is a sensor that detects the accelerator opening of a vehicle on which the internal combustion engine 1 is mounted.
  • the variable valve mechanism 10 the first and second fuel injection valves 11 a and 11 b, the fresh air cutoff valve 13, the throttle valve 17, and the EGR valve 24 are electrically connected to the ECU 26. These are controlled by the ECU 26.
  • variable valve mechanism 10 opens the first intake valve 8a prior to the second intake valve 8b, and then opens the second intake valve 8b.
  • FIG. 3 is a diagram illustrating an example of valve timings of the intake valve and the exhaust valve during stratified combustion, and the in-cylinder pressure and the supercharging pressure at that time.
  • the lift amount of the first intake valve 8a is approximately half of the lift amount of the second intake valve 8b because EGR gas is supplied so that combustion is possible in the combustion chamber 4. Further, the first fuel injection valve 11a provided in the first intake port 5a is stopped, and fuel is injected only from the second fuel injection valve 11b provided in the second intake port 5b. For this reason, the air-fuel mixture in which fresh air and fuel are mixed flows through the second intake port 5b.
  • the ECU 26 that performs such control corresponds to the control unit of the present invention.
  • the fresh air shut-off valve 13 is closed to prevent fresh air from flowing into the first intake port 5a, and EGR gas is allowed to flow into the first intake port 5a. Since the intake valve 8a is opened prior to the second intake valve 8b, first, EGR gas flowing through the first intake port 5a flows into the combustion chamber 4. The EGR gas flows in from the first intake port 5a on one side, and then descends as the piston 3 descends while forming a swirl flow in the combustion chamber 4. Thereafter, since the variable intake mechanism 10 opens the second intake valve 8 b, the air-fuel mixture flowing through the second intake port 5 b flows into the combustion chamber 4.
  • FIG. 4 is a diagram showing a stratified state in the combustion chamber 4 with the EGR gas layer as the lower layer and the air-fuel mixture layer as the upper layer.
  • the opening period of the second intake valve 8b may be included in the compression stroke.
  • the piston rises and the volume of the combustion chamber shrinks, resulting in an increase in the cylinder pressure, so that when the intake valve is open, the gas in the combustion chamber flows back to the intake port.
  • the fresh air is supercharged, and the supercharging pressure of the fresh air supercharged by the compressor 16a is set to the second after the first intake valve 8a is closed as shown in FIG.
  • the in-cylinder pressure of the internal combustion engine 1 during the period until the intake valve 8b is closed is set higher. Thereby, the supercharged air-fuel mixture is pushed back by the in-cylinder pressure of the internal combustion engine 1 and flows into the combustion chamber 4 without flowing backward. Further, the gas in the combustion chamber 4 does not flow backward to the second intake port 5b.
  • the air-fuel mixture flowing into the combustion chamber 4 from the second intake port 5b forms a swirl flow in the combustion chamber 4 in the latter half of the intake stroke or the compression stroke. For this reason, the period from when the air-fuel mixture forms a swirl flow in the combustion chamber 4 to ignition is short, and it becomes easy to maintain the stratified state of the combustion chamber 4 until ignition occurs.
  • the tumble flow hardly occurs, the stratified state is not easily destroyed by the tumble flow, and the effect of stratification can be exhibited to the maximum.
  • the EGR passage 23 connects the exhaust pipe 15 downstream of the turbine 16 b of the turbocharger 16 and the EGR gas supply port 12. Since the EGR gas, which is a part of the exhaust gas in the exhaust pipe 15 downstream of the turbine 16b of the turbocharger 16, has worked to drive the turbine 16b, the temperature and pressure have decreased. In this embodiment, the EGR gas is caused to flow into the combustion chamber 4 from the beginning of the intake stroke with a negative pressure due to the lowering of the piston 3 during the intake stroke. At this time, since the negative pressure is sufficiently secured, even this EGR gas whose temperature and pressure are reduced can be sufficiently supplied to the combustion chamber 4. By using this EGR gas, an increase in intake air temperature can be suppressed, and a decrease in charging efficiency due to a high intake air temperature can be suppressed.
  • FIG. 5 is a diagram illustrating an example of valve timings of the intake valve and the exhaust valve during the non-stratified combustion.
  • FIG. 6 is a flowchart showing a combustion control routine of the internal combustion engine 1. This routine is repeatedly executed by the ECU 26 every predetermined time.
  • S101 it is determined whether or not there is a request for performing stratified combustion of the EGR gas and the air-fuel mixture.
  • the operating state of the internal combustion engine 1 that should perform stratified combustion is, for example, a region where the engine load is desired to achieve fuel efficiency at a medium load.
  • the area where the stratified combustion is to be performed is previously mapped, and the engine rotational speed and the engine load obtained from the output values of the crank position sensor 27 and the accelerator opening sensor 28 are taken into this map, so that it is possible to determine whether or not there is a request. . If it is determined in S101 that there is a request to perform the stratified combustion, the process proceeds to S102. If it is determined in S101 that there is no request for performing the stratified combustion, the process proceeds to S110.
  • the EGR valve 24 is opened, the fresh air cutoff valve 13 is closed, and fuel is injected only by the second fuel injection valve 11b provided in the second intake port 5b.
  • the first fuel injection valve 11a provided in the first intake port 5a is deactivated.
  • variable valve mechanism 10 changes the lift amount and valve timing opening / closing characteristics of the first intake valve 8a and the second intake valve 8b for the above stratified combustion. Specifically, the opening timing of the second intake valve 8b is set to the first intake valve so that the first intake valve 8a is opened prior to the second intake valve 8b and then the second intake valve 8b is opened. The angle is delayed until the valve 8a is closed. At this time, the lift amount of the first intake valve 8a is also changed to about half the lift amount of the second intake valve 8b.
  • the maximum in-cylinder pressure mcp of the internal combustion engine 1 during the period from when the first intake valve 8a during stratified combustion is closed until the second intake valve 8b is closed is calculated.
  • This in-cylinder pressure mcp is calculated based on the amount of EGR gas obtained from the opening degree of the EGR valve 24, the valve timing and lift amount of the first intake valve 8a and the second intake valve 8b, the engine rotational speed, and the crank angle. .
  • S105 it is determined whether or not the supercharging pressure bp detected by the pressure sensor 20 of the surge tank 19 is larger than the in-cylinder pressure mcp calculated in S104. If it is determined in S105 that the supercharging pressure bp is greater than the in-cylinder pressure mcp, the process proceeds to S107. If it is determined in S105 that the supercharging pressure bp is not greater than the in-cylinder pressure mcp, the process proceeds to S106.
  • S107 it is determined whether or not the required torque deto is larger than the actual torque trto.
  • the required torque deto is obtained from the output of the accelerator opening sensor 28.
  • the actual torque trto is obtained from the fuel injection amount of the second fuel injection valve 11b provided in the second intake port 5b. If it is determined in S107 that the required torque deto is greater than the actual torque trto, the process proceeds to S108. If it is determined in S107 that the required torque deto is not greater than the actual torque trto, the process proceeds to S109.
  • the intake air amount is increased.
  • the increase in the intake air amount may be, for example, increasing the opening degree of the throttle valve 17, advancing the valve timing of the first intake valve 8a and the second intake valve 8b, or the first intake valve 8a and the second intake valve 8b.
  • the lift amount is increased or the supercharging pressure bp is increased. After this step, this routine is temporarily terminated.
  • the intake air amount is decreased.
  • the decrease in the intake amount may be, for example, reducing the opening degree of the throttle valve 17, delaying the valve timing of the first intake valve 8a and the second intake valve 8b, or the first intake valve 8a and the second intake valve 8b. Reduce the lift amount.
  • this routine is temporarily terminated.
  • the stratified combustion and the non-stratified combustion can be switched.
  • the EGR passage 23 connects the exhaust pipe 15 downstream of the turbine 16 b of the turbocharger 16 and the EGR gas supply port 12.
  • the EGR passage 23 may connect the exhaust pipe 15 upstream of the turbine 16 b of the turbocharger 16 and the EGR gas supply port 12. According to this, a part of the exhaust having a high back pressure discharged from the internal combustion engine 1 can be used as the EGR gas, and the EGR gas can be sent to the internal combustion engine 1 in a large amount at a high pressure.
  • FIG. 8 is a diagram illustrating a schematic configuration of an internal combustion engine according to another example of the first embodiment.
  • the fuel injection valve 11 may be provided in the oblique upper part of the cylinder 2 and perform in-cylinder injection.
  • an upper layer of fresh air is formed on the lower layer of EGR gas.
  • the spray axis is set so that the fuel can be injected only into the fresh air of the upper fresh air layer. According to this, it is only necessary to provide one fuel injection valve, and an increase in cost can be suppressed.
  • a turbocharger is used as a supercharger.
  • a supercharger may be used as a supercharger.
  • the first intake port and the second intake port use a helical port or a tangential port in which the intake air flowing into the combustion chamber forms a swirl flow in the same direction. Since other configurations are the same as those of the first embodiment, the description thereof is omitted.
  • FIG. 9 is a diagram showing a state in which a helical port or a tangential port is used for the first intake port 5a and the second intake port 5b according to the present embodiment.
  • FIG. 9A is a diagram showing a double helical intake port
  • FIG. 9B is a diagram showing a double tangential intake port.
  • the first intake port 5a and the second intake port 5b are a helical port or a tangential port in which the intake air flowing into the combustion chamber 4 forms a swirl flow in the same direction.
  • a combination in which one intake port is a helical port and the other intake port is a tangential port may be used.
