WO2019244678A1 - 竪型粉砕機 - Google Patents

竪型粉砕機 Download PDF

Info

Publication number
WO2019244678A1
WO2019244678A1 PCT/JP2019/022790 JP2019022790W WO2019244678A1 WO 2019244678 A1 WO2019244678 A1 WO 2019244678A1 JP 2019022790 W JP2019022790 W JP 2019022790W WO 2019244678 A1 WO2019244678 A1 WO 2019244678A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
supply amount
supply
rotation speed
amount
Prior art date
Application number
PCT/JP2019/022790
Other languages
English (en)
French (fr)
Inventor
武利 田辺
昌哉 采原
豊 竹野
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020207031065A priority Critical patent/KR102477846B1/ko
Publication of WO2019244678A1 publication Critical patent/WO2019244678A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/04Mills with pressed pendularly-mounted rollers, e.g. spring pressed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating

Definitions

  • the present invention relates to a vertical pulverizer for pulverizing a solid material such as coal using a rotary table and a pulverizing roller.
  • Patent Literature 1 discloses a vertical crusher that crushes supplied raw materials by the action of a rotary table rotated by a motor and a plurality of crushing rollers that rotate while being pressed on the rotary table. .
  • Vibration is a problem when starting such a vertical mill.
  • This vibration phenomenon is a kind of frictional vibration caused by the sliding of the layer of particles during the grinding and the grinding roller, and is a kind of self-excited vibration as a vibration type.
  • One of the causes of the vibration is that at the time of start-up when the supply amount of the raw material is small, the layer of particles between the rotary table and the crushing roller is thin, so the crushing roller slips without obtaining sufficient friction, That is, the biting of the particles becomes discontinuous. If the operation is continued under the condition in which vibration occurs, the vibration may be amplified and the crusher itself and peripheral devices may be damaged.
  • Patent Document 1 describes that the excessive supply of the pulverized raw material is temporarily performed. According to this technique, the rotating table and the grinding roller can stably bite the particles even at the time of startup, and the occurrence of vibration can be suppressed.
  • Patent Literature 1 the rotation speed of the rotary table is fixed, and only the supply amount of the raw material is adjusted.
  • this method has poor response to a load change and a small load change width that can be handled. Therefore, in recent years, as described in Patent Literature 2, a system for increasing or decreasing the number of revolutions of a rotary table according to an increase or decrease in a supply amount (load) of a raw material has been introduced.
  • An object of the present invention is to suppress the occurrence of vibration at the time of startup in a vertical pulverizer in which the rotation speed of a rotary table is variable.
  • a vertical crusher of the present invention includes a rotary table, a motor for rotating the rotary table, a control device for controlling the number of rotations of the motor via an inverter, and And a plurality of rollers that rotate following the rotation, and crushes the raw material supplied between the rotary table and the plurality of rollers.
  • the control device fixes the number of rotations of the turntable to a predetermined number of rotations in an excess supply period in which the first amount of material is supplied per unit time immediately after the start of supply of the raw material.
  • FIG. 2 is a partially enlarged view of the vertical crusher of FIG. 1, showing a state in which vibration hardly occurs.
  • FIG. 2 is a partially enlarged view of the vertical pulverizer of FIG. 1 and shows a state where vibration is likely to occur.
  • It is a timing chart at the time of starting of the vertical grinding machine concerning a 1st embodiment. It is a timing chart at the time of starting of the vertical crusher concerning an existing technology. It is a timing chart at the time of stop of the vertical type crusher concerning a 2nd embodiment of the present invention.
  • FIG. 1 is a longitudinal sectional view showing the entire structure of the vertical crusher according to the first embodiment.
  • the housing 43 of the vertical pulverizer houses a coal supply pipe (raw material supply pipe) 1, a rotary table 2, and a plurality of pulverizing rollers 3.
  • the coal feed pipe 1 is arranged at the upper part of the housing 43, and supplies coal (raw material) 60 supplied from a coal feeder (supply device) (not shown) into the housing 43.
  • the turntable 2 is arranged below the housing 43.
  • the driving force of the motor 14 is transmitted to the rotary table 2 via the speed reducer 12 and the driving force transmission shaft 13 below the housing 43, and the rotary table 2 rotates around a rotation axis CL1 (dashed line) extending in the vertical direction.
  • the plurality of crushing rollers 3 are arranged on the upper surface of the rotary table 2 so as to be spaced apart in the circumferential direction.
  • the plurality of crushing rollers 3 are formed in a tire shape, and rotate around a rotation axis CL2 (two-dot chain line) extending in a direction intersecting with the rotation axis CL1 of the rotation table 2 following the rotation of the rotation table 2.
  • the plurality of crushing rollers 3 are supported by the pressure frame 5 via a roller bracket (not shown).
  • the crushing load (pressing force) is transmitted to the crushing roller 3 by the pressing device 9 pulling the pressing rod 8 connected to the pressing frame 5 downward.
  • the pressurizing device 9 according to the first embodiment adjusts the crushing load (pressing force) by hydraulic pressure.
  • the plurality of crushing rollers 3 are pressed toward the rotary table 2 by the pressing device 9.
  • the rotary table 2 and the plurality of pulverizing rollers 3 are in contact (metal touch) in a state where the coal 60 is not supplied.
  • the coal feed pipe 1 is arranged coaxially with the rotation axis CL1 of the turntable 2. Therefore, after the coal 60 supplied through the coal feed pipe 1 falls to the center of the rotating rotary table 2, the centrifugal force accompanying the rotation causes the spiral 60 to draw a spiral locus on the rotary table 2 in a radially outward direction. To be crushed between the rotary table 2 and the crushing roller 3.
  • the pulverized coal 60 (referred to as powder 62) is blown upward while being dried by primary air (hot air) 61 introduced from the throat 4 outside the rotary table 2.
  • primary air hot air
  • those having a large particle size are returned to the rotary table 2 by the classification device 20 and the hopper 11, and are again pulverized.
  • those having a small particle size are distributed to a plurality of coal feed pipes 30 together with the primary air 61 and sent to a boiler or a fine powder storage (not shown) as product fines 63.
  • the classification device 20 includes a rotating shaft 22 rotatably supported by the coal feed pipe 1, a rotating fin 21 that rotates with the rotation of the rotating shaft 22, and a motor (not shown) that drives the rotating shaft 22 to rotate. It is a rotary type having The rotating fins 21 are arranged such that the longitudinal direction of the plate extends substantially parallel to the rotating shaft 22 and are arranged in large numbers at arbitrary angles. The particle size distribution of the product fine powder 63 is adjusted by the rotation speed of the rotating fin 21.
