WO2020004036A1 - 成形体及びその製造方法、プリプレグ、並びに積層体 - Google Patents

成形体及びその製造方法、プリプレグ、並びに積層体 Download PDF

Info

Publication number
WO2020004036A1
WO2020004036A1 PCT/JP2019/023270 JP2019023270W WO2020004036A1 WO 2020004036 A1 WO2020004036 A1 WO 2020004036A1 JP 2019023270 W JP2019023270 W JP 2019023270W WO 2020004036 A1 WO2020004036 A1 WO 2020004036A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
alicyclic structure
prepreg
molded article
temperature
Prior art date
Application number
PCT/JP2019/023270
Other languages
English (en)
French (fr)
Inventor
枦山 一郎
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US16/973,424 priority Critical patent/US20210246284A1/en
Priority to CN201980033359.XA priority patent/CN112135865B/zh
Priority to JP2020527380A priority patent/JP7331849B2/ja
Publication of WO2020004036A1 publication Critical patent/WO2020004036A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0207Particles made of materials belonging to B32B25/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0228Vinyl resin particles, e.g. polyvinyl acetate, polyvinyl alcohol polymers or ethylene-vinyl acetate copolymers
    • B32B2264/0235Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0228Vinyl resin particles, e.g. polyvinyl acetate, polyvinyl alcohol polymers or ethylene-vinyl acetate copolymers
    • B32B2264/0242Vinyl halide, e.g. PVC, PVDC, PVF or PVDF (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0257Polyolefin particles, e.g. polyethylene or polypropylene homopolymers or ethylene-propylene copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0264Polyamide particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2345/00Characterised by the use of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Derivatives of such polymers