  • FIG. 10 is a diagram showing a stratified state in the combustion chamber 4 with the EGR gas layer as the lower layer and the air-fuel mixture layer as the upper layer. For this reason, it is difficult for friction to occur at the interface between the lower layer and the upper layer, and it is difficult for the EGR gas and the air-fuel mixture to be mixed, so that the stratified state can be maintained as much as possible. Accordingly, the stratified state can be maintained until the ignition timing in combination with the formation of the upper swirl flow in the latter half of the intake stroke and the compression stroke.
  • Example 3 when the stratified combustion is performed and it is not necessary to flow the air-fuel mixture flowing through the second intake port into the combustion chamber in the compression stroke, the turbocharger compressor is not operated and fresh air is not operated. Do not supercharge. Since other configurations are the same as those of the first embodiment, the description thereof is omitted.
  • the control is performed in the same manner as in the first embodiment.
  • the compressor 16a of the turbocharger 16 is not operated and a new one is not operated.
  • the fresh air shut-off valve 13 is closed to prevent fresh air from flowing into the first intake port 5a, and the variable intake mechanism 10 is used to connect the first intake valve 8a to the second intake valve. The valve is opened prior to 8b, and then the second intake valve 8b is opened.
  • the compressor 16a when the stratified combustion is performed and the air-fuel mixture flowing through the second intake port 5b does not need to flow into the combustion chamber 4 during the compression stroke, the compressor 16a supercharges fresh air. Without closing, the fresh air shut-off valve 13 is closed to prevent fresh air from flowing into the first intake port 5a, and the EGR valve 24 is opened so that EGR gas flows into the first intake port 5a. To do. As shown in FIG. 11, the variable valve mechanism 10 opens the first intake valve 8a immediately before the intake stroke, and opens the second intake valve 8b when the first intake valve 8a is closed. Then, immediately after the compression stroke, the second intake valve 8b is closed. FIG.
  • FIG. 11 is a diagram illustrating an example of valve timings of the intake valve and the exhaust valve during the stratified combustion when the air-fuel mixture flowing through the second intake port does not need to flow into the combustion chamber in the compression stroke.
  • the lift amounts of the first intake valve 8a and the second intake valve 8b are both small.
  • the lift amount of the first intake valve 8a is approximately half of the lift amount of the second intake valve 8b because EGR gas is supplied so that combustion is possible in the combustion chamber 4.
  • the first fuel injection valve 11a provided in the first intake port 5a is stopped, and fuel is injected only from the second fuel injection valve 11b provided in the second intake port 5b. For this reason, the air-fuel mixture in which fresh air and fuel are mixed flows through the second intake port 5b.
  • the ECU 26 that performs such control corresponds to the control unit of the present invention.
  • the air-fuel mixture does not need to flow into the combustion chamber 4 during the compression stroke, such as when the engine load is low as the operating state of the internal combustion engine 1 as shown in FIG. 11, the air-fuel mixture flows after the EGR gas. Can flow into the combustion chamber 4 due to the negative pressure due to the lowering of the piston during the intake stroke. According to this, when it is not necessary for the air-fuel mixture to flow into the combustion chamber 4 in the compression stroke, the compressor 16a does not supercharge fresh air, so that the energy used by the turbocharger 16 is reduced and energy is saved. Can be That is, it is not necessary to increase the output of the internal combustion engine 1 in order to supercharge the fresh air with the turbocharger 16, and the fuel consumption can be improved.
  • the fresh air shutoff valve is a three-way valve that switches the intake air flowing through the first intake port to either fresh air flowing from the upstream of the first intake port or EGR gas flowing from the EGR gas supply port. To do. Since other configurations are the same as those of the first embodiment, the description thereof is omitted.
  • FIG. 12 is a diagram showing a schematic configuration of the internal combustion engine and its intake system and exhaust system according to the present embodiment.
  • the EGR gas supply port 12 is at the position of the first intake port 5 a where the fresh air cutoff valve 13 is provided.
  • the fresh air shutoff valve 13 switches the intake air flowing through the first intake port 5a to either fresh air flowing from the upstream side of the first intake port 5a or EGR gas flowing from the EGR gas supply port 12.
  • the fresh air shutoff valve 13 of the present embodiment is a three-way valve.
  • the EGR device 22 does not have an EGR valve.
  • the amount of EGR gas is controlled by the valve opening timing and the lift amount of the first intake valve 8a.
  • the amount of EGR gas is controlled by the valve opening timing and the lift amount of the first intake valve 8a, it is not necessary to provide an EGR valve in the EGR device 22. Thereby, the control of the amount of EGR gas can be simplified, and the cost can be reduced by reducing the number of parts by eliminating the EGR valve. Further, since the amount of EGR gas is controlled by the first intake valve 8a, the distance between the portion for controlling the amount of EGR gas and the combustion chamber 4 becomes zero. Misfire and torque fluctuation of the engine 1 are suppressed, and drivability can be stabilized.
  • FIG. 13 is a diagram showing a pattern of proper use of stratified combustion of EGR gas and air-fuel mixture and non-stratified combustion without introducing EGR gas, corresponding to the operating state of the internal combustion engine.
  • the stratified combustion and the non-stratified combustion are selectively used according to the operating state.
  • the horizontal axis in FIG. 13 represents the engine speed of the internal combustion engine 1
  • the vertical axis represents the engine load of the internal combustion engine 1.
  • the EGR gas having a high required torque is not introduced from the stratified combustion in which the EGR gas is introduced in at least one of the operation states where the engine load is high or the engine speed is high.
  • it is desired to shift from the stratified combustion to the non-stratified combustion without causing a response delay, misfire of the internal combustion engine 1, torque fluctuation, or torque step.
  • the volume of the first intake port 5a from the fresh air shutoff valve 13 to the combustion chamber 4 is at least one of the operating states of a high engine load state or a high engine rotation speed. It is set to be approximately equal to the amount of EGR gas supplied to the combustion chamber 4 when the EGR gas is introduced and stratified combustion is performed. For this reason, when the EGR gas in at least one of the operating states of the high engine load and the high engine speed is introduced and stratified combustion is performed, the first intake air from the fresh air shutoff valve 13 to the combustion chamber 4 is obtained. The EGR gas in the port 5a is used up for one combustion.
  • FIG. 14 shows switching from the stratified combustion in which EGR gas is introduced in at least one of the operating states of high engine load and high engine speed to non-stratified combustion in which EGR gas having a high required torque is not introduced. It is a figure which shows the control timing in a case.
  • FIG. 15 shows switching from the stratified combustion in which EGR gas is introduced in at least one of the operating states of high engine load and high engine speed to non-stratified combustion in which EGR gas having a high required torque is not introduced.
  • the first intake valve 8a increases the lift amount while slightly retarding the valve timing
  • the second intake valve 8b advances the valve timing.
  • the first intake valve 8a and the second intake valve 8b are made to perform non-stratified combustion with the same lift amount and the same timing (see FIG. 5).
  • the volume of the first intake port 5a is set as described above, only one combustion of all the cylinders after the switch request is stratified combustion, and thereafter, fresh air is supplied to the first intake port 5a. Is circulated, the non-stratified combustion starts from the next combustion. For this reason, the transition from the stratified combustion to the non-stratified combustion can be performed with little response delay, misfire of the internal combustion engine 1, torque fluctuation, and torque step.
  • Example 5 when the non-stratified combustion is performed in a state where the engine load in which EGR gas is not introduced, such as an idle state, is low, the first intake valve is kept closed by the variable valve mechanism. Since other configurations are the same as those of the first embodiment, the description thereof is omitted.
  • variable intake mechanism 10 keeps the first intake valve 8a closed.
  • FIG. 16 is a diagram illustrating an example of valve timings of the intake valve and the exhaust valve during the non-stratified combustion when the engine load without introducing EGR gas is low. Further, the first fuel injection valve 11a provided in the first intake port 5a is stopped, and fuel is injected only from the second fuel injection valve 11b provided in the second intake port 5b. For this reason, the air-fuel mixture in which fresh air and fuel are mixed flows through the second intake port 5b.
  • the ECU 26 that performs such control corresponds to the control unit of the present invention.
  • the second intake valve 8b that is one of the intake valves is opened, and the air-fuel mixture flows into the combustion chamber. .
  • a strong swirl flow can be formed in the combustion chamber 4, and combustion is stabilized.
  • the first intake valve 8a When switching from the non-stratified combustion to the stratified combustion in which EGR gas is introduced, the first intake valve 8a is opened to allow EGR gas to flow from the first intake port 5a, and the same as before switching. Then, the second intake valve 8b is opened, and the same amount of the air-fuel mixture flows into the combustion chamber 4 from the second intake port 5b. At this time, the opening timing of the first intake valve 8a is slightly advanced by the variable valve mechanism 10, and the opening timing of the second intake valve 8b is retarded so that the first intake valve 8a is closed. When the valve is opened, the second intake valve 8b is opened. Since there is no change in the amount of the air-fuel mixture supplied to the combustion chamber 4 before and after the switching, the transition from the non-stratified combustion to the stratified combustion can be performed without causing a torque step.
  • combustion control device for an internal combustion engine is not limited to the above-described embodiments, and various modifications may be made without departing from the gist of the present invention.