  • the classifier 20 classifies the powder 62 blown up by the primary air 61 into fine particles and coarse particles. Then, the classification device 20 discharges the fine particles to the outside from the coal feeding pipe 30 as the product fine powder 63, and drops the coarse particles to the hopper 11.
  • the hopper 11 is arranged between the classification device 20 and the turntable 2. The hopper 11 collects, among the powder 62 blown up by the primary air 61, the powder dropped by gravity and the coarse particles classified by the classification device 20, and drops the powder to the rotary table 2.
  • the motor 14 is a VVVF (Variable Voltage Variable Frequency) motor whose rotation speed is controlled by the inverter 15.
  • the inverter 15 increases or decreases the rotation speed of the motor 14 according to a control signal from the control device 16.
  • the control device 16 controls devices such as the pressurizing device 9, the inverter 15, the classifying device 20, and a blower (not shown) for generating the primary air 61, and externally serves as a coal feeder, a downstream boiler, etc. (Not shown), and operate the vertical pulverizer in cooperation with each other.
  • the control device 16 includes a CPU (Central Processing Unit) 31, a ROM (Read Only Memory) 32, and a RAM (Random Access Memory) 33.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the control device 16 executes each process described below in cooperation with software and hardware.
  • the RAM 33 is used as a work area when the CPU 31 executes a program.
  • the specific configuration of the control device 16 is not limited to this, and may be realized by hardware such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array).
  • FIGS. 2A and 2B are enlarged views of a part of the rotary table 2 and the crushing roller 3 in FIG. 1 and the periphery thereof, and FIG. 2 (a) shows a state in which vibration hardly occurs.
  • FIG. 2B shows a state in which vibration is likely to occur.
  • FIG. 2 (a) and FIG. 2 (b) A difference between FIG. 2 (a) and FIG. 2 (b) is the amount of coal 60 on the turntable 2. The amount is large in FIG. 2 (a) and small in FIG. 2 (b).
  • the coal 60 In the state shown in FIG. 2A, the coal 60 is continuously bitten between the crushing roller 3 and the rotary table 2, so that a layer of particles being crushed is maintained at a thickness ⁇ 1 between the two, and the crushing roller 3 rotates stably.
  • FIG. 3 (a) to 3 (d) are timing charts in which the horizontal axis represents the same time, and the vertical axis represents operating parameters of different vertical mills. That is, the vertical axis in FIG. 3A is the coal supply C, the vertical axis in FIG. 3B is the rotational speed ⁇ of the turntable 2, the vertical axis in FIG. 3C is the rotational speed Ns of the classifier 20, The vertical axis in FIG. 3D indicates the hydraulic pressure (operating pressure) P of the pressurizing device 9.
  • the “coal supply amount” in this specification refers to the amount of coal supplied per unit time.
  • the coal supply device starts coal supply from time t1.
  • Information on the start time of coal supply and the amount of coal supply is transmitted from the control unit of the coal supply device to the control device 16. Since the vertical pulverizer stops after exhausting all the internal coal 60, the amount of coal 60 on the rotary table 2 is 0 before time t1.
  • the coal supply device performs an excessive supply of the coal 60 indicated by the solid line between the time t1 and the time t2 (excess supply period). In other words, the coal supply device fixes the coal supply amount of the coal 60 to C1 (first amount) during the excessive supply period. Next, the coal supply device ends the excess supply period at time t2, and linearly decreases the coal supply amount from C1 to C2 (second amount) (supply amount reduction period). Next, the coal supply device ends the supply amount reduction period in response to the coal supply amount reaching C2, and linearly increases the coal supply amount until the coal supply amount reaches C1 at time t5 (supply Volume increase period). Further, in response to the coal supply amount reaching C1 at time t5, the coal supply device ends the supply amount increase period and maintains the coal supply amount C1 (rated coal supply amount) (supply amount maintenance period). .
  • the coal supply amount C1 during the excess supply period is larger than the coal supply amount C2 at the start of the supply amount increase period. Further, the coal supply amount C1 during the excessive supply period is the same as the coal supply amount C1 during the supply amount maintaining period.
  • the coal supply amount during the excessive supply period is made to match the rated coal supply amount C1, but may be set to a smaller coal supply amount than C1.
  • the amount of coal that can be started stably by the vertical pulverizer depends on properties such as the particle size distribution and hardness of the coal 60, and the amount of coal supplied in actual operation is determined by trial operation.
  • the time from time t1 to time t2 is also determined by trial operation according to the properties of the coal 60.
  • the control device 16 rotates the turntable 2 at the rotation speed ⁇ 3 from time t0, which is a predetermined time from time t1.
  • the arrival of the time t0 may be notified from the control unit of the coal feeder, or may be instructed by the operator through an operation panel (not shown) of the vertical pulverizer.
  • the control device 16 fixes the rotation speed of the turntable 2 to ⁇ 2 (predetermined rotation speed) during the excessive supply period, and linearly decreases the rotation speed of the turntable 2 from ⁇ 2 to ⁇ 3 during the supply amount reduction period.
  • the rotation speed of the turntable 2 is linearly increased from ⁇ 3 to ⁇ 1 during the supply amount increase period, and the rotation speed of the turntable 2 is fixed at ⁇ 1 (rated rotation speed) during the supply amount maintenance period.
  • the rotation speed ⁇ of the turntable 2 satisfies ⁇ 1> ⁇ 2> ⁇ 3, and is set to ⁇ 1 ⁇ 0.5 ⁇ ⁇ 2 ⁇ ⁇ 1 ⁇ 0.8.
  • the rotation speed of the turntable 2 is increased from ⁇ 3 to ⁇ 2 over a predetermined time from time t1, but this is a mechanical delay of the motor 14.
  • the control signal from the control device 16 to the inverter 15 indicates the rotation speed ⁇ 2 at the time t1.
  • the rotation speed ⁇ 3 at the time t0 and the rotation speed ⁇ 3 at the start of the supply amount increasing period may be different rotation speeds.
  • the coal supply amount C during the excessive supply period is the rated coal supply amount C1
  • the rotation speed ⁇ of the turntable 2 is 0.5 to 0.8 times the rated rotation speed ⁇ 1. It is suppressed to. This is for the following reason. That is, since the rotary table 2 is empty before the time t1, even if the coal supply C is overshot to the rated coal supply C1 at the time t1, the amount of the coal 60 on the rotary table 2 at the time t1 is continuous. Is smaller than the period during which the rated coal supply is being performed (the supply amount maintaining period after time t5).
  • the rotational speed ⁇ is increased from time t1 to time t2 to ⁇ 1 as shown in the conventional example of FIG. 4 in this state, the state shown in FIG. 2B occurs and vibration occurs. Therefore, the rotation speed ⁇ from the time t1 to the time t2 needs to be smaller than ⁇ 1.
  • the setting of the rotation speed ⁇ 2 in the excess supply period has a width of 0.5 to 0.8 times ⁇ 1 according to the particle size distribution, the hardness and other properties of the coal 60 to be pulverized. This is because it is necessary to determine appropriate operating conditions by trial operation.
  • the control device 16 decreases the rotation speed ⁇ following the decrease in the coal supply amount C during the supply amount reduction period, and changes the rotation speed ⁇ following the increase in the coal supply amount C during the supply amount increase period. increase. More specifically, in the supply amount decrease period and the supply amount increase period, the coal supply amount C and the rotation speed ⁇ have a positive correlation (proportional relation in the example of FIG. 3). Thereby, it is suppressed that the coal 60 on the turntable 2 becomes too large or too small, and the state of FIG. 2A can be maintained.
  • the control device 16 fixes the rotation speed Ns of the classifying device 20 to Ns3 from time t0 to time t3, and sets the classifying device between time t3 and time t4. 20, the rotation speed Ns is linearly increased from Ns3 to Ns2, and the rotation speed Ns of the classification device 20 is linearly increased from Ns2 to Ns1 from time t4 to time t5. Is fixed to Ns1.
  • control device 16 fixes the rotation speed Ns of the classification device 20 to the predetermined value Ns3 during a period from the start of the excess supply period, the supply amount decrease period, and the supply amount increase period until a predetermined time elapses. .
  • control device 16 changes the rotation speed Ns of the classifying device 20 to the coal supply amount C in response to the lapse of a predetermined time from the start of the supply amount increase period (positive correlation, the example in FIG. 3). Then proportionally).
  • time t3 is a time between time t2 and time t5
  • time t4 is a time between time t3 and time t5.
  • the rotation speed Ns of the classifying device 20 satisfies Ns1> Ns2> Ns3.
  • the timings of the times t3 and t4, the slopes of the straight lines between the times t3 and t4 and between the times t4 and t5, and the specific values of the rotation speeds Ns1, Ns2, and Ns3 are determined by the test operation depending on the properties of the coal 60. .
  • the control device 16 fixes the oil pressure P of the pressurizing device 9 to P2 from time t0 to time t3, and between the time t3 and time t5.
  • the hydraulic pressure P of the pressure device 9 is linearly increased from P2 to P1, and the hydraulic pressure P of the pressurizing device 9 after time t5 is fixed at P1. That is, the control device 16 increases the pressing force of the pressurizing device 9 to a predetermined value (the hydraulic pressure P2) during a period from the start of the excess supply period, the supply amount decrease period, and the supply amount increase period until a predetermined time has elapsed. (Corresponding value).
  • the control device 16 causes the pressing force of the pressurizing device 9 to follow the coal supply amount C in accordance with the elapse of a predetermined time after the supply amount increase period starts (positive correlation, the example in FIG. 3). Then proportionally).
  • the crushing force increases as the hydraulic pressure P of the pressurizing device 9 is set to be larger, the amount of fine particles generated in the crushing roller 3 is increased.
  • the hydraulic pressure P of the pressurizing device 9 is P1> P2. Further, specific values of the oil pressures P1 and P2 are determined by a test run depending on the properties of the coal 60.
  • the air volume of the primary air 61 may be increased or decreased in accordance with (positive correlation or in proportion to) the coal supply amount C. That is, the control device 16 increases the air volume to the blower at the same timing (time t1) as the overshoot of the coal supply C, and reduces the airflow to the blower at the timing (time t2) at which the overshoot ends.
  • the air volume may be increased by the blower following the increase in the volume C.
  • Increasing the air volume of the primary air 61 promotes the transport of fine particles to the outside of the vertical pulverizer, so that the slip of the pulverizing roller 3 during excessive supply of the raw material can be suppressed, and the vertical pulverizer is started. It is possible to reduce the delay of coal removal at the time.
  • the control device 16 may detect a change in the coal supply amount C using a sensor (not shown), or may appropriately receive information indicating the coal supply amount C from the control unit of the coal supply device. Alternatively, information indicating the transition of the coal supply amount C may be stored in the ROM 32 or the RAM 33 in advance. Then, the control device 16 may control the operation parameters based on the information as shown in FIGS. 3 (b) to 3 (d).
  • FIG. 5A and 5B are timing charts in which the horizontal axis represents the same time, and the vertical axis represents operating parameters of different vertical mills. That is, the vertical axis in FIG. 5A indicates the amount of coal supply C, and the vertical axis in FIG. 5B indicates the rotation speed ⁇ of the turntable 2. Note that detailed description of common points with the first embodiment will be omitted, and different points will be mainly described.
  • the configuration of the vertical pulverizer according to the second embodiment is common to that of the first embodiment shown in FIG.
  • the coal supply device reduces the coal supply amount C from C1 to 0 in response to the arrival of time t6 during the supply amount maintenance period. That is, at the time t6, the coal supply device stops supplying the coal 60 to the vertical mill. Further, as shown in FIG. 5B, the control device 16 linearly decreases the rotation speed ⁇ of the turntable 2 from ⁇ 1 to ⁇ 4 from time t6 to time t7, and During this period, the rotation speed ⁇ of the turntable 2 is fixed at ⁇ 4 (minimum rotation speed), and the rotation speed ⁇ of the turntable 2 is set to 0 in response to the arrival of time t8.
  • the control device 16 changes the turntable 2 from the rated rotation speed ⁇ 1 to the minimum rotation speed ⁇ 4 over a predetermined time (time t6-t7). Then, the motor is rotated at a constant speed at the minimum rotation speed ⁇ 4 for a predetermined time (time t7-t8), and then stopped.
  • the rotation speed ⁇ of the turntable 2 is ⁇ 3 ⁇ ⁇ 4.
  • the timings of the times t6, t7, and t8, and the specific values of the rotation speed ⁇ 4 are determined by the test operation according to the properties of the coal 60.
  • the integrated pressurizing frame 5 is drawn so as to suspend and press the plurality of crushing rollers 3 at the same time. It is also applicable to a mold grinder. Furthermore, a dam ring may be provided on the outer edge of the rotary table 2 to secure a layer of particles between the rotary table 2 and the grinding roller 3, or two or more of the above-described various structures may be combined.
  • the effect of suppressing vibration can be expected even if the turntable 2 is rotated at a constant speed of ⁇ 3 from time t1 to time t2.
  • coal 60 is given as an example of the raw material, but a specific example of the raw material is not limited thereto, and may be, for example, a cement raw material.
  • Raw material supply pipe (coal supply pipe) 2 rotary table 3 crushing roller 4 throat 5 pressurizing frame 8 pressurizing rod 9 pressurizing device 11 hopper 12 reducer 13 driving force transmission shaft 14 motor 15 inverter 16 control device 20 classifier 21 rotary fin 22 rotary shaft 30 powder pipe (Coal pipe) 43 Housing 60 Raw material (coal) 61 Primary air (hot air) 62 Powder 63 Product fine powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)

Abstract

回転テーブルの回転数を可変とした竪型粉砕機において、起動時の振動発生を抑制する。本発明の竪型粉砕機は、回転テーブルと、回転テーブルを回転させるモータと、インバータを介してモータの回転数を制御する制御装置と、回転テーブルの回転に従動して回転する複数個のローラと、を有し、回転テーブルと複数個のローラとの間に供給された原料を粉砕する。制御装置は、原料の供給開始後直ちに単位時間当たり第1量の原料が供給される過剰供給期間において、回転テーブルの回転数を予め設定した所定の回転数に固定し、過剰供給期間の後に単位時間当たりの供給量が第1量より少ない第2量まで減少する供給量減少期間、及び供給量減少期間の後に単位時間当たりの供給量が増加する供給量増加期間において、回転テーブルの回転数を単位時間当たりの原料の供給量に追従して増減させる。

Description

竪型粉砕機
 本発明は、回転テーブルと粉砕ローラとにより石炭等の固体原料を粉砕する竪型粉砕機に関する。
 モータによって回転される回転テーブルと、回転テーブル上に押圧された状態で回転する複数個の粉砕ローラとの作用により、供給された原料を粉砕する竪型粉砕機が特許文献1に記載されている。
 このような竪型粉砕機を起動する場合に、振動の発生が問題となる。この振動現象は、粉砕途中の粒子の層と粉砕ローラのすべりに起因する一種の摩擦振動であり、振動のタイプとしては自励振動の一種である。振動が発生する原因の一つは、原料の供給量が少ない起動時は回転テーブルと粉砕ローラとの間の粒子の層が薄いため、粉砕ローラが十分な摩擦を得られずにすべりを起こし、粒子の噛み込みが不連続になることである。振動が発生する条件で運転を継続すれば、振動が増幅して粉砕機自身及び周辺機器が破損する場合もある。
 上記のような竪型粉砕機の起動時の振動発生を抑制する技術として、特許文献1には、粉砕原料の過剰供給を一時的に実施することが記載されている。この技術によれば、起動時においても回転テーブルと粉砕ローラとが安定して粒子を噛み込むことができ、振動の発生が抑制できる。
特開平11-147047号公報 特許第5732803号公報
 特許文献1では、回転テーブルの回転数を一定とし、原料の供給量のみを調整している。しかしながら、この方法は負荷変動に対する応答性が悪く、対応できる負荷変動幅も小さい。そのため近年では、特許文献2に記載されているように、原料の供給量(負荷)の増減に応じて回転テーブルの回転数を増減させるシステムが導入されている。
 しかしながら、例えば、特許文献2の技術を特許文献1の竪型粉砕機に適用したとすると、原料の過剰供給に合わせて回転テーブルの回転数も過剰に増大するため、振動発生を抑制できないという課題がある。
 本発明では、回転テーブルの回転数を可変とした竪型粉砕機において、起動時の振動発生を抑制することを目的とする。
 上記目的を達成するために、本発明の竪型粉砕機は、回転テーブルと、前記回転テーブルを回転させるモータと、インバータを介して前記モータの回転数を制御する制御装置と、前記回転テーブルの回転に従動して回転する複数個のローラと、を有し、前記回転テーブルと前記複数個のローラとの間に供給された原料を粉砕する。前記制御装置は、原料の供給開始後直ちに単位時間当たり第1量の原料が供給される過剰供給期間において、前記回転テーブルの回転数を、予め設定した所定の回転数に固定し、前記過剰供給期間の後に単位時間当たりの供給量が前記第1量より少ない第2量まで減少する供給量減少期間、及び前記供給量減少期間の後に単位時間当たりの供給量が増加する供給量増加期間において、前記回転テーブルの回転数を、単位時間当たりの原料の供給量に追従して増減させることを特徴とする。
 本発明によれば、粉砕テーブルの回転数を可変とした竪型粉砕機において、起動時の振動発生を抑制することができる。なお、上記した以外の課題、構成、及び効果は、以下の実施形態の説明により明らかにされる。
本発明の第1の実施形態に係る竪型粉砕機の構成を示す図である。 図1の竪型粉砕機の部分拡大図であって、振動が発生しにくい状態を示す。 図1の竪型粉砕機の部分拡大図であって、振動が発生しやすい状態を示す。 第1の実施形態に係る竪型粉砕機の起動時のタイミングチャートである。 既存技術に係る竪型粉砕機の起動時のタイミングチャートである。 本発明の第2の実施形態に係る竪型粉砕機の停止時のタイミングチャートである。
(第1の実施形態)
 以下、本発明の第1の実施形態について、図を参照して説明する。
 (竪型粉砕機の全体構成)
 まず図1を用いて、本発明が適用される竪型粉砕機の全体構成を説明する。図1は、第1の実施形態に係る竪型粉砕機の全体構造を示す縦断面図である。竪型粉砕機のハウジング43には、給炭管(原料供給管)1と、回転テーブル2と、複数個の粉砕ローラ3とが収容されている。
 給炭管1は、ハウジング43の上部に配置されており、図示しない給炭装置(供給装置)から供給された石炭(原料)60を、ハウジング43内に供給する。回転テーブル2は、ハウジング43の下部に配置されている。回転テーブル2は、ハウジング43の下方の減速機12及び駆動力伝達シャフト13を介してモータ14の駆動力が伝達されて、鉛直方向に延びる回転軸線CL1(一点鎖線)周りに回転する。複数個の粉砕ローラ3は、回転テーブル2の上面において、円周方向に離間して配置されている。複数個の粉砕ローラ3は、タイヤ状から成り、回転テーブル2の回転に従動して、回転テーブル2の回転軸線CL1と交差する方向に延びる回転軸線CL2(二点鎖線)周りに回転する。
 複数個の粉砕ローラ3は、図示しないローラブラケットを介して加圧フレーム5により支持されている。加圧フレーム5に接続された加圧ロッド8を加圧装置9が下方へ引っ張ることにより、粉砕ローラ3へ粉砕荷重(押圧力)が伝達される。なお、第1の実施形態に係る加圧装置9は、油圧によって粉砕荷重(押圧力)を調整する。
 すなわち、複数個の粉砕ローラ3は、加圧装置9によって回転テーブル2に向けて押圧されている。なお、第1の実施形態に係る竪型粉砕機は、石炭60が供給されていない状態において、回転テーブル2と複数個の粉砕ローラ3とが接触(メタルタッチ)している。
 給炭管1は、回転テーブル2の回転軸線CL1と同軸線上に配置される。そのため、給炭管1を通じて供給される石炭60は、回転している回転テーブル2の中心部に落下した後、回転に伴う遠心力によって回転テーブル2上を渦巻き状の軌跡を描きながら径方向外側へ移動して、回転テーブル2と粉砕ローラ3との間に噛み込まれて粉砕される。
 粉砕された石炭60(粉体62と称する)は、回転テーブル2の外側のスロート4から導入される一次空気(熱風)61によって、乾燥されながら上方に吹き上げられる。吹き上げられた粉体62のうち、粒度が大きいものは分級装置20及びホッパ11によって回転テーブル2に戻されて、再び粉砕される。一方、粒度の小さいものは、一次空気61と共に複数の送炭管30に分配されて、製品微粉63としてボイラや微粉貯蔵器(図示せず)へ送られる。
 分級装置20は、給炭管1に回転自在に支持された回転軸22と、回転軸22の回転に伴って回転する回転フィン21と、回転軸22を回転駆動するモータ(図示せず)とを有する回転式である。回転フィン21は板の長手方向が回転軸22とほぼ平行に延び、かつ任意の角度で多数枚配置される。製品微粉63の粒度分布は、回転フィン21の回転数で調整される。
 分級装置20は、一次空気61によって吹き上げられた粉体62を微粒子と粗粒子とに分級する。そして、分級装置20は、微粒子を製品微粉63として送炭管30から外部に排出し、粗粒子をホッパ11に落下させる。ホッパ11は、分級装置20と回転テーブル2との間に配置されている。ホッパ11は、一次空気61によって吹き上げられた粉体62のうち、重力によって落下したもの、及び分級装置20によって分級された粗粒子を捕集して、回転テーブル2へ落下させる。
 モータ14は、インバータ15によって回転数が制御されるVVVF(Variable Voltage Variable Frequency)モータである。インバータ15は、制御装置16からの制御信号に従ってモータ14の回転数を増減させる。制御装置16は、加圧装置9、インバータ15、分級装置20、一次空気61を発生させるブロワ(図示せず)等の機器を制御し、外部装置である給炭装置や後段のボイラ等(図示せず)の制御部と通信し、相互に連携して竪型粉砕機の運転を行う。
 制御装置16は、CPU(Central Processing Unit)31、ROM(Read Only Memory)32、及びRAM(Random Access Memory)33を備えている。制御装置16は、ROM32に格納されたプログラムコードをCPU31が読み出して実行することによって、ソフトウェアとハードウェアとが協働して後述する各処理を実行する。また、RAM33は、CPU31がプログラムを実行する際のワークエリアとして用いられる。ただし、制御装置16の具体的な構成はこれに限定されず、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)などのハードウェアによって実現されてもよい。
(振動発生を抑制する原理)
 次に図2(a)、(b)を用いて、竪型粉砕機の振動発生を抑制する原理を説明する。図2(a)、(b)はいずれも図1の回転テーブル2及び粉砕ローラ3の一部とその周辺を拡大したものであるが、図2(a)は振動が発生しにくい状態を示し、図2(b)は振動が発生しやすい状態を示している。
 図2(a)と図2(b)との違いは回転テーブル2上の石炭60の量であり、図2(a)ではその量が多く、図2(b)では少ない。図2(a)の状態では、石炭60が連続して粉砕ローラ3と回転テーブル2との間に噛み込まれるため、両者の間に粉砕途中の粒子の層が厚みδ1に維持され、粉砕ローラ3は安定して回転する。
 一方図2(b)の状態では、粉砕ローラ3と回転テーブル2との間への石炭60の噛み込みが不連続になるため、粉砕途中の粒子の層の厚みδ2(<δ1)が図2(a)より薄くなる。この状態では粉砕ローラ3が不定期にスリップを起こすため、粉砕ローラ3は上下に振動を始める。そして、一旦振動が始まると、石炭60の噛み込みはさらに不安定になるため、時間の経過に伴って振動は増幅していく。
 ここで、図2(b)の状態で振動が発生していても、回転テーブル2の回転数を一定に保って石炭60を増量していけば、図2(a)の安定した運転状態へと移行させられる。しかしながら、石炭60の増量に追従して回転テーブル2の回転数を増大させた場合は、粉砕ローラ3が起こすスリップの頻度は上昇し、振動が大きくなってしまう。したがって、特許文献2のように、回転テーブル2への石炭60の単位時間当たりの供給量の増大に追従して回転テーブル2の回転数を自動で増大させてしまうシステムでは、起動時に石炭60の過剰供給を行っても振動発生を抑制できない。
 なお、図2(b)の状態で回転テーブル2の回転数を非常に低く抑えておき、石炭60の供給量と回転テーブル2の回転数との両方をゆっくりと増大させれば振動は発生しない。しかしながら、この運用方法は、竪型粉砕機の起動から製品微粉63が十分量得られるまでに時間がかかりすぎて実用的でない。なぜなら、竪型粉砕機の後段装置がボイラ等の燃焼装置の場合、燃焼負荷の変動に対する高い応答性が要求されるからである。
(第1の実施形態に係る制御装置16の動作)
 図3を用いて、第1の実施形態に係る制御装置16の動作を説明する。図3(a)-(d)はいずれも横軸に同じ時間をとったタイミングチャートであり、縦軸はそれぞれが異なる竪型粉砕機の運転パラメータを示している。すなわち、図3(a)の縦軸は給炭量C、図3(b)の縦軸は回転テーブル2の回転数ω、図3(c)の縦軸は分級装置20の回転数Ns、図3(d)の縦軸は加圧装置9の油圧(作動圧力)Pを示している。なお、本明細書中の「給炭量」とは、単位時間当たりの石炭の供給量を指す。
 図3(a)に示すように、給炭装置は、時刻t1から給炭を開始している。給炭の開始時刻や給炭量の情報は、給炭装置の制御部から制御装置16へと送信されている。なお、竪型粉砕機は内部の石炭60を全て排出してから停止するため、時刻t1以前では、回転テーブル2上の石炭60の量は0である。
 給炭装置は、時刻t1から時刻t2の間に、実線で示される石炭60の過剰供給を行う(過剰供給期間)。換言すれば、給炭装置は、過剰供給期間において、石炭60の給炭量をC1(第1量)に固定する。次に、給炭装置は、時刻t2に過剰供給期間を終了し、給炭量をC1からC2(第2量)に直線的に減少させる(供給量減少期間)。次に、給炭装置は、給炭量がC2に達したことに応じて供給量減少期間を終了し、時刻t5で給炭量C1に達するまで、給炭量を直線的に増加させる(供給量増加期間)。さらに、給炭装置は、時刻t5で給炭量がC1に達したことに応じて、供給量増加期間を終了し、給炭量C1(定格給炭量)を維持する(供給量維持期間)。
 すなわち、過剰供給期間における給炭量C1は、供給量増加期間の開始時点における給炭量C2より多い。また、過剰供給期間における給炭量C1は、供給量維持期間における給炭量C1と同一である。なお、第1の実施形態では、過剰供給期間における給炭量を定格給炭量C1に一致させているが、C1よりも少ない給炭量に設定してもよい。安定して竪型粉砕機を起動可能な給炭量は、石炭60の粒径分布、硬度等の性状に左右されるため、実運用上の給炭量は試運転によって決定される。また、時刻t1から時刻t2までの時間についても、やはり石炭60の性状に合わせて試運転で決定される。
 また、図3(b)に示すように、制御装置16は、時刻t1から所定の時間を遡った時刻t0から回転テーブル2を回転数ω3で回転させる。時刻t0の到来は、給炭装置の制御部から通知されてもよいし、竪型粉砕装置の図示しない操作パネルを通じてオペレータによって指示されてもよい。次に、制御装置16は、過剰供給期間において回転テーブル2の回転数をω2(所定の回転数)に固定し、供給量減少期間において回転テーブル2の回転数をω2からω3に直線的に減少させ、供給量増加期間において回転テーブル2の回転数をω3からω1に直線的に増加させ、供給量維持期間において回転テーブル2の回転数をω1(定格回転数)に固定する。
 第1の実施形態において、回転テーブル2の回転数ωは、ω1>ω2>ω3であり、ω1×0.5≦ω2≦ω1×0.8に設定される。なお、図3(b)では、時刻t1から所定の時間をかけて回転テーブル2の回転数がω3からω2まで上昇するように図示しているが、これはモータ14の機械的な遅延であって、制御装置16からインバータ15への制御信号は時刻t1の時点で回転数ω2を示している。また、時刻t0における回転数ω3と、供給量増加期間の開始時点における回転数ω3とは、異なる回転数でもよい。
 ここで、時刻t1から時刻t2の間(過剰供給期間)における回転数ωの設定が非常に重要である。すなわち、第1の実施形態では、過剰供給期間における給炭量Cが定格給炭量C1であるのに対し、回転テーブル2の回転数ωは定格回転数ω1の0.5から0.8倍に抑えられている。これは以下の理由による。すなわち、時刻t1以前は回転テーブル2が空の状態のため、時刻t1において給炭量Cを定格給炭量C1までオーバーシュートさせても、時刻t1における回転テーブル2上の石炭60の量は連続で定格給炭を行っている期間(時刻t5以降の供給量維持期間)よりも少ない。仮にこの状態で図4の従来例に示すように、時刻t1から時刻t2の間における回転数ωをω1まで上昇させたとすると、図2(b)の状態となって振動が発生してしまう。そのため、時刻t1から時刻t2の回転数ωはω1よりも小さく抑える必要がある。
 また、過剰供給期間における回転数ω2の設定を、ω1の0.5から0.8倍と幅を持たせているのは、粉砕対象の石炭60の粒径分布、硬度等の性状に合わせて、適正な運転条件を試運転によって決定する必要があるためである。
 さらに、過剰供給期間では回転テーブル2の回転数がω2に固定されているのに対して、供給量減少期間及び供給量増加期間では、給炭量Cの増減に追従して回転数ωが増減する。すなわち、制御装置16は、供給量減少期間において、給炭量Cの減少に追従して回転数ωを減少させ、供給量増加期間において、給炭量Cの増加に追従して回転数ωを増加させる。より詳細には、供給量減少期間及び供給量増加期間において、給炭量Cと回転数ωとは正の相関関係(図3の例では、比例関係)がある。これにより、回転テーブル2上の石炭60が多くなりすぎたり、少なくなりすぎたりすることが抑制され、図2(a)の状態を維持することができる。
 また、図3(c)に示すように、制御装置16は、時刻t0から時刻t3までの間は分級装置20の回転数NsをNs3に固定し、時刻t3から時刻t4までの間に分級装置20の回転数NsをNs3からNs2まで直線的に増加させ、時刻t4から時刻t5までの間に分級装置20の回転数NsをNs2からNs1まで直線的に増加させ、時刻t5以降の分級装置20の回転数NsをNs1に固定する。
 すなわち、制御装置16は、過剰供給期間、供給量減少期間、及び供給量増加期間が始まってから所定の時間が経過するまでの間において、分級装置20の回転数Nsを所定値Ns3に固定する。また、制御装置16は、供給量増加期間が始まってから所定の時間が経過したことに応じて、分級装置20の回転数Nsを、給炭量Cに追従(正の相関、図3の例では比例)して増加させる。
 分級装置20の回転数Nsが大きくなるほど、回転テーブル2への細かい粒子の戻りを増加させる効果がある。そして、回転テーブル2上の石炭60が少ない状態において、細かい粒子は粉砕ローラ3のスリップと振動発生を誘発する傾向がある。そのため、図3(c)に示すように、分級装置20の回転数Nsを給炭量C及び回転テーブル2の回転数ωの上昇開始よりも遅れて増速させると、振動発生の抑制効果を高めることができる。
 ここで、時刻t3は時刻t2と時刻t5の間の時刻であり、時刻t4は時刻t3と時刻t5の間の時刻である。また、分級装置20の回転数Nsは、Ns1>Ns2>Ns3である。なお、時刻t3、t4のタイミング、時刻t3-t4間及び時刻t4-t5間の直線の傾き、回転数Ns1、Ns2、Ns3の具体的な値は、石炭60の性状により、試運転によって決定される。
 また、図3(d)に示すように、制御装置16は、時刻t0から時刻t3までの間は加圧装置9の油圧PをP2に固定し、時刻t3から時刻t5の間に加圧装置9の油圧PをP2からP1まで直線的に増加させ、時刻t5以降の加圧装置9の油圧PをP1に固定する。すなわち、制御装置16は、過剰供給期間、供給量減少期間、及び供給量増加期間が始まってから所定の時間が経過するまでの間において、加圧装置9の押圧力を所定値(油圧P2に対応する値)に固定する。また、制御装置16は、供給量増加期間が始まってから所定の時間が経過したことに応じて、加圧装置9の押圧力を、給炭量Cに追従(正の相関、図3の例では比例)して増加させる。
 加圧装置9の油圧Pを大きく設定するほど粉砕力が高まるため、粉砕ローラ3における細かい粒子の発生量を増加させる。回転テーブル2上の石炭60が少ない状態において、細かい粒子は粉砕ローラ3のスリップと振動発生を誘発する傾向がある。そこで、加圧装置9の油圧Pを、給炭量C、回転テーブル2の回転数ωの上昇開始よりも遅れて上昇させると、振動発生の抑制効果を高めることができる。ここで、加圧装置9の油圧Pは、P1>P2である。また、油圧P1、P2の具体的な値は、石炭60の性状により、試運転によって決定される。
 さらに、図示は省略するが、一次空気61の風量を、給炭量Cに追従(正の相関或いは比例)して増減させてもよい。すなわち、制御装置16は、給炭量Cのオーバーシュートと同じタイミング(時刻t1)でブロワに風量を増量させ、オーバーシュートが終わったタイミング(時刻t2)でブロワに風量を減量させ、さらに給炭量Cの増加に追従してブロワに風量を増量させてもよい。一次空気61の風量を増量すると、竪型粉砕機外への微粒子の搬出が促進されるため、原料を過剰供給している際の粉砕ローラ3のスリップを抑制できると共に、竪型粉砕機の起動時における出炭の遅れを小さくすることができる。
 以上のように、給炭量Cと回転テーブル2の回転数ωとが連動した竪型粉砕機の起動時において、石炭60を一時的に過剰供給する一方で、回転テーブル2の回転数ωをω2に固定する起動時専用制御を行うことで、粉砕ローラ3の振動発生を抑制することができる。
 なお、制御装置16は、不図示のセンサによって給炭量Cの変化を検出してもよいし、給炭装置の制御部から給炭量Cを示す情報を適宜受信してもよい。または、給炭量Cの推移を示す情報が予めROM32或いはRAM33に記憶されていてもよい。そして、制御装置16は、これらの情報に基づいて、図3(b)-(d)に示すように、運転パラメータを制御すればよい。
(第2の実施形態に係る制御装置16の動作)
 次に図5を用いて、第2の実施形態に係る制御装置16の動作を説明する。図5(a)、(b)はいずれも横軸に同じ時間をとったタイミングチャートであり、縦軸はそれぞれが異なる竪型粉砕機の運転パラメータを示している。すなわち、図5(a)の縦軸は給炭量C、図5(b)の縦軸は回転テーブル2の回転数ωを示している。なお、第1の実施形態との共通点の詳細な説明は省略し、相違点を中心に説明する。第2の実施形態に係る竪型粉砕機の構成は、図1に示される第1の実施形態と共通する。
 図5(a)に示すように、給炭装置は、供給量維持期間の実行中に時刻t6が到来したことに応じて、給炭量CをC1から0に減少させる。すなわち、給炭装置は、時刻t6において、竪型粉砕機への石炭60の供給を停止する。また、図5(b)に示すように、制御装置16は、時刻t6から時刻t7までの間に、回転テーブル2の回転数ωをω1からω4に直線的に減少させ、時刻t7から時刻t8までの間は回転テーブル2の回転数ωをω4(最低回転数)に固定し、時刻t8が到来したことに応じて回転テーブル2の回転数ωを0にする。
 すなわち、制御装置16は、給炭装置からの石炭60の供給が停止したことに応じて、回転テーブル2を、所定の時間(時刻t6-t7)をかけて定格回転数ω1から最低回転数ω4に減速し、その後に所定の時間(時刻t7-t8)だけ最低回転数ω4で定速回転させ、その後に停止させる。なお、回転テーブル2の回転数ωは、ω3≧ω4である。また、時刻t6、t7、t8のタイミング、回転数ω4の具体的な値は、石炭60の性状により、試運転によって決定される。
 給炭装置からの石炭60の供給が停止した状態で回転テーブル2を回転させると、回転テーブル2上の石炭60が徐々に減少する。そこで、時刻t6から時刻t7の間に、回転テーブル2上の石炭60の減少に追従(正の相関或いは比例)して、回転テーブル2の回転数ωを減少させることにより、粉砕ローラ3のスリップを抑制することができる。さらに、時刻t7から時刻t8までの間は回転テーブル2を最低回転数ω4で定速回転させることにより、回転テーブル2上の全ての石炭60を排出してから竪型粉砕機を停止させることができる。これにより、ハウジング43内に残留した石炭60の発火などによるトラブルを抑制できる。
(その他の実施形態)
 なお、本発明は上記の実施形態に限定されるものではない。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。例えば、図1において、竪型粉砕機が空の状態で回転テーブル2と粉砕ローラ3とが接触(メタルタッチ)しているように描かれているが、同状態で両者の間に隙間を設けてもよい。また、タイヤ状の粉砕ローラ3の代わりに球状の粉砕ボールを用いても良い。この場合であっても、同様に振動の抑制が図れる。
 また、図1では、一体型の加圧フレーム5が複数の粉砕ローラ3を同時に懸架して加圧するように描かれているが、複数の粉砕ローラ3を個々に懸架して加圧する方式の竪型粉砕機にも適用可能である。さらに、回転テーブル2の外縁にダムリングを設けて粉砕ローラ3との間の粒子の層を確保してもよいし、上記した各種構造の内の2種類以上を組み合わせてもよい。
 また、上記の実施形態では、図3及び図5に示すように、竪型粉砕機の運転パラメータを直線的に変化させる例を説明したが、運転パラメータの変化特性はこれに限定されず、例えば、多次曲線、指数曲線、或いはこれらの組み合わせであってもよい。
 また、図3(b)の回転テーブル2の回転数ωについて、時刻t1から時刻t2までの間は回転テーブル2を回転数ω3で定速回転させるようにしても振動抑制の効果は期待できる。
 さらに、上記説明中では、原料の一例として石炭60を挙げたが、原料の具体例はこれに限定されず、例えばセメント原料等であってもよい。
 1 原料供給管(給炭管)
 2 回転テーブル
 3 粉砕ローラ
 4 スロート
 5 加圧フレーム
 8 加圧ロッド
 9 加圧装置
 11 ホッパ
 12 減速機
 13 駆動力伝達シャフト
 14 モータ
 15 インバータ
 16 制御装置
 20 分級装置
 21 回転フィン
 22 回転軸
 30 送粉管(送炭管)
 43 ハウジング
 60 原料(石炭)
 61 一次空気(熱風)
 62 粉体
 63 製品微粉

Claims (5)

  1.  回転テーブルと、
     前記回転テーブルを回転させるモータと、
     インバータを介して前記モータの回転数を制御する制御装置と、
     前記回転テーブルの回転に従動して回転する複数個のローラと、を有し、
     前記回転テーブルと前記複数個のローラとの間に供給された原料を粉砕する竪型粉砕機であって、
     前記制御装置は、
     原料の供給開始後直ちに単位時間当たり第1量の原料が供給される過剰供給期間において、前記回転テーブルの回転数を、予め設定した所定の回転数に固定し、
     前記過剰供給期間の後に単位時間当たりの供給量が前記第1量より少ない第2量まで減少する供給量減少期間、及び前記供給量減少期間の後に単位時間当たりの供給量が増加する供給量増加期間において、前記回転テーブルの回転数を、単位時間当たりの原料の供給量に追従して増減させることを特徴とする竪型粉砕機。
  2.  請求項1に記載の竪型粉砕機において、
     前記過剰供給期間における前記所定の回転数は、前記供給量増加期間の開始時点における前記回転テーブルの回転数より大きいことを特徴とする竪型粉砕機。
  3.  請求項2に記載の竪型粉砕機において、
     前記制御装置は、前記供給量増加期間で単位時間当たりの供給量が前記第1量に達した後に、単位時間当たりの供給量が前記第1量に維持される供給量維持期間において、前記回転テーブルの回転数を、前記供給量増加期間の終了時点における回転数に固定し、
     前記過剰供給期間における前記所定の回転数は、前記供給量維持期間における前記回転テーブルの回転数より小さいことを特徴とする竪型粉砕機。
  4.  請求項1に記載の竪型粉砕機において、
     前記回転テーブルと前記複数個のローラとによって粉砕された原料を分級する回転式の分級装置をさらに有し、
     前記制御装置は、
     前記過剰供給期間、前記供給量減少期間、及び前記供給量増加期間が始まってから所定の時間が経過するまでの間において、前記分級装置の回転数を所定値に固定し、
     前記供給量増加期間が始まってから前記所定の時間が経過したことに応じて、前記分級装置の回転数を、単位時間当たりの原料の供給量に追従して上昇させることを特徴とする竪型粉砕機。
  5.  請求項1に記載の竪型粉砕機において、
     前記複数個のローラそれぞれを前記回転テーブルに向けて押圧する加圧装置をさらに有し、
     前記制御装置は、
     前記過剰供給期間、前記供給量減少期間、及び前記供給量増加期間が始まってから所定の時間が経過するまでの間において、前記加圧装置の押圧力を所定値に固定し、
     前記供給量増加期間が始まってから前記所定の時間が経過したことに応じて、前記加圧装置の押圧力を、単位時間当たりの原料の供給量に追従して増加させることを特徴とする竪型粉砕機。
PCT/JP2019/022790 2018-06-19 2019-06-07 竪型粉砕機 WO2019244678A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020207031065A KR102477846B1 (ko) 2018-06-19 2019-06-07 수직형 분쇄기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018116323A JP2019217454A (ja) 2018-06-19 2018-06-19 竪型粉砕機
JP2018-116323 2018-06-19

Publications (1)

Publication Number Publication Date
WO2019244678A1 true WO2019244678A1 (ja) 2019-12-26

Family

ID=68983992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022790 WO2019244678A1 (ja) 2018-06-19 2019-06-07 竪型粉砕機

Country Status (3)

Country Link
JP (1) JP2019217454A (ja)
KR (1) KR102477846B1 (ja)
WO (1) WO2019244678A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7282540B2 (ja) * 2019-02-13 2023-05-29 三菱重工業株式会社 固体燃料粉砕装置及びこれを備えた発電プラント並びに固体燃料粉砕方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429761A (ja) * 1990-05-28 1992-01-31 Mitsubishi Heavy Ind Ltd 微粉炭機風量制御装置
JPH0938512A (ja) * 1995-07-25 1997-02-10 Ishikawajima Harima Heavy Ind Co Ltd 残炭ミル起動時の一次空気制御方法及び装置
JPH09192514A (ja) * 1996-01-18 1997-07-29 Babcock Hitachi Kk 粉砕機の制御方法および制御装置
JPH11147047A (ja) * 1997-11-17 1999-06-02 Babcock Hitachi Kk ローラミルの制御装置及び制御方法
JPH11319602A (ja) * 1998-05-08 1999-11-24 Babcock Hitachi Kk ローラミル及びその起動方法
JP2014137196A (ja) * 2013-01-17 2014-07-28 Ube Machinery Corporation Ltd 粉砕原料燃焼システム及びその制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131940A (en) 1977-07-25 1978-12-26 International Business Machines Corporation Channel data buffer apparatus for a digital data processing system
JPH0352107Y2 (ja) * 1985-12-03 1991-11-11
JPH0483541A (ja) * 1990-07-26 1992-03-17 Ishikawajima Harima Heavy Ind Co Ltd 石炭ミルの停止方法
JPH0780338A (ja) * 1993-09-17 1995-03-28 Babcock Hitachi Kk 石炭粉砕用ローラミルの運転方法
JP3681458B2 (ja) * 1996-02-07 2005-08-10 バブコック日立株式会社 ローラミルの加圧力制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429761A (ja) * 1990-05-28 1992-01-31 Mitsubishi Heavy Ind Ltd 微粉炭機風量制御装置
JPH0938512A (ja) * 1995-07-25 1997-02-10 Ishikawajima Harima Heavy Ind Co Ltd 残炭ミル起動時の一次空気制御方法及び装置
JPH09192514A (ja) * 1996-01-18 1997-07-29 Babcock Hitachi Kk 粉砕機の制御方法および制御装置
JPH11147047A (ja) * 1997-11-17 1999-06-02 Babcock Hitachi Kk ローラミルの制御装置及び制御方法
JPH11319602A (ja) * 1998-05-08 1999-11-24 Babcock Hitachi Kk ローラミル及びその起動方法
JP2014137196A (ja) * 2013-01-17 2014-07-28 Ube Machinery Corporation Ltd 粉砕原料燃焼システム及びその制御方法

Also Published As

Publication number Publication date
JP2019217454A (ja) 2019-12-26
KR20200138785A (ko) 2020-12-10
KR102477846B1 (ko) 2022-12-16

Similar Documents

Publication Publication Date Title
JP5277967B2 (ja) 竪型粉砕機の制御方法
WO2019244678A1 (ja) 竪型粉砕機
JP6446847B2 (ja) 竪型粉砕機の運転方法及び竪型粉砕機
JP6338098B2 (ja) 竪型粉砕機の運転方法及び竪型粉砕機
JP6331741B2 (ja) 竪型粉砕機の運転方法及び竪型粉砕機
JP6251954B2 (ja) 粉砕原料燃焼システム及びその制御方法
JP2007185570A (ja) 竪型ローラミル,竪型ローラミルを用いた粉砕方法
JPH11147047A (ja) ローラミルの制御装置及び制御方法
JPH0584447A (ja) 竪型粉砕機
JP7151512B2 (ja) 竪型粉砕機及びその運転方法
JP4919158B2 (ja) 竪型粉砕機の制御方法及び竪型粉砕機
JP5004558B2 (ja) 粉砕設備およびその制御装置並びに粉砕設備における原料供給方法
JP3439800B2 (ja) ミルおよびその運用方法
JPH05104011A (ja) 竪型粉砕機の自動運転方法
JP2000334323A (ja) ローラミルの加圧力制御方法
JPH11319602A (ja) ローラミル及びその起動方法
JPH11276919A (ja) ローラミル
JP3270202B2 (ja) ローラミルおよびその粉砕方法
JPH0386255A (ja) 微粉炭生成用竪形ローラミル
WO2019004096A1 (ja) 竪型ローラミル及びその運転方法
JP3681458B2 (ja) ローラミルの加圧力制御方法
JP2010125356A (ja) 竪型ミル
JPH0584448A (ja) 竪型粉砕機
JP2873026B2 (ja) 微粉砕用リングローラミル
JP2007185569A (ja) 竪型ローラミル,竪型ローラミルを用いた粉砕方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822481

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207031065

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822481

Country of ref document: EP

Kind code of ref document: A1