WO2020003841A1 - 電池監視装置、集積回路、及び、電池監視システム - Google Patents

電池監視装置、集積回路、及び、電池監視システム Download PDF

Info

Publication number
WO2020003841A1
WO2020003841A1 PCT/JP2019/020801 JP2019020801W WO2020003841A1 WO 2020003841 A1 WO2020003841 A1 WO 2020003841A1 JP 2019020801 W JP2019020801 W JP 2019020801W WO 2020003841 A1 WO2020003841 A1 WO 2020003841A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
monitoring device
battery monitoring
impedance
current
Prior art date
Application number
PCT/JP2019/020801
Other languages
English (en)
French (fr)
Inventor
松川 和生
岡田 雄
良和 眞壁
小林 仁
岳志 美作
藤井 圭一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020527293A priority Critical patent/JPWO2020003841A1/ja
Priority to CN201980042325.7A priority patent/CN112313521B/zh
Priority to EP19825662.0A priority patent/EP3816644A4/en
Publication of WO2020003841A1 publication Critical patent/WO2020003841A1/ja
Priority to US17/132,192 priority patent/US11467219B2/en
Priority to JP2024001351A priority patent/JP2024038292A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a battery monitoring device that monitors the state of a battery.
  • Patent Document 1 discloses a battery monitoring device capable of monitoring the state of a battery in real time.
  • the present disclosure provides a battery monitoring device, an integrated circuit, and a battery monitoring system that can measure the AC impedance of a battery regardless of whether the battery is being charged or discharged.
  • a battery monitoring device includes a resistor arranged on a path different from a path of a current flowing from a battery to a load, a transistor for flowing a current from the battery to the resistance, and an integrated circuit.
  • the integrated circuit comprises a current measuring unit that measures a first current flowing through the resistor, a voltage measuring unit that measures a first voltage of the battery, the measured first current, and the measured current.
  • a first calculator for calculating the AC impedance of the battery based on the first voltage.
  • An integrated circuit includes a signal for applying a control signal to a control terminal of a transistor for flowing current from a battery to a resistor arranged on a path different from a path of a current flowing from a battery to a load.
  • An applying unit a current measuring unit that measures a first current flowing through the resistor, a voltage measuring unit that measures a first voltage of the battery, the measured first current, and the measured first voltage
  • a first calculator for calculating the AC impedance of the battery based on
  • a battery monitoring system includes a plurality of the battery monitoring devices, and includes an integrated control unit that acquires the AC impedance from each of the plurality of battery monitoring devices.
  • a battery monitoring system includes the battery monitoring device, and a server device arranged at a location separated from the battery monitoring device, wherein the server device is configured to receive the AC impedance from the battery monitoring device. To get.
  • a battery monitoring device an integrated circuit, and a battery monitoring system that can measure the AC impedance of a battery regardless of whether the battery is being charged or discharged are realized.
  • FIG. 1 is a block diagram illustrating a functional configuration of the battery monitoring device according to the embodiment.
  • FIG. 2 is a diagram showing an equivalent circuit of the battery.
  • FIG. 3 is a diagram showing the relationship between the change in the AC impedance of the battery and the deterioration of the battery.
  • FIG. 4 is a flowchart of the operation of the battery monitoring device according to the embodiment.
  • FIG. 5 is a diagram for explaining a control signal generation method.
  • FIG. 6 is a diagram illustrating a specific configuration of the first calculation unit.
  • FIG. 7 is a first diagram illustrating a method for generating a control signal according to a modification.
  • FIG. 8 is a second diagram illustrating a method for generating a control signal according to the modification.
  • FIG. 1 is a block diagram illustrating a functional configuration of the battery monitoring device according to the embodiment.
  • FIG. 2 is a diagram showing an equivalent circuit of the battery.
  • FIG. 3 is a diagram showing the relationship between the change in the AC
  • FIG. 9 is a diagram for explaining a method of generating a burst waveform.
  • FIG. 10 is a block diagram illustrating a functional configuration of a battery monitoring device that monitors a single battery.
  • FIG. 11 is a block diagram illustrating a functional configuration of the battery monitoring system according to the second embodiment.
  • FIG. 12 is a diagram illustrating an outline of a battery monitoring system according to the third embodiment.
  • each figure is a schematic diagram, and is not necessarily illustrated exactly.
  • substantially the same configuration is denoted by the same reference numeral, and redundant description may be omitted or simplified.
  • FIG. 1 is a block diagram illustrating a functional configuration of the battery monitoring device according to the first embodiment.
  • the battery monitoring device 100 shown in FIG. 1 is a device for monitoring the state of the battery pack 101.
  • the assembled battery 101 includes a plurality of batteries B0 to B7 (hereinafter, any one of the batteries B0 to B7 is referred to as a battery B).
  • the battery B is, in other words, a battery cell.
  • the battery B is specifically a lithium ion battery, but may be another battery such as a nickel metal hydride battery.
  • the battery pack 101 functions as a power supply for the load 102 and supplies power to the load 102.
  • the load 102 is, for example, an EV motor, but is not particularly limited. Note that a charging device for charging the battery pack 101 may be connected to the position of the load 102 instead of the load 102.
  • the battery monitoring device 100 can calculate and monitor the AC impedance of the battery B.
  • FIG. 2 is a diagram showing an equivalent circuit of the battery B.
  • the battery B is considered to have a circuit configuration in which a resistor R0, a resistor R1 and a capacitor C1 connected in parallel, a resistor R2 and a capacitor C2 connected in parallel are connected in series. be able to.
  • the circuit parameters (the resistance value of the resistor or the capacitance value of the capacitor) in this circuit configuration change as the battery B deteriorates. That is, the AC impedance of the battery B changes as the battery B deteriorates.
  • FIG. 3 is a diagram showing the relationship between the change in the AC impedance of the battery B and the deterioration of the battery B.
  • FIG. 3 is a diagram called a Cole-Cole plot, also called a Nyquist plot.
  • the AC impedance of the battery B has an initial characteristic indicated by a solid line in FIG.
  • the AC impedance of the battery B changes to a characteristic indicated by a broken line in FIG.
  • the AC impedance of the battery B changes to a characteristic indicated by a dashed line in FIG.
  • the deterioration degree of the battery B is related to the AC impedance of the battery B, and the battery monitoring device 100 can determine the deterioration degree of the battery B by calculating and monitoring the AC impedance of the battery B. it can. If the degree of deterioration is determined, information processing such as presenting a message prompting replacement of the deteriorated battery B becomes possible.
  • the degree of deterioration of the battery B is expressed, for example, by a parameter called SOH (State of Health).
  • the battery monitoring device 100 can calculate the AC impedance of the battery B regardless of whether the battery B is being charged or discharged. For example, the battery monitoring device 100 can calculate the current AC impedance of the battery B during the charging of the battery B in parallel with the charging. Further, the battery monitoring device 100 can calculate the current AC impedance of the battery B during the discharge of the battery B in parallel with the discharge. The battery monitoring device 100 can calculate the current AC impedance of the battery B while the charging and discharging of the battery are stopped.
  • the battery monitoring device 100 includes a first reference resistor 103, a transistor 104, an integrated circuit (battery monitoring circuit) 105, a load resistor 106, a temperature sensor 107, and a heater 108.
  • the first reference resistor 103 is a resistor arranged on a path P2 different from the path P1 of the current flowing from the battery pack 101 to the load 102. That is, the first reference resistor 103 is a resistor through which the current flowing to the load 102 does not flow.
  • the first reference resistor 103 is, for example, a discrete component provided outside the integrated circuit 105.
  • the transistor 104 is a transistor for flowing a current from the battery pack 101 to the first reference resistor 103.
  • the transistor 104 is, for example, an FET (Field Effect Transistor), but may be a bipolar transistor.
  • the drain of the transistor 104 is connected to the load resistor 106, the source of the transistor 104 is connected to the first reference resistor 103, and the gate (that is, the control terminal) of the transistor 104 is connected to the signal application unit 109.
  • the integrated circuit 105 includes a signal application unit 109, a current measurement unit 112, a voltage measurement unit 115, a reference bias generation unit 116, a timing signal generation unit 117, a first calculation unit 118, and a second calculation unit 119.
  • the signal applying unit 109 applies a control signal to the control terminal of the transistor 104.
  • the signal applying unit 109 has a signal generating unit 110 and a waveform generating unit 111.
  • the current measuring unit 112 measures a current Iac (an example of a first current) flowing through the first reference resistor 103.
  • the current measuring unit 112 specifically measures the voltage across the first reference resistor 103.
  • the first calculation unit 118 can recognize the voltage across the first reference resistor 103 as the current Iac based on the resistance value of the first reference resistor 103.
  • the current measuring unit 112 includes an AD (Analog to Digital) converter 113 (described as ADC in the figure) that converts a voltage (that is, an analog signal) across the first reference resistor 103 into a digital signal. , A filter 114 connected to the output of the AD converter 113.
  • the AD converter 113 is, for example, a delta-sigma AD converter, and the filter 114 is a decimation filter.
  • the AD converter 113 for example, an AD converter having the same AD conversion characteristics as the plurality of AD converters 0 to 7 (that is, the same AD converter as a product) is used. As a result, a measurement error caused between the AD converters 0 to 7 and the AD converter 113 due to the AD conversion can be reduced.
  • the voltage measurement unit 115 measures the voltages V0 to V7 (an example of a first voltage) of the batteries B0 to B7 constituting the battery pack 101.
  • the voltage measurement unit 115 has AD converters 0 to 7 for converting the voltages V0 to V7 of the batteries B0 to B7 into digital signals, and filters 0 to 7 connected to the outputs of the AD converters 0 to 7. .
  • Each of the AD converters 0 to 7 is, for example, a delta-sigma type AD converter, and each of the filters 0 to 7 is a decimation filter.
  • the plurality of AD converters 0 to 7 have the same AD conversion characteristics.
  • the AD conversion characteristics are various parameters such as resolution (number of bits). More specifically, the same AD converter is used as a product for the plurality of AD converters 0 to 7. As a result, it is possible to reduce a measurement error caused between AD conversion and occurring between the voltages V0 to V7.
  • the reference bias generator 116 supplies a common reference voltage to the plurality of AD converters 0 to 7, the AD converter 113, and the AD converter 125. According to the reference bias generator 116, it is possible to reduce an AD conversion error caused by a variation in the reference voltage.
  • the timing signal generator 117 converts the timing signal for synchronizing the measurement timings of the plurality of AD converters 0 to 7, the AD converter 113, and the AD converter 125 into the plurality of AD converters 0 to 7, To the converter 113 and the AD converter 125. According to the timing signal generator 117, it is possible to measure the voltages V0 to V7, the current Iac, and the current Icd at the same timing.
  • the first calculation unit 118 calculates the AC impedance of the batteries B0 to B7 based on the current Iac measured by the current measurement unit 112 and the voltages V0 to V7 measured by the voltage measurement unit 115.
  • the first calculation unit 118 is, in other words, an AC impedance calculation unit. The specific configuration of the first calculation unit 118 will be described later.
  • the second calculator 119 calculates at least one of SOC (State of Charge) and SOH of the batteries B0 to B7 using the AC impedance calculated by the first calculator 118.
  • the second calculation unit 119 is, in other words, an SOC / SOH calculation unit.
  • the first temperature measurement unit 120 measures the temperatures Tcell0 to Tcell7 of the batteries B0 to B7 using the temperature sensors S0 to S7 provided in one-to-one correspondence with the batteries B0 to B7.
  • the temperature sensors S0 to S7 are, for example, temperature sensors using a thermistor, but may be temperature sensors using other elements such as thermocouples.
  • the second temperature measuring unit 121 measures the temperature Tref1 of the first reference resistor 103 using the temperature sensor 107 provided near the first reference resistor 103.
  • the temperature sensor 107 is, for example, a temperature sensor using a thermistor, but may be a temperature sensor using other elements such as a thermocouple.