Abstract

 本発明は、内燃機関の運転状態として機関負荷が高い場合であっても、EGRガスと混合気又は新気との成層化を図ると共に、EGRガスを大量に導入可能とする技術を提供することを目的とする。本発明では、EGRガスを導入して成層燃焼させる時には、コンプレッサで新気を過給し、新気遮断弁を閉弁して第1吸気ポートに新気が流入することを阻止し、可変動弁機構で第1吸気弁を第2吸気弁に先立って開弁させ、その後第2吸気弁を開弁させる。

Description

内燃機関の燃焼制御装置
 本発明は、燃焼室でEGRガスと混合気又は新気とを成層化(層状化)した成層燃焼を行う内燃機関の燃焼制御装置に関する。
 内燃機関の排気の一部をEGRガスとして内燃機関に還流させるEGR装置がある。EGRガスが燃焼室に混合気又は新気と共に供給されることにより、排気中のNOxの低減や燃費の向上を図る。このEGRガスの内燃機関への供給量を増加させるために、燃焼室でEGRガスと混合気又は新気とを成層化(層状化)させておく技術が知られている。
 特許文献1では、開閉特性変更部で2つの吸気弁の開閉時期をずらし、スワール制御弁を有する吸気ポートからEGRガスを先に燃焼室に流入させ、その後もう一方の吸気ポートから新気を燃焼室に流入させる。これにより、燃焼室では、EGRガスの層を下層とし、新気の層を上層として、EGRガスと新気との成層化を図っている。
特開2004-144052号公報 特開平06-200836号公報 特開昭63-162933号公報
 特許文献1の技術では、内燃機関の運転状態として機関負荷が高い場合には、両方の吸気ポートから新気を導入し、かつ、EGR弁の開度を小さくし、内燃機関に供給する吸気量を確保するようにしている。このようにすると、EGRガスと新気との成層化ができず、さらにはEGRガスを大量に導入することもできない。このため、特許文献1の技術では、上記のように機関負荷が高い場合には、排気中のNOxの低減や燃費の向上を図ることができなかった。
 本発明は、上記事情に鑑みてなされたものであって、内燃機関の燃焼制御装置において、内燃機関の運転状態として機関負荷が高い場合であっても、EGRガスと混合気又は新気との成層化を図ると共に、EGRガスを大量に導入可能とする技術を提供することを目的とする。
 本発明にあっては、以下の構成を採用する。すなわち、本発明は、
 内燃機関の燃焼室に夫々独立して接続され、前記燃焼室に吸気を供給する第1吸気通路及び第2吸気通路と、
 前記内燃機関の排気通路から前記第1吸気通路に設けられたEGRガス供給口に排気の一部であるEGRガスを還流させるEGR装置と、
 前記第1吸気通路に新気が流入することを阻止する新気阻止部と、
 前記第1吸気通路及び前記第2吸気通路の上流で新気を過給する過給機と、
 前記第1吸気通路から前記燃焼室へ流入する吸気を制御する第1吸気弁と、前記第2吸気通路から前記燃焼室へ流入する吸気を制御する第2吸気弁との間で開弁時期を異ならせることが可能な開閉特性変更部と、
 EGRガスを導入して成層燃焼させる時には、前記過給機で新気を過給し、前記新気阻止部で前記第1吸気通路に新気が流入することを阻止し、前記開閉特性変更部で前記第1吸気弁を前記第2吸気弁に先立って開弁させ、その後前記第2吸気弁を開弁させる制御部と、
を備えた内燃機関の燃焼制御装置である。
 ここで、「EGRガスを導入して成層燃焼させる時」とは、燃焼室でEGRガスと混合気又は新気とを成層化して、排気中のNOxの低減や燃費の向上を図る、内燃機関の運転状態である。「吸気」とは、内燃機関に流入する、新気、混合気、EGRガスの総称である。「新気」とは、内燃機関の外部から供給される新鮮な空気である。「混合気」とは、新気と燃料とが混ざったガスである。「EGRガス」とは、内燃機関から排出された排気の一部の不活性ガスである。
 本発明では、EGRガスを導入して成層燃焼させる時には、過給機で新気を過給し、新気阻止部で第1吸気通路に新気が流入することを阻止し、開閉特性変更部で第1吸気弁を第2吸気弁に先立って開弁させ、その後第2吸気弁を開弁させる。
 このようにすると、新気阻止部で第1吸気通路に新気が流入することを阻止し、開閉特性変更部で第1吸気弁を第2吸気弁に先立って開弁させることから、まず、第1吸気通路を流通するEGRガスが燃焼室に流入する。このEGRガスは、燃焼室でスワール流を形成しながら下降して行く。その後、開閉特性変更部で第2吸気弁を開弁させることから、第2吸気通路を流通する混合気又は新気が燃焼室に流入する。この混合気又は新気は、燃焼室で先に流入したEGRガスの層の上でスワール流を形成した層を成す。これにより、燃焼室において、EGRガスの層を下層とし、混合気又は新気の層を上層とする成層化を図ることができる。
 ここで、内燃機関の運転状態として機関負荷が高い場合には、EGRガスが燃焼室に先に流入するので、後から流入する混合気又は新気は吸気行程のピストンの下降による負圧では燃焼室に入り難くなる。しかし、本発明では、過給機で新気を過給していることから、混合気又は新気は、吸気行程だけでなく圧縮行程であっても、過給されて燃焼室に流入することができる。これにより、機関負荷が高い場合であっても、吸気効率を悪化させることなく、EGRガスと混合気又は新気との成層化を図ることができると共に、EGRガスを大量に導入することができる。
 また、後から流入する混合気又は新気は、吸気行程の後半或いは圧縮行程に燃焼室でスワール流を形成する。このため、上記の燃焼室の成層化状態が着火するまで維持され易くなるので、成層化による効果を最大限発揮することができる。
 前記制御部は、前記過給機で過給する新気の過給圧を、前記第1吸気弁が閉弁してから前記第2吸気弁が閉弁するまでの期間の前記内燃機関の筒内圧よりも高くするとよい。
 これによると、過給された混合気又は新気は、内燃機関の筒内圧で押し戻されて逆流することなく燃焼室に流入することができる。
 前記過給機は、ターボチャージャであり、
 前記EGR装置は、前記ターボチャージャのタービンより下流の前記排気通路と前記EGRガス供給口とを接続するEGR通路を備えるとよい。
 ターボチャージャのタービンより下流の排気通路の排気の一部であるEGRガスは、タービンを駆動する仕事をした後なので、温度及び圧力が低下している。ここでは、このEGRガスを吸気行程のピストンの下降による負圧で吸気行程の始めから燃焼室に流入させる。このときには負圧が十分確保できているので、温度及び圧力の低下したこのEGRガスでも燃焼室に十分供給され得る。このEGRガスを用いることにより、吸気温度の上昇を抑制し、吸気温度が高いことに起因する充填効率の低下を抑制することができる。
 前記第1吸気通路及び前記第2吸気通路は、前記燃焼室に流入した吸気が同じ方向のスワール流を形成するヘリカルポート又はタンジェンシャルポートであるとよい。
 これによると、燃焼室で、先に流入したEGRガスのスワール流を形成した下層と、その上で混合気又は新気のスワール流を形成した上層と、の境界面で摩擦が生じ難く、EGRガスと混合気又は新気が混ざり難いので、成層化状態を可及的に維持することができる。
 前記制御部は、EGRガスを導入して成層燃焼させる時において、
圧縮行程で第2吸気通路を流通する吸気を前記燃焼室に流入させる場合には、前記過給機で新気を過給し、前記新気阻止部で前記第1吸気通路に新気が流入することを阻止し、前記開閉特性変更部で前記第1吸気弁を前記第2吸気弁に先立って開弁させ、その後前記第2吸気弁を開弁させ、
又は、圧縮行程では第2吸気通路を流通する吸気を前記燃焼室に流入させる必要がない場合には、前記過給機で新気を過給させずに、前記新気阻止部で前記第1吸気通路に新気が流入することを阻止し、前記開閉特性変更部で前記第1吸気弁を前記第2吸気弁に先立って開弁させ、その後前記第2吸気弁を開弁させるとよい。
 内燃機関の運転状態として機関負荷が高い場合等のように圧縮行程で第2吸気通路を流通する吸気を燃焼室に流入させる場合には、過給機で新気を過給する必要がある。しかし、内燃機関の運転状態として機関負荷が低い場合等のように圧縮行程では第2吸気通路を流通する吸気を燃焼室に流入させる必要がない場合には、EGRガスの後から流入する混合気又は新気は吸気行程のピストンの下降による負圧で燃焼室に流入させてしまうことができる。これによると、圧縮行程では第2吸気通路を流通する吸気を燃焼室に流入させる必要がない場合には、過給機で新気を過給させないので、過給機が使用するエネルギ分だけ使用するエネルギを減らし省エネルギ化することができる。
 前記新気阻止部は、前記第1吸気通路を流通する吸気を、前記第1吸気通路の上流から流入する新気又は前記EGRガス供給口から流入するEGRガスのどちらかに切り替えるとよい。
 これによると、EGRガスの量が第1吸気弁の開弁タイミングとリフト量で制御することができ、EGR装置にEGR弁を設ける必要がなくなる。これにより、EGRガスの量の制御の簡素化を図ることができると共に、EGR弁を無くしたことによる部品点数の削減でコストダウンを図ることができる。
 また、EGRガスの量の制御が第1吸気弁で行われることにより、EGRガスの量を制御する部分と燃焼室との距離が零になるので、EGRガスの応答遅れが無く、内燃機関の失火やトルク変動等が抑制されてドライバビリティを安定させることができる。
 前記新気阻止部から前記燃焼室までの前記第1吸気通路の容積は、機関負荷が高い状態或いは機関回転速度が高い状態の少なくともどちらかの運転状態でのEGRガスを導入して成層燃焼させる時に前記燃焼室に供給されるEGRガスの量と略等しく、
 前記制御部は、前記成層燃焼から要求トルクの高いEGRガスを導入しない非成層燃焼に切り替える場合には、切り替え要求後に最初に吸気行程となる気筒が燃焼室へ吸気の流入を開始するときに前記新気阻止部で前記第1吸気通路を流通する吸気を前記第1吸気通路の上流から流入する新気に切り替え、その後前記気筒以外の他の気筒の最初の1サイクルの燃焼室への吸気の流入が完了したときから前記開閉特性変更部で前記第1吸気弁及び前記第2吸気弁の開閉特性を変更させるとよい。
 これによると、切り替え要求後の全気筒の1回の燃焼だけが前記成層燃焼となり、その後は第1吸気通路に新気が流通しているので、次の燃焼から前記非成層燃焼となる。このため、応答遅れや内燃機関の失火やトルク変動やトルク段差をほとんど生じずに前記成層燃焼から前記非成層燃焼への移行を行うことができる。
 前記制御部は、EGRガスを導入しない機関負荷が低い状態で非成層燃焼させる時には、前記開閉特性変更部で前記第1吸気弁を閉弁させたままに維持するとよい。
 これによると、EGRガスを導入しない内燃機関の機関負荷が低い状態で非成層燃焼させる時には、片方の吸気弁である第2吸気弁を開弁させて混合気又は新気を燃焼室に流入させる。これにより、燃焼室に強いスワール流を形成でき、燃焼が安定する。
