WO2019238030A1 - 包裹分拣系统和方法 - Google Patents

包裹分拣系统和方法 Download PDF

Info

Publication number
WO2019238030A1
WO2019238030A1 PCT/CN2019/090661 CN2019090661W WO2019238030A1 WO 2019238030 A1 WO2019238030 A1 WO 2019238030A1 CN 2019090661 W CN2019090661 W CN 2019090661W WO 2019238030 A1 WO2019238030 A1 WO 2019238030A1
Authority
WO
WIPO (PCT)
Prior art keywords
delivery
robot
package
parcel
movable container
Prior art date
Application number
PCT/CN2019/090661
Other languages
English (en)
French (fr)
Inventor
李洪波
于繁迪
刘凯
Original Assignee
北京极智嘉科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810600526.1A external-priority patent/CN108584380B/zh
Priority claimed from CN201910238195.6A external-priority patent/CN109759337A/zh
Application filed by 北京极智嘉科技有限公司 filed Critical 北京极智嘉科技有限公司
Priority to AU2019284198A priority Critical patent/AU2019284198B2/en
Priority to JP2020568787A priority patent/JP6955119B2/ja
Priority to US16/973,860 priority patent/US11498771B2/en
Priority to EP19819361.7A priority patent/EP3808460A4/en
Publication of WO2019238030A1 publication Critical patent/WO2019238030A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/34Devices for discharging articles or materials from conveyor 
    • B65G47/46Devices for discharging articles or materials from conveyor  and distributing, e.g. automatically, to desired points
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/36Sorting apparatus characterised by the means used for distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C3/00Sorting according to destination
    • B07C3/02Apparatus characterised by the means used for distribution
    • B07C3/08Apparatus characterised by the means used for distribution using arrangements of conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses
    • B65G1/1378Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses the orders being assembled on fixed commissioning areas remote from the storage areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G11/00Chutes
    • B65G11/02Chutes of straight form
    • B65G11/023Chutes of straight form for articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/52Devices for transferring articles or materials between conveyors i.e. discharging or feeding devices
    • B65G47/68Devices for transferring articles or materials between conveyors i.e. discharging or feeding devices adapted to receive articles arriving in one layer from one conveyor lane and to transfer them in individual layers to more than one conveyor lane or to one broader conveyor lane, or vice versa, e.g. combining the flows of articles conveyed by more than one conveyor
    • B65G47/71Devices for transferring articles or materials between conveyors i.e. discharging or feeding devices adapted to receive articles arriving in one layer from one conveyor lane and to transfer them in individual layers to more than one conveyor lane or to one broader conveyor lane, or vice versa, e.g. combining the flows of articles conveyed by more than one conveyor the articles being discharged or distributed to several distinct separate conveyors or to a broader conveyor lane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/063Automatically guided
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0478Storage devices mechanical for matrix-arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • B65G2201/0285Postal items, e.g. letters, parcels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2207/00Indexing codes relating to constructional details, configuration and additional features of a handling device, e.g. Conveyors
    • B65G2207/30Modular constructions