Definitions

  • the present invention relates to a molded product, a method for producing the same, a prepreg, and a laminate.
  • the present invention relates to a molded article and a method for producing the same, a prepreg, and a laminate, each including a resin having a thermoplastic alicyclic structure.
  • Electronic equipment using high-speed transmission signals and high-frequency signals requires a printed wiring board including a substrate made of a material having a low dielectric constant and a low dielectric loss.
  • a hot press is performed by placing a metal layer such as a copper foil on both sides of a prepreg formed by impregnating a thermosetting resin into a substrate made of a glass cloth or the like.
  • a copper-clad laminate obtained by curing a curable resin has been generally used as a printed wiring board.
  • thermosetting resins are excellent in heat resistance and shape accuracy, it has been an issue that the dielectric constant and the dielectric loss are relatively large.
  • the alicyclic structure-containing resin tends to have low dielectric constant and dielectric loss.
  • a resin having a crystalline alicyclic structure has a relatively high melting point and excellent heat resistance, and thus is promising as a substrate material for forming a printed wiring board. It is advantageous if the heat resistance of the substrate material used for the printed wiring board is high, since the reflow soldering step can be suitably performed using such a printed wiring board.
  • Patent Document 1 discloses a technique of forming a printed wiring board using a crystalline thermoplastic alicyclic structure-containing resin as a substrate material.
  • the printed wiring board obtained according to Patent Literature 1 has an excellent balance between resistance to thermal shock test and transmission characteristics, and can be particularly suitably used for transmitting high-frequency signals.
  • the substrate material used for the printed wiring board is required to have not only sufficient heat resistance but also excellent strength.
  • the crystalline thermoplastic alicyclic structure-containing resin described in Patent Document 1 has room for improvement in heat resistance and strength.
  • the inventor has conducted intensive studies for the purpose of solving the above problems. Then, the present inventor, when forming a molded body using a resin having a thermoplastic alicyclic structure, as a resin, appropriately controlling the size of spherulites formed by the resin having a thermoplastic alicyclic structure Thus, the present inventors have newly found that the heat resistance and strength of the obtained molded article and the like can be compatible at a high level, and have completed the present invention.
  • an object of the present invention is to advantageously solve the above-described problems, and a molded article of the present invention includes a thermoplastic alicyclic structure-containing resin, includes spherulites, and includes the spherulites. Is less than 3 ⁇ m and the crystallinity is 20% or more and 70% or less.
  • the heat resistance and the strength are compatible at a high level. can do.
  • the “crystallinity” can be measured by an X-ray diffractometer according to the method described in Examples.
  • the “size” of the spherulite can be measured by the method described in the examples.
  • the melting point of the resin having a thermoplastic alicyclic structure is preferably 200 ° C. or more.
  • the heat resistance of the molded body can be further improved.
  • the “melting point” of the thermoplastic alicyclic structure-containing resin can be measured by a method described in the examples using a differential scanning calorimeter.
  • the molded article of the present invention may further contain at least one of a filler, a flame retardant, and an antioxidant. If the molded article contains any of these, the molded article may have desired attributes.
  • a prepreg of the present invention is a prepreg including a resin portion and a base material adjacent to the resin portion, wherein the resin Part contains a thermoplastic alicyclic structure-containing resin, the crystallinity of the resin part is 20% or more and 70% or less, and the resin part contains spherulites, and the size of the spherulites is less than 3 ⁇ m. It is characterized by the following.
  • a prepreg containing a resin portion containing a resin having a thermoplastic alicyclic structure if both the size and crystallinity of spherulites in the resin portion are within the above-mentioned predetermined ranges, such a prepreg is excellent in heat resistance and strength.
  • the melting point of the resin having a thermoplastic alicyclic structure is preferably 200 ° C. or more.
  • the heat resistance of the prepreg can be further improved.
  • the resin portion may further contain at least one of a filler, a flame retardant, and an antioxidant. If the prepreg contains any of these, the prepreg may have the desired attributes.
  • a laminate of the present invention is a resin layer, which is laminated directly adjacent to at least one surface of the resin layer.
  • the resin layer contains a resin having a thermoplastic alicyclic structure, the crystallinity of the resin layer is 20% or more and 70% or less, and the resin layer is Including spherulites, the size of the spherulites is less than 3 ⁇ m.
  • a laminate including a resin layer containing a thermoplastic alicyclic structure-containing resin if the size and crystallinity of the spherulite in the resin layer are both within the above-mentioned predetermined ranges, such a laminate has heat resistance and strength. Excellent.
  • the resin layer may further contain at least one of a filler, a flame retardant, and an antioxidant. If the laminate contains any of these, the laminate may have desired attributes.
  • Another object of the present invention is to advantageously solve the above-mentioned problems, and a method for producing a molded article of the present invention includes the steps of: forming a pre-molded article containing a thermoplastic alicyclic structure-containing resin, A crystallization step of hot-pressing at a temperature equal to or higher than the melting point Tm (° C.) of the alicyclic structure-containing resin and then rapidly cooling to the crystallization temperature Tc (° C.) of the thermoplastic alicyclic structure-containing resin for crystallization. It is characterized by including. According to such a manufacturing method, a molded body having excellent heat resistance and strength can be efficiently manufactured.
  • a cooling time from the melting point Tm (° C.) to the crystallization temperature Tc (° C.) during quenching in the crystallization step is within 1 minute. .
  • strength and its manufacturing method can be provided. Further, according to the present invention, a prepreg containing a thermoplastic resin having excellent heat resistance and strength can be provided. Furthermore, according to the present invention, a laminate including a thermoplastic resin layer having excellent heat resistance and strength can be provided.
  • 9 shows a temperature profile and a pressure profile when a crystallization step (2) is performed in Example 1 and the like.
  • 9 is a temperature profile when a reflow test is performed in Example 1 and the like.
  • 9 is a temperature profile and a pressure profile when a crystallization step (2) is performed in Example 2.
  • 9 is a temperature profile when a reflow test is performed in Example 2.
  • 13 shows a temperature profile and a pressure profile when a crystallization step (2) is performed in Example 4.
  • 9 is a temperature profile and a pressure profile when a crystallization step (2) is performed in Comparative Example 2 and the like.
  • 9 is a temperature profile and a pressure profile when a crystallization step (2) is performed in Comparative Example 3.
  • the molded article of the present invention can be suitably used when forming a printed wiring board.
  • the molded article, prepreg, and laminate of the present invention can be suitably used when forming a printed wiring board suitable for an electronic device using a high-speed transmission signal or a high-frequency signal.
  • the molded object of this invention can be efficiently manufactured by the manufacturing method of the molded object of this invention.
  • the molded article of the present invention comprises a resin having a thermoplastic alicyclic structure. Further, the molded article of the present invention is characterized by containing spherulites, having a size of less than 3 ⁇ m, and having a crystallinity of 20% or more and 70% or less.
  • the molded product of the present invention is excellent in strength and heat resistance because the crystallinity is within the above range and contains spherulites of a predetermined size.
  • the resin needs to include at least one resin having a thermoplastic alicyclic structure.
  • the resin may include a plurality of types of resins having a thermoplastic alicyclic structure. Further, the resin may optionally contain a resin other than the resin having a thermoplastic alicyclic structure, which is different from other components and additives described later.
  • the molded article of the present invention contains a resin having a thermoplastic alicyclic structure, the molded article can exhibit better adhesive ability.
  • the resin having a thermoplastic alicyclic structure needs to be crystalline.
  • crystalline means that the resin can detect the melting point using a differential scanning calorimeter (DSC) under the conditions described in the examples of the present specification. Such a property is a property determined by the stereoregularity of the polymer chain.
  • thermoplastic refers to the property that the resin becomes softer when heat is applied thereto and becomes harder when cooled.
  • Examples of the resin having a thermoplastic alicyclic structure include a compound which is a cyclic olefin polymer and has an alicyclic structure in a molecule and has thermoplasticity.
  • Such compounds include, for example, hydrogenated dicyclopentadiene ring-opening polymers having syndiotactic stereoregularity described in WO2012 / 033076, isoforms described in JP-A-2002-249553.
  • Known products such as hydrogenated dicyclopentadiene ring-opening polymer having tactic stereoregularity and hydrogenated norbornene ring-opening polymer described in JP-A-2007-16102 can be used. Among them, from the viewpoint of productivity and the like, it is preferable to use a hydrogenated dicyclopentadiene ring-opening polymer having syndiotactic stereoregularity as the resin.
  • the hydrogenated dicyclopentadiene ring-opening polymer having syndiotactic stereoregularity can be suitably synthesized according to the method disclosed in JP-A-2017-170735. Further, “having syndiotactic stereoregularity” means that the ratio of racemodiad is 51% or more as measured according to the 13 C-NMR measurement method described in Examples of the present specification. Furthermore, the proportion of the racemodiad in the hydrogenated dicyclopentadiene ring-opening polymer having syndiotactic stereoregularity is preferably 60% or more, and more preferably 70% or more.
  • the melting point of the thermoplastic alicyclic structure-containing resin is preferably 200 ° C. or higher, more preferably 220 ° C. or higher, still more preferably 240 ° C. or higher, and even more preferably 260 ° C. or higher. Preferably, it is 350 ° C. or lower, more preferably 320 ° C. or lower, further preferably 300 ° C. or lower. When the melting point is equal to or more than the above lower limit, the heat resistance of the molded body can be favorably increased.
  • the melting point when the melting point is equal to or less than the upper limit, the moldability of the molded body can be favorably improved.
  • the melting point of the thermoplastic alicyclic structure-containing resin can be adjusted, for example, by controlling stereoregularity and hydrogenation rate when synthesizing a polymer constituting the resin.
  • the crystallization temperature of the resin having a thermoplastic alicyclic structure is preferably a glass transition temperature Tg or higher, more preferably Tg + 10 ° C or higher, and preferably Tg + 50 ° C or lower.
  • Tg glass transition temperature
  • the crystallization temperature of the thermoplastic alicyclic structure-containing resin can be adjusted, for example, by controlling stereoregularity.
  • the resin having a thermoplastic alicyclic structure preferably has a glass transition temperature of 80 ° C or higher, and more preferably 90 ° C or higher.
  • the glass transition temperature of the thermoplastic alicyclic structure-containing resin is preferably 200 ° C. or lower from the viewpoint of moldability. Further, from the viewpoint of relatively easy temperature control in the crystallization step or the like, the glass transition temperature is more preferably 150 ° C. or less.
  • the “glass transition temperature” can be measured using a differential scanning calorimeter according to the method described in Examples.
  • the glass transition temperature of the thermoplastic alicyclic structure-containing resin can be adjusted, for example, by controlling the composition ratio of a plurality of thermoplastic alicyclic structure-containing resins.
  • the thermoplastic alicyclic structure-containing resin preferably has a hydrogenation ratio of carbon-carbon double bonds contained in the main chain of the thermoplastic alicyclic structure-containing resin of 95% or more, and more preferably 99% or more. Is more preferable. Further, when the resin having a thermoplastic alicyclic structure has a carbon-carbon double bond other than the main chain, the hydrogenation rate of the main chain and the entire carbon-carbon double bond contained outside the main chain is 95%. Or more, more preferably 99% or more. If the hydrogenation rate is high, the heat resistance of the obtained molded body can be increased.
  • the “hydrogenation ratio” is a value on a molar basis that can be calculated based on 1 H-NMR measurement. The hydrogenation rate of the thermoplastic alicyclic structure-containing resin can be adjusted by controlling the hydrogenation conditions when hydrogenating the polymer constituting the resin.
  • the shaped article of the present invention contains spherulites, and the size of the spherulites needs to be less than 3 ⁇ m. If the size of the spherulite contained in the molded article is less than 3 ⁇ m, the molded article has high strength and heat resistance. Further, the size of the spherulite is preferably 2.2 ⁇ m or less. This is because the strength of the molded body can be further improved.
  • FIG. 1 shows an image obtained by observing, using an atomic force microscope, a cross section of a formed body including a plurality of spherulites, of which the largest one is not more than about 1 ⁇ m in size. An example is shown below.
  • dark regions scattered in the display visual field correspond to spherulites.
  • the size of a spherulite can be obtained by observing with an atomic force microscope and directly measuring the size of a crystal observed as a spherulite.
  • the spherulite has a folded structure of the molecular chains of the polymer constituting the resin, which is generated in the process of cooling the molten resin.
  • the size of the spherulite changes mainly depending on the mode of temperature change in the process of cooling the resin. Therefore, as in the method for manufacturing a molded article of the present invention described below, by setting the time from the melting point to the crystallization temperature in the step of cooling after the resin is in a molten state within a predetermined time, efficiently, The spherulite size can be controlled within such a predetermined range.
  • the molded body contains at least one of an antioxidant, a filler, and a flame retardant as other components in addition to the resin as described above. By containing any of these, a desired attribute can be imparted to the molded body.
  • the molded article may optionally contain various additives other than the above-mentioned other components. Examples of such additives include a crystal nucleating agent, a flame retardant aid, a colorant, an antistatic agent, a plasticizer, an ultraviolet absorber, a light stabilizer, a near infrared absorber, and a lubricant.
  • examples of the antioxidant include a phenolic antioxidant, a phosphorus-based antioxidant, and a sulfur-based antioxidant. These can be used alone or in combination of two or more.
  • the molded article containing the antioxidant can be suitably used for forming a printed wiring board.
  • phenolic antioxidants examples include 3,5-di-t-butyl-4-hydroxytoluene, dibutylhydroxytoluene, 2,2′-methylenebis (6-t-butyl-4-methylphenol), 4,4 ′ -Butylidenebis (6-tert-butyl-3-methylphenol), 4,4'-thiobis (6-tert-butyl-3-methylphenol), ⁇ -tocopherol, 2,2,4-trimethyl-6-hydroxy- 7-t-butylchroman, tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane and the like.
  • Examples of the phosphorus antioxidant include distearyl pentaerythritol diphosphite, bis (2,4-ditert-butylphenyl) pentaerythritol diphosphite, tris (2,4-di-tert-butylphenyl) phosphite, tetrakis (2 , 4-ditert-butylphenyl) 4,4'-biphenyldiphosphite, trinonylphenylphosphite and the like.
  • Examples of the sulfur-based antioxidant include distearyl thiodipropionate, dilauryl thiodipropionate, and the like.
  • Fillers include inorganic fillers and organic fillers.
  • metal hydroxide-based fillers such as magnesium hydroxide, calcium hydroxide, and aluminum hydroxide
  • metal oxide-based fillers such as magnesium oxide, titanium dioxide, zinc oxide, aluminum oxide, and silicon dioxide (silica) Fillers
  • Metal chloride fillers such as sodium chloride and calcium chloride
  • Metal sulfate fillers such as sodium sulfate and sodium hydrogen sulfate
  • Metal nitrate fillers such as sodium nitrate and calcium nitrate
  • Metal phosphate fillers such as sodium dihydrogen phosphate
  • metal titanate fillers such as calcium titanate, strontium titanate and barium titanate
  • metal carbonate fillers such as sodium carbonate and calcium carbonate
  • Carbide fillers such as boron carbide and silicon carbide