 そして、前記非成層燃焼からEGRガスを導入する成層燃焼に切り替える場合には、第1吸気弁を開弁させて第1吸気通路からEGRガスを流入させて行くと共に、切り替え前と同様に第2吸気弁を開弁させて混合気又は新気を燃焼室に流入させる。この切り替え前後で、燃焼室に供給される混合気又は新気の量に変化がないので、トルク段差を生じずに前記非成層燃焼から前記成層燃焼への移行を行うことができる。
 本発明によれば、内燃機関の燃焼制御装置において、内燃機関の運転状態として機関負荷が高い場合であっても、EGRガスと混合気又は新気との成層化を図ることができると共に、EGRガスを大量に導入することができる。
本発明の実施例1に係る内燃機関の概略構成を示す図である。 実施例1に係る内燃機関並びにその吸気系及び排気系の概略構成を示す図である。 実施例1に係る成層燃焼時の吸気弁及び排気弁のバルブタイミングの一例及びそのときの筒内圧及び過給圧を示す図である。 実施例1に係る燃焼室における成層化状態を示す図である。 実施例1に係る非成層燃焼時の吸気弁及び排気弁のバルブタイミングの一例を示す図である。 実施例1に係る内燃機関の燃焼制御ルーチンを示すフローチャートである。 実施例1の他の例に係る内燃機関並びにその吸気系及び排気系の概略構成を示す図である。 実施例1の他の例に係る内燃機関の概略構成を示す図である。 実施例2に係る第1吸気ポート及び第2吸気ポートにヘリカルポート又はタンジェンシャルポートを用いた状態を示す図である。 実施例2に係る燃焼室における成層化状態を示す図である。 実施例3に係る圧縮行程では第2吸気ポートを流通する混合気を燃焼室に流入させる必要がない場合の成層燃焼時の吸気弁及び排気弁のバルブタイミングの一例を示す図である。 実施例4に係る内燃機関並びにその吸気系及び排気系の概略構成を示す図である。 実施例4に係る内燃機関の運転状態に対応した、EGRガスと混合気との成層燃焼と、EGRガスを導入しない非成層燃焼との使い分けのパターンを示す図である。 実施例4に係る成層燃焼から非成層燃焼に切り替える場合の制御タイミングを示す図である。 実施例4に係る成層燃焼から非成層燃焼に切り替える場合の吸気弁及び排気弁のバルブタイミングの一例を示す図である。 実施例5に係る非成層燃焼時の吸気弁及び排気弁のバルブタイミングの一例を示す図である。
 以下、本発明の具体的な実施例について説明する。
 <実施例1>
 (内燃機関)
 図1は、本発明の実施例1に係る内燃機関の概略構成を示す図である。図2は、実施例1に係る内燃機関並びにその吸気系及び排気系の概略構成を示す図である。図1、図2に示す内燃機関1は4つの気筒2を有する車両駆動用の火花点火式の4ストロークサイクル・ガソリンエンジンである。
 内燃機関1の気筒2内には、ピストン3が摺動自在に配置されている。気筒2内の上部には、気筒2の上壁及び内周壁とピストン3頂面で燃焼室4が区画形成される。燃焼室4の上部には、第1吸気ポート5a及び第2吸気ポート5b並びに第1排気ポート6a及び第2排気ポート6bが接続されている。第1吸気ポート5a及び第2吸気ポート5bは、燃焼室4に夫々独立して接続され、燃焼室4に吸気を供給する。第1排気ポート6a及び第2排気ポート6bは、燃焼室4で燃焼後の排気を排出する。気筒2の上部における中心には、燃焼室4内の混合気に点火を行う点火プラグ7が配置されている。
 気筒2の上壁における第1吸気ポート5aの燃焼室4への開口部は第1吸気弁8aによって開閉される。気筒2の上壁における第2吸気ポート5bの燃焼室4への開口部は第2吸気弁8bによって開閉される。また、気筒2の上壁における第1排気ポート6aの燃焼室4への開口部は第1排気弁9aによって開閉される。気筒2の上壁における第2排気ポート6bの燃焼室4への開口部は第2排気弁9bによって開閉される。
 第1吸気弁8a及び第2吸気弁8bには、各吸気弁の開閉特性を変更する可変動弁機構10が設けられている。この可変動弁機構10は、各吸気弁の開閉特性である開弁期間(リフト量)の変更を連続的に行うと共に、各吸気弁の開閉特性である開閉時期(バルブタイミング)の変更を連続的に行う。可変動弁機構10によって、第1吸気弁8aと、第2吸気弁8bとの間で開弁時期を異ならせることができる。本実施例の可変動弁機構10が、本発明の開閉特性変更部に対応する。
 第1吸気ポート5a及び第2吸気ポート5bには、夫々、各吸気ポートを流通する吸気に燃料を噴射する第1、第2燃料噴射弁11a,11bが配置されている。第1燃料噴射弁11aよりも上流の第1吸気ポート5aには、EGRガス供給口12が設けられている。EGRガス供給口12よりも上流の第1吸気ポート5aには、新気遮断弁13が設けられている。新気遮断弁13は、閉弁されると、第1吸気ポート5aに上流から新気が流入することを阻止する。本実施例の新気遮断弁13が、本発明の新気阻止部に対応する。新気遮断弁13よりも上流の第1吸気ポート5aと第2燃料噴射弁11bよりも上流の第2吸気ポート5bとの上流は、一つの吸気管14になっている。本実施例の第1吸気ポート5aが、本発明の第1吸気通路に対応する。本実施例の第2吸気ポート5bが、本発明の第2吸気通路に対応する。
 また、第1排気ポート6aと第2排気ポート6bとの下流は、一つの排気管15になっている。
 吸気管14の途中には、ターボチャージャ16のコンプレッサ16aが設置されている。排気管15の途中には、ターボチャージャ16のタービン16bが設置されている。ターボチャージャ16は、排気管15を流通する排気のエネルギを利用してタービン16bを回転させ、そのタービン16bの回転力でコンプレッサ16aを駆動して新気を過給する過給機である。タービン16bには、タービン16bへの排気の流入量を調整するウエストゲートバルブ16cが設けられている。
 コンプレッサ16aより上流の吸気管14には、スロットル弁17が設けられている。スロットル弁17により、吸気管14を流通する新気の量が調整される。スロットル弁17は、電動アクチュエータにより開閉制御される。
 コンプレッサ16aより下流の吸気管14には、インタークーラ18が設けられている。インタークーラ18は、外気と熱交換をすることで吸気管14を流通する新気を冷却する。インタークーラ18より下流の吸気管14には、サージタンク19が設けられている。サージタンク19は、吸気管14を流通する新気を一時的に溜める。サージタンク19には、サージタンク19内の新気の圧力を検出する圧力センサ20が設けられている。サージタンク19よりも下流の吸気管14が第1吸気ポート5a及び第2吸気ポート5bに分岐している。
 タービン16bより下流の排気管15には、スタート触媒としての酸化触媒21が設けられている。
 内燃機関1には、EGR装置22が設けられている。EGR装置22は、EGR通路23と、EGR弁24と、EGRクーラ25と、を備えている。
 EGR通路23は、その一端が酸化触媒21の下流の排気管15に接続されており、その他端が第1吸気ポート5aのEGRガス供給口12に接続されている。EGR装置22は、EGRガスをEGR通路23に流通させることにより、内燃機関1の排気管15から第1吸気ポート5aに設けられたEGRガス供給口12に排気の一部であるEGRガスを還流させる。
 EGR弁24及びEGRクーラ25は、EGR通路23に設けられている。EGR弁24によって、EGR通路23を通って排気管15から第1吸気ポート5aに導入されるEGRガスの量が調整される。EGRクーラ25は、機関冷却水と熱交換することでEGR通路23を流通するEGRガスを冷却する。
 以上述べたように構成された内燃機関1には電子制御ユニット(以下、ECUという)26が併設されている。ECU26には、クランクポジションセンサ27及びアクセル開度センサ28が電気的に接続されている。これらの出力信号がECU26に入力される。クランクポジションセンサ27は、内燃機関1のクランク角を検出するセンサである。また、アクセル開度センサ28は、内燃機関1を搭載した車両のアクセル開度を検出するセンサである。
 また、ECU26には、可変動弁機構10、第1、第2燃料噴射弁11a,11b、新気遮断弁13、スロットル弁17、及びEGR弁24が電気的に接続されている。ECU26によってこれらが制御される。
 (EGRガスと混合気との成層燃焼制御)
 ところで、本実施例に係る内燃機関1では、EGRガスを燃焼室4に導入して燃焼を行う際に、EGRガスの燃焼室4への供給量を増加させるために、燃焼室4でEGRガスと混合気とを成層化させる成層燃焼を行う。この成層燃焼を行うことにより、排気中のNOxの低減や燃費の向上を図ることができる。
 EGRガスを導入して前記成層燃焼させる時には、ターボチャージャ16のコンプレッサ16aで新気を過給し、新気遮断弁13を閉弁して第1吸気ポート5aに新気が流入することを阻止し、可変動弁機構10で第1吸気弁8aを第2吸気弁8bに先立って開弁させ、その後第2吸気弁8bを開弁させる。
 具体的には、前記成層燃焼させる時には、コンプレッサ16aで新気を過給し、新気遮断弁13を閉弁して第1吸気ポート5aに新気が流入することを阻止すると共にEGR弁24を開弁して第1吸気ポート5aにEGRガスが流入するようにする。そして、図3に示すように、可変動弁機構10で第1吸気弁8aを吸気行程直前から開弁させ、第1吸気弁8aが閉弁する頃に第2吸気弁8bを開弁させる。図3は、成層燃焼時の吸気弁及び排気弁のバルブタイミングの一例及びそのときの筒内圧及び過給圧を示す図である。第1吸気弁8aのリフト量は、燃焼室4で燃焼可能となるようにEGRガスを供給するため、第2吸気弁8bのリフト量の略半分である。
 また、第1吸気ポート5aに設けられた第1燃料噴射弁11aは休止させ、第2吸気ポート5bに設けられた第2燃料噴射弁11bだけから燃料を噴射させる。このため、第2吸気ポート5bには新気と燃料とが混合された混合気が流通することになる。
 このような制御を行うECU26が、本発明の制御部に対応する。
 このようにすると、新気遮断弁13を閉弁して第1吸気ポート5aに新気が流入することを阻止し第1吸気ポート5aにEGRガスを流入させ、可変動弁機構10で第1吸気弁8aを第2吸気弁8bに先立って開弁させることから、まず、第1吸気ポート5aを流通するEGRガスが燃焼室4に流入する。このEGRガスは、片側の第1吸気ポート5aから流入することにより、燃焼室4でスワール流を形成しながらピストン3の下降と共に下降して行く。その後、可変動弁機構10で第2吸気弁8bを開弁させることから、第2吸気ポート5bを流通する混合気が燃焼室4に流入する。この混合気は、片側の第2吸気ポート5bから流入することにより、燃焼室4で先に流入したEGRガスの層の上でスワール流を形成した層を成す。これにより、燃焼室4において、図4に示すように、EGRガスの層を下層とし、混合気の層を上層とする成層化を図ることができる。図4は、燃焼室4における、EGRガスの層を下層とし、混合気の層を上層とする成層化状態を示す図である。
