WO2020009074A1 - ステアリングホイールの反力付与装置 - Google Patents

ステアリングホイールの反力付与装置 Download PDF

Info

Publication number
WO2020009074A1
WO2020009074A1 PCT/JP2019/026171 JP2019026171W WO2020009074A1 WO 2020009074 A1 WO2020009074 A1 WO 2020009074A1 JP 2019026171 W JP2019026171 W JP 2019026171W WO 2020009074 A1 WO2020009074 A1 WO 2020009074A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
steering
steering wheel
reaction force
steering shaft
Prior art date
Application number
PCT/JP2019/026171
Other languages
English (en)
French (fr)
Inventor
真史 疋田
松田 靖之
竜峰 森田
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to EP19830415.6A priority Critical patent/EP3819191A4/en
Priority to US17/253,889 priority patent/US20210269083A1/en
Priority to JP2020528987A priority patent/JPWO2020009074A1/ja
Publication of WO2020009074A1 publication Critical patent/WO2020009074A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • B62D5/005Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup means for generating torque on steering wheel or input member, e.g. feedback
    • B62D5/006Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup means for generating torque on steering wheel or input member, e.g. feedback power actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/20Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members
    • F16H1/22Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • B62D5/003Backup systems, e.g. for manual steering

Definitions

  • the present invention relates to a steering wheel reaction force applying device incorporated in a steer-by-wire type steering system.
  • the steer-by-wire steering system includes a steering device having a steering wheel, and a steering device electrically connected to the steering device for imparting a steering angle to a pair of steered wheels.
  • the steering device further includes a sensor for detecting an operation amount of a steering wheel, and applies a steering angle to a pair of steered wheels by driving an actuator of the steering device based on an output signal of the sensor. I do.
  • the steer-by-wire steering system has an advantage that the steering angle of the steered wheels with respect to the operation amount of the steering wheel can be adjusted according to the traveling speed of the vehicle.
  • the degree of freedom in designing the steering system can be improved, and parts are shared between the right-hand drive vehicle and the left-hand drive vehicle. be able to.
  • the steering system of the steer-by-wire system is configured to apply an operation reaction force to the steering wheel by an electric motor.
  • the steering system described in Japanese Patent Application Laid-Open No. 2007-55453 is configured to directly apply the power of the electric motor to the steering shaft without going through a speed reduction mechanism or the like. In such a structure of the direct drive system, there is a problem that the size of the electric motor is increased.
  • the output shafts of a pair of electric motors are arranged in parallel with the steering shaft, and the respective powers of the electric motors are steered via two-stage gears. It is configured to be applied to a shaft. Specifically, each large-diameter side tooth portion of the two-stage gear meshes with a motor-side tooth portion disposed on the output shaft of the electric motor, and each small-diameter side tooth portion of the two-stage gear is connected to a steering shaft. And meshed with the shaft-side teeth arranged in the shaft.
  • the present invention has been made in view of the above circumstances, and has as its object to realize a structure of a reaction force applying device for a steering wheel, which can be made compact.
  • a reaction force applying device for a steering wheel includes a steering shaft, an electric motor, and at least one two-stage gear.
  • the steering shaft has a shaft-side tooth portion.
  • the electric motor has an output shaft arranged coaxially with the steering shaft, and a motor-side tooth portion provided at a tip end of the output shaft.
  • the at least one two-stage gear includes an intermediate shaft disposed parallel to the steering shaft, a first tooth portion disposed on the intermediate shaft and meshing with the shaft side tooth portion, And a second tooth portion that is disposed closer to the electric motor than the first tooth portion and that meshes with the motor-side tooth portion.
  • the at least one two-stage gear is preferably constituted by a plurality of two-stage gears, and more preferably constituted by three two-stage gears.
  • the at least one two-stage gear may be constituted by two or four or more two-stage gears, or may be constituted by one two-stage gear.
  • the reaction force imparting device for a steering wheel according to the present invention may further include an urging mechanism for urging the at least one two-stage gear inward in the radial direction of the steering shaft.
  • the at least one two-stage gear is constituted by the plurality of two-stage gears, the urging is performed on at least one of the plurality of two-stage gears.
  • a mechanism can be provided.
  • the intermediate shaft can be a torsion bar, and the intermediate shaft can exert torsional elasticity in a state where torque is not transmitted by the at least one two-stage gear.
  • the at least one two-stage gear may further include a stopper mechanism for preventing the first tooth portion and the second tooth portion from rotating relative to each other by a predetermined angle or more.
  • the intermediate shaft of at least one of the plurality of two-stage gears is used.
  • a torsion bar is provided so that the intermediate shaft exerts a torsional elasticity in a state where torque is not transmitted by the at least one two-stage gear.
  • the vehicle further includes an axis aligning unit that aligns the steering shaft with the output shaft.
  • the shaft aligning portion is provided in a recess provided in one of the steering shaft and the output shaft, and is provided in the other of the steering shaft and the output shaft, and is disposed on an inner diameter side of the recess. And a sleeve disposed between the inner peripheral surface of the concave portion and the outer peripheral surface of the convex portion without play in the radial direction.
  • the shaft aligning portion is provided in a recess provided in one of the steering shaft and the output shaft, and provided in the other of the steering shaft and the output shaft, and is provided on an inner diameter side of the recess.
  • a plurality of rolling elements rotatably arranged between the inner peripheral surface of the concave portion and the outer peripheral surface of the convex portion.
  • the shaft aligning portion is provided in one of the steering shaft and the output shaft, and the other is provided in the steering shaft and the output shaft. It is possible to provide a convex portion which is fitted inside so as to be able to perform relative rotation without rattling.
  • the output shaft of the electric motor is arranged coaxially with the steering shaft, the overall size of the device can be reduced.
  • FIG. 1 is a perspective view showing a reaction force applying device for a steering wheel according to a first example of an embodiment of the present invention.
  • FIG. 2 is a perspective view of a steering wheel reaction force applying device according to a first example of the embodiment of the present invention, in which a speed reduction mechanism is taken out and shown.
  • FIG. 3 is an end view seen from the left side of FIG.
  • FIG. 4 is an enlarged cross-sectional view of a main part, illustrating a steering wheel reaction force applying device according to a first example of an embodiment of the present invention.
  • FIG. 5 is a perspective view of a steering wheel reaction force applying device according to a second embodiment of the present invention, in which a two-stage gear is taken out and shown.
  • FIG. 1 is a perspective view showing a reaction force applying device for a steering wheel according to a first example of an embodiment of the present invention.
  • FIG. 2 is a perspective view of a steering wheel reaction force applying device according to a first example of the embodiment of the present invention,
  • FIG. 6 is a cross-sectional view of a steering wheel reaction force applying device according to a second example of the embodiment of the present invention, in which a two-stage gear is taken out and shown.
  • FIG. 7 is a sectional view taken along line XX of FIG.
  • FIG. 8 is an enlarged sectional view of a main part showing a steering wheel reaction force applying device according to a third example of an embodiment of the present invention.
  • FIG. 9 is an exploded perspective view illustrating a steering wheel reaction force applying apparatus according to a third embodiment of the present invention, in which a steering shaft, an output shaft of an electric motor, and a sleeve are taken out.
  • FIG. 10 is an enlarged sectional view of a main part, showing a steering wheel reaction force applying device according to a fourth example of an embodiment of the present invention.
  • FIG. 11 is an enlarged sectional view of a main part showing a steering wheel reaction force applying device according to a fifth example of an embodiment of the present invention.
  • FIG. 12 is an enlarged sectional view of a main part, showing a steering wheel reaction force applying device according to a sixth example of an embodiment of the present invention.
  • the steering wheel reaction force applying device of the present embodiment includes a steering shaft 1, an electric motor 2, and three two-stage gears 3a and 3b.
  • the steering shaft 1 has the shaft side teeth 4.
  • the shaft-side teeth portion 4 is provided at a tip portion (a front end portion; a right end portion in FIGS. 1, 2, and 4) of the steering shaft 1.
  • the shaft side teeth 4 are arranged coaxially with the steering shaft 1 and rotate integrally with the steering shaft 1.
  • the shaft side tooth portion 4 has a predetermined pitch circle diameter and a predetermined number of teeth.
  • the steering shaft 1 is rotatably supported via a rolling bearing 6 on the inner diameter side of a steering column 5 supported on the vehicle body.
  • a steering wheel (not shown) is attached to a rear end (left end in FIG. 1) of the steering shaft 1 which projects rearward from a rear end of the steering column 5.
  • the electric motor 2 has an output shaft 7 arranged coaxially with the steering shaft 1, and a motor-side tooth portion 8 provided at a front end (rear end) of the output shaft 7.
  • the motor-side teeth 8 are arranged coaxially with the output shaft 7 and rotate integrally with the output shaft 7.
  • the motor-side teeth 8 have a smaller pitch circle diameter than the shaft-side teeth 4, and have a smaller number of teeth than the shaft-side teeth 4.
  • Each of the two-stage gears 3a, 3b has an intermediate shaft 9, a first tooth portion 10, and a second tooth portion 11.
  • the intermediate shaft 9 is disposed outside the steering shaft 1 in the radial direction of the steering shaft 1 and parallel to the steering shaft 1.
  • the first tooth portion 10 is disposed around a portion (rear portion) on the steering shaft 1 side with respect to the axial direction of the intermediate shaft 9 so as to freely rotate around the intermediate shaft 9, and It meshes with the shaft side teeth 4.
  • the first tooth portion 10 has a predetermined pitch circle diameter and a predetermined number of teeth.
  • the second tooth portion 11 is arranged around a portion (front portion) on the electric motor 2 side with respect to the axial direction of the intermediate shaft 9 so as to rotate in synchronization with the first tooth portion 10, and 2 meshes with the second motor-side tooth portion 8.
  • the second tooth portion 11 has a pitch circle diameter larger than the pitch circle diameter of the first tooth portion 10 and has a larger number of teeth than the number of teeth of the first tooth portion 10.
  • a speed reduction mechanism 12 for reducing the power of the electric motor 2 and transmitting the power to the steering shaft 1 is configured. It is preferable that the reduction ratio between the steering shaft 1 and the output shaft 7 of the electric motor 2 is 3 or more and 6 or less.
  • the speed reduction mechanism 12 is housed in the housing 13.
  • the housing 13 includes a front housing element 14 disposed on the front side and a rear housing element 15 disposed on the rear side, which are connected and fixed by bolts 16.