  • boron nitride, aluminum nitride Fillers such as aluminum, nickel, magnesium, copper, zinc, and iron
  • silicate fillers such as mica, ka
  • Halogen-based flame retardants include tris (2-chloroethyl) phosphate, tris (chloropropyl) phosphate, tris (dichloropropyl) phosphate, chlorinated polystyrene, chlorinated polyethylene, highly chlorinated polypropylene, chlorosulfonated polyethylene, hexabromobenzene , Decabromodiphenyl oxide, bis (tribromophenoxy) ethane, 1,2-bis (pentabromophenyl) ethane, tetrabromobisphenol S, tetradecabromodiphenoxybenzene, 2,2-bis (4-hydroxy-3, 5-dibromophenylpropane), pentabromotoluene and the like.
  • the content of the resin having a thermoplastic alicyclic structure in the molded body is usually 50% by mass or more, preferably 60% by mass or more, more preferably 80% by mass or more, with the whole molded body being 100% by mass. .
  • the content of the other components described above can be appropriately determined according to the purpose, but is generally less than 50% by mass, preferably less than 40% by mass, and more preferably less than 40% by mass based on 100% by mass of the whole molded article. Less than 20% by mass.
  • the total content of the plurality of types of components is preferably within such a range.
  • the content of the antioxidant is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and usually 5% by mass, assuming that the whole molded body is 100% by mass. Or less, preferably 4% by mass or less, more preferably 3% by mass or less.
  • the content of the filler is usually 5% by mass or more, preferably 10% by mass or more, usually 40% by mass or less, preferably 30% by mass or less.
  • the content of the flame retardant is usually 1% by mass or more, preferably 10% by mass or more, usually 40% by mass or less, preferably 30% by mass or less.
  • the shape of the molded body is not particularly limited and may be any shape suitable for the application, but is preferably a sheet.
  • sheet shape means a shape having a front surface and a back surface facing each other at a distance corresponding to the thickness.
  • its thickness is usually at least 10 ⁇ m, preferably at least 25 ⁇ m, usually at most 250 ⁇ m, preferably at most 100 ⁇ m.
  • the molded article of the present invention needs to have a crystallinity of 20% or more and 70% or less.
  • the crystallinity of the molded body is 20% or more, the heat resistance is sufficiently high.
  • the crystallinity of the molded body is 70% or less, the strength of the molded body is sufficiently high.
  • the crystallinity of the molded body is preferably 30% or more. If the degree of crystallinity of the molded body is high, such a molded body has excellent insulating properties in a high-temperature region such as over 100 ° C. It can be suitably used.
  • the degree of crystallinity of the molded body is controlled based on the temperature at which the resin is brought into a molten state, and the time from the melting point to the crystallization temperature in the step of cooling after the resin is brought into a molten state, and the like. Can be.
  • the pre-molded article containing the thermoplastic alicyclic structure-containing resin is hot-pressed at a temperature equal to or higher than the melting point Tm (° C.) of the thermoplastic alicyclic structure-containing resin, and then heated. It is characterized by including a crystallization step (also referred to as “crystallization step (2)”) of rapidly cooling to the crystallization temperature Tc (° C.) of the resin having a plastic alicyclic structure to crystallize.
  • the pre-molded body is hot-pressed at a temperature equal to or higher than the melting point Tm (° C.), and then rapidly cooled to the crystallization temperature Tc (° C.) to obtain the spherulite of the resin contained in the obtained molded body.
  • Tm melting point
  • Tc crystallization temperature
  • the size and the crystallinity of the compact can be efficiently controlled to desired values.
  • the method for producing a molded article of the present invention may optionally include a step (0) of obtaining a resin pellet containing a thermoplastic alicyclic structure-containing resin, and The method may include a step (1) of elevating the temperature to (C) or more and melt-molding to obtain a pre-molded body.
  • each step will be described in detail.
  • any other components and / or additives may be added to the thermoplastic alicyclic structure-containing resin satisfying the attributes described in detail in the item (Mold) above.
  • the agent is added and pre-mixed according to a conventional method to obtain a pre-mix.
  • the obtained pre-mixture is introduced into a known mixing device such as a twin-screw extruder, and according to a known molding method such as melt extrusion molding, a strand-shaped molded body is obtained, and then a cutting device such as a strand cutter is used. To obtain resin pellets.
  • the temperature condition at the time of pre-mixing is not particularly limited, and may be 0 ° C. or higher and lower than the melting point Tm (° C.) of the thermoplastic alicyclic structure-containing resin. Further, the temperature at which the pre-mixture is mixed by a mixing device such as a twin-screw extruder may be not lower than the melting point Tm (° C.) and not higher than Tm + 100 (° C.) of the thermoplastic alicyclic structure-containing resin.
  • Step (1) of obtaining pre-formed body the resin pellets obtained in the step (0) are melt-molded by heating at a temperature not lower than the melting point Tm (° C.) of the thermoplastic alicyclic structure-containing resin. Obtain a molded body.
  • the step (1) is not particularly limited, and an apparatus capable of heating the resin pellet at a temperature equal to or higher than the melting point Tm (° C.) of the thermoplastic alicyclic structure-containing resin, and molding the resin pellet into a desired shape. It can be carried out using a device capable of performing the above.
  • a suitable forming apparatus includes a hot melt extruded film forming machine equipped with a T-die.
  • the molding method is not particularly limited, and known molding methods such as injection molding, extrusion molding, press molding, inflation molding, blow molding, calendar molding, cast molding, and compression molding can be employed.
  • this step (1) an optional stretching treatment may be performed.
  • the temperature at the time of heating a resin pellet may be Tm + 100 (degreeC) or less.
  • ⁇ Crystallization step (2)> the pre-formed body to be pressed is hot-pressed at a temperature equal to or higher than the melting point Tm (° C.) to form a formed body, and the formed body is rapidly cooled to the crystallization temperature Tc (° C.). .
  • the crystallization step (2) can be performed using, for example, a vacuum press having a temperature control mechanism without any particular limitation.
  • the heating of the pre-formed body may be started after the pressing pressure is applied to the pre-formed body, or before the pressing pressure is applied to the pre-formed body, or the pre-forming may be performed. The heating of the pre-formed body may be started at the same time as the pressing pressure is applied to the body.
  • the cooling of the molded body may be started at the same time as or after the application of the press pressure is released, or the cooling of the molded body may be started before the application of the press pressure is released. Thereafter, the application of the press pressure may be released.
  • a means of replacing the heated heat medium with a cooling heat medium (that is, a refrigerant) is effective.
  • the pressurization of the formed body by the press member such as a press plate is temporarily stopped, the heat medium for heating the press member is exchanged for a refrigerant, and the temperature of the press member itself is made uniform.
  • the heating temperature of the pre-molded body at the time of hot pressing needs to be equal to or higher than the melting point Tm (° C.), is preferably equal to or higher than the melting point Tm + 10 (° C.), and is preferably equal to or lower than Tm + 100 (° C.), More preferably, it is Tm + 50 (° C.) or less.
  • Tm melting point
  • the heating temperature of the pre-formed body during the hot pressing is lower than the melting point Tm (° C.)
  • the crystallization of the formed body proceeds during the hot pressing, and the spherulite grows. Even when cooled in the process, the grown spherulites remain in the compact.
  • the grown spherulites easily become break points, which may lead to a decrease in the strength of the molded body.
  • the heating temperature is equal to or higher than the melting point Tm (° C.)
  • the molded body can be favorably amorphized in the heating step. And it becomes possible to control crystallization well in the subsequent crystallization step. Further, by setting the heating temperature to the upper limit or less, it is possible to suppress the crystallinity of the molded body from being excessively increased, and to further enhance the strength of the molded body. In the case of hot pressing, heating at an excessively high temperature is not necessary, as long as the formed body can be uniformly melted and amorphous.
  • the heating temperature of the pre-molded body at the time of hot pressing is not the temperature of the pre-molded body itself to be heated, but the heating means used for heating the pre-molded body (for example, as a temperature adjusting mechanism provided in a vacuum press device). Heater).
  • the cooling time from the melting point Tm (° C.) to the crystallization temperature Tc (° C.) during the quenching is within 1 minute. This is because an excessive increase in the size of the spherulite can be more effectively suppressed.
  • the pressing pressure is not particularly limited, and may be, for example, 1 MPa or more and 10 MPa or less.
  • the molded body when producing a molded body, the molded body can be sufficiently sufficiently obtained at a relatively low press pressure even in such a pressure range.
  • the pressing pressure for forming a molded body is within the above pressure range. It is preferable to apply a slightly higher press pressure than that. However, even if a high press pressure of more than 10 MPa is applied, the adhesiveness does not increase dramatically, and a preferable upper limit of the press pressure is about 10 MPa.
  • the cooling step it is preferable to apply a pressure sufficiently lower than the press pressure applied during the heating, for example, a press pressure of 0.1 MPa or more and 1.0 MPa or less.
  • a press pressure of 0.1 MPa or more and 1.0 MPa or less.
  • FIG. 2 shows a temperature profile and a pressure profile when the crystallization step (2) is performed in Example 1 described later.
  • FIG. 2 shows that the heating temperature is rapidly increased from room temperature to 280 ° C. (about 50 seconds) at the same time as the application of the press pressure (10 MPa) is started, and is maintained for a certain time (about 600 seconds). Is once released and the temperature is slightly lowered. Then, application of the pressing pressure (1 MPa) is started again, and at the same time, the temperature is lowered to a temperature (100 ° C.) lower than the crystallization temperature (130 ° C.) of the resin by about 60 seconds. I have.
  • the size and crystallinity of the spherulite can be effectively controlled, but this is necessary for the purpose of promoting crystallization and the like.
  • the molded body obtained through the above step (2) may be subjected to an annealing treatment.
  • the annealing treatment is a treatment for heating the cooled compact again.
  • the degree of crystallinity and / or the size of the spherulite can be finely adjusted.
  • the annealing treatment is not particularly limited, and can be performed using a heat treatment oven, an infrared heater, or the like.
  • the prepreg of the present invention is a prepreg including a resin portion containing a resin having a thermoplastic alicyclic structure, and a base material adjacent to the resin portion.
  • the crystallinity of the resin part is 20% or more and 70% or less, the resin part contains spherulites, and the size of the spherulites is less than 3 ⁇ m.
  • the prepreg of the present invention is excellent in strength and heat resistance because the degree of crystallinity and the size of spherulites satisfy the above ranges. Further, the prepreg of the present invention has a small dimensional change due to heating and is excellent in dimensional accuracy.
  • the resin part is a constituent part made of a resin adjacent to a base material described later.
  • the resin portion may be a “layer” -like region adjacent to the base material.
  • the base material is a structure including a void inside a fibrous base material or the like
  • the void may be in a state of being impregnated with a resin.
  • the “state in which the void is impregnated with the resin” refers to a state in which the resin extends so as to fill the void.
  • the resin portion extends over a ⁇ layer '' region adjacent to the base material and a continuous or discontinuous partial region existing in the base material gap. , May exist.
  • the resin portion preferably includes a layered region adjacent to the base material.
  • the resin described in detail in (Mold) can be suitably used. Further, the “resin” for constituting the resin portion may optionally include other components and additives described in detail in (Mold), and the amount of these components may be (Mold). May be within the preferred range described in the item.
  • the resin portion is characterized by containing a spherulite having a suitable size described in the item of (molded article) ⁇ spherulite of resin >>. Further, the resin portion preferably exhibits a crystallinity within a suitable range described in the item of (molded article) ⁇ crystallinity of molded article>.
  • the substrate is not particularly limited, and examples thereof include carbon fibers, synthetic resin fibers such as cyclic olefin resin fibers, and cloth or nonwoven fabric made of glass or the like. In addition. When a cloth or nonwoven fabric made of synthetic resin fibers such as cyclic olefin resin fibers is used, the melting point of the synthetic resin fibers needs to be higher than the melting point of the resin for forming the resin portion. From the viewpoint of heat resistance, a cloth or nonwoven fabric made of glass is excellent. On the other hand, a prepreg having a low dielectric constant can be formed by using a cloth or a nonwoven fabric made of a synthetic resin fiber.
  • the thickness of the substrate is not particularly limited, and may be, for example, 10 ⁇ m or more and 500 ⁇ m or less.
  • ⁇ Prepreg manufacturing method> In the production of the prepreg, for example, in the case of using the pre-formed body described in the item of (Method of manufacturing a formed body) ⁇ Step (1) of obtaining a pre-formed body), (Method of manufacturing a formed body) ⁇ Crystalization step (2) When performing the same heating and quenching treatment as the treatment described in item ⁇ >, a pre-molded body-substrate-pre-molded body is laminated in this order to obtain a prepreg before impregnation.
  • the atmosphere in which the prepreg before impregnation is placed in a vacuum state for example, less than 100 kPa
  • the prepreg before impregnation is subjected to the same heating and quenching treatment as the treatment described in the (method for producing a molded article) ⁇ crystallization step (2)> to form the pre-molded article on the base material.
  • a prepreg obtained by impregnating at least a part of the resin component that has been used can be obtained.
  • the prepreg obtained according to such a manufacturing method satisfies predetermined attributes.
  • the processing can be performed in one step.
  • the molded article of the present invention whose crystallinity and spherulite size satisfy predetermined conditions, instead of the pre-molded article which is a molded article before crystallization.
  • a prepreg can be obtained in the same manner as described above, except that a molded body is used in place of the pre-molded body in the above-described production method.
  • the laminate of the present invention is a laminate including a resin layer and a metal layer laminated directly adjacent to at least one surface of the resin layer.
  • the resin layer contains a thermoplastic alicyclic structure-containing resin, the crystallinity of the resin layer is 20% or more and 70% or less, and the resin layer contains spherulites, and the size of the spherulites is 3 ⁇ m. Less than.
  • the laminate of the present invention includes a resin layer having a crystallinity and a spherulite within the above ranges, and thus has excellent heat resistance and strength.
  • the laminate is not particularly limited as long as it has at least one metal layer laminated directly adjacent to at least one surface of the resin layer, and includes a metal layer laminated on both surfaces of the resin layer. And a metal layer laminated only on one surface of the resin layer.
  • the metal layer examples include a layer containing a metal such as copper, gold, silver, stainless steel, aluminum, nickel, and chromium. Among them, copper is preferable because a laminate useful as a material for forming a printed wiring board can be obtained.
  • the thickness of the metal layer is not particularly limited and can be appropriately determined according to the intended use of the laminate.
  • the thickness of the metal layer may be generally at least 1 ⁇ m, preferably at least 3 ⁇ m, usually at most 35 ⁇ m, preferably at most 18 ⁇ m.
  • the resin layer is laminated directly adjacent to the metal layer.
  • directly adjacent means that the metal layer and the resin layer are in direct contact with each other without any other property layer such as an adhesive layer between the metal layer and the resin layer.
  • the resin layer may have the same configuration as the above-described molded article or prepreg.
  • the resin layer needs to include a thermoplastic alicyclic structure-containing resin having a degree of crystallinity within the above-mentioned predetermined range and a size of spherulites less than 3 ⁇ m, and optionally, A base material may be included.
