WO2019245018A1 - 医療器具の製造方法及び製造装置 - Google Patents

医療器具の製造方法及び製造装置 Download PDF

Info

Publication number
WO2019245018A1
WO2019245018A1 PCT/JP2019/024656 JP2019024656W WO2019245018A1 WO 2019245018 A1 WO2019245018 A1 WO 2019245018A1 JP 2019024656 W JP2019024656 W JP 2019024656W WO 2019245018 A1 WO2019245018 A1 WO 2019245018A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
case portion
fixing
liquid
sealing
Prior art date
Application number
PCT/JP2019/024656
Other languages
English (en)
French (fr)
Inventor
真悟 岡本
博之 川尻
孝成 西田
Original Assignee
日機装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日機装株式会社 filed Critical 日機装株式会社
Priority to CN201980041547.7A priority Critical patent/CN112292162B/zh
Priority to EP19822788.6A priority patent/EP3811988A4/en
Publication of WO2019245018A1 publication Critical patent/WO2019245018A1/ja
Priority to US17/128,705 priority patent/US11478885B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/247Positive displacement blood pumps
    • A61M60/253Positive displacement blood pumps including a displacement member directly acting on the blood
    • A61M60/268Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3639Blood pressure control, pressure transducers specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3639Blood pressure control, pressure transducers specially adapted therefor
    • A61M1/3641Pressure isolators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/247Positive displacement blood pumps
    • A61M60/253Positive displacement blood pumps including a displacement member directly acting on the blood
    • A61M60/268Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders
    • A61M60/279Peristaltic pumps, e.g. roller pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/845Constructional details other than related to driving of extracorporeal blood pumps
    • A61M60/851Valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/08Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type
    • G01L7/082Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type construction or mounting of diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2207/00Methods of manufacture, assembly or production
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2207/00Methods of manufacture, assembly or production
    • A61M2207/10Device therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/109Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/30Medical purposes thereof other than the enhancement of the cardiac output
    • A61M60/36Medical purposes thereof other than the enhancement of the cardiac output for specific blood treatment; for specific therapy
    • A61M60/37Haemodialysis, haemofiltration or diafiltration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/142Multiple part housings
    • G01L19/143Two part housings