  • the electric motor 2 is supported and fixed to the front housing element 14, and the rear housing element 15 is supported and fixed to the front end of the steering column 5.
  • the reaction force applying device for a steering wheel includes an urging mechanism that elastically urges one of the two-stage gears 3a and 3b inward in the radial direction of the steering shaft 1. 17 is further provided.
  • the three two-stage gears 3a and 3b are arranged around the steering shaft 1 and the output shaft 7 of the electric motor 2 at irregular intervals in the circumferential direction.
  • the virtual straight line ⁇ perpendicular to the central axis O a of the two-stage gear 3a is biased to the center axis O 1 and the biasing mechanism 17 of the steering shaft 1, the center axis O 1 with and of the steering shaft 1 angle between imaginary straight line beta perpendicular to the central axis O b of the two-stage gear 3b that is not biased by the energized mechanism 17 theta is smaller than the angle phi between the virtual straight line ⁇ ( ⁇ ⁇ ).
  • the three two-stage gears 3a and 3b can be installed around the steering shaft 1 and the output shaft 7 of the electric motor 2 at equal intervals in the circumferential direction.
  • the interval between the two-stage gears in the circumferential direction is determined according to the total number of two-stage gears, the number of teeth of the first teeth, and the number of teeth of the second teeth. .
  • each of the two-stage gears 3a and 3b includes a shaft member 18 forming the intermediate shaft 9, a cylindrical member 19 having a cylindrical shape, and a pair of rolling bearings 20a and 20b.
  • the shaft member 18 has a large-diameter portion 21 at an intermediate portion in the axial direction, and a pair of flat plate portions 22 projecting in the axial direction from both axial ends of the large-diameter portion 21 and having a rectangular cross-sectional shape.
  • the cylindrical member 19 includes a flange portion 23 protruding radially outward at an intermediate portion in the axial direction, and a first tooth portion 10 formed on the outer peripheral surface of the steering shaft 1 side of the flange portion 23 in the axial direction. And a second tooth portion 11 formed on the outer peripheral surface of the flange portion 23.
  • Each of the two-stage gears 3a, 3b has a rolling bearing 20a, 20b between an axial end on the outer peripheral surface of the large diameter portion 21 of the shaft member 18 and an axial end on the inner peripheral surface of the cylindrical member 19.
  • Each is installed, and the cylindrical member 19 is rotatably supported around the axially intermediate portion of the shaft member 18.
  • a deep groove ball bearing is used as the rolling bearings 20a and 20b, but a cylindrical roller bearing, a tapered roller bearing, a sliding bearing, or the like may be used.
  • the cylindrical member 19 is integrally formed as a whole. However, the first member having the first tooth portion 10 and the second member having the second tooth portion 11 cannot be relatively rotated. It can also be configured by coupling.
  • one of the two-stage gears 3a which is urged by the urging mechanism 17 has both ends (the flat plate portions 22) of the intermediate shaft 9 in the axial direction inside the housing 13 and the steering shaft 1 Are supported so as to be able to displace in the radial direction.
  • the two-stage gear 3 a has a through hole 24 that passes through each of the flat plate portions 22 of the shaft member 18 in the radial direction.
  • the housing 13 has a pair of guide holes 25, a pair of screw holes 26, and a pair of circular holes 27.
  • the pair of guide holes 25 are opposed to each other, and the portions of the rear surface of the front housing element 14 and the front surface of the rear housing element 15 that match each other, that is, the positions of the steering shaft 1 in the radial direction and the circumferential direction coincide. It is formed in the part which does.
  • the guide hole 25 has a major axis in a direction coinciding with the radial direction of the steering shaft 1, and a minor axis in a direction perpendicular to the radial direction (the direction of the major axis) of the steering shaft 1 and the axial direction of the shaft member 18. It has a circular cross-sectional shape.
  • the pair of screw holes 26 are formed so that the outer peripheral surfaces of the front housing element 14 and the rear housing element 15 and the inner peripheral surface of the guide hole 25 communicate in the radial direction of the steering shaft 1.
  • the pair of circular holes 27 are formed such that the inner peripheral surfaces of the front housing element 14 and the rear housing element 15 and the inner peripheral surface of the guide hole 25 communicate with each other in the radial direction of the steering shaft 1.
  • the two-stage gear 3a supports the flat plate portion 22 inside the guide hole 25 using a support member 28 so as to be able to displace the steering shaft 1 in the radial direction.
  • the support member 28 has a shaft portion 29, a head portion 30 formed at a base end portion (an upper end portion in FIG. 4) of the shaft portion 29, and a male screw portion 31 formed on an outer peripheral surface of the head portion 30. .
  • the support member 28 inserts the tip portion of the shaft portion 29 into the circular hole 27, and does not rattle the middle portion of the shaft portion 29 to the through hole 24 of the flat plate portion 22 inserted inside the guide hole 25. Further, the support member 28 is inserted so as to be capable of relative displacement in the axial direction, and the male screw portion 31 is screwed into the screw hole 26. Thereby, the two-stage gear 3a is supported so as to be able to displace in the radial direction of the steering shaft 1.
  • an elastic member 33 is sandwiched between a seat surface 32 of the head 30 of the support member 28 and a flat surface of the flat plate portion 22 of the two-stage gear 3a opposed to the seat surface 32,
  • the elasticity of the member 33 elastically urges the two-stage gear 3a inward in the radial direction of the steering shaft 1.
  • the first teeth 10 are elastically urged toward the shaft-side teeth 4
  • the second teeth 11 are elastically urged toward the motor-side teeth 8.
  • the biasing mechanism 17 is configured by the elastic member 33.
  • the elastic member 33 is made of, for example, a torsion coil spring or rubber having a cylindrical shape.
  • two of the two-stage gears 3b that are not biased by the biasing mechanism 17 support and fix both ends of the intermediate shaft 9 in the axial direction inside the housing 13.
  • a rectangular hole is formed in a portion where the rear side surface of the front housing element 14 and the front side surface of the rear housing element 15 are aligned with each other, and the flat plate portion 22 of the two-stage gear 3b is formed. Inserted or pressed into the rectangular hole without play.
  • the steering wheel reaction force applying device of this example drives the output shaft 7 of the electric motor 2 to rotate when the driver operates the steering wheel.
  • the rotational torque of the output shaft 7 is increased by the speed reduction mechanism 12 and transmitted to the steering shaft 1, and an operation reaction force is applied to the steering wheel via the steering shaft 1.
  • the magnitude of the operation reaction force applied to the steering wheel is determined according to the steering angle of the steering wheel, the torque transmitted by the steering shaft 1, and the like acquired by the sensor.
  • the reaction force applying device for a steering wheel according to the present embodiment is different from a structure in which a pair of electric motors are arranged around a steering shaft as in the structure described in JP-A-2009-73334. It can be configured to be small.
  • the power of the electric motor 2 is applied to the steering shaft 1 after being reduced by the reduction mechanism 12 including the motor-side teeth 8, the two-stage gears 3 a and 3 b, and the shaft-side teeth 4.
  • the electric motor can be reduced in size, and a general-purpose product can be used as the electric motor 2.
  • the steering wheel reaction force imparting device of the present embodiment transmits power between the motor-side teeth 8 of the output shaft 7 of the electric motor 2 and the shaft-side teeth 4 of the steering shaft 1, and has two-stage gears 3 a and 3 b.
  • the power of the electric motor 2 can be distributed to the three two-stage gears 3a and 3b and transmitted to the steering shaft 1. Therefore, as compared with a structure having only one two-stage gear, the torque transmitted per one of the two-stage gears 3a and 3b can be reduced, and the outer diameter of the two-stage gears 3a and 3b can be reduced accordingly. Can be kept small (the teeth constituting the two-stage gears 3a and 3b can be made small). For this reason, the size of the reduction mechanism 12 that reduces the power of the electric motor 2 and transmits the power to the steering shaft 1 can be reduced as compared with a structure including only one two-stage gear.
  • one of the two-stage gears 3a and 3b is elastically urged by the urging mechanism 17 inward in the radial direction of the steering shaft 1.
  • the meshing portion between the first tooth portion 10 of the two-stage gear 3a and the shaft side tooth portion 4 of the steering shaft 1, and the second tooth portion 11 of the two-stage gear 3a and the motor side tooth of the electric motor 2 are provided.
  • the backlash of the meshing part with the part 8 is suppressed. Therefore, when starting to rotate the steering shaft 1 or when changing the rotation direction of the steering shaft 1, it is possible to prevent the rattling noise from being generated at the meshing portion.
  • the output shaft 7 of the steering shaft 1 and the electric motor 2 is not urged by the urging mechanism 17 by the two-stage gear 3a.
  • the two two-stage gears 3b are urged toward the intermediate portion in the circumferential direction.
  • the meshing portion between the first tooth portion 10 of the two-stage gear 3b and the shaft side tooth portion 4 of the steering shaft 1, and the second tooth portion 11 of the two-stage gear 3b and the motor side tooth of the electric motor 2 are formed.
  • the backlash can be suppressed also at the meshing part with the part 8.
  • the steering wheel reaction force applying device of the present embodiment includes three two-stage gears 3a and 3b, but the steering wheel reaction force applying device of the present invention is transmitted between the electric motor and the steering shaft. Depending on the magnitude of the power or the like, it may be configured to have only one two-stage gear. Alternatively, the reaction force imparting device for a steering wheel according to the present invention may be configured to include two or four or more two-stage gears.
  • the reaction force applying device for a steering wheel moves the two-stage gear 3a only in one of the three two-stage gears 3a and 3b in the radial direction of the steering shaft 1.
  • a biasing mechanism 17 that elastically biases inward is provided.
  • one two-stage gear 3a Only the urging mechanism 17 is sufficient.
  • an urging mechanism for elastically urging the two-stage gears inward in the radial direction of the steering shaft may be provided for two or more or all of the two-stage gears. .
  • FIG. 5 to 7 show a second example of the embodiment of the present invention.
  • a structure is provided that suppresses backlash existing in the meshing portion and prevents generation of rattle when starting to rotate the steering shaft 1 or changing the rotation direction of the steering shaft 1 (see FIG. 1). This is different from the steering wheel reaction force applying device according to the first example of the embodiment.
  • the two-stage gear 3c having a structure for preventing generation of rattling noise is provided by connecting the first member 34 and the second member 35 to the intermediate shaft 9a as a torsion bar. , So as to be relatively rotatably connected.
  • the first member 34 has a stepped cylindrical shape, and has a first small-diameter cylindrical portion 36 on the steering shaft 1 side (rear side; left side in FIGS. 5 and 6) and an electric motor 2 side (front side; FIGS.
