WO2023026840A1 - 電池監視装置 - Google Patents

電池監視装置 Download PDF

Info

Publication number
WO2023026840A1
WO2023026840A1 PCT/JP2022/030286 JP2022030286W WO2023026840A1 WO 2023026840 A1 WO2023026840 A1 WO 2023026840A1 JP 2022030286 W JP2022030286 W JP 2022030286W WO 2023026840 A1 WO2023026840 A1 WO 2023026840A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
battery
signals
frequency
lock
Prior art date
Application number
PCT/JP2022/030286
Other languages
English (en)
French (fr)
Inventor
善行 宇田川
和生 松川
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023026840A1 publication Critical patent/WO2023026840A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a battery monitoring device.
  • a battery monitoring device is provided to monitor the state of the battery cells that make up a storage battery or assembled battery.
  • a battery monitoring device monitors the state of a battery cell by measuring the complex impedance of the battery cell that constitutes the assembled battery (see Patent Document 1, for example). According to the technique described in Patent Document 1, the state of the battery cell is monitored by constantly performing complex impedance measurement at a single frequency.
  • An object of the present disclosure is to provide a battery monitoring device capable of shortening the impedance measurement time.
  • the application unit simultaneously applies the signals generated by the drive signal generation unit by superimposing a plurality of different single-frequency signals to the monitoring energization unit.
  • the monitoring energization unit energizes some or all of the battery cells to be measured in the assembled battery and the detection resistors connected in series to the battery cells to be measured.
  • a plurality of lock-in detection units are provided for each of a plurality of single frequencies, and when applied from the application unit to the monitoring energization unit, the signal generated in the detection resistance and the battery cell to be measured is fed back and input by the drive signal generation unit.
  • a plurality of single-frequency signals are input and mixed by a mixer to detect lock-in.
  • the measuring section measures impedances at a plurality of single frequencies based on the detection results of the plurality of lock-in detecting sections. According to one aspect of the present disclosure, it is possible to measure impedances at a plurality of single frequencies based on the detection results of a plurality of lock-in detectors, thereby shortening the impedance measurement time.
  • FIG. 1 is an electrical configuration diagram of the battery monitoring device in the first embodiment
  • FIG. 2 is an electrical configuration diagram of the battery monitoring device in the second embodiment
  • FIG. 3 is an electrical configuration diagram of an application unit in the third embodiment
  • FIG. 4 is an electrical configuration diagram of the battery monitoring device in the fourth embodiment
  • FIG. 5 is an electrical configuration diagram of a drive signal generator in the fourth embodiment
  • FIG. 6 is an electrical configuration diagram of a drive signal generator in the fifth embodiment.
  • the battery monitoring device 1 is a device that monitors the state of the assembled battery 2 .
  • the assembled battery 2 is a chargeable/dischargeable secondary battery that supplies power to, for example, a power converter that supplies a three-phase current to the main motor, although not shown.
  • the battery module is based on a lithium-ion storage battery, a nickel-metal hydride storage battery, or the like.
  • the assembled battery 2 is configured by combining battery modules in which battery cells 3 are stacked and connected in series, and the voltage across the terminals as a whole reaches 100 V or more.
  • the battery monitoring device 1 is a device that monitors the state of charge (SOC) and the state of deterioration (SOH) of the battery cell 3 to be measured.
  • SOC state of charge
  • SOH state of deterioration
  • the battery monitoring device 1 of this embodiment includes a plurality of blocks 4a, 4b, 4c, one adder 5, one waveform shaping section 6, one driver 7, two A/D converters 8, 9, and one multiplexer. 10, one on/off switch 11, two digital filters 12 and 13, a signal processing unit 14, and a communication unit 15 are configured using an ASIC connected in the illustrated form, and are configured to be controllable by a control unit 16.
  • ASIC is an abbreviation for Application Specific Integrated Circuit.
  • the communication unit 15 indicates a communication circuit that communicates with the outside of the ASIC.
  • the control unit 16 executes switch switching control of the multiplexer 10 configured in the ASIC.
  • a driving signal generating section 21 and a lock-in detecting section 22 are respectively configured in the plurality of blocks 4a, 4b, and 4c in this embodiment.
  • the drive signal generators 21 are configured in the same number as the lock-in detectors 22 in each of the blocks 4a to 4c. Since the drive signal generation unit 21 and the lock-in detection unit 22 have the same configuration among the blocks 4a to 4c, only the configuration of a part of the block 4a is shown and the configuration of the other blocks 4b and 4c is omitted. ing.
  • the drive signal generators 21 of the respective blocks 4a to 4c generate different single-frequency signals as drive signals.
  • the lock-in detector 22 is configured by connecting four mixers 23i, 23q, 24i, 24q and digital filters 25i, 25q, 26i, 26q in the form shown.
  • the drive signal generator 21 of each of the blocks 4a to 4c is configured by, for example, a frequency synthesizer, and generates a sine wave drive frequency signal that is, for example, an odd multiple (eg, 1, 3, or 5 times) of the fundamental frequency. They are output in a phase-locked state with each other.
  • a form in which odd multiples of the fundamental frequency are used as signals of the driving frequencies of the respective blocks 4a to 4c will be described, but the present invention is not limited to this.
  • An arbitrary single frequency for testing that is different from each other may be used as the driving frequency for each of the blocks 4a to 4c.
  • the drive signal generator 21 outputs the I signal of the basic phase to the adder 5 and simultaneously outputs the IQ signals having phases different from each other by 90° to the mixers 23 i, 23 q, 24 i, and 24 q of the lock-in detector 22 .
  • the adder 5 adds the outputs of the drive signal generators 21 of the blocks 4a to 4c.
  • the adder 5 superimposes and adds the signals of the driving frequencies that are odd multiples of the fundamental frequency, and outputs the result to the waveform shaping section 6 .
  • the application section 20 in this embodiment is composed of a drive signal generation section 21 , an adder 5 and a waveform shaping section 6 .
  • the waveform shaping section 6 of this embodiment is configured by a D/A converter.
  • the waveform shaping section 6 is composed of a D/A converter
  • the signal added by the adder 5 is analog-converted and directly applied to the monitoring energization section 32 through the driver 7 .
  • the driver 7 amplifies the input signal and applies the amplified signal to the monitor energization section 32 .
  • a current-limiting resistor 31, a monitoring current-carrying part 32 for excitation, and a detection resistor 33 are connected in series to the current-carrying path between the positive terminal and the negative terminal of the assembled battery 2.
  • the monitor energization unit 32 is composed of a switching element 32a such as a MOSFET, for example, and is used when the assembled battery 2 is monitored.
  • the switching element 32 a is connected between its drain and source to the conducting path between the positive terminal and the negative terminal of the assembled battery 2 .