 ここで、図3に示すように、第2吸気弁8bの開弁期間が圧縮行程に含まれていることがある。通常の内燃機関では、圧縮行程においては、ピストンが上昇し燃焼室の容積が縮まって筒内圧が高くなるので、吸気弁が開弁していると、燃焼室のガスが吸気ポートへ逆流してしまうおそれがある。しかし、本実施例では、新気が過給されており、コンプレッサ16aで過給する新気の過給圧を、図3に示すように、第1吸気弁8aが閉弁してから第2吸気弁8bが閉弁するまでの期間の内燃機関1の筒内圧よりも高くする。これにより、過給された混合気は、内燃機関1の筒内圧で押し戻されて逆流することなく燃焼室4に流入する。また、燃焼室4のガスが第2吸気ポート5bへ逆流してしまうこともない。
 図3に示すような内燃機関1の運転状態として機関負荷が高い場合には、EGRガスが燃焼室4に先に流入するので、後から流入する混合気は吸気行程のピストン3の下降による負圧では燃焼室4に入り難くなる。しかし、本実施例では、コンプレッサ16aで新気を過給していることから、混合気は、吸気行程だけでなく圧縮行程であっても、過給されて燃焼室4に流入することができる。これにより、機関負荷が高い場合であっても、吸気効率を悪化させることなく、EGRガスと混合気との成層化を図ることができると共に、EGRガスを大量に導入することができる。よって、機関負荷が高い場合として、WOT(全負荷)の場合にもEGRガスを導入することもできる。
 また、第2吸気ポート5bから燃焼室4に流入する混合気は、吸気行程の後半或いは圧縮行程に燃焼室4でスワール流を形成する。このため、混合気が燃焼室4でスワール流を形成してから着火までの期間が短く、上記の燃焼室4の成層化状態が着火するまで維持され易くなるので、圧縮行程において燃焼室4にタンブル流が発生し難く、タンブル流によって成層化状態が崩され難く、成層化による効果を最大限発揮することができる。
 また本実施例では、EGR通路23は、ターボチャージャ16のタービン16bより下流の排気管15とEGRガス供給口12とを接続している。ターボチャージャ16のタービン16bより下流の排気管15の排気の一部であるEGRガスは、タービン16bを駆動する仕事をした後なので、温度及び圧力が低下している。本実施例では、このEGRガスを吸気行程のピストン3の下降による負圧で吸気行程の始めから燃焼室4に流入させる。このときには負圧が十分確保できているので、温度及び圧力の低下したこのEGRガスでも燃焼室4に十分供給され得る。このEGRガスを用いることにより、吸気温度の上昇を抑制し、吸気温度が高いことに起因する充填効率の低下を抑制することができる。
 なお、内燃機関1の運転状態が上記の成層燃焼を行わない要求トルクが高く機関負荷が高い状態の場合には、非成層燃焼を行う。この非成層燃焼は、EGR弁24を閉じてEGRガスの供給を止め、新気遮断弁13を開弁し、2つの第1、第2燃料噴射弁11a,11bから燃料を噴射し、図5に示すように可変動弁機構10で第1吸気弁8a及び第2吸気弁8bを同一リフト量及び同一タイミングにして行われる。図5は、前記非成層燃焼時の吸気弁及び排気弁のバルブタイミングの一例を示す図である。
 (燃焼制御ルーチン)
 内燃機関1の燃焼制御ルーチンについて、図6に示すフローチャートに基づいて説明する。図6は、内燃機関1の燃焼制御ルーチンを示すフローチャートである。本ルーチンは、所定の時間毎に繰り返しECU26によって実行される。
 図6に示すルーチンが開始されると、S101では、EGRガスと混合気との成層燃焼を行う要求が有るか否か判別する。この成層燃焼を行うべき内燃機関1の運転状態としては、例えば機関負荷が中負荷程度の燃費を稼ぎたい領域である。この成層燃焼を行うべき領域を予めマップ化しておき、このマップにクランクポジションセンサ27及びアクセル開度センサ28の出力値から得られる機関回転速度及び機関負荷を取り込むことで、要求の有無を判断できる。S101において、前記成層燃焼を行う要求があると肯定判定された場合には、S102へ移行する。S101において、前記成層燃焼を行う要求がないと否定判定された場合には、S110へ移行する。
 S102では、EGR弁24を開弁し、新気遮断弁13を閉弁し、第2吸気ポート5bに設けられた第2燃料噴射弁11bだけで燃料噴射させる。第1吸気ポート5aに設けられた第1燃料噴射弁11aは休止させる。
 S103では、可変動弁機構10で第1吸気弁8a及び第2吸気弁8bのリフト量及びバルブタイミングの開閉特性を上記の成層燃焼用に変更する。具体的には、第1吸気弁8aを第2吸気弁8bよりも先立って開弁させ、その後第2吸気弁8bを開弁させるように、第2吸気弁8bの開弁タイミングを第1吸気弁8aが閉弁する頃まで遅角する。このとき、第1吸気弁8aのリフト量も、第2吸気弁8bのリフト量の略半分程度に変更する。
 S104では、前記成層燃焼時の第1吸気弁8aが閉弁してから第2吸気弁8bが閉弁するまでの期間の内燃機関1の最大の筒内圧mcpを演算する。この筒内圧mcpは、EGR弁24の開度から得られるEGRガスの量、第1吸気弁8a及び第2吸気弁8bのバルブタイミング及びリフト量、機関回転速度、クランク角に基づいて演算される。
 S105では、サージタンク19の圧力センサ20が検出する過給圧bpが、S104で演算した筒内圧mcpよりも大きいか否かを判別する。S105において、過給圧bpが筒内圧mcpよりも大きいと肯定判定された場合には、S107へ移行する。S105において、過給圧bpが筒内圧mcpよりも大きくないと否定判定された場合には、S106へ移行する。
 S106では、コンプレッサ16aで新気を過給し、過給圧bpを上昇させる。
 S107では、要求トルクdetoが実トルクtrtoよりも大きいか否かを判別する。要求トルクdetoは、アクセル開度センサ28の出力から得られる。実トルクtrtoは、第2吸気ポート5bに設けられた第2燃料噴射弁11bの燃料噴射量から得られる。S107において要求トルクdetoが実トルクtrtoよりも大きいと肯定判定された場合には、S108へ移行する。S107において要求トルクdetoが実トルクtrtoよりも大きくないと否定判定された場合には、S109へ移行する。
 S108では、吸気量を増加させる。吸気量の増加は、例えば、スロットル弁17の開度を大きくしたり、第1吸気弁8a及び第2吸気弁8bのバルブタイミングを進角させたり、第1吸気弁8a及び第2吸気弁8bのリフト量を大きくしたり、過給圧bpを上昇させたりする。本ステップの後、本ルーチンを一旦終了する。
 S109では、吸気量を減少させる。吸気量の減少は、例えば、スロットル弁17の開度を小さくしたり、第1吸気弁8a及び第2吸気弁8bのバルブタイミングを遅角させたり、第1吸気弁8a及び第2吸気弁8bのリフト量を小さくしたりする。本ステップの後、本ルーチンを一旦終了する。
 一方、S110では、前記非成層燃焼を行うために、EGR弁24を閉弁し、新気遮断弁13を開弁し、第1吸気ポート5a及び第2吸気ポート5bの両方に設けられた第1、第2燃料噴射弁11a,11bで燃料噴射させる。本ステップの後、本ルーチンを一旦終了する。
 以上の本ルーチンによると、前記成層燃焼と前記非成層燃焼とを切り替えることができる。
 (その他)
 なお、本実施例では、EGR通路23は、ターボチャージャ16のタービン16bより下流の排気管15とEGRガス供給口12とを接続している。これにより、温度及び圧力の低下したEGRガスを用いることにより、吸気温度の上昇を抑制し、吸気温度が高いことに起因する充填効率の低下を抑制する。しかし、これに限られない。図7は、実施例1の他の例に係る内燃機関並びにその吸気系及び排気系の概略構成を示す図である。EGR通路23は、図7に示すように、ターボチャージャ16のタービン16bより上流の排気管15とEGRガス供給口12とを接続してもよい。これによると、内燃機関1から排出された背圧の高い排気の一部をEGRガスとして用いることができ、EGRガスを高圧で大量に内燃機関1に送り込むことができる。
 また、本実施例では、燃料噴射弁は、第1吸気ポート及び第2吸気ポートに設けられている。しかし、これに限られない。図8は、実施例1の他の例に係る内燃機関の概略構成を示す図である。燃料噴射弁11は、図8に示すように、気筒2の斜上部に設けられ、筒内噴射を行うものでもよい。この場合には、前記成層燃焼を行う際に、下層であるEGRガスの層の上には、上層である新気の層が形成されることになる。燃料噴射弁11は、この成層燃焼を行う際に、上層である新気の層の新気にのみ燃料を噴射できるよう噴霧軸線が設定される。これによると、燃料噴射弁を一つ設けるだけでよく、コストアップを抑制することができる。
 また、本実施例では、過給機として、ターボチャージャを用いている。しかし、これに限られない。本発明は、過給機として、スーパーチャージャを用いてもよい。
 <実施例2>
 実施例2では、第1吸気ポート及び第2吸気ポートは、燃焼室に流入した吸気が同じ方向のスワール流を形成するヘリカルポート又はタンジェンシャルポートを用いる。その他の構成は、実施例1と同様であるので、説明を省略する。
 図9は、本実施例に係る第1吸気ポート5a及び第2吸気ポート5bにヘリカルポート又はタンジェンシャルポートを用いた状態を示す図である。図9(a)は、ダブルヘリカル吸気ポートを示す図であり、図9(b)は、ダブルタンジェンシャル吸気ポートを示す図である。図9に示すように、第1吸気ポート5a及び第2吸気ポート5bは、燃焼室4に流入した吸気が同じ方向のスワール流を形成するヘリカルポート又はタンジェンシャルポートである。なお、図9の構成以外にも、一方の吸気ポートがヘリカルポートであり、他方の吸気ポートがタンジェンシャルポートであるような組み合わせでもよい。
 これによると、前記成層燃焼を行うと、図10に示すように、燃焼室4で、先に流入したEGRガスのスワール流を形成した下層と、その上で混合気のスワール流を形成した上層と、が同じ方向のスワール流で旋回することになる。図10は、燃焼室4における、EGRガスの層を下層とし、混合気の層を上層とする成層化状態を示す図である。このため、下層と上層との境界面で摩擦が生じ難く、EGRガスと混合気が混ざり難いので、成層化状態を可及的に維持することができる。このことで、上層のスワール流が吸気行程後半及び圧縮行程で形成されることと相俟って、成層化状態を着火時期まで維持させることができる。
 <実施例3>
 実施例3では、前記成層燃焼を行う時であって、圧縮行程では第2吸気ポートを流通する混合気を燃焼室に流入させる必要がない場合には、ターボチャージャのコンプレッサを作動させず新気を過給しない。その他の構成は、実施例1と同様であるので、説明を省略する。