  • the resin layer can be formed using the pre-molded article, the molded article of the present invention, or the prepreg of the present invention described in the item of (Process for producing molded article) ⁇ Step (1) of obtaining pre-molded article). . Therefore, it is preferable that the “resin” for constituting the resin layer and various attributes such as crystallinity and spherulite size in the resin layer satisfy the above-mentioned suitable attributes.
  • the preferred range of the thickness of the metal foil can be the same as the preferred range described above for the metal layer.
  • the pre-bonding laminate is subjected to the same heating and quenching treatment as the treatment described in the item of (Method for producing molded article) ⁇ crystallization step (2)>.
  • the “substrate” the same one as described above in the item of (prepreg) ⁇ substrate> can be used.
  • the molded article, prepreg, and laminate of the present invention can be suitably used when producing a multilayer wiring board.
  • a desired pattern is formed by etching each copper foil portion of a plurality of laminates, and a prepreg is sandwiched between the laminates as a laminate, and the laminate is hot-pressed in the thickness direction.
  • the resin having a thermoplastic alicyclic structure constituting the prepreg can exhibit adhesiveness to the adjacent laminate surface, and can efficiently produce a multilayer wiring board.
  • the multilayer wiring board formed using the molded article, prepreg, and / or laminate of the present invention has a crystallinity of the contained resin within the above range and a spherulite size of 3 ⁇ m. Since it is less than, it is excellent in strength and heat resistance, and further excellent in insulation in a high temperature region such as over 100 ° C.
  • ⁇ Melting point, glass transition temperature, and crystallization temperature> The melting point, glass transition temperature, and crystallization of the prepared thermoplastic alicyclic structure-containing resin were measured using a differential scanning calorimeter (DSC6220, manufactured by Hitachi High-Tech Science Corp.) at a heating rate of 10 ° C./min. The temperature was measured.
  • Test pieces were cut out from the molded bodies produced in the examples and comparative examples.
  • the same crystallization process as the process in each example was performed, without interposing a base material, the resin layer was obtained, and the test piece was cut out.
  • the broad pattern (halo pattern) is defined as an amorphous portion
  • the value of crystallinity was calculated according to 100 (%).
  • ⁇ Size of spherulite> Using an atomic force microscope, the cross sections of the molded bodies and the like manufactured in Examples and Comparative Examples were observed. A plurality of spherulites existing in the visual field were randomly selected, and the size of the spherulites was measured directly from the observation screen. The diameter of a circumscribed circle circumscribing the contour displayed on the observation screen of the spherulite to be measured was defined as the size of the spherulite. Then, the maximum value of the obtained spherulite sizes was defined as the “size of spherulites” contained in the molded object to be measured.
  • the laminated body has a width of 10 mm and a length of 45 mm with respect to the cross direction (texture direction) of the glass cloth, that is, the direction in which the elasticity of the glass cloth can be maximized is the longitudinal direction.
  • the sample was cut out at a length of 100 mm to obtain a measurement sample.
  • ⁇ Reflow resistance> A measurement sample of 100 mm x 100 mm was cut out from the molded articles and the like manufactured in the examples and comparative examples, and dimensional change measurement patterns were provided at four corners at 80 mm intervals. Then, a reflow test was performed on the measurement sample according to the profile of the drawing shown in Table 1. The distance between the patterns of the measurement sample after the test was measured, and the dimensional change before and after the reflow test was measured according to the formula:
  • ⁇ Dimension change rate> The dimensional change rates of the laminates manufactured in Examples and Comparative Examples were evaluated.
  • a copper foil was partially removed from a laminate having a size of 250 ⁇ 250 mm by etching, and dimensional change measurement patterns were provided at four corners at intervals of 200 mm.
  • / 200 mm ⁇ 100 (%). did.
  • the value of the dimensional change rate was calculated for four sides. Table 1 shows the threshold values that were satisfied by all of the values calculated for the four sides.
  • the insulation resistance in the thickness direction was measured for the molded articles and the like manufactured in the examples and comparative examples.
  • the voltage was 500 V, and the measurement temperature range was 25 ° C. to 125 ° C.
  • thermoplastic alicyclic structure-containing resin COP1
  • COP1 thermoplastic alicyclic structure-containing resin
  • 154.5 parts of cyclohexane and 42.8 parts of a cyclohexane solution (concentration 70%) of dicyclopentadiene (end body content of 99% or more) in a metal pressure-resistant reaction vessel with nitrogen replaced therein (30 parts as dicyclopentadiene) 1.9 parts of 1-hexene were added and the whole volume was heated to 53 ° C.
  • the weight average molecular weight (Mw) of the dicyclopentadiene ring-opened polymer contained in the obtained polymerization reaction liquid was 28,700, the number average molecular weight (Mn) was 9570, and the molecular weight distribution (Mw / Mn) was 3.0.
  • Mw / Mn molecular weight distribution
  • the suspension was filtered with a leaf filter (CFR2, manufactured by IHI), and the insolubilized catalyst was filtered off together with diatomaceous earth to obtain a solution of a ring-opened dicyclopentadiene polymer.
  • CFR2 leaf filter
  • the insolubilized catalyst was filtered off together with diatomaceous earth to obtain a solution of a ring-opened dicyclopentadiene polymer.
  • concentration of the dicyclopentadiene ring-opening polymer was reduced to 9%.
  • 600 parts of cyclohexane and 0.1 part of chlorohydridocarbonyltris (triphenylphosphine) ruthenium were added.
  • a hydrogenation reaction was carried out at a hydrogen pressure of 4 MPa and a temperature of 180 ° C. for 6 hours while stirring the whole volume at 64 rpm to obtain a slurry containing particles of a hydrogenated dicyclopentadiene ring-opening polymer.
  • the thus obtained slurry is centrifuged to separate a solid content and a solution, and the solid content is dried under reduced pressure at 60 ° C. for 24 hours to obtain dicyclopentadiene as a thermoplastic alicyclic structure-containing resin. 27.0 parts of a hydrogenated ring-opening polymer were obtained.
  • the hydrogenation rate of the unsaturated bond by the hydrogenation reaction is 99% or more, the glass transition temperature is 98 ° C., the melting point is 262 ° C., the crystallization temperature is 130 ° C., and the ratio of the racemodaid (ie, , Syndiotacticity) was 90%.
  • ⁇ Molding machine Hot-melt extrusion film forming machine equipped with T die (Product name “MeasuringExtruder Type Me-20 / 2800V3”, manufactured by Optical Control Systems) ⁇ Barrel temperature setting: 280 to 290 ° C ⁇ Die temperature: 270 °C -Screw rotation speed: 30 rpm ⁇ Film winding speed: 1 m / min ⁇ Crystallization step (2) >> From the resin film obtained in the step (1) of obtaining the pre-molded body, a sheet having a size of 250 mm ⁇ 250 mm was cut out, and was cut out using a vacuum laminator (manufactured by Nikkiso Co., Ltd., dry laminator SDL380-280-100-H) as shown in FIG.
  • the sheet was pressed at 280 ° C. and a pressure of 10 MPa for 10 minutes with the profile shown, and then rapidly cooled to obtain a sheet-like molded body.
  • the time from 262 ° C., which is the melting point, to 100 ° C., which is lower than the crystallization temperature, during rapid cooling was set to 30 seconds or less.
  • the obtained molded body was evaluated in accordance with the method described above for the items whose evaluation results are shown in Table 1.
  • a reflow test according to the above was performed with the temperature profile shown in FIG. Furthermore, when the insulation resistance in the thickness direction of the molded body was measured as described above, it was 10 5 M ⁇ from 25 ° C. to 125 ° C.
  • Example 2 ⁇ Synthesis of Thermoplastic Alicyclic Structure-Containing Resin (COP2)> A hydrogenated dicyclopentadiene ring-opened polymer was obtained as a thermoplastic alicyclic structure-containing resin (COP2) according to the following procedure.
  • a metal pressure-resistant reaction vessel whose inside was replaced with nitrogen, 344 parts of toluene, 286 parts of a toluene solution (concentration: 35%) of dicyclopentadiene (end body content: 99% or more) (100 parts as dicyclopentadiene), 1-hexene Eight parts were added and the whole volume was heated to 35 ° C.
  • a catalyst solution was prepared by dissolving 0.086 parts of a tungsten complex as a ring-opening polymerization catalyst in 29 parts of toluene. This catalyst solution was added into the reactor, and a ring-opening polymerization reaction was performed at 35 ° C. for 1 hour to obtain a solution containing a dicyclopentadiene ring-opening polymer. To 667 parts of the obtained solution containing the dicyclopentadiene ring-opening polymer, 1.1 parts of 2-propanol was added as a terminator to stop the polymerization reaction.
  • the weight average molecular weight (Mw) was 24,600
  • the number average molecular weight (Mn) was 8,600
  • the molecular weight distribution (Mw / Mn) was 2.86.
  • the resulting reaction solution containing the dicyclopentadiene ring-opening polymer was transferred to a metal pressure vessel equipped with a stirrer and a temperature control jacket, and then 330 parts of toluene and chlorohydridocarbonyltris (triphenylphosphine) as a hydrogenation catalyst were transferred. 0.027 parts of ruthenium were added.
  • the temperature is raised and increased to 120 ° C. under a hydrogen pressure of 2.0 MPa, and further increased to 4.0 MPa at 0.03 MPa / min and increased to 180 ° C. at 1 ° C./min.
  • a hydrogenation reaction was performed for 6 hours.
  • the reaction liquid after cooling was a slurry liquid on which solid content was precipitated.
  • the reaction solution is centrifuged to separate a solid content and a solution, and the solid content is dried under reduced pressure at 120 ° C. for 24 hours, and a dicyclopentadiene ring-opening polymer hydride as a thermoplastic alicyclic structure-containing resin is obtained. 90 parts were obtained.
  • the hydrogenation rate of the obtained hydrogenated dicyclopentadiene ring-opening polymer was 99.5%, the melting point was 276 ° C., and the ratio of racemodiad (ie, syndiotacticity) was 100%. Further, using a differential scanning calorimeter (DSC), it was confirmed that the obtained hydrogenated dicyclopentadiene ring-opening polymer had a glass transition temperature of 90 ° C. or more and 120 ° C. or less, and a crystallization temperature of 120 ° C.
  • the strand-shaped formed body was cut into pieces by a strand cutter to obtain pellets as a resin material containing a hydrogenated dicyclopentadiene ring-opening polymer.
  • the operating conditions of the twin-screw extruder are shown below.
  • Step of obtaining pre-formed body (1) >>
  • the resin pellet was subjected to molding under the following conditions to obtain a resin film as a film-shaped pre-molded body having a thickness of 100 ⁇ m.
  • ⁇ Molding machine Hot-melt extrusion film forming machine equipped with T die (Product name “MeasuringExtruder Type Me-20 / 2800V3”, manufactured by Optical Control Systems) ⁇ Barrel temperature setting: 290 to 300 ° C ⁇ Die temperature: 280 ° C -Screw rotation speed: 35 rpm ⁇ Film winding speed: 1 m / min ⁇ Crystallization step (2) >> A sheet having a size of 250 mm ⁇ 250 mm is cut out from the film molded body obtained in the step (1) of obtaining the pre-molded body, and is cut using a vacuum laminator (manufactured by Nikkiso Co., Ltd., dry laminator SDL380-280-100-H) as shown in FIG.
  • a vacuum laminator manufactured by Nikkiso Co., Ltd., dry laminator SDL380-280-100-H
  • Example 3 In the same manner as in Example 1, a resin film (a film-shaped pre-formed body before crystallization) was obtained. Two sheets of 250 ⁇ 250 mm size were cut out from the obtained resin film, and a glass cloth (E-glass 1078, manufactured by Nitto Boshoku) cut out to the same size of 250 ⁇ 250 mm was sandwiched. A copper foil (Fukuda Metal Co., Ltd.) A foil powder, CF-T4X-SV, thickness: 18 ⁇ m, Rz: 1.0 ⁇ m) was installed, and a profile shown in FIG. 2 was used using a vacuum laminator (manufactured by Nikkiso Co., Ltd., dry laminator SDL380-280-100-H).
  • a vacuum laminator manufactured by Nikkiso Co., Ltd., dry laminator SDL380-280-100-H.
  • Example 4 In the same manner as in Example 1, a resin film (a film-shaped pre-formed body before crystallization) was obtained. Two sheets of 250 ⁇ 250 mm size were cut out from the obtained resin film, and a glass cloth (E-glass 1078, manufactured by Nitto Boshoku) cut out to the same size of 250 ⁇ 250 mm was sandwiched. A copper foil (Fukuda Metal Co., Ltd.) A foil powder, CF-T4X-SV, thickness: 18 ⁇ m, Rz 1.0 ⁇ m) was installed, and a vacuum laminator (manufactured by Nikkiso Co., Ltd., dry laminator SDL380-280-100-H) was used to obtain the profile shown in FIG.
  • a vacuum laminator manufactured by Nikkiso Co., Ltd., dry laminator SDL380-280-100-H
  • Example 5 In the same manner as in Example 1, a resin film (a film-shaped pre-formed body before crystallization) was obtained. Two sheets of 250 ⁇ 250 mm size were cut out from the obtained resin film, and a glass cloth (E glass 1078, manufactured by Nitto Boshoku) cut out to the same size of 250 ⁇ 250 mm was sandwiched therebetween, and a vacuum laminator (DDL, manufactured by Nikkiso Co., Ltd., SDL380) -280-100-H), and pressed at 280 ° C. under a pressure of 10 MPa for 10 minutes according to the profile shown in FIG. 2, followed by rapid cooling to prepare a prepreg.
  • DDL vacuum laminator
  • the profile shown in FIG. 2 was used. Through the above steps, a multilayer wiring board was obtained. With respect to the obtained multilayer wiring board, a test sample in which the copper foil of the prepreg and the copper-clad laminate was removed by etching was cut out to 50 mm ⁇ 50 mm, and the dielectric properties were measured by a balanced disk resonator method. A network analyzer (PNA network analyzer N5227 manufactured by Agilent Technologies) was used for the measurement. The relative dielectric constant ⁇ r at 10 GHz was 2.53, and the dielectric loss tan ⁇ was 0.0008. For this reason, it was found that the obtained multilayer wiring board has a low dielectric constant and a low dielectric loss, and can be suitably disposed in an electronic device using a high-speed transmission signal or a high-frequency signal.
  • PNA network analyzer N5227 manufactured by Agilent Technologies
  • Example 2 In the same manner as in Example 1, a resin film (a film-shaped pre-formed body before crystallization) was obtained. A sheet having a size of 250 mm ⁇ 250 mm is cut out from the resin film and pressed at 280 ° C. and a pressure of 3 MPa for 10 minutes using a vacuum heat press (Model IMC-182, manufactured by Imoto Seisakusho) with the profile shown in FIG. It was gradually cooled to obtain a film-shaped molded body. With respect to the molded body obtained in this way, items having the evaluation results shown in Table 1 were evaluated according to the method described above.
  • Example 3 In the same manner as in Example 2, a resin film (a film-like pre-formed body before crystallization) was obtained. From this resin film, a 250 mm ⁇ 250 mm size sheet is cut out, and pressed using a vacuum heat press device (Model IMC-182, manufactured by Imoto Seisakusho) at 300 ° C. under a pressure of 3 MPa for 10 minutes using the profile shown in FIG. It was gradually cooled to obtain a film-shaped molded body. With respect to the molded body obtained in this way, items having the evaluation results shown in Table 1 were evaluated according to the method described above.
  • a vacuum heat press device Model IMC-182, manufactured by Imoto Seisakusho
  • Example 4 In the same manner as in Example 1, a resin film (a film-shaped pre-formed body before crystallization) was obtained. Two sheets of 250 ⁇ 250 mm size are cut out from the obtained resin film, and a copper foil (made by Fukuda Metal Foil Powder, CF-T4X-SV 18 ⁇ m, Rz 1.0 ⁇ m) cut to the same size of 250 ⁇ 250 mm is placed outside. Then, using a vacuum heat press (Model IMC-182, manufactured by Imoto Machinery Co., Ltd.) and pressing at 280 ° C. and a pressure of 3 MPa for 10 minutes with a profile shown in FIG. A laminated laminate was obtained. With respect to the laminated body obtained as described above, evaluation was performed on the items whose evaluation results are shown in Table 1 in accordance with the method described above.
  • a vacuum heat press Model IMC-182, manufactured by Imoto Machinery Co., Ltd.
  • the molded articles according to Examples 1 and 2 containing spherulites of a thermoplastic alicyclic structure-containing resin having a size of less than 3 ⁇ m and having a crystallinity of 20% or more and 70% or less,
  • the laminates (copper-clad laminates) according to Examples 3 and 4 which include the laminate and the laminate (multi-layer wiring) according to Example 5 in which the crystallinity of the resin portion and the size of the spherical crystal satisfy the same conditions are satisfied. Plate) is excellent in heat resistance and strength.
  • strength and its manufacturing method can be provided. Further, according to the present invention, a prepreg containing a thermoplastic resin having excellent heat resistance and strength can be provided. Furthermore, according to the present invention, it is possible to provide a laminate including a resin layer made of a thermoplastic resin having excellent heat resistance and strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