  • the switching element 32a When a plurality of single-frequency signals are superimposed from the driver 7 and simultaneously applied, the switching element 32a performs on/off operations based on the driving frequency signal. In this embodiment, an on/off operation is performed based on a signal of a drive frequency obtained by superimposing three single frequencies, and current is supplied from the assembled battery 2 to the detection resistor 33 based on this operation.
  • the detection resistor 33 detects the voltage based on the energized current.
  • An on/off switch 11 is connected to both terminals of the detection resistor 33 , and connected to the A/D converter 8 via the on/off switch 11 .
  • the on/off switch 11 is normally kept off and is turned on by the controller 16 during battery monitoring.
  • the battery monitoring device 1 acquires the voltage across the terminals of the detection resistor 33 through the A/D converter 8 .
  • An amplifier may be provided in the preceding stage of the A/D converter 8, although it is shown in the drawing in a simplified manner.
  • a digital filter 13 is arranged in the rear stage of the A/D converter 8, and outputs the processed signal that has passed through the low frequency band to each of the blocks 4a to 4c.
  • the lock-in detector 22 of each block 4a-4c feeds back the signal generated in the detection resistor 33 through the A/D converter 8 and the digital filter 13.
  • the lock-in detector 22 inputs the input signal to two mixers 24i and 24q.
  • the two mixers 24i and 24q receive and mix single-frequency signals generated by the driving signal generators 21 of the blocks 4a to 4c.
  • the mixers 24i and 24q of each of the blocks 4a to 4c mix the signals of odd multiples of the fundamental frequency, which are different from each other, so that they mix the corresponding single-frequency signals.
  • Digital filters 26i and 26q are provided downstream of the mixers 24i and 24q, and output the processed signals to the signal processing section 14 after passing through the low frequency band. Therefore, the input signal to the signal processing unit 14 has a value corresponding to the real part/imaginary part of the absolute value of the current flowing through the assembled battery 2 detected by the detection resistor 33 .
  • both terminals of each battery cell 3 of the assembled battery 2 are connected to a multiplexer 10 and connected to an A/D converter 9 via the multiplexer 10 .
  • the multiplexer 10 is configured by combining a plurality of switches respectively connected to the positive terminal and negative terminal of each battery cell 3 .
  • the battery monitoring device 1 can obtain information on the voltage of the battery cell 3 that is the measurement target of all or part of the assembled battery 2 through the A/D converter 9 .
  • an amplifier may be provided in the preceding stage of the A/D converter 9 .
  • a digital filter 12 is arranged in the subsequent stage of the A/D converter 9, and outputs a processed signal which passes through a low frequency band to each of the blocks 4a to 4c.
  • the lock-in detector 22 of each block 4a-4c feeds back the signal generated in the assembled battery 2 through the A/D converter 9 and the digital filter 12.
  • the lock-in detector 22 inputs the input signal to two mixers 23i and 23q.
  • the two mixers 23i and 23q receive and mix single-frequency signals generated by the driving signal generators 21 of the blocks 4a to 4c.
  • the mixers 23i and 23q of each of the blocks 4a to 4c mix signals of odd multiples of the fundamental frequency, which are different from each other, and therefore can mix corresponding single-frequency signals.
  • Digital filters 25i and 25q are provided downstream of the mixers 23i and 23q, and output to the signal processing section 14 the processed signals that have passed through the low frequency band.
  • the input signal to the signal processing unit 14 has a value corresponding to the real part and the imaginary part of the absolute value of the voltage generated in the assembled battery 2, respectively.
  • the signal processing unit 14 inputs the real and imaginary parts of the absolute values of the current and voltage flowing through the assembled battery 2, and based on these values, calculates the complex impedance at each drive frequency based on voltage/current calculation. to measure.
  • the signal processing section 14 has a function as a measuring section.
  • the signal processing unit 14 inputs the real part and the imaginary part of the absolute values of the current and voltage flowing through the assembled battery 2 for each odd multiple of the fundamental frequency different from each other from the blocks 4a to 4c. A complex impedance at a single frequency can be calculated respectively.
  • ⁇ Summary> a plurality of single-frequency signals are superimposed by the adder 5 and simultaneously applied to the switching element 32a of the monitor energization section 32.
  • Each of the blocks 4a to 4c including the drive signal generator 21 and the lock-in detector 22, the adder 5, the signal processor 14, and the digital filters 12 and 13 can be configured by digital circuits using low voltage elements and can be operated at low voltage. can.
  • the monitor energization unit 32, the driver 7, the A/D converters 8 and 9, the multiplexer 10, and the on/off switch 11 are composed of analog circuits with relatively medium and high voltage elements compared to the logic circuit described above.
  • Blocks 4a to 4c can share an analog circuit, and even when complex impedance is measured at a plurality of frequencies for testing, the mounting area can be suppressed as much as possible and power consumption can be suppressed.
  • the digital filters 25i, 25q, 26i, and 26q are not configured in the respective blocks 204a to 204c, and the digital filters 25i, 25q, 26i, 26i, 26i, 26i 26q is configured one for all blocks 204a to 204c.
  • multiplexers 34i, 34q, 36i, and 36q for selectively inputting the outputs of the respective blocks 204a to 204c are configured as selection units, and the outputs of the digital filters 25i, 25q, 26i, and 26q are selectively output.
  • Multiplexers 35i, 35q, 37i, and 37q are configured.
  • the control unit 16 switches and controls the multiplexers 34i to 37i and 34q to 37q.
  • the signal processing unit 14 can use the outputs of the digital filters 25i, 25q, 26i, and 26q in a time division manner. Impedance at multiple single frequencies can be calculated.
  • the digital filters 25i, 25q, 26i, and 26q configured after the mixers 23i, 23q, 24i, and 24q are
  • the processing signals of blocks 204a to 204c can be shared, and an increase in mounting area can be suppressed.
  • FIG. 3 A third embodiment will be described with reference to FIG. In this embodiment, a modification will be described in which a rectangular wave is generated by the PWM modulator 6a as a pulse modulator and applied to the monitor energization section 32.
  • FIG. The application section 320 of this embodiment includes a plurality of drive signal generation sections 21 and a PWM modulator 6 a as the waveform shaping section 6 .
  • the drive signal generator 21 is composed of a frequency synthesizer that outputs a sine wave signal of odd multiples (eg, 1, 3, 5 times) of the fundamental frequency for each of the blocks 4a to 4c.
  • Each frequency synthesizer is configured to output a sinusoidal signal to the mixers 23i, 23q, 24i, 24q of each block 4a-4c.
  • the drive signal generator 21 of the block 4 a outputs a sine wave signal having a frequency one times the fundamental frequency to the PWM modulator 6 a that constitutes the waveform shaping section 6 .
  • Waveform shaping section 6 outputs an H level when the signal input from PWM modulator 6a is positive and an L level when the signal is negative, so that it outputs a rectangular wave of the fundamental frequency.