Definitions

  • the embodiments of the present application relate to the field of logistics storage technology, for example, to a package sorting system and method.
  • the application provides a package sorting system and method to solve the problems of high cost and poor flexibility of the sorting system, and improve the efficiency of package sorting.
  • a package sorting system is provided in an embodiment of the present application.
  • the system is arranged in layers, and includes: a package sorting layer on an upper layer, a movable container handling layer on a lower layer, a package delivery robot, and a control device. ;
  • the package sorting layer includes a modular physical platform capable of carrying a parcel delivery robot; the modular physical platform is a physical platform constructed by splicing a plurality of splicable units to sort packages; the modular entity
  • the platform includes a plurality of delivery grids arranged in an array and a driving area for the package delivery robot to travel, which is formed by the gap between the multiple delivery grids.
  • One delivery grid corresponds to one or more delivery directions;
  • the movable container handling layer includes a plurality of movable containers, and a first number of the movable containers are located below the plurality of delivery slots and are configured to receive packages from the package sorting layer, the The first number is less than the total number of the movable containers included in the movable container handling layer;
  • the control device is configured to determine a target delivery grid and a delivery path based on the parcel information, the delivery grid information, and road condition information of the current driving area, and send the target delivery grid and the delivery route to the package delivery robot;
  • the parcel delivery robot is configured to run in a driving area on the modular physical platform according to a delivery path sent by the control device, and deliver the parcel through the target delivery slot to the target delivery set according to the delivery path.
  • a removable container below the grid.
  • an embodiment of the present application further provides a parcel sorting method, which includes:
  • the control device determines the target delivery grid and delivery path and sends it to the package delivery robot according to the package information, the delivery grid information and the road condition information of the current driving area;
  • the parcel delivery robot operates in the driving area on the modular physical platform according to the delivery path sent by the control device, and delivers the parcel through the target delivery grid to the available delivery path set under the target delivery grid according to the delivery path. Move the container
  • the modular physical platform can carry a parcel delivery robot and is located at a parcel sorting layer;
  • the modular physical platform is a physical platform constructed by splicing multiple splicable units and used to sort parcels;
  • the module The physical platform includes a plurality of delivery grids arranged in an array and a driving area for the package delivery robot to travel, which is formed by a gap between the multiple delivery grids.
  • One delivery grid corresponds to one or more delivery directions;
  • a plurality of the movable containers are located at a movable container handling layer, and a first number of the movable containers are located below the plurality of delivery slots, and are arranged to receive packages from the package sorting layer; The first number is less than the total number of the movable containers included in the movable container handling layer.
  • FIG. 1A is a structural block diagram of a package sorting system provided in Embodiment 1 of the present application.
  • FIG. 1B is an internal schematic diagram of a package sorting system provided in Embodiment 1 of the present application.
  • FIG. 1C is a partial schematic diagram of a modular physical platform of a parcel sorting system provided in Embodiment 1 of the present application;
  • FIG. 1C is a partial schematic diagram of a modular physical platform of a parcel sorting system provided in Embodiment 1 of the present application;
  • FIG. 1D is a partial schematic diagram of a movable container handling layer of the parcel sorting system provided in Embodiment 1 of the present application;
  • FIG. 1D is a partial schematic diagram of a movable container handling layer of the parcel sorting system provided in Embodiment 1 of the present application;
  • FIG. 1E is a schematic diagram of a package delivery robot moving and delivering a package according to the first embodiment of the present application
  • FIG. 2 is an internal schematic diagram of another package sorting system provided in Embodiment 2 of the present application.
  • FIG. 3 is an internal schematic diagram of still another package sorting system provided in Embodiment 3 of the present application.
  • FIG. 4 is a flowchart of a method for sorting packages provided by Embodiment 4 of the present application.
  • FIG. 5 is a schematic structural diagram of a delivery grid according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of package delivery based on a modular entity platform according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another delivery grid according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another delivery grid according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another delivery grid according to an embodiment of the present application.
  • FIG. 1A is a structural block diagram of a parcel sorting system provided in Embodiment 1 of this application. This embodiment is applicable to the case of parcel sorting.
  • the parcel sorting system is arranged in layers, including parcel sorting at an upper level. Layer 10, a movable container handling layer 11, a parcel delivery robot 12, and a control device 13 located on the lower level.
  • FIG. 1B is an internal schematic diagram of a parcel sorting system provided in Embodiment 1 of the present application.
  • the dashed frame area is the upper layer inside the parcel sorting system, that is, the parcel sorting layer 10
  • the solid line frame area is the lower layer inside the parcel sorting system, that is, the mobile container handling layer 11.
  • a control device (not shown in FIG. 1B) establishes a communication connection with the parcel delivery robot 12 and is configured to implement control and scheduling of the entire parcel sorting system.
  • the control device refers to a software system with data storage and information processing capabilities, and can be connected to the parcel delivery robot 12 and other hardware input systems or software systems in the system by wired or wireless means.
  • the control device can issue tasks to the parcel delivery robot 12, count the cargo sorting situation, detect the working status of the system, transmit information to the staff, and issue control commands to the parcel delivery robot 12.
  • the parcel delivery robot 12 may have its own intelligent system, be able to communicate with the control device, and receive control instructions sent by the control device.
  • the parcel sorting layer 10 includes a modular physical platform 101 that can carry a parcel delivery robot 12; the modular physical platform 101 is a physical platform constructed by splicing multiple splicable units for sorting parcels; the module The physical platform 101 includes a plurality of delivery grids 1011 arranged in an array and a driving area for the parcel delivery robot 12 to travel, which is formed by a gap between the plurality of delivery grids 1011.
  • One delivery grid 1011 corresponds to one or Multiple delivery paths.
  • the package sorting layer 10 includes a package delivery robot 12 and a modular physical platform 101 carrying the package delivery robot 12.
  • the package robot 12 is in a modular type. Runs on the physical platform 101.
  • FIG. 1C is a partial schematic diagram of a modular physical platform of a parcel sorting system provided in Embodiment 1 of the present application.
  • the multiple splicable units constituting the modular physical platform 101 of this embodiment may be a variety of units of different specifications, such as a cube-shaped splicable unit (as shown by the left oblique fill block in FIG. 1C).
  • the shape of the plurality of splicable units includes at least one of a bar shape, an arc shape, a zigzag shape, a triangle, and the like.
  • the shape of the modular physical platform constructed by splicing the splicable units includes Cubes (such as cuboids, cubes, etc.) or circular cylinders (such as circular solid cylinders or circular hollow cylinders, etc.). This embodiment is not limited in this regard.
  • the delivery grid 1011 on the modular physical platform 101 is an empty window position left by the splicable unit when constructing the modular physical platform 101, and the position is arranged in an array.
  • this embodiment may also be arranged in other manners according to actual requirements, which is not limited in this embodiment.
  • the delivery grid 1011 can be used by a package delivery robot to drop a package into the movable container of the movable container handling layer 11 located at the lower level from the grid.
  • This embodiment uses multiple splicable units to build a modular physical platform. The advantage of this setup is that the platform is easy to transport, install and disassemble, and can be reused after disassembly and assembly according to actual needs, which improves the flexibility and scalability of the modular physical platform. Sex.
  • the modular physical platform 101 also includes an area for the parcel delivery robot 12 to travel, and this area is located between a plurality of delivery grids 1011, such as the gap area A between the delivery grids 1011A and 1011B. That is to say, on the modular physical platform 101, the areas where the splicable units are located are the areas where the wrapping robot 12 travels.
  • a delivery grid 1011 when the parcel robot reaches the delivery grid, there can be one or more alternative delivery directions.
  • the parcel delivery robot 12 as shown in the figure When the position reaches the delivery grid 1011A, the alternative directions can be delivery route 1 and delivery route 2, etc.
  • the package delivery robot 12 specifically chooses which delivery path to drive to the corresponding delivery grid 1011A, depending on the control device 13 issued Instructions, or road conditions in the driving area.
  • the movable container handling layer 11 includes a plurality of movable containers 110, and a portion (or a first number, the first quantity is less than the total number of the movable containers 110 included in the movable container handling layer 11), said movable container 110 is located at The delivery grid 1011 is arranged below the delivery slot 1011 to receive packages from the package sorting layer 10. In one embodiment, at least one movable container 110 is included below each delivery slot 1011.
  • the movable container handling layer 11 is located below the parcel sorting layer 10, and is configured to place a plurality of movable containers 110.
  • the movable containers 110 may be commonly used for accommodating to be delivered Containers for cargo, for example, common cage cars.
  • a movable container 110 is configured to carry items with common attributes.
  • a movable container 110 is configured to carry a package to be delivered to city A.
  • At least one movable container 110 should be placed under each of the delivery slots 1011 of the modular physical platform 101 for delivery, so as to prevent the parcel delivery robot 12 from delivering from After the parcel 1011 is put into the parcel, the parcel is dropped directly on the ground of the movable container transporting layer 11, which brings inconvenience to the storage and transportation of the parcel. Since the multiple delivery grids 1011 in the modular physical platform 101 work simultaneously, the number of the movable containers 110 located in the movable container handling layer 11 is multiple. In order to be movable under a certain delivery grid 1011 After the container 110 is fully loaded, there are idle movable containers 110 that can replace it to ensure the normal operation of the parcel sorting system.
  • the number of movable containers 110 is generally larger than the delivery grid in the modular physical platform 101 1011 quantity.
  • a part of the movable containers 110 is located below the delivery slot 1011 of the modular physical platform 101 and is configured to receive packages from the package sorting layer.
  • FIG. 1D is an embodiment of the present application.
  • a partial schematic diagram of a movable container handling layer of a provided package sorting system as shown in FIGS. 1A to 1D, as compared to the partial schematic diagrams of the modular physical platform in FIG. 1C, each of the modular physical platforms 101 Below the delivery slot 1011, at least one movable container 110 is disposed to receive a package delivered from the delivery slot 1011 above the movable container 110.
  • the remaining movable container 110 may be located in a waiting area of the movable container handling layer 11.
  • the movable container 110 in the waiting area is an empty-load movable container 110, and is arranged to replace the filled movable under the delivery slot 110.
  • Container 110; the remaining movable container 110 may also be located at a parcel collection station.
  • the movable container 110 of the parcel collection station is usually a movable container 110 containing a package, and is arranged to wait for a package to be placed in the package manually or by a machine. To the corresponding position, for example, as shown in the lower right corner in FIG. 1B.
  • the interior of the modular physical platform of the parcel sorting system of this embodiment is a single-layer setting or a multi-layer setting; and in the multi-layer set modular physical platform, each adjacent The two layers are arranged in parallel, and a part (or a second number, the second number is less than or equal to the first number) of the movable container is located directly below the delivery grid.
  • the second quantity is smaller than the first quantity, it can be understood that there can be multiple movable containers below the delivery grid, and not all of the multiple containers are located directly below the delivery grid. For example, in the case where there are two movable containers below the delivery grid, one is directly below the delivery grid, and the other is not directly below the delivery grid.
  • the delivery grids on different levels have the same horizontal position, or the vertical positions of the delivery grids on the same level on different levels are directly opposite.
  • the physical platform in this embodiment is not limited to a single-layer arrangement as shown in FIG. 1B, but may also be a multi-layer arrangement, and the multi-layers are arranged in parallel in the horizontal direction, and each layer also adopts splicable
  • the units are constructed by splicing, and each floor also includes a plurality of delivery grids arranged in an array and a driving area for the parcel delivery robot composed of a gap between the multiple delivery grids. And the positions of the delivery grids in different levels in the horizontal direction are the same, or the positions of the delivery grids in the same position on different levels in the vertical direction are directly opposite.
  • the same position refers to the position of the XY axis in the horizontal direction, excluding the position of the Z axis in the vertical direction.
  • the height between each adjacent two floors is at least the height of a parcel delivery robot, so as to ensure that the parcel delivery robot can normally drive between each adjacent two floors to perform the parcel delivery operation.
  • the height between two adjacent layers may be the same or different.
  • the interior of the modular physical platform of the parcel sorting system is set to be multi-layered. This has the advantage that a movable container can receive parcels delivered by multiple parcel delivery robots from multiple layers at the same time, which improves the entire parcel-sorting system. Sorting efficiency.
  • an identification icon is provided on the driving area of the modular physical platform, and the identification icon is used to assist the package delivery robot to determine whether the current driving parameters are sent to the control device during the travel of the package delivery robot.
  • the driving path is the same.
  • the identification icon may be a two-dimensional code, a bar code, or a ribbon, and may be printed or installed on a driving area of a modular physical platform.
  • an identification icon may be set every preset distance (such as 1m).
  • the parcel delivery robot scans the identification icons in the driving area to obtain the current position information, and compares it with the delivery path sent by the control device to determine whether the current position is the position in the planned path of the control device and the current driving direction. Is it correct?
  • the driving area of the modular physical platform may also be covered with a layer of abrasion-resistant, high-friction rubber or carpet. Printing or installation logo icon on glue or carpet.
  • the control device is configured to determine a target delivery grid and a delivery path based on the parcel information, the delivery grid information, and road condition information of the current driving area, and send the target delivery grid and the delivery path to the package delivery robot.
  • the package information may be city information of the package to be delivered, type information of the items in the package, or attribute information of the items in the package. For example, if the package to be sorted is sorted according to the city of the delivery address, the information of the package at this time may be the information of the city to be delivered; if the package to be sorted is sorted according to the type of items in the package, then At this time, the package information may be the type information of the goods in the package.
  • the information of the delivery grid is related to the information of the parcel. If the parcel information is to be delivered, the delivery grid information is the city information corresponding to each delivery grid. If the parcel information is the type information of the items in the package, the delivery grid is The mouth information is the item type information corresponding to each delivery grid. If the package information is the attribute information of the items in the package, the delivery grid information is the attribute information corresponding to each delivery grid.
  • the road condition information of the driving area may refer to the location of the package delivery robot, the status of the existing package delivery robot, and the like in the driving area on the modular physical platform.
  • the target delivery grid may be determined according to the package information and the information of multiple delivery grids on the modular physical platform. Specifically, it may be found in the multiple delivery grids and the parcel information.
  • the matching delivery grid is used as the target delivery grid.
  • the control device can store the information of each delivery grid in advance. After obtaining the package information, the parcel information is matched with the information of each delivery grid stored in advance, and the successfully matched delivery grid is used as the target delivery grid. mouth.
  • the target delivery grid can be determined based on the package information and the delivery grid information, and then the delivery route can be further determined according to the target delivery grid and the road condition information of the current driving area.
  • the destination can be determined by The delivery grid is used as the end point, using the location of the package delivery robot where the package is delivered as the starting point, planning at least one drivable route, and then combining the traffic condition information of the area where the at least one drivable route is located to select a least congested and The shortest route is used as the delivery route.
  • the control device determines the target delivery grid and the delivery path, the control device sends the target delivery grid and the delivery path to the parcel delivery robot that performs the parcel delivery.
  • the parcel delivery robot is configured to run in a driving area on the modular physical platform according to a delivery path sent by a control device, and deliver a package through the target delivery grid to the target delivery grid according to a delivery path.
  • a delivery path sent by a control device
  • the package delivery robot after receiving the target delivery grid and the delivery path sent by the control device, the package delivery robot travels to the target delivery grid according to the received delivery path, and then delivers the carried package to the target delivery grid. In the mouth, the package will enter the movable container below the target delivery grid through the target delivery grid.
  • the package delivery robot is running to the target delivery grid and passes the package through the target delivery grid During the process of delivering to the movable container provided below the target delivery grid, the movement state of uniform speed running or deceleration running is maintained.
  • FIG. 1E is a schematic diagram of a package delivery robot moving and delivering a package in Embodiment 1 of the present application.
  • the package delivery robot Keep driving at a constant speed or slow down and start the delivery action, until the package is delivered to the movable container corresponding to the target delivery grid;
  • the second boundary E2 of the package delivery robot coincides with the second boundary E4 of the target delivery grid, keep driving at a constant speed Or slow down and terminate the delivery action.
  • the boundary E5 refers to the position of the second boundary of the package delivery robot when the first boundary E1 of the package delivery robot and the first boundary E3 of the target delivery grid coincide; the boundary E6 refers to the second boundary of the package delivery robot When E2 coincides with the second boundary E4 of the target delivery grid, the position of the first boundary of the package delivery robot.
  • the delivery range of the parcel delivery robot is L.
  • the delivery action is stopped, the package to be delivered is delivered to the abnormal parcel grid, or the delivery is performed again after driving a loop again.
  • the parcel delivery robot uses a belt transmission method, a flap delivery method, or a push method to deliver the package
  • the push mode delivery package may be a telescopic device (such as a spring telescopic device) installed on the parcel delivery robot.
  • the telescopic device is extended horizontally to make contact with the package, and pushes the package placed on the package delivery robot into the corresponding slot.
  • the number of delivery grids on the modular physical platform may be more than the types of packages (i.e. delivery directions) that need to be divided.
  • the number of delivery grids on the modular physical platform is rich and can be a package.
  • the package The delivery robot can also deliver packages to other delivery grids in the same direction.