熱可塑性脂環式構造含有樹脂を含んでなる成形体である。かかる成形体は、球晶を含み、該球晶の大きさは3μm未満である。さらに、かかる成形体の結晶化度は、20%以上70%以下である。

Description

成形体及びその製造方法、プリプレグ、並びに積層体
 本発明は、成形体及びその製造方法、プリプレグ、並びに積層体に関するものである。特に、本発明は、熱可塑性脂環式構造含有樹脂を含む、成形体及びその製造方法、プリプレグ、並びに積層体に関するものである。
 高速伝送信号や高周波信号を使用する電子機器には、低誘電率且つ低誘電損失の材料からなる基板を備えてなるプリント配線基板が必要とされている。従来は、ガラスクロス等よりなる基材に対して、熱硬化性樹脂を含浸させることで形成したプリプレグの両面側に、それぞれ銅箔等の金属層を配置した状態で熱プレス等することにより熱硬化性樹脂を硬化させて得た銅張積層板が、プリント配線基板として一般的に用いられてきた。しかし、熱硬化性樹脂は耐熱性及び形状精度に優れる一方で、誘電率及び誘電損失が比較的大きいことが課題とされてきた。
 ここで、脂環式構造含有樹脂は、誘電率及び誘電損失が低い傾向がある。中でも、結晶性の脂環式構造含有樹脂は、比較的高融点であり、耐熱性に優れることから、プリント配線基板を形成するための基板材料として有望である。プリント配線基板に用いられる基板材料の耐熱性が高ければ、かかるプリント配線基板を用いて、リフローはんだ付け工程を好適に実施することができるため、有利である。
 そこで、近年、熱可塑性の脂環式構造含有樹脂を基板材料として用いるための技術が開発されてきた。
 例えば、特許文献1では、基板材料として、結晶性の熱可塑性脂環式構造含有樹脂を用いて、プリント配線基板を形成する技術が開示されている。特許文献1に従って得られたプリント配線基板は、冷熱衝撃試験耐性及び伝送特性のバランスに優れており、高周波信号の伝送用に特に好適に用いることができる。
特開2017-170735号公報
 ここで、プリント配線基板に用いられる基板材料には、十分な耐熱性を有することに加えて、強度に優れることが求められている。しかし、上記特許文献1に記載された結晶性の熱可塑性脂環式構造含有樹脂は、耐熱性及び強度の点で改善の余地があった。
 そこで、本発明は、耐熱性及び強度に優れる熱可塑性樹脂を含む成形体及びその製造方法を提供することを目的とする。
 また、本発明は、耐熱性及び強度に優れる熱可塑性樹脂を含むプリプレグを提供することを目的とする。
 さらにまた、本発明は、耐熱性及び強度に優れる熱可塑性樹脂よりなる樹脂層を含む積層体を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、樹脂として、熱可塑性脂環式構造含有樹脂を用いて成形体を形成するにあたり、熱可塑性脂環式構造含有樹脂により形成される球晶のサイズを適切に制御することで、得られる成形体等の耐熱性及び強度を高いレベルで両立可能であることを新たに見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の成形体は、熱可塑性脂環式構造含有樹脂を含んでなり、球晶を含み、前記球晶の大きさが3μm未満であり、且つ、結晶化度が20%以上70%以下である、ことを特徴とする。このように、熱可塑性脂環式構造含有樹脂を含んでなる成形体において、球晶の大きさ及び結晶化度が共に上記所定の範囲内である場合に、耐熱性及び強度を高いレベルで両立することができる。
 なお、「結晶化度」は、X線回折装置を用いて、実施例に記載した方法により測定することができる。また、球晶の「大きさ」は、実施例に記載した方法により測定することができる。
 ここで、本発明の成形体において、前記熱可塑性脂環式構造含有樹脂の融点が200℃以上であることが好ましい。熱可塑性脂環式構造含有樹脂の融点が200℃以上であれば、成形体の耐熱性を一層良好に高めることができる。
 なお、熱可塑性脂環式構造含有樹脂の「融点」は、示差走査熱量計を用いて、実施例に記載した方法により測定することができる。
 また、本発明の成形体は、充填剤、難燃剤、及び酸化防止剤のうちの少なくとも1つを更に含有していても良い。これらのうちの任意のものを成形体が含有していれば、かかる成形体は所望の属性を有し得る。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のプリプレグは、樹脂部と、該樹脂部と隣接する基材とを含むプリプレグであって、前記樹脂部が熱可塑性脂環式構造含有樹脂を含み、前記樹脂部の結晶化度が20%以上70%以下であり、且つ、前記樹脂部が球晶を含み、前記球晶の大きさが3μm未満である、ことを特徴とする。熱可塑性脂環式構造含有樹脂を含有する樹脂部を含むプリプレグにおいて樹脂部における球晶の大きさ及び結晶化度が共に上記所定の範囲内であれば、かかるプリプレグは耐熱性及び強度に優れる。
 ここで、本発明のプリプレグにおいて、前記熱可塑性脂環式構造含有樹脂の融点が200℃以上であることが好ましい。熱可塑性脂環式構造含有樹脂の融点が200℃以上であれば、プリプレグの耐熱性を一層良好に高めることができる。
 また、本発明のプリプレグにおいて、前記樹脂部が、充填剤、難燃剤、及び酸化防止剤のうちの少なくとも1つを更に含有していても良い。これらのうちの任意のものをプリプレグが含有していれば、かかるプリプレグは所望の属性を有し得る。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の積層体は、樹脂層と、該樹脂層の少なくとも一方の表面に対して直接隣接して積層された金属層とを含む積層体であって、前記樹脂層が熱可塑性脂環式構造含有樹脂を含み、前記樹脂層の結晶化度が20%以上70%以下であり、且つ、前記樹脂層が球晶を含み、該球晶の大きさが3μm未満である、ことを特徴とする。熱可塑性脂環式構造含有樹脂を含有する樹脂層を含む積層体において樹脂層における球晶の大きさ及び結晶化度が共に上記所定の範囲内であれば、かかる積層体は耐熱性及び強度に優れる。
 ここで、本発明の積層体において、前記樹脂層が、充填剤、難燃剤、及び酸化防止剤のうちの少なくとも1つを更に含有していても良い。これらのうちの任意のものを積層体が含有していれば、かかる積層体は所望の属性を有し得る。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の成形体の製造方法は、熱可塑性脂環式構造含有樹脂を含むプレ成形体を、前記熱可塑性脂環式構造含有樹脂の融点Tm(℃)以上の温度で熱プレスしてから、前記熱可塑性脂環式構造含有樹脂の結晶化温度Tc(℃)まで急冷して結晶化する結晶化工程を含むことを特徴とする。かかる製造方法によれば、耐熱性及び強度に優れる成形体を効率的に製造することができる。
 ここで、本発明の成形体の製造方法において、前記結晶化工程における急冷時における、前記融点Tm(℃)から前記結晶化温度Tc(℃)までの冷却時間が1分以内であることが好ましい。結晶化工程における冷却条件を上記のようにすることで、熱可塑性脂環式構造含有樹脂の結晶化を良好に制御することができる。
 本発明によれば、耐熱性及び強度に優れる熱可塑性樹脂を含む成形体及びその製造方法を提供することができる。
 また、本発明によれば、耐熱性及び強度に優れる熱可塑性樹脂を含むプリプレグを提供することができる。
 さらにまた、本発明によれば、耐熱性及び強度に優れる熱可塑性樹脂層を含む積層体を提供することができる。
本発明の一例に従う成形体の原子間力顕微鏡画像である。 実施例1等にて結晶化工程(2)を行った場合の温度プロファイル及び圧力プロファイルである。 実施例1等にてリフロー試験を実施した際の温度プロファイルである。 実施例2にて結晶化工程(2)を行った場合の温度プロファイル及び圧力プロファイルである。 実施例2にてリフロー試験を実施した際の温度プロファイルである。 実施例4にて結晶化工程(2)を行った場合の温度プロファイル及び圧力プロファイルである。 比較例2等にて結晶化工程(2)を行った場合の温度プロファイル及び圧力プロファイルである。 比較例3にて結晶化工程(2)を行った場合の温度プロファイル及び圧力プロファイルである。
 以下、本発明の実施形態について図面を参照して詳細に説明する。本発明の成形体はプリント配線基板を形成する際に好適に用いることができる。特に、本発明の成形体、プリプレグ、及び積層体は、高速伝送信号や高周波信号を使用する電子機器に適したプリント配線基板を形成する際に好適に用いることができる。そして、本発明の成形体は、本発明の成形体の製造方法により効率的に製造することができる。
 以下、それぞれについて詳述する。
 (成形体)
 本発明の成形体は、熱可塑性脂環式構造含有樹脂を含んで成る。さらに、本発明の成形体は、球晶を含み、該球晶の大きさが3μm未満であり、且つ、結晶化度が20%以上70%以下であることを特徴とする。本発明の成形体は、結晶化度が上記範囲内であり、且つ、所定の大きさの球晶を含むため、強度及び耐熱性に優れる。
 <樹脂>
 樹脂は、少なくとも一種の熱可塑性脂環式構造含有樹脂を含むことを必要とする。なお、樹脂として、複数種の熱可塑性脂環式構造含有樹脂を含んでも良い。さらに、任意で、熱可塑性脂環式構造含有樹脂以外の樹脂であって、後述するその他の成分及び添加剤とは異なる樹脂を含んでいても良い。本発明の成形体が、熱可塑性脂環式構造含有樹脂を含むことで、成形体により良好な接着能を発揮することができる。
 ここで、熱可塑性脂環式構造含有樹脂は結晶性である必要がある。なお、樹脂が「結晶性である」とは、本明細書の実施例に記載した条件下で、示差走査熱量計(DSC)を用いて融点を検出することが可能である性質をいう。なお、かかる性質は、重合体鎖の立体規則性により定まる性質である。また、樹脂が「熱可塑性である」とは、樹脂に対して熱を加えれば軟らかくなり、冷却すれば硬くなることを繰り返す性質を指す。
 熱可塑性脂環式構造含有樹脂としては、環状オレフィン重合体であって、分子内に脂環式構造を有し、且つ熱可塑性を有する化合物が挙げられる。そのような化合物としては、例えば、国際公開第2012/033076号に記載の、シンジオタクチック立体規則性を有するジシクロペンタジエン開環重合体水素化物、特開2002-249553号公報に記載の、アイソタクチック立体規則性を有するジシクロペンタジエン開環重合体水素化物、特開2007-16102号公報に記載の、ノルボルネン開環重合体水素化物等の公知のものを用いることができる。中でも、生産性等の観点から、樹脂としては、シンジオタクチック立体規則性を有するジシクロペンタジエン開環重合体水素化物を用いることが好ましい。
 なお、シンジオタクチック立体規則性を有するジシクロペンタジエン開環重合体水素化物は、特開2017-170735号公報に開示された方途に従って、好適に合成することができる。また、「シンジオタクチック立体規則性を有する」とは、本明細書の実施例に記載された13C-NMR測定方法に従って測定された、ラセモダイアッドの割合が51%以上であることを意味する。さらにまた、シンジオタクチック立体規則性を有するジシクロペンタジエン開環重合体水素化物におけるラセモダイアッドの割合は、60%以上であることが好ましく、70%以上であることがより好ましい。
<<熱可塑性脂環式構造含有樹脂の好適属性>>
[融点]
 熱可塑性脂環式構造含有樹脂は、融点が200℃以上であることが好ましく、220℃以上であることがより好ましく、240℃以上であることが更に好ましく、260℃以上であることが更により好ましく、350℃以下であることが好ましく、320℃以下であることがより好ましく、300℃以下であることが更に好ましい。融点が上記下限値以上であれば、成形体の耐熱性を良好に高めることができる。また、融点が上記上限値以下であれば、成形体の成形容易性を良好に高めることができる。熱可塑性脂環式構造含有樹脂の融点は、例えば、樹脂を構成する重合体を合成する際に、立体規則性及び水素化率等を制御することで、調節することができる。
[結晶化温度]
 熱可塑性脂環式構造含有樹脂は、結晶化温度が、ガラス転移温度Tg以上であることが好ましく、Tg+10℃以上であることがより好ましく、Tg+50℃以下であることが好ましい。結晶化温度が上記範囲であれば、冷却温度や冷却速度を制御することで結晶の成長を制御できる。熱可塑性脂環式構造含有樹脂の結晶化温度は、例えば立体規則性を制御することで調整することができる。
[ガラス転移温度]
 さらにまた、熱可塑性脂環式構造含有樹脂は、耐熱性の観点から、ガラス転移温度が、80℃以上であることが好ましく、90℃以上であることが好ましい。また、熱可塑性脂環式構造含有樹脂ガラス転移温度は、成形性の観点から、200℃以下であることが好ましい。また、結晶化工程等における温度制御を比較的容易とする観点から、ガラス転移温度が150℃以下であるとより好ましい。なお、「ガラス転移温度」は、示差走査熱量計を用いて、実施例に記載した方法に従って測定することができる。熱可塑性脂環式構造含有樹脂のガラス転移温度は、例えば、複数の熱可塑性脂環式構造含有樹脂の組成比率を制御することで、調節することができる。
[水素化率]
 また、熱可塑性脂環式構造含有樹脂は、熱可塑性脂環式構造含有樹脂の主鎖に含まれる炭素-炭素二重結合の水素化率が、95%以上であることが好ましく、99%以上であることがより好ましい。さらに、熱可塑性脂環式構造含有樹脂が主鎖以外に炭素-炭素二重結合を有する場合には、主鎖及び主鎖以外に含まれる炭素-炭素二重結合全体の水素化率が95%以上であることが好ましく、99%以上であることがより好ましい。水素化率が高ければ、得られる成形体の耐熱性を高めることができる。なお、「水素化率」は、1H-NMR測定に基づいて算出することができるモル基準の値である。熱可塑性脂環式構造含有樹脂の水素化率は、樹脂を構成する重合体を水素化する際の、水素化条件を制御することによって調節することができる。
<<樹脂の球晶>>
 本発明の成形体は、球晶を含み、かかる球晶の大きさが3μm未満であることを必要とする。成形体に含まれる球晶の大きさが3μm未満であれば、成形体の強度及び耐熱性が高い。さらに、球晶の大きさは、2.2μm以下であることが好ましい。成形体の強度を一層向上させることができるからである。なお、成形体が、「球晶を含み、かかる球晶の大きさが3μm未満である」とは、換言すれば、成形体が複数の球晶を含む場合に、かかる複数の球晶の中でも最大の球晶の大きさが3μm未満であることを意味する。図1に、複数の球晶を含み、かかる複数の球晶のうち、最大のものでも大きさが約1μm以下である成形体の断面を、原子間力顕微鏡を用いて観察して得た画像の一例を示す。図1にて、表示視野中に散在する暗色領域が球晶に相当する。球晶の大きさは、原子間力顕微鏡で観察し、球晶として観察される結晶のサイズを直接測定することにより取得することができる。
 ここで、球晶は、溶融した樹脂が冷却される過程で生じる、樹脂を構成する高分子の分子鎖の折りたたみ構造よりなる。そして、球晶のサイズは、樹脂が冷却される過程における温度変化の態様に主に依存して、変化する。従って、後述する本発明の成形体の製造方法のように、樹脂を溶融状態とした後に冷却する工程における融点から結晶化温度までの時間を所定時間以内とすることで、効率的に、上記のような所定の範囲内に、球晶の大きさを制御することができる。
<その他の成分>
 なお、成形体は、上述したような樹脂以外に、その他の成分として、酸化防止剤、充填剤、及び難燃剤のうちの少なくとも1つを含有していることが好ましい。これらのうちの任意のものを含有させることで、所望の属性を成形体に付与することができるからである。さらに、成形体は、上記のようなその他の成分以外の各種添加剤を任意で含有していても良い。そのような添加剤としては、例えば、結晶核剤、難燃助剤、着色剤、帯電防止剤、可塑剤、紫外線吸収剤、光安定剤、近赤外線吸収剤、及び滑剤等が挙げられる。
 例えば、酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、及び硫黄系酸化防止剤等が挙げられる。これらは、一種を単独で、あるいは複数種を組み合わせて用いることができる。なお、酸化防止剤を含有する成形体は、プリント配線基板を形成するために好適に用いることができる。
 フェノール系酸化防止剤としては、3,5-ジ-t-ブチル-4-ヒドロキシトルエン、ジブチルヒドロキシトルエン、2,2’-メチレンビス(6-t-ブチル-4-メチルフェノール)、4,4’-ブチリデンビス(6-t-ブチル-3-メチルフェノール)、4,4’-チオビス(6-t-ブチル-3-メチルフェノール)、α-トコフェロール、2,2,4-トリメチル-6-ヒドロキシ-7-t-ブチルクロマン、テトラキス〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン等が挙げられる。
 リン系酸化防止剤としては、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジターシャリーブチルフェニル)ペンタエリスリトールジホスファイト、トリス(2,4-ジターシャリーブチルフェニル)ホスファイト、テトラキス(2,4-ジターシャリーブチルフェニル)4,4’-ビフェニルジホスファイト、トリノニルフェニルホスファイト等が挙げられる。
 硫黄系酸化防止剤としては、ジステアリルチオジプロピオネート、ジラウリルチオジプロピオネート等が挙げられる。
 また、充填剤としては、無機充填剤や有機充填剤が挙げられる。無機充填剤としては、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどの金属水酸化物系充填剤;酸化マグネシウム、二酸化チタン、酸化亜鉛、酸化アルミニウム、二酸化ケイ素(シリカ)などの金属酸化物系充填剤;塩化ナトリウム、塩化カルシウムなどの金属塩化物系充填剤;硫酸ナトリウム、硫酸水素ナトリウムなどの金属硫酸塩系充填剤;硝酸ナトリウム、硝酸カルシウムなどの金属硝酸塩系充填剤;リン酸水素ナトリウム、リン酸二水素ナトリウムなどの金属リン酸塩系充填剤;チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウムなどの金属チタン酸塩系充填剤;炭酸ナトリウム、炭酸カルシウムなどの金属炭酸塩系充填剤;炭化硼素、炭化ケイ素などの炭化物系充填剤;窒化ホウ素、窒化アルミニウム、窒化ケイ素などの窒化物系充填剤;アルミニウム、ニッケル、マグネシウム、銅、亜鉛、鉄などの金属粒子系充填剤;マイカ、カオリン、フライアッシュ、タルク、雲母などのケイ酸塩系充填剤;ガラス繊維;ガラス粉末;カーボンブラック;などが挙げられる。これらの無機充填剤は、公知の、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤等で表面処理されたものであってもよい。有機充填剤としては、有機顔料、ポリスチレン、ナイロン、ポリエチレン、ポリプロピレン、塩化ビニル、各種エラストマー等の粒子化合物が挙げられる。
 さらにまた、難燃剤としては、公知のハロゲン系難燃剤や非ハロゲン系難燃剤を用いることができる。ハロゲン系難燃剤としては、トリス(2-クロロエチル)ホスフェート、トリス(クロロプロピル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、塩素化ポリスチレン、塩素化ポリエチレン、高塩素化ポリプロピレン、クロロスルホン化ポリエチレン、ヘキサブロモベンゼン、デカブロモジフェニルオキシド、ビス(トリブロモフェノキシ)エタン、1,2-ビス(ペンタブロモフェニル)エタン、テトラブロモビスフェノールS、テトラデカブロモジフェノキシベンゼン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニルプロパン)、ペンタブロモトルエンなどが挙げられる。