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a medical device provided with an elastic film that partitions a first housing space covered by a first case portion and a second housing space covered by a second case portion.
  • a blood circuit for circulating the collected patient's blood extracorporeally and returning it to the body is used.
  • a blood circuit is, for example, a dialyzer (blood purifier) having a hollow fiber membrane. It is mainly composed of an arterial blood circuit and a venous blood circuit that can be connected to the blood vessel. An arterial puncture needle and a venous puncture needle are attached to each end of the arterial blood circuit and the venous blood circuit, respectively, and the patient is punctured to perform extracorporeal circulation of blood in dialysis treatment.
  • a case connectable to a blood circuit and a case mounted inside the case may be filled with blood in the blood circuit.
  • a diaphragm (membrane member) that separates a liquid phase portion and a gas phase portion that can be filled with air and that can be displaced in accordance with the pressure of the blood filled in the liquid phase portion;
  • a pressure detector that can detect the pressure of blood by detecting pressure with a pressure detection sensor has been proposed. According to such a conventional pressure detector, since the liquid phase portion and the gas phase portion are separated by the membrane member, the blood in the blood circuit is prevented while the blood is prevented from touching the air in the gas phase portion. Can be accurately detected.
  • the peripheral portions of the first case portion and the second case portion are ultrasonically welded while matching the half cases (the first case portion and the second case portion).
  • the diaphragm is sealed over the entire periphery by the seal portion formed in the first case portion or the second case portion, so that a closed space is formed between the seal portion and the fixed portion (welded portion). Therefore, there is a possibility that the pressure in the closed space may excessively increase during the welding process.
  • the pressure in the sealed space is excessively increased, for example, when performing high-pressure steam sterilization after production, when performing an annealing process, or when the use environment becomes high temperature, the pressure in the sealed space further increases.
  • the diaphragm may be displaced in the radial direction, and the sealing performance may be reduced, resulting in a defective product or a defective product.
  • the first case portion and the second case portion are fixed, when press-fitting such as ultrasonic melting is involved, the pressure rise in the sealed space is remarkable, and the possibility that the diaphragm shifts in the radial direction increases.
  • such a problem is not limited to the pressure detector provided with the diaphragm, but similarly applies to other medical instruments configured by partitioning the accommodation space in the first case portion and the second case portion with an elastic film. Is what happens.
  • the present applicant diligently studies such a medical device to suppress an excessive rise in pressure in a gap formed between the seal portion and the fixing portion, and to improve quality and reliability. Reached.
  • the present invention has been made in view of such circumstances, and aims to improve quality and reliability by suppressing an excessive rise in pressure in a gap formed between a seal portion and a fixing portion. It is an object of the present invention to provide a method and an apparatus for manufacturing a medical instrument that can be used.
  • a first case part and a second case part are formed so as to match each other, and a case having an accommodation space therein, and a first case attached to the case and covered by the first case part.
  • An elastic film formed of an elastic member that partitions a housing space and a second housing space covered by the second case portion; and a first case portion formed on respective peripheral edges of the first case portion and the second case portion.
  • a method of manufacturing a medical device comprising: a sealing portion formed inside the fixed portion at the peripheral portion of the case portion or the second case portion and sealing the elastic film sandwiched by the sandwiching surface over the entire peripheral edge.
  • the first case portion and the second case portion are fixed to a jig in a state in which the first case portion and the second case portion are aligned while the elastic film is present. Fixing the first case part and the second case part by performing fixing by the part and sealing by the seal part, and sealing at least the periphery of the first case part and the second case part fixed by the jig, The closed space is depressurized or heated.
  • the invention according to claim 3 is characterized in that, in the method for manufacturing a medical device according to claim 2, after the enclosed space is depressurized or heated, the enclosed space is pressurized or cooled.
  • the case is connectable to a liquid flow path, and the first storage space is connected to the flow path.
  • a liquid phase portion that can be filled with a liquid in the passage, a gas phase portion in which the second storage space can be filled with a gas, and the elastic film separates the liquid phase portion from the gas phase portion and forms the liquid portion. It comprises a membrane member that can be displaced in accordance with the pressure of the liquid filled in the phase portion, and comprises a pressure detector that detects the pressure of the liquid in the flow path by detecting the pressure of the gas phase portion. I do.
  • a first case portion and a second case portion are formed so as to coincide with each other, and a case having a housing space therein, and a first case attached to the case and covered by the first case portion.
  • An elastic film formed of an elastic member that partitions a housing space and a second housing space covered by the second case portion; and a first case portion formed on respective peripheral edges of the first case portion and the second case portion.
  • a medical device manufacturing device comprising: a seal portion formed inside the fixed portion at the peripheral portion of the case portion or the second case portion and sealing the elastic film sandwiched by the sandwiching surface over the entire peripheral edge.
  • a jig for fixing the first case portion and the second case portion in a matched state while the elastic film is present and at least the jig
  • a sealing portion for sealing the periphery of the first case portion and the second case portion fixed by a jig; and the decompression portion or the heating portion performs fixing by the fixing portion and sealing by the sealing portion.
  • the closed space is depressurized or heated, the closed space is pressurized or cooled.
  • the case is connectable to a liquid flow path, and the first storage space is connected to the flow path.
  • a liquid phase portion that can be filled with a liquid in the passage, a gas phase portion in which the second storage space can be filled with a gas, and the elastic film separates the liquid phase portion from the gas phase portion and forms the liquid portion. It comprises a membrane member that can be displaced in accordance with the pressure of the liquid filled in the phase portion, and comprises a pressure detector that detects the pressure of the liquid in the flow path by detecting the pressure of the gas phase portion. I do.
  • the gap formed between the fixing portion and the sealing portion is formed. Is reduced or heated, so that an excessive increase in pressure in a gap formed between the seal portion and the fixed portion is suppressed, so that quality and reliability can be improved.
  • the first case portion and the second case portion are fixed to the jig in a state where the first case portion and the second case portion are aligned with the elastic film therein, and the first case portion and the second case portion are fixed by the fixing portion and sealed by the sealing portion.
  • the first case portion and the second case portion are assembled, and at least the periphery of the first case portion and the second case portion fixed by the jig is sealed, and the sealed space is decompressed or heated, so that the depressurization in the gap is efficiently performed. Alternatively, heating can be performed.
  • the closed space is depressurized or heated, the closed space is pressurized or cooled, so that the product can be taken out after returning to a stable environment, thereby improving quality.
  • the case can be connected to the liquid flow path, the first storage space can be filled with the liquid phase in the flow path, and the second storage space can be filled with the gas.
  • the elastic film is made of a film member that separates the liquid phase portion and the gas phase portion and can be displaced in accordance with the pressure of the liquid filled in the liquid phase portion, and the elastic film is formed of a gas phase portion. Since the pressure sensor comprises a pressure detector for detecting the pressure of the liquid in the flow path by detecting the pressure, the pressure detector is capable of suppressing an excessive rise in pressure in a gap formed between the seal portion and the fixed portion. Quality and reliability can be improved.
  • FIG. 3 is a three-sided view showing a first case part of the pressure detector. 3 view showing a second case part in the same pressure detector. Plan view and front view showing a membrane member in the same pressure detector FIG.
  • FIG. 4 is an enlarged cross-sectional view showing a state before fixing by a fixing unit and sealing by a sealing unit are performed in the pressure detector.
  • FIG. 5 is an enlarged cross-sectional view showing a state where the pressure sensor has been fixed by a fixing unit and sealed by a sealing unit in the pressure detector.
  • Schematic diagram showing a manufacturing apparatus for the pressure detector Schematic diagram showing a manufacturing apparatus for the pressure detector Flow chart showing a method of manufacturing the same pressure detector (in the case of reduced pressure)
  • the flowchart which shows the manufacturing method (in the case of heating) of the same pressure detector
  • Plan view showing a diaphragm pump (a single port formed in a gas phase case) as a medical device according to another embodiment of the present invention.
  • Xc-Xc sectional view in FIG. A plan view showing a diaphragm pump (one in which five ports are formed in a gas phase part case) as a medical device according to another embodiment of the present invention.
  • the blood purification apparatus applied to the first embodiment includes a dialysis apparatus for performing dialysis treatment.
  • a blood circuit including an arterial blood circuit 1 and a venous blood circuit 2,
  • a dialyzer 3 blood purifier interposed between the side blood circuit 1 and the venous side blood circuit 2 to purify blood flowing through the blood circuit, a blood pump 4, and air provided in the venous side blood circuit 2.
  • a trap chamber 5 a dialyser body 6 for supplying dialysate to the dialyzer 3 and discharging drainage from the dialyzer 3, and a saline supply line L3 (replacement) capable of supplying a saline as a replacement fluid to the blood circuit. (Liquid supply line) and a storage section 7 that stores a physiological saline solution as a replacement liquid.
  • An arterial puncture needle a can be connected to the distal end of the arterial blood circuit 1 via a connector, and an ironing type blood pump 4 is disposed on the way.
  • the venous puncture needle b can be connected to the distal end thereof via a connector, and the air trap chamber 5 is connected on the way.
  • the air trap chamber 5 is capable of catching air bubbles in the liquid, and is provided with a filtration net (not shown) so as to catch, for example, a thrombus at the time of blood return.
  • the side of the puncture needle that removes (collects) blood is referred to as “arterial side”
  • the side of the puncture needle that returns blood is referred to as “venous side”
  • artery side artery side
  • the blood pump 4 is composed of an ironing pump disposed in the arterial blood circuit 1 and is capable of normal rotation drive and reverse rotation drive, and is capable of flowing the liquid in the blood circuit in the drive direction. That is, an ironed tube that is softer and larger in diameter than other flexible tubes that constitute the arterial blood circuit 1 is connected to the arterial blood circuit 1, and the ironed tube is connected to the blood pump 4. Is provided in the liquid feeding direction. When the blood pump 4 is driven in this way, the rollers rotate to squeeze the to-be-squeezed tube (part of the blood circuit), and the liquid inside can be caused to flow in the driving direction (the direction of rotation of the rollers). .
  • the blood pump 4 When the blood pump 4 is driven forward (left rotation in the figure) with the arterial puncture needle a and the venous puncture needle b punctured into the patient, the patient's blood passes through the arterial blood circuit 1. After the blood reaches the dialyzer 3, the blood is purified by the dialyzer 3 and returned to the patient's body through the venous blood circuit 2 while removing bubbles in the air trap chamber 5. In other words, the blood of the patient is purified by the dialyzer 3 while circulating extracorporeally from the tip of the arterial blood circuit 1 to the tip of the venous blood circuit 2 of the blood circuit. In addition, when the blood pump 4 is driven to rotate in the reverse direction (to the right in the drawing), the blood in the blood circuit (between the distal end of the arterial blood circuit 1 and the position where the blood pump 4 is disposed) can be returned to the patient. .
  • the dialyzer 3 has a blood inlet port 3a, a blood outlet port 3b, a dialysate inlet port 3c, and a dialysate outlet port 3d formed in its housing, and the arterial blood circuit 1 is connected to the blood inlet port 3a.
  • the venous blood circuit 2 is connected to the blood outlet port 3b.
  • the dialysate introduction port 3c and the dialysate outlet port 3d are connected to a dialysate introduction line L1 and a dialysate discharge line L2 extending from the dialyzer body 6, respectively.
  • a plurality of hollow fibers are accommodated in the dialyzer 3, and the inside of the hollow fibers serves as a blood flow path, and the flow of the dialysate flows between the outer peripheral surface of the hollow fibers and the inner peripheral surface of the housing. It is a road.
  • the hollow fiber is formed with a large number of minute holes (pores) penetrating the outer peripheral surface and the inner peripheral surface thereof to form a hollow fiber membrane, through which the impurities and the like in blood are dialyzed. It is configured to be able to penetrate into the liquid.
  • the dialyzer main body 6 is provided with a liquid sending section such as a compound pump across the dialysate introduction line L1 and the dialysate discharge line L2, and a dialyzer is provided in a bypass line that bypasses the liquid sending section.
  • a water removal pump is provided for removing water from the patient's blood flowing through 3.
  • one end of the dialysate introduction line L1 is connected to the dialyzer 3 (dialysate introduction port 3c), and the other end is connected to a dialysate supply device (not shown) for preparing a dialysate having a predetermined concentration.
  • dialysate discharge line L2 is connected to the dialyzer 3 (dialysate outlet port 3d), and the other end is connected to a drainage unit (not shown), and the dialysate supplied from the dialysate supply device. After reaching the dialyzer 3 through the dialysis fluid introduction line L1, it is sent to the drainage unit through the dialysis fluid discharge line L2.
  • An overflow line extends from the upper portion of the air trap chamber 5, and a clamp portion such as a solenoid valve is provided in the middle of the overflow line.
  • a clamp portion such as an electromagnetic valve, a liquid (priming liquid or the like) flowing in the blood circuit can overflow through an overflow line.
  • physiological saline supply line L3 substitution liquid supply line
  • a flow path for example, a flexible tube or the like
  • the other end of the physiological saline supply line L3 is connected to a storage section 7 (a so-called “saline bag”) that stores a predetermined amount of physiological saline, and an air trap chamber 8 is connected in the middle. ing.
  • the physiological saline solution supply line L3 is provided with a clamp 9 (for example, an electromagnetic valve).
  • the clamp portion 9 is provided so as to open and close the physiological saline supply line L3, and can close and open the flow path.
  • By opening and closing the clamp portion 9, the flow of the physiological saline supply line L3 is controlled. It is possible to arbitrarily switch between a closed state in which the road is closed and a flow state in which a physiological saline solution (substitution liquid) can flow.
  • general-purpose means such as forceps capable of closing and opening the flow path of the physiological saline solution supply line L3 by manual operation may be used.
  • a pressure detector 10 which is a medical device is connected to the blood circuit applied to the present embodiment.
  • the pressure detector 10 is connected to a position between the dialyzer 3 and the air trap chamber 5 in the venous blood circuit 2 and is configured to detect a pressure of blood flowing through the venous blood circuit 2 (blood circuit).
  • the pressure detector 10 includes a case C connectable to a liquid flow path (in the present embodiment, a venous blood circuit 2 (blood circuit)), A liquid phase part S1 that is attached in the C and can fill the liquid in the flow path (in this embodiment, blood of the venous blood circuit 2 (blood circuit)) and a gas phase part S2 that can fill the air.
  • a membrane member M which can be displaced in accordance with the pressure of the liquid (blood) filled in the liquid phase portion S1 and detects the pressure of the gas phase portion S2 with the pressure detection sensor P.
  • the pressure of the liquid in the (venous blood circuit 2) can be detected.
  • the case C is formed of a hollow molded part obtained by molding a predetermined resin material or the like, and includes a liquid phase case Ca forming the liquid phase part S1 and a gas phase part case Cb forming the gas phase part S2.
  • the case C is formed so as to match the liquid phase case Ca (first case portion) and the gas phase portion case Cb (second case portion), and has a housing space therein.
  • the liquid phase case Ca is formed integrally with an inflow port C1 and an outflow port C2 which can be connected to the liquid flow path and can communicate with the liquid phase section S1, and the gas phase case Cb is connected to a piping section to be described later.
  • a connection port C3 that can be connected to one end of K and can communicate with the gas phase part S2 is formed integrally.
  • the inflow port C1 and the outflow port C2 may be configured so that the inflow and outflow of the liquid are reversed (that is, the liquid flows out through the inflow port C1 and the liquid flows through the outflow port C2).
  • An annular holding surface m1 (see FIG. 7) is formed on the outer peripheral edge of the liquid phase case Ca, and an annular holding surface m2 (see FIG. 7) is formed on the outer peripheral edge of the gas phase case Cb. 8) is formed, and when the liquid phase case Ca and the gas phase case Cb are assembled in conformity with each other, the peripheral edge Ma of the membrane member M is sandwiched between the sandwiching surfaces m1 and m2. , Can be mounted while sealing the membrane member M.
  • the space formed inside the case C is partitioned (defined) by the membrane member M into the liquid phase part S1 and the gas phase part S2.
  • the membrane member M is formed of a diaphragm mounted in the case C, and is formed of a flexible material that can be displaced or deformed following a change in the pressure of the liquid phase part S1 or the gas phase part S2.
  • the membrane member M according to the present embodiment includes a liquid phase part S1 (first accommodation space) and a gas phase part case Cb (second space) that are attached to the case C and covered with the liquid phase case Ca (first case part).
  • the case part) is formed of an elastic member that partitions the gas phase part S2 (second accommodation space) covered with the case part).
  • the peripheral part Ma is formed to protrude to the side, and the clamping surface m1, m2.
  • the gas phase case Cb has an opening Cb1 (see FIG. 8) formed substantially at the center of the bottom surface thereof.
  • the opening Cb1 is formed in the inner peripheral surface (bottom surface) of the gas phase part case Cb, connects the flow path of the connection port C3 to the gas phase part S2, and opens the gas phase part S2 according to the displacement of the membrane member M. Air (gas) can flow in or out.
  • the pressure detection sensor P pressure detection section
  • connection port C3 is not limited to the one connected to the pipe K, and may be connected to another means capable of transmitting the pressure of the gas phase S2 to the pressure sensor P. Further, as shown in FIG. 8, a plurality of ribs Cb2 projecting radially around the opening Cb1 are formed around the opening Cb1 in the concave portion Cb4 of the gas phase part S2.
  • the inflow port C1 includes a portion (projection) that can be connected to a liquid flow path (blood circuit), and as shown in FIGS. 4 and 5, an inflow port Ca1 ( (See FIG. 7) and a connection part C1b that can be connected to a flow path (blood circuit) through which a liquid (blood) flows from a liquid (blood). That is, the flow path part C1a and the connection part C1b are formed in the protruding part constituting the inflow port C1 so as to communicate with each other in the axial direction, and the flow path is formed by connecting the tube constituting the flow path to the connection part C1b. Can flow through the flow path section C1a, and can flow into the liquid phase section S1 from the inflow port Ca1.
  • the inflow port C1 may have a concave shape for connecting a tube constituting a flow path.
  • the outflow port C2 includes a portion (projection) that can be connected to a liquid flow path (blood circuit), and, as shown in the figure, a liquid (blood) flowing into the liquid phase portion S1. It has a flow path portion C2a that flows out from the outlet Ca2 (see FIG. 7), and a connection portion C2b that can be connected to the flow path (blood circuit). That is, the flow path portion C2a and the connection portion C2b are formed in the protruding portion forming the outflow port C2 so as to communicate with each other in the axial direction, and the liquid phase is formed by connecting the tube forming the flow path to the connection portion C2b.
  • the liquid that has flowed into the section S1 can be circulated through the flow path section C2a and flow out to the downstream flow path (blood circuit).
  • the outflow port C2 may have a concave shape for connecting a tube constituting the flow path.
  • fixed portions Q2 and Q3 are formed at the peripheral edges of the liquid phase case Ca (first case portion) and the gas phase portion case Cb (second case portion).
  • a seal portion Q1 is formed inside the fixed portions Q2, Q3 (inside of the liquid phase case Ca and the gas phase case Cb) at the peripheral edge of the liquid phase case Ca.
  • the seal portion Q1 is formed only on the periphery of the liquid phase case Ca, but is formed only on the periphery of the gas phase case Cb and inside the fixed portions Q2 and Q3.
  • the peripheral portions of the liquid phase case Ca and the gas phase case Cb which are formed inside the fixed portions Q2 and Q3, respectively.
  • the fixing portions Q2 and Q3 are formed on the respective peripheral portions of the liquid phase case Ca and the gas phase case Cb, and are portions for fixing the liquid phase case Ca and the gas phase case Cb in a matched state.
  • the liquid phase case Ca and the gas phase case Cb face each other in a state where they match with each other, and as shown in FIG.
  • the phase case Cb is pressed by the ultrasonic waves while being pressed in a direction in which the phase case Cb approaches each other, and is melted by the application of the ultrasonic wave, so that the liquid phase case Ca and the gas phase case Cb are welded. That is, the liquid phase case Ca and the gas phase case Cb according to the present embodiment are fixed (welded) while being pressed against each other by ultrasonic welding, and are accommodated therein (the liquid phase part S1 and the gas phase part S2). Is formed.
  • the seal portion Q1 is formed inside the fixed portions Q2, Q3 in the peripheral portion of the liquid phase case Ca or the gas phase portion Cb, and seals the film member M sandwiched between the sandwiching surfaces m1, m2 over the entire periphery.
  • the portion is formed of a convex portion projecting from the holding surface m1 of the liquid phase case Ca toward the holding surface m2 of the gas phase case Cb.
  • FIG. 11 in a process in which the liquid phase case Ca and the gas phase case Cb are pressed in a direction approaching each other, ultrasonic waves are applied, and the fixing portions Q1 and Q2 are melted and fixed, and the film member is fixed.
  • the peripheral portion Ma of M is compressed and sealed in the thickness direction.
  • the fixing portions Q2 and Q3 are melted and the liquid phase case Ca and the gas phase portion case Cb are fixed and the sealing by the sealing portion Q1 is performed, the fixing portions Q2 and Q3 and the sealing portion Q1 are connected.
  • a gap ⁇ is formed between them.
  • the gap ⁇ is formed by a space formed in a process where the liquid phase case Ca and the gas phase case Cb approach each other. Therefore, when pressure reduction or heating according to the present embodiment is not performed, the pressure may increase excessively.
  • the manufacturing apparatus includes an ultrasonic welding device 11, a jig 12, a sealing unit R, and a decompression unit 13, and includes a fixing unit (Q2, Q3).
  • a fixing unit Q2, Q3
  • the jig 12 is a mounting portion 12a that positions and positions the liquid phase portion case Ca (first case portion) and the gas phase portion case Cb (second case portion) that are matched with the film member M inside. And is installed at a position below the ultrasonic welding device 11.
  • the ultrasonic welding device 11 includes a horn 11 a to which ultrasonic waves can be applied, and includes a liquid phase case Ca (first case section) fixed to the mounting portion 12 a of the jig 12 and a gas phase
  • the horn 11a is configured to be able to apply ultrasonic waves by pressing the horn 11a while making contact with the outer case Cb (second case portion).
  • the fixed parts Q2 and Q3 are pressed against each other by the action of the ultrasonic wave, as shown in FIGS. While being fixed (welded) while being sealed, the seal portion Q1 is compressed by the pressing of the horn 11a to be sealed, and is configured so as to form a housing space (liquid phase portion S1 and gas phase portion S2) therein. I have.
  • the sealing portion R is composed of a container or the like capable of forming a sealed space inside, and as shown in FIG. 13, at least a liquid phase case Ca (first case portion) and a gas phase portion case Cb fixed by a jig 12. (The second case portion) can be hermetically sealed.
  • the sealing portion R includes an opening / closing door and the like. The opening / closing door is opened and the liquid phase case Ca (first case portion) and the gas phase portion case Cb (second case portion) are closed. It is possible to carry in and carry in, and the closed door can be closed to form a closed space.
  • the pressure reducing unit 13 is formed of, for example, a blower capable of discharging the air in the sealed portion R to the outside to reduce the pressure, and performs the fixing by the fixing portions Q2 and Q3 and the sealing by the sealing portion Q1 to perform the liquid phase case Ca (the first case).
  • the case part and the gas phase part case Cb (the second case part) are assembled, the pressure in the closed space of the closed part R is reduced. Accordingly, when the liquid phase casing Ca (first case section) and the gas phase casing Cb (second case section) are assembled by performing fixing by the fixing sections Q2 and Q3 and sealing by the sealing section Q1, the fixing sections Q2 and It is possible to reduce the pressure in the gap ⁇ formed between Q3 and the seal portion Q1.
  • the heating unit 13 may be used instead of the pressure reducing unit 13.
  • the heating unit 13 includes, for example, a heater capable of heating the air in the sealed portion R.
  • the heating portion 13 performs fixing by the fixing portions Q2 and Q3 and sealing by the sealing portion Q1 to form the liquid phase case Ca (first case portion) and the air.
  • the phase part case Cb (second case part) is assembled, the closed space of the closed part R is heated. Accordingly, when the liquid phase casing Ca (first case section) and the gas phase casing Cb (second case section) are assembled by performing fixing by the fixing sections Q2 and Q3 and sealing by the sealing section Q1, the fixing sections Q2 and The space ⁇ formed between Q3 and the seal portion Q1 can be heated.
  • the pressure in the closed space is reduced by operating the pressure reducing unit 13 with the inside of the closed portion R as a closed space (S4).
  • the ultrasonic welding device 11 is operated to press the horn 11a against the liquid phase case Ca (first case portion), so that the fixing portions Q2 and Q3 are fixed while being pressed against each other by the action of ultrasonic waves. (Welding), and the seal portion Q1 is compressed by the pressing of the horn 11a to be sealed.
  • the liquid phase case Ca (first case part) and the gas phase part case Cb (second case part) can be joined and assembled (S5).
  • the sealed space in the sealed portion R is pressurized (S6), and then the closed portion R is opened and closed.
  • the assembled product is taken out of the sealed portion R (S7).
  • S6 it is preferable to pressurize to, for example, the atmospheric pressure, but it is sufficient to pressurize to a pressure at which the opening / closing door of the closed part R can be opened.
  • a series of welding steps are completed, and in the assembled product, the inside of the gap ⁇ formed between the fixing portions Q2, Q3 and the sealing portion Q1 is reduced to the atmospheric pressure.
  • the gas phase case Cb may be set in S1
  • the liquid phase case Ca may be set on the membrane member M in S3. Step S6 can be omitted.
  • the membrane member M is installed in the fixed liquid phase case Ca (S2). Then, by installing the gas phase case Cb on the membrane member M (S3), the liquid phase case Ca (first case section) and the gas phase case Cb (second case) while the membrane member M is contained. Part) is matched.
  • the heating unit 13 is operated with the inside of the sealed portion R as a sealed space to heat the sealed space (S4). Since the sealed space is decompressed by such heating, the ultrasonic welding device 11 is operated to press the horn 11a against the liquid phase case Ca (first case portion) in the decompressed state, thereby fixing the fixed portions Q2 and Q3. Are fixed (welded) while being pressed against each other by the action of ultrasonic waves, and the seal portion Q1 is compressed by the pressing of the horn 11a to be sealed. Thereby, the liquid phase case Ca (first case part) and the gas phase part case Cb (second case part) can be joined and assembled (S5).
  • step S6 When the assembling of the liquid phase case Ca (first case portion) and the gas phase portion case Cb (second case portion) is completed, the closed space in the closed portion R is cooled (S6), and the opening / closing door of the closed portion R is opened.
  • the assembled product is taken out of the sealed portion R by opening the components (S7).
  • step S6 for example, it is preferable to cool to room temperature (the temperature outside the sealed portion R), but it is sufficient to cool the product to a temperature at which the product can be grasped by hand when the product is taken out from the sealed portion R.
  • a series of welding steps are completed, and in the assembled product, the inside of the gap ⁇ formed between the fixing portions Q2, Q3 and the sealing portion Q1 is reduced to the atmospheric pressure.
  • the gas phase case Cb may be set in S1
  • the liquid phase case Ca may be set on the membrane member M in S3. Step S6 can be omitted.
  • the pressure detector 10 which is a medical device manufactured as described above, is subjected to an annealing step of removing internal (residual) stress in the resin by heating after being heated below the glass transition point or softening point and then cooling. Be done. Then, after the annealing step, high-pressure steam sterilization for sterilizing by heating in saturated steam is performed. Such high-pressure steam sterilization is performed in an environment where the boiling point is raised as a high-pressure environment and moisture can be maintained even at a high temperature. After that, the pressure detector 10 which is a medical device which has been wet by the high-pressure steam sterilization is dried through a drying process.
  • the liquid-phase case Ca (first case) and the gas-phase case Cb (second case) are fixed (welded) by the fixing portions Q2 and Q3 and sealed by the sealing portion Q1.
  • the inside of the gap ⁇ formed between the fixed parts Q2, Q3 and the seal part Q1 is depressurized or heated, so that the liquid phase case Ca (first case part) and the gas phase part case Cb (second case) Part) during the annealing step or high-pressure steam sterilization after assembly, or during use in a high-temperature environment, excessive pressure increase in the gap ⁇ formed between the seal part Q1 and the fixed parts Q2, Q3. , Quality and reliability can be improved.
  • liquid phase case Ca (first case section) and the gas phase section case Cb (second case section) are fixed to the jig 12 while the membrane member M (elastic membrane) is contained therein, and the fixing section is fixed.
  • the liquid phase case Ca (first case) and the gas phase case Cb (second case) are assembled by fixing (welding) by Q2 and Q3 and sealing by the seal portion Q1, and fixed by at least the jig 12.
  • the surroundings of the liquid phase portion case Ca (first case portion) and the gas phase portion case Cb (second case portion) are sealed, and the sealed space is depressurized or heated, so that the depressurization or heating in the gap ⁇ is efficiently performed. It can be performed.
  • the enclosed space is pressurized or cooled, so that the product can be taken out after returning to a stable environment, and the quality can be improved. .
  • the case C according to the present embodiment is connectable to the liquid flow path, and the liquid phase part S1 in which the first storage space can fill the liquid in the flow path, and the gas phase in which the second storage space can fill the gas.
  • the elastic film is made of a membrane member M which separates a liquid phase portion and a gas phase portion and can be displaced in accordance with the pressure of the liquid filled in the liquid phase portion.
  • the pressure detector 10 that detects the pressure of the liquid in the flow path by detecting the pressure of the liquid, thereby suppressing an excessive increase in pressure in the gap ⁇ formed between the seal portion Q1 and the fixed portions Q2 and Q3. By doing so, the quality and reliability of the pressure detector 10 can be improved.
  • the sealed portion R may be configured such that a range including the entire ultrasonic welding device 11 and the jig 12 is a closed space.
  • the atmosphere of the entire room in which the liquid phase case Ca (first case section) and the gas phase section case Cb (second case section) are assembled may be depressurized and heated.
  • the liquid portion case Ca (first case portion) and the gas phase portion case Cb (second case portion) are welded by melting the fixing portions Q2 and Q3 by ultrasonic waves.
  • the fixing method is not limited to the ultrasonic welding, but may be another fixing method (laser welding or assembling by press-fitting or screwing).
  • the pressure detector 10 is connected to a position between the dialyzer 3 and the air trap chamber 5 in the venous blood circuit 2, but is connected to another position in the blood circuit (for example, the arterial blood). (A position between the tip of the circuit 1 and the blood pump 4 and a position between the blood pump 4 and the dialyzer 3 in the arterial blood circuit 1).
  • the blood circuit to which the present pressure detector 10 is connected may be of another form, for example, even if the air trap chamber 5 is not connected and the present pressure detector 10 is connected instead. Good.
  • the inflow port C1 and the outflow port C2 formed in the liquid phase case Ca are not limited to two as in the above-described embodiment.
  • the inflow port C1 and the outflow port C2 formed in the liquid phase case Ca are not limited to two as in the above-described embodiment.
  • the number of ports formed in the liquid phase case Ca is not limited to five, but may be four, five, or seven or more.
  • a case formed so as to match the first case portion and the second case portion and having an accommodation space therein;
  • An elastic film attached to the case and formed of an elastic member for defining a first housing space covered by the first case portion and a second housing space covered by the second case portion; a first case portion and a second case portion And a fixing portion formed on each of the peripheral portions of the first case portion and the second case portion so as to match each other, and an elastic film formed on each of the peripheral portions of the first and second case portions.
  • a seal portion formed inside the fixed portion at the peripheral portion of the first case portion or the second case portion and sealing the elastic film sandwiched by the clamp surface over the entire periphery.
  • Ingredients e.g., a diaphragm pump or the like
  • a diaphragm pump or the like can be applied to.
  • an air pump 20 and a pressure sensor 21 are connected to a connection port C3, a port C4 is connected to a liquid flow path, and a valve is provided upstream of the flow path. Va, a valve Vb may be attached to the downstream side for control.
  • the air pump 20 is driven while the valve Va is in the open state and the valve Vb is in the closed state, and the membrane member M is moved in a direction in which the membrane member M is stuck to the wall surface of the gas phase part case Cb (second case part).
  • the air pump 20 While the liquid is introduced into the liquid phase case Ca, the air pump 20 is driven to the opposite side while the valve Va is closed and the valve Vb is opened, and the membrane member M is moved to the liquid phase case Ca (first case portion).
  • the liquid in the liquid phase case Ca can be ejected by moving the liquid in the direction of sticking to the wall surface.
  • the pressure sensor 21 detects that the membrane member M is stuck to the wall surface of the liquid phase case Ca (first case) or the gas phase case Cb (second case). However, the pressure sensor 21 may not be provided.
  • the air pump 20 and the pressure sensor 21 are connected to the connection port C3, and the ports C5 to C9 are connected to the liquid flow path, respectively.
  • Valves V1 to V5 may be attached to the road for control.
  • the air pump 20 is driven while the valve V1 is in the open state and the other valves V2 to V5 are in the closed state, and the membrane member M is moved in a direction in which the film member M is stuck to the wall surface of the gas phase part case Cb (second case part).
  • the liquid in the liquid phase case Ca can be discharged by moving in the direction of sticking to the wall surface of Ca (first case portion).
  • the pressure sensor 21 detects that the membrane member M is stuck to the wall surface of the liquid phase case Ca (first case) or the gas phase case Cb (second case).
  • the pressure sensor 21 may not be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Anesthesiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Vascular Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • External Artificial Organs (AREA)

Abstract

本発明は、第1ケース部及び第2ケース部を合致して形成され、内部に収容空間を有するケースと、前記ケースに取り付けられて前記第1ケース部で覆われた第1収容空間及び第2ケース部で覆われた第2収容空間を区画する弾性部材から成る弾性膜と、前記第1ケース部及び第2ケース部のそれぞれの周縁部に形成され、当該第1ケース部及び第2ケース部を合致した状態で固定する固定部と、前記第1ケース部及び第2ケース部のそれぞれの周縁部に形成され、前記弾性膜の周縁を挟持する挟持面と、前記第1ケース部又は第2ケース部の周縁部における前記固定部より内側に形成され、前記挟持面で挟持された前記弾性膜を全周縁に亘ってシールするシール部と、を具備した医療器具の製造方法において、前記固定部による固定及び前記シール部によるシールを行って前記第1ケース部及び第2ケース部を組み付ける際、前記固定部とシール部との間に形成される空隙内を減圧又は加熱することを特徴とする医療器具の製造方法である。

Description

医療器具の製造方法及び製造装置
 本発明は、第1ケース部で覆われた第1収容空間及び第2ケース部で覆われた第2収容空間を区画する弾性膜を具備した医療器具の製造方法及び製造装置に関するものである。
 一般に、透析治療時においては、採取した患者の血液を体外循環させて再び体内に戻すための血液回路が用いられており、かかる血液回路は、例えば中空糸膜を具備したダイアライザ(血液浄化器)と接続し得る動脈側血液回路及び静脈側血液回路から主に構成されている。これら動脈側血液回路及び静脈側血液回路の各先端には、動脈側穿刺針及び静脈側穿刺針が取り付けられ、それぞれが患者に穿刺されて透析治療における血液の体外循環が行われることとなる。
 血液回路を体外循環する血液の圧力を検出するため、例えば特許文献1にて開示されているように、血液回路に接続可能なケースと、ケース内に取り付けられ、血液回路の血液を充填し得る液相部と、空気を充填し得る気相部とを区画するとともに、液相部に充填された血液の圧力に応じて変位可能なダイヤフラム(膜部材)とを具備し、気相部の圧力を圧力検出センサにて検出することにより血液の圧力を検出し得る圧力検出器が提案されている。かかる従来の圧力検出器によれば、液相部と気相部とが膜部材にて区画されているため、血液が気相部内の空気に触れてしまうのを回避しつつ血液回路内の血液の圧力を精度よく検出することができる。
特表2017-504389号公報
 しかしながら、上記従来の圧力検出器においては、半割りのケース(第1ケース部及び第2ケース部)を合致させつつそれら第1ケース部及び第2ケース部の周縁部を超音波溶着等にて固定させる際、第1ケース部又は第2ケース部に形成されたシール部によりダイヤフラムを全周縁に亘ってシールさせていたので、シール部と固定部(溶着部)との間に密閉空間が形成され、溶着の過程において密閉空間の圧力が過度に上昇してしまう虞があった。
 しかして、密閉空間の圧力が過度に上昇してしまうと、例えば、製造後の高圧蒸気滅菌を施す場合、アニール処理を施す場合又は使用環境が高温となる場合、密閉空間の圧力が更に上昇してダイヤフラムが径方向にずれてしまい、シール性能が低下して不良品又は故障品となってしまう虞があった。特に、第1ケース部及び第2ケース部を固定させる際、超音波溶融等の圧入を伴う場合、密閉空間の圧力上昇は顕著であり、ダイヤフラムが径方向にずれる可能性は高くなってしまう。
 なお、このような問題は、ダイヤフラムを具備した圧力検出器に限らず、第1ケース部及び第2ケース部内の収容空間を弾性膜にて区画して構成された他の医療器具においても同様に生じるものである。本出願人は、このような医療器具に対して、シール部と固定部との間に形成された空隙内の過度な圧力上昇を抑制し、品質向上及び信頼性向上を図ることを鋭意検討するに至った。
 本発明は、このような事情に鑑みてなされたもので、シール部と固定部との間に形成された空隙内の過度な圧力上昇を抑制することにより、品質向上及び信頼性向上を図ることができる医療器具の製造方法及び製造装置を提供することにある。
 請求項1記載の発明は、第1ケース部及び第2ケース部を合致して形成され、内部に収容空間を有するケースと、前記ケースに取り付けられて前記第1ケース部で覆われた第1収容空間及び第2ケース部で覆われた第2収容空間を区画する弾性部材から成る弾性膜と、前記第1ケース部及び第2ケース部のそれぞれの周縁部に形成され、当該第1ケース部及び第2ケース部を合致した状態で固定する固定部と、前記第1ケース部及び第2ケース部のそれぞれの周縁部に形成され、前記弾性膜の周縁を挟持する挟持面と、前記第1ケース部又は第2ケース部の周縁部における前記固定部より内側に形成され、前記挟持面で挟持された前記弾性膜を全周縁に亘ってシールするシール部とを具備した医療器具の製造方法において、前記固定部による固定及び前記シール部によるシールを行って前記第1ケース部及び第2ケース部を組み付ける際、前記固定部とシール部との間に形成される空隙内を減圧又は加熱することを特徴とする。
 請求項2記載の発明は、請求項1記載の医療器具の製造方法において、前記弾性膜を内在させつつ前記第1ケース部及び第2ケース部を合致した状態で治具に固定させ、前記固定部による固定及び前記シール部によるシールを行って前記第1ケース部及び第2ケース部を組み付けるとともに、少なくとも前記治具で固定された前記第1ケース部及び第2ケース部の周囲を密閉し、その密閉空間を減圧又は加熱することを特徴とする。
 請求項3記載の発明は、請求項2記載の医療器具の製造方法において、前記密閉空間を減圧又は加熱した後、当該密閉空間を加圧又は冷却することを特徴とする。
 請求項4記載の発明は、請求項1~3の何れか1つに記載の医療器具の製造方法において、前記ケースは、液体の流路に接続可能とされ、前記第1収容空間が前記流路の液体を充填し得る液相部、前記第2収容空間が気体を充填し得る気相部とされるとともに、前記弾性膜は、前記液相部と気相部とを区画して前記液相部に充填された液体の圧力に応じて変位可能な膜部材から成り、前記気相部の圧力を検出することにより前記流路における液体の圧力を検出する圧力検出器から成ることを特徴とする。
 請求項5記載の発明は、第1ケース部及び第2ケース部を合致して形成され、内部に収容空間を有するケースと、前記ケースに取り付けられて前記第1ケース部で覆われた第1収容空間及び第2ケース部で覆われた第2収容空間を区画する弾性部材から成る弾性膜と、前記第1ケース部及び第2ケース部のそれぞれの周縁部に形成され、当該第1ケース部及び第2ケース部を合致した状態で固定する固定部と、前記第1ケース部及び第2ケース部のそれぞれの周縁部に形成され、前記弾性膜の周縁を挟持する挟持面と、前記第1ケース部又は第2ケース部の周縁部における前記固定部より内側に形成され、前記挟持面で挟持された前記弾性膜を全周縁に亘ってシールするシール部とを具備した医療器具の製造装置において、前記固定部による固定及び前記シール部によるシールを行って前記第1ケース部及び第2ケース部を組み付ける際、前記固定部とシール部との間に形成される空隙内を減圧する減圧部又は当該空隙内を加熱する加熱部を備えたことを特徴とする。
 請求項6記載の発明は、請求項5記載の医療器具の製造装置において、前記弾性膜を内在させつつ前記第1ケース部及び第2ケース部を合致した状態で固定させる治具と、少なくとも前記治具で固定された前記第1ケース部及び第2ケース部の周囲を密閉する密閉部とを具備するとともに、前記減圧部又は加熱部は、前記固定部による固定及び前記シール部によるシールを行って前記第1ケース部及び第2ケース部を組み付ける際、前記密閉部の密閉空間を減圧又は加熱することを特徴とする。
 請求項7記載の発明は、請求項6記載の医療器具の製造装置において、前記密閉空間を減圧又は加熱した後、当該密閉空間を加圧又は冷却することを特徴とする。
 請求項8記載の発明は、請求項5~7の何れか1つに記載の医療器具の製造装置において、前記ケースは、液体の流路に接続可能とされ、前記第1収容空間が前記流路の液体を充填し得る液相部、前記第2収容空間が気体を充填し得る気相部とされるとともに、前記弾性膜は、前記液相部と気相部とを区画して前記液相部に充填された液体の圧力に応じて変位可能な膜部材から成り、前記気相部の圧力を検出することにより前記流路における液体の圧力を検出する圧力検出器から成ることを特徴とする。
 請求項1、5の発明によれば、固定部による固定及びシール部によるシールを行って第1ケース部及び第2ケース部を組み付ける際、固定部とシール部との間に形成される空隙内を減圧又は加熱するので、シール部と固定部との間に形成された空隙内の過度な圧力上昇を抑制することにより、品質向上及び信頼性向上を図ることができる。
 請求項2、6の発明によれば、弾性膜を内在させつつ第1ケース部及び第2ケース部を合致した状態で治具に固定させ、固定部による固定及びシール部によるシールを行って第1ケース部及び第2ケース部を組み付けるとともに、少なくとも治具で固定された第1ケース部及び第2ケース部の周囲を密閉し、その密閉空間を減圧又は加熱するので、効率よく空隙内の減圧又は加熱を行うことができる。
 請求項3、7の発明によれば、密閉空間を減圧又は加熱した後、当該密閉空間を加圧又は冷却するので、安定した環境に戻してから製品を取り出すことができ、品質向上を図ることができる。
 請求項4、8の発明によれば、ケースは、液体の流路に接続可能とされ、第1収容空間が流路の液体を充填し得る液相部、第2収容空間が気体を充填し得る気相部とされるとともに、弾性膜は、液相部と気相部とを区画して液相部に充填された液体の圧力に応じて変位可能な膜部材から成り、気相部の圧力を検出することにより流路における液体の圧力を検出する圧力検出器から成るので、シール部と固定部との間に形成された空隙内の過度な圧力上昇を抑制することにより、圧力検出器の品質向上及び信頼性向上を図ることができる。
本発明の第1の実施形態に係る医療器具としての圧力検出器が適用される透析装置(血液浄化装置)を示す模式図 同圧力検出器を示す平面図 同圧力検出器を示す正面図 図2におけるIV-IV線断面図(膜部材が液相部側に変位した状態) 図2におけるIV-IV線断面図(膜部材が気相部側に変位した状態) 図2におけるVI-VI線断面図 同圧力検出器における第1ケース部を示す3面図 同圧力検出器における第2ケース部を示す3面図 同圧力検出器における膜部材を示す平面図及び正面図 同圧力検出器における固定部による固定及びシール部によるシールが行われる前の状態を示す拡大断面図 同圧力検出器における固定部による固定及びシール部によるシールが行われた状態を示す拡大断面図 同圧力検出器の製造装置を示す模式図 同圧力検出器の製造装置を示す模式図 同圧力検出器の製造方法(減圧の場合)を示すフローチャート 同圧力検出器の製造方法(加熱の場合)を示すフローチャート 本発明の他の実施形態に係る医療器具としてのダイアフラムポンプ(気相部ケースに単一のポートが形成されたもの)を示す平面図 図16におけるXc-Xc断面図 本発明の他の実施形態に係る医療器具としてのダイアフラムポンプ(気相部ケースに5つのポートが形成されたもの)を示す平面図 図18におけるXd-Xd断面図
 以下、本発明の実施形態について図面を参照しながら具体的に説明する。
 第1の実施形態に適用される血液浄化装置は、透析治療を行うための透析装置から成り、図1に示すように、動脈側血液回路1及び静脈側血液回路2から成る血液回路と、動脈側血液回路1及び静脈側血液回路2の間に介装されて血液回路を流れる血液を浄化するダイアライザ3(血液浄化器)と、血液ポンプ4と、静脈側血液回路2に配設されたエアトラップチャンバ5と、ダイアライザ3に透析液を供給及びダイアライザ3からの排液を排出させる透析装置本体6と、置換液としての生理食塩液を血液回路に供給し得る生理食塩液供給ラインL3(置換液供給ライン)と、置換液としての生理食塩液を収容した収容部7とから主に構成されている。
 動脈側血液回路1には、その先端に動脈側穿刺針aがコネクタを介して接続可能とされるとともに、途中にしごき型の血液ポンプ4が配設されている一方、静脈側血液回路2には、その先端に静脈側穿刺針bがコネクタを介して接続可能とされるとともに、途中にエアトラップチャンバ5が接続されている。エアトラップチャンバ5は、液体内の気泡を捕捉し得るとともに、濾過網(不図示)が配設されており、例えば返血時の血栓等を捕捉し得るようになっている。なお、本明細書においては、血液を脱血(採血)する穿刺針の側を「動脈側」と称し、血液を返血する穿刺針の側を「静脈側」と称しており、「動脈側」及び「静脈側」とは、穿刺の対象となる血管が動脈及び静脈の何れかによって定義されるものではない。
 血液ポンプ4は、動脈側血液回路1に配設されたしごき型ポンプから成り、正転駆動及び逆転駆動可能とされるとともに、血液回路内の液体を駆動方向に流動させ得るものである。すなわち、動脈側血液回路1には、当該動脈側血液回路1を構成する他の可撓性チューブより軟質かつ大径の被しごきチューブが接続されており、血液ポンプ4には、この被しごきチューブを送液方向にしごくためのローラが配設されているのである。このように血液ポンプ4が駆動すると、そのローラが回動して被しごきチューブ(血液回路の一部)をしごき、内部の液体を駆動方向(ローラの回転方向)に流動させることができるのである。
 しかして、動脈側穿刺針a及び静脈側穿刺針bを患者に穿刺した状態で、血液ポンプ4を正転駆動(図中左回転)させると、患者の血液は、動脈側血液回路1を通ってダイアライザ3に至った後、該ダイアライザ3によって血液浄化が施され、エアトラップチャンバ5で除泡がなされつつ静脈側血液回路2を通って患者の体内に戻る。すなわち、患者の血液を血液回路の動脈側血液回路1の先端から静脈側血液回路2の先端まで体外循環させつつダイアライザ3にて浄化するのである。また、血液ポンプ4を逆転駆動(図中右回転)させると、血液回路(動脈側血液回路1における先端と血液ポンプ4の配設位置との間)の血液を患者に返血することができる。
 ダイアライザ3は、その筐体部に、血液導入ポート3a、血液導出ポート3b、透析液導入ポート3c及び透析液導出ポート3dが形成されており、このうち血液導入ポート3aには動脈側血液回路1が、血液導出ポート3bには静脈側血液回路2がそれぞれ接続されている。また、透析液導入ポート3c及び透析液導出ポート3dは、透析装置本体6から延設された透析液導入ラインL1及び透析液排出ラインL2とそれぞれ接続されている。
 ダイアライザ3内には、複数の中空糸が収容されており、該中空糸内部が血液の流路とされるとともに、中空糸外周面と筐体部の内周面との間が透析液の流路とされている。中空糸には、その外周面と内周面とを貫通した微少な孔(ポア)が多数形成されて中空糸膜を形成しており、当該中空糸膜を介して血液中の不純物等が透析液内に透過し得るよう構成されている。
 一方、透析装置本体6には、透析液導入ラインL1及び透析液排出ラインL2に跨って複式ポンプ等の送液部が配設されているとともに、当該送液部をバイパスするバイパスラインにはダイアライザ3中を流れる患者の血液から水分を除去するための除水ポンプが配設されている。さらに、透析液導入ラインL1の一端がダイアライザ3(透析液導入ポート3c)に接続されるとともに、他端が所定濃度の透析液を調製する透析液供給装置(不図示)に接続されている。また、透析液排出ラインL2の一端は、ダイアライザ3(透析液導出ポート3d)に接続されるとともに、他端が図示しない排液部と接続されており、透析液供給装置から供給された透析液が透析液導入ラインL1を通ってダイアライザ3に至った後、透析液排出ラインL2を通って排液部に送られるようになっている。
 なお、エアトラップチャンバ5の上部からは、オーバーフローラインが延設されており、その途中に電磁弁等のクランプ部が配設されている。そして、電磁弁等のクランプ部を開状態とすることにより、オーバーフローラインを介して、血液回路中を流れる液体(プライミング液等)をオーバーフローし得るようになっている。
 生理食塩液供給ラインL3(置換液供給ライン)は、動脈側血液回路1における血液ポンプ4の配設位置と当該動脈側血液回路1の先端との間においてT字管等にて一端が接続され、血液回路内の血液と置換させるための生理食塩液(置換液)を当該動脈側血液回路1に供給可能な流路(例えば可撓性チューブ等)から成るものである。かかる生理食塩液供給ラインL3の他端には、所定量の生理食塩液を収容した収容部7(所謂「生食バッグ」)が接続されているとともに、途中には、エアトラップチャンバ8が接続されている。
 また、本実施形態に係る生理食塩液供給ラインL3には、クランプ部9(例えば電磁弁等)が配設されている。かかるクランプ部9は、生理食塩液供給ラインL3を開閉可能として設けられ、流路の閉塞及び開放を行わせ得るもので、当該クランプ部9を開閉させることにより、生理食塩液供給ラインL3の流路を閉塞させる閉塞状態と生理食塩液(置換液)を流通させ得る流通状態とを任意に切り替え可能とされている。なお、このようなクランプ部9に代えて、手動操作により生理食塩液供給ラインL3の流路を閉塞及び開放し得る鉗子等の汎用手段としてもよい。
 ここで、本実施形態に適用される血液回路には、医療器具である圧力検出器10が接続されている。かかる圧力検出器10は、静脈側血液回路2におけるダイアライザ3とエアトラップチャンバ5との間の位置に接続され、静脈側血液回路2(血液回路)を流れる血液の圧力を検出し得るよう構成されている。具体的には、圧力検出器10は、図2~6に示すように、液体の流路(本実施形態においては、静脈側血液回路2(血液回路))に接続可能なケースCと、ケースC内に取り付けられ、流路の液体(本実施形態においては、静脈側血液回路2(血液回路)の血液)を充填し得る液相部S1と、空気を充填し得る気相部S2とを区画するとともに、液相部S1に充填された液体(血液)の圧力に応じて変位可能な膜部材Mとを具備し、気相部S2の圧力を圧力検出センサPで検出することにより流路(静脈側血液回路2)における液体の圧力を検出し得るようになっている。
 ケースCは、所定の樹脂材等を成形して得られた中空状成形部品から成り、液相部S1を構成する液相部ケースCaと、気相部S2を構成する気相部ケースCbとを組み合わせて構成されている。具体的には、ケースCは、液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)を合致して形成され、内部に収容空間を有するものである。液相部ケースCaは、液体の流路と接続可能とされて液相部S1と連通させ得る流入ポートC1及び流出ポートC2が一体形成されるとともに、気相部ケースCbは、後述する配管部Kの一端と接続可能とされて気相部S2と連通させ得る接続ポートC3が一体形成されている。なお、流入ポートC1及び流出ポートC2は、液体の流入と流出が逆(すなわち、流入ポートC1により液体が流出し、流出ポートC2により液体が流入する構成)になってもよい。
 また、液相部ケースCaの外周縁部には、円環状の挟持面m1(図7参照)が形成されるとともに、気相部ケースCbの外周縁部には円環状の挟持面m2(図8参照)が形成されており、液相部ケースCa及び気相部ケースCbを合致して組み付ける際、挟持面m1と挟持面m2との間に膜部材Mの周縁部Maを挟持させることにより、膜部材Mをシールしつつ取付可能とされている。しかして、ケースCの内部形成された空間は、膜部材Mによって液相部S1及び気相部S2に区画(画成)されている。
 膜部材Mは、ケースC内に取り付けられたダイヤフラムから成り、液相部S1又は気相部S2の圧力変化に追従して変位又は変形可能な柔軟な材料にて形成されている。本実施形態に係る膜部材Mは、ケースCに取り付けられて液相部ケースCa(第1ケース部)で覆われた液相部S1(第1収容空間)及び気相部ケースCb(第2ケース部)で覆われた気相部S2(第2収容空間)を区画する弾性部材から成り、図9に示すように、周縁部Maが側方に突出して形成されており、挟持面m1、m2にて挟持されるよう構成されている。そして、液相部S1内の液体の圧力(液圧)が小さい場合、図4に示すように、膜部材Mが液相部S1側に変位して気相部S2の容量が増大するとともに、液相部S1内の液体の圧力(液圧)が大きい場合、図5に示すように、膜部材Mが気相部S2側に変位して気相部S2の容量が減少するようになっている。
 さらに、気相部ケースCbには、その底面の略中央に開口Cb1(図8参照)が形成されている。かかる開口Cb1は、気相部ケースCbの内周面(底面)に形成されて接続ポートC3の流路と気相部S2とを連通させ、膜部材Mの変位に応じて気相部S2の空気(気体)を流入又は流出させ得るようになっている。しかして、配管部Kの一端を接続ポートC3に接続し、他端を圧力検出センサP(圧力検出部)に接続することにより、膜部材Mの変位に応じて開口Cb1から空気(気体)を流入又は流出させ、気相部S2の圧力を圧力検出センサPにて検出することができるのである。なお、接続ポートC3は、配管部Kに接続されるものに限らず、気相部S2の圧力を圧力センサPに伝えることができる他の手段に接続されるものとしてもよい。さらに、気相部S2の凹部Cb4における開口Cb1の周りには、図8に示すように、開口Cb1を中心として放射状に突出した複数のリブCb2が形成されている。
 本実施形態に係る流入ポートC1は、液体の流路(血液回路)に接続可能な部位(突出部)から成るとともに、図4及び図5に示すように、液相部S1の流入口Ca1(図7参照)から液体(血液)を流入させる流路部C1aと、流路(血液回路)と接続し得る接続部C1bとを有して構成されている。すなわち、流路部C1a及び接続部C1bは、流入ポートC1を構成する突出部内において軸方向に連通して形成されており、接続部C1bに流路を構成するチューブを接続することにより、流路の液体を流路部C1aにて流通させ、流入口Ca1から液相部S1に流入させることができるのである。なお、流入ポートC1は、流路を構成するチューブを接続する凹形状であってもよい。
 本実施形態に係る流出ポートC2は、液体の流路(血液回路)に接続可能な部位(突出部)から成るとともに、同図に示すように、液相部S1に流入した液体(血液)を流出口Ca2(図7参照)から流出させる流路部C2aと、流路(血液回路)と接続し得る接続部C2bとを有して構成されている。すなわち、流路部C2a及び接続部C2bは、流出ポートC2を構成する突出部内において軸方向に連通して形成されており、接続部C2bに流路を構成するチューブを接続することにより、液相部S1に流入した液体を流路部C2aにて流通させ、下流側の流路(血液回路)に流出させることができるのである。なお、流出ポートC2は、流路を構成するチューブを接続する凹形状であってもよい。
 一方、液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)の各周縁部には、図10、11に示すように、固定部Q2、Q3が形成されるとともに、液相部ケースCaの周縁部における固定部Q2、Q3より内側(液相部ケースCa及び気相部ケースCbに対して内側)には、シール部Q1が形成されている。なお、本実施形態においては、シール部Q1が液相部ケースCaの周縁部のみに形成されているが、気相部ケースCbの周縁部であって固定部Q2、Q3の内側のみに形成されたもの、又は液相部ケースCa及び気相部ケースCbの各周縁部であって固定部Q2、Q3の内側にそれぞれ形成されたものであってもよい。
 固定部Q2、Q3は、液相部ケースCa及び気相部ケースCbのそれぞれの周縁部に形成され、当該液相部ケースCa及び気相部ケースCbを合致した状態で固定するための部位であり、本実施形態においては、図10に示すように、液相部ケースCa及び気相部ケースCbを合致させた状態において対峙するとともに、図11に示すように、液相部ケースCa及び気相部ケースCbが互いに近接する方向に押圧されつつ超音波が付与されることにより溶融し、液相部ケースCa及び気相部ケースCbを溶着させる部位とされている。すなわち、本実施形態に係る液相部ケースCa及び気相部ケースCbは、超音波溶着にて互いに圧着されつつ固定(溶着)され、内部に収容空間(液相部S1及び気相部S2)を形成するよう構成されているのである。
 シール部Q1は、液相部ケースCa又は気相部ケースCbの周縁部における固定部Q2、Q3より内側に形成され、挟持面m1、m2で挟持された膜部材Mを全周縁に亘ってシールする部位であり、本実施形態においては、図10に示すように、液相部ケースCaの挟持面m1から気相部ケースCbの挟持面m2に向かって突出形成された凸部から成り、図11に示すように、液相部ケースCa及び気相部ケースCbが互いに近接する方向に押圧されつつ超音波が付与され、固定部Q1、Q2が溶融して固定が行われる過程において、膜部材Mの周縁部Maを厚み方向に圧縮してシールする部位とされている。
 ここで、固定部Q2、Q3が溶融して液相部ケースCa及び気相部ケースCbが固定されるとともに、シール部Q1によるシールが行われると、固定部Q2、Q3とシール部Q1との間に空隙部αが形成されることとなる。この空隙部αは、液相部ケースCa及び気相部ケースCbが溶着される際、これら液相部ケースCa及び気相部ケースCbが近接する過程で形成される空間から成り、シール部Q1によって密閉されるため、本実施形態に係る減圧又は加熱を行わない場合、圧力が過度に上昇してしまう虞がある。
 次に、本実施形態に係る医療器具としての圧力検出器の製造装置について説明する。
 本製造装置は、図12、13に示すように、超音波溶着装置11と、治具12と、密閉部Rと、減圧部13とを有して構成され、固定部(Q2、Q3)による溶着(固定)及びシール部Q1によるシールを行って液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)を組み付ける際、密閉部Rの密閉空間を減圧するものとされている。
 治具12は、膜部材Mを内在させつつ合致した状態の液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)を位置決めしつつ載置する載置部12aを有して構成されており、超音波溶着装置11の下方の位置に設置されている。超音波溶着装置11は、超音波を付与し得るホーン11aを有して構成されており、治具12の載置部12aに固定された液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)にホーン11aを当接させつつ押圧して超音波を付与し得るよう構成されている。
 そして、超音波溶着装置11によりホーン11aを押圧された液相部ケースCa及び気相部ケースCbは、図10、11に示すように、固定部Q2、Q3が超音波の作用により互いに圧着されつつ固定(溶着)され、且つ、シール部Q1がホーン11aの押圧により圧縮されてシールが施されるとともに、内部に収容空間(液相部S1及び気相部S2)を形成するよう構成されている。
 密閉部Rは、内部に密閉空間を形成し得る容器等から成り、図13に示すように、少なくとも治具12で固定された液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)を密閉可能とされたものである。かかる密閉部Rは、開閉扉等を具備しており、当該開閉扉を開状態として液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)を密閉部Rに搬入及び搬入可能とされ、当該開閉扉を閉状態として密閉空間を形成可能とされている。
 減圧部13は、例えば密閉部R内の空気を外部に排出して減圧し得るブロア等から成り、固定部Q2、Q3による固定及びシール部Q1によるシールを行って液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)を組み付ける際、密閉部Rの密閉空間を減圧するよう構成されている。これにより、固定部Q2、Q3による固定及びシール部Q1によるシールを行って液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)を組み付ける際、固定部Q2、Q3とシール部Q1との間に形成される空隙α内を減圧することができる。
 また、減圧部13に代えて、加熱部13としてもよい。加熱部13は、例えば密閉部R内の空気を加熱し得るヒータ等から成り、固定部Q2、Q3による固定及びシール部Q1によるシールを行って液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)を組み付ける際、密閉部Rの密閉空間を加熱するよう構成されている。これにより、固定部Q2、Q3による固定及びシール部Q1によるシールを行って液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)を組み付ける際、固定部Q2、Q3とシール部Q1との間に形成される空隙α内を加熱することができる。
 次に、本実施形態に係る医療器具としての圧力検出器の製造方法について、図14、15のフローチャートに基づいて説明する。
 先ず、減圧部13により減圧する場合について、図14のフローチャートに基づいて説明する。液相部ケースCaを治具12に対して位置決めしつつ固定(S1)した後、その固定した液相部ケースCaに膜部材Mを設置する(S2)。そして、膜部材Mの上に気相部ケースCbを設置する(S3)ことにより、膜部材Mを内在させつつ液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)を合致した状態とする。
 その後、密閉部Rの内部を密閉空間として減圧部13を作動させることにより、密閉空間を減圧する(S4)。かかる減圧状態において、超音波溶着装置11を作動させてホーン11aを液相部ケースCa(第1ケース部)に押圧させることにより、固定部Q2、Q3が超音波の作用により互いに圧着されつつ固定(溶着)され、且つ、シール部Q1がホーン11aの押圧により圧縮されてシールが施される。これにより、液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)を接合して組み付ける(S5)ことができる。
 液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)の組み付けが完了すると、密閉部R内の密閉空間を加圧した後(S6)、密閉部Rの開閉扉等を開状態とすることにより、組み付け後の製品を密閉部Rから取り出す(S7)。なお、S6は、例えば大気圧まで加圧するのが好ましいが、密閉部Rの開閉扉を開状態とすることができる圧力まで加圧すれば足りる。以上により、一連の溶着工程が終了するとともに、組み付け後の製品において、固定部Q2、Q3とシール部Q1との間に形成される空隙α内が大気圧に対して減圧された状態とされている。なお、S1とS2について、S1で気相部ケースCbを設置し、S3で膜部材Mの上に液相部ケースCaを設置するようにしてもよい。また、S6については、省略することができる。
 次に、加熱部13により加熱する場合について、図15のフローチャートに基づいて説明する。液相部ケースCaを治具12に対して位置決めしつつ固定(S1)した後、その固定した液相部ケースCaに膜部材Mを設置する(S2)。そして、膜部材Mの上に気相部ケースCbを設置する(S3)ことにより、膜部材Mを内在させつつ液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)を合致した状態とする。
 その後、密閉部Rの内部を密閉空間として加熱部13を作動させることにより、密閉空間を加熱する(S4)。かかる加熱により密閉空間が減圧状態となるので、減圧状態において、超音波溶着装置11を作動させてホーン11aを液相部ケースCa(第1ケース部)に押圧させることにより、固定部Q2、Q3が超音波の作用により互いに圧着されつつ固定(溶着)され、且つ、シール部Q1がホーン11aの押圧により圧縮されてシールが施される。これにより、液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)を接合して組み付ける(S5)ことができる。
 液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)の組み付けが完了すると、密閉部R内の密閉空間を冷却した後(S6)、密閉部Rの開閉扉等を開状態とすることにより、組み付け後の製品を密閉部Rから取り出す(S7)。なお、S6は、例えば室温(密閉部Rの外部の温度)まで冷却するのが好ましいが、密閉部Rから製品を取り出す際に手で掴むことができる温度まで冷却すれば足りる。以上により、一連の溶着工程が終了するとともに、組み付け後の製品において、固定部Q2、Q3とシール部Q1との間に形成される空隙α内が大気圧に対して減圧された状態とされている。なお、S1とS2について、S1で気相部ケースCbを設置し、S3で膜部材Mの上に液相部ケースCaを設置するようにしてもよい。また、S6については、省略することができる。
 しかして、上記の如く製造された医療器具である圧力検出器10は、ガラス転移点若しくは軟化点以下で加熱した後、冷却することによって、樹脂内の内部(残留)応力を取り除くアニーリング工程が行われる。そして、アニーリング工程の後、飽和蒸気中で加熱することによって滅菌する高圧蒸気滅菌が行われる。かかる高圧蒸気滅菌は、高圧な環境として沸点を上昇させ、高温でも水分を保つことができる環境下にて行われる。その後、乾燥工程を経ることにより、高圧蒸気滅菌で湿潤状態となった医療器具である圧力検出器10を乾燥させる。
 本実施形態によれば、固定部Q2、Q3による固定(溶着)及びシール部Q1によるシールを行って液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)を組み付ける際、固定部Q2、Q3とシール部Q1との間に形成される空隙α内を減圧又は加熱するので、液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)の組み付け後におけるアニーリング工程や高圧蒸気滅菌時、さらには高温の環境下での使用時において、シール部Q1と固定部Q2、Q3との間に形成された空隙α内の過度な圧力上昇を抑制することにより、品質向上及び信頼性向上を図ることができる。
 また、膜部材M(弾性膜)を内在させつつ液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)を合致した状態で治具12に固定させ、固定部Q2、Q3による固定(溶着)及びシール部Q1によるシールを行って液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)を組み付けるとともに、少なくとも治具12で固定された液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)の周囲を密閉し、その密閉空間を減圧又は加熱するので、効率よく空隙α内の減圧又は加熱を行うことができる。特に、本実施形態によれば、密閉空間を減圧又は加熱した後、当該密閉空間を加圧又は冷却するので、安定した環境に戻してから製品を取り出すことができ、品質向上を図ることができる。
 さらに、本実施形態に係るケースCは、液体の流路に接続可能とされ、第1収容空間が流路の液体を充填し得る液相部S1、第2収容空間が気体を充填し得る気相部S2とされるとともに、弾性膜は、液相部と気相部とを区画して液相部に充填された液体の圧力に応じて変位可能な膜部材Mから成り、気相部S2の圧力を検出することにより流路における液体の圧力を検出する圧力検出器10から成るので、シール部Q1と固定部Q2、Q3との間に形成された空隙α内の過度な圧力上昇を抑制することにより、圧力検出器10の品質向上及び信頼性向上を図ることができる。
 以上、本実施形態について説明したが、本発明はこれに限定されるものではなく、例えば密閉部Rは、超音波溶着装置11及び治具12全体を含む範囲を密閉空間とするようにしてもよく、液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)の組み付け加工が行われる部屋全体の雰囲気を減圧及び加熱するようにしてもよい。また、本実施形態においては、固定部Q2、Q3を超音波にて溶融させることにより液相部ケースCa(第1ケース部)及び気相部ケースCb(第2ケース部)を溶着させているが、超音波溶着に限らず他の固定方法(レーザ溶着、又は専ら圧入若しくはやネジ止めによる組み付け等)であってもよい。
 さらに、本実施形態に係る圧力検出器10は、静脈側血液回路2におけるダイアライザ3とエアトラップチャンバ5との間の位置に接続されているが、血液回路における他の位置(例えば、動脈側血液回路1における先端と血液ポンプ4との間の位置、動脈側血液回路1における血液ポンプ4とダイアライザ3との間の位置)に接続するようにしてもよい。本圧力検出器10が接続される血液回路は、他の形態のものであってもよく、例えばエアトラップチャンバ5が接続されず、代わりに本圧力検出器10が接続されるものであってもよい。
 またさらに、液相部ケースCaに形成される流入ポートC1及び流出ポートC2は、上記実施形態の如く2つのものに限定されず、例えば図16、17に示すように、単一のポートC4が形成されたもの、又は図18、19に示すように、5つのポート(C5~C9)が形成されたものであってもよい。なお、図18、19に示すものの場合、液相部ケースCaに形成されるポートの数は、5つに限らず、4つ、5つ若しくは7つ以上有するものであってもよい。
 なお、本実施形態においては、透析治療における血液回路の圧力検出器10として適用されているが、第1ケース部及び第2ケース部を合致して形成され、内部に収容空間を有するケースと、ケースに取り付けられて第1ケース部で覆われた第1収容空間及び第2ケース部で覆われた第2収容空間を区画する弾性部材から成る弾性膜と、第1ケース部及び第2ケース部のそれぞれの周縁部に形成され、当該第1ケース部及び第2ケース部を合致した状態で固定する固定部と、第1ケース部及び第2ケース部のそれぞれの周縁部に形成され、弾性膜の周縁を挟持する挟持面と、第1ケース部又は第2ケース部の周縁部における固定部より内側に形成され、挟持面で挟持された弾性膜を全周縁に亘ってシールするシール部とを具備した他の医療器具(例えば、ダイヤフラムポンプ等)に適用することができる。
 例えば、図16、17で示すものをダイアフラムポンプとして適用する場合、接続ポートC3にエアポンプ20及び圧力センサ21を接続するとともに、液体の流路にポートC4を接続し、流路の上流側にバルブVa、下流側にバルブVbを取り付けて制御するようにしてもよい。この場合、バルブVaを開状態且つバルブVbを閉状態としつつエアポンプ20を駆動させ、膜部材Mを気相部ケースCb(第2ケース部)の壁面に張り付かせる方向に移動させることにより、液体を液相部ケースCa内に導くとともに、バルブVaを閉状態且つバルブVbを開状態としつつエアポンプ20を反対側に駆動させ、膜部材Mを液相部ケースCa(第1ケース部)の壁面に張り付かせる方向に移動させることにより、液相部ケースCa内の液体を吐出させることができる。このようなエアポンプ20の駆動及びバルブVa、Vbの作動を繰り返し行わせることにより、ダイアフラムポンプとして機能させることができる。また、同図においては、圧力センサ21にて膜部材Mが液相部ケースCa(第1ケース部)又は気相部ケースCb(第2ケース部)の壁面に張り付いたことを検知させることができるものとされているが、このような圧力センサ21を具備しないものとしてもよい。
 さらに、例えば、図18、19で示すものをダイアフラムポンプとして適用する場合、接続ポートC3にエアポンプ20及び圧力センサ21を接続するとともに、液体の流路にポートC5~C9をそれぞれ接続し、各流路にバルブV1~V5を取り付けて制御するようにしてもよい。この場合、バルブV1を開状態且つ他のバルブV2~V5を閉状態としつつエアポンプ20を駆動させ、膜部材Mを気相部ケースCb(第2ケース部)の壁面に張り付かせる方向に移動させることにより、液体を液相部ケースCa内に導くとともに、バルブV1を閉状態且つ他のバルブV2~V5を開状態としつつエアポンプ20を反対側に駆動させ、膜部材Mを液相部ケースCa(第1ケース部)の壁面に張り付かせる方向に移動させることにより、液相部ケースCa内の液体を吐出させることができる。このようなエアポンプ20の駆動及びバルブV1~V5の作動を繰り返し行わせることにより、ダイアフラムポンプとして機能させることができる。また、同図においては、圧力センサ21にて膜部材Mが液相部ケースCa(第1ケース部)又は気相部ケースCb(第2ケース部)の壁面に張り付いたことを検知させることができるものとされているが、このような圧力センサ21を具備しないものとしてもよい。
 固定部による固定及びシール部によるシールを行って第1ケース部及び第2ケース部を組み付ける際、固定部とシール部との間に形成される空隙内を減圧又は加熱する医療器具の製造方法及び製造装置であれば、他の形態及び用途のものにも適用することができる。
1 動脈側血液回路
2 静脈側血液回路
3 ダイアライザ(血液浄化器)
4 血液ポンプ
5 エアトラップチャンバ
6 透析装置本体
7 収容部
8 エアトラップチャンバ
9 クランプ部
10 圧力検出器
11 超音波溶着装置
12 治具
13 減圧部(加熱部)
L1 透析液導入ライン
L2 透析液排出ライン
L3 生理食塩液供給ライン
C ケース
Ca 液相部ケース(第1ケース部)
Ca1 流入口
Ca2 流出口
Cb 気相部ケース(第2ケース部)
Cb1 開口
Cb2 リブ
Cb3 凸部
Cb4 凹部
C1 流入ポート
C1a 流路部
C1b 接続部
C2 流出ポート
C2a 流路部
C2b 接続部
C3 接続ポート
M 膜部材(弾性膜)
Ma 周縁部
P 圧力センサ(圧力検出部)
S1 液相部(第1収容空間)
S2 気相部(第2収容空間)
K 配管部
Q1 シール部
Q2、Q3 固定部
m1、m2 挟持面
α 空隙
R 密閉部

Claims (8)

  1.  第1ケース部及び第2ケース部を合致して形成され、内部に収容空間を有するケースと、
     前記ケースに取り付けられて前記第1ケース部で覆われた第1収容空間及び第2ケース部で覆われた第2収容空間を区画する弾性部材から成る弾性膜と、
     前記第1ケース部及び第2ケース部のそれぞれの周縁部に形成され、当該第1ケース部及び第2ケース部を合致した状態で固定する固定部と、
     前記第1ケース部及び第2ケース部のそれぞれの周縁部に形成され、前記弾性膜の周縁を挟持する挟持面と、
     前記第1ケース部又は第2ケース部の周縁部における前記固定部より内側に形成され、前記挟持面で挟持された前記弾性膜を全周縁に亘ってシールするシール部と、
    を具備した医療器具の製造方法において、
     前記固定部による固定及び前記シール部によるシールを行って前記第1ケース部及び第2ケース部を組み付ける際、前記固定部とシール部との間に形成される空隙内を減圧又は加熱することを特徴とする医療器具の製造方法。
  2.  前記弾性膜を内在させつつ前記第1ケース部及び第2ケース部を合致した状態で治具に固定させ、前記固定部による固定及び前記シール部によるシールを行って前記第1ケース部及び第2ケース部を組み付けるとともに、少なくとも前記治具で固定された前記第1ケース部及び第2ケース部の周囲を密閉し、その密閉空間を減圧又は加熱することを特徴とする請求項1記載の医療器具の製造方法。
  3.  前記密閉空間を減圧又は加熱した後、当該密閉空間を加圧又は冷却することを特徴とする請求項2記載の医療器具の製造方法。
  4.  前記ケースは、液体の流路に接続可能とされ、前記第1収容空間が前記流路の液体を充填し得る液相部、前記第2収容空間が気体を充填し得る気相部とされるとともに、前記弾性膜は、前記液相部と気相部とを区画して前記液相部に充填された液体の圧力に応じて変位可能な膜部材から成り、前記気相部の圧力を検出することにより前記流路における液体の圧力を検出する圧力検出器から成ることを特徴とする請求項1~3の何れか1つに記載の医療器具の製造方法。
  5.  第1ケース部及び第2ケース部を合致して形成され、内部に収容空間を有するケースと、
     前記ケースに取り付けられて前記第1ケース部で覆われた第1収容空間及び第2ケース部で覆われた第2収容空間を区画する弾性部材から成る弾性膜と、
     前記第1ケース部及び第2ケース部のそれぞれの周縁部に形成され、当該第1ケース部及び第2ケース部を合致した状態で固定する固定部と、
     前記第1ケース部及び第2ケース部のそれぞれの周縁部に形成され、前記弾性膜の周縁を挟持する挟持面と、
     前記第1ケース部又は第2ケース部の周縁部における前記固定部より内側に形成され、前記挟持面で挟持された前記弾性膜を全周縁に亘ってシールするシール部と、
    を具備した医療器具の製造装置において、
     前記固定部による固定及び前記シール部によるシールを行って前記第1ケース部及び第2ケース部を組み付ける際、前記固定部とシール部との間に形成される空隙内を減圧する減圧部又は当該空隙内を加熱する加熱部を備えたことを特徴とする医療器具の製造装置。
  6.  前記弾性膜を内在させつつ前記第1ケース部及び第2ケース部を合致した状態で固定させる治具と、
     少なくとも前記治具で固定された前記第1ケース部及び第2ケース部の周囲を密閉する密閉部と、
    を具備するとともに、前記減圧部又は加熱部は、前記固定部による固定及び前記シール部によるシールを行って前記第1ケース部及び第2ケース部を組み付ける際、前記密閉部の密閉空間を減圧又は加熱することを特徴とする請求項5記載の医療器具の製造装置。
  7.  前記密閉空間を減圧又は加熱した後、当該密閉空間を加圧又は冷却することを特徴とする請求項6記載の医療器具の製造装置。
  8.  前記ケースは、液体の流路に接続可能とされ、前記第1収容空間が前記流路の液体を充填し得る液相部、前記第2収容空間が気体を充填し得る気相部とされるとともに、前記弾性膜は、前記液相部と気相部とを区画して前記液相部に充填された液体の圧力に応じて変位可能な膜部材から成り、前記気相部の圧力を検出することにより前記流路における液体の圧力を検出する圧力検出器から成ることを特徴とする請求項5~7の何れか1つに記載の医療器具の製造装置。
PCT/JP2019/024656 2018-06-22 2019-06-21 医療器具の製造方法及び製造装置 WO2019245018A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980041547.7A CN112292162B (zh) 2018-06-22 2019-06-21 医疗器具的制造方法和制造装置
EP19822788.6A EP3811988A4 (en) 2018-06-22 2019-06-21 METHOD OF MANUFACTURING A MEDICAL INSTRUMENT AND MANUFACTURING DEVICE
US17/128,705 US11478885B2 (en) 2018-06-22 2020-12-21 Method and apparatus of manufacturing medical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018119263A JP6694475B2 (ja) 2018-06-22 2018-06-22 医療器具の製造方法及び製造装置
JP2018-119263 2018-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/128,705 Continuation US11478885B2 (en) 2018-06-22 2020-12-21 Method and apparatus of manufacturing medical device

Publications (1)

Publication Number Publication Date
WO2019245018A1 true WO2019245018A1 (ja) 2019-12-26

Family

ID=68983918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024656 WO2019245018A1 (ja) 2018-06-22 2019-06-21 医療器具の製造方法及び製造装置

Country Status (5)

Country Link
US (1) US11478885B2 (ja)
EP (1) EP3811988A4 (ja)
JP (1) JP6694475B2 (ja)
CN (1) CN112292162B (ja)
WO (1) WO2019245018A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6637107B2 (ja) * 2018-05-16 2020-01-29 日機装株式会社 圧力検出器
CN114473495A (zh) * 2022-03-21 2022-05-13 迈得医疗工业设备股份有限公司 卸料装置及医疗器械生产线和医疗器械生产方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0074733A1 (en) * 1981-09-01 1983-03-23 The University Of Utah Ventricular assist device and method of manufacture
JPH021275A (ja) * 1988-03-03 1990-01-05 Daikyo Rubber Seiko:Kk 医薬品用プラスチック容器の栓体及びその製造方法
US20030115965A1 (en) * 2001-10-16 2003-06-26 Innovent, L.L.C. Systems and methods for measuring pressure
JP2008051663A (ja) * 2006-08-24 2008-03-06 Asahi Kasei Kuraray Medical Co Ltd 圧力センサ
JP2010172739A (ja) * 2010-04-09 2010-08-12 Naigai Kasei Kk 医療用キャップ及びその製造方法
JP2016221028A (ja) * 2015-06-01 2016-12-28 日機装株式会社 医療用液圧検出装置
JP2017504389A (ja) 2013-12-23 2017-02-09 フレセニウス メディカル ケア ホールディングス インコーポレーテッド 圧力ポッドダイヤフラムの自動検出及び調整

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2346238A1 (fr) 1976-04-02 1977-10-28 Rhone Poulenc Ind Reservoir notamment pour liquide biologique
US4801125A (en) * 1983-07-25 1989-01-31 Vilter Manufacturing Corporation Valve body comprising sheet metal hemispheres and method for making same
JPS61280538A (ja) * 1986-06-16 1986-12-11 Yokogawa Electric Corp テンシヨン・ダイヤフラムの製造方法
SE464913B (sv) 1988-03-03 1991-07-01 Gambro Ab Anordning foer tryckoeverfoering
US4908493A (en) * 1988-05-31 1990-03-13 Midwest Research Institute Method and apparatus for optimizing the efficiency and quality of laser material processing
US5221271A (en) 1991-08-15 1993-06-22 Medex, Inc. Sample site with flow directors
US5722946A (en) 1995-06-07 1998-03-03 Cobe Laboratories, Inc. Extracorporeal blood processing methods and apparatus
JPH0924026A (ja) 1995-07-10 1997-01-28 Otsuka Pharmaceut Factory Inc 血液回路の圧力測定装置
US6392208B1 (en) * 1999-08-06 2002-05-21 Watlow Polymer Technologies Electrofusing of thermoplastic heating elements and elements made thereby
DE10032616A1 (de) 2000-07-08 2002-01-24 Mhm Harzbecher Medizintechnik Systemelemente zur Druckmessung in extrakorporalen Kreisläufen
EP1658869A1 (en) 2004-11-17 2006-05-24 Fresenius Medical Care Deutschland GmbH Membrane unit, housing of a pressure measuring unit and pressure measuring unit
JP4488981B2 (ja) 2005-08-23 2010-06-23 日本シャーウッド株式会社 取出し具及び医療用縫合具セット
JP4858784B2 (ja) 2005-10-03 2012-01-18 株式会社ジェイ・エム・エス 閉鎖型貯血槽およびそれを用いた体外血液循環装置
US8092414B2 (en) 2005-11-09 2012-01-10 Nxstage Medical, Inc. Diaphragm pressure pod for medical fluids
DE102006016846B4 (de) 2006-04-07 2010-02-11 Nikkiso Medical Systems Gmbh Anschlusselement zur lösbar abgedichteten Verbindung eines Fluidleitungssystems mit einem Druckaufnehmer und Druckaufnehmer hierzu
EP4074353A1 (en) 2006-04-14 2022-10-19 DEKA Products Limited Partnership Diaphragm, pump and pump cassette
ES2544955T3 (es) * 2006-04-19 2015-09-07 Asahi Kasei Medical Co., Ltd. Sensor de presión para circuito de circulación extracorporal
JP5141004B2 (ja) 2006-12-01 2013-02-13 株式会社ジェイ・エム・エス 状態検知装置
EP2088415A4 (en) 2006-12-01 2014-09-24 Jms Co Ltd STATUS DETECTION DEVICE
KR102029220B1 (ko) 2007-02-27 2019-10-07 데카 프로덕츠 리미티드 파트너쉽 혈액투석 시스템
CA2680367C (en) 2007-05-15 2015-02-24 Gambro Lundia Ab Pressure sensing device and use of the same in a connecting structure
ITMO20080083A1 (it) 2008-03-21 2009-09-22 Lucomed Spa Dispositivo di raccordo trasduttore-protettore, particolarmente per linee biomedicali di emodialisi
EP2229966A1 (en) 2009-03-18 2010-09-22 Fresenius Medical Care Deutschland GmbH Safety insert for extra-corporeal circuits
US20140052009A1 (en) 2012-08-15 2014-02-20 Acist Medical Systems, Inc. Monitoring blood pressure in a medical injection system
WO2014093846A1 (en) 2012-12-14 2014-06-19 Gambro Renal Products, Inc. Diaphragm repositioning for pressure pod using position sensing
EP2934624B1 (en) 2012-12-20 2018-03-14 Gambro Lundia AB Target volume based diaphragm repositioning for pressure measurement apparatus
JP2014204779A (ja) 2013-04-11 2014-10-30 日機装株式会社 トランスデューサ保護フィルタ
JP5826815B2 (ja) 2013-12-11 2015-12-02 日機装株式会社 混注部材
KR102447625B1 (ko) * 2014-09-26 2022-09-28 프레제니우스 메디칼 케어 홀딩스 인코퍼레이티드 체외 혈액 투석 기계용 압력 출력 디바이스
JP6517023B2 (ja) 2015-01-23 2019-05-22 日機装株式会社 血液浄化装置
EP3325931B1 (en) 2015-07-20 2020-10-28 Haemonetics Corporation System and method for measuring pressure of fluid flow
JP6552400B2 (ja) 2015-12-10 2019-07-31 アズビル株式会社 圧力センサチップ
DE102017119708A1 (de) * 2017-08-28 2019-02-28 Kautex Textron Gmbh & Co. Kg Flüssigkeitsbehälter für ein Kraftfahrzeug und Verfahren zum Herstellen eines Flüssigkeitsbehälters
JP7119328B2 (ja) 2017-10-05 2022-08-17 ニプロ株式会社 圧力測定用チャンバ
JP6639559B2 (ja) 2018-05-16 2020-02-05 日機装株式会社 圧力検出器
JP7030610B2 (ja) 2018-05-16 2022-03-07 日機装株式会社 圧力検出器
JP6637108B2 (ja) 2018-05-16 2020-01-29 日機装株式会社 圧力検出器
JP6637107B2 (ja) 2018-05-16 2020-01-29 日機装株式会社 圧力検出器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0074733A1 (en) * 1981-09-01 1983-03-23 The University Of Utah Ventricular assist device and method of manufacture
JPH021275A (ja) * 1988-03-03 1990-01-05 Daikyo Rubber Seiko:Kk 医薬品用プラスチック容器の栓体及びその製造方法
US20030115965A1 (en) * 2001-10-16 2003-06-26 Innovent, L.L.C. Systems and methods for measuring pressure
JP2008051663A (ja) * 2006-08-24 2008-03-06 Asahi Kasei Kuraray Medical Co Ltd 圧力センサ
JP2010172739A (ja) * 2010-04-09 2010-08-12 Naigai Kasei Kk 医療用キャップ及びその製造方法
JP2017504389A (ja) 2013-12-23 2017-02-09 フレセニウス メディカル ケア ホールディングス インコーポレーテッド 圧力ポッドダイヤフラムの自動検出及び調整
JP2016221028A (ja) * 2015-06-01 2016-12-28 日機装株式会社 医療用液圧検出装置

Also Published As

Publication number Publication date
CN112292162A (zh) 2021-01-29
EP3811988A1 (en) 2021-04-28
EP3811988A4 (en) 2022-03-30
US20210107100A1 (en) 2021-04-15
JP2019217203A (ja) 2019-12-26
JP6694475B2 (ja) 2020-05-13
US11478885B2 (en) 2022-10-25
CN112292162B (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
WO2019245017A1 (ja) 医療器具及びその製造方法
WO2019221204A1 (ja) 圧力検出器
WO2019245018A1 (ja) 医療器具の製造方法及び製造装置
WO2019221205A1 (ja) 圧力検出器
WO2019221202A1 (ja) 圧力検出器
WO2019221203A1 (ja) 圧力検出器
JP5920575B2 (ja) 接続ポートおよび接続ポートを備えた透析装置
JP7033578B2 (ja) 圧力検出器
JP4144844B2 (ja) 中空糸膜型透析濾過器
JP4807912B2 (ja) 中空糸膜モジュールおよびその製造方法
JP4144843B2 (ja) 中空糸膜型透析濾過器
JP5931128B2 (ja) 血液浄化装置
JPS607496B2 (ja) 人工腎臓の熱滅菌方法
JP5007412B2 (ja) 液体加温用および/または冷却用の体外循環回路及び開閉器の使用方法
JPS61143072A (ja) 人工腎臓の熱滅菌方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019822788

Country of ref document: EP