WO2019239868A1 - 薄肉鋳片の製造方法 - Google Patents

薄肉鋳片の製造方法 Download PDF

Info

Publication number
WO2019239868A1
WO2019239868A1 PCT/JP2019/020853 JP2019020853W WO2019239868A1 WO 2019239868 A1 WO2019239868 A1 WO 2019239868A1 JP 2019020853 W JP2019020853 W JP 2019020853W WO 2019239868 A1 WO2019239868 A1 WO 2019239868A1
Authority
WO
WIPO (PCT)
Prior art keywords
drum
thin
slab
pair
cooling
Prior art date
Application number
PCT/JP2019/020853
Other languages
English (en)
French (fr)
Inventor
雅文 宮嵜
脇坂 岳顕
新井 貴士
直嗣 吉田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to US17/054,977 priority Critical patent/US11618072B2/en
Priority to JP2020525403A priority patent/JP6874908B2/ja
Priority to CN201980037880.0A priority patent/CN112236248B/zh
Priority to KR1020207034882A priority patent/KR102448623B1/ko
Priority to BR112020023221-1A priority patent/BR112020023221A2/pt
Publication of WO2019239868A1 publication Critical patent/WO2019239868A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/068Accessories therefor for cooling the cast product during its passage through the mould surfaces
    • B22D11/0682Accessories therefor for cooling the cast product during its passage through the mould surfaces by cooling the casting wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations

Definitions

  • the present invention relates to a method for manufacturing a thin-walled slab by supplying molten steel to a molten steel pool portion formed by a pair of cooling drums and a pair of side weirs to manufacture a thin-walled slab.
  • a device for producing thin metal slabs has a pair of cooling drums that have a water-cooling structure inside and rotate in opposite directions to each other. Supply, form and grow solidified shells on the peripheral surface of the cooling drum, and press-bond the solidified shells formed on the peripheral surfaces of the pair of cooling drums at the drum kiss point to produce a thin slab of a predetermined thickness
  • a twin-drum type continuous casting apparatus is provided. Such a twin drum type continuous casting apparatus is applied to various metals.
  • molten steel is continuously supplied from a tundish disposed above the cooling drum to the molten steel pool through an immersion nozzle and rotates.
  • the molten steel is solidified and grown on the peripheral surface of the cooling drum to form a solidified shell, and the solidified shell formed on the peripheral surface of each cooling drum is pressed at the drum kiss point to produce a thin slab.
  • the solidified structure has columnar crystals from the surface layers on both sides to 1/2 thickness part.
  • equiaxed crystals may be formed in the 1 ⁇ 2 thick part.
  • Patent Document 1 it has been aimed to actively generate equiaxed crystals in order to homogenize a metal structure.
  • Patent Document 2 in a method of casting an austenitic stainless steel strip slab by a continuous casting apparatus in which the mold wall moves in synchronization with the slab, Ni negative segregation is achieved by controlling the pressing force of the mold wall surface.
  • a manufacturing method that suppresses the occurrence of spotting and prevents spotted and staggered luster unevenness seen in steel sheets after cold rolling and cold working.
  • the liquid phase confined between the grains may be solidified and contracted to generate micropores.
  • the micropore is a hole having a diameter of about 300 ⁇ m to 100 ⁇ m, and has a bad influence on mechanical properties such as strength and toughness by being a starting point of fracture during processing.
  • the solidified shells made of columnar crystals are pressure-bonded, the liquid phase is discharged and the columnar crystals are brought into close contact with each other, so that micropores are not generated. Therefore, from the viewpoint of preventing the deterioration of mechanical properties due to micropores, a thin cast slab having a low equiaxed crystal ratio and a high columnar crystal ratio is desired.
  • This invention is made in view of the situation mentioned above, Comprising: It provides the manufacturing method of the thin-walled slab which can manufacture stably the thin-walled slab with a high columnar crystal ratio over the whole area of a slab. Objective.
  • molten steel is supplied to a molten steel reservoir formed by a pair of rotating cooling drums and a pair of side weirs, and a solidified shell is formed and grown on the peripheral surface of the cooling drum to form a thin cast slab.
  • a method for manufacturing a thin-walled slab to be manufactured wherein a pressing force P (kgf / mm) of a pair of the cooling drums, a casting thickness D (mm), and a radius R (m) of the cooling drum are 0.90 ⁇
  • the pressing force P of the pair of cooling drums is set so as to satisfy P ⁇ (D ⁇ R) 0.5 ⁇ 1.30.
  • P ⁇ (D ⁇ R) 0.5 defined by the pressing force P of the cooling drum, the casting thickness D (mm), and the radius R (m) of the cooling drum. Is set to 1.30 or less, the excessive pressing force P of the drum is suppressed, and the generation and growth of equiaxed crystals can be suppressed. Therefore, it is possible to manufacture a thin cast slab with less equiaxed crystals over the entire area.
  • P ⁇ (D ⁇ R) 0.5 is 0.90 or more, the solidified shells can be securely bonded to each other, and a thin cast slab can be manufactured stably.
  • the pressing force P of the pair of cooling drums is set in consideration of the casting thickness D (mm) and the cooling drum radius R (m), the actual pressing state can be stabilized.
  • FIG. 1 It is a schematic explanatory drawing of the twin drum type continuous casting apparatus used when implementing the manufacturing method of the thin cast slab which is embodiment of this invention. It is an expansion explanatory view of the twin drum type continuous casting apparatus shown in FIG.
  • rolling by a rolling roll it is a figure explaining the relationship between the contact length of a rolling roll and a to-be-rolled material, the rolling roll radius, and the plate
  • the crystal nuclei are retained by pressure bonding and squeezing of the solidified shell due to the pressing of the cooling drum, and the crystal nuclei coalesce and grow, and this is between the solidified shells It becomes an equiaxed crystal.
  • the solidified shell is pressure-bonded by pressing the cooling drum, if the pressing force is excessive, the tip of the solidified shell is broken by the reduction and crystal nuclei are generated. Then, the crystal nuclei are retained by pressing and drawing the solidified shell by pressing the cooling drum, and the crystal nuclei coalesce and grow, and these are entangled between the solidified shells to form equiaxed crystals.
  • the factor that promotes the formation and growth of equiaxed crystals is the excessive crimping of the solidified shell due to the pressing of the cooling drum, and the pressing condition of the cooling drum is optimized.
  • the generation and growth of equiaxed crystals can be suppressed.
  • the outer diameter (drum diameter) of the cooling drum is large, the pressure bonding of the solidified shell becomes closer to flat plate compression, and the drawing up and breakage due to the pressure bonding become excessive. For this reason, when the drum diameter is large, it is necessary to keep the pressing force of the drum low.
  • the peripheral speed of the cooling drum becomes slower and a large number of free crystal nuclei are generated. Furthermore, since the temperature gradient at the interface between the solidified shell and the molten steel becomes smaller and the fragile part at the tip of the solidified shell becomes thicker, breakage due to pressing becomes excessive. For this reason, when the solidified shell thickness (that is, the casting thickness) is large, it is necessary to keep the pressing force of the drum low.