<成形体中における各種成分の含有量>
 成形体中の熱可塑性脂環式構造含有樹脂の含有量は、成形体全体を100質量%として、通常、50質量%以上、好ましくは60質量%以上、より好ましくは、80質量%以上である。そして、上述したその他の成分の含有量は、目的に合わせて適宜決定することができるが、成形体全体を100質量%として、通常、50質量%未満、好ましくは40質量%未満、より好ましくは20質量%未満である。その他の成分として複数種の成分を併用した場合には、複数種の成分の合計含有量がかかる範囲内であることが好ましい。
 例えば、酸化防止剤の含有量は、成形体全体を100質量%として、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、通常5質量%以下、好ましくは4質量%以下、より好ましくは3質量%以下である。また、例えば、充填剤の含有量は、通常5質量%以上、好ましくは10質量%以上、通常40質量%以下、好ましくは30質量%以下である。更にまた、例えば、難燃剤の含有量は、通常1質量%以上、好ましくは10質量%以上、通常40質量%以下、好ましくは30質量%以下である。
<成形体の形状>
 成形体の形状は、特に限定されることなく、用途に適したあらゆる形状であり得るが、シート状であることが好ましい。なお、本明細書において、「シート状」とは、厚み分の距離を隔てて対向する表面及び裏面を有する形状を意味する。
 成形体がシート状である場合に、その厚みは、通常10μm以上、好ましくは25μm以上、通常250μm以下、好ましくは100μm以下である。
<成形体の結晶化度>
 本発明の成形体は、結晶化度が20%以上70%以下であることを必要とする。成形体の結晶化度が20%以上であれば、耐熱性が充分に高い。また、成形体の結晶化度が70%以下であれば、成形体の強度が充分に高い。さらに、耐熱性を一層高める観点から、成形体の結晶化度は、30%以上であることが好ましい。
 成形体の結晶化度が高ければ、かかる成形体は、100℃超といった高温領域での絶縁性に優れるため、高速伝送信号及び高周波信号等を使用する電子機器に備えられる電子部品の構成材料として好適に用いることができる。
 成形体の結晶化度は、樹脂を溶融状態とする際の温度、及び樹脂を溶融状態とした後に冷却する工程における融点から結晶化温度までの時間を調節すること等に基づいて、制御することができる。
(成形体の製造方法)
 本発明の成形体の製造方法は、熱可塑性脂環式構造含有樹脂を含むプレ成形体を、熱可塑性脂環式構造含有樹脂の融点Tm(℃)以上の温度で熱プレスしてから、熱可塑性脂環式構造含有樹脂の結晶化温度Tc(℃)まで急冷して結晶化する結晶化工程(「結晶化工程(2)」とも称する。)を含むことを特徴とする。結晶化工程において、プレ成形体を、融点Tm(℃)以上の温度で熱プレスしてから、結晶化温度Tc(℃)まで急冷することで、得られる成形体に含まれる樹脂の球晶の大きさ及び成形体の結晶化度を効率的に所望の値に制御することができる。さらに、本発明の成形体の製造方法は、任意で、熱可塑性脂環式構造含有樹脂を含む樹脂ペレットを得る工程(0)、及び、樹脂ペレットを熱可塑性脂環式構造含有樹脂の融点Tm(℃)以上の温度に昇温して溶融成形してプレ成形体を得る工程(1)を含んでも良い。以下、各工程について詳述する。
<樹脂ペレットを得る工程(0)>
 樹脂ペレットを得る工程(0)では、上記(成形体)の項目で詳述した諸属性を満たす熱可塑性脂環式構造含有樹脂に対して、必要に応じて任意のその他の成分及び/又は添加剤を添加して、常法に従ってプレ混合し、プレ混合物を得る。得られたプレ混合物を、二軸押出し機等の既知の混合装置に導入して、溶融押出成形等の既知の成形方法に従って、ストランド状の成形体を得た後に、ストランドカッター等の切断装置を用いて切断し、樹脂ペレットを得る。なお、プレ混合の際の温度条件は、特に限定されることなく、0℃以上、熱可塑性脂環式構造含有樹脂の融点Tm(℃)未満であり得る。また、プレ混合物を二軸押出し機等の混合装置にて混合する際の温度は、熱可塑性脂環式構造含有樹脂の融点Tm(℃)以上Tm+100(℃)以下であり得る。
<プレ成形体を得る工程(1)>
 プレ成形体を得る工程(1)では、上記工程(0)で得られた樹脂ペレットを、熱可塑性脂環式構造含有樹脂の融点Tm(℃)以上の温度で加熱して溶融成形してプレ成形体を得る。かかる工程(1)は、特に限定されることなく、樹脂ペレットを熱可塑性脂環式構造含有樹脂の融点Tm(℃)以上の温度で加熱することができる装置、及び、所望の形状に成形することができる装置を用いて実施することができる。例えば、好適な成形装置としては、Tダイを備える熱溶融押出しフィルム成形機が挙げられる。成形方法としては、特に限定されることなく、射出成形、押出成形、プレス成形、インフレーション成形、ブロー成形、カレンダー成形、注型成形、及び圧縮成形等の公知の成形方法を採用することができる。なお、本工程(1)にて、任意で延伸処理を行っても良い。
 なお、樹脂ペレットを加熱する際の温度は、Tm+100(℃)以下であり得る。
<結晶化工程(2)>
 結晶化工程(2)では、被プレス対象であるプレ成形体を、融点Tm(℃)以上の温度で熱プレスして成形体としてから、該成形体を結晶化温度Tc(℃)まで急冷する。結晶化工程(2)は、特に限定されることなく、温度調節機構を有する真空プレス装置等を用いて実施することができる。結晶化工程(2)では、プレ成形体に対してプレス圧をかけ始めた後に、プレ成形体の加熱を開始しても良いし、プレ成形体に対してプレス圧をかける前、又はプレ成形体に対してプレス圧をかけ始めると同時に、プレ成形体の加熱を開始しても良い。中でも、プレ成形体に対してプレス圧をかける前、又はプレ成形体に対してプレス圧をかけ始めると同時に、プレ成形体の加熱を開始することが好ましい。圧力がかかった状態の方が熱媒から均一に熱が伝達され、温度の均一性を保つことができるからである。さらに、成形体の急冷にあたり、プレス圧の印加を解除すると同時に、又は解除した後に成形体の冷却を開始しても良いし、プレス圧の印加を解除する前に成形体の冷却を開始して、その後プレス圧の印加を解除しても良い。中でも、プレス圧の印加を解除すると同時に、又は解除した後に成形体の冷却を開始することが好ましい。球晶の形成を適度に促進することができるからである。ここで、プレス圧の印加を解除した後に成形体の冷却を開始するにあたり、加熱した熱媒から冷却用熱媒(即ち、冷媒)に入れ替えるといった手段が有効である。この際、プレス板等のプレス部材による成形体の加圧を一旦停止し、プレス部材を加熱するための熱媒を冷媒に交換して、プレス部材自体の温度を均一化した後に、再度、プレス部材を用いて成形体を低圧で加圧することで、成形体を均一に冷却することができる。
 熱プレスの際のプレ成形体の加熱温度は、融点Tm(℃)以上であることが必要であり、融点Tm+10(℃)以上であることが好ましく、Tm+100(℃)以下であることが好ましく、Tm+50(℃)以下であることがより好ましい。加熱温度を上記下限値以上とすることで、成形体の均一性を高めることができる。なお、熱プレスの際のプレ成形体の加熱温度が融点Tm(℃)未満である場合には、熱プレスしている間に成形体の結晶化が進行して球晶が成長し、以降の工程にて冷却したとしても、成長した球晶が成形体内に残存する。そして、成長した球晶は破壊点となりやすく、成形体の強度低下につながる虞がある。加熱温度が融点Tm(℃)以上であれば、加熱工程にて成形体を良好に非晶化することができる。そして、後続する結晶化工程にて結晶化を良好に制御することが可能となる。また、加熱温度を上記上限値以下とすることで、成形体の結晶化度が過度に高まることを抑制して、成形体の強度を一層高めることができる。熱プレスの際には、成形体を均一に溶解して非晶化することができればよいため、過度に高い温度での加熱は不要である。
 なお、熱プレスの際のプレ成形体の加熱温度は、加熱対象であるプレ成形体自体の温度ではなく、プレ成形体の加熱に用いる加熱手段(例えば、真空プレス装置に備えられる温度調節機構としてのヒーター)の設定温度であり得る。
 また、急冷の際の融点Tm(℃)から結晶化温度Tc(℃)までの冷却時間が1分以内であることが好ましい。球晶の大きさが過剰に大きくなることを一層効果的に抑制することができるからである。
 さらにまた、プレス圧は、特に限定されることなく、例えば、1MPa以上10MPa以下でありうる。ここで、成形体を作成する際には、かかる圧力範囲の中でも、比較的低いプレス圧にて、充分に良好に成形体を得ることができる。また、後述するプリプレグ及び積層体等を作成する際には、樹脂、基材、及び金属といった構成要素間の密着性を高める観点から、上記圧力範囲の中でも、成形体を作成する際のプレス圧よりも若干高めのプレス圧を印加することが好ましい。しかし、10MPa超の高いプレス圧を印加したとしても、密着性が飛躍的に高まるということはなく、プレス圧の好適上限は10MPa程度で十分である。さらに、冷却工程において、加熱の際に印加したプレス圧よりも十分に低い圧力、例えば、0.1MPa以上1.0MPa以下のプレス圧を印加することが好ましい。冷却工程においてプレス圧をかけることで、効率的に成形体を冷却することが可能となる。また、冷却工程におけるプレス圧を過度に高くしなければ、冷却に応じた成形体の収縮を過度に抑制することを回避することができる。
 図2に、後述する実施例1等にて結晶化工程(2)を行った場合の温度プロファイル及び圧力プロファイルを示す。図2には、プレス圧(10MPa)の印加を開始すると同時に、加熱温度を室温から280℃まで急激(約50秒)に昇温して、一定時間(約600秒)保持した後に、プレス圧を一旦開放して温度が若干下がったところで、再度プレス圧(1MPa)の印加を開始すると同時に、樹脂の結晶化温度(130℃)以下の温度(100℃)まで約60秒かけて冷却している。
 なお、上述した工程(0)~(2)にて、効果的に球晶の大きさ及び結晶化度を制御することが可能であるが、結晶化を促進する等の目的の下、必要に応じて、上記工程(2)を経て得られた成形体に対してアニール処理を行っても良い。アニール処理とは、冷却した成形体を再度加熱する処理である。アニール処理を行うことにより、結晶化度及び/又は球晶の大きさを微調整することができる。例えば、アニール処理は、特に限定されることなく、熱処理オーブン及び赤外線ヒーター等を用いて実施することができる。
(プリプレグ)
 本発明のプリプレグは、熱可塑性脂環式構造含有樹脂を含有する樹脂部と、該樹脂部と隣接する基材とを含むプリプレグである。そして、樹脂部の結晶化度が20%以上70%以下であり、且つ、樹脂部が球晶を含み、球晶の大きさが3μm未満であることを特徴とする。本発明のプリプレグは、結晶化度及び球晶の大きさが上記範囲を満たすため、強度及び耐熱性に優れる。さらに、本発明のプリプレグは加熱による寸法変化が少なく、寸法精度に優れる。
<樹脂部>
 樹脂部は、後述する基材に対して隣接する樹脂よりなる構成部である。樹脂部は、基材に隣接する「層」状の領域であり得る。ここで、基材が繊維状基材等の内部に空隙を含んだ構造体である場合には、かかる空隙に対して樹脂が含浸した状態となっている場合がある。なお「空隙に対して樹脂が含浸した状態」とは、空隙を埋めるようにして樹脂が延在する状態を指す。空隙に対して樹脂が含浸した状態となっている場合に、樹脂部は、基材に隣接する「層」状の領域、及び基材空隙内に存在する連続的又は非連続的な部分領域にわたって、存在し得る。なお、プリプレグを構成する際に用いた基材及び樹脂部の体積のバランスによっては、樹脂により形成される「層」状領域が確認し難いことがあり得る。しかし、あるプリプレグを観察した場合に、たとえ樹脂部が「層」状をなしていない場合であっても、基材に対して隣接する樹脂よりなる構成部が存在する限りにおいて、かかるプリプレグは「樹脂部」を有する。プリプレグと被接着対象との接着性を高める観点から、樹脂部が基材に隣接する層状の領域を含むことが好ましい。
 樹脂部を構成するための「樹脂」としては、(成形体)の項目で詳述した樹脂を好適に用いることができる。また、樹脂部を構成するための「樹脂」には、(成形体)の項目で詳述したその他の成分及び添加剤等を任意に配合しても良く、これらの配合量も(成形体)の項目にて記載した好適範囲内であり得る。そして、樹脂部は、(成形体)<<樹脂の球晶>>の項目で説明した好適な大きさの球晶を含むことを特徴とする。さらに、樹脂部は、(成形体)<成形体の結晶化度>の項目で説明した好適範囲内の結晶化度を呈することが好ましい。
<基材>
 基材としては、特に限定されることなく、炭素繊維、環状オレフィン系樹脂繊維等の合成樹脂繊維、及びガラス等よりなるクロス又は不織布等が挙げられる。なお。環状オレフィン系樹脂繊維等の合成樹脂繊維よりなるクロス又は不織布を用いる場合には、かかる合成樹脂繊維の融点は、樹脂部を構成するための樹脂の融点よりも高い必要がある。なお、耐熱性の観点からはガラスよりなるクロス又は不織布が優れている。その一方で、合成樹脂繊維よりなるクロス又は不織布を用いることで、誘電率の低いプリプレグを形成することができる。基材の厚みは、特に限定されることなく、例えば、10μm以上500μm以下であり得る。
<プリプレグの製造方法>
 プリプレグの製造にあたり、例えば、(成形体の製造方法)<プレ成形体を得る工程(1)>の項目で説明したプレ成形体を用いる場合には、(成形体の製造方法)<結晶化工程(2)>の項目で説明した処理と同様の加熱及び急冷処理を行うに際して、プレ成形体-基材-プレ成形体をこの順で積層させて含浸前プリプレグを得る。なお、結晶化工程に先立って、含浸前プリプレグの載置された雰囲気を真空状態(例えば、100kPa未満)とすることで、基材中に気泡が残留することを良好に抑制することができる。そして、含浸前プリプレグについて、(成形体の製造方法)<結晶化工程(2)>で説明した処理と同様の加熱及び急冷処理を行うことで、基材に対して、プレ成形体を構成していた樹脂成分の少なくとも一部が含浸されてなる、プリプレグを得ることができる。かかる製造方法に従って得られたプリプレグは、所定の属性を満たす。即ち、所定の積層物である含浸前プリプレグに対して、上記工程(2)を実施することで、プリプレグに含まれる樹脂部における結晶化、所定サイズの球晶生成、及び基材に対する樹脂の含浸処理を、一つの工程内で行うことができる。
 なお、プリプレグを製造するに当たり、結晶化前の成形体であるプレ成形体に代えて、結晶化度及び球晶サイズが所定の条件を満たす本発明の成形体を用いることも可能である。この際、上記した製造方法においてプレ成形体に代えて成形体を用いる他は、上記と同様にして、プリプレグを得ることができる。
(積層体)
 本発明の積層体は、樹脂層と、該樹脂層の少なくとも一方の表面に対して直接隣接して積層された金属層とを含む積層体である。そして、樹脂層が熱可塑性脂環式構造含有樹脂を含み、樹脂層の結晶化度が20%以上70%以下であり、且つ、樹脂層が球晶を含み、該球晶の大きさが3μm未満であることを特徴とする。本発明の積層体は、結晶化度及び球晶の大きさが上記範囲内である樹脂層を含んでなるため、耐熱性及び強度に優れる。積層体は、樹脂層の少なくとも一方の表面に対して直接隣接して積層された少なくとも一つの金属層を有する限りにおいて特に限定されることなく、樹脂層の両面のそれぞれに積層された金属層を有していても良いし、樹脂層の一方の表面上のみに積層された金属層を有していても良い。
<金属層>
 金属層としては、銅、金、銀、ステンレス、アルミニウム、ニッケル、及びクロム等の金属を含有してなる層が挙げられる。中でも、プリント配線基板の形成材料として有用な積層体が得られることから、銅が好ましい。金属層の厚みは、特に限定されることなく、積層体の使用目的に合わせて適宜決定することができる。金属層の厚みは、通常、1μm以上、好ましくは3μm以上、通常35μm以下、好ましくは18μm以下であり得る。
<樹脂層>
 樹脂層は、上記金属層に対して直接隣接して積層されてなる。ここで、「直接隣接して」とは、金属層と樹脂層との間に接着層等の他の性状の層が介在せず、金属層と樹脂層とが相互に直接接触している状態を意味する。また、樹脂層は、上述した成形体又はプリプレグと同様の構成を有し得る。換言すれば、樹脂層は、結晶化度が上記所定の範囲であるとともに、含まれる球晶の大きさが3μm未満である熱可塑性脂環式構造含有樹脂を含むことを必要とし、任意で、基材を含んでいてもよい。
 樹脂層は、(成形体の製造方法)<プレ成形体を得る工程(1)>の項目で説明したプレ成形体、本発明の成形体、又は本発明のプリプレグを用いて形成することができる。従って、樹脂層を構成するための「樹脂」及び樹脂層における結晶化度及び球晶の大きさ等の諸属性は、上述した好適な属性を満たすことが好ましい。
<積層体の製造方法>
 積層体の製造にあたり、例えば、(成形体の製造方法)<プレ成形体を得る工程(1)>の項目で説明したプレ成形体を用いる場合には、(成形体の製造方法)<結晶化工程(2)>で説明した処理と同様の加熱及び急冷処理を行うに際して、(金属箔)-プレ成形体-基材-プレ成形体-(金属箔)をこの順で積層させて接着前積層物を得る。なお、前述した(金属箔)は、金属層を形成するための材料であり、積層体の何れか一方の表面上に配置することが必須であり、他方は任意である。因みに、金属箔の厚みの好適範囲は、金属層について上記した好適な範囲と同じであり得る。そして、接着前積層物について、(成形体の製造方法)<結晶化工程(2)>の項目で説明した処理と同様の加熱及び急冷処理を行う。なお、「基材」としては、(プリプレグ)<基材>の項目にて上述したものと同じものを用いることができる。
(多層配線板)
 本発明の成形体、プリプレグ、及び積層体は、多層配線板を作成する際に好適に使用することができる。多層配線板の形成にあたり、複数の積層体の各銅箔部をエッチングすることでそれぞれ所望のパターンを形成し、積層体間にプリプレグを挟み積層物として、かかる積層物を厚み方向に熱プレスすれば、プリプレグを構成する熱可塑性脂環式構造含有樹脂により、隣接する積層体表面との接着性を発揮することができ、効率的に多層配線板を作製することができる。
 そして、本発明の成形体、プリプレグ、及び/又は、積層体を用いて形成された多層配線板は、含有される樹脂の結晶化度が上記範囲内であるとともに、球晶の大きさが3μm未満であるため、強度及び耐熱性に優れ、さらに、100℃超といった高温領域での絶縁性に優れる。
 以下、本発明について実施例および比較例を挙げて具体的に説明するが、本発明はこれらの例に何ら限定されるものではない。なお、以下の説明において、量を表す「部」は、特に断らない限り、質量基準である。また、圧力はゲージ圧力である。各例における測定及び評価は、以下の方法により行った。
<ジシクロペンタジエン開環重合体の分子量(重量平均分子量及び数平均分子量)>
 調製したジシクロペンタジエン開環重合体を含む溶液を採取して、測定用試料とした。得られた測定用試料について、ゲル・パーミエーション・クロマトグラフィー(GPC)システム HLC-8320(東ソー社製)で、Hタイプカラム(東ソー社製)を用い、温度40℃の下、テトラヒドロフランを溶媒として、ジシクロペンタジエン開環重合体の分子量をポリスチレン換算値として求めた。
<脂環式構造含有樹脂の水素化率(水素添加率)>
 調製した熱可塑性脂環式構造含有樹脂の水素化率は、オルトジクロロベンゼン-dを溶媒として、145℃で、H-NMR測定により測定した。
<脂環式構造含有樹脂のラセモダイアッドの割合>