  • the first large-diameter cylindrical portion 37 (on the right side in FIG. 6) is connected by a conical cylindrical portion 38 having an outer diameter that decreases toward the steering shaft 1 side.
  • the first small-diameter cylindrical portion 36 has coaxial circular holes 39a at two positions on the opposite side in the radial direction.
  • the first large-diameter cylindrical portion 37 has a first tooth portion 10 that meshes with the shaft-side tooth portion 4 of the steering shaft 1 on an outer peripheral surface of a rear portion, and a radially outer portion on an outer peripheral surface of an intermediate portion. It has a male stopper portion 41 in which the inner diameter side convex portions 40 protruding in the direction are arranged at equal intervals in the circumferential direction. Furthermore, the first large-diameter cylindrical portion 37 includes an inner-diameter-side cylindrical surface portion 42 having an outer diameter that does not change in the axial direction on the outer peripheral surface of the front side portion.
  • the inner diameter side cylindrical surface portion 42 has an outer diameter smaller than the root circle diameter of the male stopper portion 41, and the male stopper portion 41 has a tooth tip circle diameter smaller than the root diameter of the shaft side tooth portion 4. Having. Further, the first large-diameter cylindrical portion 37 has a single cylindrical inner peripheral surface whose inner diameter does not change in the axial direction except for the front end portion.
  • the second member 35 connects the second small-diameter cylindrical portion 43 on the electric motor 2 side and the second large-diameter cylindrical portion 44 on the steering shaft 1 side by a side plate portion 45 having a substantially annular shape. .
  • the second small-diameter cylindrical portion 43 has coaxial circular holes 39b at two positions on the opposite side in the radial direction.
  • the second large-diameter cylindrical portion 44 has a radially outwardly protruding flange portion 23a at an axially intermediate portion, and the outer peripheral surface of the flange portion 23a is provided with a motor-side tooth portion 8 of the electric motor 2. It has a second tooth portion 11 that meshes.
  • the second large-diameter cylindrical portion 44 has an outer-diameter-side cylindrical surface portion 46 having an inner diameter that does not change in the axial direction on the front-side inner peripheral surface, and has a radial- And a female stopper portion 48 in which outer-diameter-side convex portions 47 protruding from each other are arranged at equal intervals in the circumferential direction.
  • the outer diameter side cylindrical surface portion 46 has an inner diameter smaller than the diameter of the addendum circle of the female stopper portion 48.
  • the intermediate shaft 9a is a torsion bar that is easily twisted and deformed, and has a through hole 24a penetrating in the radial direction at both axial ends.
  • the first member 34 and the second member 35 have an outer cylindrical surface portion 46 fitted on the inner cylindrical surface portion 42 via a collar 49 having a cylindrical shape so as to be relatively rotatable, and a male stopper portion.
  • a collar 49 having a cylindrical shape so as to be relatively rotatable, and a male stopper portion. This is combined with the arrangement in which the inner diameter side convex portions 41 of the female stopper portion 41 and the outer diameter side convex portions 47 of the female stopper portion 48 are alternately arranged so as to be capable of a slight relative displacement in the circumferential direction.
  • the collar 49 is made of a material having a small sliding resistance with respect to the inner cylindrical surface portion 42 and the outer cylindrical surface portion 46.
  • a radial needle bearing may be disposed between the inner cylindrical surface portion 42 and the outer cylindrical surface portion 46.
  • Both ends in the axial direction of the intermediate shaft 9a are inserted into the inner diameter side of the first small-diameter cylindrical portion 36 of the first member 34 and the inner diameter side of the second small-diameter cylindrical portion 43 of the second member 35, and
  • the connecting pin 50 is inserted or press-fitted so as to bridge the through hole 24a and the circular holes 39a and 39b.
  • the first member 34 and the second member 35 are connected so as to be able to rotate slightly.
  • the intermediate shaft 9a exerts elasticity in the torsional direction when torque is not transmitted by the two-stage gear 3c.
  • the torsional elasticity is imparted to the intermediate shaft 9a in a state where torque is not transmitted by the two-stage gear 3c.
  • the two-stage gear 3c meshes the first tooth portion 10 with the shaft side tooth portion 4 in a state where the intermediate shaft 9c, which is a torsion bar, is elastically deformed in the torsional direction.
  • the second teeth 11 are engaged with the motor-side teeth 8.
  • the tooth surface of the shaft side tooth portion 4 and the tooth surface of the first tooth portion 10 elastically contact each other, and the tooth surface of the motor side tooth portion 8 and the tooth surface of the second tooth portion 11 are in contact with each other. Abut elastically. As a result, backlash at the engagement portion can be suppressed.
  • the male member 41 of the first member 34 and the female member 48 of the second member 35 are engaged with each other via a gap in the circumferential direction.
  • the second member 35 is prevented from rotating excessively relative to the second member 35. That is, in this embodiment, the stopper mechanism 52 that prevents the first tooth portion 10 and the second tooth portion 11 from relatively rotating by a predetermined angle or more by the engagement portion between the male stopper portion 41 and the female stopper portion 48. Is composed.
  • the stopper mechanism 52 prevents the intermediate shaft 9a as a torsion bar from being excessively deformed in the twisting direction.
  • the stopper mechanism 52 may be, for example, two positions separated in the circumferential direction of the front end surface of the first member.
  • the first member disposed on the first member is engaged with the second protrusion disposed between the first protrusions in the circumferential direction on the rear end surface of the second member.
  • the second member can be configured by a structure that prevents excessive relative rotation, or any other applicable known structure. The configuration and operation and effect of the other parts are the same as those of the first example of the embodiment.
  • the reaction force imparting device for a steering wheel includes an axis aligning unit 53 for performing axis alignment so that the steering shaft 1a and the output shaft 7a of the electric motor 2a are coaxially arranged.
  • the axis aligning portion 53 of the present example includes a concave portion 54, a convex portion 55, and a sleeve 56.
  • the recess 54 is formed on the distal end surface of the output shaft 7a so as to be recessed in a direction away from the steering shaft 1a in the axial direction.
  • the convex portion 55 is provided at the tip of the steering shaft 1a, and is arranged coaxially with the concave portion 54 on the inner diameter side of the concave portion 54.
  • the sleeve 56 is made of a material having a small coefficient of friction with respect to a material forming the steering shaft 1a and a material forming the output shaft 7a, such as an oil-impregnated metal.
  • the sleeve 56 has no play in the radial direction between the inner peripheral surface of the concave portion 54 and the outer peripheral surface of the convex portion 55, and is freely rotatable relative to at least one of the steering shaft 1a and the output shaft 7a. Are located in
  • the steering wheel reaction force applying device of the present example includes the shaft aligning portion 53. Therefore, as in this example, a structure in which the steering shaft 1a is supported by the rear housing element 15 via the steering column 5 and the rolling bearing 6, and the output shaft 7a of the electric motor 2a is supported by the front housing element 14. Also in this case, good coaxiality between the steering shaft 1a and the output shaft 7a can be ensured.
  • the configuration and operation and effect of the other parts are the same as those of the first and second examples of the embodiment.
  • FIG. 10 shows a fourth example of the embodiment of the present invention.
  • the shaft aligning portion 53a of the steering wheel reaction force applying device of the present example includes a concave portion 54a provided on the distal end surface of the steering shaft 1b, and a convex portion 55a provided on the distal end portion of the output shaft 7b of the electric motor 2b.
  • the sleeve 56 is provided between the inner peripheral surface of the concave portion 54a and the outer peripheral surface of the convex portion 55b.
  • the configuration and operation and effect of the other parts are the same as those of the first to third examples of the embodiment.
  • FIG. 11 shows a fifth example of the embodiment of the present invention.
  • the shaft aligning portion 53b of the reaction force applying device for a steering wheel according to the present embodiment includes an inner peripheral surface of a concave portion 54 provided on a distal end surface of the output shaft 7a of the electric motor 2a and a convex provided on a distal end portion of the steering shaft 1a.
  • a plurality of rolling elements 58 held by a retainer 57 are arranged to be able to roll freely between the outer peripheral surface of the portion 55.
  • the shaft aligning portion 53b of the third embodiment is provided between the inner peripheral surface of the concave portion 54 of the output shaft 7a and the outer peripheral surface of the convex portion 55 of the steering shaft 1a.
  • a radial needle bearing including a retainer 57 and a plurality of rolling elements 58 is arranged.
  • the reaction force applying device for a steering wheel of the present embodiment compared to the reaction force applying device for a steering wheel of the third example of the above-described embodiment, when the steering shaft 1a and the output shaft 7a relatively rotate. Resistance can be reduced.
  • a needle is used as the rolling element 58, but a ball or a roller can also be used.
  • a plurality of rollers held by a retainer are provided between an inner peripheral surface of a concave portion provided on a distal end surface of the steering shaft and an outer peripheral surface of a convex portion provided on a distal end portion of the output shaft of the electric motor.
  • FIG. 12 shows a sixth example of the embodiment of the present invention.
  • the shaft aligning portion 53c of the steering wheel reaction force applying device of the present example includes a concave portion 54b provided on the distal end surface of the output shaft 7c of the electric motor 2c and a convex portion 55b provided on the distal end portion of the steering shaft 1c. , And are fitted so that relative rotation is possible without play in the radial direction.
  • the shaft aligning portion 53c of the present example is configured by fitting the concave portion 54b of the output shaft 7c and the convex portion 55b of the steering shaft 1c by spigot fitting.
  • the number of components can be reduced as compared with the steering wheel reaction force applying device of the third example of the above-described embodiment.
  • the concave portion provided on the distal end surface of the steering shaft and the convex portion provided on the distal end portion of the output shaft of the electric motor are fitted so as to be able to rotate relative to each other without play in the radial direction.
  • an axis alignment unit can be configured.
  • the configuration and operation and effect of the other parts are the same as those of the first and third examples of the embodiment.
  • first to sixth examples of the above-described embodiment can be appropriately combined and implemented as long as no inconsistency occurs.
  • the structure of the first example of the embodiment and the structure of the second example can be combined, and the structure of the fifth and sixth examples of the embodiment can be implemented by It is also possible to apply to the second example and the fourth example of the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Power Steering Mechanism (AREA)