  • the first temperature control unit 122 controls the temperature of the first reference resistor 103 to be constant. Specifically, the first temperature control unit 122 acquires the temperature Tref1 of the first reference resistor 103 measured by the second temperature measurement unit 121, and controls the heater 108 so that the acquired temperature Tref1 becomes constant. .
  • the load current measuring unit 123 measures the current Icd flowing through the load 102. Specifically, the load current measurement unit 123 measures the voltage across the second reference resistor 124. The first calculation unit 118 can recognize the voltage across the second reference resistor 124 as the current Icd based on the resistance value of the second reference resistor 124.
  • the load current measuring unit 123 includes an AD converter 125 that converts a voltage (ie, an analog signal) across the second reference resistor 124 into a digital signal, and a filter connected to an output of the AD converter 125. 126.
  • the AD converter 125 is, for example, a delta-sigma AD converter, and the filter 126 is a decimation filter.
  • the AD converter 125 for example, an AD converter having the same AD conversion characteristics as the plurality of AD converters 0 to 7 (ie, the same as a product) is used. Thus, errors caused between the AD converters 0 to 7 and the AD converter 125 due to AD conversion can be reduced.
  • the third temperature measuring unit 127 measures the temperature Tref2 of the second reference resistor 124 using the temperature sensor 128 provided near the second reference resistor 124.
  • the temperature sensor 128 is, for example, a temperature sensor using a thermistor, but may be a temperature sensor using other elements such as a thermocouple.
  • the second temperature control unit 129 controls the temperature of the second reference resistor 124 to be constant. Specifically, the second temperature control unit 129 acquires the temperature Tref2 of the second reference resistor 124 measured by the third temperature measurement unit 127, and controls the heater 130 so that the acquired temperature Tref2 becomes constant. .
  • the communication interface unit 131 is a communication circuit for the battery monitoring device 100 to communicate with another battery monitoring device or an external device.
  • the communication interface unit 131 is used to transmit, for example, the SOH calculated by the second calculation unit to an external device.
  • the communication performed by the communication interface unit 131 may be wireless communication or wired communication.
  • the communication standard of the communication performed by the communication interface unit 131 is not particularly limited.
  • FIG. 4 is a flowchart of the operation of the battery monitoring device 100.
  • the signal application unit 109 applies a control signal to the control terminal of the transistor 104 (S11). As a result, the transistor 104 is turned on, and a current flows through the first reference resistor 103.
  • FIG. 5 is a diagram for explaining a control signal generation method.
  • the signal generating unit 110 of the signal applying unit 109 generates, for example, a sine wave of the frequency f1, a sine wave of the frequency f2, and a sine wave of the frequency f3, and combines and outputs the sine wave.
  • a Fourier transform is performed on the synthesized signal, three frequency components of a frequency f1, a frequency f2, and a frequency f3 appear.
  • the signal output from the signal generator 110 is a digital signal, and the output digital signal is converted into an analog signal by the waveform generator 111. That is, the waveform generation unit 111 is, for example, a DA (Digital to Analog) converter.
  • DA Digital to Analog
  • the first calculator 118 can calculate the AC impedance at each of the plurality of frequencies.
  • the current measuring unit 112 measures the current Iac flowing through the first reference resistor 103 (S12).
  • the current measuring unit 112 specifically measures the voltage across the first reference resistor 103.
  • the voltage across the first reference resistor 103 is converted into a digital signal by the AD converter 113 and output to the first calculation unit 118 via the filter 114.
  • the voltage measuring unit 115 measures the voltages V0 to V7 of the batteries B0 to B7 (S13).
  • the voltages V0 to V7 are converted into digital signals by AD converters 0 to 7, and output to the first calculation unit 118 via filters 0 to 7.
  • the first calculation unit 118 calculates the AC impedance of the batteries B0 to B7 based on the measured current Iac and the measured voltages V0 to V7 (S14).
  • FIG. 6 is a diagram showing a specific configuration of the first calculation unit 118.
  • the first calculation unit 118 specifically includes a phase shift unit 118a, a conversion unit 118b, an integration unit 118c, an impedance calculation unit 118d, a temperature correction unit 118e, a Kalman filter unit 118f.
  • FIG. 6 also shows the signal generator 110 and the second calculator 119.
  • the signal generator 110 generates a sine wave (an example of a first signal).
  • the phase shift unit 118a generates a cosine wave (an example of a second signal) by shifting the phase of the sine wave by 90 degrees.
  • the phase shift unit 118a is realized by, for example, a delay circuit.
  • the signal generation unit 110 included in the signal application unit 109 that is, the signal generation unit 110 for generating a control signal
  • the signal generation unit 110 for generating a control signal is changed to a signal generation unit that generates a sine wave for obtaining a complex current and a complex voltage.
  • the sine wave for obtaining the complex voltage may be generated by a signal generation unit different from the signal generation unit 110.
  • the conversion unit 118b converts the current Iac into a complex current (an example of a second current) by multiplying the current Iac by each of the sine wave generated by the signal generation unit 110 and the cosine wave generated by the phase shift unit 118a. Convert.
  • the conversion unit 118b multiplies the voltages V0 to V7 by the sine waves generated by the signal generation unit 110 and the cosine waves generated by the phase shift unit 118a, respectively, to convert the voltages V0 to V7 into complex voltages (the To an example of two voltages).
  • the conversion unit 118b is realized by, for example, a multiplication circuit.
  • the integrator 118c performs complex current averaging and complex voltage averaging.
  • the integration unit 118c is realized by, for example, an integration circuit.
  • the impedance calculator 118d calculates an AC impedance (referred to as a high-frequency impedance in FIG. 6) based on the complex current after the averaging process and the complex voltage after the averaging process.
  • the impedance calculator 118d calculates the AC impedance by dividing the complex voltage after the averaging process by the complex current after the averaging process. For example, as the AC impedance of the battery B0, a real impedance part Z0re and an imaginary impedance part Z0im are output.
  • the impedance calculator 118d is realized by, for example, a division circuit.
  • the temperature correction unit 118e corrects the AC impedance based on the temperature Tref1 of the first reference resistor 103 measured by the second temperature measurement unit 121.
  • the temperature correction unit 118e corrects, for example, the AC impedance under the environment of the temperature Tref1 into an AC impedance corresponding to the reference temperature environment.
  • the battery monitoring device 100 includes the first reference resistor 103 on the path P2 different from the path P1 of the current flowing from the battery B to the load 102.
  • the AC impedance of the battery B can be calculated irrespective of whether it is present or not.
  • the AC impedance of the battery B is measured, for example, on a regular basis, but may be measured periodically (that is, intermittently), or in response to an instruction from an external device (for example, an integrated control unit described later). It may be performed based on this.
  • the second calculator 119 calculates the SOH of the batteries B0 to B7 by estimating the circuit parameters of the equivalent circuits of the batteries B0 to B7 based on the AC impedance calculated by the first calculator 118.
  • Various known calculation methods are used for calculating the SOH based on the estimation of the circuit parameters.
  • low-frequency impedance may be used in addition to AC impedance (in other words, high-frequency impedance).
  • the low-frequency impedance is an AC impedance at a frequency lower than the AC impedance calculated by the first calculator 118.
  • the circuit parameters are estimated in consideration of the low-frequency impedance, so that the SOH calculation accuracy can be improved.
  • the low frequency impedance is calculated by the Kalman filter unit 118f.
  • the Kalman filter unit 118f calculates a low-frequency AC impedance using at least one of a charging current for charging the batteries B0 to B7 and a discharging current for discharging the batteries B0 to B7.
  • the temperatures Tcell0 to Tcell7 of the batteries B0 to B7 measured by the first temperature measuring unit 120 may be used.
  • the circuit parameters are estimated in consideration of the temperatures Tcell0 to Tcell7 of the batteries B0 to B7, the calculation accuracy of the SOH can be improved.
  • the second calculation unit 119 may calculate the SOC of the batteries B0 to B7 by estimating the circuit parameters of the equivalent circuits of the batteries B0 to B7 based on the AC impedance calculated by the first calculation unit 118. It can. Various known calculation methods are used for calculating the SOC based on the estimation of the circuit parameters.
  • FIG. 7 is a first diagram illustrating a method for generating a control signal according to a modification.
  • the signal generation unit 110 outputs a rectangular wave as a control signal.
  • the signal generator 110 in this case has the same configuration as the pulse generator, and can change the frequency and voltage value of the control signal.
  • a square wave is subjected to Fourier transform, a plurality of frequency components appear.
  • the signal output from the signal generator 110 is a digital signal, and the output digital signal is converted into an analog signal by the waveform generator 111.
  • the waveform generation unit 111 may be omitted.
  • FIG. 8 is a second diagram for describing a method of generating a control signal according to the modification.
  • the signal generation unit 110 outputs a sine wave as a control signal.
  • the waveform generator 111 has a burst waveform generator 111a, and the burst waveform generator 111a generates a control signal having a burst waveform based on a sine wave output from the signal generator 110.
  • FIG. 9 is a diagram for explaining a method of generating a burst waveform.
  • the burst waveform is a waveform that includes a rectangular wave only in a part of the time domain.
  • the burst waveform generation unit 111a selectively selects only the first period of the first period in which the sine wave has a positive value and the second period in which the rectangular wave has a negative value. Output a square wave. That is, in the burst waveform, the first period in which the rectangular wave is output and the second period in which the rectangular wave is not output appear alternately.
  • the control signal has a plurality of frequency components in the first period.
  • a rectangular wave is output intermittently, so that power consumption is reduced.
  • the assembled battery 101 includes eight batteries B0 to B7, but the number of batteries included in the assembled battery 101 may be nine or more, or may be seven or less.
  • the battery monitoring device 100 may monitor a single battery B.
  • FIG. 10 is a block diagram illustrating a functional configuration of a battery monitoring device 100c that monitors a single battery B0.
  • a configuration in which an arbitrary number of battery cells are measured by an arbitrary number of integrated circuits 105 and the battery monitoring device 100 can be scalably implemented.
  • the battery monitoring device 100 transmits the current from the battery B to the load 102 through the first reference resistor 103 and the first reference resistor 103 disposed on a different path P2 from the path P1.
  • the semiconductor device includes a transistor 104 for passing a current and an integrated circuit 105.
  • the integrated circuit 105 includes a signal application unit 109 that applies a control signal to a control terminal of the transistor 104, a current measurement unit 112 that measures a first current flowing through the first reference resistor 103, and a voltage measurement that measures a voltage of the battery B.
  • a first calculator 118 that calculates the AC impedance of the battery B based on the measured first current and the measured first voltage.
  • the first reference resistor 103 is disposed on a path P2 different from the path P1 of the current flowing from the battery B to the load 102, it is determined whether the battery B is being charged or discharged.
  • the AC impedance of the battery B can be measured regardless of this.
  • the signal application unit 109 applies the control signal having a plurality of frequency components to the control terminal.
  • the first calculating unit 118 can calculate the AC impedance for a plurality of frequencies.
  • the signal applying unit 109 can change the frequency and the voltage value of the control signal.
  • the current flowing through the first reference resistor 103 can be arbitrarily adjusted.
  • control signal has a burst waveform.
  • a rectangular wave is output intermittently, so that power consumption is reduced.
  • the integrated circuit 105 includes a signal generation unit 110 that generates a first signal that is a sine wave, and a phase shift unit 118a that generates a second signal by shifting the phase of the first signal by 90 degrees.
  • the first calculator 118 converts the first current into a second current that is a complex current by multiplying each of the generated first signal and the second signal by the measured first current, and the generated first signal and the second signal are generated.
  • the first voltage is converted to a second voltage that is a complex voltage by multiplying each of the first signal and the second signal by the measured first voltage, and the AC impedance is converted based on the second current and the second voltage. calculate.
  • Such a battery monitoring device 100 can calculate an AC impedance based on a complex voltage and a complex current.
  • the first calculation unit 118 performs an averaging process of the second current and an averaging process of the second voltage, and performs an AC based on the second current after the averaging process and the second voltage after the averaging process. Calculate the impedance.
  • Such a battery monitoring device 100 can improve the calculation accuracy of the AC impedance by averaging.
  • the integrated circuit 105 further includes a second calculator 119 that calculates at least one of the SOC and the SOH of the battery B using the calculated AC impedance.
  • Such a battery monitoring device 100 can calculate at least one of SOC and SOH.
  • the first calculator 118 calculates the AC impedance for a plurality of frequencies
  • the second calculator 119 calculates the SOH using the AC impedance for a plurality of frequencies.
  • Such a battery monitoring device 100 can calculate an SOH using AC impedances for a plurality of frequencies.
  • the integrated circuit 105 further includes a first temperature measuring unit 120 that measures the temperature of the battery B.
  • the second calculation unit 119 calculates the SOH using the calculated AC impedance and the measured temperature of the battery B.
  • Such a battery monitoring device 100 can improve the calculation accuracy of the SOH by estimating the circuit parameters of the equivalent circuit of the battery B in consideration of the temperature of the battery B.
  • the first calculation unit 118 further includes a Kalman filter unit 118f that calculates a low-frequency AC impedance using at least one of a charging current when charging the battery B and a discharge current when discharging the battery B. Further, the second calculator 119 calculates the SOH using the calculated AC impedance and the calculated low-frequency AC impedance.
  • the battery monitoring device 100 can improve the calculation accuracy of the SOH by estimating the circuit parameters of the equivalent circuit of the battery B in consideration of the low-frequency AC impedance of the battery B.
  • the integrated circuit 105 further includes a second temperature measuring unit 121 that measures the temperature of the first reference resistor 103.
  • the first calculation unit 118 calculates the AC impedance by further using the measured temperature of the first reference resistor 103.
  • the battery monitoring device 100 can correct the AC impedance using the temperature of the first reference resistor 103.
  • the integrated circuit 105 includes the first temperature control unit 122 that controls the temperature of the first reference resistor 103 to be constant.
  • Such a battery monitoring device 100 can calculate the AC impedance with the temperature of the first reference resistor 103 kept constant.
  • the first calculation unit 118 calculates the AC impedance while the battery B is being charged.
  • Such a battery monitoring device 100 can calculate the AC impedance while the battery B is being charged.
  • the first calculation unit 118 calculates the AC impedance while the battery B is discharging.
  • Such a battery monitoring device 100 can calculate the AC impedance while the battery B is discharging.
  • the first calculation unit 118 calculates the AC impedance while the charging and discharging of the battery B are stopped.
  • Such a battery monitoring device 100 can calculate the AC impedance while the charging and discharging of the battery B are stopped.
  • the battery B is one of a plurality of batteries B0 to B7 included in the battery pack 101.
  • Such a battery monitoring device 100 can calculate the AC impedance of the battery B included in the battery pack 101.
  • the integrated circuit 105 includes a transistor 104 for flowing a current from the battery B to the first reference resistor 103 disposed on a path P2 different from the path P1 of a current flowing from the battery B to the load 102; And
  • the integrated circuit 105 includes a signal application unit 109 that applies a control signal to a control terminal of the transistor 104, a current measurement unit 112 that measures a first current flowing through the first reference resistor 103, and a voltage measurement that measures a voltage of the battery B.
  • a first calculator 118 that calculates the AC impedance of the battery B based on the measured first current and the measured first voltage.
  • the first reference resistor 103 is disposed on a path P2 different from the path P1 of the current flowing from the battery B to the load 102, it is determined whether the battery B is charging or discharging. Regardless, the AC impedance of the battery B can be measured.
  • the battery B is one of a plurality of batteries B0 to B7 included in the assembled battery 101, and the voltage measuring unit 115 measures a plurality of voltages for measuring the respective voltages of the batteries B0 to B7.
  • the integrated circuit 105 further includes a reference bias generator 116 that supplies a common reference voltage to the plurality of AD converters 0 to 7.
  • Such an integrated circuit 105 can reduce AD conversion errors caused by variations in reference voltage.
  • the battery B is one of a plurality of batteries B0 to B7 included in the assembled battery 101, and the voltage measurement unit 115 measures the voltages V0 to V7 of the plurality of batteries B0 to B7.
  • a / D converters 0 to 7 are provided.
  • the integrated circuit 105 further includes a timing signal generation unit 117 that supplies a timing signal for synchronizing the measurement timing of the plurality of AD converters 0 to 7 to each of the plurality of AD converters 0 to 7.
  • Such an integrated circuit 105 can measure the voltages V0 to V7 at the same timing.
  • the plurality of AD converters 0 to 7 have the same AD conversion characteristics.
  • Such an integrated circuit 105 can reduce variations in AD conversion of the AD converters 0 to 7.
  • FIG. 11 is a block diagram illustrating a functional configuration of the battery monitoring system according to the second embodiment.
  • the battery monitoring system 200 includes a plurality of battery monitoring devices (specifically, the battery monitoring device 100, the battery monitoring device 100a, and the battery monitoring device 100b), an integrated control unit 201, A switch 202.
  • the battery monitoring device 100 monitors the battery pack 101
  • the battery monitoring device 100a monitors the battery pack 101a
  • the battery monitoring device 100b monitors the battery pack 101b.
  • the assembled battery 101, the assembled battery 101a, and the assembled battery 101b are connected in series.
  • the integrated circuit 105 included in the battery monitoring device 100 includes the communication interface unit 131.
  • Battery monitoring device 100a has the same configuration as battery monitoring device 100, and integrated circuit 105a provided in battery monitoring device 100a includes a communication interface unit 131a.
  • the battery monitoring device 100b has the same configuration as the battery monitoring device 100, and an integrated circuit 105b included in the battery monitoring device 100b includes a communication interface unit 131b.
  • the communication interface 131, the communication interface 131a, and the communication interface 131b are daisy-chain connected.
  • the communication interface unit 131 is connected to the communication interface unit 131a by a communication line 203, and the communication interface unit 131a is connected to the communication interface unit 131b by a communication line 204.
  • the communication interface unit 131b is connected to the integrated control unit 201 by a communication line 205.
  • the integrated control unit 201 acquires the AC impedance of the battery pack 101 from the battery monitoring device 100, and receives the AC impedance of the battery pack 101a from the battery monitoring device 100a.
  • the AC impedance can be obtained, and the AC impedance of the battery pack 101a can be obtained from the battery monitoring device 100b.
  • the integrated control unit 201 may acquire information (for example, SOH) based on the AC impedance, which is different from the AC impedance, from the battery monitoring device 100, the battery monitoring device 100a, and the battery monitoring device 100b.
  • the integrated control unit 201 performs various controls based on the AC impedance acquired from the battery monitoring device 100, the battery monitoring device 100a, and the battery monitoring device 100b.
  • the integrated control unit 201 opens the switch 202 when determining that at least one of the battery pack 101, the battery pack 101a, and the battery pack 101b is deteriorated below a predetermined reference based on the AC impedance, for example. Then, the electrical connection between the load 102 and the assembled battery 101, the assembled battery 101a, and the assembled battery 101b is released. Thereby, occurrence of an accident such as ignition of the assembled battery due to use of the deteriorated assembled battery can be suppressed.
  • the integrated control unit 201 is realized by, for example, a microcomputer including a processor and a memory.
  • the communication interface unit 131, the communication interface unit 131a, and the communication interface unit 131b are daisy-chain connected, but such a connection method is an example.
  • each of the communication interface unit 131, the communication interface unit 131a, and the communication interface unit 131b may directly communicate with the integrated control unit 201. That is, the connection method between the communication interfaces is not particularly limited.
  • the battery monitoring system 200 includes a plurality of battery monitoring devices, and includes the integrated control unit 201 that acquires AC impedance from each of the plurality of battery monitoring devices.
  • the integrated control unit 201 can perform various controls based on the AC impedance obtained from the plurality of battery monitoring devices.
  • FIG. 12 is a diagram illustrating an outline of a battery monitoring system according to the third embodiment.
  • the battery monitoring system 300 includes the battery monitoring device 100 and the server device 301.
  • the server device 301 is a server device that is arranged at a location away from the battery monitoring device 100.
  • the server device 301 is a so-called cloud server.
  • the server device 301 is, for example, communicatively connected to another server device via a cloud network 302.
  • the battery monitoring device 100 is mounted on, for example, an automobile 400 such as an EV, and monitors an assembled battery 101 for driving a motor 401 of the automobile 400.
  • the communication interface unit 131 included in the battery monitoring device 100 transmits, for example, the calculated AC impedance of the battery pack 101 to the server device 301 by wireless communication.
  • a relay device (not shown) may be interposed between the communication interface unit 131 and the server device 301.
  • the server device 301 acquires the AC impedance from the battery monitoring device 100 and stores the AC impedance in a storage unit (not shown) provided in the server device 301.
  • the server device 301 performs various controls based on the AC impedance acquired from the battery monitoring device 100.
  • the server device 301 transmits information for stopping the use of the assembled battery 101 to the battery monitoring device 100, for example, when it is determined based on the AC impedance that the assembled battery 101 has deteriorated below a predetermined reference. I do. Thereby, occurrence of an accident such as ignition of the battery pack 101 due to use of the deteriorated battery pack 101 can be suppressed.
  • the battery monitoring system 300 includes the battery monitoring device 100 and the server device 301 disposed at a location separated from the battery monitoring device 100.
  • the server device 301 acquires the AC impedance from the battery monitoring device 100.
  • the server device 301 can perform various controls based on the AC impedance acquired from the battery monitoring device 100.
  • the battery monitoring device that monitors a battery used in an automobile such as an EV has been described.
  • the battery monitoring device may monitor a battery for any use.
  • the circuit configuration described in the above embodiment is an example, and the present disclosure is not limited to the circuit configuration. That is, similarly to the above circuit configuration, a circuit capable of realizing the characteristic function of the present disclosure is also included in the present disclosure.
  • a circuit capable of realizing the characteristic function of the present disclosure is also included in the present disclosure.
  • an element in which an element such as a switching element (transistor), a resistive element, or a capacitive element is connected to a certain element in series or in parallel to the extent that the same function as the above circuit configuration can be realized is also described in the present disclosure. included.
  • the components included in the integrated circuit are realized by hardware. However, some of the components included in the integrated circuit may be realized by executing a software program suitable for the components. Some of the components included in the integrated circuit are realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory. You may.
  • a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory. You may.
  • a process executed by a specific processing unit may be executed by another processing unit. Further, in the operation described in the above embodiment, the order of a plurality of processes may be changed, or the plurality of processes may be performed in parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