 オルトジクロロベンゼン-d/1,2,4-トリクロロベンゼン(TCB)-d(混合比(質量基準)1/2)を溶媒として、200℃でinverse-gated decoupling法を適用して13C-NMR測定を行い、ラセモダイアッドの割合(メソ/ラセモ比)を求めた。具体的には、オルトジクロロベンゼン-dの127.5ppmのピークを基準シフトとして、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモダイアッド由来の43.43ppmのシグナルとの強度比に基づいて、ラセモダイアッドの割合を求めた。
<融点、ガラス転移温度、及び結晶化温度>
 調製した熱可塑性脂環式構造含有樹脂について、示差走査熱量分析計(日立ハイテクサイエンス社製、DSC6220)を用いて、昇温速度10℃/分の条件で、融点、ガラス転移温度、及び結晶化温度を測定した。
<結晶化度>
 実施例、比較例で製造した成形体から試験片を切り出した。なお、成形体以外を製造した例については、基材を介在させることなく、各例における処理と同じ結晶化処理を行って、樹脂層を得て、試験片を切り出した。
 試験片をX線回折装置に設置し、2θ=3°~40°の範囲で測定した。2θ=16.5°及び18.4°付近のピークを結晶ピークとして、ブロードパターン(ハローパターン)を非晶部として、(結晶ピークの面積)/(結晶ピークの面積+ブロードパターンの面積)×100(%)に従って、結晶化度の値を算出した。
<球晶の大きさ>
 原子間力顕微鏡を用いて、実施例、比較例で製造した成形体等の断面を観察した。視野内に存在する複数の球晶をランダムに選出し、観察画面から直接球晶の大きさを測定した。なお、測定対象とした球晶について、観察画面に表示された輪郭に外接する外接円の直径を、かかる球晶の大きさとした。そして、得られた球晶の大きさのうちの最大値を、測定対象とした成形体に含まれる「球晶の大きさ」とした。
<引張強度及び破断伸び率>
 実施例、比較例で製造した成形体等について、下記のようにして準備した測定試料を用いて、引張試験機(島津製作所製、AUTOGRAPH AGS-X)により機械強度(引張強度及び破断伸び率)を測定した。なお、5枚の測定試料について試験を行い、平均値を測定値とした。
 測定試料の準備にあたり、成形体については、幅10mm、長さ100mmで切り出して、測定試料とした。また、積層体については、ガラスクロスのクロス方向(布目方向)に対して、45°の方向、即ちガラスクロスの伸縮性が最も発揮されうる方向、が長手方向となるように、幅10mm、長さ100mmで切り出して測定試料とした。
<リフロー耐性>
 実施例、比較例で製造した成形体等について、100mm×100mmの測定試料を切り出し、80mmの間隔で四隅に寸法変化測定用パターンを設けた。そして、かかる測定試料について、表1に示す図面のプロファイルに従ってリフロー試験を行った。試験を経た測定試料について、パターン間の距離を測定し、式:|寸法変化量|/80mm×100(%)に従って、リフロー試験前後の寸法変化率を測定した。寸法変化率が0.5%以下であった場合に、対応するリフロー試験のプロファイルにおけるピーク温度をリフロー耐性温度とした。
<寸法変化率>
 実施例、比較例で製造した積層体について、寸法変化率を評価した。まず、250×250mmサイズの積層体に対して、銅箔の一部をエッチング除去し、200mmの間隔で四隅に寸法変化測定用パターンを設けた。オーブンで150℃30分の熱処理を行った後、寸法変化測定用のパターン間の距離を測定し、式:|寸法変化量|/200mm×100(%)に従って、熱処理前後の寸法変化率を測定した。なお、寸法変化率の値は、4辺について算出した。表1には、4辺について算出した値の全てが満たしていた閾値を示す。
<絶縁抵抗値>
 実施例、比較例で製造した成形体等について、厚み方向の絶縁抵抗を測定した。電圧500V、測定温度範囲は25℃~125℃とした。
(実施例1)
<熱可塑性脂環式構造含有樹脂(COP1)の合成>
 熱可塑性脂環式構造含有樹脂(COP1)として、以下の手順に従ってジシクロペンタジエン開環重合体水素化物を得た。
 内部を窒素置換した金属製耐圧反応容器に、シクロヘキサン154.5部、ジシクロペンタジエン(エンド体含有率99%以上)のシクロヘキサン溶液(濃度70%)42.8部(ジシクロペンタジエンとして30部)、1-ヘキセン1.9部を加え、全容を53℃に加熱した。
 一方、テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体0.014部を0.70部のトルエンに溶解して得られた溶液に、ジエチルアルミニウムエトキシドのn-ヘキサン溶液(濃度19%)0.061部を加えて10分間攪拌し、触媒溶液を調製した。この触媒溶液を前記反応器内に添加し、開環重合反応を開始させた。
 全容を55℃に保ちながら270分攪拌した後、メタノール1.5部を加え、開環重合反応を停止させた。なお、重合反応液にメタノールを添加することで、触媒分を不溶化させる効果も得られる。
 得られた重合反応液に含まれるジシクロペンタジエン開環重合体の重量平均分子量(Mw)は28,700、数平均分子量(Mn)は9570、分子量分布(Mw/Mn)は3.0であった。
 得られた重合反応液に、濾過助剤として珪藻土(昭和化学工業社製、ラヂオライト#1500)1部を加えた。この懸濁液に対して、リーフフィルター(IHI社製、CFR2)にて濾過処理を行い、不溶化した触媒分を珪藻土とともに濾別し、ジシクロペンタジエン開環重合体の溶液を得た。
 上記に従って得たジシクロペンタジエン開環重合体の溶液を、攪拌機、温調ジャケット付きの反応器(住友重機械工業社製)に移送した後、ジシクロペンタジエン開環重合体の濃度が9%になるようにシクロヘキサン600部、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.1部を加えた。次いで、全容を回転数64rpmで攪拌しながら、水素圧4MPa、温度180℃にて6時間水素化反応を行い、ジシクロペンタジエン開環重合体水素化物の粒子を含有するスラリーを得た。
 このようにして得られたスラリーを遠心分離することにより、固形分と溶液とを分離し、固形分を、60℃で24時間減圧乾燥し、熱可塑性脂環式構造含有樹脂としてのジシクロペンタジエン開環重合体水素化物27.0部を得た。
 熱可塑性脂環式構造含有樹脂における、水素化反応による不飽和結合の水素化率は99%以上、ガラス転移温度は98℃、融点は262℃、結晶化温度は130℃、ラセモダイアッドの割合(即ち、シンジオタクティシティー)は90%であった。
<成形体の製造>
<<樹脂ペレットを得る工程(0)>>
 ジシクロペンタジエン開環重合体水素化物100部に、酸化防止剤(テトラキス〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン、製品名「イルガノックス(登録商標)1010」、BASFジャパン社製)0.8部を混合した後、混合物を二軸押出し機(TEM-37B、東芝機械社製)に投入し、熱溶融押出し成形によりストランド状の成形体を得た後、これをストランドカッターにて細断し、樹脂ペレットを得た。
 二軸押出し機の運転条件を以下に示す。
・バレル設定温度:270~280℃
・ダイ設定温度:250℃
・スクリュー回転数:145rpm
・フィーダー回転数:50rpm
<<プレ成形体を得る工程(1)>>
 上記樹脂ペレットを得る工程(0)で得られた樹脂ペレットについて以下の条件で成形処理を行い、厚み100μmのフィルム状のプレ成形体である樹脂フィルムを得た。
・成形機:Tダイを備える熱溶融押出しフィルム成形機(製品名「MeasuringExtruder Type Me-20/2800V3」、Optical Control  Systems社製)
・バレル温度設定:280℃~290℃
・ダイ温度:270℃
・スクリュー回転数:30rpm
・フィルム巻き取り速度:1m/分
<<結晶化工程(2)>>
 プレ成形体を得る工程(1)で得られた樹脂フィルムから、250mm×250mmサイズのシートを切り出し、真空ラミネータ(日機装社製、ドライラミネータSDL380-280-100-H)を用いて、図2に示すプロファイルで280℃、圧力10MPaで10分プレスし、その後急冷して、シート状の成形体を得た。なお、図2に示す温度プロファイルのように、急冷時には、融点である262℃から結晶化温度以下の温度である100℃までの時間を、30秒以内とした。
 得られた成形体について、上述した方途に従って、表1に評価結果を示す項目について評価を行った。なお、リフロー耐性の評価にあたり、図3に示す温度プロファイルで、上記に従うリフロー試験を実施した。
 さらに、上記に従って、成形体の厚み方向の絶縁抵抗を測定したところ、25℃から125℃において10MΩであった。
(実施例2)
<熱可塑性脂環式構造含有樹脂(COP2)の合成>
 熱可塑性脂環式構造含有樹脂(COP2)として、以下の手順に従ってジシクロペンタジエン開環重合体水素化物を得た。
 内部を窒素置換した金属製耐圧反応容器に、トルエン344部、ジシクロペンタジエン(エンド体含有率99%以上)のトルエン溶液(濃度35%)286部(ジシクロペンタジエンとして100部)、1-ヘキセン8部を加え、全容を35℃に加熱した。
 開環重合触媒であるタングステン錯体0.086部を29部のトルエンに溶解して触媒溶液を調製した。この触媒溶液を前記反応器内に添加し、35℃で1時間、開環重合反応を行い、ジシクロペンタジエン開環重合体を含む溶液を得た。
 得られたジシクロペンタジエン開環重合体を含む溶液667部に、停止剤として、2-プロパノール1.1部を加えて、重合反応を停止させた。
 この溶液の一部を用いて、ジシクロペンタジエン開環重合体の分子量を測定したところ、重量平均分子量(Mw)は24,600、数平均分子量(Mn)は8,600、分子量分布(Mw/Mn)は2.86であった。
 得られたジシクロペンタジエン開環重合体を含む反応液を、攪拌機、温調ジャケット付きの金属製耐圧容器に移送した後、トルエン330部、水素化触媒としてのクロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.027部を添加した。次いで全容を回転数64rpmで撹拌しながら、水素圧2.0MPa、120℃まで昇温・昇圧し、さらに0.03MPa/分で4.0MPaまで、1℃/分で180℃まで昇温・昇圧を行った後に6時間水素添加反応を行なった。冷却後の反応液は、固形分が析出したスラリー液であった。
 反応液を遠心分離することにより、固形分と溶液とを分離し、固形分を、120℃で24時間減圧乾燥し、熱可塑性脂環式構造含有樹脂としてのジシクロペンタジエン開環重合体水素化物90部を得た。
 得られたジシクロペンタジエン開環重合体水素化物の水素化率は99.5%、融点は276℃、ラセモダイアッドの割合(即ち、シンジオタクティシティー)は100%であった。また、示差走査熱量計(DSC)を用いて、得られたジシクロペンタジエン開環重合体水素化物のガラス転移温度が90℃以上120℃以下、結晶化温度が120℃であることを確認した。
<成形体の製造>
<<樹脂ペレットを得る工程(0)>>
 上記のようにして得られたジシクロペンタジエン開環重合体水素化物20部に、酸化防止剤(テトラキス〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン、製品名「イルガノックス(登録商標)1010」、BASFジャパン社製)0.16部を混合した後、混合物を二軸押出し機(TEM-37B、東芝機械社製)に投入し、熱溶融押出し成形により、ストランド状の成形体を得た。その後、かかるストランド状の成形体をストランドカッターにて細断し、ジシクロペンタジエン開環重合体水素化物を含む樹脂材料であるペレットを得た。
 二軸押出し機の運転条件を、以下に示す。
・バレル設定温度:280~290℃
・ダイ設定温度:260℃
・スクリュー回転数:145rpm
・フィーダー回転数:50rpm
<<プレ成形体を得る工程(1)>>
 上記樹脂ペレットを得る工程(0)で樹脂ペレットについて以下の条件で成形処理を行い、厚み100μmのフィルム状のプレ成形体としての樹脂フィルムを得た。
・成形機:Tダイを備える熱溶融押出しフィルム成形機(製品名「MeasuringExtruder Type Me-20/2800V3」、Optical Control Systems社製)
・バレル温度設定:290℃~300℃
・ダイ温度:280℃
・スクリュー回転数:35rpm
・フィルム巻き取り速度:1m/分
<<結晶化工程(2)>>
 プレ成形体を得る工程(1)で得られたフィルム成形体から250mm×250mmサイズのシートを切り出し、真空ラミネータ(日機装社製、ドライラミネータSDL380-280-100-H)を用いて、図4に示すプロファイルで300℃、圧力10MPaで10分プレスし、その後急冷した。
 得られた成形体について、上述した方途に従って、表1に評価結果を示す項目について評価を行った。なお、リフロー耐性の評価にあたり、図5に示す温度プロファイルで、上記に従うリフロー試験を実施した。
(実施例3)
 実施例1と同様の方法により樹脂フィルム(結晶化前のフィルム状プレ成形体)を得た。得られた樹脂フィルムから250×250mmサイズのシートを2枚切りだし、同じく250×250mmサイズに切り出したガラスクロス(日東紡製、Eガラス1078)を挟み、さらに、その外側に銅箔(福田金属箔粉製、CF-T4X-SV、厚み:18μm、Rz:1.0μm)を設置し、真空ラミネータ(日機装社製、ドライラミネータSDL380-280-100-H)を用いて、図2に示すプロファイルにて、280℃、圧力10MPaで10分プレスし、その後急冷して、積層体としての両面銅張積層板を得た。
 上記のようにして得られた積層体について、上述した方途に従って、表1に評価結果を示す項目について評価を行った。なお、リフロー耐性の評価にあたり、図3に示す温度プロファイルで、上記に従うリフロー試験を実施した。
(実施例4)
 実施例1と同様の方法により樹脂フィルム(結晶化前のフィルム状プレ成形体)を得た。得られた樹脂フィルムから250×250mmサイズのシートを2枚切りだし、同じく250×250mmサイズに切り出したガラスクロス(日東紡製、Eガラス1078)を挟み、さらに、その外側に銅箔(福田金属箔粉製、CF-T4X-SV、厚み:18μm、Rz1.0μm)を設置し、真空ラミネータ(日機装社製、ドライラミネータSDL380-280-100-H)を用いて、図6に示すプロファイルにて、280℃、圧力10MPaで10分プレスし、その後急冷して、積層体としての両面銅張積層板を得た。図6に示すように、急冷時の温度プロファイルは、融点である262℃から、150℃まで30秒、さらに150℃から結晶化温度以下となる100℃まで30秒以下であった。
 上記のようにして得られた積層体について、上述した方途に従って、表1に評価結果を示す項目について評価を行った。なお、リフロー耐性の評価にあたり、図3に示す温度プロファイルで、上記に従うリフロー試験を実施した。
(実施例5)
 実施例1と同様の方法により樹脂フィルム(結晶化前のフィルム状プレ成形体)を得た。得られた樹脂フィルムから250×250mmサイズのシートを2枚切りだし、同じく250×250mmサイズに切り出したガラスクロス(日東紡製、Eガラス1078)を挟み、真空ラミネータ(日機装社製、ドライラミネータSDL380-280-100-H)を用いて、図2に示すプロファイルにて、280℃、圧力10MPaで10分プレスし、その後急冷して、プリプレグを作製した。
 上記のようにして得られたプリプレグについて、上述した方途に従って、表1に評価結果を示す誘電率及び誘電損失以外の項目について評価を行った。なお、リフロー耐性の評価にあたり、図3に示す温度プロファイルで、上記に従うリフロー試験を実施した。
 また、実施例3と同様の方法で積層体としての銅張積層板を作製した。
 銅張積層板の銅箔の一部をエッチング除去して、所定の配線パターンを形成した後、配線パターンを形成した銅張積層板とプリプレグとを相互に積層し、再び真空ラミネータ(日機装社製、ドライラミネータSDL380-280-100-H)を用いてプレスを行った。プロファイルは図2に示すプロファイルを用いた。
 以上の工程により多層配線板を得た。得られた多層配線板について、プリプレグ及び銅張積層板の銅箔をエッチング除去した試験試料を50mm×50mmに切り出し、平衡円板共振器法により誘電特性を測定した。測定にはネットワークアナライザ(アジレントテクノロジー社製、PNAネットワークアナライザN5227)を使用した。10GHzにおける比誘電率εrは、2.53であり、誘電損失tanδは、0.0008であった。このため、得られた多層配線基板は、低誘電率且つ低誘電損失であり、高速伝送信号や高周波信号を使用する電子機器に好適に配設することが可能であることが分かった。
(比較例1)
 実施例1と同様の方法により樹脂フィルム(結晶化前のフィルム状プレ成形体)を得た。かかる樹脂フィルムについて、上述した方途に従って、表1に評価結果を示す項目について評価を行った。なお、リフロー耐性の評価にあたり、図3に示す温度プロファイルで、上記に従うリフロー試験を実施した。
(比較例2)
 実施例1と同様の方法により樹脂フィルム(結晶化前のフィルム状プレ成形体)を得た。かかる樹脂フィルムから250mm×250mmサイズのシートを切り出し、真空熱プレス装置(井元製作所社製、IMC-182型)を用いて、図7に示すプロファイルで280℃、圧力3MPaで10分プレスし、その後徐冷し、フィルム状の成形体を得た。
 このようにして得られた成形体について、上述した方途に従って、表1に評価結果を示す項目について評価を行った。
(比較例3)
 実施例2と同様の方法により樹脂フィルム(結晶化前のフィルム状プレ成形体)を得た。かかる樹脂フィルムから、250mm×250mmサイズのシートを切り出し、真空熱プレス装置(井元製作所製、IMC-182型)を用いて、図8に示すプロファイルで300℃、圧力3MPaで10分プレスし、その後徐冷し、フィルム状の成形体を得た。
 このようにして得られた成形体について、上述した方途に従って、表1に評価結果を示す項目について評価を行った。
(比較例4)
 実施例1と同様の方法により樹脂フィルム(結晶化前のフィルム状プレ成形体)を得た。得られた樹脂フィルムから250×250mmサイズのシートを2枚切りだし、同じく250×250mmサイズに切り出した銅箔(福田金属箔粉製、CF-T4X-SV 18μm、Rz1.0μm)を外側に設置し、真空熱プレス装置(井元製作所製、IMC-182型)を用いて、図7に示すプロファイルにて、280℃、圧力3MPaで10分プレスし、その後徐冷し、積層体としての両面銅張積層板を得た。
 上記のようにして得られた積層体について、上述した方途に従って、表1に評価結果を示す項目について評価を行った。
Figure JPOXMLDOC01-appb-T000001
 表1より、大きさが3μm未満の熱可塑性脂環式構造含有樹脂の球晶を含み、且つ、結晶化度が20%以上70%以下である実施例1~2に係る成形体、かかる成形体を含んでなる実施例3~4に係る積層体(銅張積層板)は、及び樹脂部の結晶化度及び球結晶の大きさが同条件を満たす実施例5に係る積層体(多層配線板)は、耐熱性及び強度に優れることが分かる。一方、結晶化度が20%未満である比較例1、及び球晶の大きさが3μm以上である比較例2~4では、耐熱性及び強度を両立することができなかったことが分かる。
 本発明によれば、耐熱性及び強度に優れる熱可塑性樹脂を含む成形体及びその製造方法を提供することができる。
 また、本発明によれば、耐熱性及び強度に優れる熱可塑性樹脂を含むプリプレグを提供することができる。
 さらにまた、本発明によれば、耐熱性及び強度に優れる熱可塑性樹脂よりなる樹脂層を含む積層体を提供することができる。