 本実施例では、前記成層燃焼を行う時であって、圧縮行程で第2吸気ポート5bを流通する混合気を燃焼室4に流入させる場合には、実施例1と同様に制御する。しかし、前記成層燃焼を行う時であって、圧縮行程では第2吸気ポート5bを流通する混合気を燃焼室4に流入させる必要がない場合には、ターボチャージャ16のコンプレッサ16aを作動させず新気を過給させずに、新気遮断弁13を閉弁して第1吸気ポート5aに新気が流入することを阻止し、可変動弁機構10で第1吸気弁8aを第2吸気弁8bに先立って開弁させ、その後第2吸気弁8bを開弁させる。
 具体的には、前記成層燃焼を行う時であって、圧縮行程では第2吸気ポート5bを流通する混合気を燃焼室4に流入させる必要がない場合には、コンプレッサ16aで新気を過給せず、新気遮断弁13を閉弁して第1吸気ポート5aに新気が流入することを阻止すると共にEGR弁24を開弁して第1吸気ポート5aにEGRガスが流入するようにする。そして、図11に示すように、可変動弁機構10で第1吸気弁8aを吸気行程直前から開弁させ、第1吸気弁8aが閉弁する頃に第2吸気弁8bを開弁させる。そして、圧縮行程直後には第2吸気弁8bを閉弁させる。図11は、圧縮行程では第2吸気ポートを流通する混合気を燃焼室に流入させる必要がない場合の前記成層燃焼時の吸気弁及び排気弁のバルブタイミングの一例を示す図である。第1吸気弁8a及び第2吸気弁8bのリフト量は、共に小さい。第1吸気弁8aのリフト量は、燃焼室4で燃焼可能となるようにEGRガスを供給するため、第2吸気弁8bのリフト量の略半分である。また、第1吸気ポート5aに設けられた第1燃料噴射弁11aは休止させ、第2吸気ポート5bに設けられた第2燃料噴射弁11bだけから燃料を噴射させる。このため、第2吸気ポート5bには新気と燃料とが混合された混合気が流通することになる。
 このような制御を行うECU26が、本発明の制御部に対応する。
 図11に示すような内燃機関1の運転状態として機関負荷が低い場合等のように圧縮行程では混合気を燃焼室4に流入させる必要がない場合には、EGRガスの後から流入する混合気は吸気行程のピストンの下降による負圧で燃焼室4に流入させてしまうことができる。これによると、圧縮行程では混合気を燃焼室4に流入させる必要がない場合には、コンプレッサ16aで新気を過給させないので、ターボチャージャ16が使用するエネルギ分だけ使用するエネルギを減らし省エネルギ化することができる。つまり、ターボチャージャ16で新気を過給するために内燃機関1の出力を上げる必要が無くなり、燃費の向上を図ることができる。
 <実施例4>
 実施例4では、新気遮断弁は、第1吸気ポートを流通する吸気を、第1吸気ポートの上流から流入する新気又はEGRガス供給口から流入するEGRガスのどちらかに切り替える三方弁とする。その他の構成は、実施例1と同様であるので、説明を省略する。
 図12は、本実施例に係る内燃機関並びにその吸気系及び排気系の概略構成を示す図である。図12に示すように、EGRガス供給口12が新気遮断弁13の設けられた第1吸気ポート5aの位置にある。新気遮断弁13は、第1吸気ポート5aを流通する吸気を、第1吸気ポート5aの上流から流入する新気又はEGRガス供給口12から流入するEGRガスのどちらかに切り替える。本実施例の新気遮断弁13は、三方弁である。また、EGR装置22には、EGR弁が無い。EGRガスの量の制御は、第1吸気弁8aの開弁タイミングとリフト量で制御する。
 これによると、EGRガスの量を第1吸気弁8aの開弁タイミングとリフト量で制御するので、EGR装置22にEGR弁を設ける必要がなくなる。これにより、EGRガスの量の制御の簡素化を図ることができると共に、EGR弁を無くしたことによる部品点数の削減でコストダウンを図ることができる。
 また、EGRガスの量の制御が第1吸気弁8aで行われることにより、EGRガスの量を制御する部分と燃焼室4との距離が零になるので、EGRガスの応答遅れが無く、内燃機関1の失火やトルク変動等が抑制されてドライバビリティを安定させることができる。
 図13は、内燃機関の運転状態に対応した、EGRガスと混合気との成層燃焼と、EGRガスを導入しない非成層燃焼との使い分けのパターンを示す図である。本実施例における内燃機関1では、図13に示すように、運転状態に応じて、前記成層燃焼と前記非成層燃焼との使い分けを行っている。図13の横軸は内燃機関1の機関回転速度を表し、縦軸は内燃機関1の機関負荷を表している。
 図13に示す矢印Aのように、機関負荷が高い状態或いは機関回転速度が高い状態の少なくともどちらかの運転状態でのEGRガスを導入した前記成層燃焼から、要求トルクの高いEGRガスを導入しない前記非成層燃焼に切り替える場合には、応答遅れや内燃機関1の失火やトルク変動やトルク段差を生じずに前記成層燃焼から前記非成層燃焼への移行を行いたい。
 そこで、本実施例の構成において、新気遮断弁13から燃焼室4までの第1吸気ポート5aの容積は、機関負荷が高い状態或いは機関回転速度が高い状態の少なくともどちらかの運転状態でのEGRガスを導入して前記成層燃焼させる時に燃焼室4に供給されるEGRガスの量と略等しく設定する。このため、機関負荷が高い状態或いは機関回転速度が高い状態の少なくともどちらかの運転状態でのEGRガスを導入して前記成層燃焼させると、新気遮断弁13から燃焼室4までの第1吸気ポート5aのEGRガスが1回の燃焼に用い尽くされることになる。
 図14は、機関負荷が高い状態或いは機関回転速度が高い状態の少なくともどちらかの運転状態でのEGRガスを導入した前記成層燃焼から、要求トルクの高いEGRガスを導入しない前記非成層燃焼に切り替える場合の制御タイミングを示す図である。図13に示す矢印Aのように前記成層燃焼から前記非成層燃焼に切り替える場合には、図14に示すように、まず、切り替え要求(図14のt1)があり、切り替え要求後の最初に吸気行程となる気筒#3が燃焼室4へ吸気の流入を開始するとき(図14のt2)に、新気遮断弁13で第1吸気ポート5aを流通する吸気を第1吸気ポート5aの上流から流入する新気に切り替える。その後、前記最初に吸気行程となる気筒#3以外の他の気筒(#1,#2,#4)の最初の1サイクルの燃焼室4への吸気の流入が完了したとき(図14のt3)から、図15に示すように、可変動弁機構10で第1吸気弁8a及び第2吸気弁8bの開閉特性を変更させる。
 このような制御を行うECU26が、本発明の制御部に対応する。
 図15は、機関負荷が高い状態或いは機関回転速度が高い状態の少なくともどちらかの運転状態でのEGRガスを導入した前記成層燃焼から、要求トルクの高いEGRガスを導入しない前記非成層燃焼に切り替える場合の吸気弁及び排気弁のバルブタイミングの一例を示す図である。切り替え時には、図示矢印のように、第1吸気弁8aはバルブタイミングを少し遅角しつつリフト量を大きくし、第2吸気弁8bはバルブタイミングを進角する。そして図15の破線に示すように第1吸気弁8a及び第2吸気弁8bを同一リフト量及び同一タイミングにして非成層燃焼を行うようにする(図5参照)。
 これによると、上記のように第1吸気ポート5aの容積が設定されていることから、切り替え要求後の全気筒の1回の燃焼だけが成層燃焼となり、その後は第1吸気ポート5aに新気が流通しているので、次の燃焼から前記非成層燃焼となる。このため、応答遅れや内燃機関1の失火やトルク変動やトルク段差をほとんど生じずに前記成層燃焼から前記非成層燃焼への移行を行うことができる。
 <実施例5>
 実施例5では、例えばアイドル状態等のEGRガスを導入しない機関負荷が低い状態で前記非成層燃焼させる時には、可変動弁機構で第1吸気弁を閉弁させたままに維持する。その他の構成は、実施例1と同様であるので、説明を省略する。
 アイドル状態等のEGRガスを導入しない機関負荷が低い状態で前記非成層燃焼させる時には、燃焼室4にスワール流を形成して、燃焼を安定させたい。また、前記非成層燃焼からEGRガスを導入する前記成層燃焼に切り替える場合に、切り替え前後で混合気の量に段差ができてトルク段差が生じることを抑制したい。
 そこで、アイドル状態等のEGRガスを導入しない機関負荷が低い状態で前記非成層燃焼させる時には、可変動弁機構10で第1吸気弁8aを閉弁させたままに維持する。
 具体的には、前記非成層燃焼を行う時には、コンプレッサ16aで新気を過給せず、新気遮断弁13を閉弁して第1吸気ポート5aに新気が流入することを阻止すると共にEGR弁24を開弁して第1吸気ポート5aにEGRガスが流入するようにする。そして、図16に示すように、可変動弁機構10で第1吸気弁8aを閉弁させたままにし、第2吸気弁8bを開弁させる。図16は、EGRガスを導入しない機関負荷が低い状態での前記非成層燃焼時の吸気弁及び排気弁のバルブタイミングの一例を示す図である。また、第1吸気ポート5aに設けられた第1燃料噴射弁11aは休止させ、第2吸気ポート5bに設けられた第2燃料噴射弁11bだけから燃料を噴射させる。このため、第2吸気ポート5bには新気と燃料とが混合された混合気が流通することになる。
 このような制御を行うECU26が、本発明の制御部に対応する。
 これによると、EGRガスを導入しない内燃機関1の機関負荷が低い状態で前記非成層燃焼させる時には、片方の吸気弁である第2吸気弁8bを開弁させて混合気を燃焼室に流入させる。これにより、燃焼室4に強いスワール流を形成でき、燃焼が安定する。
 そして、前記非成層燃焼からEGRガスを導入する前記成層燃焼に切り替える場合には、第1吸気弁8aを開弁させて第1吸気ポート5aからEGRガスを流入させて行くと共に、切り替え前と同様に第2吸気弁8bを開弁させて第2吸気ポート5bから同量の混合気を燃焼室4に流入させる。このとき、可変動弁機構10で第1吸気弁8aの開弁時期は、やや進角させると共に、第2吸気弁8bの開弁時期は、遅角して行き、第1吸気弁8aが閉弁する頃に第2吸気弁8bを開弁させるようにする。この切り替え前後で、燃焼室4に供給される混合気の量に変化がないので、トルク段差を生じずに前記非成層燃焼から前記成層燃焼への移行を行うことができる。
 上記各実施例は可能な限り組み合わせることができる。また、本発明に係る内燃機関の燃焼制御装置は、上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもよい。
1:内燃機関
2:気筒
3:ピストン
4:燃焼室
5a:第1吸気ポート
5b:第2吸気ポート
6a:第1排気ポート
6b:第2排気ポート
7:点火プラグ
8a:第1吸気弁
8b:第2吸気弁
9a:第1排気弁
9b:第2排気弁
10:可変動弁機構
11:燃料噴射弁
11a:第1燃料噴射弁
11b:第2燃料噴射弁
12:ガス供給口
13:新気遮断弁
14:吸気管
15:排気管
16:ターボチャージャ
16a:コンプレッサ
16b:タービン
16c:ウエストゲートバルブ
17:スロットル弁
18:インタークーラ
19:サージタンク
20:圧力センサ
21:酸化触媒
22:EGR装置
23:EGR通路
24:EGR弁
25:EGRクーラ
26:ECU
27:クランクポジションセンサ
28:アクセル開度センサ

Claims (8)

  1.  内燃機関の燃焼室に夫々独立して接続され、前記燃焼室に吸気を供給する第1吸気通路及び第2吸気通路と、
     前記内燃機関の排気通路から前記第1吸気通路に設けられたEGRガス供給口に排気の一部であるEGRガスを還流させるEGR装置と、
     前記第1吸気通路に新気が流入することを阻止する新気阻止部と、
     前記第1吸気通路及び前記第2吸気通路の上流で新気を過給する過給機と、
     前記第1吸気通路から前記燃焼室へ流入する吸気を制御する第1吸気弁と、前記第2吸気通路から前記燃焼室へ流入する吸気を制御する第2吸気弁との間で開弁時期を異ならせることが可能な開閉特性変更部と、
     EGRガスを導入して成層燃焼させる時には、前記過給機で新気を過給し、前記新気阻止部で前記第1吸気通路に新気が流入することを阻止し、前記開閉特性変更部で前記第1吸気弁を前記第2吸気弁に先立って開弁させ、その後前記第2吸気弁を開弁させる制御部と、
    を備えた内燃機関の燃焼制御装置。
  2.  前記制御部は、前記過給機で過給する新気の過給圧を、前記第1吸気弁が閉弁してから前記第2吸気弁が閉弁するまでの期間の前記内燃機関の筒内圧よりも高くする請求項1に記載の内燃機関の燃焼制御装置。
  3.  前記過給機は、ターボチャージャであり、
     前記EGR装置は、前記ターボチャージャのタービンより下流の前記排気通路と前記EGRガス供給口とを接続するEGR通路を備えた請求項1に記載の内燃機関の燃焼制御装置。
  4.  前記第1吸気通路及び前記第2吸気通路は、前記燃焼室に流入した吸気が同じ方向のスワール流を形成するヘリカルポート又はタンジェンシャルポートである請求項1に記載の内燃機関の燃焼制御装置。
  5.  前記制御部は、EGRガスを導入して成層燃焼させる時において、
    圧縮行程で第2吸気通路を流通する吸気を前記燃焼室に流入させる場合には、前記過給機で新気を過給し、前記新気阻止部で前記第1吸気通路に新気が流入することを阻止し、前記開閉特性変更部で前記第1吸気弁を前記第2吸気弁に先立って開弁させ、その後前記第2吸気弁を開弁させ、
    又は、圧縮行程では第2吸気通路を流通する吸気を前記燃焼室に流入させる必要がない場合には、前記過給機で新気を過給させずに、前記新気阻止部で前記第1吸気通路に新気が流入することを阻止し、前記開閉特性変更部で前記第1吸気弁を前記第2吸気弁に先立って開弁させ、その後前記第2吸気弁を開弁させる請求項1に記載の内燃機関の燃焼制御装置。
  6.  前記新気阻止部は、前記第1吸気通路を流通する吸気を、前記第1吸気通路の上流から流入する新気又は前記EGRガス供給口から流入するEGRガスのどちらかに切り替える請求項1に記載の内燃機関の燃焼制御装置。
  7.  前記新気阻止部から前記燃焼室までの前記第1吸気通路の容積は、機関負荷が高い状態或いは機関回転速度が高い状態の少なくともどちらかの運転状態でのEGRガスを導入して成層燃焼させる時に前記燃焼室に供給されるEGRガスの量と略等しく、
     前記制御部は、前記成層燃焼から要求トルクの高いEGRガスを導入しない非成層燃焼に切り替える場合には、切り替え要求後に最初に吸気行程となる気筒が燃焼室へ吸気の流入を開始するときに前記新気阻止部で前記第1吸気通路を流通する吸気を前記第1吸気通路の上流から流入する新気に切り替え、その後前記気筒以外の他の気筒の最初の1サイクルの燃焼室への吸気の流入が完了したときから前記開閉特性変更部で前記第1吸気弁及び前記第2吸気弁の開閉特性を変更させる請求項6に記載の内燃機関の燃焼制御装置。
  8.  前記制御部は、EGRガスを導入しない機関負荷が低い状態で非成層燃焼させる時には、前記開閉特性変更部で前記第1吸気弁を閉弁させたままに維持する請求項1に記載の内燃機関の燃焼制御装置。
PCT/JP2010/056394 2010-04-08 2010-04-08 内燃機関の燃焼制御装置 WO2011125208A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2010/056394 WO2011125208A1 (ja) 2010-04-08 2010-04-08 内燃機関の燃焼制御装置
US13/639,888 US9097190B2 (en) 2010-04-08 2010-04-08 Combustion control apparatus for an internal combustion engine
CN201080065902.3A CN102834601B (zh) 2010-04-08 2010-04-08 内燃机的燃烧控制装置
JP2012509251A JP5278600B2 (ja) 2010-04-08 2010-04-08 内燃機関の燃焼制御装置
EP10849451.9A EP2557300B8 (en) 2010-04-08 2010-04-08 Combustion control device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/056394 WO2011125208A1 (ja) 2010-04-08 2010-04-08 内燃機関の燃焼制御装置

Publications (1)

Publication Number Publication Date
WO2011125208A1 true WO2011125208A1 (ja) 2011-10-13

Family

ID=44762194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056394 WO2011125208A1 (ja) 2010-04-08 2010-04-08 内燃機関の燃焼制御装置

Country Status (5)

Country Link
US (1) US9097190B2 (ja)
EP (1) EP2557300B8 (ja)
JP (1) JP5278600B2 (ja)
CN (1) CN102834601B (ja)
WO (1) WO2011125208A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217240A (ja) * 2012-04-06 2013-10-24 Suzuki Motor Corp 内燃機関の可変動弁装置
JP2014222048A (ja) * 2013-05-14 2014-11-27 株式会社日本自動車部品総合研究所 内燃機関の吸気装置
JP2014222047A (ja) * 2013-05-14 2014-11-27 株式会社デンソー 内燃機関の吸気装置
JP2019015267A (ja) * 2017-07-10 2019-01-31 マツダ株式会社 多気筒エンジン
US10358988B2 (en) 2017-03-27 2019-07-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Internal combustion engine
WO2020013291A1 (ja) * 2018-07-12 2020-01-16 ヤマハ発動機株式会社 火花点火式エンジンユニット及び車両