電池監視装置(100)は、電池から負荷(102)に流れる電流の経路(P1)とは別の経路(P2)上に配置された第一参照抵抗(103)と、電池から第一参照抵抗(103)へ電流を流すためのトランジスタ(104)と、集積回路(105)とを備える。集積回路(105)は、第一参照抵抗(103)に流れる第一電流を計測する電流計測部(112)と、電池(B)の電圧を計測する電圧計測部(115)と、計測された第一電流、及び、計測された第一電圧に基づいて電池の交流インピーダンスを計算する第一計算部(118)とを有する。

Description

電池監視装置、集積回路、及び、電池監視システム
 本開示は、電池の状態を監視する電池監視装置に関する。
 HEV(Hybrid Electric Vehicle)、または、EV(Electric Vehicle)など、二次電池を電源として走行する自動車の開発が行われている。また、二次電池を安全に使用するためにバッテリーマネージメントシステム(BMS:Battery Management System)によって電池残量推定、及び、異常検知などを行う技術が知られている。このようなBMSとして、特許文献1には、電池の状態をリアルタイムに監視することができる電池監視装置が開示されている。
特許第5403437号公報
 本開示は、電池が充放電中であるかどうかによらず電池の交流インピーダンスを計測することができる電池監視装置、集積回路、及び、電池監視システムを提供する。
 本開示の一態様に係る電池監視装置は、電池から負荷に流れる電流の経路とは別の経路上に配置された抵抗と、前記電池から前記抵抗へ電流を流すためのトランジスタと、集積回路と、を備え、前記集積回路は、前記抵抗に流れる第一電流を計測する電流計測部と、前記電池の第一電圧を計測する電圧計測部と、計測された前記第一電流、及び、計測された前記第一電圧に基づいて前記電池の交流インピーダンスを計算する第一計算部と、を有する。
 本開示の一態様に係る集積回路は、電池から負荷に流れる電流の経路とは別の経路上に配置された抵抗へ前記電池から電流を流すためのトランジスタの制御端子に制御信号を印加する信号印加部と、前記抵抗に流れる第一電流を計測する電流計測部と、前記電池の第一電圧を計測する電圧計測部と、計測された前記第一電流、及び、計測された前記第一電圧に基づいて前記電池の交流インピーダンスを計算する第一計算部と、を有する。
 本開示の一態様に係る電池監視システムは、前記電池監視装置を複数備え、複数の前記電池監視装置それぞれから前記交流インピーダンスを取得する統合制御部を備える。
 本開示の一態様に係る電池監視システムは、前記電池監視装置と、前記電池監視装置と離れた場所に配置されたサーバ装置と、を備え、前記サーバ装置は、前記電池監視装置から前記交流インピーダンスを取得する。
 本開示の一態様によれば、電池が充放電中であるかどうかによらず電池の交流インピーダンスを計測することができる電池監視装置、集積回路、及び、電池監視システムが実現される。
図1は、実施の形態に係る電池監視装置の機能構成を示すブロック図である。 図2は、電池の等価回路を示す図である。 図3は、電池の交流インピーダンスの変化と電池の劣化との関係を示す図である。 図4は、実施の形態に係る電池監視装置の動作のフローチャートである。 図5は、制御信号の生成方法を説明するための図である。 図6は、第一計算部の具体的構成を示す図である。 図7は、変形例に係る制御信号の生成方法を説明するための第一図である。 図8は、変形例に係る制御信号の生成方法を説明するための第二図である。 図9は、バースト波形の生成方法を説明するための図である。 図10は、単一の電池を監視対象とする電池監視装置の機能構成を示すブロック図である。 図11は、実施の形態2に係る電池監視システムの機能構成を示すブロック図である。 図12は、実施の形態3に係る電池監視システムの概要を示す図である。
 以下、実施の形態について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付し、重複する説明は省略または簡略化される場合がある。
 (実施の形態1)
 [構成]
 まず、実施の形態1に係る電池監視装置の構成について説明する。図1は、実施の形態1に係る電池監視装置の機能構成を示すブロック図である。
 図1に示される電池監視装置100は、組電池101の状態を監視する装置である。組電池101は、複数の電池B0~B7(以下、電池B0~B7のうち任意の1つを電池Bと記載する)を含む。電池Bは、言い換えれば、電池セルである。電池Bは、具体的には、リチウムイオン電池であるが、ニッケル水素電池などその他の電池であってもよい。組電池101は、負荷102の電源として機能し、負荷102に電力を供給する。負荷102は、例えば、EVのモータであるが、特に限定されない。なお、負荷102に代えて、組電池101を充電するための充電装置が負荷102の位置に接続される場合もある。
 電池監視装置100は、具体的には、電池Bの交流インピーダンスを計算、及び、監視することができる。図2は、電池Bの等価回路を示す図である。
 図2に示されるように、電池Bは、抵抗R0、並列接続された抵抗R1及び容量素子C1、並列接続された抵抗R2及び容量素子C2・・・が直列接続された回路構成であると考えることができる。この回路構成における回路パラメータ(抵抗の抵抗値または容量素子の容量値)は、電池Bが劣化することにより変化する。つまり、電池Bの交流インピーダンスは、電池Bが劣化することにより変化する。図3は、電池Bの交流インピーダンスの変化と電池Bの劣化との関係を示す図である。図3は、Cole-Coleプロットと呼ばれる図であり、ナイキストプロットとも呼ばれる。
 電池Bの交流インピーダンスは、図3において実線で示される初期特性を有する。電池Bの電極性能が劣化すると、電池Bの交流インピーダンスは図3において破線で示される特性に変化する。また、電池Bの電解質性能が劣化すると、電池Bの交流インピーダンスは図3において一点鎖線で示される特性に変化する。
 このように、電池Bの劣化度と電池Bの交流インピーダンスとは関連性があり、電池監視装置100は、電池Bの交流インピーダンスを計算及び監視することで電池Bの劣化度を判定することができる。劣化度が判定されれば、劣化した電池Bの交換を促すメッセージを提示するなどの情報処理が可能となる。なお、電池Bの劣化度は、例えば、SOH(State of Health)と呼ばれるパラメータで表現される。
 上記図1に示されるように、電池監視装置100においては、組電池101から負荷102に流れる電流の経路P1(言い換えれば、第一経路)とは別の経路P2(言い換えれば、第二経路)上に配置された第一参照抵抗103を用いて交流インピーダンスを計測する。これにより、電池監視装置100は、電池Bが充放電中であるかどうかによらず電池Bの交流インピーダンスを計算することができる。例えば、電池監視装置100は、電池Bの充電中に充電と並行して現在の電池Bの交流インピーダンスを計算することができる。また、電池監視装置100は、電池Bの放電中に放電と並行して現在の電池Bの交流インピーダンスを計算することができる。電池監視装置100は、電池の充電及び放電の停止中に、現在の電池Bの交流インピーダンスを計算することができる。
 以下、このような電池監視装置100の具体的な構成について、上記図1を参照しながら説明する。電池監視装置100は、第一参照抵抗103と、トランジスタ104と、集積回路(電池監視回路)105と、負荷抵抗106と、温度センサ107と、ヒータ108とを備える。
 第一参照抵抗103は、組電池101から負荷102に流れる電流の経路P1とは別の経路P2上に配置された抵抗である。つまり、第一参照抵抗103は、負荷102に流れる電流が流れない抵抗である。第一参照抵抗103は、例えば、集積回路105の外部に設けられるディスクリート部品である。
 トランジスタ104は、組電池101から第一参照抵抗103へ電流を流すためのトランジスタである。トランジスタ104は、例えば、FET(Field Effect Transistor)であるが、バイポーラトランジスタであってもよい。トランジスタ104のドレインは、負荷抵抗106に接続され、トランジスタ104のソースは、第一参照抵抗103に接続され、トランジスタ104のゲート(つまり、制御端子)は、信号印加部109に接続される。
 集積回路105は、信号印加部109と、電流計測部112と、電圧計測部115と、基準バイアス生成部116と、タイミング信号生成部117と、第一計算部118と、第二計算部119と、第一温度計測部120と、第二温度計測部121と、第一温度制御部122と、負荷電流計測部123と、第三温度計測部127と、第二温度制御部129と、通信インターフェース部131とを備える。
 信号印加部109は、トランジスタ104の制御端子に制御信号を印加する。信号印加部109は、信号生成部110と、波形生成部111とを有する。
 電流計測部112は、第一参照抵抗103に流れる電流Iac(第一電流の一例)を計測する。電流計測部112は、具体的には、第一参照抵抗103の両端の電圧を計測する。第一計算部118は、第一参照抵抗103の抵抗値に基づいて第一参照抵抗103の両端の電圧を電流Iacとして認識することができる。
 電流計測部112は、具体的には、第一参照抵抗103の両端の電圧(つまり、アナログ信号)をデジタル信号に変換するAD(Analog to Digital)変換器113(図中ではADCと記載)と、AD変換器113の出力に接続されるフィルタ114とを有する。AD変換器113は、例えば、デルタシグマ型のAD変換器であり、フィルタ114は、デシメーションフィルタである。AD変換器113には、例えば、複数のAD変換器0~7と同一のAD変換特性を有する(つまり、製品として同一の)AD変換器が用いられる。これにより、AD変換器0~7とAD変換器113との間で生じる、AD変換に起因する計測誤差を低減することができる。
 電圧計測部115は、組電池101を構成する複数の電池B0~B7の電圧V0~V7(第一電圧の一例)を計測する。電圧計測部115は、複数の電池B0~B7の電圧V0~V7をデジタル信号に変換するAD変換器0~7と、AD変換器0~7の出力に接続されるフィルタ0~7とを有する。AD変換器0~7のそれぞれは、例えば、デルタシグマ型のAD変換器であり、フィルタ0~7のそれぞれは、デシメーションフィルタである。
 集積回路105においては、複数のAD変換器0~7は、同一のAD変換特性を有する。AD変換特性とは、分解能(ビット数)などの各種パラメータである。複数のAD変換器0~7には、具体的には、製品として同一のAD変換器が用いられる。これにより、電圧V0~V7の間で生じる、AD変換に起因する計測誤差を低減することができる。
 基準バイアス生成部116は、複数のAD変換器0~7、AD変換器113、及び、AD変換器125に共通の基準電圧を供給する。基準バイアス生成部116によれば、基準電圧のばらつきに起因するAD変換の誤差を低減することができる。
 タイミング信号生成部117は、複数のAD変換器0~7、AD変換器113、及び、AD変換器125の計測タイミングの同期をとるためのタイミング信号を複数のAD変換器0~7、AD変換器113、及び、AD変換器125のそれぞれに供給する。タイミング信号生成部117によれば、同じタイミングにおける電圧V0~V7、電流Iac、及び、電流Icdを計測することが可能となる。
 第一計算部118は、電流計測部112によって計測された電流Iac、及び、電圧計測部115によって計測された電圧V0~V7に基づいて電池B0~B7の交流インピーダンスを計算する。第一計算部118は、言い換えれば、交流インピーダンス計算部である。第一計算部118の具体的構成については後述する。
 第二計算部119は、第一計算部118によって計算された交流インピーダンスを用いて電池B0~B7のSOC(State of Charge)及びSOHの少なくとも一方を計算する。第二計算部119は、言い換えれば、SOC/SOH計算部である。
 第一温度計測部120は、複数の電池B0~B7に1対1で対応して設けられた温度センサS0~S7を用いて複数の電池B0~B7の温度Tcell0~Tcell7を計測する。温度センサS0~S7は、例えば、サーミスタを用いた温度センサであるが、熱電対などのその他の素子を用いた温度センサであってもよい。
 第二温度計測部121は、第一参照抵抗103の近傍に設けられた温度センサ107を用いて第一参照抵抗103の温度Tref1を計測する。温度センサ107は、例えば、サーミスタを用いた温度センサであるが熱電対などのその他の素子を用いた温度センサであってもよい。
 第一温度制御部122は、第一参照抵抗103の温度を一定に制御する。第一温度制御部122は、具体的には、第二温度計測部121によって計測された第一参照抵抗103の温度Tref1を取得し、取得した温度Tref1が一定になるようにヒータ108を制御する。
 負荷電流計測部123は、負荷102に流れる電流Icdを計測する。負荷電流計測部123は、具体的には、第二参照抵抗124の両端の電圧を計測する。第一計算部118は、第二参照抵抗124の抵抗値に基づいて第二参照抵抗124の両端の電圧を電流Icdとして認識することができる。
 負荷電流計測部123は、具体的には、第二参照抵抗124の両端の電圧(つまり、アナログ信号)をデジタル信号に変換するAD変換器125と、AD変換器125の出力に接続されるフィルタ126とを有する。AD変換器125は、例えば、デルタシグマ型のAD変換器であり、フィルタ126は、デシメーションフィルタである。AD変換器125には、例えば、複数のAD変換器0~7と同一のAD変換特性を有する(つまり、製品として同一の)AD変換器が用いられる。これにより、AD変換器0~7とAD変換器125との間で生じる、AD変換に起因する誤差を低減することができる。
 第三温度計測部127は、第二参照抵抗124の近傍に設けられた温度センサ128を用いて第二参照抵抗124の温度Tref2を計測する。温度センサ128は、例えば、サーミスタを用いた温度センサであるが熱電対などのその他の素子を用いた温度センサであってもよい。
 第二温度制御部129は、第二参照抵抗124の温度を一定に制御する。第二温度制御部129は、具体的には、第三温度計測部127によって計測された第二参照抵抗124の温度Tref2を取得し、取得した温度Tref2が一定になるようにヒータ130を制御する。
 通信インターフェース部131は、電池監視装置100が他の電池監視装置または外部装置と通信を行うための通信回路である。通信インターフェース部131は、例えば、第二計算部によって計算されたSOHなどを外部装置に送信するために用いられる。通信インターフェース部131によって行われる通信は、無線通信であってもよいし、有線通信であってもよい。通信インターフェース部131によって行われる通信の通信規格についても特に限定されない。
 [動作]
 次に、電池監視装置100の動作について説明する。図4は、電池監視装置100の動作のフローチャートである。
 まず、信号印加部109は、トランジスタ104の制御端子に制御信号を印加する(S11)。この結果、トランジスタ104がオンし、第一参照抵抗103に電流が流れる。
 本動作において、信号印加部109は、複数の周波数成分を有する制御信号を生成する。図5は、制御信号の生成方法を説明するための図である。
 信号印加部109の信号生成部110は、例えば、周波数f1の正弦波、周波数f2の正弦波、及び、周波数f3の正弦波を生成し、合成して出力する。合成後の信号をフーリエ変換すると、周波数f1、周波数f2、及び、周波数f3の3つの周波数成分が現れる。
 信号生成部110から出力される信号はデジタル信号であり、出力されたデジタル信号は波形生成部111によってアナログ信号に変換される。つまり、波形生成部111は、例えば、DA(Digital to Analog)変換器である。
 このような制御信号によれば、第一参照抵抗103には、複数の周波数成分を含む電流が流れる。このため、第一計算部118は、複数の周波数のそれぞれにおける交流インピーダンスを計算することができる。
 次に、電流計測部112は、第一参照抵抗103に流れる電流Iacを計測する(S12)。電流計測部112は、具体的には、第一参照抵抗103の両端の電圧を計測する。第一参照抵抗103の両端の電圧は、AD変換器113によってデジタル信号に変換され、フィルタ114を介して第一計算部118に出力される。
 次に、電圧計測部115は、電池B0~B7の電圧V0~V7を計測する(S13)。電圧V0~V7は、AD変換器0~7によってデジタル信号に変換され、フィルタ0~7を介して第一計算部118に出力される。
 そして、第一計算部118は、計測された電流Iac、及び、計測された電圧V0~V7に基づいて電池B0~B7の交流インピーダンスを計算する(S14)。図6は、第一計算部118の具体的構成を示す図である。
 図6に示されるように、第一計算部118は、具体的には、位相シフト部118aと、変換部118bと、積分部118cと、インピーダンス計算部118dと、温度補正部118eと、カルマンフィルタ部118fとを有する。また、図6では、信号生成部110、及び、第二計算部119も図示されている。
 信号生成部110は、正弦波(第一信号の一例)を生成する。位相シフト部118aは、正弦波の位相を90度シフトすることにより余弦波(第二信号の一例)を生成する。位相シフト部118aは、例えば、遅延回路によって実現される。電池監視装置100では、信号印加部109に含まれる信号生成部110(つまり、制御信号を生成するための信号生成部110)を複素電流及び複素電圧を得るための正弦波を生成する信号生成部としても使用しているが、複素電圧を得るための正弦波は信号生成部110とは別の信号生成部によって生成されてもよい。
 変換部118bは、信号生成部110によって生成された正弦波及び位相シフト部118aによって生成された余弦波のそれぞれと電流Iacとを乗算することにより電流Iacを複素電流(第二電流の一例)に変換する。また、変換部118bは、信号生成部110によって生成された正弦波及び位相シフト部118aによって生成された余弦波のそれぞれと電圧V0~V7とを乗算することにより電圧V0~V7を複素電圧(第二電圧の一例)に変換する。変換部118bは、例えば、乗算回路によって実現される。
 積分部118cは、複素電流の平均化処理および複素電圧の平均化処理を行う。積分部118cは、例えば、積分回路によって実現される。
 インピーダンス計算部118dは、平均化処理後の複素電流及び平均化処理後の複素電圧に基づいて交流インピーダンス(図6では高周波インピーダンスと記載)を計算する。インピーダンス計算部118dは、平均化処理後の複素電圧を平均化処理後の複素電流で除算することにより交流インピーダンスを計算する。例えば、電池B0の交流インピーダンスとしては、インピーダンス実部Z0re、及び、インピーダンス虚部Z0imが出力される。インピーダンス計算部118dは、例えば、除算回路によって実現される。
 温度補正部118eは、第二温度計測部121によって計測される第一参照抵抗103の温度Tref1に基づいて交流インピーダンスを補正する。温度補正部118eは、例えば、温度Tref1の環境下における交流インピーダンスを基準温度環境下相当の交流インピーダンスに補正する。
 以上説明したように、電池監視装置100は、第一参照抵抗103が電池Bから負荷102に流れる電流の経路P1とは別の経路P2上に配置されているため、電池Bが充放電中であるかどうかによらず電池Bの交流インピーダンスを計算することができる。なお、電池Bの交流インピーダンスは、例えば、定常的に計測されるが、定期的(つまり、断続的)に計測されてもよいし、外部装置(例えば、後述の統合制御部)からの指示に基づいて行われてもよい。
 [SOH及びSOCの計算]
 第二計算部119は、第一計算部118によって計算された交流インピーダンスに基づいて電池B0~B7の等価回路の回路パラメータを推定することにより、電池B0~B7のSOHを計算する。回路パラメータの推定に基づくSOHの計算には、公知の各種計算方法が用いられる。
 SOHの計算(つまり、回路パラメータの推定)においては、交流インピーダンス(言い換えれば、高周波インピーダンス)に加えて、低周波インピーダンスが用いられてもよい。低周波インピーダンスは、第一計算部118によって計算された交流インピーダンスよりも低い周波数に対する交流インピーダンスである。これにより、低周波インピーダンスを考慮して回路パラメータの推定が行われるため、SOHの計算精度を向上することができる。
 低周波インピーダンスは、カルマンフィルタ部118fによって計算される。カルマンフィルタ部118fは、電池B0~B7を充電するときの充電電流、及び、電池B0~B7を放電するときの放電電流の少なくとも一方を用いて低周波交流インピーダンスを計算する。
 また、SOHの計算(つまり、回路パラメータの推定)においては、第一温度計測部120によって計測された複数の電池B0~B7の温度Tcell0~Tcell7が用いられてもよい。これにより、複数の電池B0~B7の温度Tcell0~Tcell7を考慮して回路パラメータの推定が行われるため、SOHの計算精度を向上することができる。
 また、第二計算部119は、第一計算部118によって計算された交流インピーダンスに基づいて電池B0~B7の等価回路の回路パラメータを推定することにより、電池B0~B7のSOCを計算することもできる。回路パラメータの推定に基づくSOCの計算には、公知の各種計算方法が用いられる。
 [制御信号の生成方法の変形例]
 信号印加部109による複数の周波数成分を有する制御信号の生成方法は、図5のような方法に限定されない。図7は、変形例に係る制御信号の生成方法を説明するための第一図である。
 図7の例では、信号生成部110は、制御信号として矩形波を出力する。この場合の信号生成部110は、パルスジェネレータと同様の構成であり、制御信号の周波数および電圧値を変更可能である。矩形波をフーリエ変換すると、複数の周波数成分が現れる。
 信号生成部110から出力される信号はデジタル信号であり、出力されたデジタル信号は波形生成部111によってアナログ信号に変換される。なお、図7の例では、波形生成部111は省略されてもよい。
 また、図8は、変形例に係る制御信号の生成方法を説明するための第二図である。図8の例では、信号生成部110は、制御信号として正弦波を出力する。
 波形生成部111は、バースト波形生成部111aを有し、バースト波形生成部111aは、信号生成部110から出力される正弦波に基づいてバースト波形を有する制御信号を生成する。図9は、バースト波形の生成方法を説明するための図である。
 バースト波形は、時間領域の一部にのみ矩形波を含む波形である。図9に示されるように、バースト波形生成部111aは、例えば、正弦波が正の値となる第一期間及び矩形波が負の値となる第二期間のうち第一期間にのみ選択的に矩形波を出力する。つまり、バースト波形においては、矩形波が出力される第一期間と、矩形波が出力されない第二期間とが交互に現れる。この場合、制御信号は、第一期間において複数の周波数成分を有する。
 このようなバースト波形を有する制御信号によれば、矩形波が間欠的に出力されるため、消費電力が低減される。
 [電池の数の変形例]
 組電池101は、8個の電池B0~B7を含むが、組電池101に含まれる電池の数は9個以上であってもよいし、7個以下であってもよい。また、電池監視装置100は、単一の電池Bを監視対象としてもよい。図10は、単一の電池B0を監視対象とする電池監視装置100cの機能構成を示すブロック図である。
 つまり、任意数の集積回路105と電池監視装置100で任意数の電池セルを測定する構成をスケーラブルに実施することができる。
 [効果等]
 以上説明したように、電池監視装置100は、電池Bから負荷102に流れる電流の経路P1とは別の経路P2上に配置された第一参照抵抗103と、電池Bから第一参照抵抗103へ電流を流すためのトランジスタ104と、集積回路105とを備える。集積回路105は、トランジスタ104の制御端子に制御信号を印加する信号印加部109と、第一参照抵抗103に流れる第一電流を計測する電流計測部112と、電池Bの電圧を計測する電圧計測部115と、計測された第一電流、及び、計測された第一電圧に基づいて電池Bの交流インピーダンスを計算する第一計算部118とを有する。
 このような電池監視装置100は、第一参照抵抗103が電池Bから負荷102に流れる電流の経路P1とは別の経路P2上に配置されているため、電池Bが充放電中であるかどうかによらず電池Bの交流インピーダンスを計測することができる。
 また、信号印加部109は、複数の周波数成分を有する前記制御信号を前記制御端子に印加する。
 このような信号印加部109によれば、第一計算部118は、複数の周波数に対する交流インピーダンスを計算することができる。
 また、例えば、信号印加部109は、制御信号の周波数および電圧値を変更可能である。
 このような信号印加部109によれば、第一参照抵抗103に流れる電流を任意に調整することができる。
 また、例えば、制御信号は、バースト波形を有する。
 このようなバースト波形を有する制御信号によれば、矩形波が間欠的に出力されるため、消費電力が低減される。
 また、例えば、集積回路105は、正弦波である第一信号を生成する信号生成部110と、第一信号の位相を90度シフトすることにより第二信号を生成する位相シフト部118aとを有する。第一計算部118は、生成された第一信号及び第二信号のそれぞれと計測された第一電流とを乗算することにより第一電流を複素電流である第二電流に変換し、生成された第一信号及び第二信号のそれぞれと計測された第一電圧とを乗算することにより第一電圧を複素電圧である第二電圧に変換し、第二電流及び第二電圧に基づいて交流インピーダンスを計算する。
 このような電池監視装置100は、複素電圧及び複素電流に基づいて交流インピーダンスを計算することができる。
 また、例えば、第一計算部118は、第二電流の平均化処理および第二電圧の平均化処理を行い、平均化処理後の第二電流及び平均化処理後の第二電圧に基づいて交流インピーダンスを計算する。
 このような電池監視装置100は、平均化により交流インピーダンスの計算精度を向上することができる。
 また、例えば、集積回路105は、さらに、計算された交流インピーダンスを用いて電池BのSOC及びSOHの少なくとも一方を計算する第二計算部119を有する。
 このような電池監視装置100は、SOC及びSOHの少なくとも一方を計算することができる。
 また、例えば、第一計算部118は、複数の周波数に対する交流インピーダンスを計算し、第二計算部119は、複数の周波数に対する交流インピーダンスを用いてSOHを計算する。
 このような電池監視装置100は、複数の周波数に対する交流インピーダンスを用いてSOHを計算することができる。
 また、例えば、集積回路105は、さらに、電池Bの温度を計測する第一温度計測部120を有する。第二計算部119は、計算された交流インピーダンス、及び、計測された電池Bの温度を用いてSOHを計算する。
 このような電池監視装置100は、電池Bの温度を考慮して電池Bの等価回路の回路パラメータの推定を行うことで、SOHの計算精度を向上することができる。
 また、例えば、第一計算部118は、さらに電池Bを充電するときの充電電流、及び、電池Bを放電するときの放電電流の少なくとも一方を用いて低周波交流インピーダンスを計算するカルマンフィルタ部118fをさらに有し、第二計算部119は、計算された交流インピーダンス、及び、計算された低周波交流インピーダンスを用いてSOHを計算する。
 このような電池監視装置100は、電池Bの低周波交流インピーダンスを考慮して電池Bの等価回路の回路パラメータの推定を行うことで、SOHの計算精度を向上することができる。
 また、例えば、集積回路105は、さらに、第一参照抵抗103の温度を計測する第二温度計測部121を有する。第一計算部118は、計測された第一参照抵抗103の温度をさらに用いて交流インピーダンスを計算する。
 このような電池監視装置100は、第一参照抵抗103の温度を用いて交流インピーダンスを補正することができる。
 また、例えば、集積回路105は、第一参照抵抗103の温度を一定に制御する第一温度制御部122を有する。
 このような電池監視装置100は、第一参照抵抗103の温度を一定にした状態で交流インピーダンスを計算することができる。
 また、例えば、第一計算部118は、電池Bの充電中に交流インピーダンスを計算する。
 このような電池監視装置100は、電池Bの充電中に交流インピーダンスを計算することができる。
 また、例えば、第一計算部118は、電池Bの放電中に交流インピーダンスを計算する。
 このような電池監視装置100は、電池Bの放電中に交流インピーダンスを計算することができる。
 また、例えば、第一計算部118は、電池Bの充電及び放電の停止中に交流インピーダンスを計算する。
 このような電池監視装置100は、電池Bの充電及び放電の停止中に交流インピーダンスを計算することができる。
 また、例えば、電池Bは、組電池101に含まれる複数の電池B0~B7のうちの1つである。
 このような電池監視装置100は、組電池101に含まれる電池Bの交流インピーダンスを計算することができる。
 また、集積回路105は、電池Bから負荷102に流れる電流の経路P1とは別の経路P2上に配置された第一参照抵抗103へ電池Bから電流を流すためのトランジスタ104と、集積回路105とを備える。集積回路105は、トランジスタ104の制御端子に制御信号を印加する信号印加部109と、第一参照抵抗103に流れる第一電流を計測する電流計測部112と、電池Bの電圧を計測する電圧計測部115と、計測された第一電流、及び、計測された第一電圧に基づいて電池Bの交流インピーダンスを計算する第一計算部118とを有する。
 このような集積回路105は、第一参照抵抗103が電池Bから負荷102に流れる電流の経路P1とは別の経路P2上に配置されているため、電池Bが充放電中であるかどうかによらず電池Bの交流インピーダンスを計測することができる。
 また、例えば、電池Bは、組電池101に含まれる複数の電池B0~B7のうちの1つであり、電圧計測部115は、複数の電池B0~B7のそれぞれの電圧を計測するための複数のAD変換器0~7を有する。集積回路105は、さらに、複数のAD変換器0~7に共通の基準電圧を供給する基準バイアス生成部116を有する。
 このような集積回路105は、基準電圧のばらつきに起因するAD変換の誤差を低減することができる。
 また、例えば、電池Bは、組電池101に含まれる複数の電池B0~B7のうちの1つであり、電圧計測部115は、複数の電池B0~B7のそれぞれの電圧V0~V7を計測するための複数のAD変換器0~7を有する。集積回路105は、さらに、複数のAD変換器0~7の計測タイミングの同期をとるためのタイミング信号を複数のAD変換器0~7のそれぞれに供給するタイミング信号生成部117を有する。
 このような集積回路105は、同じタイミングにおける電圧V0~V7を計測することが可能となる。
 また、例えば、複数のAD変換器0~7は、同一のAD変換特性を有する。
 このような集積回路105は、AD変換器0~7のAD変換のばらつきを低減することができる。
 (実施の形態2)
 [構成及び動作]
 実施の形態2では、少なくとも複数の電池監視装置100を備える電池監視システムについて説明する。図11は、実施の形態2に係る電池監視システムの機能構成を示すブロック図である。
 図11に示されるように、電池監視システム200は、複数の電池監視装置(具体的には、電池監視装置100、電池監視装置100a、及び、電池監視装置100b)と、統合制御部201と、スイッチ202とを備える。電池監視装置100は、組電池101を監視対象とし、電池監視装置100aは、組電池101aを監視対象とし、電池監視装置100bは、組電池101bを監視対象とする。組電池101、組電池101a、及び、組電池101bは直列接続されている。
 電池監視装置100が備える集積回路105には通信インターフェース部131が含まれる。電池監視装置100aは、電池監視装置100と同様の構成であり、電池監視装置100aが備える集積回路105aには通信インターフェース部131aが含まれる。電池監視装置100bは、電池監視装置100と同様の構成であり、電池監視装置100bが備える集積回路105bには通信インターフェース部131bが含まれる。
 通信インターフェース部131、通信インターフェース部131a、及び、通信インターフェース部131bはデイジーチェーン接続されている。通信インターフェース部131は、通信線203によって通信インターフェース部131aに接続され、通信インターフェース部131aは、通信線204によって通信インターフェース部131bに接続されている。通信インターフェース部131bは、通信線205によって統合制御部201に接続されている。
 このような通信線203、通信線204、及び、通信線205によれば、統合制御部201は、電池監視装置100から組電池101の交流インピーダンスを取得し、電池監視装置100aから組電池101aの交流インピーダンスを取得し、電池監視装置100bから組電池101aの交流インピーダンスを取得することができる。なお、統合制御部201は、電池監視装置100、電池監視装置100a、及び、電池監視装置100bから交流インピーダンスと異なる、交流インピーダンスに基づく情報(例えば、SOHなど)を取得してもよい。
 統合制御部201は、電池監視装置100、電池監視装置100a、及び、電池監視装置100bから取得した交流インピーダンスに基づく各種制御を行う。統合制御部201は、例えば、交流インピーダンスに基づいて、組電池101、組電池101a、及び、組電池101bの少なくとも1つが所定の基準よりも劣化していると判定した場合に、スイッチ202を開放し、負荷102と、組電池101、組電池101a、及び、組電池101bとの電気的な接続を解除する。これにより、劣化した組電池が使用されることによる組電池の発火等の事故の発生を抑制することができる。統合制御部201は、例えば、プロセッサ及びメモリを含むマイクロコンピュータによって実現される。
 なお、電池監視システム200においては通信インターフェース部131、通信インターフェース部131a、及び、通信インターフェース部131bはデイジーチェーン接続されたが、このような接続方式は一例である。電池監視システム200においては、通信インターフェース部131、通信インターフェース部131a、及び、通信インターフェース部131bのそれぞれが直接統合制御部201と通信を行ってもよい。つまり、通信インターフェース間の接続方式は特に限定されない。
 [効果等]
 以上説明したように、電池監視システム200は、電池監視装置を複数備え、複数の電池監視装置それぞれから交流インピーダンスを取得する統合制御部201を備える。
 これにより、統合制御部201は、複数の電池監視装置から取得した交流インピーダンスに基づく各種制御を行うことができる。
 (実施の形態3)
 [構成及び動作]
 実施の形態3では、クラウドサーバを備える電池監視システムについて説明する。図12は、実施の形態3に係る電池監視システムの概要を示す図である。
 図12に示されるように、電池監視システム300は、電池監視装置100と、サーバ装置301とを備える。サーバ装置301は、電池監視装置100と離れた場所に配置されたサーバ装置である。サーバ装置301は、いわゆるクラウドサーバである。サーバ装置301は、例えば、他のサーバ装置とクラウドネットワーク302によって通信接続されている。
 電池監視装置100は、例えば、EVなどの自動車400に搭載され、自動車400のモータ401を駆動するための組電池101を監視対象とする。電池監視装置100が備える通信インターフェース部131は、例えば、計算した組電池101の交流インピーダンスを無線通信によってサーバ装置301に送信する。なお、通信インターフェース部131とサーバ装置301との間には、図示されない中継装置が介在する場合がある。
 サーバ装置301は、電池監視装置100から交流インピーダンスを取得し、サーバ装置301が備える記憶部(図示せず)に記憶する。サーバ装置301は、電池監視装置100から取得した交流インピーダンスに基づく各種制御を行う。
 サーバ装置301は、例えば、交流インピーダンスに基づいて、組電池101が所定の基準よりも劣化していると判定した場合に、組電池101の使用を停止させるための情報を電池監視装置100に送信する。これにより、劣化した組電池101が使用されることによる組電池101の発火等の事故の発生を抑制することができる。
 [効果等]
 以上説明したように、電池監視システム300は、電池監視装置100と、電池監視装置100と離れた場所に配置されたサーバ装置301とを備える。サーバ装置301は、電池監視装置100から交流インピーダンスを取得する。
 これにより、サーバ装置301は、電池監視装置100から取得した交流インピーダンスに基づく各種制御を行うことができる。
 (他の実施の形態)
 以上、実施の形態について説明したが、本開示は、上記実施の形態に限定されるものではない。
 例えば、上記実施の形態では、EVなどの自動車に用いられる電池を監視対象とする電池監視装置について説明されたが、電池監視装置は、どのような用途の電池を監視対象としてもよい。
 また、上記実施の形態で説明された回路構成は、一例であり、本開示は上記回路構成に限定されない。つまり、上記回路構成と同様に、本開示の特徴的な機能を実現できる回路も本開示に含まれる。例えば、上記回路構成と同様の機能を実現できる範囲で、ある素子に対して、直列又は並列に、スイッチング素子(トランジスタ)、抵抗素子、または容量素子等の素子が接続されたものも本開示に含まれる。
 また、上記実施の形態において、集積回路に含まれる構成要素は、ハードウェアによって実現された。しかしながら、集積回路に含まれる構成要素の一部は、当該構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。集積回路に含まれる構成要素の一部は、CPU(Central Processing Unit)またはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、上記実施の形態において説明された動作において、複数の処理の順序が変更されてもよいし、複数の処理が並行して行われてもよい。
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 100、100a、100b、100c 電池監視装置
 101、101a、101b 組電池
 102 負荷
 103 第一参照抵抗
 104 トランジスタ
 105、105a、105b 集積回路(電池監視回路)
 106 負荷抵抗
 107、128 温度センサ
 108、130 ヒータ
 109 信号印加部
 110 信号生成部
 111 波形生成部
 111a バースト波形生成部
 112 電流計測部
 113、125 AD変換器
 114、126 フィルタ
 115 電圧計測部
 116 基準バイアス生成部
 117 タイミング信号生成部
 118 第一計算部
 118a 位相シフト部
 118b 変換部
 118c 積分部
 118d インピーダンス計算部
 118e 温度補正部
 118f カルマンフィルタ部
 119 第二計算部
 120 第一温度計測部
 121 第二温度計測部
 122 第一温度制御部
 123 負荷電流計測部
 124 第二参照抵抗
 127 第三温度計測部
 129 第二温度制御部
 131、131a、131b 通信インターフェース部
 200、300 電池監視システム
 201 統合制御部
 202 スイッチ
 203、204、205 通信線
 301 サーバ装置
 302 クラウドネットワーク
 400 自動車
 401 モータ
 B、B0~B7 電池
 Iac、Iad 電流
 V0~V7 電圧

Claims (20)

  1.  電池から負荷に流れる電流の経路とは別の経路上に配置された抵抗と、前記電池から前記抵抗へ電流を流すためのトランジスタと、集積回路と、を備え、
     前記集積回路は、
     前記抵抗に流れる第一電流を計測する電流計測部と、
     前記電池の第一電圧を計測する電圧計測部と、
     計測された前記第一電流、及び、計測された前記第一電圧に基づいて前記電池の交流インピーダンスを計算する第一計算部と、を有する
     電池監視装置。
  2.  前記集積回路は、さらに、前記トランジスタの制御端子に制御信号を印加する信号印加部を備え、
     前記信号印加部は、複数の周波数成分を有する前記制御信号を前記制御端子に印加する
     請求項1に記載の電池監視装置。
  3.  前記信号印加部は、前記制御信号の周波数および電圧値を変更可能である
     請求項2に記載の電池監視装置。
  4.  前記制御信号は、バースト波形を有する
     請求項2または3に記載の電池監視装置。
  5.  前記集積回路は、さらに、
     正弦波である第一信号を生成する信号生成部と、
     前記第一信号の位相を90度シフトすることにより第二信号を生成する位相シフト部と、を有する
     請求項1~4のいずれか1項に記載の電池監視装置。
  6.  前記第一計算部は、
     生成された前記第一信号及び前記第二信号のそれぞれと計測された前記第一電流とを乗算することにより前記第一電流を複素電流である第二電流に変換し、
     前記第二電流に基づいて前記交流インピーダンスを計算する
     請求項5に記載の電池監視装置。
  7.  前記第一計算部は、
     生成された前記第一信号及び前記第二信号のそれぞれと計測された前記第一電圧とを乗算することにより前記第一電圧を複素電圧である第二電圧に変換し、
     前記第二電圧に基づいて前記交流インピーダンスを計算する
     請求項5または6に記載の電池監視装置。
  8.  前記集積回路は、さらに、計算された前記交流インピーダンスを用いて前記電池のSOC(State of Charge)及びSOH(State of Health)の少なくとも一方を計算する第二計算部を有する
     請求項1~7のいずれか1項に記載の電池監視装置。
  9.  前記第一計算部は、さらに、前記電池を充電するときの充電電流、及び、前記電池を放電するときの放電電流の少なくとも一方を用いて低周波交流インピーダンスを計算するカルマンフィルタ部を有する
     請求項1~8のいずれか1項に記載の電池監視装置。
  10.  前記集積回路は、さらに、前記抵抗の温度を計測する第二温度計測部を有し、
     前記第一計算部は、計測された前記抵抗の温度をさらに用いて前記交流インピーダンスを計算する
     請求項1~9のいずれか1項に記載の電池監視装置。
  11.  前記集積回路は、さらに、前記抵抗の温度を一定に制御する温度制御部を有する
     請求項1~10のいずれか1項に記載の電池監視装置。
  12.  前記第一計算部は、前記電池の充電中に前記交流インピーダンスを計算する
     請求項1~11のいずれか1項に記載の電池監視装置。
  13.  前記第一計算部は、前記電池の放電中に前記交流インピーダンスを計算する
     請求項1~12のいずれか1項に記載の電池監視装置。
  14.  前記第一計算部は、前記電池の充電及び放電の停止中に前記交流インピーダンスを計算する
     請求項1~13のいずれか1項に記載の電池監視装置。
  15.  前記電池は、組電池に含まれる複数の電池のうちの1つである
     請求項1~14のいずれか1項に記載の電池監視装置。
  16.  電池から負荷に流れる電流の経路とは別の経路上に配置された抵抗へ前記電池から電流を流すためのトランジスタの制御端子に制御信号を印加する信号印加部と、
     前記抵抗に流れる第一電流を計測する電流計測部と、
     前記電池の第一電圧を計測する電圧計測部と、
     計測された前記第一電流、及び、計測された前記第一電圧に基づいて前記電池の交流インピーダンスを計算する第一計算部と、を有する
     集積回路。
  17.  前記電池は、組電池に含まれる複数の電池のうちの1つであり、
     前記電圧計測部は、前記複数の電池のそれぞれの電圧を計測するための複数のAD(Analog to Digital)変換器を有し、
     前記集積回路は、さらに、前記複数のAD変換器に共通の基準電圧を供給する基準バイアス生成部を有する
     請求項16に記載の集積回路。
  18.  前記電池は、組電池に含まれる複数の電池のうちの1つであり、
     前記電圧計測部は、前記複数の電池のそれぞれの電圧を計測するための複数のAD変換器を有し、
     前記集積回路は、さらに、前記複数のAD変換器の計測タイミングの同期をとるためのタイミング信号を前記複数のAD変換器のそれぞれに供給するタイミング信号生成部を有する
     請求項16または17に記載の集積回路。
  19.  請求項1~15のいずれか1項に記載の電池監視装置を複数備え、
     複数の前記電池監視装置それぞれから前記交流インピーダンスを取得する統合制御部を備える
     電池監視システム。
  20.  請求項1~15のいずれか1項に記載の電池監視装置と、
     前記電池監視装置と離れた場所に配置されたサーバ装置と、を備え、
     前記サーバ装置は、前記電池監視装置から前記交流インピーダンスを取得する
     電池監視システム。
PCT/JP2019/020801 2018-06-27 2019-05-27 電池監視装置、集積回路、及び、電池監視システム WO2020003841A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020527293A JPWO2020003841A1 (ja) 2018-06-27 2019-05-27 電池監視装置、集積回路、及び、電池監視システム
CN201980042325.7A CN112313521B (zh) 2018-06-27 2019-05-27 电池监视装置、集成电路以及电池监视系统
EP19825662.0A EP3816644A4 (en) 2018-06-27 2019-05-27 BATTERY MONITORING DEVICE, INTEGRATED CIRCUIT AND BATTERY MONITORING SYSTEM
US17/132,192 US11467219B2 (en) 2018-06-27 2020-12-23 Battery monitoring device, integrated circuit, and battery monitoring system
JP2024001351A JP2024038292A (ja) 2018-06-27 2024-01-09 電池監視装置、集積回路、及び、電池監視システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-122507 2018-06-27
JP2018122507 2018-06-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/132,192 Continuation US11467219B2 (en) 2018-06-27 2020-12-23 Battery monitoring device, integrated circuit, and battery monitoring system

Publications (1)

Publication Number Publication Date
WO2020003841A1 true WO2020003841A1 (ja) 2020-01-02

Family

ID=68986410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020801 WO2020003841A1 (ja) 2018-06-27 2019-05-27 電池監視装置、集積回路、及び、電池監視システム

Country Status (5)

Country Link
US (1) US11467219B2 (ja)
EP (1) EP3816644A4 (ja)
JP (2) JPWO2020003841A1 (ja)
CN (1) CN112313521B (ja)
WO (1) WO2020003841A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261799A1 (ja) * 2019-06-27 2020-12-30 ヌヴォトンテクノロジージャパン株式会社 電池管理回路、電池管理システムおよび電池管理ネットワーク
JPWO2020003850A1 (ja) * 2018-06-27 2021-08-12 ヌヴォトンテクノロジージャパン株式会社 集積回路、電池監視装置、及び、電池監視システム
WO2021191216A1 (en) * 2020-03-24 2021-09-30 Leen Consulting Ab Measuring device and method for determining an electrical property
WO2022050033A1 (ja) * 2020-09-04 2022-03-10 株式会社デンソー 電池監視システム
JP2022043657A (ja) * 2020-09-04 2022-03-16 株式会社デンソー 電池監視システム
EP3998487A1 (en) * 2021-02-19 2022-05-18 Lilium eAircraft GmbH Battery management system for an electric air vehicle
WO2022255480A1 (ja) * 2021-06-04 2022-12-08 ヌヴォトンテクノロジージャパン株式会社 電池状態推定装置、電池状態推定システム及び電池状態推定方法
WO2023026840A1 (ja) * 2021-08-25 2023-03-02 株式会社デンソー 電池監視装置
WO2023127478A1 (ja) * 2021-12-27 2023-07-06 ヌヴォトンテクノロジージャパン株式会社 インピーダンス測定装置
JP7426439B2 (ja) 2022-06-13 2024-02-01 株式会社トヨタシステムズ 電池劣化判定システム、電池劣化判定装置及び電池劣化判定方法
US11936228B2 (en) 2020-06-16 2024-03-19 Black & Decker Inc. Battery charger
DE112022003340T5 (de) 2021-06-30 2024-04-11 Denso Corporation Batteriemessvorrichtung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7226147B2 (ja) * 2019-07-04 2023-02-21 株式会社デンソー 電池監視装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543437B2 (ja) 1974-07-29 1979-02-22
JP2003090869A (ja) * 2001-07-09 2003-03-28 Yokogawa Electric Corp インピーダンスの測定装置
JP2013054003A (ja) * 2011-09-06 2013-03-21 Yokogawa Electric Corp 蓄電池の交流インピーダンス測定方法と装置および寿命診断装置
JP2013064697A (ja) * 2011-09-20 2013-04-11 Nec Corp 二次電池システム
JP2015094726A (ja) * 2013-11-13 2015-05-18 学校法人東海大学 電池状態判定装置及び電池状態判定方法
JP2017078658A (ja) * 2015-10-21 2017-04-27 株式会社デンソー 異常判定装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454458A (ja) * 1990-06-22 1992-02-21 Hitachi Ltd 電流検出装置
US6002238A (en) * 1998-09-11 1999-12-14 Champlin; Keith S. Method and apparatus for measuring complex impedance of cells and batteries
WO2000062049A1 (en) * 1999-04-08 2000-10-19 Midtronics, Inc. Electronic battery tester
US6225787B1 (en) * 2000-05-02 2001-05-01 National Semiconductor Corporation Temperature stabilized constant current source suitable for charging a highly discharged battery
US7205746B2 (en) * 2001-04-06 2007-04-17 Microchip Technology Inc. Battery cover assembly having integrated battery condition monitoring
US6466026B1 (en) * 2001-10-12 2002-10-15 Keith S. Champlin Programmable current exciter for measuring AC immittance of cells and batteries
US7554294B2 (en) * 2005-01-28 2009-06-30 The Johns Hopkins University Battery health monitor
GB0502274D0 (en) * 2005-02-04 2005-03-09 Xipower Ltd Battery management system
JP2006266960A (ja) * 2005-03-25 2006-10-05 Furukawa Battery Co Ltd:The 蓄電池内部インピーダンス測定装置および蓄電池内部インピーダンス測定方法
JP2008039443A (ja) * 2006-08-02 2008-02-21 Shin Kobe Electric Mach Co Ltd 蓄電池監視装置、及び蓄電池
JP5254568B2 (ja) * 2007-05-16 2013-08-07 日立ビークルエナジー株式会社 セルコントローラ、電池モジュールおよび電源システム
US7928735B2 (en) * 2007-07-23 2011-04-19 Yung-Sheng Huang Battery performance monitor
BRPI1008178A8 (pt) * 2009-02-09 2017-09-19 Xtreme Power Inc Descarga de baterias
US8358143B2 (en) * 2009-07-02 2013-01-22 Fluke Corporation Internal self-check resistance bridge and method
US8965721B2 (en) * 2009-09-30 2015-02-24 Tesla Motors, Inc. Determining battery DC impedance
JP5895839B2 (ja) * 2010-04-26 2016-03-30 日本電気株式会社 二次電池状態管理システム、充電器、二次電池状態管理方法及び電気特性測定方法
US8943335B2 (en) * 2010-12-22 2015-01-27 Atmel Corporation Battery management and protection system using a module in a sleepwalking mode to monitor operational characteristics of a battery
JP5403437B2 (ja) 2011-07-29 2014-01-29 横河電機株式会社 電池監視装置
EP2778699A4 (en) * 2011-11-08 2015-07-29 Shin Kobe Electric Machinery BATTERY CONDITION MONITORING SYSTEM
JP5393838B2 (ja) * 2012-05-11 2014-01-22 カルソニックカンセイ株式会社 組電池のセルの状態推定装置
JP2014063693A (ja) * 2012-09-24 2014-04-10 Toshiba Corp 二次電池装置および電池容量推定システム
DE102013218077A1 (de) * 2013-09-10 2015-03-12 Robert Bosch Gmbh Batteriezelleinrichtung und Verfahren zur Bestimmung einer komplexen Impedanz einer in einer Batteriezelleinrichtung angeordneten Batteriezelle
KR101708885B1 (ko) * 2013-10-14 2017-02-21 주식회사 엘지화학 혼합 양극재를 포함하는 이차 전지의 상태 추정 장치 및 그 방법
TWI541525B (zh) * 2014-12-10 2016-07-11 大同股份有限公司 電池電量估測裝置及其估測方法
KR20170006008A (ko) * 2015-07-07 2017-01-17 주식회사 만도 모터 구동 인버터용 션트저항 내장형 버스바
JP6369510B2 (ja) * 2016-08-25 2018-08-08 トヨタ自動車株式会社 リチウムイオン二次電池の診断装置および診断方法
US10509076B2 (en) * 2016-09-19 2019-12-17 Microsoft Technology Licensing, Llc Battery performance monitoring

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543437B2 (ja) 1974-07-29 1979-02-22
JP2003090869A (ja) * 2001-07-09 2003-03-28 Yokogawa Electric Corp インピーダンスの測定装置
JP2013054003A (ja) * 2011-09-06 2013-03-21 Yokogawa Electric Corp 蓄電池の交流インピーダンス測定方法と装置および寿命診断装置
JP2013064697A (ja) * 2011-09-20 2013-04-11 Nec Corp 二次電池システム
JP2015094726A (ja) * 2013-11-13 2015-05-18 学校法人東海大学 電池状態判定装置及び電池状態判定方法
JP2017078658A (ja) * 2015-10-21 2017-04-27 株式会社デンソー 異常判定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3816644A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020003850A1 (ja) * 2018-06-27 2021-08-12 ヌヴォトンテクノロジージャパン株式会社 集積回路、電池監視装置、及び、電池監視システム
JP7467337B2 (ja) 2018-06-27 2024-04-15 ヌヴォトンテクノロジージャパン株式会社 集積回路、電池監視装置、及び、電池監視システム
WO2020261799A1 (ja) * 2019-06-27 2020-12-30 ヌヴォトンテクノロジージャパン株式会社 電池管理回路、電池管理システムおよび電池管理ネットワーク
US11933854B2 (en) 2019-06-27 2024-03-19 Nuvoton Technology Corporation Japan Battery management circuit, battery management system, and battery management network
WO2021191216A1 (en) * 2020-03-24 2021-09-30 Leen Consulting Ab Measuring device and method for determining an electrical property
US11936228B2 (en) 2020-06-16 2024-03-19 Black & Decker Inc. Battery charger
JP7443997B2 (ja) 2020-09-04 2024-03-06 株式会社デンソー 電池監視システム
JP7347379B2 (ja) 2020-09-04 2023-09-20 株式会社デンソー 電池監視システム
WO2022050033A1 (ja) * 2020-09-04 2022-03-10 株式会社デンソー 電池監視システム
US11892514B2 (en) 2020-09-04 2024-02-06 Denso Corporation Battery monitoring system
JP2022043657A (ja) * 2020-09-04 2022-03-16 株式会社デンソー 電池監視システム
JP2022043656A (ja) * 2020-09-04 2022-03-16 株式会社デンソー 電池監視システム
WO2022175145A1 (en) * 2021-02-19 2022-08-25 Lilium Eaircraft Gmbh Battery management system for an electric air vehicle
US11828813B2 (en) 2021-02-19 2023-11-28 Lilium Eaircraft Gmbh Battery management system for an electric air vehicle
EP3998487A1 (en) * 2021-02-19 2022-05-18 Lilium eAircraft GmbH Battery management system for an electric air vehicle
WO2022255480A1 (ja) * 2021-06-04 2022-12-08 ヌヴォトンテクノロジージャパン株式会社 電池状態推定装置、電池状態推定システム及び電池状態推定方法
DE112022003340T5 (de) 2021-06-30 2024-04-11 Denso Corporation Batteriemessvorrichtung
WO2023026840A1 (ja) * 2021-08-25 2023-03-02 株式会社デンソー 電池監視装置
WO2023127478A1 (ja) * 2021-12-27 2023-07-06 ヌヴォトンテクノロジージャパン株式会社 インピーダンス測定装置
JP7426439B2 (ja) 2022-06-13 2024-02-01 株式会社トヨタシステムズ 電池劣化判定システム、電池劣化判定装置及び電池劣化判定方法

Also Published As

Publication number Publication date
US11467219B2 (en) 2022-10-11
EP3816644A1 (en) 2021-05-05
EP3816644A4 (en) 2021-08-25
JP2024038292A (ja) 2024-03-19
JPWO2020003841A1 (ja) 2021-08-12
CN112313521A (zh) 2021-02-02
CN112313521B (zh) 2023-06-13
US20210109160A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
WO2020003841A1 (ja) 電池監視装置、集積回路、及び、電池監視システム
JP6823162B2 (ja) バッテリーの充電状態をキャリブレーションするためのバッテリー管理装置及び方法
Chaoui et al. Aging prediction and state of charge estimation of a LiFePO4 battery using input time-delayed neural networks
US11933854B2 (en) Battery management circuit, battery management system, and battery management network
JP6312508B2 (ja) 電池監視装置、電池システムおよび電動車両駆動装置
US8738311B2 (en) State-of-charge estimation method and battery control unit
JP5393837B2 (ja) バッテリの充電率推定装置
EP3002597A1 (en) Battery control device
JPWO2012169063A1 (ja) 電池制御装置、電池システム
Locorotondo et al. Electrochemical Impedance Spectroscopy of Li-Ion battery on-board the Electric Vehicles based on Fast nonparametric identification method
JP6868976B2 (ja) 充電式のバッテリの劣化推定方法、劣化推定回路、およびそれを用いた電子機器、自動車
JPWO2014115294A1 (ja) 電池制御装置、電池システム
JP2017070024A (ja) 電池監視装置
JP5851514B2 (ja) 電池制御装置、二次電池システム
JP2016511827A (ja) 周期的または準周期的な電圧信号の平均値を決定する方法
KR20200025495A (ko) 이차 전지의 충전 시간 추정 장치 및 방법
US20230147469A1 (en) Battery monitor system
WO2022255480A1 (ja) 電池状態推定装置、電池状態推定システム及び電池状態推定方法
JP7152420B2 (ja) 管理装置、及び蓄電システム
JP7467337B2 (ja) 集積回路、電池監視装置、及び、電池監視システム
WO2022201915A1 (ja) 電池装置
JP7487694B2 (ja) 電池装置
JP7524829B2 (ja) 監視装置、および、それを含む電池装置
WO2022259973A1 (ja) 電池異常検知装置及び電池異常検知方法
JP2024061199A (ja) 容量推定方法及び容量推定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825662

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020527293

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019825662

Country of ref document: EP

Effective date: 20210127