  • a rectangular wave signal contains a sine wave of the fundamental frequency, as well as harmonic components of odd multiples such as three or five times the fundamental frequency. Therefore, when the waveform shaping section 6 applies this pulse signal to the MOSFET of the monitoring energizing section 32 through the driver 7, it becomes possible to simultaneously apply not only the fundamental frequency but also odd-numbered harmonic frequencies thereof. Multiple single frequency voltages can be energized.
  • the mixers 23i, 23q, 24i, and 24q of the blocks 4a to 4c receive sine wave signals of odd multiples of the fundamental frequency from the drive signal generators 21 of the blocks 4a to 4c, respectively. can be measured simultaneously or time-divisionally.
  • the drive signal generator 21 outputs a rectangular wave to the monitor energizer 32 using the PWM modulator 6a, and the drive signal generator 21 outputs sine waves to the mixers 23i, 23q, 24i, and 24q of the blocks 4a to 4c. It emits a wave signal. Therefore, it becomes possible to measure the voltage, the real part of the current, and the imaginary part of the current at each single frequency that is an odd multiple of the fundamental frequency. It can be measured in divisions.
  • the waveform shaping section 6 may be configured by a PDM modulator as a pulse modulator.
  • FIG. 4 A fourth embodiment will be described with reference to FIGS. 4 and 5.
  • FIG. The difference between the battery monitoring device 401 of this embodiment and the battery monitoring device 1 of the first embodiment is that instead of the drive signal generators 21 of the blocks 4a to 4c, the blocks 404a to 404c are shared. It is where the drive signal generator 421 is configured.
  • the application section 420 of the present embodiment is composed of the drive signal generation section 421 and the waveform shaping section 6 .
  • the drive signal generator 21 is not configured in each of the blocks 404a to 404c, and the drive signal generator 421 is provided outside the blocks 404a to 404c corresponding to all the blocks 404a to 404c. constitutes one.
  • the drive signal generator 421 is configured by a DDS frequency synthesizer.
  • DDS is an abbreviation for Direct Digital Synthesizer and is a digital direct synthesis oscillator.
  • the DDS frequency synthesizer of the drive signal generation unit 421 includes a plurality of phase accumulators 51a to 51c each having an adder 52 and a latch 53 in the illustrated form, and synchronizes with the reference clock to generate the withdrawal speed K1. , K2, and K3, digital data in sawtooth waveforms are output at pull-out velocities K1, K2, and K3 proportional to the set values of a plurality of single frequencies, respectively.
  • sine wave digital information for the number of data points corresponding to the minimum frequency and maximum period is prepared in advance.
  • the drive signal generator 421 uses the sawtooth digital data as the phase of the output waveform, refers to the sine wave table 54, and outputs the corresponding m-bit data.
  • a sine wave table 54 of this type generally requires a relatively large storage area. data points can be viewed. Therefore, there is no need to secure a storage area for individually storing sine wave data for a plurality of single frequencies, and the sine wave table 54 can be prevented from becoming large.
  • These m-bit data outputs for a plurality of single frequencies are input to mixers 23i, 23q, 24i and 24q of blocks 4a to 4c as shown in FIG.
  • the adder 55 adds m-bit data outputs for a plurality of drive frequencies and outputs the result to the waveform shaping section 6 .
  • a waveform shaping section 6 subjects the added data to waveform shaping and outputs the result as a drive frequency signal.
  • the waveform shaping section 6 is a D/A converter, the m-bit data output is added and input and converted into an analog signal. It will be.
  • the drive signal generation unit 421 By configuring the drive signal generation unit 421 with a DDS frequency synthesizer, it is possible to share hardware and avoid parallelization of the frequency synthesizer, which can be realized with a single circuit.
  • the sine wave table 54 of the DDS frequency synthesizer can be used in common, thereby suppressing an increase in circuit scale.
  • the switching element 32a can be energized and driven by a plurality of signals that can be regarded as having a single frequency. If the lock-in detection unit 22 detects lock-in as in the above embodiment, the signal processing unit 14 can simultaneously measure the impedance at the fundamental frequency and its harmonic frequency. As the waveform shaping section 6, a PDM modulator may be configured as a pulse modulator. As a result, effects similar to those of the third embodiment can be obtained.
  • a fifth embodiment will be described with reference to FIG. This embodiment differs from the fourth embodiment in that only one phase accumulator 551 is provided in the configuration of the DDS frequency synthesizer as the drive signal generator 521 .
  • the drive signal generator 521 configures one phase accumulator 551 including an adder 52 and a latch 53, and includes multipliers 56 and 57 that multiply the output of the phase accumulator 551 by an odd number.
  • the phase accumulator 551 accumulates the set value of the withdrawal speed K1 in synchronization with the reference clock, and outputs sawtooth digital data at the withdrawal speed K1 proportional to the set value of the fundamental frequency.
  • Multipliers 56 and 57 multiply the output digital data of phase accumulator 551 by an odd number, refer to sine wave table 54, and output sine wave data to mixers 23i, 23q, 24i, and 24q of blocks 4a to 4c. .
  • sine wave digital information for the number of data points corresponding to the minimum frequency and maximum period is prepared in advance.
  • the drive signal generator 521 uses the sawtooth digital data as the phase of the output waveform, refers to the sine wave table 54, and outputs the corresponding m-bit data.
  • the sine wave data of the fundamental frequency is output to the waveform shaping section 6.
  • the waveform shaping unit 6 of the present embodiment is composed of a PWM modulator 6a, and the PWM modulator 6a outputs a PWM signal as a pulse signal in order to shape the m-bit data output with reference to the sine wave table 54 into a rectangular wave shape. will do.
  • the pulse signal includes a sine wave signal of the fundamental frequency and a harmonic signal, and the impedance can be simultaneously measured at the frequency included in the pulse signal.
  • the waveform shaping section 6 may use a PDM modulator as a pulse modulator.
  • the same effects as those of the above-described embodiment can be obtained in this embodiment as well.
  • the sine wave table 54 of the DDS frequency synthesizer can be shared, thereby suppressing an increase in circuit scale.
  • 1, 201 and 401 are battery monitoring devices
  • 2 is an assembled battery
  • 3 is battery cells
  • 6a is a PWM modulator (pulse modulator)
  • 14 is a signal processing section (measurement section)
  • 16 is a control section
  • 20 320 and 420 denote application units
  • 21, 421 and 521 denote drive signal generation units
  • 34i, 34q, 35i and 35q denote multiplexers (selection units).
  • the battery monitoring device 1, 201, 401, controller 16 approach described in this disclosure configures a processor and memory programmed to perform one or more functions embodied by a computer program.
  • a dedicated computer provided by
  • the battery monitoring devices 1, 201, 401, the control unit 16, and the techniques thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. good.
  • the battery monitoring devices 1, 201, 401, controller 16, and techniques described in the present disclosure may be implemented by a processor and memory programmed to perform one or more functions and one or more hardware logic It may also be implemented by one or more dedicated computers in combination with a processor made up of circuits.
  • the computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible storage medium.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Secondary Cells (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