Abstract

【課題】小型に構成することができる、ステアリングホイールの反力付与装置の構造を実現する。 【解決手段】 二段歯車3a、3bは、ステアリングシャフト1と平行に配置された中間軸9と、該中間軸9に配され、かつ、ステアリングシャフト1のシャフト側歯部4と噛合する第1の歯部10と、該中間軸9のうちで第1の歯部10よりも電動モータ2側の部分に配され、かつ、電動モータ2のモータ側歯部8と噛合する第2の歯部11とを有する。

Description

ステアリングホイールの反力付与装置
 本発明は、ステアバイワイヤ方式のステアリングシステムに組み込まれる、ステアリングホイールの反力付与装置に関する。
 ステアバイワイヤ方式のステアリングシステムは、ステアリングホイールを有する操舵装置と、該操舵装置に電気的に接続された、1対の操舵輪に舵角を付与するための転舵装置とを備える。前記操舵装置は、ステアリングホイールの操作量を検出するためのセンサをさらに備え、該センサの出力信号に基づいて、転舵装置のアクチュエータを駆動することにより、1対の操舵輪に舵角を付与する。
 ステアバイワイヤ方式のステアリングシステムは、ステアリングホイールの操作量に対する操舵輪の舵角を、車両の走行速度などに応じて調節することができるといった利点を有する。特に、操舵装置と転舵装置とが機械的に接続されていない構造では、ステアリングシステムの設計の自由度の向上を図ることができ、かつ、右ハンドル車と左ハンドル車で部品を共通化することができる。
 ところで、ステアバイワイヤ方式のステアリングシステムは、ステアリングホイールに対し、電動モータにより操作反力を付与するように構成されている。
 特開2007-55453号公報に記載のステアリングシステムは、電動モータの動力をステアリングシャフトに、減速機構などを介することなく、直接付与するように構成されている。このようなダイレクトドライブ方式の構造では、電動モータが大型化するといった問題が生じる。
 これに対し、特開2009-73334号公報に記載のステアリングシステムは、1対の電動モータの出力軸をステアリングシャフトと平行に配置し、電動モータのそれぞれの動力を、二段歯車を介してステアリングシャフトに付与するように構成されている。具体的には、二段歯車のそれぞれの大径側歯部を、電動モータの出力軸に配したモータ側歯部に噛合させ、かつ、二段歯車のそれぞれの小径側歯部を、ステアリングシャフトに配したシャフト側歯部に噛合させている。
特開2007-55453号公報 特開2009-73334号公報
 特開2009-73334号公報に記載のステアリングシステムでは、1対の電動モータの出力軸をステアリングシャフトと平行に配置しているため、ステアリングシャフトの周囲に体積が嵩む電動モータが配置されることになり、ステアリングホイールに操作反力を付与する反力付与装置が全体として大型化するといった問題が生じる。
 本発明は、上述のような事情に鑑みて、小型に構成することができる、ステアリングホイールの反力付与装置の構造を実現することを目的としている。
 本発明のステアリングホイールの反力付与装置は、ステアリングシャフトと、電動モータと、少なくとも1個の二段歯車とを備える。
 前記ステアリングシャフトは、シャフト側歯部を有する。
 前記電動モータは、前記ステアリングシャフトと同軸に配置された出力軸と、該出力軸の先端部に配されたモータ側歯部とを有する。
 前記少なくとも1個の二段歯車は、前記ステアリングシャフトと平行に配置された中間軸と、該中間軸に配され、かつ、前記シャフト側歯部と噛合する第1の歯部と、該中間軸のうちで該第1の歯部よりも前記電動モータ側の部分に配され、かつ、前記モータ側歯部と噛合する第2の歯部とを有する。
 前記少なくとも1個の二段歯車は、複数個の二段歯車により構成されることが好ましく、3個の二段歯車により構成されることがより好ましい。ただし、前記少なくとも1個の二段歯車を、2個または4個以上の二段歯車により構成することもできるし、1個の二段歯車により構成することもできる。
 本発明のステアリングホイールの反力付与装置は、前記少なくとも1個の二段歯車を、前記ステアリングシャフトの径方向に関して内側に向けて付勢する付勢機構をさらに備えたものとすることができる。なお、前記少なくとも1個の二段歯車が、前記複数個の二段歯車により構成されている場合には、該複数個の二段歯車のうちの少なくとも1個の二段歯車に関して、前記付勢機構を備えることができる。
 前記中間軸をトーションバーとし、前記少なくとも1個の二段歯車によりトルクを伝達していない状態において、前記中間軸に捩れ方向の弾力を発揮させることができる。この場合、前記少なくとも1個の二段歯車は、前記第1の歯部と前記第2の歯部とが所定角度以上相対回転することを阻止するストッパ機構をさらに有することができる。なお、前記少なくとも1個の二段歯車が、前記複数個の二段歯車により構成されている場合には、該複数個の二段歯車のうちの少なくとも1個の二段歯車の前記中間軸をトーションバーとし、前記少なくとも1個の二段歯車によりトルクを伝達していない状態において、前記中間軸に捩れ方向の弾力を発揮させる。
 前記ステアリングシャフトと前記出力軸との軸合わせを行う軸合わせ部をさらに備えることが好ましい。
 前記軸合わせ部は、前記ステアリングシャフトと前記出力軸とのうちの一方に備えられた凹部と、前記ステアリングシャフトと前記出力軸とのうちの他方に備えられ、かつ、前記凹部の内径側に配置された凸部と、前記凹部の内周面と前記凸部の外周面との間に、径方向に関するがたつきなく配置されたスリーブとを備えることができる。
 あるいは、前記軸合わせ部は、前記ステアリングシャフトと前記出力軸とのうちの一方に備えられた凹部と、前記ステアリングシャフトと前記出力軸とのうちの他方に備えられ、かつ、前記凹部の内径側に配置された凸部と、前記凹部の内周面と前記凸部の外周面との間に、転動自在に配置された複数個の転動体とを備えることができる。
 あるいは、前記軸合わせ部は、前記ステアリングシャフトと前記出力軸とのうちの一方に備えられた凹部と、前記ステアリングシャフトと前記出力軸とのうちの他方に備えられ、前記凹部に径方向に関するがたつきなく、かつ、相対回転を可能に内嵌された凸部とを備えることができる。
 本発明のステアリングホイールの反力付与装置によれば、電動モータの出力軸をステアリングシャフトと同軸に配置しているため、装置全体として小型化することができる。
図1は、本発明の実施の形態の第1例に係るステアリングホイールの反力付与装置を示す斜視図である。 図2は、本発明の実施の形態の第1例に係るステアリングホイールの反力付与装置について、減速機構を取り出して示す斜視図である。 図3は、図2の左側から見た端面図である。 図4は、本発明の実施の形態の第1例に係るステアリングホイールの反力付与装置を示す、要部拡大断面図である。 図5は、本発明の実施の形態の第2例に係るステアリングホイールの反力付与装置について、二段歯車を取り出して示す斜視図である。 図6は、本発明の実施の形態の第2例に係るステアリングホイールの反力付与装置について、二段歯車を取り出して示す断面図である。 図7は、図6のX-X断面図である。 図8は、本発明の実施の形態の第3例に係るステアリングホイールの反力付与装置を示す、要部拡大断面図である。 図9は、本発明の実施の形態の第3例に係るステアリングホイールの反力付与装置について、ステアリングシャフトと、電動モータの出力軸と、スリーブとを取り出して示す、分解斜視図である。 図10は、本発明の実施の形態の第4例に係るステアリングホイールの反力付与装置を示す、要部拡大断面図である。 図11は、本発明の実施の形態の第5例に係るステアリングホイールの反力付与装置を示す、要部拡大断面図である。 図12は、本発明の実施の形態の第6例に係るステアリングホイールの反力付与装置を示す、要部拡大断面図である。
 [実施の形態の第1例]
 図1~図4は、本発明の実施の形態の第1例を示している。本例のステアリングホイールの反力付与装置は、ステアリングシャフト1と、電動モータ2と、3個の二段歯車3a、3bとを備える。