  • the thin cast slab 1 manufactured in the present embodiment may be used for automotive steel plates, corrosion / weather resistant steel plates, welded pipes, directional electrical steel plates, non-oriented electrical steel plates, and the like.
  • the width of the thin cast slab 1 to be manufactured is in the range of 300 mm to 2000 mm, and the thickness is in the range of 1 mm to 5 mm.
  • the twin-drum continuous casting apparatus 10 in the present embodiment includes a pair of cooling drums 11, 11, bender rolls 12, 12 that bend the thin cast piece 1, and a pinch that supports the thin cast piece 1.
  • Rolls 13, 13, side weirs 15 disposed at the ends in the width direction of the pair of cooling drums 11, 11, and a molten steel pool 16 defined by the pair of cooling drums 11, 11 and the side weirs 15.
  • a dipping nozzle 18 for supplying the molten steel 3 from the tundish 17 to the molten steel pool portion 16.
  • FIG. 2 shows an enlarged explanatory view around the molten steel pool 16 in FIG.
  • a chamber 20 is disposed above the molten steel pool 16 and the cooling drums 11 and 11.
  • the molten steel 3 is supplied from the tundish 17 through the immersion nozzle 18 to the molten steel pool portion 16 formed by the pair of cooling drums 11 and 11 and the side weir 15, and the pair of cooling drums 11 and 11 are moved in the rotation direction F.
  • Each of the cooling drums 11 and 11 is rotated so that the region where the pair of cooling drums 11 and 11 are close to each other is directed in the drawing direction of the thin cast slab 1 (downward in FIG. 1).
  • the solidified shell 5 is formed on the peripheral surface of the cooling drum 11. Then, the solidified shell 5 grows on the peripheral surface of the cooling drum 11, and the solidified shells 5 and 5 formed on the pair of cooling drums 11 and 11, respectively, are pressure-bonded at the drum kiss point KP. A thin slab 1 is cast.
  • the pressing force P (kgf / mm) at the drum kiss point KP between the pair of cooling drums 11 and 11 is used as the casting thickness D (mm) and the radius R (m) of the cooling drum 11.
  • the rules are as follows. 0.90 ⁇ P ⁇ (D ⁇ R) 0.5 ⁇ 1.30
  • the contact length L increases even when pressed with the same reduction force, and the rolling efficiency increases.
  • ( ⁇ h ⁇ R) It is necessary to reduce the pressing force with an increase of 0.5 .
  • the reduction amount ⁇ h of the sheet thickness due to rolling is approximately proportional to the casting thickness D.
  • the radius R of the rolling roll corresponds to the radius R of the cooling drum 11.
  • the index indicating the degree of pressure bonding of the solidified shell 5 and the degree of breakage of the solidified shell 5 leading to the formation of equiaxed crystals are the pressing force P and (D XR) 0.5 product P x (D x R) 0.5 .
  • Px (D xR) 0.5 the index indicating the degree of pressure bonding of the solidified shell 5 and the degree of breakage of the solidified shell 5 leading to the formation of equiaxed crystals.
  • P ⁇ (D ⁇ R) 0.5 is set in the range of 0.90 to 1.30.
  • the upper limit of P ⁇ (D ⁇ R) 0.5 is preferably 1.1 or less.
  • the cooling drum 11 is rotated every 10 revolutions (for example, the radius R of the cooling drum 11) throughout the entire thin slab 1.
  • the thickness is 0.3 m
  • the entire width of the thin cast slab 1 is sampled at a pitch of 18.8 m)
  • the metal structure of the entire cross section in the width direction excluding 20 mm at both ends as a trim margin is observed, the thin cast
  • the minimum value of the ratio of the columnar crystal thickness to the thickness of the piece 1 exceeds 95%.
  • the pressing force P of the pair of cooling drums 11 and 11 is set in consideration of the casting thickness D (mm) and the radius R (m) of the cooling drum 11, the actual pressing state can be stabilized. It becomes possible. Therefore, the thin cast piece 1 with few equiaxed crystals can be stably manufactured over the entire area of the thin cast piece 1.
  • the minimum value of the ratio of the columnar crystal thickness to the thickness of the thin cast 1 is over 95% as described above. Therefore, it is possible to prevent the mechanical properties from being deteriorated due to the micropores.
  • Example 1 Using the twin-drum continuous casting apparatus described in the embodiment, a thin-walled casting made of a steel material containing C: 0.02 mass%, Si: 3.5 mass%, Al: 0.6 mass%, Mn: 0.2 mass% The piece was cast under the conditions shown in Table 1. The drum width was 400 mm.
  • the casting situation was evaluated visually.
  • the evaluation results are shown in Table 1 and FIG.
  • the columnar crystal ratio of the obtained thin cast piece was measured.
  • the entire width of the thin slab is sampled at every 10 rotations of the cooling drum (for example, 18.8 m pitch when the cooling drum radius R is 0.3 m) over the entire thin slab,
  • the metal structure of the entire cross section in the width direction except 20 mm was observed, and the minimum value of the ratio of the columnar crystal thickness to the plate thickness was defined as the columnar crystal ratio in the casting.
  • the evaluation results are shown in Table 1 and FIG.
  • Table 1 shows the average size and number density of the micropores. From the thin slab, a sample having a full width was taken for one rotation of the cooling drum, and an X-ray transmission photograph was taken from the plate surface direction of the thin slab. Then, two-dimensional image processing was performed on the micropores observed as white spots, and the average size ( ⁇ m) and number density (pieces / m 2 ) of the micropores were measured.
  • Examples 1 to 8 of the present invention in which P ⁇ (D ⁇ R) 0.5 is an appropriate range, the casting can be stably performed and the columnar crystal ratio is high over the entire slab. As a result, it was confirmed that micropores could be prevented.
  • the present invention it is possible to provide a method for producing a thin-walled slab that can stably produce a thin-walled slab having a high columnar crystal ratio over the entire area of the slab.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Glass Compositions (AREA)