印加部(20;320;420)は、互いに異なる複数の単一周波数の信号を重ね合わせて駆動信号生成部(21;421;521)により生成された信号を同時に監視通電部(33)へ印加する。複数のロックイン検出部(22)は、複数の単一周波数毎に設けられ、印加部から監視通電部(33)に印加されると検出抵抗及び測定対象の電池セル(3)に生じる信号をフィードバック入力すると共に駆動信号生成部(21;421;521)による複数の単一周波数の信号をそれぞれ入力してミキサ(23i、23q、24i、24q)によりミキシングしてロックイン検出する。測定部(14、16)は、複数のロックイン検出部の検出結果に基づいて複数の単一周波数におけるそれぞれのインピーダンスを測定する。

Description

電池監視装置 関連出願の相互参照
 本出願は、2021年8月25日に出願された日本出願番号2021-137149号に基づくもので、ここにその記載内容を援用する。
 本開示は、電池監視装置に関する。
 一般に、蓄電池、組電池を構成する電池セルの状態を監視するため、電池監視装置が設けられている。電池監視装置は、組電池を構成する電池セルの複素インピーダンスを測定することで電池セルの状態を監視している(例えば、特許文献1参照)。特許文献1記載の技術によれば、単一周波数にて複素インピーダンス計測を常に実施することにより電池セルの状態を監視している。
特開2021-18946号公報
 特許文献1記載の技術を用いると、電池セルのインピーダンス計測を常に繰り返し行うため、必要なデータを取得するには長時間測定することが必要である。長時間測定することで測定中に測定対象の電池セルの状況が変化する可能性があり、測定結果の精度悪化に繋がってしまう。また、いわゆる機能安全に対応するため、フォールトトレラント時間間隔(FTTI:Fault Detection Time Interval)等の測定結果の更新間隔や、総測定時間が制限されると、この条件を満たすことが困難になる。
 本開示の目的は、インピーダンスの測定時間を短縮できるようにした電池監視装置を提供することにある。
 本開示の一態様によれば、印加部は、互いに異なる複数の単一周波数の信号を重ね合わせて駆動信号生成部により生成された信号を同時に監視通電部へ印加する。監視通電部は、組電池の一部又は全部の測定対象の電池セル、及び、当該測定対象の電池セルに直列接続される検出抵抗へ通電する。
 複数のロックイン検出部は、複数の単一周波数毎に設けられ、印加部から監視通電部に印加されると検出抵抗及び測定対象の電池セルに生じる信号をフィードバック入力すると共に駆動信号生成部による複数の単一周波数の信号をそれぞれ入力してミキサによりミキシングしロックイン検出する。測定部は、複数のロックイン検出部の検出結果に基づいて複数の単一周波数におけるそれぞれのインピーダンスを測定する。本開示の一態様によれば、複数のロックイン検出部の検出結果に基づいて複数の単一周波数におけるそれぞれのインピーダンスを測定できるため、インピーダンスの測定時間を短縮できる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態における電池監視装置の電気的構成図であり、 図2は、第2実施形態における電池監視装置の電気的構成図であり、 図3は、第3実施形態における印加部の電気的構成図であり、 図4は、第4実施形態における電池監視装置の電気的構成図であり、 図5は、第4実施形態における駆動信号生成部の電気的構成図であり、 図6は、第5実施形態における駆動信号生成部の電気的構成図である。
 以下、電池監視装置1の幾つかの実施形態について図面を参照しながら説明する。各実施形態間で同一部分には同一符号を付して必要に応じて説明を省略することがある。
 (第1実施形態)
 第1実施形態について図1を参照しながら説明する。電池監視装置1は、組電池2の状態を監視する装置である。組電池2は、図示しないが例えば主機モータに対して三相電流を流す電力変換器などに電力を供給する充放電可能な二次電池である。電池モジュールは、リチウムイオン蓄電池、又はニッケル水素蓄電池などによる。組電池2は、電池セル3をスタックして直列接続した電池モジュールを組み合わせて構成され、全体の端子間電圧は百V以上に達する。電池監視装置1は、測定対象となる電池セル3の蓄電状態(SOC)及び劣化状態(SOH)などを監視する装置である。
 本実施形態の電池監視装置1は、複数のブロック4a、4b、4c、一つの加算器5、一つの波形成形部6、一つのドライバ7、二つのA/Dコンバータ8、9、一つのマルチプレクサ10、一つのオンオフスイッチ11、二つのデジタルフィルタ12、13、信号処理部14、及び通信部15を図示形態に接続したASICを用いて構成され、制御部16により制御可能に構成される。ASICは、Application Specific Integrated Circuitの略である。通信部15は、ASICの外部との間で通信する通信回路を示す。制御部16は、ASIC内に構成されるマルチプレクサ10のスイッチ切替制御などを実行する。
 本実施形態における複数のブロック4a、4b、4cには、駆動信号生成部21及びロックイン検出部22がそれぞれ構成されている。駆動信号生成部21は、各ブロック4a~4cにおいてロックイン検出部22と同数構成されている。駆動信号生成部21及びロックイン検出部22は、各ブロック4a~4cの間で同一構成であるため一部のブロック4aの構成のみ図示して他のブロック4b、4cの構成の図示を省略している。各ブロック4a~4cの駆動信号生成部21は、それぞれ互いに異なる単一周波数の信号を駆動信号として生成する。ロックイン検出部22は、四つのミキサ23i、23q、24i、24q及びデジタルフィルタ25i、25q、26i、26qを図示形態に接続して構成されている。
 各ブロック4a~4cの駆動信号生成部21は、それぞれ例えば周波数シンセサイザにより構成され、基本周波数に対して例えば奇数倍(例えば、1倍、3倍、5倍)の正弦波の駆動周波数の信号を互いに位相ロックした状態でそれぞれ出力する。ここでは、基本周波数の奇数倍の周波数を、各ブロック4a~4cの駆動周波数の信号とした形態を説明するが、これに限定されるものではない。各ブロック4a~4cの間で互いに異なるテスト用の任意の単一周波数を駆動周波数としても良い。駆動信号生成部21は、基本位相のI信号を加算器5に出力すると同時に、互いに90°位相の異なるIQ信号をロックイン検出部22の各ミキサ23i、23q、24i、24qに出力する。