  • the delivery route with a large amount of parcel delivery can be set as a hot route, and the corresponding delivery grid of the way can be set as The delivery grid near the feeder table shortens the running distance of the package delivery robot and improves the efficiency of package sorting.
  • the parcel sorting system is arranged in layers inside the parcel sorting system, and includes: a parcel sorting layer on an upper layer, a movable container handling layer on a lower layer, a parcel delivery robot, and a control device; parcel sorting
  • the layer is a modular physical platform that can carry a parcel delivery robot; the modular physical platform is a physical platform constructed by splicing multiple splicable units to sort packages; the modular physical platform includes arrayed arrangements Multiple delivery grids and the travel area for parcel delivery robots formed by the gaps between multiple delivery grids.
  • One delivery grid corresponds to one or more delivery directions;
  • the movable container handling layer contains multiple movable containers And part of the movable container is located below the delivery grid and is configured to receive packages from the package sorting layer.
  • the control device determines the target delivery gate and the delivery path and sends it to the package delivery robot according to the package information, the delivery grid information and the road condition information of the current driving area.
  • the package delivery robot then uses the delivery path sent by the control device to configure the delivery route in the module.
  • the driving area on the type physical platform runs, and the package is delivered through the target delivery grid to the movable container set below the target delivery grid according to the determined delivery path.
  • FIG. 2 is an internal schematic diagram of another package sorting system provided in Embodiment 2 of the present application; the optimized package sorting system further includes handling robots 14, each of which is configured to carry the movable container 110.
  • the movable container 110 includes a cage cart; the handling robot 14 is located below the cage cart and is configured to drive the cage cart to travel on the movable container handling layer 11.
  • the handling robot 14 is located at the movable container handling layer 11 of the parcel sorting system and is configured to carry the movable container 110.
  • the movable container 110 is transported from below the delivery slot 1011 to the parcel collection station.
  • the movable container 110 is transported from the waiting area to below the delivery slot 1011 and the like.
  • the conveying robot 14 when carrying the movable container 110, the conveying robot 14 first moves below the movable container 110 (such as a cage truck), thereby driving the movable container 110 to travel on the movable container conveying layer 11 and moving the movable container 110.
  • the container is moved 110 to the corresponding location.
  • the control device is further configured to: when the package collected in the movable container meets the collection conditions, the movable container is the target movable container, and the delivery slot bound to the location of the target movable container is locked And assign a first handling robot to the target movable container, and plan a transportation path for the first handling robot according to the position of the target movable container, generate a transportation instruction corresponding to the target movable container, and The carrying instruction is sent to the first carrying robot.
  • the first transport robot is configured to travel to the target movable container according to the transport path in response to the transport instruction, and transport the target movable container to a parcel collection station.
  • the control device is further configured to allocate a second transport robot to the idle movable container, and plan a transport path for the second transport robot according to the position of the target movable container before being transported, and generate a correspondence corresponding to the idle movable container.
  • the transport instruction is sent to the second transport robot, and the transport instruction includes a transport path of the second transport robot.
  • the second transport robot is configured to respond to the transport instruction corresponding to the idle movable container, and transport the idle movable container to the target movable container according to the transport path of the second transport robot. The position before carrying, and unlock the delivery grid bound to the position.
  • the collection conditions include: the movable container is full and / or the collection time of the movable container is reached.
  • the movable container is full may mean that the package contained in the movable container has reached the maximum storage limit of the movable container.
  • the maximum storage limit of the movable container and the top of the movable container have a certain value. Distance to prevent the storage package in the movable container from falling too much.
  • the collection time of the movable container can be set by the control device according to the characteristics of the packages stored in the movable container (such as the size of such packages, the frequency of such packages, etc.), or it can be manually set according to the needs. The specific collection The time can be adjusted according to the actual situation.
  • the handling robot may own an intelligent system, which is capable of communicating with the control device and receiving a control instruction sent by the control device, and the handling instruction includes a handling path of the first handling robot.
  • control device determines whether the parcels collected in the movable container meet the collection conditions in the following ways:
  • the senor when the first method is adopted, the sensor may be installed on a delivery grid of a package delivery robot and / or the modular physical platform; a detection head of the sensor is directed to the upper edge of the movable container and is set to detect Whether the movable container is full of packages; and when detecting that the movable container is full of packages, sending a message that the movable container is full to the control device.
  • an infrared sensor is installed on the front end of the package delivery robot or the edge of the delivery slot. If the infrared sensor is installed on the edge of the delivery slot, because the delivery slot cannot communicate with the control device, it needs to be installed on the edge of the delivery slot.
  • An infinite communication module when the first method is adopted, the sensor may be installed on a delivery grid of a package delivery robot and / or the modular physical platform; a detection head of the sensor is directed to the upper edge of the movable container and is set to detect Whether the movable container is full of packages; and when detecting that the
  • the detection head of the infrared sensor points to the movable container below the delivery grid.
  • the infrared sensor detects that the package in the movable container is full, it sends a message that the package is full to the control device through the infinite communication module. .
  • the control device can estimate the total volume of the delivered packages in the movable container according to the volume of each package delivered to the movable container, and compare it with the preset volume threshold of the movable container. If the total volume of the delivered package is greater than or equal to a preset volume threshold of the movable container, it is judged that the package collected in the movable container meets the collection conditions. In addition, the control device can also determine whether the collection conditions are met based on the collection time of the movable container. For example, the control device starts counting from the time when the movable container is placed below the delivery slot. When the collection time of the movable container is reached, It is determined that the parcels collected in the movable container meet the collection conditions.
  • the control device When the package collected by the control device in the movable container meets the collection conditions, it will lock the delivery slot corresponding to the target movable container, and the package delivery robot is prohibited from continuing to deliver packages to the delivery slot.
  • the control device will The target movable container is assigned a handling robot (that is, the first handling robot), and according to the location of the target movable container, the location of the first handling robot, and a parcel collection station, a handling path is planned for the first handling robot (ie, from the first A path from the position of the transfer robot to the target movable container, and a path from the position of the target movable container to the package collection station), generating a transfer instruction corresponding to the target movable robot, and sending it to the first transfer robot, After receiving the carrying instruction, the first carrying robot will respond to the carrying instruction, travel to the target movable container according to the carrying path, and then carry the target movable container to the parcel collection station.
  • a handling robot that is, the first handling robot
  • the control device will lock the delivery slot 1011A where the target movable container 110A is located.
  • the parcel delivery robot 12 traveling on the modular physical platform 101 stops delivering parcels to the delivery grid 1011A.
  • the control device also allocates a first transfer robot 14A to the target movable container 110A, and plans a transfer path for the first transfer robot 14A, generates a transfer instruction and sends it to the first transfer robot 14A, and the first transfer robot 14A will according to the transfer instruction
  • the target movable container 110A is carried to a parcel collection station.
  • the reinforcing container may be fixed by a handling robot; a reinforcing device may be added to the ground to fix the movable container The location of the removable container.
  • the control device simultaneously allocates another transport robot (that is, the second Carrying robot), planning a carrying path for the second carrying robot (that is, the path of the second carrying robot from the current position to the idle movable container and the path from the idle movable container to the position before the target movable container was moved) to generate the idle
  • the transport instruction corresponding to the movable container is sent to a second transport robot.
  • the second transport robot After receiving the transport instruction, the second transport robot responds to the transport instruction and transports the idle movable container (that is, an empty movable container) to The target movable container's position before being transported. After the idle movable container is placed, a new movable container that can continue to store packages has been placed in this position. At this time, the delivery grid bound to this position can be unlocked.
  • the parcel delivery robot traveling on the modular physical platform can Resumption of parcel delivery to this delivery slot.
  • the process may be performed after the first movable robot moves the target movable container to the parcel collection station, or may be performed while the first movable robot moves the target movable container, thereby reducing binding. Locking time of the stop.
  • the control device will respectively allocate a second transfer robot 14B to the idle movable container 110B, and plan a transfer path for the second transfer robot 14B, generate a transfer instruction and send it to the second transfer robot 14B, and the second transfer robot 14B will The idle movable container 110B will be moved below the delivery slot 1011A according to the transfer instruction. At this time, the delivery slot 1011A is unlocked, and the parcel delivery robot 12 running on the modular physical platform 101 is restored to the delivery slot 1011A. Drop the package.
  • the paths planned by the robots in the package sorting system of the control clothing device of this embodiment are all circular paths.
  • the robot includes a parcel delivery robot and a handling robot (including a first handling robot and a second handling robot), that is, the delivery path planned for the parcel delivery robot is a circular delivery path, and the delivery path planned for the handling robot is a circular transportation path.
  • the turning points of the circular delivery path and the circular conveyance path are arc-shaped.
  • the circular delivery path of the parcel delivery robot and the circular conveyance path of the carrying robot both have a straight path and an arc path.
  • the arc path means that the robot uses an arc path when turning, which can realize that the robot does not stop when turning, and saves the robot's running time.
  • the plurality of movable containers may be divided into at least one group, and at least one parcel delivery robot and at least one handling robot corresponding to the at least one group of movable containers are allocated.
  • the density of the movable containers in the movable container handling layer is high, and the combination of the movable containers is flexible. Therefore, at least two movable containers can be divided into at least one group according to certain rules, which improves the Scalability and flexibility of mobile container layouts. For example, as shown in FIG. 1D, the movable containers in the figure can be divided into two groups, the three movable containers on the left are a group, the three movable containers on the right are a group, and at least one is allocated for each group of movable containers.
  • the parcel delivery robot delivers a parcel to a delivery slot above the group of movable containers, and assigns at least one handling robot to each group of movable containers to set the group of movable containers when the group of movable containers meets the collection conditions.
  • the package sorting system provided in this embodiment is based on the above embodiment.
  • the package delivery robot delivers the package to be delivered to the target delivery grid according to the delivery path sent by the control device, and simultaneously carries it in a movable container.
  • the control device will lock the delivery bin bound to the location of the target movable container when the package collected in the movable container meets the collection conditions, and prohibit the package delivery robot from continuing to deliver the package to the delivery lattice, and at the same time
  • the target movable container is divided into a first handling robot, and the planned handling path is sent to the first handling robot, so that the first handling robot carries the target movable container to the parcel collection station according to the handling path, and the control device will also
  • the second movable robot is allocated for the idle movable container, and a transport route is also planned for the second movable robot, so that the second movable robot moves the idle movable container to the position before the target movable container is moved, and finally in the Unlock the delivery slot bound to this
  • FIG. 3 is an internal schematic diagram of another package sorting system provided in Embodiment 3 of the present application.
  • the optimized parcel sorting system further includes a code scanning device 16 and a supply table 17.
  • the code scanning device 16 is configured in a code scanning area on the modular physical platform 101;
  • the supply station 17 is configured to allocate a package to be delivered to the package delivery robot 12;
  • the parcel delivery robot 12 is further configured to carry the parcel to be delivered into the scanning area after obtaining the parcel to be delivered from the supply station 17;
  • the code scanning device 16 is configured to obtain package information of a package to be delivered, and send the package information to the control device.
  • the feeder table may be disposed on the ground, or may be disposed above or below the ground. As shown in FIG. 3, the feeder table 17 is disposed on the ground.
  • the parcels to be sorted are transported to the supply table area by robots and picked up by humans or machines and placed on the parcel delivery robot.
  • the number of parcel delivery robots waiting to obtain parcels may not be one, waiting for parcel delivery When there are many robots, you can wait for the parcels in order of reaching the feeder table.
  • the parcel delivery robot obtains the parcel it may run to the supply station, run at a slow speed or stop by default for a preset time, so that the package can be placed on the parcel delivery robot manually or by the machine.
  • the parcel After the parcel is loaded, the parcel is loaded into the code scanning area.
  • the code scanning device in the code scanning area detects that the parcel delivery robot is driving over, it will automatically scan the parcel carried on the parcel delivery robot. Dimension code or barcode, get the parcel information of the parcel, and send the obtained parcel information to the control device.
  • the control device will determine the target delivery slot and delivery path and send it to the package delivery robot according to the information of the package, the information of each delivery slot and the current traffic conditions in the driving area, so that the package delivery robot will follow the
  • the delivery path runs in the driving area on the modular physical platform, and according to the determined delivery path, the package is delivered through the target delivery grid to a movable container set below the target delivery grid.
  • the control device if the code scanning device fails to obtain the parcel information, that is, the control device does not receive the parcel information carried by the parcel delivery robot, or the parcel information is received incorrectly, the control device is further configured to configure the modular entity
  • the abnormal package grid on the platform is used as the target delivery grid, and a delivery path to the abnormal package grid is planned for the package delivery robot.
  • the number of anomalous parcel slots can be one or more. When the number of anomalous parcel slots is multiple, in order to satisfy the parcel delivery robots at the supply desks in different locations, the anomalous parcels are quickly put into the anomalous parcels. Lattice, multiple abnormal parcels can be dispersedly set in different positions of the modular physical platform.
  • control device is further configured to determine the next task location and the next task of the parcel delivery robot according to the shortest path principle and / or the shortest waiting principle after the parcel delivery robot delivers the parcel to the target delivery grid.
  • a travel path is sent to the parcel delivery robot; the parcel delivery robot is further configured to run in the travel area on the modular physical platform to the next task location to perform the next task according to the received travel path.
  • task locations there can be many types of task locations in this application, for example, there can be supply stations, charging stations, rest areas, etc., and there can be multiple types of task locations, for example, for a parcel sorting system There can be multiple supply stations, charging stations and rest areas.
  • the control device determines the next task for the package delivery robot according to the actual situation, such as reaching the supply station to obtain the next package to be delivered, and going to the charging station to perform the package delivery robot. Recharge or rest in the rest area.
  • the control device will select one of multiple task locations based on the location of the package delivery robot and the task location of the next task, and based on the shortest path principle and / or the shortest waiting principle, and deliver the package.
  • the robot plans a travel path and sends the next task and the next travel path to the parcel delivery robot.
  • the parcel delivery robot will, as well as receive the travel path, run on the modular physical platform to the next task location to perform the next task.
  • control device is further configured to: if the parcel delivery robot and / or the handling robot fails, suspend at least one handling robot of the movable container handling layer so that maintenance personnel can enter the Move the container handling layer to perform repair operations on the failed package delivery robot and / or handling robot.
  • the parcel delivery robot and / or the handling robot may malfunction.
  • the robot if the robot malfunctions, whether it is located at the parcel sorting layer or not, The parcel delivery robot or the transport robot located at the movable container handling layer fails.
  • the maintenance personnel enter the parcel sorting layer at the lower level for maintenance, so that the normal work of the upper parcel delivery robot cannot be affected during maintenance. It is only necessary to suspend at least one handling robot of the movable container handling layer corresponding to the area near the faulty robot, so as to minimize the impact on the sorting efficiency of the parcel sorting system.
  • the control device can send the relevant information of the faulty robot (such as the cause of the fault, the location of the faulty robot, etc.) to the maintenance personnel.
  • the maintenance personnel enter through the movable container handling layer to reach the appearance. Where the malfunctioning robot is located, repair the malfunctioning robot.
  • the faulty robot is a parcel delivery robot
  • the maintenance personnel may first lock the delivery grid closest to the faulty parcel delivery robot through the control device, probe into the parcel sorting layer through the delivery grid, and troubleshoot the parcel The delivery robot is used for maintenance. If the faulty robot is a handling robot, the maintenance personnel can directly reach the location of the faulty handling robot at the movable container handling level to repair the faulty handling robot.
  • the package sorting system of this embodiment may further include a communication device 18, which is a device carried by maintenance personnel when entering the movable container handling layer, and is configured to perform near-field communication with a handling robot;
  • the communication device is configured to transmit a driving pause signal to the surrounding environment
  • the handling robot is further configured to stop the operation and enter a waiting state if a driving pause signal transmitted by the communication device is received during operation, and resume the running state when the driving pause signal transmitted by the communication device is not received.
  • the communication equipment when the maintenance personnel bring the communication equipment into the movable container handling layer, the communication equipment will automatically communicate with the transportation robots around the maintenance personnel.
  • the communication equipment transmits a driving pause signal to the surrounding environment, and the signal coverage area It is the locked area of the movable container handling layer.
  • the handling robot in the locked area will receive the driving pause signal transmitted by the communication device, stop running, and enter the waiting state until the handling robot is not in the locked area, that is, it cannot receive the communication device.
  • the running state is resumed only when the driving pause signal is transmitted.