Claims (10)

  1.  熱可塑性脂環式構造含有樹脂を含んでなり、
     球晶を含み、該球晶の大きさが3μm未満であり、且つ、
     結晶化度が20%以上70%以下である、
     成形体。
  2.  前記熱可塑性脂環式構造含有樹脂の融点が200℃以上である、請求項1に記載の成形体。
  3.  充填剤、難燃剤、及び酸化防止剤のうちの少なくとも1つを更に含有する、請求項1又は2に記載の成形体。
  4.  樹脂部と、該樹脂部と隣接する基材とを含むプリプレグであって、
     前記樹脂部が熱可塑性脂環式構造含有樹脂を含み、
     前記樹脂部の結晶化度が20%以上70%以下であり、且つ、
     前記樹脂部が球晶を含み、前記球晶の大きさが3μm未満である、
    プリプレグ。
  5.  前記熱可塑性脂環式構造含有樹脂の融点が200℃以上である、請求項4に記載のプリプレグ。
  6.  前記樹脂部が、充填剤、難燃剤、及び酸化防止剤のうちの少なくとも1つを更に含有する、請求項4又は5に記載のプリプレグ。
  7.  樹脂層と、該樹脂層の少なくとも一方の表面に対して直接隣接して積層された金属層とを含む積層体であって、
     前記樹脂層が熱可塑性脂環式構造含有樹脂を含み、
     前記樹脂層の結晶化度が20%以上70%以下であり、且つ、
     前記樹脂層が球晶を含み、該球晶の大きさが3μm未満である、
    積層体。
  8.  前記樹脂層が、充填剤、難燃剤、及び酸化防止剤のうちの少なくとも1つを更に含有する、請求項7に記載の積層体。
  9.  熱可塑性脂環式構造含有樹脂を含むプレ成形体を、前記熱可塑性脂環式構造含有樹脂の融点Tm(℃)以上の温度で熱プレスしてから、前記熱可塑性脂環式構造含有樹脂の結晶化温度Tc(℃)まで急冷して結晶化する結晶化工程を含む、請求項1~3の何れかに記載の成形体の製造方法。
  10.  前記結晶化工程における急冷時における、前記融点Tm(℃)から前記結晶化温度Tc(℃)までの冷却時間が1分以内である、請求項9に記載の成形体の製造方法。
PCT/JP2019/023270 2018-06-27 2019-06-12 成形体及びその製造方法、プリプレグ、並びに積層体 WO2020004036A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/973,424 US20210246284A1 (en) 2018-06-27 2019-06-12 Shaped article and method of manufacturing the same, prepreg, and laminate
CN201980033359.XA CN112135865B (zh) 2018-06-27 2019-06-12 成型体及其制造方法、预浸料、以及层叠体
JP2020527380A JP7331849B2 (ja) 2018-06-27 2019-06-12 成形体及びその製造方法、プリプレグ、並びに積層体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018122108 2018-06-27
JP2018-122108 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020004036A1 true WO2020004036A1 (ja) 2020-01-02

Family

ID=68987086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023270 WO2020004036A1 (ja) 2018-06-27 2019-06-12 成形体及びその製造方法、プリプレグ、並びに積層体

Country Status (5)

Country Link
US (1) US20210246284A1 (ja)
JP (1) JP7331849B2 (ja)
CN (1) CN112135865B (ja)
TW (1) TWI810321B (ja)
WO (1) WO2020004036A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084332A (ja) * 2007-09-28 2009-04-23 Nippon Zeon Co Ltd フィルム
JP2014105291A (ja) * 2012-11-28 2014-06-09 Nippon Zeon Co Ltd 結晶性環状オレフィン樹脂フィルム、積層フィルム及びその製造方法
WO2016067920A1 (ja) * 2014-10-28 2016-05-06 日本ゼオン株式会社 樹脂フィルム、及び、樹脂フィルムの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4042378B2 (ja) * 2001-10-12 2008-02-06 東レ株式会社 ポリアミド樹脂組成物およびポリアミド樹脂成形品
EP1454958B1 (en) * 2001-11-15 2006-10-04 New Japan Chemical Co.,Ltd. Lactic acid polymer composition and molded object thereof
JP2008248039A (ja) * 2007-03-29 2008-10-16 Hiroshima Univ 高分子結晶体およびその製造方法
JP5974643B2 (ja) * 2012-06-04 2016-08-23 日本ゼオン株式会社 重合体、複合体および重合体の製造方法
JP6750631B2 (ja) * 2015-09-28 2020-09-02 日本ゼオン株式会社 積層体及びその製造方法、並びにフレキシブルプリント基板
US10844162B2 (en) * 2016-08-08 2020-11-24 Zeon Corporation Resin composition and molded resin object

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084332A (ja) * 2007-09-28 2009-04-23 Nippon Zeon Co Ltd フィルム
JP2014105291A (ja) * 2012-11-28 2014-06-09 Nippon Zeon Co Ltd 結晶性環状オレフィン樹脂フィルム、積層フィルム及びその製造方法
WO2016067920A1 (ja) * 2014-10-28 2016-05-06 日本ゼオン株式会社 樹脂フィルム、及び、樹脂フィルムの製造方法

Also Published As

Publication number Publication date
TW202000721A (zh) 2020-01-01
JPWO2020004036A1 (ja) 2021-07-08
JP7331849B2 (ja) 2023-08-23
TWI810321B (zh) 2023-08-01
CN112135865B (zh) 2023-06-16
US20210246284A1 (en) 2021-08-12
CN112135865A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
KR100974007B1 (ko) 프리프레그 및 인쇄배선기판용 전도성 적층 기판
CN108250660B (zh) 一种电镀级pc/abs合金材料及其制备方法
WO2015002019A1 (ja) 延伸フィルムの製造方法
CN108841085B (zh) 一种高刚性、高耐热聚丙烯材料及其制备方法,一种注塑成型产品及其制备方法
KR100835784B1 (ko) 인쇄회로기판용 수지 조성물, 이를 이용한 복합기재 및동박 적층판
KR20180061163A (ko) 적층체 및 그 제조 방법, 그리고 플렉시블 프린트 기판
WO2020004036A1 (ja) 成形体及びその製造方法、プリプレグ、並びに積層体
KR100835783B1 (ko) 인쇄회로기판용 수지 조성물, 이를 이용한 복합기재 및동박 적층판
JP7113571B1 (ja) フレキシブルフラットケーブル
CN109233197A (zh) 一种薄壁电器用石墨烯/聚醚醚酮工程塑料及制备方法
TW202311432A (zh) 樹脂組成物以及使用其的印刷電路板、固化物、預浸料和高頻用電子元件
KR100835782B1 (ko) 인쇄회로기판용 수지 조성물, 이를 이용한 복합기재 및동박 적층판
CN110591224B (zh) 聚丙烯材料及其制备方法、结构件及其制作方法
CN110669287B (zh) 聚丙烯材料及其制备方法、结构件及其制作方法
JP4928126B2 (ja) 強化フェノキシ樹脂系組成物およびその製造方法
KR20190135690A (ko) 알루미늄 복합 판넬 코어재 제조용 조성물 및 이를 이용한 알루미늄 복합 판넬 코어재 제조용 마스터 배치 칩 및 알루미늄 복합 판넬의 제조방법
JP2553190B2 (ja) フイルムおよびその製造法
EP0157554A2 (en) Polypropylene sheet
EP0172277A1 (en) Thermoformable propylene polymer laminated sheet
KR102107088B1 (ko) 전도성 폴리아릴렌 설파이드 수지 조성물
JP2005350601A (ja) 高結晶性ポリ4−メチルペンテン樹脂組成物及びフィルム
JP3603456B2 (ja) 発泡シート及びその製造方法
WO2019073242A1 (en) POLYMER FILM AND SPEAKER DIAPHRAGM COMPRISING SAME
CN107312249B (zh) 一种三维导热中间相炭微球填充聚丙烯复合材料及其制备方法
JP2004131667A (ja) エポキシ樹脂成形材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527380

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826570

Country of ref document: EP

Kind code of ref document: A1