 ステアリングシャフト1は、シャフト側歯部4を有する。本例では、シャフト側歯部4は、ステアリングシャフト1の先端部(前端部。図1、図2および図4の右端部)に備えられている。シャフト側歯部4は、ステアリングシャフト1と同軸に配置されており、該ステアリングシャフト1と一体的に回転する。シャフト側歯部4は、所定のピッチ円直径および所定の歯数を有する。なお、ステアリングシャフト1は、車体に対し支持されたステアリングコラム5の内径側に、転がり軸受6を介して回転自在に支持されている。ステアリングコラム5の後端部よりも後方に突出した、ステアリングシャフト1の後端部(図1の左端部)には、図示しないステアリングホイールが取り付けられる。
 電動モータ2は、ステアリングシャフト1と同軸に配置された出力軸7と、該出力軸7の先端部(後端部)に配されたモータ側歯部8とを有する。モータ側歯部8は、出力軸7と同軸に配置されており、該出力軸7と一体的に回転する。また、モータ側歯部8は、シャフト側歯部4のピッチ円直径よりも小さいピッチ円直径を有し、かつ、シャフト側歯部4の歯数よりも少ない歯数を有する。
 二段歯車3a、3bのそれぞれは、中間軸9と、第1の歯部10と、第2の歯部11とを有する。中間軸9は、ステアリングシャフト1の径方向に関して該ステアリングシャフト1の外方に、該ステアリングシャフト1と平行に配置されている。第1の歯部10は、中間軸9の軸方向に関してステアリングシャフト1側の部分(後側部分)の周囲に、中間軸9を中心とする回転を自在に配され、かつ、ステアリングシャフト1のシャフト側歯部4と噛合する。第1の歯部10は、所定のピッチ円直径および歯数を有する。第2の歯部11は、中間軸9の軸方向に関して電動モータ2側の部分(前側部分)の周囲に、第1の歯部10と同期して回転するように配され、かつ、電動モータ2のモータ側歯部8と噛合する。第2の歯部11は、第1の歯部10のピッチ円直径よりも大きいピッチ円直径を有し、かつ、第1の歯部10の歯数よりも多い歯数を有する。
 本例では、ステアリングシャフト1のシャフト側歯部4と、第1の歯部10および第2の歯部11を有する二段歯車3a、3bと、電動モータ2のモータ側歯部8とにより、電動モータ2の動力を減速してステアリングシャフト1に伝達するための減速機構12を構成している。なお、ステアリングシャフト1と電動モータ2の出力軸7との間の減速比は、3以上6以下であることが好ましい。
 本例では、減速機構12を、ハウジング13内に収納している。ハウジング13は、前方に配置された前側ハウジング素子14と、後方に配置された後側ハウジング素子15とを、ボルト16により結合固定してなる。前側ハウジング素子14には、電動モータ2が支持固定されており、後側ハウジング素子15は、ステアリングコラム5の前端部に支持固定されている。
 本例のステアリングホイールの反力付与装置は、二段歯車3a、3bのうちの1個の二段歯車3aを、ステアリングシャフト1の径方向に関して内側に向けて弾性的に付勢する付勢機構17をさらに備える。
 本例では、3個の二段歯車3a、3bは、ステアリングシャフト1および電動モータ2の出力軸7の周囲に円周方向に関して不等間隔に設置されている。具体的には、ステアリングシャフト1の中心軸Oおよび付勢機構17により付勢される二段歯車3aの中心軸Oに直交する仮想直線αと、ステアリングシャフト1の中心軸Oおよび付勢機構17により付勢されない二段歯車3bの中心軸Oに直交する仮想直線βとのなす角度θが、仮想直線β同士のなす角度φよりも小さくなっている(θ<φ)。ただし、3個の二段歯車3a、3bを、ステアリングシャフト1および電動モータ2の出力軸7の周囲に円周方向に関して等間隔に設置することもできる。二段歯車を複数個備える場合、二段歯車同士の円周方向に関する間隔は、二段歯車の総数、第1の歯部の歯数および第2の歯部の歯数に応じて決定される。
 本例では、二段歯車3a、3bのそれぞれは、中間軸9を構成する軸部材18と、筒形状を有する筒部材19と、1対の転がり軸受20a、20bとを備える。軸部材18は、軸方向中間部の大径部21と、該大径部21の軸方向両端部から軸方向に突出し、かつ、矩形の断面形状を有する1対の平板部22とを有する。筒部材19は、軸方向中間部に径方向外方に突出したフランジ部23を備え、かつ、軸方向に関してフランジ部23よりもステアリングシャフト1側の外周面に形成された第1の歯部10と、フランジ部23の外周面に形成された第2の歯部11とを有する。
 二段歯車3a、3bのそれぞれは、軸部材18の大径部21の外周面の軸方向両端部と、筒部材19の内周面の軸方向両端部との間に転がり軸受20a、20bをそれぞれ設置して、軸部材18の軸方向中間部の周囲に筒部材19を回転自在に支持することにより構成されている。図示の例では、転がり軸受20a、20bとして、深溝玉軸受を使用しているが、円筒ころ軸受や円すいころ軸受、滑り軸受などを使用することもできる。また、筒部材19は、全体を一体に構成されているが、第1の歯部10を有する第1の部材と、第2の歯部11とを有する第2の部材とを相対回転不能に結合することにより構成することもできる。
 二段歯車3a、3bのうち、付勢機構17により付勢される1個の二段歯車3aは、中間軸9の軸方向両端部(平板部22)をハウジング13の内側に、ステアリングシャフト1の径方向に関する変位を可能に支持されている。
 本例では、二段歯車3aは、軸部材18の平板部22のそれぞれを径方向に貫通する貫通孔24を有する。
 また、ハウジング13は、1対のガイド孔25と、1対のねじ孔26と、1対の円孔27とを有する。1対のガイド孔25は、互いに対向する、前側ハウジング素子14の後側面と後側ハウジング素子15の前側面との互いに整合する部分、すなわちステアリングシャフト1の径方向および円周方向に関する位置が一致する部分に形成されている。ガイド孔25は、ステアリングシャフト1の径方向に一致する方向の長径と、該ステアリングシャフト1の径方向(該長径の方向)および軸部材18の軸方向に直交する方向の短径とを有する長円形の断面形状を備える。1対のねじ孔26は、前側ハウジング素子14および後側ハウジング素子15の外周面とガイド孔25の内周面とを、ステアリングシャフト1の径方向に連通するように形成されている。1対の円孔27は、前側ハウジング素子14および後側ハウジング素子15の内周面とガイド孔25の内周面とを、ステアリングシャフト1の径方向に連通するように形成されている。
 二段歯車3aは、平板部22をガイド孔25の内側に、支持部材28を用いて、ステアリングシャフト1の径方向に関する変位を可能に支持している。支持部材28は、軸部29と、軸部29の基端部(図4の上端部)に形成された頭部30と、該頭部30の外周面に形成された雄ねじ部31とを有する。支持部材28は、軸部29の先端部を円孔27に挿入し、軸部29の中間部を、ガイド孔25の内側に挿入された平板部22の貫通孔24に、がたつきなく、かつ、支持部材28の軸方向に関する相対変位を可能に挿通するとともに、雄ねじ部31をねじ孔26に螺合している。これにより、二段歯車3aを、ステアリングシャフト1の径方向に関する変位を可能に支持している。
 本例では、支持部材28の頭部30の座面32と、該座面32に対向する、二段歯車3aの平板部22の平坦面との間に、弾性部材33を挟持し、該弾性部材33の弾力により、二段歯車3aを、ステアリングシャフト1の径方向に関して内側に弾性的に付勢している。これにより、第1の歯部10をシャフト側歯部4に向けて弾性的に付勢し、かつ、第2の歯部11をモータ側歯部8に向けて弾性的に付勢している。すなわち、本例では、弾性部材33により、付勢機構17が構成されている。弾性部材33は、たとえば、捩りコイルばねや円筒形状を有するゴムなどにより構成される。
 二段歯車3a、3bのうち、付勢機構17により付勢されない2個の二段歯車3bは、中間軸9の軸方向両端部をハウジング13の内側に支持固定している。具体的には、本例では、前側ハウジング素子14の後側面と後側ハウジング素子15の前側面との互いに整合する部分に矩形孔が形成され、かつ、二段歯車3bの平板部22が該矩形孔にがたつきなく挿入または圧入されている。