 加算器5は、各ブロック4a~4cの駆動信号生成部21の出力を加算する。本形態では、加算器5は、基本周波数の奇数倍の駆動周波数の信号を重ね合わせて加算して波形成形部6に出力する。本形態における印加部20は、駆動信号生成部21、加算器5、及び波形成形部6により構成される。
 本実施形態の波形成形部6は、D/Aコンバータにより構成される。波形成形部6が、D/Aコンバータにより構成されている場合、加算器5により加算した信号をアナログ変換しそのままドライバ7を通じて監視通電部32に印加する。ドライバ7は、入力した信号を増幅し、当該増幅後の信号を監視通電部32に印加する。
 他方、組電池2の正極側端子と負極側端子との間の通電経路には、電流制限抵抗31、励起用の監視通電部32、及び、検出抵抗33が直列接続されている。監視通電部32は、例えばMOSFETなどのスイッチング素子32aにより構成され、組電池2を監視する際に用いられる。スイッチング素子32aは、そのドレインソース間が組電池2の正極側端子と負極側端子との間の通電経路に接続されている。
 スイッチング素子32aは、ドライバ7から複数の単一周波数の信号が重ね合わせた状態で同時に印加されると、この駆動周波数の信号に基づいてオンオフ動作する。本形態では、三つの単一周波数を重ね合わせた駆動周波数の信号に基づいてオンオフ動作し、この動作に基づいて組電池2から検出抵抗33にかけて通電される。検出抵抗33は、その通電電流に基づいて電圧検出する。
 <検出抵抗33による検出電圧のフィードバック構成説明>
 また、検出抵抗33の両端子にはそれぞれオンオフスイッチ11が接続されており、当該オンオフスイッチ11を介してA/Dコンバータ8に接続されている。オンオフスイッチ11は、通常時オフ状態を保持すると共に電池監視時に制御部16からオン状態とされる。電池監視時には、電池監視装置1は検出抵抗33の端子間電圧をA/Dコンバータ8を通じて取得する。図には簡略化して示しているが、A/Dコンバータ8の前段に増幅器を設けても良い。A/Dコンバータ8の後段にはデジタルフィルタ13が構成されており低域を通過した処理後の信号を各ブロック4a~4cに出力する。
 各ブロック4a~4cのロックイン検出部22は、検出抵抗33に生じる信号をA/Dコンバータ8及びデジタルフィルタ13を通じてフィードバック入力する。ロックイン検出部22は、入力した信号を二つのミキサ24i、24qに入力する。他方、二つのミキサ24i、24qは、各ブロック4a~4cの駆動信号生成部21による単一周波数の信号をそれぞれ入力してミキシングする。
 各ブロック4a~4cのミキサ24i、24qは、それぞれ互いに異なる基本周波数の奇数倍の周波数の信号をミキシングするため、それぞれ対応した単一周波数の信号をミキシングする。ミキサ24i、24qの後段にはデジタルフィルタ26i、26qが構成されており低域を通過して処理後の信号を信号処理部14に出力する。したがって、信号処理部14の入力信号は、それぞれ検出抵抗33により検出される組電池2に流れる電流の絶対値の実部/虚部に対応した値になる。
 <組電池2の電圧のフィードバック構成説明>
 他方、組電池2の各電池セル3の両端子にはマルチプレクサ10が接続されており当該マルチプレクサ10を介してA/Dコンバータ9に接続されている。マルチプレクサ10は、各電池セル3の正側端子及び負側端子にそれぞれ接続する複数のスイッチを組み合わせて構成されている。
 マルチプレクサ10のスイッチが制御部16により切り替えられることで、電池監視装置1は、組電池2の全体又は一部の測定対象となる電池セル3の電圧の情報をA/Dコンバータ9を通じて取得できる。図には簡略化して示しているが、A/Dコンバータ9の前段に増幅器を設けても良い。A/Dコンバータ9の後段にはデジタルフィルタ12が構成されており低域を通過して処理後の信号を各ブロック4a~4cに出力する。
 各ブロック4a~4cのロックイン検出部22は、組電池2に生じる信号をA/Dコンバータ9及びデジタルフィルタ12を通じてフィードバック入力する。ロックイン検出部22は、入力した信号を二つのミキサ23i、23qに入力する。他方、二つのミキサ23i、23qは、各ブロック4a~4cの駆動信号生成部21による単一周波数の信号をそれぞれ入力してミキシングする。
 各ブロック4a~4cのミキサ23i、23qは、それぞれ互いに異なる基本周波数の奇数倍の周波数の信号をミキシングするため、それぞれ対応した単一周波数の信号をミキシングできる。ミキサ23i、23qの後段にはデジタルフィルタ25i、25qが構成されており低域を通過した処理後の信号を信号処理部14に出力する。ここで信号処理部14の入力信号は、それぞれ組電池2に生じる電圧の絶対値の実部、虚部に対応する値になる。
 この結果、信号処理部14は、組電池2に流れる電流及び電圧の絶対値の実部及び虚部を入力し、これらの値に基づいて各駆動周波数における複素インピーダンスを電圧/電流の計算に基づいて測定する。これにより信号処理部14は測定部としての機能を備える。信号処理部14は、各ブロック4a~4cから互いに異なる基本周波数の奇数倍の単一周波数毎に、組電池2に流れる電流及び電圧の絶対値の実部及び虚部を入力するため、複数の単一周波数における複素インピーダンスをそれぞれ算出できる。
 <まとめ>
 本実施形態によれば、複数の単一周波数の信号を加算器5により重ね合わせて同時に監視通電部32のスイッチング素子32aへ印加している。また、同様にロックイン検出部22にダウンコンバート用のミキサ23i、23q、24i、24qを、単一周波数毎に複数のブロック4a~4c分用意している。これにより、信号処理部14が、複数の単一周波数におけるインピーダンスを同時又は時分割で測定できるようになり、総測定時間を短縮できる。
 駆動信号生成部21及びロックイン検出部22による各ブロック4a~4c、加算器5、信号処理部14、及び、デジタルフィルタ12、13は、それぞれ低圧素子によるデジタル回路により構成でき低圧動作させることができる。