  • the control device may re-plan the handling path for the handling robot in the waiting state.
  • the stronger the driving pause signal transmitted by the communication device is, the larger the locked area corresponding to its coverage area is.
  • the range of the locked area that is, the strength of the transmitted driving pause signal, can be set manually or it can be The control device automatically calculates the position of the malfunctioning robot and sends it to the communication device.
  • the package sorting system adds a code scanning device, a supply table, and a communication device.
  • the package delivery robot obtains a package to be delivered from the supply table and carries the package into the code scanning area.
  • the code scanning device obtains the parcel information on the parcel delivery robot and sends it to the control device.
  • the control device determines the target parcel and the delivery path based on the parcel information, the parcel delivery information, and the road condition information of the current driving area.
  • the parcel delivery robot enables the parcel delivery robot to run on the driving area of the modular physical platform according to the delivery path sent by the control device, and delivers the parcel through the target delivery grid to the set below the target delivery grid according to the determined delivery path.
  • Removable container is a code scanning device, a supply table, and a communication device.
  • FIG. 4 is a flowchart of a package sorting method provided in Embodiment 4 of the present application.
  • This embodiment is applicable to the case of sorting packages, and the method may be performed by the package sorting system provided by the foregoing embodiments of this application, and specifically includes the following steps:
  • the parcel delivery robot After the parcel delivery robot obtains a parcel to be delivered from a supply desk, it carries the parcel into a scanning area.
  • the supply station is configured to distribute a package to be delivered to the package delivery robot.
  • the code scanning device obtains the parcel information of the parcel and sends the parcel information to the control device.
  • the code scanning device is configured in a code scanning area on the modular physical platform.
  • the control device determines a target delivery grid and a delivery path according to the parcel information, the delivery grid information, and the road condition information of the current driving area, and sends the target delivery grid and the delivery path to the package delivery robot.
  • the delivery path planned by the control device for the parcel delivery robot is a circular delivery path.
  • the turn of the circular delivery path is arc-shaped.
  • the control device uses the abnormal package grid on the modular entity platform as a target delivery grid.
  • the parcel delivery robot runs in the driving area on the modular physical platform according to the delivery path sent by the control device, and delivers the parcel through the target delivery grid to the movable container set below the target delivery grid according to the delivery path.
  • the modular physical platform can carry a parcel delivery robot and is located at a parcel sorting layer;
  • the modular physical platform is a physical platform constructed by splicing multiple splicable units and used to sort parcels;
  • the module The physical platform includes a plurality of delivery grids arranged in an array and a driving area for the package delivery robot to travel, which is formed by a gap between the multiple delivery grids.
  • One delivery grid corresponds to one or more delivery directions;
  • the interior of the modular physical platform is a single-layer or multi-layer installation; and in a multi-layer modular physical platform, each adjacent two layers are arranged in parallel, and some of the movable containers are located in The delivery grid is described below.
  • the delivery grids at different levels are positioned in the same horizontal direction, or the delivery grids at the same position on different levels are vertically oriented. Is in the right position.
  • an identification icon is provided on the driving area of the modular physical platform, and the identification icon is used to assist the package delivery robot to determine whether the current travel path is related to the delivery sent by the control device during the travel of the package delivery robot.
  • the paths are consistent.
  • the package-to-package-delivery robot delivers a package through the target-delivery grid to a movable container provided below the target-delivery grid according to a delivery path, including the package-delivery robot at In the process of running to the target delivery grid and delivering the package through the target delivery grid to the movable container provided below the target delivery grid, the movement state of uniform speed running or deceleration running is maintained.
  • the parcel delivery robot delivers the parcel using a belt transmission method, a flap delivery method or a push method.
  • the control device determines the next task location and the next travel path of the parcel delivery robot, and sends the parcel delivery robot to the parcel delivery robot.
  • the parcel delivery robot runs to the next task location and executes the next task in the driving area on the modular physical platform according to the received travel path.
  • the control device locks the delivery grid bound to the location of the target movable container, and assigns a first handling robot to the target movable container, and according to the target
  • the position of the moving container is the first conveying robot to plan the conveying path, generate a conveying instruction corresponding to the target movable container, and send the conveying instruction to the first conveying robot.
  • the transportation instruction includes a transportation path of the first transportation robot.
  • the collection conditions include: the movable container is full and / or the movable container collection time is reached.
  • control device determines whether the parcels collected in the movable container meet the collection conditions by:
  • the message that the movable container that the sensor sends to the control device is full is determined in the following manner: The sensor installed on the delivery grid of the package delivery robot and / or the modular physical platform is pointed at the A probe on the upper edge of the movable container detects whether the movable container is full of packages; when it is detected that the movable container is full of packages, a message that the movable container is full is sent to the control device.
  • the first transportation robot travels to the target movable container according to the transportation path, and carries the target movable container to the parcel collection station.
  • the movable container includes a cage cart; a transport robot is located below the cage cart and is arranged to drive the cage cart to travel on the movable container transport layer.
  • the control device allocates a second transfer robot for the idle movable container, and plans a transfer path for the second transfer robot according to the position before the target movable container is transferred, generates a transfer instruction corresponding to the idle movable container, and sends the transfer instruction To the second transfer robot, the transfer instruction includes a transfer path of the second transfer robot.
  • the second transport robot responds to the transport instruction, transports the idle movable container to the position before the target movable container is transported according to the transport path, and unlocks the delivery slot bound to the position.
  • the control device suspends at least one of the handling robots of the movable container handling layer, so that the maintenance personnel can enter the movable container handling layer and carry out the faulty package delivery robot. And / or transport the robot for maintenance operations.
  • the control device suspends at least one handling robot of the movable container handling layer, after the maintenance personnel enters the movable container handling layer, it further includes:
  • the communication device transmits a driving pause signal to the surrounding environment
  • the handling robot If the handling robot receives the driving pause signal transmitted by the communication device during the operation, it stops the operation and enters a waiting state, and resumes the running state when the driving pause signal transmitted by the communication device is not received;
  • the communication device is a device carried by maintenance personnel when entering the movable container handling layer, and is used to perform near field communication with the handling robot.
  • the plurality of movable containers may be divided into at least one group, and at least one parcel delivery robot and at least one handling robot corresponding to the at least one group of movable containers are allocated.
  • the embodiment of the present application provides a method for sorting a package, and the control device determines a target delivery slot and a delivery path based on the information of the package, the delivery slot information, and the road condition information of the driving area, and sends the target delivery slot and the delivery route to the package delivery robot;
  • the parcel delivery robot then runs in the driving area on the modular physical platform according to the delivery path sent by the control device, and delivers the parcel through the target delivery grid to the movable container set below the target delivery grid according to the delivery path.
  • the control device locks the target movable container and plans a transportation path for the first handling robot to control the first handling robot to carry the target movable container to the route planned by the control device.
  • the parcel collection station then plans a transport path for the second transport robot to control the second transport robot to transport the idle movable container according to the route planned by the control equipment to the target movable container before being transported according to the transport path. Location and unlock the delivery tied to that location mouth.
  • the technical solution of the embodiment of the present application can solve the problems of high cost and poor flexibility of the sorting system, and realizes that the handling robot and the parcel delivery robot run on two different planes, and the routes do not interfere with each other.
  • the entire parcel sorting system works in parallel. Method to improve the efficiency of parcel sorting.
  • the package sorting method provided by the embodiments of the present application can be executed by the package sorting system provided by any embodiment of the present application, and has corresponding function modules and effects of the system.
  • serial numbers of the foregoing embodiments are merely for description, and do not represent the superiority or inferiority of the embodiments.
  • modules or operations in the embodiments of the present application may be implemented by a general-purpose computing device, and they may be centralized on a single computing device or distributed on a network composed of multiple computing devices. Alternatively, they can be implemented with program code executable by a computer device, so that they can be stored in a storage device and executed by a computing device, or they can be separately made into one or more integrated circuit modules, or the Multiple modules or operations are made into a single integrated circuit module for implementation. As such, this application is not limited to any particular combination of hardware and software.
  • Robots are usually equipped with a receiving device (for example, flaps, conveyors) to receive and transport packages. After reaching the designated destination, the parcel is placed in a receiving container by a receiving device.
  • a receiving device for example, flaps, conveyors
  • the parcel is placed in a receiving container by a receiving device.
  • receiving packages usually there are fewer openings for receiving packages, which causes mobile robots to wait in line to release packages. At this point, the grid became the bottleneck of package delivery.
  • an embodiment of the present application provides a delivery slot (also referred to as a transmission channel, that is, the transmission channel can be understood as a new form of delivery slot, which further defines the delivery slot in the above embodiment. It is also configured to receive a package delivered by a delivery robot), including: an interface unit 1, a first channel 3, a second channel 4, and a switching device 2.
  • FIG. 6 shows an exemplary view of a parcel delivery robot delivering a parcel.
  • the parcel delivery robot transports the parcel to a delivery grid on a modular physical platform, and delivers the parcel through a parcel unloading device on the parcel mobile robot.
  • a delivery grid on a modular physical platform
  • an interface section 1 may be provided at the delivery grid, and the interface section 1 is configured to receive one or more packages transported by the package delivery robot.
  • a delivery grid can only receive packages at one destination. Because the resources of the delivery grid are relatively precious, it will cause robots to queue at the delivery grid to unload packages, which affects the efficiency of package delivery.
  • the embodiment of the present application provides a delivery grid, which includes a first channel 3, and the first channel 3 is directly connected to the interface unit 1 and can receive a package received by the interface unit 1.
  • the package delivery robot needs to automatically find the corresponding delivery grid and deliver the package to the corresponding movable container.
  • the first channel 3 is provided with a first identifier 3010.
  • the first identifier 3010 may be a simple digital number, or a two-dimensional code or a tag having a near field communication function (for example, Near Field Communication (NFC) tag, Radio Frequency Identification (RFID) tag), through the first identification 3010, the first channel 3 can be uniquely identified in the system.
  • NFC Near Field Communication
  • RFID Radio Frequency Identification
  • the parcel delivery robot Prior to parcel delivery, the parcel delivery robot obtains in advance the destination information to be delivered by the parcel it transports, and the destination information is also matched with a specific identifier in the channel at the same time. For example, the first channel 3 only receives packages to be shipped that match the first identification 3010.
  • the delivery grid also includes a second channel 4, which is directly connected to the interface unit 1 and can receive packages received by the interface unit 1.
  • the second channel 4 is provided with a second identifier 4010.
  • the second identifier 4010 may be a simple digital number, or a two-dimensional code or a tag having a near field communication function (for example, an NFC tag, an RFID tag). Through the second identification 4010, the second channel 4 can be uniquely identified in the system.
  • the parcel delivery robot Prior to parcel delivery, the parcel delivery robot obtains in advance the destination information to be delivered by the parcel it transports, and the destination information is also matched with a specific identifier in the channel at the same time. For example, the second channel 4 only receives packages to be shipped that match the second identification 4010.
  • the interface unit 1 when it receives a package, it needs to determine whether the package belongs to the first channel 3 or the second channel 4. After determining the specific channel to which the package belongs, the switching unit 2 is used to connect the interface unit 1 to one of the first channel 3 or the second channel 4.
  • the switching device 2 determines to deliver the current package to be delivered to the first channel 3 or the second channel 4 based on the acquired identity (ID) of the currently to be sorted package.
  • a delivery grid provided in the embodiment of the present application, by providing the interface unit 1, the first channel 3, the second channel 4, and the switching device 2, multiple channels for receiving packages can be set at one delivery grid position, thereby improving This improves the efficiency of package delivery.
  • the package in the first channel 3 is finally received by the first movable container 5, and the package in the fourth channel 4 is finally received by the second movable container 6.
  • the first movable container 5 and the second movable container 6 may be any device capable of receiving packages.
  • the first movable container 5 may be a transfer box, a cage truck, a conveyor belt, or the like.
  • the delivery grid is also include:
  • the third channel has a third identifier, and the third channel receives a package matching the third identifier.
  • the third channel is provided with a third identifier.
  • the third identifier may be a simple digital number, or a two-dimensional code or a tag having a near field communication function (for example, an NFC tag, an RFID tag).
  • the third channel can be uniquely identified in the system.
  • the parcel delivery robot Prior to parcel delivery, the parcel delivery robot obtains in advance the destination information to be delivered by the parcel it transports, and the destination information is also matched with a specific identifier in the channel at the same time. For example, the third channel only receives packages that match the third identification.
  • the switching device may be implemented in various design styles. According to a specific implementation manner of an embodiment of the present application, referring to FIG. 7, the switching device 2 is a conveyor belt, and the conveyor belt has two left and right transmission directions in a horizontal mode. The destination of the package, the package can be transferred to the first channel 3, or to the second channel 4. After that, the package is dropped into the first movable container 5 or the second movable container 6 in the first channel 3 or the second channel 4 under the effect of gravity. That is, the switching device 2 can transport the package to the first channel 3 or the second channel 4 by changing the direction in which the package is transported.
  • the first container 5 and the second container 6 may be the ground.
  • one end of the first / second channel is close to the conveyor belt, and the other end of the first / second channel is in contact with the ground.
  • the parcels were eventually delivered to different areas on the ground.
  • the switching device 2 is a transmission belt, and the transmission belt has two rotation directions.
  • the first / second channel and the transmission belt are all on the same plane
  • the first channel 3 is on the first side of the transmission belt
  • the second channel The channel 4 is on the second side of the belt.
  • the switching device 2 may also be a tray, and the tray has at least two inclined directions.
  • the tilting direction of the tray can be controlled. Under the action of gravity, the packages in the tray will naturally fall off the tray.
  • the parcel can be received by receiving the first preset position and the second preset position of the dropped package. That is, the tray places the package into the first / second aisle in a tilted manner at the third preset position.
  • the switching device 2 is a steering wheel 8.
  • the switching device 2 may include one or more steering wheels 8.
  • Each of the steering wheels 8 may also form a steering wheel matrix, and the steering wheels 8 have a plurality of rotation directions.
  • the interface unit 1 and the switching device 2 are located on the same plane.
  • the interface unit 1 may include a plurality of rotating rollers 7.
  • the rotating rollers 7 have two forward and backward directions. In this way, packages located on the same horizontal plane can be placed on the same level. It is moved to the switching device 2 under the driving of the rotary roller 7.
  • the first channel 3 and the second channel 4 may also be in the same plane as the switching device, and the package is transported to the first channel 3 or the second channel 4 through the steering wheel to switch the rotation direction.
  • the first channel 3 and the second channel 4 may also include a plurality of horizontally disposed rotating rollers 7.
  • the rotating roller 7 has two forward and backward rolling directions. In this way, packages located on the same horizontal plane can be moved from the switching device 2 to the first channel 3 or the second channel 4 under the driving of the rotating roller 7.
  • a delivery grid provided in the embodiment of the present application by providing the interface unit 1, the first channel 3, the second channel 4, and the switching device 2, multiple channels for receiving packages can be set at one delivery grid position, thereby improving This improves the efficiency of package delivery.
  • the package in the embodiment of the present application may be any item capable of being transmitted.
  • Parcels can be stored on shelves, or they can be distributed to parcel delivery robots manually or by machines, etc.
  • a package represents any item suitable for storage, sorting, or transfer in an automated inventory, warehouse, manufacturing, and / or part handling system, which can be any material, and can be a living or inanimate object.
  • a parcel delivery robot can retrieve a designated shelf containing specific items associated with a customer order to be packaged for delivery to a customer or other party.
  • a package may represent luggage stored in a luggage facility at an airport.
  • Mobile robots can retrieve shelves containing luggage to be transported and tracked. This may include selecting specific baggage for explosives screening, moving baggage associated with flights that have changed gates, or removing baggage belonging to passengers who have missed the flight.
  • a package may represent a component of a manufacturing kit. More specifically, these components may represent components intended to be included in an assembled product, such as computer components for custom computer systems.
  • the mobile robot may retrieve a specific component identified by a specification related to a customer order.
  • the package delivery robot should be understood in a broad sense, or referred to as a mobile robot, and the package should also be understood in a broad sense, or referred to as an item to be delivered.
  • the term “a” should be understood as “at least one” or “one or more”, that is, in one embodiment, the number of one element can be one, and in other embodiments, the number of The number may be plural, and the term “a” cannot be understood as a limitation on the number.
  • ordinal numbers such as “first”, “second”, etc. will be used to describe various components, those components are not limited here. This term is only used to distinguish one component from another. For example, a first component may be referred to as a second component, and likewise, a second component may be referred to as a first component without departing from the teachings of the application concept.
  • the term "and / or” as used herein includes any and all combinations of one or more of the associated listed items.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Sorting Of Articles (AREA)

Abstract

一种包裹分拣系统和方法,该包裹分拣系统分层设置,包括:位于上层的包裹分拣层(10)、位于下层的可移动容器搬运层(11)、包裹投递机器人(12)以及控制设备(13);包裹分拣层(10)包括模块式实体平台(101);模块式实体平台(101)为通过多个可拼接单元拼接搭建而成、用于分拣包裹的物理平台;模块式实体平台(101)上包含呈阵列式排布的多个投递格口(1011)以及由多个投递格口(1011)之间的间隙构成的供包裹投递机器人(12)行驶的行驶区域,一个投递格口(1011)对应一个或多个投递路向;可移动容器搬运层(11)包含多个可移动容器(110),且部分可移动容器(110)位于投递格口(1011)的下方,设置为接纳来自包裹分拣层(10)的包裹。

Description

包裹分拣系统和方法
本申请要求在2018年06月12日提交的、申请号为201810600526.1的中国专利,以及在2019年03月27日提交的、申请号为201910238195.6的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及物流仓储技术领域,例如涉及一种包裹分拣系统和方法。
背景技术
相关技术的包裹自动分拣方式主要有两种,一种是通过交叉带分拣机系统完成包裹的分拣,另一种是通过钢平台机器人分拣系统完成包裹的分拣。但是,这两种包裹自动分拣方法,都存在分拣系统成本高昂、位置固定、不可灵活搬运等缺陷,因此,提供一种新的包裹分拣方法是十分必要的。
发明内容
本申请提供了一种包裹分拣系统和方法,以解决分拣系统成本高,灵活性差的问题,提高了包裹分拣效率。
在一实施例中,本申请实施例提供了一种包裹分拣系统,该系统分层设置,包括:位于上层的包裹分拣层、位于下层的可移动容器搬运层、包裹投递机器人以及控制设备;
所述包裹分拣层包括可承载包裹投递机器人的模块式实体平台;所述模块式实体平台为通过多个可拼接单元拼接搭建而成、用于分拣包裹的物理平台;所述模块式实体平台上包含呈阵列式排布的多个投递格口以及由多个投递格口之间的间隙构成的供包裹投递机器人行驶的行驶区域,一个投递格口对应一个或多个投递路向;
所述可移动容器搬运层包含多个可移动容器,且第一数量的所述可移动容器位于所述多个投递格口的下方,设置为接纳来自所述包裹分拣层的包裹,所 述第一数量小于所述可移动容器搬运层包括的所述可移动容器的总数量;
所述控制设备,设置为根据所述包裹的信息、所述投递格口的信息以及当前所述行驶区域的路况信息,确定目标投递格口和投递路径并发送至包裹投递机器人;
所述包裹投递机器人,设置为依据所述控制设备发送的投递路径在所述模块式实体平台上的行驶区域运行,按照投递路径将包裹通过所述目标投递格口投递至设置在所述目标投递格口下方的可移动容器中。
在一实施例中,本申请实施例还提供了一种包裹分拣方法,该方法包括:
控制设备根据包裹的信息、投递格口的信息以及当前行驶区域的路况信息,确定目标投递格口和投递路径并发送至包裹投递机器人;
所述包裹投递机器人依据所述控制设备发送的投递路径在模块式实体平台上的行驶区域运行,按照投递路径将包裹通过所述目标投递格口投递至设置在所述目标投递格口下方的可移动容器中;
其中,所述模块式实体平台可承载包裹投递机器人,位于包裹分拣层;所述模块式实体平台为通过多个可拼接单元拼接搭建而成、用于分拣包裹的物理平台;所述模块式实体平台上包含呈阵列式排布的多个投递格口以及由多个投递格口之间的间隙构成的供包裹投递机器人行驶的行驶区域,一个投递格口对应一个或多个投递路向;多个所述可移动容器位于可移动容器搬运层,且第一数量的所述可移动容器位于所述多个投递格口的下方,设置为接纳来自所述包裹分拣层的包裹,所述第一数量小于所述可移动容器搬运层包括的所述可移动容器的总数量。
附图说明
图1A是本申请实施例一提供的一种包裹分拣系统的结构框图;
图1B是本申请实施例一提供的一种包裹分拣系统的内部示意图;
图1C是本申请实施例一提供的包裹分拣系统的模块式实体平台的局部示意图;
图1D是本申请实施例一提供的包裹分拣系统的可移动容器搬运层的局部示意图;
图1E是本申请实施例一提供的包裹投递机器人移动投递包裹的示意图;
图2是本申请实施例二提供的另一种包裹分拣系统的内部示意图;
图3是本申请实施例三提供的又一种包裹分拣系统的内部示意图;
图4是本申请实施例四提供的一种包裹分拣方法的流程图;
图5为本申请实施例提供的一种投递格口的结构示意图;
图6为本申请实施例提供的基于模块式实体平台的包裹传送示意图;
图7为本申请实施例提供的另一种投递格口的结构示意图;
图8为本申请实施例提供的又一种投递格口的结构示意图;
图9为本申请实施例提供的还一种投递格口的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
实施例一
图1A为本申请实施例一提供的一种包裹分拣系统的结构框图,本实施例可适用于对包裹进行分拣的情况,该包裹分拣系统分层设置,包括位于上层的包裹分拣层10、位于下层的可移动容器搬运层11、包裹投递机器人12以及控制设备13。
在本实施例中,图1B为本申请实施例一提供的一种包裹分拣系统的内部示意图。如图1B所示,虚线框区域为包裹分拣系统内部的上层,即包裹分拣层10,实线框区域为包裹分拣系统内部的下层,即可移动容器搬运层11。控制设备(在图1B中未示出)与包裹投递机器人12建立通信连接,设置为实现整个包裹分拣系统的控制和调度。在一实施例中,控制设备是指具有数据存储、信息处理能力的软件系统,可以通过有线或无线的方式与包裹投递机器人12以及系统中的其他硬件输入系统或软件系统连接。控制设备可以给包裹投递机器人12发布 任务,统计货物分拣情况、检测系统工作状态、向工作人员传递信息以及向包裹投递机器人12下达控制命令等。包裹投递机器人12可以自身拥有智能系统,能够与控制设备进行通信,接收控制设备发送的控制指令。
包裹分拣层10包括可承载包裹投递机器人12的模块式实体平台101;所述模块式实体平台101为通过多个可拼接单元拼接搭建而成、用于分拣包裹的物理平台;所述模块式实体平台101上包含呈阵列式排布的多个投递格口1011以及由多个投递格口1011之间的间隙构成的供包裹投递机器人12行驶的行驶区域,一个投递格口1011对应一个或多个投递路向。
在本实施例中,由图1B中的包裹分拣层10可以看出,包裹分拣层10包括包裹投递机器人12和承载着包裹投递机器人12的模块式实体平台101,包裹机器人12在模块式实体平台101上运行。图1C为本申请实施例一提供的包裹分拣系统的模块式实体平台的局部示意图。由图1C所示,构成本实施例模块式实体平台101的多个可拼接单元可以是多种不同规格的单元,如可以是正方体的可拼接单元(如图1C中左斜条填充块所示),也可以是长方体的可拼接单元(如图1C中点状填充块所示)等。在一实施例中,多个可拼接单元的形状包括条形、弧形、锯齿形、三角形等等中的至少一种,由所述可拼接单元拼接搭建而成的模块式实体平台的形状包括立方体(如长方体、正方体等)或环形柱体(如环形实体柱体或环形空心柱体等)等。对此本实施例不进行限定。
模块式实体平台101上的投递格口1011是可拼接单元构建模块式实体平台101时,留下的空窗位置,该位置呈阵列式排布。可选的,也可以根据实际需求呈其他的方式排布对此本实施例不进行限定。投递格口1011可供包裹投递机器人从该格口将包裹投入位于下层的可移动容器搬运层11的可移动容器中。本实施例采用多个可拼接单元搭建模块式实体平台,这样设置的好处在于平台运输、安装、拆卸方便,可根据实际需求拆卸组装后重复利用,提高了模块式实体平台的灵活性和可扩展性。
模块式实体平台101上还包括供包裹投递机器人12行驶的区域,该区域位于多个投递格口1011之间,如投递格口1011A和1011B之间的缝隙区域A。也就是说,在该模块式实体平台101上,可拼接单元所在的区域都为包裹机器人12行驶的区域。对于每一个投递格口1011来说,包裹机器人达到该投递格口时, 可供选择的投递路向可以有一条或多条,例如,如图1C所示,包裹投递机器人12,从图中所示位置达到投递格口1011A时,可供选择的路向可以是投递路向1和投递路向2等,包裹投递机器人12具体选择哪一条投递路径行驶至对应的投递格口1011A,取决于控制设备13下发的指令,或行驶区域的实施路况等。
可移动容器搬运层11包含多个可移动容器110,且部分(或第一数量,第一数量小于可移动容器搬运层11包括的可移动容器110的总数量)所述可移动容器110位于所述投递格口1011的下方,设置为接纳来自所述包裹分拣层10的包裹。在一实施例中,每个投递格口1011的下方包括至少一个可移动容器110。
如图1B所示,在本实施例中,可移动容器搬运层11位于包裹分拣层10的下方,设置为放置多个可移动容器110,可移动容器110可以是常见的用于收纳待投递货物的容器,例如,常见的笼车等。在一实施例中,一个可移动容器110设置为承载具有共同属性的物品,例如,某一可移动容器110设置为承载发送至A城市的待投递包裹。
在本实施例中,如图1A至图1C所示,模块式实体平台101中的每一个可供投递的投递格口1011下方都应该放置至少一个可移动容器110,避免包裹投递机器人12从投递格口1011投放包裹后,包裹直接掉落在可移动容器搬运层11的地面上,给包裹的收纳以及搬运带来不便。由于模块式实体平台101中的多个投递格口1011是同时工作的,因此位于可移动容器搬运层11中的可移动容器110的数量为多个,为了某一个投递格口1011下方的可移动容器110满载后,有可替代它的空闲可移动容器110,从保证包裹分拣系统的正常运行,所以在本实施例中可移动容器110的数量通常大于模块式实体平台101中的投递格口1011的数量。其中,多个可移动容器110中,有一部分可移动容器110位于模块式实体平台101的投递格口1011的下方,设置为收纳来自包裹分拣层的包裹,例如,图1D是本申请实施例一提供的包裹分拣系统的可移动容器搬运层的局部示意图;如图1A至图1D所示,相对于图1C中的模块式实体平台的局部示意图,在模块式实体平台101中的每一个投递格口1011的下方都设置有至少一个可移动容器110,用来收纳从该可移动容器110上方投递格口1011投递下来的包裹。剩余的可移动容器110可以位于可移动容器搬运层11的等待区,该等待区域的可移动容器110为空载的可移动容器110,设置为替换投递格口110下方的已装满的可移动容器110;剩余的可移动容器110还可以位于包裹收集工 位,该包裹收集工位的可移动容器110通常为装有包裹的可移动容器110,设置为等待人工或机器将其中装载的包裹放置到对应位置,例如,图1B中右下角所示。
可选的,在另一种实现方式中,本实施例的包裹分拣系统的模块式实体平台的内部为单层设置或者多层设置;且多层设置的模块式实体平台中,每相邻两层之间平行设置,部分(或第二数量,第二数量小于或等于第一数量)所述可移动容器位于所述投递格口的正下方。在一实施例中,在第二数量小于第一数量的情况下,可以理解为投递格口的下方可以有多个可移动容器,且多个可移动容器不都位于投递格口的正下方。例如,在投递格口的下方有两个可移动容器的情况下,一个位于投递格口的正下方,另一个不位于投递格口的正下方。多层设置的模块式实体平台中,处于不同层面上的投递格口在水平方向的位置相同,或者处于不同层面上的相同位置处的投递格口之间沿竖直方向的位置正对。
具体的,本实施例中的实体平台并不仅限于图1B所示的单层设置,还可以是多层设置,且多层之间在水平方向上平行设置,每层同样也都是采用可拼接单元拼接搭建而成,且每层中同样包含呈阵列式排布的多个投递格口以及由多个投递格口之间的间隙构成的供包裹投递机器人行驶的行驶区域。并且处于不同层的投递格口在水平方向的位置是相同的,或者,处于不同层面上的相同位置处的投递格口之间在竖直方向的位置是正对的。在一实施例中,该相同位置是指水平方向的XY轴所在位置,不包括竖直方向上Z轴所在位置。每相邻两层之间的高度至少为一个包裹投递机器人的高度,从而保证包裹投递机器人在每相邻两层之间都可以正常行驶,进行包裹的投递操作。可选的,相邻两层之间的高度可以相同,也可以不同。将包裹分拣系统的模块式实体平台的内部为设置为多层,这样的好处在于,一个可移动容器可以同时接收来自多层的多个包裹投递机器人投放的包裹,提高了整个包裹分拣系统的分拣效率。
在一实施例中,所述模块式实体平台的行驶区域上设置有标识图标,所述标识图标用于在包裹投递机器人行驶过程中,协助所述包裹投递机器人确定当前行驶参数是否与控制设备发送的行驶路径一致。
其中,标识图标可以是二维码、条形码或色带等,可以是印刷或安装在模 块式实体平台的行驶区域。可选的,可以是每隔预设距离(如1m)设置一个标识图标。包裹投递机器人在行驶的过程中,会扫描行驶区域的标识图标,获取当前位置信息,与控制设备发送的投递路径进行比较,从而确定当前位置是否是控制设备规划路径中的位置,且当前行驶方向是否正确等。可选的,为了增加行驶区域包裹投递机器人与模块式实体平台之间的摩擦力,还可以在模块式实体平台的行驶区域上覆盖一层耐磨、摩擦力大的地胶或地毯,在地胶或地毯上印刷或安装标识图标。
本实施例的包裹分拣系统具体工作过程是:
所述控制设备,设置为根据所述包裹的信息、所述投递格口的信息以及当前所述行驶区域的路况信息,确定目标投递格口和投递路径并发送至包裹投递机器人。
其中,包裹的信息可以是包裹的待投递的城市信息,也可以是包裹内物品的类型信息,还可以是包裹内物品的属性信息等。例如,若要对待分拣的包裹按照收件地址的城市进行分拣,则此时包裹的信息可以是待投递的城市信息;若要对待分拣的包裹按照包裹内物品类型进行分拣,则此时包裹的信息可以是包裹内货物的类型信息。
投递格口的信息与包裹的信息相关,若包裹信息待投递的城市信息,则投递格口信息就是每个投递格口对应的城市信息;若包裹信息是包裹内物品的类型信息,则投递格口信息就是每个投递格口对应的物品类型信息;若包裹信息是包裹内物品的属性信息,则投递格口信息就是每个投递格口对应的属性信息。行驶区域的路况信息可以是指在模块式实体平台上,行驶区域中哪些位置存在包裹投递机器人、存在的包裹投递机器人的状态等。
在本实施例中,确定目标投递格口时可以是根据包裹的信息和模块式实体平台上的多个投递格口的信息来确定,具体的,可以是在多个投递格口中找到与包裹信息相匹配的投递格口作为目标投递格口。如控制设备可以预先存储有每个投递格口的信息,在获取包裹信息后,将该包裹信息与预先存储的每个投递格口的信息进行匹配,将匹配成功的投递格口作为目标投递格口。在确定投递路径时可以是在根据包裹的信息、投递格口的信息确定出目标投递格口后,根据目标投递格口以及当前行驶区域的路况信息进一步确定投递路径,具体的, 可以是将目标投递格口作为终点,将进行本次包裹投递的包裹投递机器人所在位置作为起点,规划出至少一条可行驶路线,然后结合至少一条可行驶路线所在区域的路况信息,从中选出一条拥挤程度最小且路径最短的路线作为本次投递路径。控制设备在确定了目标投递格口和投递路径后,将目标投递格口和投递路径发送至进行本次包裹投递的包裹投递机器人。
所述包裹投递机器人,设置为依据控制设备发送的投递路径在所述模块式实体平台上的行驶区域运行,按照投递路径将包裹通过所述目标投递格口投递至设置在所述目标投递格口下方的可移动容器中。
在本实施例中,包裹投递机器人接收到控制设备发送的目标投递格口和投递路径后,根据接收到的投递路径行驶到目标投递格口处,然后将所承载的包裹投放到该目标投递格口中,该包裹就会通过目标投递格口进入该目标投递格口下方的可移动容器中。
可选的,本实施例中包裹投递机器人在通过目标投递格口投递包裹的另一种实现方式是:所述包裹投递机器人在运行至所述目标投递格口以及将包裹通过所述目标投递格口投递至设置在所述目标投递格口下方的可移动容器的过程中,皆保持匀速运行或者实施减速运行的运动状态。
图1E是本申请实施例一中的包裹投递机器人移动投递包裹的示意图,如图1E所示,当包裹投递机器人的第一边界E1与目标投递格口的第一边界E3重合时,包裹投递机器人保持匀速行驶或减速行驶并开始执行投递动作,待包裹投递至目标投递格口对应的可移动容器;当包裹投递机器人第二边界E2与目标投递格口的第二边界E4重合时,保持匀速行驶或减速行驶并终止投递动作。在一实施例中,边界E5是指包裹投递机器人的第一边界E1与目标投递格口的第一边界E3重合时,包裹投递机器人第二边界的位置;边界E6是指包裹投递机器人第二边界E2与目标投递格口的第二边界E4重合时,包裹投递机器人第一边界的位置。包裹投递机器人投递的安全范围为L,当包裹投递机器人的运行速度为V时,投递机构的投递动作必须在T时间内完成,其中,T=L/V。在一实施例中,当投递机构的投递动作在T时间内没有完成时,停止投递动作,将待投递包裹投递至异常包裹格口,或者重新行驶一个环路之后再次进行投递。在一实施例中,包裹投递机器人采用皮带传送方式、翻板投递方式或者推送方式投 递包裹,其中,推送方式投递包裹可以是在包裹投递机器人上安装有伸缩装置(如弹簧伸缩装置),当进行包裹投递时,该伸缩装置水平伸出,与包裹接触,将包裹投递机器人上放置的包裹推送到对应格口中。
可选的,模块式实体平台上的投递格口的数量可能比包裹需要分的种类(即投递路向)多,则此时模块式实体平台上的投递格口的数量富裕,可以为一种包裹的投递路向设置多个投递格口,且该多个投递格口分布在模块式实体平台的不同位置,减少包裹投递机器人在投递过程中的拥堵现象,且当一个投递格口被锁定后,包裹投递机器人还可以向同路向的其他投递格口投递包裹。在一实施例中,由于包裹投递机器人在包裹分拣系统中的运动频率较大,因此可以将包裹投递量大的投递路向设置为热度高的路向,并将该路向对应的投递格口设置为供件台附近的投递格口,以缩短包裹投递机器人的运行距离,提高包裹分拣效率。
本实施例提供的包裹分拣系统,包裹分拣系统的内部为分层设置,包括:位于上层的包裹分拣层、位于下层的可移动容器搬运层、包裹投递机器人以及控制设备;包裹分拣层是可承载包裹投递机器人的模块式实体平台;模块式实体平台为通过多个可拼接单元拼接搭建而成、用于分拣包裹的物理平台;模块式实体平台上包含呈阵列式排布的多个投递格口以及由多个投递格口之间的间隙构成的供包裹投递机器人行驶的行驶区域,一个投递格口对应一个或多个投递路向;可移动容器搬运层包含多个可移动容器,且部分所述可移动容器位于投递格口的下方,设置为接纳来自包裹分拣层的包裹。控制设备根据包裹的信息、投递格口的信息以及当前所述行驶区域的路况信息,确定目标投递格口和投递路径并发送至包裹投递机器人;包裹投递机器人再依据控制设备发送的投递路径在模块式实体平台上的行驶区域运行,并按照确定出的投递路径将包裹通过目标投递格口投递至设置在目标投递格口下方的可移动容器中。本申请实施例的技术方案可以解决分拣系统成本高,灵活性差的问题,提高了包裹分拣效率。
实施例二
本实施例在上述实施例的基础上,进一步优化了货物分拣系统。图2是本申请实施例二提供的另一种包裹分拣系统的内部示意图;优化后的包裹分拣系 统还包括搬运机器人14,每个所述搬运机器人14,设置为搬运所述可移动容器110。所述可移动容器110包括笼车;所述搬运机器人14位于所述笼车的下方,是设置为带动所述笼车在所述可移动容器搬运层11行驶。
在本实施例中,搬运机器人14位于包裹分拣系统的可移动容器搬运层11,设置为搬运可移动容器110,例如,将可移动容器110从投递格口1011下方搬运至包裹收集工位,或者是将可移动容器110从等待区域搬运至投递格口1011下方等。如图2所示,搬运机器人14在搬运可移动容器110时,先行驶至可移动容器110(如笼车)的下方,从而带动可移动容器110在可移动容器搬运层11行驶,将可移动容器搬110运到对应的位置上。
本实施例所述的包裹分拣系统在上述实施例工作过程的基础上,增加了如下的工作过程:
所述控制设备,还设置为当所述可移动容器中收集到的包裹满足收集条件时,可移动容器为目标可移动容器,锁住与所述目标可移动容器所在位置绑定的投递格口,并为所述目标可移动容器分配第一搬运机器人,并根据所述目标可移动容器的位置为所述第一搬运机器人规划搬运路径,生成与所述目标可移动容器对应的搬运指令,将所述搬运指令发送至所述第一搬运机器人。
所述第一搬运机器人,设置为响应于所述搬运指令,根据所述搬运路径行驶到所述目标可移动容器处,将所述目标可移动容器搬运至包裹收集工位。
所述控制设备还设置为:为空闲可移动容器分配第二搬运机器人,并根据所述目标可移动容器被搬运前的位置为所述第二搬运机器人规划搬运路径,生成与空闲可移动容器对应的搬运指令,将所述搬运指令发送至所述第二搬运机器人,所述搬运指令包含所述第二搬运机器人的搬运路径。
所述第二搬运机器人,用于响应所述与所述空闲可移动容器对应的搬运指令,将所述空闲可移动容器根据所述第二搬运机器人的搬运路径搬运到所述目标可移动容器被搬运前的位置,并解锁与所述位置绑定的投递格口。
其中,所述收集条件包括:可移动容器已满和/或达到可移动容器收集时间。可选的,可移动容器已满可以是指可移动容器内收纳的包裹已经达到可移动容器的最大收纳界限,在一实施例中,可移动容器的最大收纳界限与可移动容器的顶端具有一定的距离,防止可移动容器内收纳包裹过满掉落的情况出现。可 移动容器的收集时间可以是控制设备根据可移动容器收纳的包裹的特征(如该类包裹的大小、该类包裹出现的频率等)设置的,还可以是人工根据需求设置的,具体的收集时间可以根据实际情况进行调整。
在本实施例中,搬运机器人可以自身拥有智能系统,能够与控制设备进行通信,接收控制设备发送的控制指令,所述搬运指令包含所述第一搬运机器人的搬运路径。
可选的,在本实施例中,所述控制设备通过以下方式判断所述可移动容器中收集到的包裹是否满足收集条件:
方式一、若所述控制设备接收到传感器发送的可移动容器已满的消息,则判断所述可移动容器中收集到的包裹满足收集条件;和/或
方式二、若所述控制设备检测到可移动容器内已投递包裹的总体积达到预设体积阈值或达到可移动容器收集时间,则判断所述可移动容器中收集到的包裹满足收集条件。
具体的,当采用方式一时,所述传感器可以安装在包裹投递机器人和/或所述模块式实体平台的投递格口上;所述传感器的探测头指向所述可移动容器上沿,设置为检测所述可移动容器是否装满包裹;当检测到所述可移动容器装满包裹时,向所述控制设备发送所述可移动容器已满的消息。例如,在包裹投递机器人的前端或投递格口的边沿安装一个红外传感器,若红外传感器安装在投递格口的边沿,由于投递格口无法与控制设备进行通信,所以还需要在投递格口边沿安装一个无限通信模块,红外传感器的探测头指向投递格口下方的可移动容器,当红外传感器检测到可移动容器内的包裹已装满时,将包裹已满的消息通过无限通信模块发送至控制设备。
当采用方式二时,控制设备可以根据投递到可移动容器内每个包裹的体积,估算可移动容器内已投递包裹的总体积,将其与该可移动容器的预设体积阈值进行比较,若已投递包裹的总体积大于或等于该可移动容器的预设体积阈值,则判断该可移动容器中收集到的包裹满足收集条件。此外,控制设备还可以通过可移动容器的收集时间来判断是否满足收集条件,如控制设备从该可移动容器放置在投递格口下方开始进行计时,当到达该可移动容器的收集时间时,则判断该可移动容器中收集到的包裹满足收集条件。
控制设备在可移动容器中收集的包裹满足收集条件时,会锁住该目标可移动容器对应位置的投递格口,禁止包裹投递机器人向该投递格口继续投放包裹,同时控制设备还会为该目标可移动容器分配一个搬运机器人(即第一搬运机器人)并根据目标可移动容器所在位置、该第一搬运机器人所在位置以及包裹收集工位,为该第一搬运机器人规划搬运路径(即从第一搬运机器人所在位置到目标可移动容器的路径,以及从目标可移动容器所在位置到包裹收集工位的路径),生成与该目标可移动机器人对应的搬运指令,发送至该第一搬运机器人,该第一搬运机器人接收到该搬运指令后,就会响应该搬运指令,根据所述搬运路径行驶到该目标可移动容器处,再将该目标可移动容器搬运至包裹收集工位。
如图2所示,若满足收集条件的可移动容器110A,则此时可移动容器110A即为目标可移动容器,控制设备会锁住该目标可移动容器110A所在位置的投递格口1011A,在模块式实体平台101上行驶的包裹投递机器人12停止向该投递格口1011A投放包裹。同时控制设备还为该目标可移动容器110A分配第一搬运机器人14A,并为第一搬运机器人14A规划搬运路径,生成搬运指令发送至第一搬运机器人14A,第一搬运机器人14A就会依据搬运指令,将该目标可移动容器110A搬运至包裹收集工位。
可选的,为了人工或机器在包裹收集工位收集可移动容器时,使得可移动容器偏离标准位置,可以是采用搬运机器人加固装置固定可移动容器;也可以是在地面上增加加固装置,固定可移动容器的位置。
本实施例中,第一搬运机器人将目标可移动容器搬运至包裹收集工位后,为了避免包裹投递机器人向投递格口投递的包裹落在地上,控制设备同时分配另外一个搬运机器人(即第二搬运机器人),为第二搬运机器人规划搬运路径(即第二搬运机器人从当前位置到空闲可移动容器的路径以及从空闲可移动容器达到目标可移动容器搬运之前所在位置的路径),生成该空闲可移动容器对应的搬运指令,发送至第二搬运机器人,该第二搬运机器人接收到该搬运指令后,响应该搬运指令,并将该空闲可移动容器(即空载的可移动容器)搬运到目标可移动容器被搬运前的位置。空闲可移动容器放置好后,该位置已经放置有新的可继续收纳包裹的可移动容器,此时可以解锁与该位置绑定的投递格口,在模块式实体平台上行驶的包裹投递机器人可以恢复向该投递格口投放包裹。在一实施例中,本过程可以是在第一搬运机器人将目标可移动容器搬运至包裹 收集工位后执行,也可以是在在第一搬运机器人搬运目标可移动容器的同时进行,从而减少绑定格口的锁定时间。
如图2所示,控制设备会给空闲可移动容器110B分别第二搬运机器人14B,并为第二搬运机器人14B规划搬运路径,生成搬运指令发送至第二搬运机器人14B,第二搬运机器人14B就会依据搬运指令,将空闲可移动容器110B搬运至投递格口1011A的下方,此时解除对投递格口1011A的锁定,恢复模块式实体平台101上行驶的包裹投递机器人12向该投递格口1011A投放包裹。
进一步的,控制服设备为本实施例的包裹分拣系统中的机器人规划的路径均为环形路径。上述机器人包括包裹投递机器人和搬运机器人(包括第一搬运机器人和第二搬运机器人),即为包裹投递机器人规划的投递路径为环形投递路径,为搬运机器人规划的搬运路径为环形搬运路径。进一步的,环形投递路径和环形搬运路径的转弯处为弧形。在本实施例中,包裹投递机器人的环形投递路径和搬运机器人的环形搬运路径,均有直线路径和弧形路径构成。其中,弧形路径是指机器人在转弯时采用弧形路径行驶,可以实现机器人在转弯时不停止,节省机器人的运行时间。
在本实施例的另一个实现方式中,可以将所述多个可移动容器划分为至少一组,为所述至少一组的可移动容器分配对应的至少一个包裹投递机器人和至少一个搬运机器人。
在本实施例中,可移动容器搬运层中的可移动容器布局密度高,可移动容器的组合方式灵活,因此可以将至少两个可移动容器按照一定的规则划分为至少一组,提高了可移动容器布局的可扩展性和灵活性。例如,如图1D所示,可以将图中可移动容器分为两组,左边三个可移动容器为一组,右边三个可移动容器为一组,分别为每组可移动容器分配至少一个包裹投递机器人向该组可移动容器上方的投递格口投放包裹,以及分别为每组可移动容器分配至少一个搬运机器人设置为在该组可移动容器满足收集条件时搬运该组可移动容器。
本实施例提供的包裹分拣系统,在上述实施例的基础上,在包裹分拣层包裹投递机器人根据控制设备发送的投递路径将待投递包裹投放到目标投递格口,同时在可移动容器搬运层,控制设备会在可移动容器中收集到的包裹满足收集条件时,锁定目标可移动容器所在位置绑定的投递格口,禁止包裹投递机器人 向该投递格口继续投递包裹,同时会为该目标可移动容器分为第一搬运机器人,并为其规划搬运路径发送至第一搬运机器人,以使第一搬运机器人依据搬运路径将目标可移动容器搬运至包裹收集工位,同时控制设备还会为空闲可移动容器分配第二搬运机器人,也为其规划一条搬运路线发送至第二搬运机器人,以使第二搬运机器人将空闲可移动容器搬运到目标可移动容器被搬运前的位置,最后在解锁与该位置绑定的投递格口,以使包裹分拣层的包裹投递机器人继续向该投递格口投放包裹。实现了搬运机器人和包裹投递机器人在两个不同的平面上运行,路线互相不干扰,整个包裹分拣系统采用并联工作方式,提高了包裹分拣效率。
实施例三
本实施例在上述实施例的基础上,进一步优化了货物分拣系统。图3是本申请实施例三提供的另一种包裹分拣系统的内部示意图。优化后的包裹分拣系统在上述系统的基础上还包括:扫码设备16和供件台17。所述扫码设备16配置于所述模块式实体平台101上的扫码区域;所述供货台17设置为向所述包裹投递机器人12分配待投递的包裹;
所述包裹投递机器人12,还设置为从所述供货台17获取待投递的包裹后,承载所述待投递的包裹进入所述扫码区域;
所述扫码设备16,设置为获取待投递的包裹的包裹信息,并发送至所述控制设备。
在本实施例的包裹分拣系统中,供件台可以设置在地面上,也可以设置在地面之上或之下,如3中所示的情况是供件台17设置在地面之上。待分拣的包裹通过机器人运输到供件台区域,由人工或机器取包裹后放置在包裹投递机器人上,可选的,等待获取包裹的包裹投递机器人的个数可能不是一个,等待的包裹投递机器人较多时,可以按照达到供件台的先后顺序排序等待获取包裹。可选的,包裹投递机器人在获取包裹时可以是运行到供件工位后,降速缓慢运行或默认停止预设时间,以便人工或机器将包裹放置在包裹投递机器人上,包裹投递机器人获取了包裹后,再承载包裹进入扫码区域,扫码区域中的扫码设备检测到由包裹投递机器人行驶过来时,会自动对包裹投递机器人上承载的包裹进行扫描,如可以是扫描包裹上的二维码或条形码,获取包裹的包裹信息, 并将获取的包裹信息发送至控制设备。控制设备会根据包裹的信息、每个投递格口的信息以及当前所述行驶区域的路况信息,确定目标投递格口和投递路径并发送至包裹投递机器人,以使包裹投递机器人按照控制设备发送的投递路径在模块式实体平台上的行驶区域运行,并按照确定出的投递路径将包裹通过目标投递格口投递至设置在目标投递格口下方的可移动容器中。
在一实施例中,若扫码设备获取包裹信息失败,即控制设备没有接收到该包裹投递机器人承载的包裹信息,或接收到包裹信息有误,则控制设备还设置为将所述模块式实体平台上的异常包裹格口作为目标投递格口,为该包裹投递机器人规划到异常包裹格口的投递路径。其中,异常包裹格口的个数可以是一个也可以是多个,当异常包裹格口的个数为多个时,为了满足不同位置供货台处的包裹投递机器人快速将异常包裹投入异常包裹格口,可以将多个异常包裹格口分散设置在模块式实体平台的不同位置。
在一实施例中,控制设备,还设置为在包裹投递机器人将包裹投递至目标投递格口中之后,依据最短路径原则和/或最短等待原则,确定所述包裹投递机器人的下一任务地点和下一行驶路径,发送至所述包裹投递机器人;所述包裹投递机器人,还设置为依据接收到的行驶路径,在所述模块式实体平台上的行驶区域运行至下一任务地点执行下一任务。
其中,本申请中的任务地点的类型可以有很多,例如,可以有供件台、充电站、休息区等,且每个类型的任务地点又可以有多个,例如,针对一个包裹分拣系统可以存在多个供件台、充电站和休息区。
具体的,包裹投递机器人在完成一次包裹投递后,控制设备会根据实际情况为该包裹投递机器人确定下一任务,如达到供件台获取下一待投递的包裹、去充电站对包裹投递机器人进行充电或者是到休息区休息等。在确定了下一任务后,控制设备会依据该包裹投递机器人所在位置和下一任务的任务地点,依据最短路径原则和/或最短等待原则,多个任务地点中选择一个,并为该包裹投递机器人规划行驶路径,将下一任务和下一行驶路径发送至包裹投递机器人。包裹投递机器人会以及接收到行驶路径,在模块式实体平台上运行到下一任务地点执行下一个任务。
可选的,本申请的另一种实施方式中,控制设备还设置为:若包裹投递机 器人和/或搬运机器人出现故障,则暂停可移动容器搬运层的至少一个搬运机器人,以便维修人员进入可移动容器搬运层,对出现故障的包裹投递机器人和/或搬运机器人进行修护操作。
具体的,在包裹分拣系统运行的过程中,包裹投递机器人和/或搬运机器人可能会出现故障,在本实施例的包裹分拣系统中,若机器人出现故障,无论是位于包裹分拣层的包裹投递机器人还是位于可移动容器搬运层的搬运机器人出现故障,维修人员都是通过进入下层的包裹分拣层进行维修,这样可以在维修时不影响上层包裹投递机器人的正常工作。只需暂停故障机器人附近区域对应的可移动容器搬运层的至少一个搬运机器人即可,尽可能的降低对包裹分拣系统分拣效率的影响。可选的,可以是控制设备检测到机器人发生故障后,会将故障机器人的相关信息(如故障原因、故障机器人所在位置等)发送至维修人员,维修人员通过可移动容器搬运层进入,达到出现故障的机器人所在位置,对故障机器人进行维修。可选的,若出现故障的机器人为包裹投递机器人,维修人员可以通过控制设备先锁定与故障包裹投递机器人距离最近的投递格口,通过该投递格口探入包裹分拣层,对故障的包裹投递机器人进行维修,若出现故障的机器人为搬运机器人,维修人员可以直接在可移动容器搬运层达到该故障搬运机器人所在位置,对故障的搬运机器人进行维修。
可选的,在本实施例中,为了防止可移动容器搬运层的搬运机器人的运行干扰维修人员对故障机器人的维修操作。本实施例的包裹分拣系统还可以包括通信设备18,所述通信设备为维修人员进入所述可移动容器搬运层时携带的,设置为和搬运机器人进行近场通信的设备;
所述通信设备,设置为向周围环境发射行驶暂停信号;
所述搬运机器人,还设置为若运行过程中接收到通信设备发射的行驶暂停信号,则停止运行,进入等待状态,直至接收不到所述通信设备发射的行驶暂停信号时,恢复行运行状态。
可选的,本实施例中,维修人员携带通信设备进入可移动容器搬运层时,通信设备会自动与维修人员周围的搬运机器人进行通信,通信设备向周围环境发射行驶暂停信号,该信号覆盖范围即为可移动容器搬运层的锁定区域,在锁定区域内的搬运机器人会接收到通信设备发射的行驶暂停信号,停止运行,进 入等待状态,直到该搬运机器人不在锁定区域,即接收不到通信设备发射的行驶暂停信号时,才恢复运行状态。可选的,若等待时间较常,则控制设备可以重新为处于等待状态的搬运机器人重新规划搬运路径。可选的,通信设备发射的行驶暂停信号越强,其覆盖范围对应的锁定区域就越大,该锁定区域的范围即发射的行驶暂停信号的强弱,可以是人为设定的,也可以是控制设备根据故障机器人的位置,自动计算得到后发送至通信设备的。
本实施例提供的包裹分拣系统,增加了扫码设备、供件台和通信设备,包裹投递机器人从供件台获取待投递包裹后承载该包裹进入扫码区域。扫码设备获取包裹投递机器人上的包裹信息发送至控制设备,控制设备会根据包裹的信息、投递格口的信息以及当前所述行驶区域的路况信息,确定目标投递格口和投递路径并发送至包裹投递机器人,以使包裹投递机器人按照控制设备发送的投递路径在模块式实体平台上的行驶区域运行,并按照确定出的投递路径将包裹通过目标投递格口投递至设置在目标投递格口下方的可移动容器中。使得包裹分拣过程更加的智能、提高了分拣的准确性和高效性。当包裹分拣系统中的机器人出现故障时,暂停可移动容器搬运层的至少一个搬运机器人,维修人员携带通信设备进入可移动容器搬运层,通过通信设备与周围搬运机器人之间的通信,为维修人员修理故障机器人提供良好的维修环境,同时尽可能的降低对包裹分拣系统分拣效率的影响。
实施例四
图4是本申请实施例四提供的包裹分拣方法的流程图。
本实施例可适用于对包裹进行分拣的情况,该方法可以由本申请上述实施例提供的包裹分拣系统来执行,具体包括如下步骤:
S401、包裹投递机器人从供货台获取待投递的包裹后,承载包裹进入扫码区域。
其中,所述供货台设置为向所述包裹投递机器人分配待投递的包裹。
S402、扫码设备获取包裹的包裹信息,并发送至控制设备。
其中,所述扫码设备配置于所述模块式实体平台上的扫码区域。
S403、控制设备根据包裹的信息、投递格口的信息以及当前行驶区域的路 况信息,确定目标投递格口和投递路径并发送至包裹投递机器人。
其中,所述控制设备为包裹投递机器人规划的投递路径为环形投递路径。在一实施例中,所述环形投递路径的转弯处为弧形。
在一实施例中,若确定所述扫码设备获取包裹信息失败,则控制设备将所述模块式实体平台上的异常包裹格口作为目标投递格口。
S404、包裹投递机器人依据控制设备发送的投递路径在模块式实体平台上的行驶区域运行,按照投递路径将包裹通过目标投递格口投递至设置在目标投递格口下方的可移动容器中。
其中,所述模块式实体平台可承载包裹投递机器人,位于包裹分拣层;所述模块式实体平台为通过多个可拼接单元拼接搭建而成、用于分拣包裹的物理平台;所述模块式实体平台上包含呈阵列式排布的多个投递格口以及由多个投递格口之间的间隙构成的供包裹投递机器人行驶的行驶区域,一个投递格口对应一个或多个投递路向;所述可移动容器为多个,位于可移动容器搬运层,且部分所述可移动容器位于所述投递格口的下方,设置为接纳来自所述包裹分拣层的包裹。
可选的,所述模块式实体平台的内部为单层设置或者多层设置;且多层设置的模块式实体平台中,每相邻两层之间平行设置,部分所述可移动容器位于所述投递格口的正下方。在一实施例中,多层设置的模块式实体平台中,处于不同层面上的投递格口在水平方向的位置相同,或者处于不同层面上的相同位置处的投递格口之间沿竖直方向的位置正对。
可选的,所述模块式实体平台的行驶区域上设置有标识图标,所述标识图标用于在包裹投递机器人行驶过程中,协助所述包裹投递机器人确定当前行驶路径是否与控制设备发送的投递路径一致。
在一实施例中,所述包目标裹投递机器人按照投递路径将包裹通过所述目标投递格口投递至设置在所述目标投递格口下方的可移动容器中,包括:所述包裹投递机器人在运行至所述目标投递格口以及将包裹通过所述目标投递格口投递至设置在所述目标投递格口下方的可移动容器的过程中,皆保持匀速运行或者实施减速运行的运动状态。
在一实施例中,所述包裹投递机器人采用皮带传送方式、翻板投递方式或者推送方式投递包裹。
S405、控制设备依据最短路径原则和/或最短等待原则,确定包裹投递机器人下一任务地点和下一行驶路径,发送至包裹投递机器人。
S406、包裹投递机器人依据接收到的行驶路径,在模块式实体平台上的行驶区域运行至下一任务地点执行下一任务。
S407、当可移动容器中收集到的包裹满足收集条件时,控制设备锁住与目标可移动容器所在位置绑定的投递格口,并为目标可移动容器分配第一搬运机器人,并根据目标可移动容器的位置为第一搬运机器人规划搬运路径,生成与目标可移动容器对应的搬运指令,将搬运指令发送至第一搬运机器人。
其中,搬运指令包含所述第一搬运机器人的搬运路径。所述收集条件包括:可移动容器已满和/或达到可移动容器收集时间。
在一实施例中,所述控制设备通过以下方式判断所述可移动容器中收集到的包裹是否满足收集条件:
方式一、若所述控制设备接收到传感器发送的可移动容器已满的消息,则判断所述可移动容器中收集到的包裹满足收集条件;和/或,
方式二、若所述控制设备检测到可移动容器内已投递包裹的总体积达到预设体积阈值或达到可移动容器收集时间,则判断所述可移动容器中收集到的包裹满足收集条件。
在一实施例中,所述传感器向控制设备发送的可移动容器已满的消息通过如下方式确定:安装在包裹投递机器人和/或所述模块式实体平台的投递格口上的传感器通过指向所述可移动容器上沿的探测头检测所述可移动容器是否装满包裹;当检测到所述可移动容器装满包裹时,向所述控制设备发送所述可移动容器已满的消息。
S408、第一搬运机器人响应于搬运指令,根据搬运路径行驶到目标可移动容器处,将目标可移动容器搬运至包裹收集工位。
其中,所述可移动容器包括笼车;搬运机器人位于所述笼车的下方,设置为带动所述笼车在所述可移动容器搬运层行驶。
S409、控制设备为空闲可移动容器分配第二搬运机器人,并根据目标可移动容器被搬运前的位置为第二搬运机器人规划搬运路径,生成与空闲可移动容器对应的搬运指令,将搬运指令发送至第二搬运机器人,搬运指令包含第二搬运机器人的搬运路径。
S410、第二搬运机器人响应搬运指令,将空闲可移动容器根据搬运路径搬运到目标可移动容器被搬运前的位置,并解锁与位置绑定的投递格口。
在本实施例中,若包裹投递机器人和/或搬运机器人出现故障,则控制设备暂停可移动容器搬运层的至少一个搬运机器人,以便维修人员进入可移动容器搬运层,对出现故障的包裹投递机器人和/或搬运机器人进行修护操作。可选的,可以在控制设备暂停可移动容器搬运层的至少一个搬运机器人,维修人员进入可移动容器搬运层之后,还包括:
通信设备向周围环境发射行驶暂停信号;
搬运机器人若运行过程中接收到通信设备发射的行驶暂停信号,则停止运行,进入等待状态,直至接收不到所述通信设备发射的行驶暂停信号时,恢复行运行状态;
其中,所述通信设备为维修人员进入所述可移动容器搬运层时携带的,用于和所述搬运机器人进行近场通信的设备。
本实施例中,可以将所述多个可移动容器划分为至少一组,为所述至少一组的可移动容器分配对应的至少一个包裹投递机器人和至少一个搬运机器人。
本申请实施例提供了一种包裹分拣方法,控制设备根据包裹的信息、投递格口的信息以及当前所述行驶区域的路况信息,确定目标投递格口和投递路径并发送至包裹投递机器人;包裹投递机器人再依据控制设备发送的投递路径在模块式实体平台上的行驶区域运行,并按照投递路径将包裹通过目标投递格口投递至设置在目标投递格口下方的可移动容器中,当可移动容器中收集到的包裹满载收集条件时,控制设备锁住目标可移动容器,并为第一搬运机器人规划搬运路径,以控制第一搬运机器人依据控制设备规划的路线将目标可移动容器搬运至包裹收集工位,然后再为第二搬运机器人规划搬运路径,以控制第二搬运机器人依据控制设备规划的路线将空闲可移动容器根据所述搬运路径搬运到所述目标可移动容器被搬运前的位置,并解锁与该位置绑定的投递格口。本申 请实施例的技术方案可以解决分拣系统成本高,灵活性差的问题,实现了搬运机器人和包裹投递机器人在两个不同的平面上运行,路线互相不干扰,整个包裹分拣系统采用并联工作方式,提高了包裹分拣效率。
本申请实施例所提供的包裹分拣方法可被本申请任意实施例所提供的包裹分拣系统执行,具备系统相应的功能模块和效果。
上述实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员应该明白,上述的本申请实施例的模块或操作可以用通用的计算装置来实现,它们可以集中在单个计算装置上,或者分布在多个计算装置所组成的网络上,可选地,他们可以用计算机装置可执行的程序代码来实现,从而可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成一个或多个集成电路模块,或者将它们中的多个模块或操作制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件的结合。
本说明书中的多个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,不同实施例之间的相同或相似的部分互相参见即可。
实施例五
货到人的机器人智能仓储机器人解决方案得到了大范围的推广,机器人通常设有一个承接装置(例如,翻板、传送带)来接收并运输包裹。在到达指定目的地之后,通过承接装置将包裹放置到接收容器中。在接收容器接收包裹的过程中,通常会由于接收包裹的格口较少,而导致移动机器人排队等待释放包裹的情况。此时,格口便成了包裹运送的瓶颈。
参见图5,本申请实施例提供了一种投递格口(也称为传送通道,即传送通道可以理解为一种新形式的投递格口,是对上述实施例中投递格口的进一步限定,也配置为接收投递机器人投递的包裹),包括:接口部1、第一通道3、第二通道4以及切换装置2。
在系统中,包裹投递机器人通常在接收到包裹之后,将包裹运输到目的地。参见图6,图6示出了包裹投递机器人运送包裹的一个示例性视图,包裹投递机器人在模块式实体平台上将包裹运送到投递格口处,通过包裹移动机器人上的 包裹卸载装置将包裹投递到接收包裹的投递格口。相应的,可以在投递格口处设置接口部1,所述接口部1设置为承接包裹投递机器人运输的一个或多个包裹。
通常来讲,一个投递格口仅能够接收一个目的地的包裹,由于投递格口的资源比较宝贵,会导致机器人在投递格口处排队卸载包裹的情况,影响了包裹运送的效率。
为此,本申请实施例提供了一种投递格口,其包括第一通道3,第一通道3与接口部1直接连接,能够接收到接口部1接收到的包裹。
包裹投递机器人在进行包裹投递的过程中,需要自动找到相应的投递格口,并将包裹投递到相应的可移动容器中。为此,第一通道3设置有第一标识3010,第一标识3010可以是一个简单的数字编号,或者是一个二维码或者是具有近场通信功能的标签(例如,近场通信(Near Field Communication,NFC)标签,射频识别(Radio Frequency Identification,RFID)标签),通过第一标识3010,能够在系统中对第一通道3进行唯一的标识。
在进行包裹投递之前,包裹投递机器人预先获取其运输的包裹所要投递的目的地信息,该目的地信息同时又与通道中的特定标识相匹配。例如,第一通道3仅接收与第一标识3010匹配的待运送包裹。
除此之外,投递格口还包括第二通道4,第二通道4与接口部1直接连接,能够接收到接口部1接收到的包裹。
包裹投递机器人在进行包裹投递的过程中,需要自动找到相应的投递格口,并将包裹投递到相应的可移动容器中。为此,第二通道4设置有第二标识4010,第二标识4010可以是一个简单的数字编号,或者是一个二维码或者是具有近场通信功能的标签(例如,NFC标签,RFID标签),通过第二标识4010,能够在系统中对第二通道4进行唯一的标识。
在进行包裹投递之前,包裹投递机器人预先获取其运输的包裹所要投递的目的地信息,该目的地信息同时又与通道中的特定标识相匹配。例如,第二通道4仅接收与第二标识4010匹配的待运送包裹。
由于在一个投递格口设置了两个包裹传输通道(即第一通道3和第二通道4),从而极大的提高了包裹传送的效率。
由于存在多个传输通道,当接口部1接收到包裹时,需要判断该包裹属于第一通道3还是第二通道4。当判断出包裹所属的具体通道后,利用切换装置2将接口部1与第一通道3或第二通道4中的一个进行连接。
具体的,所述切换装置2基于获取到的当前待分拣包裹的标识(Identity,ID),确定将当前待运送包裹运送到第一通道3或第二通道4。本申请实施例提供的一种投递格口,通过设置接口部1、第一通道3、第二通道4、切换装置2,能够在一个投递格口位置处设置多个接收包裹的通道,进而提高了包裹运送的效率。
第一通道3中的包裹最终被第一可移动容器5接收,第四通道4中的包裹最终被第二可移动容器6接收。
第一可移动容器5及第二可移动容器6可以任何能够接收包裹的装置,例如第一可移动容器5可以是中转箱、笼车、传送带等。
上面的实施例中公开了两个通道的情况,当然,除此之外,还可以根据实际的需求设置更多的通道,根据本申请实施例的一种具体实现方式,所述投递格口还包括:
第三通道,所述第三通道具有第三标识,所述第三通道接收与第三标识匹配的包裹。
第三通道设置有第三标识,第三标识可以是一个简单的数字编号,或者是一个二维码或者是具有近场通信功能的标签(例如,NFC标签,RFID标签),通过第三标识,能够在系统中对第三通道进行唯一的标识。在进行包裹投递之前,包裹投递机器人预先获取其运输的包裹所要投递的目的地信息,该目的地信息同时又与通道中的特定标识相匹配。例如,第三通道仅接收与第三标识匹配的包裹。
切换装置可以采用多种设计样式来实现,根据本申请实施例的一种具体实现方式,参见图7,所述切换装置2为传送带,所述传送带在水平方式具有左右两个传输方向,根据实际的包裹目的地,包裹可以被传送到第一通道3,也可以被传送到第二通道4。之后,包裹在重力的作用下,在第一通道3或第二通道4中降落至第一可移动容器5或第二可移动容器6中。即,切换装置2可以通过改变包裹的运送方向将包裹运送至第一通道3或第二通道4。
作为一个例子,第一容器5及第二容器6可以是地面,此时,所述第一/二通道的一端靠近传送带,所述第一/二通道的另一端均与地面接触。包裹最终被传送到地面的不同区域。
根据本申请实施例的一种具体实现方式,所述切换装置2为传送皮带,所述传送皮带具有两个转动方向。
作为另外一种情况,根据本申请实施例的一种具体实现方式,所述第一/二通道与所述传送皮带均在同一平面上,第一通道3在传送皮带的第一侧,第二通道4在皮带的第二侧,这样设置的好处在于,整个通道仅在水平方向上占用一个平面,在垂直方向上高度基本一致,进而节省了系统的空间。
除了采用传输皮带进行切换之外,根据本申请实施例的一种具体实现方式,参见图8,所述切换装置2还可以是托盘,所述托盘具有至少两个倾斜方向。
当切换装置2需要将包裹放置到不同的通道时,可以控制托盘的倾斜方向,在重力的作用下,托盘中的包裹会从托盘中自然脱落,通过将所述第一/二通道分别位于恰好接收脱落包裹的第一预设位置和第二预设位置,便可以接收包裹。即,所述托盘在第三预设位置通过倾斜的方式将包裹放置到第一/二通道内。
除了上述实施方式之外,根据本申请实施例的一种具体实现方式,参见图9,所述切换装置2为转向轮8,具体的,切换装置2可以包括一个或多个转向轮8,多个转向轮8也可以组成一个转向轮矩阵,所述转向轮8具有多个旋转方向。
与之对应的,接口部1与切换装置2位于同一个平面,接口部1可以包含多个转动滚轮7,转动滚轮7具有前后2个滚动方向,这样一来,位于同一水平面的包裹便可以在转动滚轮7的驱动下移动到切换装置2中。
作为一个应用,第一通道3及第二通道4也可以与切换装置处于同一个平面中,所述包裹通过所述转向轮切换旋转方向被运送到所述第一通道3或第二通道4。
第一通道3及第二通道4也可以包括多个水平设置的转动滚轮7。转动滚轮7具有前后2个滚动方向,这样一来,位于同一水平面的包裹便可以在转动滚轮7的驱动下从切换装置2中移动到第一通道3或第二通道4中。
本申请实施例提供的一种投递格口,通过设置接口部1、第一通道3、第二 通道4、切换装置2,能够在一个投递格口位置处设置多个接收包裹的通道,进而提高了包裹运送的效率。
本申请实施例中的包裹可以是任何能够进行传输的物品。包裹可以存储在货架上,也可以在操作台等地方由人工或机器等方式分配给包裹投递机器人。
包裹代表适合于在自动库存、仓库、制造和/或零件处理系统中存储分拣、或传送的任何物品,其可以是任何的材料,可以是有生命或无生命的物体。作为一个例子,包括可以表示存储在仓库中的商品。包裹投递机器人可以检索指定货架,该货架包含与要打包的客户订单相关联的特定物品,以便递送给客户或其他方。
作为另一个例子,包裹可以代表存储在机场的行李设施中的行李。移动机器人可以取回包含要被运输、追踪的行李的货架。这可以包括选择特定的行李用于爆炸物筛选,移动与已经转换了登机口的航班相关联的行李,或者移除属于已经错过了航班的乘客的行李。
作为又一个示例,包裹可以表示制造工具包的组件。更具体地说,这些组件可以表示打算包含在组装产品中的组件,例如用于定制计算机系统的计算机组件。在这样的实施例中,移动机器人可以检索由与客户订单相关的规范所标识的特定组件。
在一实施例中,包裹投递机器人应做广义的理解,或称为移动机器人,包裹也应做广义的理解,或称为待运送物品。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
虽然比如“第一”、“第二”等的序数将用于描述多种组件,但是在这里不限制那些组件。该术语仅用于区分一个组件与另一组件。例如,第一组件可以被称为第二组件,且同样地,第二组件也可以被称为第一组件,而不脱离申请构思的教导。在此使用的术语“和/或”包括一个或多个关联的列出的项目的任何和全部组合。
在这里使用的术语仅用于描述实施例的目的且不意在限制。如在此使用的, 单数形式意在也包括复数形式,除非上下文清楚地指示例外。另外将理解术语“包括”和/或“具有”当在该说明书中使用时指定所述的特征、数目、步骤、操作、组件、元件或其组合的存在,而不排除一个或多个其它特征、数目、步骤、操作、组件、元件或其组的存在或者附加。
包括技术和科学术语的在这里使用的术语具有与本领域技术人员通常理解的术语相同的含义,只要不是不同地限定该术语。应当理解在通常使用的词典中限定的术语具有与相关技术中的术语的含义一致的含义。

Claims (24)

  1. 一种包裹分拣系统,所述包裹分拣系统分层设置,包括:位于上层的包裹分拣层、位于下层的可移动容器搬运层、包裹投递机器人以及控制设备;
    所述包裹分拣层包括可承载所述包裹投递机器人的模块式实体平台;所述模块式实体平台为通过多个可拼接单元拼接搭建而成、用于分拣包裹的物理平台;所述模块式实体平台上包含呈阵列式排布的多个投递格口以及由所述多个投递格口之间的间隙构成的供所述包裹投递机器人行驶的行驶区域,一个所述投递格口对应一个或多个投递路向;
    所述可移动容器搬运层包含多个可移动容器,且第一数量的所述可移动容器位于所述多个投递格口的下方,设置为接纳来自所述包裹分拣层的包裹,所述第一数量小于所述可移动容器搬运层包括的所述可移动容器的总数量;
    所述控制设备,设置为根据所述包裹的信息、所述投递格口的信息以及当前所述行驶区域的路况信息,确定目标投递格口和投递路径并发送至所述包裹投递机器人;
    所述包裹投递机器人,设置为依据所述控制设备发送的投递路径在所述模块式实体平台上的行驶区域运行,按照所述投递路径将包裹通过所述目标投递格口投递至设置在所述目标投递格口下方的可移动容器中。
  2. 根据权利要求1所述的系统,其中,所述多个可拼接单元的形状包括条形、弧形、锯齿形、三角形中的至少一种,由所述多个可拼接单元拼接搭建而成的所述模块式实体平台的形状包括立方体或环形柱体。
  3. 根据权利要求1所述的系统,其中,所述模块式实体平台的内部为单层设置或者多层设置;且多层设置的模块式实体平台中,每相邻两层之间平行设置,第二数量的所述可移动容器位于所述多个投递格口的正下方,所述第二数量小于或等于所述第一数量。
  4. 根据权利要求3所述的系统,其中,多层设置的模块式实体平台中,处于不同层面上的投递格口在水平方向的位置相同,或者处于不同层面上的相同位置处的投递格口之间沿竖直方向的位置正对。
  5. 根据权利要求1所述的系统,其中,所述包裹投递机器人是设置为:当按照所述投递路径将所述包裹通过所述目标投递格口投递至设置在所述目标投 递格口下方的可移动容器中时,所述包裹投递机器人在运行至所述目标投递格口以及将所述包裹通过所述目标投递格口投递至设置在所述目标投递格口下方的可移动容器的过程中,皆保持匀速运行或者实施减速运行的运动状态。
  6. 根据权利要求1所述的系统,还包括:搬运机器人,所述搬运机器人设置为搬运所述可移动容器。
  7. 根据权利要求6所述的系统,其中,所述可移动容器包括笼车;所述搬运机器人位于所述笼车的下方,是设置为带动所述笼车在所述可移动容器搬运层行驶。
  8. 根据权利要求6所述的系统,其中,所述控制设备,还设置为当所述可移动容器中收集到的包裹满足收集条件时,所述可移动容器为目标可移动容器,锁住与所述目标可移动容器所在位置绑定的投递格口,并为所述目标可移动容器分配第一搬运机器人,并根据所述目标可移动容器的位置为所述第一搬运机器人规划搬运路径,生成与所述目标可移动容器对应的搬运指令,将所述搬运指令发送至所述第一搬运机器人,所述搬运指令包含所述第一搬运机器人的搬运路径;
    所述第一搬运机器人,设置为响应于所述搬运指令,根据所述搬运路径行驶到所述目标可移动容器处,将所述目标可移动容器搬运至包裹收集工位。
  9. 根据权利要求8所述的系统,其中,所述收集条件包括下述至少之一:可移动容器已满、达到可移动容器收集时间;
    所述控制设备通过以下至少一种方式判断所述可移动容器中收集到的包裹是否满足收集条件:
    响应于所述控制设备接收到传感器发送的可移动容器已满的消息,判断出所述可移动容器中收集到的包裹满足收集条件;
    响应于所述控制设备检测到可移动容器内已投递包裹的总体积达到预设体积阈值或达到可移动容器收集时间,判断出所述可移动容器中收集到的包裹满足收集条件。
  10. 根据权利要求8所述的系统,其中,所述控制设备还设置为在所述第一搬运机器人将所述目标可移动容器搬运至包裹收集工位之后,为空闲可移动 容器分配第二搬运机器人,并根据所述目标可移动容器被搬运前的位置为所述第二搬运机器人规划搬运路径,生成与所述空闲可移动容器对应的搬运指令,将所述搬运指令发送至所述第二搬运机器人,所述搬运指令包含所述第二搬运机器人的搬运路径;
    所述第二搬运机器人响应所述与所述空闲可移动容器对应的搬运指令,将所述空闲可移动容器根据所述第二搬运机器人的搬运路径搬运到所述目标可移动容器被搬运前的位置,并解锁与所述位置绑定的投递格口。
  11. 根据权利要求1所述的系统,其中,所述模块式实体平台的行驶区域上设置有标识图标,所述标识图标用于在所述包裹投递机器人行驶过程中,协助所述包裹投递机器人确定当前行驶路径是否与所述控制设备发送的投递路径一致。
  12. 根据权利要求1所述的系统,还包括:供货台和扫码设备;
    所述扫码设备配置于所述模块式实体平台上的扫码区域;所述供货台设置为向所述包裹投递机器人分配待投递的包裹;
    所述包裹投递机器人还设置为从所述供货台获取所述待投递的包裹后,承载所述待投递的包裹进入所述扫码区域;
    扫码设备设置为获取所述待投递的包裹的包裹信息,并发送至所述控制设备。
  13. 根据权利要求1所述的系统,其中,所述控制系统还设置为:在所述包裹投递机器人按照所述投递路径将包裹通过所述目标投递格口投递至设置在所述目标投递格口下方的可移动容器中之后,依据最短路径原则和最短等待原则中的至少一项,确定所述包裹投递机器人的下一任务地点和下一行驶路径,并将所述包裹投递机器人的下一任务地点和下一行驶路径发送至所述包裹投递机器人;
    所述包裹投递机器人还设置为依据接收到的下一行驶路径,在所述模块式实体平台上的行驶区域运行至下一任务地点执行下一任务。
  14. 根据权利要求1所述的系统,所述投递格口包括:接口部,设置为承 接所述包裹投递机器人投递的一个或多个包裹;
    第一通道,所述第一通道具有第一标识,所述第一通道设置为接收与所述第一标识匹配的包裹;
    第二通道,所述第二通道具有第二标识,所述第二通道设置为接收与所述第二标识匹配的包裹;
    切换装置,设置为接收所述接口部传输的所述包裹,基于获取到的当前包裹的标识ID,确定将所述当前包裹运送到所述第一通道或所述第二通道。
  15. 根据权利要求14所述的系统,还包括:第三通道,所述第三通道具有第三标识,所述第三通道接收与所述第三标识匹配的包裹。
  16. 根据权利要求14所述的系统,其中:
    所述切换装置为传送带,所述传送带通过改变所述包裹的运送方向将所述包裹运送至所述第一通道或所述第二通道。
  17. 根据权利要求16所述的系统,其中:
    所述第一通道和所述第二通道的一端均靠近所述传送带,所述第一通道的另一端和所述第二通道的另一端均与地面接触。
  18. 根据权利要求14所述的系统,其中:
    所述切换装置为传送皮带,所述传送皮带具有两个转动方向。
  19. 根据权利要求18所述的系统,其中:
    所述第一通道和所述第二通道均与所述传送皮带在同一平面上,所述第一通道在所述传送皮带的第一侧,所述第二通道在所述传送皮带的第二侧。
  20. 根据权利要求14所述的系统,其中:
    所述切换装置为托盘,所述托盘包括至少两个倾斜方向。
  21. 根据权利要求20所述的系统,其中:
    所述第一通道位于第一预设位置,所述第二通道位于第二预设位置,所述托盘在第三预设位置通过倾斜的方式将所述包裹放置到所述第一通道或所述第二通道内。
  22. 根据权利要求14所述的系统,其中:
    所述切换装置为转向轮,所述转向轮包括多个旋转方向。
  23. 根据权利要求22所述的系统,其中:
    所述转向轮与所述第一通道和所述第二通道均位于同一平面,所述包裹通过所述转向轮切换所述旋转方向被运送到所述第一通道或所述第二通道。
  24. 一种包裹分拣方法,包括:
    控制设备根据包裹的信息、投递格口的信息以及当前行驶区域的路况信息,确定目标投递格口和投递路径并发送至包裹投递机器人;
    所述包裹投递机器人依据所述控制设备发送的投递路径在模块式实体平台上的行驶区域运行,按照所述投递路径将包裹通过所述目标投递格口投递至设置在所述目标投递格口下方的可移动容器中;
    其中,所述模块式实体平台可承载包裹投递机器人,位于包裹分拣层;所述模块式实体平台为通过多个可拼接单元拼接搭建而成、用于分拣包裹的物理平台;所述模块式实体平台上包含呈阵列式排布的多个投递格口以及由多个投递格口之间的间隙构成的供所述包裹投递机器人行驶的行驶区域,一个所述投递格口对应一个或多个投递路向;多个所述可移动容器位于可移动容器搬运层,且第一数量的所述可移动容器位于所述多个投递格口的下方,设置为接纳来自所述包裹分拣层的包裹,所述第一数量小于所述可移动容器搬运层包括的所述可移动容器的总数量。
PCT/CN2019/090661 2018-06-12 2019-06-11 包裹分拣系统和方法 WO2019238030A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2019284198A AU2019284198B2 (en) 2018-06-12 2019-06-11 Parcel sorting system and method
JP2020568787A JP6955119B2 (ja) 2018-06-12 2019-06-11 小包仕分けシステムおよび方法
US16/973,860 US11498771B2 (en) 2018-06-12 2019-06-11 Parcel sorting system and method
EP19819361.7A EP3808460A4 (en) 2018-06-12 2019-06-11 PARCEL SORTING SYSTEM AND PROCESS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810600526.1 2018-06-12
CN201810600526.1A CN108584380B (zh) 2018-06-12 2018-06-12 格口复用物品传送通道
CN201910238195.6 2019-03-27
CN201910238195.6A CN109759337A (zh) 2019-03-27 2019-03-27 一种包裹分拣系统和方法

Publications (1)

Publication Number Publication Date
WO2019238030A1 true WO2019238030A1 (zh) 2019-12-19

Family

ID=68842705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090661 WO2019238030A1 (zh) 2018-06-12 2019-06-11 包裹分拣系统和方法

Country Status (5)

Country Link
US (1) US11498771B2 (zh)
EP (1) EP3808460A4 (zh)
JP (1) JP6955119B2 (zh)
AU (1) AU2019284198B2 (zh)
WO (1) WO2019238030A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114602826A (zh) * 2020-12-09 2022-06-10 广东博智林机器人有限公司 分拣系统
WO2022222802A1 (zh) * 2021-04-19 2022-10-27 北京极智嘉科技股份有限公司 货物分拣系统、机器人和货物分拣方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11613424B1 (en) * 2021-09-15 2023-03-28 Shawn Polowniak Waste transfer facility
CN118151640A (zh) * 2022-12-02 2024-06-07 北京京东乾石科技有限公司 一种基于分播设备的机器人调度方法和装置
CN116317185B (zh) * 2023-03-29 2024-08-27 中科微至科技股份有限公司 无线供电包裹分拣系统及其控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048622A1 (en) * 1998-03-25 1999-09-30 Span Tech Corporation Modular link conveyor belt package sortation system
CN105057219A (zh) * 2015-07-22 2015-11-18 杭州亚美利嘉科技有限公司 包裹分捡系统及方法
CN205762371U (zh) * 2016-05-25 2016-12-07 山东新北洋信息技术股份有限公司 分拣单元及智能分拣设备
CN206981222U (zh) * 2017-07-11 2018-02-09 南京轻力舟智能科技有限公司 一种快递分拣系统
CN207188234U (zh) * 2017-06-30 2018-04-06 菜鸟智能物流控股有限公司 一种分拣平台
CN207288091U (zh) * 2017-09-04 2018-05-01 西安外事学院 一种物流分拣装置
CN207413813U (zh) * 2017-06-23 2018-05-29 菜鸟智能物流控股有限公司 一种多层分拣装置
CN108584380A (zh) * 2018-06-12 2018-09-28 北京极智嘉科技有限公司 格口复用物品传送通道
CN208771894U (zh) * 2018-09-04 2019-04-23 杭州海康机器人技术有限公司 一种分拣配送系统
CN109759337A (zh) * 2019-03-27 2019-05-17 北京极智嘉科技有限公司 一种包裹分拣系统和方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0235488B1 (fr) * 1986-09-19 1990-01-24 REDOUTE CATALOGUE Société Anonyme: Installation de manutention robotisée
JP3867967B2 (ja) 2002-06-10 2007-01-17 株式会社椿本チエイン 郵便物仕分装置
US8220710B2 (en) * 2006-06-19 2012-07-17 Kiva Systems, Inc. System and method for positioning a mobile drive unit
US9901210B2 (en) * 2012-01-04 2018-02-27 Globalfoundries Singapore Pte. Ltd. Efficient transfer of materials in manufacturing
US9785911B2 (en) * 2013-07-25 2017-10-10 I AM Robotics, LLC System and method for piece-picking or put-away with a mobile manipulation robot
US9152149B1 (en) * 2014-06-06 2015-10-06 Amazon Technologies, Inc. Fiducial markers with a small set of values
JP6659063B2 (ja) * 2016-01-12 2020-03-04 ユナイテッド ステイツ ポスタル サービス 高処理能力で仕分けする為のシステム及び方法
CN110049933A (zh) * 2016-12-06 2019-07-23 伯克希尔格雷股份有限公司 用于提供车辆中的物体处理的系统和方法
CN206661696U (zh) 2017-02-16 2017-11-24 深圳市三维通机器人系统有限公司 一种双层agv分拣系统
US11312576B2 (en) * 2017-06-01 2022-04-26 Beijing Geekplus Technology Co., Ltd. Goods picking system and method
CN207463644U (zh) 2017-06-22 2018-06-08 菜鸟智能物流控股有限公司 分拣台
CN109107902B (zh) 2017-06-22 2021-05-07 菜鸟智能物流控股有限公司 物品分拣方法及相关装置、分拣台
CN109107907A (zh) 2017-06-23 2019-01-01 菜鸟智能物流控股有限公司 物品分拣方法、装置及系统、多层分拣装置
CN207144155U (zh) 2017-06-28 2018-03-27 杭州海康机器人技术有限公司 一种分拣平台
US10899542B2 (en) * 2017-08-15 2021-01-26 Tompkins International Mobile sorter platforms and method for sorting articles
CN107626600B (zh) * 2017-09-30 2024-03-12 北京极智嘉科技股份有限公司 物品自动转运系统及方法
CN107899958B (zh) * 2017-12-06 2024-03-12 北京极智嘉科技股份有限公司 多平台物品逐级分拣系统及方法
EP3728079A4 (en) * 2017-12-18 2022-01-19 Caja Elastic Dynamic Solutions Ltd. WAREHOUSE MANAGEMENT, ROBOT AND ADAPTER
CN109351643B (zh) 2018-11-26 2020-03-10 北京极智嘉科技有限公司 货物分拣系统及方法
US10894664B1 (en) * 2018-06-29 2021-01-19 Amazon Technologies, Inc. Mobile sortation and delivery of multiple items
US10464106B1 (en) * 2019-02-15 2019-11-05 Coupang Corp. Systems and methods for modular camp sortation and dynamic loading layout generation
US11020770B1 (en) * 2019-12-11 2021-06-01 Amazon Technologies, Inc. Container chutes for sortation systems
US11607711B2 (en) * 2020-03-31 2023-03-21 United Parcel Service Of America, Inc. Multi-tiered parcel sortation system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048622A1 (en) * 1998-03-25 1999-09-30 Span Tech Corporation Modular link conveyor belt package sortation system
CN105057219A (zh) * 2015-07-22 2015-11-18 杭州亚美利嘉科技有限公司 包裹分捡系统及方法
CN205762371U (zh) * 2016-05-25 2016-12-07 山东新北洋信息技术股份有限公司 分拣单元及智能分拣设备
CN207413813U (zh) * 2017-06-23 2018-05-29 菜鸟智能物流控股有限公司 一种多层分拣装置
CN207188234U (zh) * 2017-06-30 2018-04-06 菜鸟智能物流控股有限公司 一种分拣平台
CN206981222U (zh) * 2017-07-11 2018-02-09 南京轻力舟智能科技有限公司 一种快递分拣系统
CN207288091U (zh) * 2017-09-04 2018-05-01 西安外事学院 一种物流分拣装置
CN108584380A (zh) * 2018-06-12 2018-09-28 北京极智嘉科技有限公司 格口复用物品传送通道
CN208771894U (zh) * 2018-09-04 2019-04-23 杭州海康机器人技术有限公司 一种分拣配送系统
CN109759337A (zh) * 2019-03-27 2019-05-17 北京极智嘉科技有限公司 一种包裹分拣系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3808460A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114602826A (zh) * 2020-12-09 2022-06-10 广东博智林机器人有限公司 分拣系统
CN114602826B (zh) * 2020-12-09 2024-02-09 广东博智林机器人有限公司 分拣系统
WO2022222802A1 (zh) * 2021-04-19 2022-10-27 北京极智嘉科技股份有限公司 货物分拣系统、机器人和货物分拣方法

Also Published As

Publication number Publication date
US11498771B2 (en) 2022-11-15
US20210387812A1 (en) 2021-12-16
JP2021521074A (ja) 2021-08-26
EP3808460A1 (en) 2021-04-21
AU2019284198B2 (en) 2022-03-24
EP3808460A4 (en) 2022-06-08
AU2019284198A1 (en) 2021-01-14
JP6955119B2 (ja) 2021-10-27

Similar Documents

Publication Publication Date Title
WO2019238030A1 (zh) 包裹分拣系统和方法
US10059519B2 (en) Storage and order-picking system and method for providing articles in a particular order
US10758943B1 (en) Container-based material handling for automatic parcel sacking system
US20210150455A1 (en) Distribution station for serving unmanned logistics distribution vehicles and distribution method
US20170203921A1 (en) Storage and order-picking system and method for providing articles in a particular order
JP6849864B2 (ja) 荷物仕分けシステム及方法
US11691180B2 (en) Sorting system and method
CN108672308A (zh) 一种货物分拣系统及方法
CN107601062A (zh) 一种基于agv小车的高铁物流智能装卸系统及方法
CN109759337A (zh) 一种包裹分拣系统和方法
CN110721914A (zh) 分拣系统、分拣方法、存储介质及装置
JP2019531887A (ja) 物品自動移送システムおよび方法
US11524845B2 (en) Flat sorter over at least two levels
CN111038892A (zh) 一种物流对象分拨系统及方法
US11254506B1 (en) Multi-story robotic drive package sortation
WO2021012687A1 (zh) 分拣系统及机器人
US11319152B1 (en) Logistic management system for sorting packages
CN112371517B (zh) 物品分拣系统和方法
US20230359222A1 (en) Sorting system and method for controlling a sorting system
JP2020508946A (ja) 自動物流仕分けシステムおよび自動物流仕分け方法
JP7547477B2 (ja) 仕分け制御方法、装置、プラットフォームおよびシステム、ならびに無人仕分けデバイス
CN207226514U (zh) 一种基于agv小车的高铁物流智能装卸系统
CN113183847A (zh) 分布式实时输配系统用自走搬运车及该搬运车用标准货箱
JP7192184B1 (ja) 無人移送車による多層ピッキングシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568787

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019284198

Country of ref document: AU

Date of ref document: 20190611

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019819361

Country of ref document: EP

Effective date: 20210112