Abstract

この薄肉鋳片の製造方法は、回転する一対の冷却ドラムと一対のサイド堰によって形成された溶鋼溜まり部に溶鋼を供給し、前記冷却ドラムの周面に凝固シェルを形成及び成長させて薄肉鋳片を製造する薄肉鋳片の製造方法であって、一対の前記冷却ドラムの押し付け力P(kgf/mm)、鋳造厚さD(mm)、前記冷却ドラムの半径R(m)が、0.90≦P×(D×R)0.5≦1.30を満足するように、前記一対の前記冷却ドラムの押し付け力Pを設定する。

Description

薄肉鋳片の製造方法
 本発明は、一対の冷却ドラムと一対のサイド堰によって形成された溶鋼溜まり部に溶鋼を供給して薄肉鋳片を製造する薄肉鋳片の製造方法に関する。
 本願は、2018年6月12日に、日本に出願された特願2018-111919号に基づき優先権を主張し、その内容をここに援用する。
 金属の薄肉鋳片を製造する装置として、内部に水冷構造を有し互いに逆方向に回転する一対の冷却ドラムを備え、一対の冷却ドラムと一対のサイド堰によって形成された溶鋼溜まり部に溶鋼を供給し、前記冷却ドラムの周面に凝固シェルを形成及び成長させ、一対の冷却ドラムの外周面にそれぞれ形成された凝固シェル同士をドラムキス点で圧着して所定の厚さの薄肉鋳片を製造する双ドラム式連続鋳造装置が提供されている。このような双ドラム式連続鋳造装置は、各種金属において適用されている。
 上述の双ドラム式連続鋳造装置においては、例えば特許文献1に示すように、冷却ドラムの上方に配置されたタンディッシュから浸漬ノズルを介して溶鋼溜まり部に溶鋼が連続的に供給され、回転する冷却ドラムの周面上で溶鋼が凝固成長して凝固シェルが形成され、各冷却ドラムの周面に形成された凝固シェルがドラムキス点で圧着され、薄肉鋳片が製出される。
 ところで、上述の双ドラム式連続鋳造装置を用いて製造される薄肉鋳片においては、溶鋼が凝固時に急冷されることから、凝固組織が、両面の表層から1/2厚部に向かう柱状晶を有する。鋼種や鋳造条件によっては、1/2厚部に等軸晶が形成されることもある。
 従来、一般的には、例えば特許文献1に示すように、金属組織を均質化するために、等軸晶を積極的に生成することが志向されている。
 また、特許文献2においては、鋳型壁が鋳片と同期して移動する連続鋳造装置によってオーステナイト系ステンレス鋼薄帯状鋳片を鋳造する方法において、鋳型壁面の押し付け力を制御することによってNi負偏析の発生を抑制し、冷延及び冷間加工後の鋼板に見られる斑点状、千鳥配置の霜降り状光沢むらを防止する製造方法が提案されている。
日本国特開平02-092438号公報 日本国特開2003-285141号公報
 ところで、等軸晶を挟んで凝固シェル同士を圧着させると、粒間に閉じ込められた液相が凝固収縮して、マイクロポアが発生する場合がある。マイクロポアとは、直径300μm~100μm程度の空孔であり、加工時の破壊起点となることで、強度や靭性等の機械特性等に悪影響を及ぼすものである。
 一方、柱状晶からなる凝固シェル同士を圧着させると、液相が排出されて柱状晶同士が密着するためマイクロポアが発生しない。従って、マイクロポアに起因する機械特性の低下を防ぐ観点からは、等軸晶率が低く、柱状晶率が高い薄肉鋳片が望まれている。
 双ドラム式連続鋳造装置を用いて製造された薄肉鋳片において、柱状晶率を全体的に高めようとしても、等軸晶の生成状況が安定しておらず、局所的に等軸晶率が5%以上となり、柱状晶率が95%未満となるような箇所が生じることがあった。
 連続鋳造する薄肉鋳片において、マイクロポアに起因する欠陥箇所が生じると、その対策として、薄肉鋳片にさらなる熱間圧延などを加えて、マイクロポアを圧着する必要がある。その工程増加により、生産効率を著しく低下させることになる。このため、全域にわたって柱状晶率が高く安定した薄肉鋳片が望まれていた。
 本発明は、前述した状況に鑑みてなされたものであって、鋳片の全域にわたって柱状晶率が高い薄肉鋳片を安定して製造することができる薄肉鋳片の製造方法を提供することを目的とする。
 本発明の一態様は、回転する一対の冷却ドラムと一対のサイド堰によって形成された溶鋼溜まり部に溶鋼を供給し、前記冷却ドラムの周面に凝固シェルを形成及び成長させて薄肉鋳片を製造する薄肉鋳片の製造方法であって、一対の前記冷却ドラムの押し付け力P(kgf/mm)、鋳造厚さD(mm)、前記冷却ドラムの半径R(m)が、0.90≦P×(D×R)0.5≦1.30を満足するように、一対の前記冷却ドラムの押し付け力Pを設定する。
 この構成の薄肉鋳片の製造方法においては、冷却ドラムの押し付け力P、鋳造厚さD(mm)、前記冷却ドラムの半径R(m)によって定義されるP×(D×R)0.5が1.30以下とされているので、ドラムの押し付け力Pが過剰に高くなることが抑制され、等軸晶の発生及び成長を抑制することができる。よって、全域にわたって安定して等軸晶の少ない薄肉鋳片を製造することができる。
 一方、P×(D×R)0.5が0.90以上とされているので、凝固シェル同士を確実に圧着することができ、安定して薄肉鋳片を製造することが可能となる。
 また、鋳造厚さD(mm)、冷却ドラムの半径R(m)を考慮して一対の冷却ドラムの押し付け力Pを設定しているので、実際の押し付け状況を安定させることが可能となる。
 上述のように、本発明によれば、鋳片の全域にわたって柱状晶率が高い薄肉鋳片を安定して製造することが可能な薄肉鋳片の製造方法を提供することができる。
本発明の実施形態である薄肉鋳片の製造方法を実施する際に用いられる双ドラム式連続鋳造装置の概略説明図である。 図1に示す双ドラム式連続鋳造装置の拡大説明図である。 圧延ロールによる圧延において、圧延ロールと被圧延材との接触長さと、圧延ロール半径並びに圧延による被圧延材の板厚減少量との関係を説明する図である。 実施例において鋳造状況を評価した結果を示すグラフである。 実施例において柱状晶率を評価した結果を示すグラフである。
 上記課題を解決するために、本発明者ら鋭意検討した結果、双ドラム式連続鋳造装置において、等軸晶の発生機構として、以下の2つがあることを確認した。
(1)溶鋼とドラム表面の接触部(メニスカス)において生成した凝固核が、溶鋼流動によってドラム表面から剥離して結晶核となり、ドラム回転に伴って溶鋼溜まり部の下方に移動する。ここで、一対の冷却ドラムの押し付け力が一定値を上回ると、冷却ドラムの押し付けによる凝固シェルの圧着、絞り上げよって結晶核が滞留し、結晶核同士が合体して成長し、これが凝固シェル間に巻き込まれて等軸晶となる。
(2)冷却ドラムの押し付けによって凝固シェルが圧着される際に、押し付け力が過剰な場合には、圧下によって凝固シェルの先端が折損し、結晶核が発生する。そして、冷却ドラムの押し付けによる凝固シェルの圧着、絞り上げよって結晶核が滞留し、結晶核同士が合体して成長し、これが凝固シェル間に巻き込まれて等軸晶となる。
 上述のように、等軸晶の発生機構においては、等軸晶の生成及び成長を促す要因は、いずれも冷却ドラムの押し付けによる凝固シェルの過剰な圧着であり、冷却ドラムの押し付け状況を適正化することによって、等軸晶の発生及び成長を抑制可能であるとの知見を得た。
 ここで、冷却ドラムの外径(ドラム径)が大きいと、凝固シェルの圧着はより平板圧縮に近くなり、圧着による絞り上げや折損がより過剰となる。このため、ドラム径が大きい場合には、ドラムの押し付け力を低く抑える必要がある。
 また、鋳造厚さに対応する凝固シェル厚が厚いと、冷却ドラムの周速度がより遅くなり、遊離結晶核が多数生成する。さらに、凝固シェルと溶鋼の界面の温度勾配がより小さくなり、凝固シェル先端の脆弱な部分がより厚くなるため、押し付けによる折損が過剰となる。このため、凝固シェル厚(すなわち鋳造厚さ)が厚い場合には、ドラムの押し付け力を低く抑える必要がある。
 上記の知見に基づきなされた本発明の実施形態である薄肉鋳片の製造方法について、添付した図面を参照して説明する。なお、本発明は、以下の実施形態に限定されるものではない。
 本実施形態において製造される薄肉鋳片1は、自動車用鋼板、耐食・耐候性鋼板、溶接管、方向性電磁鋼板、無方向性電磁鋼板等に用いられてもよい。
 また、本実施形態では、製造される薄肉鋳片1の幅が300mm以上2000mm以下の範囲内、厚さが1mm以上5mm以下の範囲内とされている。
 本実施形態における双ドラム式連続鋳造装置10は、図1に示すように、一対の冷却ドラム11、11と、薄肉鋳片1を曲げるベンダーロール12、12と、薄肉鋳片1を支持するピンチロール13、13と、一対の冷却ドラム11、11の幅方向端部に配設されたサイド堰15と、これら一対の冷却ドラム11、11とサイド堰15とによって画成された溶鋼溜まり部16に供給される溶鋼3を保持するタンディッシュ17と、このタンディッシュ17から溶鋼溜まり部16へと溶鋼3を供給する浸漬ノズル18と、を備えている。
 図2に、図1における溶鋼溜まり部16周辺の拡大説明図を示す。本実施形態である双ドラム式連続鋳造装置10においては、図2に示すように、溶鋼溜まり部16及び冷却ドラム11、11の上方には、チャンバー20が配設されている。
 次に、上述した双ドラム式連続鋳造装置10を用いた本実施形態である薄肉鋳片の製造方法について説明する。
 一対の冷却ドラム11、11とサイド堰15によって形成された溶鋼溜まり部16に、タンディッシュ17から浸漬ノズル18を介して溶鋼3を供給するとともに、一対の冷却ドラム11、11を回転方向Fに向けて、すなわち、一対の冷却ドラム11、11同士が近接する領域が薄肉鋳片1の引抜方向(図1においては下方向)に向かうように、それぞれの冷却ドラム11、11を回転させる。
 すると、冷却ドラム11の周面には、凝固シェル5が形成される。そして、冷却ドラム11の周面の上で凝固シェル5が成長し、一対の冷却ドラム11、11にそれぞれ形成された凝固シェル5、5同士がドラムキス点KPで圧着されることにより、所定厚みの薄肉鋳片1が鋳造される。
 そして、本実施形態においては、一対の冷却ドラム11、11同士のドラムキス点KPにおける押し付け力P(kgf/mm)を、鋳造厚さD(mm)、冷却ドラム11の半径R(m)を用いて、以下に示すように規定している。
 0.90≦P×(D×R)0.5≦1.30
 ここで、上述のように、一対の冷却ドラム11、11同士の押し付け力Pを規定した理由について説明する。
 一般に、圧延理論においては、圧延ロールによる圧延の場合、図3に示すように、ロールと圧延材の接触長さLと、圧延ロール半径Rと、圧延による板厚の減少量Δhとの関係は、
 L=(Δh×R)0.5
で表される。
 ここで、(Δh×R)0.5が大きくなるほど、同じ圧下力で押しても接触長さLが大きくなり、圧延効率が上がるので、圧下状態を一定にするためには、(Δh×R)0.5の増加に応じて押し付け力を下げる必要がある。
 本実施形態の双ドラム式連続鋳造装置10においては、圧延による板厚の減少量Δhは鋳造厚さDに概ね比例する。また、圧延ロールの半径Rは冷却ドラム11の半径Rに相当する。このため、本実施形態の双ドラム式連続鋳造装置10において、凝固シェル5の圧着の度合いや、等軸晶の生成に繋がる凝固シェル5の折損の度合いを示す指標は、押し付け力Pと(D×R)0.5の積P×(D×R)0.5で示される。そして、全域にわたって安定して等軸晶の発生及び成長を抑制するとともに、凝固シェル5、5同士を確実に圧着するために、上述のP×(D×R)0.5の適正な範囲を規定した。
 ここで、P×(D×R)0.5が1.30を超えると、冷却ドラム11、11同士の押し付けが過剰となり、凝固シェル5の先端が折損する。また、溶鋼溜まり部16内に浮遊する結晶核が冷却ドラム11の押し付けによる凝固シェル5の圧着、絞り上げよって滞留し、結晶核同士が合体して成長し、これが凝固シェル5、5間に巻き込まれて等軸晶が発生及び成長するおそれがある。
 すなわち、ドラム半径R(mm)と鋳造厚さD(mm)の積のルートである(D×R)0.5を指標として押し付け力Pを制御することで、ドラムキス点KPにおける凝固シェル5、5への力の伝わり方を適切にすることができ、等軸晶の発生及び成長を抑制することができる。
 一方、P×(D×R)0.5が0.90を下回ると、凝固シェル5、5同士を十分に圧着できないおそれがある。
 以上のことから、本実施形態においては、P×(D×R)0.5を0.90以上1.30以下の範囲内に設定している。
 なお、等軸晶が発生及び成長をさらに抑制するためには、P×(D×R)0.5の上限を1.1以下とすることが好ましい。
 このような構成の本実施形態である薄肉鋳片の製造方法によって製造された薄肉鋳片1においては、薄肉鋳片1の全域にわたり、冷却ドラム11の10回転毎(例えば冷却ドラム11の半径Rが0.3mの場合は、18.8mピッチ)で、薄肉鋳片1の全幅をサンプリングし、トリム代となる両端各20mmを除く幅方向の全断面の金属組織を観察した場合に、薄肉鋳片1の厚みに占める柱状晶厚の比率の最小値が95%超えとされている。
 以上のような構成とされた本実施形態である薄肉鋳片の製造方法においては、冷却ドラム11の押し付け力P、鋳造厚さD(mm)、冷却ドラム11の半径R(m)によって定義されるP×(D×R)0.5が1.30以下とされているので、冷却ドラム11の押し付け力Pが過剰に高くなることが抑制され、等軸晶の発生及び成長を抑制することができる。一方、P×(D×R)0.5が0.90以上とされているので、凝固シェル5、5同士を確実に圧着することができる。
 また、鋳造厚さD(mm)、冷却ドラム11の半径R(m)を考慮して一対の冷却ドラム11、11の押し付け力Pを設定しているので、実際の押し付け状況を安定させることが可能となる。
 よって、薄肉鋳片1の全域にわたって等軸晶の少ない薄肉鋳片1を安定して製造することができる。
 また、本実施形態である薄肉鋳片の製造方法によって製造された薄肉鋳片1は、上述のように、薄肉鋳片1の厚みに占める柱状晶厚の比率の最小値が95%超えとされているので、マイクロポアに起因する機械特性の低下を防ぐことができる。
 以上、本発明の実施形態である薄肉鋳片1の製造方法について具体的に説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、図1に示すように、ベンダーロール及びピンチロールを配設した双ドラム式連続鋳造装置を例に挙げて説明したが、これらのロール等の配置に限定はなく、適宜設計変更してもよい。
(実施例)
 以下に、本発明の効果を確認すべく、実施した実験結果について説明する。
<実施例1>
 実施形態で説明した双ドラム式連続鋳造装置を用いて、C;0.02mass%、Si;3.5mass%、Al;0.6mass%、Mn;0.2mass%を含有する鋼材からなる薄肉鋳片を、表1に示す条件で鋳造した。なお、ドラム幅は400mmとした。
 まず、鋳造状況を目視にて評価した。評価結果を表1及び図4に示す。
 そして、得られた薄肉鋳片の柱状晶率を測定した。薄肉鋳片の全域にわたり、冷却ドラムの10回転毎(例えば冷却ドラムの半径Rが0.3mの場合は、18.8mピッチ)で、薄肉鋳片の全幅をサンプリングし、トリム代となる両端各20mmを除く幅方向の全断面の金属組織を観察し、板厚に占める柱状晶厚の比率の最小値を、その鋳造における柱状晶率とした。評価結果を表1及び図5に示す。
 更に、マイクロポアの平均サイズと個数密度を表1に示す。薄肉鋳片から、冷却ドラム1回転分の長さで全幅のサンプルを採り、薄肉鋳片の板面方向からX線透過写真を撮影した。そして、白抜けで観察されたマイクロポアに対して2次元画像処理を行い、マイクロポアの平均サイズ(μm)と個数密度(個/m)を測定した。
Figure JPOXMLDOC01-appb-T000001
 比較例1~4においては、P×(D×R)0.5の値が0.90よりも小さく、鋳片の端部が欠落したり、バルジング破断が発生したりして、薄肉鋳片を得ることができなかった。凝固シェルを十分に圧着できなかったためと推測される。
 比較例5~9においては、P×(D×R)0.5の値が1.30よりも大きく、等軸晶の発生及び成長を十分に抑制することができず、柱状晶率が低くなった。また、マイクロポアが多数生成した。
 これに対して、P×(D×R)0.5が適切な範囲とされた本発明例1~8においては、安定して鋳造可能であるとともに、鋳片の全域にわたって柱状晶率が高くなっており、その結果マイクロポアが防止できていることが確認された。
 以上のことから、本発明例によれば、鋳片の全域にわたって柱状晶率が高い薄肉鋳片を安定して製造することができることが確認された。
 本発明によれば、鋳片の全域にわたって柱状晶率が高い薄肉鋳片を安定して製造することができる薄肉鋳片の製造方法を提供することができる。
1 薄肉鋳片
3 溶鋼
5 凝固シェル
11 冷却ドラム

Claims (1)

  1.  回転する一対の冷却ドラムと一対のサイド堰によって形成された溶鋼溜まり部に溶鋼を供給し、前記冷却ドラムの周面に凝固シェルを形成及び成長させて薄肉鋳片を製造する薄肉鋳片の製造方法であって、
     一対の前記冷却ドラムの押し付け力P(kgf/mm)、鋳造厚さD(mm)、前記冷却ドラムの半径R(m)が、
      0.90≦P×(D×R)0.5≦1.30
    を満足するように、前記一対の前記冷却ドラムの押し付け力Pを設定することを特徴とする薄肉鋳片の製造方法。
PCT/JP2019/020853 2018-06-12 2019-05-27 薄肉鋳片の製造方法 WO2019239868A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/054,977 US11618072B2 (en) 2018-06-12 2019-05-27 Thin strip manufacture method
JP2020525403A JP6874908B2 (ja) 2018-06-12 2019-05-27 薄肉鋳片の製造方法
CN201980037880.0A CN112236248B (zh) 2018-06-12 2019-05-27 薄壁铸板的制造方法
KR1020207034882A KR102448623B1 (ko) 2018-06-12 2019-05-27 박육 주조편의 제조 방법
BR112020023221-1A BR112020023221A2 (pt) 2018-06-12 2019-05-27 método de produção de tira fina

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-111919 2018-06-12
JP2018111919 2018-06-12

Publications (1)

Publication Number Publication Date
WO2019239868A1 true WO2019239868A1 (ja) 2019-12-19

Family

ID=68843024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020853 WO2019239868A1 (ja) 2018-06-12 2019-05-27 薄肉鋳片の製造方法

Country Status (7)

Country Link
US (1) US11618072B2 (ja)
JP (1) JP6874908B2 (ja)
KR (1) KR102448623B1 (ja)
CN (1) CN112236248B (ja)
BR (1) BR112020023221A2 (ja)
TW (1) TW202000339A (ja)
WO (1) WO2019239868A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626739A (ja) * 1985-07-02 1987-01-13 Nisshin Steel Co Ltd 溶鋼の薄板連鋳装置
JPH0263650A (ja) * 1988-08-30 1990-03-02 Nisshin Steel Co Ltd オーステナイト系ステンレス鋼帯の製造方法
JPH08215797A (ja) * 1995-02-16 1996-08-27 Nippon Steel Corp 表面性状および成形性の優れたオーステナイト系ステンレス鋼薄肉鋳片の製造方法
JP2003285141A (ja) * 2002-03-27 2003-10-07 Nippon Steel Corp オーステナイト系ステンレス鋼薄帯状鋳片の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233047A (ja) * 1985-08-05 1987-02-13 Nisshin Steel Co Ltd 双ドラム式連続鋳造機
JPH0292438A (ja) 1988-09-30 1990-04-03 Nippon Kinzoku Kogyo Kk 金属薄帯の連続鋳造方法
JP2764626B2 (ja) * 1989-12-27 1998-06-11 新日本製鐵株式会社 双ロール法によるブリキ用素材の連続鋳造方法
JP2989737B2 (ja) * 1993-11-25 1999-12-13 勝彦 山田 鋼材の連続鋳造法および連続鋳造・圧延法
JP4610787B2 (ja) * 2001-05-18 2011-01-12 三菱重工業株式会社 双ドラム式連続鋳造装置
KR100489018B1 (ko) * 2002-08-30 2005-05-11 주식회사 포스코 쌍롤형 박판 주조기를 이용한 고망간강의 박판 제조 방법
CN102015155B (zh) * 2008-03-19 2013-11-27 纽科尔公司 使用铸辊定位的带材铸造设备
US20090288798A1 (en) * 2008-05-23 2009-11-26 Nucor Corporation Method and apparatus for controlling temperature of thin cast strip
CN102069165B (zh) * 2010-11-11 2013-03-13 东北大学 一种双辊薄带连铸制备无取向硅钢柱状晶薄带坯的方法
JP6645214B2 (ja) * 2016-01-28 2020-02-14 日本製鉄株式会社 低炭素鋼薄肉鋳片の製造方法および低炭素鋼薄肉鋳片、並びに低炭素鋼薄鋼板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626739A (ja) * 1985-07-02 1987-01-13 Nisshin Steel Co Ltd 溶鋼の薄板連鋳装置
JPH0263650A (ja) * 1988-08-30 1990-03-02 Nisshin Steel Co Ltd オーステナイト系ステンレス鋼帯の製造方法
JPH08215797A (ja) * 1995-02-16 1996-08-27 Nippon Steel Corp 表面性状および成形性の優れたオーステナイト系ステンレス鋼薄肉鋳片の製造方法
JP2003285141A (ja) * 2002-03-27 2003-10-07 Nippon Steel Corp オーステナイト系ステンレス鋼薄帯状鋳片の製造方法

Also Published As

Publication number Publication date
BR112020023221A2 (pt) 2021-02-23
US20210213515A1 (en) 2021-07-15
TW202000339A (zh) 2020-01-01
CN112236248B (zh) 2022-06-03
JPWO2019239868A1 (ja) 2021-02-18
KR20210005250A (ko) 2021-01-13
JP6874908B2 (ja) 2021-05-19
CN112236248A (zh) 2021-01-15
KR102448623B1 (ko) 2022-09-28
US11618072B2 (en) 2023-04-04

Similar Documents

Publication Publication Date Title
TW318154B (ja)
US4274471A (en) Process for continuous casting of metals and an apparatus therefor
CA2723075A1 (en) Magnesium alloy cast material
WO2006003855A1 (ja) 鋳造用ノズル
JP7243405B2 (ja) 冷却ロール、双ロール式連続鋳造装置、薄肉鋳片の鋳造方法、及び、冷却ロールの製造方法
JP3680818B2 (ja) マグネシウム合金薄板の製造方法及びその製造装置
JP4055689B2 (ja) 連続鋳造方法
JP2017159367A (ja) 熱間圧延薄鋳造ストリップ品及びその製造方法
WO2019239868A1 (ja) 薄肉鋳片の製造方法
KR100647147B1 (ko) 미세 균열이 없는 페라이트계 스테인리스강 스트립의 연속주조 방법
JP3549000B2 (ja) 高燐鋼板製造装置及び高燐鋼板製造方法
JP4289205B2 (ja) 連続鋳造方法および連続鋳造鋳片
JPS5970444A (ja) セミマクロ偏析のない連続鋳造鋳片の製造方法
JP7127505B2 (ja) 薄肉鋳片の製造方法
WO2020079783A1 (ja) 鋳片の製造方法
JP3283746B2 (ja) 連続鋳造用鋳型
WO2022138806A1 (ja) 単層で加熱接合機能を有するアルミニウム合金材の製造方法
JPH09103845A (ja) オーステナイト系ステンレス鋼薄肉鋳片及びその製造方法
JP2007229794A (ja) クラッド板の製造方法
JPH01258801A (ja) 丸型連続鋳造鋳片の鍛圧方法
JP2021087972A (ja) 薄肉鋳片の製造方法
JP2023026036A (ja) 薄肉鋳片の製造方法
JP2023025988A (ja) 冷却ロールの押圧荷重制御方法、および、薄肉鋳片の製造方法
JP2005211916A (ja) 炭素鋼の高速連続鋳造方法
JPH01273658A (ja) 圧下を付与する鋼の連続鋳造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525403

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020023221

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207034882

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112020023221

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201113

122 Ep: pct application non-entry in european phase

Ref document number: 19819066

Country of ref document: EP

Kind code of ref document: A1