 また監視通電部32、ドライバ7、A/Dコンバータ8、9、マルチプレクサ10、及び、オンオフスイッチ11は、前記したロジック回路よりも比較的中・高圧素子にてアナログ回路により構成されるものの、複数のブロック4a~4cに対してアナログ回路を共用化して構成でき、テスト用の複数の周波数において複素インピーダンスを測定する場合であっても、実装面積を極力抑制できると共に消費電力を抑制できる。
 (第2実施形態)
 第2実施形態について図2を参照しながら説明する。本実施形態が第1実施形態と異なるところは、各ブロック4a~4cにそれぞれ構成されていたデジタルフィルタ25i、25q、26i、26qを、各ブロック204a~204cの外部に構成して各ブロック204a~204c間で共用化したところにある。
 図2に示したように、本実施形態では、各ブロック204a~204cの中にデジタルフィルタ25i、25q、26i、26qを構成せず、ブロック204a~204cの外部にデジタルフィルタ25i、25q、26i、26qを全ブロック204a~204cに対して一つ構成している。
 図2に示すように、各ブロック204a~204cの出力を選択入力するマルチプレクサ34i、34q、36i、36qが選択部として構成されていると共に、デジタルフィルタ25i、25q、26i、26qの出力を選択出力するマルチプレクサ35i、35q、37i、37qが構成されている。制御部16は、マルチプレクサ34i~37i、34q~37qを切替制御する。
 すると、信号処理部14は、デジタルフィルタ25i、25q、26i、26qの出力を時分割で利用でき、信号処理部14は、組電池2の電圧及び電流の実部及び虚部を順次入力し、複数の単一周波数におけるインピーダンスを算出できる。
 本実施形態によれば、デジタルフィルタ25i、25q、26i、26qを時分割で利用することで、ミキサ23i、23q、24i、24qの後段に構成されるデジタルフィルタ25i、25q、26i、26qを、ブロック204a~204cの処理信号の間で共用化でき、実装面積増を抑制できる。
 (第3実施形態)
 第3実施形態について図3を参照しながら説明する。本実施形態では、パルス変調器としてのPWM変調器6aにより矩形波を生成して監視通電部32に印加する変形例を説明する。本実施形態の印加部320は、複数の駆動信号生成部21、及び、波形成形部6としてのPWM変調器6aを備える。
 図3に示したように、駆動信号生成部21は、ブロック4a~4c毎に基本周波数の奇数倍(例えば、1倍、3倍、5倍)の正弦波信号を出力する周波数シンセサイザにより構成されており、各周波数シンセサイザが、各ブロック4a~4cのミキサ23i、23q、24i、24qに正弦波信号を出力するように構成されている。
 またブロック4aの駆動信号生成部21は、基本周波数の1倍の正弦波信号を、波形成形部6を構成するPWM変調器6aに出力する。波形成形部6は、PWM変調器6aにより入力した信号が正のときにはHレベルを出力すると共に負のときにはLレベルを出力するため、基本周波数の矩形波を出力する。
 矩形波信号には基本周波数の正弦波と共に、その3倍、5倍等の奇数倍の高調波成分も含まれている。このため波形成形部6が、ドライバ7を通じてこのパルス信号を監視通電部32のMOSFETに印加することで、基本周波数と共にその奇数倍の高調波周波数も同時に印加できるようになり、電池監視時にはこれらの複数の単一周波数の電圧を通電できる。
 各ブロック4a~4cのミキサ23i、23q、24i、24qには、各ブロック4a~4cの駆動信号生成部21から基本周波数の奇数倍の正弦波信号がそれぞれ入力されているため、各単一周波数におけるインピーダンスを同時又は時分割で測定できる。
 これにより、本実施形態においても前述実施形態と同様の作用効果を奏する。また、駆動信号生成部21が監視通電部32にPWM変調器6aを用いて矩形波を出力すると共に、各駆動信号生成部21から各ブロック4a~4cのミキサ23i、23q、24i、24qに正弦波信号を出力している。このため、基本周波数の奇数倍の各単一周波数における電圧、電流の実部、虚部をそれぞれ計測できるようになり、信号処理部14は、これらの複数の単一周波数におけるインピーダンスを同時又は時分割で測定できる。波形成形部6は、パルス変調器としてPDM変調器により構成されていても良い。
 (第4実施形態)
 第4実施形態について図4及び図5を参照しながら説明する。本実施形態の電池監視装置401が第1実施形態の電池監視装置1と異なるところは、各ブロック4a~4cの駆動信号生成部21に代えて、各ブロック404a~404c間で共用化するように駆動信号生成部421を構成したところにある。本実施形態の印加部420は、駆動信号生成部421及び波形成形部6により構成される。
 図4に示すように、本実施形態では、各ブロック404a~404cに駆動信号生成部21を構成せず、ブロック404a~404cの外部に駆動信号生成部421を全ブロック404a~404cに対応して一つ構成している。駆動信号生成部421は、DDS周波数シンセサイザにより構成されている。DDSは、Direct Digital Synthesizerの略でありデジタル直接合成発振器である。
 図5に示すように、駆動信号生成部421のDDS周波数シンセサイザは、加算器52及びラッチ53を図示形態に備えた位相アキュムレータ51a~51cを複数構成すると共にリファレンスクロックに同期してそれぞれ引出速度K1、K2、K3の設定値を累積することで、複数の単一周波数の設定値にそれぞれ比例した引出速度K1、K2、K3にて鋸波状のデジタルデータを出力する。
 正弦波テーブル54には、最小周波数、最大周期に合わせたデータポイント数分の正弦波のデジタル情報が予め用意されている。駆動信号生成部421は、鋸波状のデジタルデータを出力波形の位相とし、正弦波テーブル54を参照して対応したmビットのデータを出力する。
 この類の正弦波テーブル54には、一般に比較的大容量の記憶領域を必要とするものの、本形態では最小周波数に合わせたデータポイント数分のデジタル情報を用意すれば、基本周波数の奇数次周波数のデータポイントを参照できる。このため、複数の単一周波数分の正弦波データを個別に記憶する記憶領域を確保する必要がなくなり、正弦波テーブル54の大規模化を抑制できる。これらの複数の単一周波数分のmビットのデータ出力は、図4に示すように各ブロック4a~4cのミキサ23i、23q、24i、24qに入力される。