 本例のステアリングホイールの反力付与装置は、運転者によりステアリングホイールが操作されると、電動モータ2の出力軸7を回転駆動する。出力軸7の回転トルクは、減速機構12により増大され、ステアリングシャフト1に伝達され、該ステアリングシャフト1を介して、ステアリングホイールに操作反力が付与される。なお、ステアリングホイールに付与する操作反力の大きさは、センサにより取得した、ステアリングホイールの操舵角やステアリングシャフト1が伝達するトルクなどに応じて決定される。
 本例のステアリングホイールの反力付与装置では、ステアリングシャフト1と、ステアリングホイールに付与する操作反力の発生源である電動モータ2の出力軸7とを同軸に配置している。したがって、本例のステアリングホイールの反力付与装置は、特開2009-73334号公報に記載の構造のように、1対の電動モータをステアリングシャフトの周囲に配置した構造と比較して、装置全体として小型に構成することができる。
 本例では、電動モータ2の動力を、モータ側歯部8と二段歯車3a、3bとシャフト側歯部4とからなる減速機構12により減速してステアリングシャフト1に付与するようにしている。このため、本例のステアリングホイールの反力付与装置では、特開2007-55453号公報に記載の構造のように、電動モータの動力をステアリングシャフトに直接付与するダイレクトドライブ方式の構造と比較して、電動モータを小型化でき、かつ、電動モータ2として、汎用品を使用することができる。
 本例のステアリングホイールの反力付与装置は、電動モータ2の出力軸7のモータ側歯部8とステアリングシャフト1のシャフト側歯部4との間で動力を伝達する、二段歯車3a、3bを3個備える。すなわち、電動モータ2の動力を、3個の二段歯車3a、3bに分散してステアリングシャフト1に伝達することができる。したがって、二段歯車を1個だけ備える構造と比較して、二段歯車3a、3bの1個当たりが伝達するトルクを小さく抑えることができ、その分だけ二段歯車3a、3bの外径寸法を小さく抑える(二段歯車3a、3bを構成する歯部を小さくする)ことができる。このため、二段歯車を1個だけ備える構造と比較して、電動モータ2の動力を減速してステアリングシャフト1に伝達する減速機構12の小型化することができる。
 さらに、本例では、二段歯車3a、3bのうちの1個の二段歯車3aを、付勢機構17により、ステアリングシャフト1の径方向に関して内側に向けて弾性的に付勢している。これにより、二段歯車3aの第1の歯部10とステアリングシャフト1のシャフト側歯部4との噛合部、および、二段歯車3aの第2の歯部11と電動モータ2のモータ側歯部8との噛合部のバックラッシュを抑えている。したがって、ステアリングシャフト1を回転させ始める際やステアリングシャフト1の回転方向を変える際に、前記噛合部で歯打ち音が発生するのを防止することができる。
 なお、本例では、付勢機構17により1個の二段歯車3aを付勢すると、この二段歯車3aによりステアリングシャフト1および電動モータ2の出力軸7が、付勢機構17により付勢されない2個の二段歯車3bの円周方向中間部に向けて付勢される。これにより、二段歯車3bの第1の歯部10とステアリングシャフト1のシャフト側歯部4との噛合部、および、二段歯車3bの第2の歯部11と電動モータ2のモータ側歯部8との噛合部についてもバックラッシュを抑えることができる。
 なお、本例のステアリングホイールの反力付与装置は、二段歯車3a、3bを3個備えるが、本発明のステアリングホイールの反力付与装置は、電動モータとステアリングシャフトとの間で伝達される動力の大きさなどによっては、二段歯車を1個だけ備えるように構成することもできる。あるいは、本発明のステアリングホイールの反力付与装置は、二段歯車を、2個もしくは4個以上備えるように構成することもできる。
 また、本例のステアリングホイールの反力付与装置は、3個の二段歯車3a、3bのうちの1個の二段歯車3aに関してのみ、該二段歯車3aを、ステアリングシャフト1の径方向に関して内側に向けて弾性的に付勢する付勢機構17を備える。ステアリングシャフト1を回転させ始める際やステアリングシャフト1の回転方向を変える際に、噛合部での歯打ち音の発生を防止する面からは、本例のように、1個の二段歯車3aに関してのみ、付勢機構17を備えれば足りる。ただし、複数個の二段歯車を備える場合、2個以上またはすべての二段歯車に関して、該二段歯車をステアリングシャフトの径方向に関して内側に弾性的に付勢する付勢機構を備えることもできる。
 [実施の形態の第2例]
 図5~図7は、本発明の実施の形態の第2例を示している。本例では、噛合部に存在するバックラッシュを抑えて、ステアリングシャフト1を回転させ始める際やステアリングシャフト1(図1参照)の回転方向を変える際に、歯打ち音の発生を防止する構造が、実施の形態の第1例に係るステアリングホイールの反力付与装置と異なる。
 複数個の二段歯車3cのうち、歯打ち音の発生を防止するための構造を有する二段歯車3cは、第1の部材34と第2の部材35とを、トーションバーである中間軸9aにより、相対回転可能に連結することにより構成されている。
 第1の部材34は、段付円筒形状を有し、ステアリングシャフト1側(後側。図5および図6の左側)の第1の小径筒部36と電動モータ2側(前側。図5および図6の右側)の第1の大径筒部37とを、ステアリングシャフト1側に向かうほど小さくなる外径寸法を有する円すい筒部38により接続してなる。
 第1の小径筒部36は、径方向反対側2箇所位置に、互いに同軸の円孔39aを有する。
 第1の大径筒部37は、後側部外周面に、ステアリングシャフト1のシャフト側歯部4と噛合する第1の歯部10を有し、かつ、中間部外周面に、径方向外方に突出した内径側凸部40を円周方向に関して等間隔に配置してなる雄ストッパ部41を有する。さらに、第1の大径筒部37は、前側部外周面に、軸方向に関して変化しない外径寸法を有する内径側円筒面部42を備える。内径側円筒面部42は、雄ストッパ部41の歯底円直径よりも小さい外径を有し、かつ、雄ストッパ部41は、シャフト側歯部4の歯底円直径よりも小さい歯先円直径を有する。さらに、第1の大径筒部37は、前端部を除き、軸方向に関して内径が変化しない単一円筒面状の内周面を有する。
 第2の部材35は、電動モータ2側の第2の小径筒部43とステアリングシャフト1側の第2の大径筒部44とを、略円輪形状を有する側板部45により接続してなる。
 第2の小径筒部43は、径方向反対側2箇所位置に、互いに同軸の円孔39bを有する。
 第2の大径筒部44は、軸方向中間部に、径方向外方に突出したフランジ部23aを有し、かつ、フランジ部23aの外周面に、電動モータ2のモータ側歯部8と噛合する第2の歯部11を有する。また、第2の大径筒部44は、前側部内周面に、軸方向に関して変化しない内径寸法を有する外径側円筒面部46を有し、かつ、後側部内周面に、径方向内方に突出した外径側凸部47を円周方向に関して等間隔に配置してなる雌ストッパ部48を有する。外径側円筒面部46は、雌ストッパ部48の歯先円直径よりも小さい内径を有する。
 中間軸9aは、捩れ変形しやすいトーションバーであり、軸方向両端部に、径方向に貫通する貫通孔24aを有する。
 第1の部材34と第2の部材35とは、内径側円筒面部42に外径側円筒面部46を、円筒形状を有するカラー49を介して相対回転可能に外嵌し、かつ、雄ストッパ部41の内径側凸部40と雌ストッパ部48の外径側凸部47とを円周方向に関するに若干の相対変位を可能に交互に配置することに組み合わされる。なお、カラー49は、内径側円筒面部42および外径側円筒面部46に対する摺動抵抗が小さい材料により構成される。あるいは、カラー49の代わりに、内径側円筒面部42と外径側円筒面部46との間に、ラジアルニードル軸受を配することもできる。また、第1の部材34と第2の部材35とを組み合わせた状態で、雄ストッパ部41の内径側凸部40の円周方向側面と雌ストッパ部48の外径側凸部47の円周方向側面との間には、隙間が存在する。
 中間軸9aの軸方向両端部は、第1の部材34の第1の小径筒部36の内径側および第2の部材35の第2の小径筒部43の内径側に挿入されており、かつ、結合ピン50が、貫通孔24aと円孔39a、39bとに掛け渡すように挿入または圧入されている。これにより、第1の部材34と第2の部材35とを若干の相対回転を可能に結合している。
 二段歯車3cは、該二段歯車3cによりトルクを伝達していない状態において、中間軸9aが捩れ方向の弾力を発揮している。換言すれば、二段歯車3cによりトルクを伝達していない状態において、中間軸9aに捩れ方向の弾性が付与されている。具体的には、本例では、二段歯車3cは、トーションバーである中間軸9cを捩れ方向に弾性変形させた状態で、第1の歯部10をシャフト側歯部4に噛合させ、第2の歯部11をモータ側歯部8に噛合させている。
 このため、シャフト側歯部4の歯面と第1の歯部10の歯面とが弾性的に当接し、かつ、モータ側歯部8の歯面と第2の歯部11の歯面とが弾性的に当接する。これにより、噛合部でのバックラッシュを抑えることができる。
 また、本例では、第1の部材34の雄ストッパ部41と第2の部材35の雌ストッパ部48とを円周方向の隙間を介して係合させることにより、第1の部材34と第2の部材35とが過度に相対回転するのを防止している。すなわち、本例では、雄ストッパ部41と雌ストッパ部48との係合部により、第1の歯部10と第2の歯部11とが所定角度以上相対回転するのを阻止するストッパ機構52を構成している。このようなストッパ機構52により、トーションバーである中間軸9aが、捩れ方向に過度に変形することを防止している。
 なお、ストッパ機構52は、本例のように、雄ストッパ部41と雌ストッパ部48とを係合させる構造以外にも、たとえば、第1の部材の前端面の周方向に離隔した2箇所位置に配置された第1の凸部と、第2の部材の後端面のうち、周方向に関して第1の凸部の間に配置された第2の凸部との係合により、第1の部材と第2の部材とが過度に相対回転するのを防止する構造、その他の適用可能な公知の構造により構成することができる。その他の部分の構成および作用効果は、実施の形態の第1例と同様である。
 [実施の形態の第3例]
 図8および図9は、本発明の実施の形態の第3例を示している。本例のステアリングホイールの反力付与装置は、ステアリングシャフト1aと、電動モータ2aの出力軸7aとが同軸に配置されるように軸合わせを行うための軸合わせ部53を備える。本例の軸合わせ部53は、凹部54と、凸部55と、スリーブ56とを備える。
 凹部54は、出力軸7aの先端面に、軸方向に関してステアリングシャフト1aから離れる方向に凹むように形成されている。凸部55は、ステアリングシャフト1aの先端部に備えられ、かつ、凹部54の内径側に該凹部54と同軸に配置されている。スリーブ56は、含油メタルなど、ステアリングシャフト1aを構成する材料および出力軸7aを構成する材料に対する摩擦係数が小さい材料により構成されている。スリーブ56は、凹部54の内周面と凸部55の外周面との間に、径方向に関するがたつきなく、かつ、ステアリングシャフト1aと出力軸7aとのうちの少なくとも一方に対する相対回転を自在に配置されている。
 本例のステアリングホイールの反力付与装置は、軸合わせ部53を備える。このため、本例のように、後側ハウジング素子15にステアリングシャフト1aを、ステアリングコラム5および転がり軸受6を介して支持するとともに、前側ハウジング素子14に電動モータ2aの出力軸7aを支持した構造においても、ステアリングシャフト1aと出力軸7aとの同軸性を良好に確保することができる。その他の部分の構成および作用効果は、実施の形態の第1例および第2例と同様である。
 [実施の形態の第4例]
 図10は、本発明の実施の形態の第4例を示している。本例のステアリングホイールの反力付与装置の軸合わせ部53aは、ステアリングシャフト1bの先端面に備えられた凹部54aと、電動モータ2bの出力軸7bの先端部に備えられた凸部55aと、凹部54aの内周面と凸部55bの外周面との間に配置されたスリーブ56とを備える。その他の部分の構成および作用効果は、実施の形態の第1例~第3例と同様である。
 [実施の形態の第5例]
 図11は、本発明の実施の形態の第5例を示している。本例のステアリングホイールの反力付与装置の軸合わせ部53bは、電動モータ2aの出力軸7aの先端面に備えられた凹部54の内周面と、ステアリングシャフト1aの先端部に備えられた凸部55の外周面との間に、保持器57により保持された複数個の転動体58を転動自在に配置してなる。換言すれば、本例の軸合わせ部53bは、出力軸7aの凹部54の内周面とステアリングシャフト1aの凸部55の外周面との間に、実施の形態の第3例の軸合わせ部53のスリーブ56に代えて、保持器57と複数個の転動体58とからなるラジアルニードル軸受を配置してなる。
 本例のステアリングホイールの反力付与装置によれば、前述した実施の形態の第3例のステアリングホイールの反力付与装置と比較して、ステアリングシャフト1aと出力軸7aとが相対回転する際の抵抗を小さくすることができる。なお、本例では、転動体58として、ニードルを使用しているが、玉やころを使用することもできる。また、ステアリングシャフトの先端面に備えられた凹部の内周面と、電動モータの出力軸の先端部に備えられた凸部の外周面との間に、保持器により保持された複数個の転動体を転動自在に配置することにより、軸合わせ部を構成することもできる。その他の部分の構成および作用効果は、実施の形態の第1例および第3例と同様である。
 [実施の形態の第6例]
 図12は、本発明の実施の形態の第6例を示している。本例のステアリングホイールの反力付与装置の軸合わせ部53cは、電動モータ2cの出力軸7cの先端面に備えられた凹部54bと、ステアリングシャフト1cの先端部に備えられた凸部55bとを、径方向に関するがたつきなく、かつ、相対回転を可能に嵌合させてなる。換言すれば、本例の軸合わせ部53cは、出力軸7cの凹部54bとステアリングシャフト1cの凸部55bとをインロー嵌合することにより構成されている。
 本例のステアリングホイールの反力付与装置によれば、前述した実施の形態の第3例のステアリングホイールの反力付与装置と比較して、部品点数を削減することができる。なお、ステアリングシャフトの先端面に備えられた凹部と、電動モータの出力軸の先端部に備えられた凸部とを、径方向に関するがたつきなく、かつ、相対回転を可能に嵌合させることにより、軸合わせ部を構成することもできる。その他の部分の構成および作用効果は、実施の形態の第1例および第3例と同様である。
 なお、上述した実施の形態の第1例~第6例は、矛盾を生じない限り、適宜組み合わせて実施することができる。具体的には、たとえば、実施の形態の第1例の構造と第2例の構造とを組み合わせて実施することもできるし、実施の形態の第5例および第6例の構造を、実施の形態の第2例および第4例に適用することも可能である。
  1、1a、1b、1c ステアリングシャフト
  2、2a、2b、2c 電動モータ
  3a、3b、3c 二段歯車
  4 シャフト側歯部
  5 ステアリングコラム
  6 転がり軸受
  7、7a、7b、7c 出力軸
  8 モータ側歯部
  9 中間軸
 10 第1の歯部
 11 第2の歯部
 12 減速機構
 13 ハウジング
 14 前側ハウジング素子
 15 後側ハウジング素子
 16 ボルト
 17 付勢機構
 18 軸部材
 19 筒部材
 20a、20b 転がり軸受
 21 大径部
 22 平板部
 23、23a フランジ部
 24、24a 貫通孔
 25 ガイド孔
 26 ねじ孔
 27 円孔
 28 支持部材
 29 軸部
 30 頭部
 31 雄ねじ部
 32 座面
 33 弾性部材
 34 第1の部材
 35 第2の部材
 36 第1の小径筒部
 37 第1の大径筒部
 38 円すい筒部
 39a、39b 円孔
 40 内径側凸部
 41 雄ストッパ部
 42 内径側円筒面部
 43 第2の小径筒部
 44 第2の大径筒部
 45 側板部
 46 外径側円筒面部
 47 外径側凸部
 48 雌ストッパ部
 49 カラー
 50 結合ピン
 51a、51b 転がり軸受
 52 ストッパ機構
 53、53a、53b、53c 軸合わせ部
 54、54a、54b 凹部
 55、55a、55b 凸部
 56 スリーブ
 57 保持器
 58 転動体

Claims (9)

  1.  シャフト側歯部を有するステアリングシャフトと、
     前記ステアリングシャフトと同軸に配置された出力軸と、該出力軸の先端部に配されたモータ側歯部とを有する電動モータと、
     前記ステアリングシャフトと平行に配置された中間軸と、該中間軸に配され、かつ、前記シャフト側歯部と噛合する第1の歯部と、該中間軸のうちで該第1の歯部よりも前記電動モータ側の部分に配され、かつ、前記モータ側歯部と噛合する第2の歯部とを有する、少なくとも1個の二段歯車と、
     を備える、ステアリングホイールの反力付与装置。
  2.  前記少なくとも1個の二段歯車は、複数個の二段歯車により構成される、請求項1に記載のステアリングホイールの反力付与装置。
  3.  前記少なくとも1個の二段歯車を、前記ステアリングシャフトの径方向に関して内側に向けて付勢する付勢機構をさらに備える、請求項1または2に記載のステアリングホイールの反力付与装置。
  4.  前記中間軸がトーションバーであり、
     前記少なくとも1個の二段歯車によりトルクを伝達していない状態において、前記中間軸が捩れ方向の弾力を発揮している、請求項1~3のいずれか1項に記載のステアリングホイールの反力付与装置。
  5.  前記少なくとも1個の二段歯車が、前記第1の歯部と前記第2の歯部とが所定角度以上相対回転することを阻止するストッパ機構をさらに有する、請求項4に記載のステアリングホイールの反力付与装置。
  6.  前記ステアリングシャフトと前記出力軸との軸合わせを行う軸合わせ部をさらに備える、請求項1~5のいずれか1項に記載のステアリングホイールの反力付与装置。
  7.  前記軸合わせ部は、前記ステアリングシャフトと前記出力軸とのうちの一方に備えられた凹部と、前記ステアリングシャフトと前記出力軸とのうちの他方に備えられ、かつ、前記凹部の内径側に配置された凸部と、前記凹部の内周面と前記凸部の外周面との間に、径方向に関するがたつきなく配置されたスリーブとを備える、請求項6に記載のステアリングホイールの反力付与装置。
  8.  前記軸合わせ部は、前記ステアリングシャフトと前記出力軸とのうちの一方に備えられた凹部と、前記ステアリングシャフトと前記出力軸とのうちの他方に備えられ、かつ、前記凹部の内径側に配置された凸部と、前記凹部の内周面と前記凸部の外周面との間に、転動自在に配置された複数個の転動体とを備える、請求項6に記載のステアリングホイールの反力付与装置。
  9.  前記軸合わせ部は、前記ステアリングシャフトと前記出力軸とのうちの一方に備えられた凹部と、前記ステアリングシャフトと前記出力軸とのうちの他方に備えられ、前記凹部に径方向に関するがたつきなく、かつ、相対回転を可能に内嵌された凸部とを備える、請求項6に記載のステアリングホイールの反力付与装置。
PCT/JP2019/026171 2018-07-02 2019-07-01 ステアリングホイールの反力付与装置 WO2020009074A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19830415.6A EP3819191A4 (en) 2018-07-02 2019-07-01 ANTAGONISTIC FORCE APPLICATION DEVICE FOR STEERING WHEEL
US17/253,889 US20210269083A1 (en) 2018-07-02 2019-07-01 Reaction force applying device for a steering wheel
JP2020528987A JPWO2020009074A1 (ja) 2018-07-02 2019-07-01 ステアリングホイールの反力付与装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018126295 2018-07-02
JP2018-126295 2018-07-02
JP2019-018476 2019-02-05
JP2019018476 2019-02-05

Publications (1)

Publication Number Publication Date
WO2020009074A1 true WO2020009074A1 (ja) 2020-01-09

Family

ID=69060367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026171 WO2020009074A1 (ja) 2018-07-02 2019-07-01 ステアリングホイールの反力付与装置

Country Status (4)

Country Link
US (1) US20210269083A1 (ja)
EP (1) EP3819191A4 (ja)
JP (1) JPWO2020009074A1 (ja)
WO (1) WO2020009074A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020133969A1 (de) 2020-12-17 2022-06-23 softwareinmotion GmbH Lenksystem für ein Fahrzeug

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018122767A1 (de) * 2018-09-17 2020-03-19 Thyssenkrupp Ag Lenksäule und Steer-by-Wire Lenksystem

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243514A (ja) * 1994-03-07 1995-09-19 Fuji Hensokuki Kk 歯車変速機のバックラッシ除去装置
JP2005160150A (ja) * 2003-11-21 2005-06-16 Toyota Motor Corp センサ内蔵型モータおよびそれを備えた車両用ステアリング装置
JP2005299883A (ja) * 2004-04-15 2005-10-27 Omi Kogyo Co Ltd 歯車伝動機構及び電動工具
JP2007055453A (ja) 2005-08-25 2007-03-08 Nissan Motor Co Ltd 操舵制御装置
JP2009073334A (ja) 2007-09-20 2009-04-09 Calsonic Kansei Corp ステアリングシステム
JP2016016803A (ja) * 2014-07-10 2016-02-01 三井金属アクト株式会社 パワードア開閉装置及び当該開閉装置を備えた自動車
JP2017036795A (ja) * 2015-08-10 2017-02-16 Ntn株式会社 車両用モータ駆動装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923491B2 (ja) * 2005-09-16 2012-04-25 株式会社ジェイテクト 車両用操舵装置
JP2008120259A (ja) * 2006-11-13 2008-05-29 Jtekt Corp 車両用操舵装置
US7837002B2 (en) * 2007-05-08 2010-11-23 Jtekt Corporation Electric power steering apparatus
FR3034158B1 (fr) * 2015-03-27 2018-06-15 Safran Transmission Systems Reducteur de vitesse a deux lignes intermediaires de transmission
WO2017082355A1 (ja) * 2015-11-13 2017-05-18 日本精工株式会社 電動式パワーステアリング装置及びその組立方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243514A (ja) * 1994-03-07 1995-09-19 Fuji Hensokuki Kk 歯車変速機のバックラッシ除去装置
JP2005160150A (ja) * 2003-11-21 2005-06-16 Toyota Motor Corp センサ内蔵型モータおよびそれを備えた車両用ステアリング装置
JP2005299883A (ja) * 2004-04-15 2005-10-27 Omi Kogyo Co Ltd 歯車伝動機構及び電動工具
JP2007055453A (ja) 2005-08-25 2007-03-08 Nissan Motor Co Ltd 操舵制御装置
JP2009073334A (ja) 2007-09-20 2009-04-09 Calsonic Kansei Corp ステアリングシステム
JP2016016803A (ja) * 2014-07-10 2016-02-01 三井金属アクト株式会社 パワードア開閉装置及び当該開閉装置を備えた自動車
JP2017036795A (ja) * 2015-08-10 2017-02-16 Ntn株式会社 車両用モータ駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3819191A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020133969A1 (de) 2020-12-17 2022-06-23 softwareinmotion GmbH Lenksystem für ein Fahrzeug

Also Published As

Publication number Publication date
JPWO2020009074A1 (ja) 2021-07-08
EP3819191A1 (en) 2021-05-12
EP3819191A4 (en) 2022-03-16
US20210269083A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
US7377194B2 (en) Worm gear mechanism and electric power steering apparatus equipped with the worm gear mechanism
JP2006151352A (ja) ステアリング装置
JP2002067992A (ja) 電動パワーステアリング装置
JP2010095006A (ja) 電動式パワーステアリング装置
US20090139356A1 (en) Variable ratio steering apparatus
WO2020009074A1 (ja) ステアリングホイールの反力付与装置
JP3643950B2 (ja) 電動式舵取装置
WO2023276598A1 (ja) ウォーム減速機
JP3658683B2 (ja) 電動式舵取装置
JP2008143434A (ja) 電動式パワーステアリング装置
JP7404688B2 (ja) ウォーム減速機および電動アシスト装置
JP2008173993A (ja) 電動式パワーステアリング装置
JP2016020718A (ja) トルク伝達部材及び駆動軸と被駆動軸との結合部
WO2020009075A1 (ja) ステアリングシステム
WO2012086678A1 (ja) 電動パワーステアリング装置
JP7225877B2 (ja) ウォーム減速機および電動アシスト装置
EP3926190A1 (en) Worm reducer and electric assist device
JP3765276B2 (ja) 電動式パワーステアリング装置
JP2006151043A (ja) 電動パワーステアリング装置
JP2020044854A (ja) 操舵装置
JP4930771B2 (ja) 電動パワーステアリング装置
JP2014114915A (ja) 伸縮シャフトおよびステアリング装置
JP3624308B2 (ja) 電動式舵取装置
JP2002154443A (ja) 電動パワーステアリング装置
JP4151444B2 (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528987

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019830415

Country of ref document: EP

Effective date: 20210202