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9435298B2 (en) 2013-07-09 2016-09-06 GM Global Technology Operations LLC Dedicated EGR engine with dynamic load control
DE102013020923A1 (de) * 2013-12-11 2015-06-11 Daimler Ag Kolbenmotor und zugehöriges Betriebsverfahren
JP6171959B2 (ja) * 2014-01-30 2017-08-02 マツダ株式会社 直噴ガソリンエンジンの制御装置
US9752464B2 (en) * 2014-05-28 2017-09-05 Ford Global Technologies, Llc Supercharged applied ignition internal combustion engine with exhaust-gas turbocharging and method for operating an internal combustion engine of said type
US9534542B2 (en) * 2014-08-07 2017-01-03 Ford Global Technologies, Llc Systems and methods for EGR control
JP6260795B2 (ja) * 2015-03-27 2018-01-17 マツダ株式会社 エンジンの燃料制御装置
CN107435595B (zh) * 2016-05-26 2019-11-01 长城汽车股份有限公司 发动机系统和车辆
US10018123B1 (en) * 2016-12-16 2018-07-10 Ford Global Technologies, Llc Systems and methods for a split exhaust engine system
JP6601445B2 (ja) * 2017-03-13 2019-11-06 トヨタ自動車株式会社 排気タービン発電システム
US10316803B2 (en) * 2017-09-25 2019-06-11 Woodward, Inc. Passive pumping for recirculating exhaust gas
JP2021175876A (ja) * 2018-07-12 2021-11-04 ヤマハ発動機株式会社 火花点火式エンジン及び車両
CN112096546B (zh) * 2020-08-10 2022-06-03 东风汽车集团有限公司 发动机的高涡流进气道装置及发动机系统
FR3121957B1 (fr) * 2021-04-16 2023-11-24 Renault Sas Moteur à allumage commandé comprenant un système de commande de la répartition en air frais et en gaz d’échappement recirculés dans les cylindres et procédé associé
DE102022116606A1 (de) 2022-07-04 2024-01-04 Schaeffler Technologies AG & Co. KG Viertakt-Verbrennungskraftmaschine mit zweigeteiltem Einlasskanal und zugehöri-ges Betriebsverfahren

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518254A (ja) * 1991-07-11 1993-01-26 Mazda Motor Corp デイーゼルエンジンの吸気装置
JPH10141148A (ja) * 1996-11-07 1998-05-26 Mitsubishi Motors Corp 排気ガス還流装置
JPH11182246A (ja) * 1997-09-09 1999-07-06 Inst Fr Petrole 自己点火4サイクルエンジンの操作方法
JP2004144052A (ja) * 2002-10-28 2004-05-20 Hitachi Ltd 理論空燃比成層燃焼内燃機関
JP2006052653A (ja) * 2004-08-10 2006-02-23 Nissan Motor Co Ltd 内燃機関のegr制御装置
JP2010019143A (ja) * 2008-07-09 2010-01-28 Toyota Motor Corp 内燃機関

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162933A (ja) 1986-12-24 1988-07-06 Mitsubishi Motors Corp エンジン
JPH0689681B2 (ja) * 1987-02-18 1994-11-09 トヨタ自動車株式会社 2サイクル内燃機関
US4856473A (en) * 1987-08-25 1989-08-15 Toyota Jidosha Kabushiki Kaisha Internal combustion engine with multiple intake valves and EGR arrangement
US5239960A (en) * 1991-07-30 1993-08-31 Mazda Motor Corporation Engine induction system provided with a mechanical supercharger
GB9222353D0 (en) 1992-10-23 1992-12-09 Ricardo Consulting Eng Spark ignited internal combustion engines
EP0849461B1 (en) * 1996-12-19 2003-03-12 Toyota Jidosha Kabushiki Kaisha Combustion controller for internal combustion engines
EP1251252B1 (en) * 2000-01-25 2005-12-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Direct injection type internal combustion engine
US6318348B1 (en) * 2000-06-08 2001-11-20 Visteon Global Technologies, Inc. Stratified exhaust gas recirculation strategy for internal combustion engine
US6722121B2 (en) * 2002-07-22 2004-04-20 International Engine Intellectual Property Company, Llc Control strategy for regenerating a NOx adsorber catalyst in an exhaust system of an engine having a variable valve actuation mechanism
JP2005090468A (ja) * 2003-09-22 2005-04-07 Toyota Industries Corp 予混合圧縮自着火内燃機関のegr装置、および、予混合圧縮自着火内燃機関の着火時期制御方法
JP4954708B2 (ja) * 2004-10-20 2012-06-20 耕一 畑村 エンジン
JP4276198B2 (ja) * 2005-03-17 2009-06-10 株式会社日立製作所 筒内噴射式内燃機関の制御装置
JP4244979B2 (ja) * 2005-09-22 2009-03-25 トヨタ自動車株式会社 内燃機関の過給圧制御装置
US7470209B2 (en) * 2005-11-23 2008-12-30 Gm Global Technology Operations, Inc. Hybrid powertrain having an electrically variable transmission and engine valve control
JP4463248B2 (ja) * 2006-07-31 2010-05-19 本田技研工業株式会社 NOx低減化システムの制御方法
US7480557B2 (en) * 2006-11-17 2009-01-20 Honda Motor Co., Ltd. Control system for internal combustion engine
JP4349423B2 (ja) * 2007-03-01 2009-10-21 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP4798091B2 (ja) * 2007-07-19 2011-10-19 トヨタ自動車株式会社 内燃機関の制御装置
EP2072786B1 (en) * 2007-12-20 2013-10-23 Ford Global Technologies, LLC Cascade control of HCCI phasing
EP2085593B1 (en) * 2008-01-29 2010-06-30 Honda Motor Co., Ltd. Control system for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518254A (ja) * 1991-07-11 1993-01-26 Mazda Motor Corp デイーゼルエンジンの吸気装置
JPH10141148A (ja) * 1996-11-07 1998-05-26 Mitsubishi Motors Corp 排気ガス還流装置
JPH11182246A (ja) * 1997-09-09 1999-07-06 Inst Fr Petrole 自己点火4サイクルエンジンの操作方法
JP2004144052A (ja) * 2002-10-28 2004-05-20 Hitachi Ltd 理論空燃比成層燃焼内燃機関
JP2006052653A (ja) * 2004-08-10 2006-02-23 Nissan Motor Co Ltd 内燃機関のegr制御装置
JP2010019143A (ja) * 2008-07-09 2010-01-28 Toyota Motor Corp 内燃機関

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217240A (ja) * 2012-04-06 2013-10-24 Suzuki Motor Corp 内燃機関の可変動弁装置
JP2014222048A (ja) * 2013-05-14 2014-11-27 株式会社日本自動車部品総合研究所 内燃機関の吸気装置
JP2014222047A (ja) * 2013-05-14 2014-11-27 株式会社デンソー 内燃機関の吸気装置
US10358988B2 (en) 2017-03-27 2019-07-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Internal combustion engine
JP2019015267A (ja) * 2017-07-10 2019-01-31 マツダ株式会社 多気筒エンジン
WO2020013291A1 (ja) * 2018-07-12 2020-01-16 ヤマハ発動機株式会社 火花点火式エンジンユニット及び車両

Also Published As

Publication number Publication date
JP5278600B2 (ja) 2013-09-04
JPWO2011125208A1 (ja) 2013-07-08
US9097190B2 (en) 2015-08-04
EP2557300A1 (en) 2013-02-13
CN102834601A (zh) 2012-12-19
EP2557300A4 (en) 2018-03-07
CN102834601B (zh) 2016-06-08
EP2557300B1 (en) 2019-09-04
US20130042611A1 (en) 2013-02-21
EP2557300B8 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
JP5278600B2 (ja) 内燃機関の燃焼制御装置
CN108952946B (zh) 压缩点火式发动机的控制装置
US10794317B2 (en) Control device for compression-ignition engine
US6390054B1 (en) Engine control strategy for a hybrid HCCI engine
JP7077768B2 (ja) 圧縮着火式エンジンの制御装置
EP2264303B1 (en) Control method and device of engine and corresponding engine
JP7077771B2 (ja) 圧縮着火式エンジンの制御装置
EP2179158B1 (en) Control apparatus and control method for internal combustion engine
WO2013080454A1 (ja) 火花点火式ガソリンエンジンの制御装置及び制御方法
JP2002242709A (ja) 自動車用4サイクルエンジン
JP2004263562A (ja) 予混合圧縮自着火式内燃機関の制御方法
JP7167831B2 (ja) 圧縮着火式エンジンの制御装置
US10385791B2 (en) Engine control device
WO2007116627A1 (ja) 予混合圧縮着火機関及び予混合圧縮着火機関の吸気制御方法
JP5040772B2 (ja) エンジンの吸気弁制御方法及び吸気弁制御装置
JPH0323327A (ja) 過給式ガソリン内燃機関
EP3256704B1 (en) Reducing unburned hydrocarbon emissions in gaseous fuelled lean-burn engines
JP5589763B2 (ja) 内燃機関
JP4114008B2 (ja) ターボ過給機付火花点火式直噴エンジンの制御装置
US10337415B2 (en) Method for operating an internal combustion engine
JP5435237B2 (ja) 内燃機関
JP2009299623A (ja) 内燃機関の制御装置
JP2008051017A (ja) 予混合圧縮自着火内燃機関
JP2005061325A (ja) 圧縮着火内燃機関の制御装置
JP4036021B2 (ja) エンジンの制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065902.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849451

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509251

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13639888

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010849451

Country of ref document: EP