 また加算器55は、複数の駆動周波数分のmビットのデータ出力を加算し、波形成形部6に出力する。波形成形部6は、この加算されたデータに対して波形成形を施して駆動周波数の信号として出力する。
 波形成形部6が、D/Aコンバータの場合、mビットのデータ出力を加算入力してアナログ信号に変換するため、波形成形部6は、複数の駆動周波数の信号を重ね合わせたデータを出力することになる。
 このようにして、駆動信号生成部421としてDDS周波数シンセサイザを用いても、複数の単一周波数におけるインピーダンスを同時又は時分割で測定できるようになり、前述の第1又は第2実施形態と同様の作用を奏し同様の効果を奏する。
 駆動信号生成部421をDDS周波数シンセサイザにより構成することで、ハードウェアを共用化して周波数シンセサイザの並列化を避けることができ単一の回路により実現できる。また駆動信号生成部421が、駆動周波数の信号を生成する際に、DDS周波数シンセサイザの正弦波テーブル54を共用化して構成できるため、回路の大規模化を抑制できる。
 <第4実施形態の変形例>
 また前述の第3実施形態にて説明したように、図5に示す加算器55を設けることなく、位相アキュムレータ51aによる正弦波テーブル54の参照出力をPWM変調器6aに入力させれば、PWM変調器6aは、基本周波数の矩形波を出力することになる。この出力パルス信号には、基本周波数の正弦波信号と共に高調波の信号が含まれている。
 このため、当該パルス信号を印加することで複数の単一周波数と見做すことが可能な信号によりスイッチング素子32aを通電駆動できる。ロックイン検出部22が前述実施形態と同様にロックイン検出すれば、信号処理部14は、基本周波数及びその高調波周波数にてインピーダンスを同時に測定できる。波形成形部6として、パルス変調器としてPDM変調器を構成しても良い。これにより、第3実施形態と同様の作用効果を得られる。
 (第5実施形態)
 第5実施形態について図6を参照しながら説明する。本実施形態が第4実施形態と異なるところは、駆動信号生成部521としてのDDS周波数シンセサイザの構成について位相アキュムレータ551を1つだけ設けて構成したところにある。
 図6に示したように、駆動信号生成部521は、加算器52及びラッチ53を備えた位相アキュムレータ551を1つ構成すると共に、位相アキュムレータ551の出力を奇数倍する乗算器56、57を備える。位相アキュムレータ551は、リファレンスクロックに同期して引出速度K1の設定値を累積することで、基本周波数の設定値に比例した引出速度K1にて鋸波状のデジタルデータを出力する。乗算器56、57は、それぞれ位相アキュムレータ551の出力のデジタルデータを奇数倍し、正弦波テーブル54を参照して正弦波データを各ブロック4a~4cのミキサ23i、23q、24i、24qに出力する。
 正弦波テーブル54には、最小周波数、最大周期に合わせたデータポイント数分の正弦波のデジタル情報が予め用意されている。駆動信号生成部521は、鋸波状のデジタルデータを出力波形の位相とし、正弦波テーブル54を参照して対応したmビットのデータを出力する。前述実施形態と同様に、複数の単一周波数分の正弦波データを個別に記憶する記憶領域を確保する必要がなくなり、正弦波テーブル54の大規模化を抑制できる。
 基本周波数の正弦波データは、波形成形部6に出力される。本実施形態の波形成形部6はPWM変調器6aにより構成され、PWM変調器6aは正弦波テーブル54を参照したmビットのデータ出力を矩形波状に成形するため、パルス信号としてのPWM信号を出力することになる。
 前述の第3、第4実施形態にて説明したが、パルス信号には基本周波数の正弦波信号と共に高調波の信号が含まれており、当該パルス信号に含まれる周波数にてインピーダンスを同時に測定できるようになる。波形成形部6は、パルス変調器としてPDM変調器を用いても良い。
 これにより、本実施形態においても前述実施形態と同様の作用効果を奏する。また、駆動信号生成部521が複数の単一周波数の信号を生成する際に、DDS周波数シンセサイザの正弦波テーブル54を共用化して構成できるため、回路の大規模化を抑制できる。
 (他の実施形態)
 本開示は、前述した実施形態に限定されるものではなく、種々変形して実施することができ、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。例えば以下に示す変形又は拡張が可能である。信号処理部14が、組電池2の測定対象となる電池セル3の電圧を通電する電流によって除算してインピーダンスを測定する形態を説明したが、制御部16がこの処理を実行することでインピーダンスを測定するようにしても良い。
 図面中、1、201、401は電池監視装置、2は組電池、3は電池セル、6aはPWM変調器(パルス変調器)、14は信号処理部(測定部)、16は制御部、20、320、420は印加部、21、421、521は駆動信号生成部、34i、34q、35i、35qはマルチプレクサ(選択部)、を示す。
 本開示に記載の電池監視装置1、201、401、制御部16による手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することにより提供された専用コンピュータにより実現されても良い。或いは、本開示に記載の電池監視装置1、201、401、制御部16及びその手法は、一つ以上の専用ハードウェア論理回路によりプロセッサを構成することにより提供された専用コンピュータにより実現されても良い。若しくは、本開示に記載の電池監視装置1、201、401、制御部16及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路により構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより実現されても良い。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていても良い。
 本開示は、前述した実施形態に準拠して記述したが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範畴や思想範囲に入るものである。

Claims (6)

  1.  組電池(2)の一部又は全部の測定対象の電池セル(3)、及び、当該測定対象の電池セル(3)に直列接続される検出抵抗へ通電する監視通電部(33)と、
     互いに異なる複数の単一周波数の信号を重ね合わせて駆動信号生成部(21;421;521)により生成された信号を同時に前記監視通電部へ印加する印加部(20;320;420)と、
     前記複数の単一周波数毎に設けられ、前記印加部から前記監視通電部に印加されると前記検出抵抗及び前記測定対象の電池セルに生じる信号をフィードバック入力すると共に前記駆動信号生成部による前記複数の単一周波数の信号をそれぞれ入力してミキサ(23i、23q、24i、24q)によりミキシングしてロックイン検出する複数のロックイン検出部(22)と、
     前記複数のロックイン検出部の検出結果に基づいて前記複数の単一周波数におけるそれぞれのインピーダンスを測定する測定部(14、16)と、
     を備える電池監視装置。
  2.  前記印加部(20)は、
     複数の単一周波数の信号を生成する前記駆動信号生成部(21)と、
     前記複数の単一周波数の信号を加算する加算器(5)と、を備え、
     前記加算器により信号を重ね合わせた信号を同時に前記監視通電部へ印加する請求項1記載の電池監視装置。
  3.  前記駆動信号生成部及び前記ロックイン検出部はデジタル回路により並列化して複数構成され、
     複数の前記駆動信号生成部の出力を印加する対象となる前記監視通電部はアナログ回路により共用化して構成されている請求項1又は2記載の電池監視装置。
  4.  前記複数のロックイン検出部の前記ミキサにより前記複数の単一周波数毎にミキシングされた信号の中から選択する選択部(34i、34q、35i、35q)と、
     前記選択された信号をフィルタ処理するデジタルフィルタ(25i、25q、26i、26q)と、を備え、
     前記測定部は、前記選択部により選択され前記デジタルフィルタにより処理された信号により前記複数の単一周波数毎に前記インピーダンスを時分割で測定する請求項1から3の何れか一項に記載の電池監視装置。
  5.  前記駆動信号生成部(421、521)は、DDS(Direct Digital Synthesizer)周波数シンセサイザを用いることでハードウェアを共用化して前記複数の単一周波数の信号を生成する請求項1ないし4の何れか一項に記載の電池監視装置。
  6.  前記駆動信号生成部(21)による単一周波数の信号を波形成形することで矩形波を生成するパルス変調器(6a)を備え、
     前記印加部(320)は、前記パルス変調器を用いて基本周波数の信号と同時に高調波を生成して前記監視通電部へ印加することで前記複数の単一周波数の信号を前記監視通電部へ印加する請求項1記載の電池監視装置。
     
PCT/JP2022/030286 2021-08-25 2022-08-08 電池監視装置 WO2023026840A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021137149A JP2023031578A (ja) 2021-08-25 2021-08-25 電池監視装置
JP2021-137149 2021-08-25

Publications (1)

Publication Number Publication Date
WO2023026840A1 true WO2023026840A1 (ja) 2023-03-02

Family

ID=85323119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030286 WO2023026840A1 (ja) 2021-08-25 2022-08-08 電池監視装置

Country Status (2)

Country Link
JP (1) JP2023031578A (ja)
WO (1) WO2023026840A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090869A (ja) * 2001-07-09 2003-03-28 Yokogawa Electric Corp インピーダンスの測定装置
US20080303528A1 (en) * 2005-12-08 2008-12-11 Kim Deuk Soo Method and Device for Measuring Internal Impedance of Stationary Battery
WO2020003841A1 (ja) * 2018-06-27 2020-01-02 パナソニックIpマネジメント株式会社 電池監視装置、集積回路、及び、電池監視システム
WO2021045172A1 (ja) * 2019-09-06 2021-03-11 ヌヴォトンテクノロジージャパン株式会社 蓄電システム、蓄電装置および充電方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090869A (ja) * 2001-07-09 2003-03-28 Yokogawa Electric Corp インピーダンスの測定装置
US20080303528A1 (en) * 2005-12-08 2008-12-11 Kim Deuk Soo Method and Device for Measuring Internal Impedance of Stationary Battery
WO2020003841A1 (ja) * 2018-06-27 2020-01-02 パナソニックIpマネジメント株式会社 電池監視装置、集積回路、及び、電池監視システム
WO2021045172A1 (ja) * 2019-09-06 2021-03-11 ヌヴォトンテクノロジージャパン株式会社 蓄電システム、蓄電装置および充電方法

Also Published As

Publication number Publication date
JP2023031578A (ja) 2023-03-09

Similar Documents

Publication Publication Date Title
CN102484433B (zh) 用于向负载供应电力的电源、方法和计算机程序产品
JP7172838B2 (ja) 電池監視装置
CN111095008A (zh) 用于电化学阻抗谱的电气架构
US8030976B2 (en) Triangle wave generating circuit
US11644512B2 (en) Battery monitoring device
US20200386827A1 (en) Ground fault detection apparatus
KR20200032013A (ko) 효과적인 디커플링을 갖는 벅 dc/dc 컨버터를 위한 컨트롤러
WO2023026840A1 (ja) 電池監視装置
US20210006077A1 (en) In-situ On-line and Embedded Battery Impedance Measurement Device Using Active Balancing Circuits
JP2011038876A (ja) 複数組電池の電圧測定装置
US11372054B2 (en) Device and method for battery impedance measurement
CN117054895A (zh) 电池监测设备及方法
JP5832380B2 (ja) 組電池のセルの状態推定装置
JP4566964B2 (ja) 総電池電圧検出装置
JP2023031578A5 (ja)
EP2375218A1 (en) Angular velocity detection device
JPWO2020003850A1 (ja) 集積回路、電池監視装置、及び、電池監視システム
WO2021261239A1 (ja) 電池診断システム
AU2022374963A1 (en) Method, apparatus, storage medium and system for controlling power converter
TWI302202B (en) Signal generation circuit for measuring capacitor
US8415992B2 (en) Generator of a.c. signals, such as reference signals, and aircraft equipped with such a generator
JPH0465347B2 (ja)
CN105676032B (zh) 发电机电压调节器励磁切断延迟量的测试方法和系统
SU817598A1 (ru) Устройство дл измерени однофазнойРЕАКТиВНОй МОщНОСТи и эНЕРгииВ ТРЕХфАзНыХ цЕп Х
EP3872508A1 (en) Device and method for measuring battery cell resistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE