WO2019230231A1 - 冷凍装置及び冷凍システム - Google Patents

冷凍装置及び冷凍システム Download PDF

Info

Publication number
WO2019230231A1
WO2019230231A1 PCT/JP2019/016306 JP2019016306W WO2019230231A1 WO 2019230231 A1 WO2019230231 A1 WO 2019230231A1 JP 2019016306 W JP2019016306 W JP 2019016306W WO 2019230231 A1 WO2019230231 A1 WO 2019230231A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
ice slurry
slurry
brine
flake
Prior art date
Application number
PCT/JP2019/016306
Other languages
English (en)
French (fr)
Inventor
美雄 廣兼
Original Assignee
ブランテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブランテック株式会社 filed Critical ブランテック株式会社
Publication of WO2019230231A1 publication Critical patent/WO2019230231A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D13/00Stationary devices, e.g. cold-rooms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D9/00Devices not associated with refrigerating machinery and not covered by groups F25D1/00 - F25D7/00; Combinations of devices covered by two or more of the groups F25D1/00 - F25D7/00

Definitions

  • the present invention relates to a refrigeration apparatus and a refrigeration system for freezing products to be frozen such as seafood such as fresh seafood, various kinds of meat and other foods, and foods that are stored or transported frozen.
  • Patent Document 1 a chain conveyor that continuously suspends carcasses, a chiller tank that is disposed below the chain conveyor and stores ice slurry, and an inside of a poultry carcass upstream of the chiller tank.
  • An apparatus for cooling poultry carcasses comprising a nozzle for filling ice slurry is described.
  • the ice slurry stored in the chiller tank is manufactured in an ice heat storage tank and supplied through piping.
  • the ice slurry in the chiller tank flows out as overflow water from the chiller tank and can be circulated.
  • the inside of the carcass that has been conveyed to the upstream end of the chiller tank by the chain conveyor is filled with ice slurry from the nozzle. As a result, the carcass is cooled from the inside.
  • This carcass is suspended by a chain conveyor, immersed upstream in ice slurry stored in a chiller tank, floated from the ice slurry downstream, and transferred to the next cutting step.
  • This cooling system for poultry carcasses cools the carcass from the inside and outside, eliminates the temperature difference between each part, shortens the cooling time, suppresses the moisture content of the carcass, and deteriorates the meat quality. Can be prevented.
  • the cooling device for a poultry carcass disclosed in Patent Document 1 the ice slurry in the chiller tank is discharged as overflow water and can be circulated, but does not flow in the chiller tank at a high speed. Therefore, even if this cooling device for poultry carcass can cool the carcass to such an extent that it does not deteriorate, food such as seafood and meat can be frozen and stored as a frozen product. It cannot be cooled as fast as possible.
  • An object of the present invention is to provide a refrigeration apparatus and a refrigeration system capable of freezing food to be frozen at high speed.
  • the refrigeration apparatus includes: An annular flow path through which the ice slurry circulates, the flow path having two parallel straight lines and two curved lines connecting adjacent ends of the two straight lines; , Propulsion means for imparting propulsive force to the ice slurry; A guide vane that divides at least one of the curved lines into a plurality of lanes; Is provided.
  • the guide vane extends from the upstream end of the curved line to the upstream side of the linear line beyond the downstream end of the curved line.
  • the propulsion means is disposed at a boundary portion between at least one of the straight lines and the downstream side of the curved line.
  • the flow path includes an ice slurry supply port and an ice slurry discharge port.
  • the propulsion means includes a screw installed in the flow path.
  • the straight line is an area for freezing the article to be frozen.
  • the refrigeration system according to the present invention includes: A refrigeration apparatus according to the present invention; An ice slurry manufacturing apparatus for supplying ice slurry to the flow path, An ice slurry raw material production unit that generates flake ice from a part of the supplied brine and flows out the remainder of the supplied brine; An ice storage tank for storing a mixture of the flake ice produced by the ice slurry raw material production unit and the effluent brine as ice slurry; An ice slurry manufacturing apparatus comprising: Is provided.
  • the ice slurry manufacturing apparatus manufactures an ice slurry having a flake ice concentration of 10% to 60%.
  • 1 is a schematic front view showing an embodiment of a refrigeration system according to the present invention. It is a cross-sectional perspective view which shows the outline of the ice slurry raw material manufacturing part contained in the refrigeration system which concerns on this invention. It is a schematic perspective view which shows one Embodiment of the freezing apparatus which concerns on this invention. It is a schematic plan view which shows one Embodiment of the freezing apparatus which concerns on this invention. 1 is a schematic front view showing an embodiment of a refrigeration apparatus according to the present invention.
  • the refrigeration apparatus and the refrigeration system of the present embodiment are an apparatus and a system for freezing (including cooling) frozen products such as seafood such as fresh seafood, various meats, and other foods with ice slurry.
  • the ice slurry is a sherbet-like mixture in which flake ice (solid) obtained by processing hybrid ice (described later) into flakes (strips) and an aqueous solution (brine) containing a solute are mixed at a predetermined ratio. It has sex.
  • Hybrid ice is ice obtained by coagulating an aqueous solution (brine) containing a solute so that the concentration of the solute is almost uniform.
  • Hybrid ice has at least (a) the temperature at the time of melting is less than 0 ° C., and (b) the change rate of the solute concentration of the aqueous solution (brine) in which the ice melted in the melting process (hereinafter referred to as “change rate of the solute concentration”).
  • change rate of the solute concentration the change rate of the solute concentration
  • the kind of solute contained in the hybrid ice is not particularly limited as long as it is a solute when water is used as a solvent, and can be appropriately selected according to a desired freezing point, use of ice to be used, and the like.
  • the solute include a solid solute, a liquid solute, and the like.
  • Typical examples of the solid solute include salts (inorganic salts, organic salts, and the like).
  • salt (NaCl) among salts is suitable for freezing fresh animals and plants or a part thereof because it does not excessively lower the temperature of the freezing point.
  • salt since salt is contained in seawater, it is also suitable in terms of easy procurement.
  • ethylene glycol etc. are mentioned as a liquid solute.
  • a solute may be contained individually by 1 type and may be contained 2 or more types.
  • Brine is an aqueous solution containing a solute and having a low freezing point, such as an aqueous solution of sodium chloride (brine), an aqueous solution of calcium chloride, an aqueous solution of magnesium chloride, or an aqueous solution of ethylene glycol.
  • the brine used as the raw material for the flake ice is not particularly limited, when salt is used as a solute, it is preferably seawater, water obtained by adding salt to seawater, or diluted water of seawater. This is because seawater, water obtained by adding salt to seawater, or seawater-diluted water is easy to procure, and thus the procurement cost can be reduced.
  • the thermal conductivity of brine (brine) containing salt as a solute is about 0.58 W / m K.
  • the thermal conductivity of flake ice frozen from brine containing salt as a solute is about 2.2 W / m. K. That is, since the thermal conductivity of flake ice (solid) is higher than that of brine (liquid), flake ice (solid) can freeze the item to be frozen earlier.
  • the flake ice and brine contained in the ice slurry both contain the same solute. At this time, it is preferable that the solute concentration of the flake ice and the solute concentration of the brine are close to each other. The reason is as follows.
  • the temperature of the flake ice becomes lower than the saturation freezing point of the brine, so that the brine freezes immediately after mixing the brine having a low solute concentration.
  • the solute concentrations of the mixed flake ice and brine are the same as described above.
  • the brine may be one obtained by melting flake ice or may be prepared separately, but it is preferably one obtained by melting flake ice.
  • FIG. 1 is a partial sectional schematic front view showing an embodiment of a refrigeration system according to the present invention.
  • FIG. 2 is a cross-sectional perspective view showing an outline of an ice slurry raw material manufacturing apparatus included in the refrigeration system according to the present invention.
  • FIG. 3 is a schematic perspective view showing an embodiment of the refrigeration apparatus according to the present invention.
  • FIG. 4A is a schematic plan view showing an embodiment of the refrigeration apparatus according to the present invention.
  • FIG. 4B is a schematic front view showing an embodiment of the refrigeration apparatus according to the present invention.
  • the refrigeration system includes an ice slurry manufacturing apparatus 1 and a refrigeration apparatus 6.
  • the ice slurry manufacturing apparatus 1 includes an ice slurry raw material manufacturing unit (hereinafter referred to as “ice slurry raw material manufacturing apparatus”) 200 and an ice storage tank 500.
  • the ice slurry raw material manufacturing apparatus 200 includes a drum 21, a rotating shaft 22, an injection unit 23, a stripping unit 24, a blade 25, a flake ice discharge port 26, and an upper bearing member 27.
  • the drum 21 includes an inner cylinder 32, an outer cylinder 33 surrounding the inner cylinder 32, and a refrigerant clearance 34 formed between the inner cylinder 32 and the outer cylinder 33. Further, the outer peripheral surface of the drum 21 is covered with a cylindrical heat-resistant protective cover 29.
  • the inner cylinder refrigeration refrigerant is supplied to the refrigerant clearance 34 from the refrigerant supply unit 39 via the refrigerant pipe 42. Thereby, the inner peripheral surface of the inner cylinder 32 is cooled.
  • the rotary shaft 22 is arranged on the central axis of the drum 21 and rotates around the material axis with the central shaft as an axis, using a geared motor 30 installed above the upper bearing member 27 as a power source.
  • the rotational speed of the geared motor 30 is controlled by a rotation control unit 37 described later.
  • the injection unit 23 is composed of a plurality of pipes having injection holes 23 a for injecting brine or ice slurry S (described later) toward the wall surface of the inner cylinder 32, and rotates together with the rotating shaft 22.
  • the brine injected from the injection hole 23a adheres to the wall surface of the inner cylinder 32 cooled by the refrigerant, and quickly freezes to become hybrid ice without giving time for separation into the solute and the solvent.
  • the plurality of pipes constituting the injection unit 23 extend radially from the rotary shaft 22 in the radial direction of the drum 21.
  • Virgin brine sprayed from the spray section 23 is stored in the brine storage tank 40.
  • the brine storage tank 40 and the injection unit 23 are connected by a brine pipe 41.
  • the stripping unit 24 includes a plurality of arms each having a blade 25 that strips hybrid ice generated on the inner peripheral surface of the inner cylinder 32 at the tip.
  • the stripping part 24 extends in the radial direction of the drum 21 and rotates together with the rotating shaft 22.
  • the plurality of arms constituting the stripping portion 24 are mounted so as to be symmetric with respect to the rotation shaft 22.
  • the peeling part 24 of the ice slurry raw material manufacturing apparatus 200 shown in FIG. 2 is comprised by two arms, the number of arms is not specifically limited.
  • the blade 25 attached to the tip of the arm is made of a member having a length substantially equal to the entire length (total height) of the inner cylinder 32, and a plurality of saw teeth are provided at the end facing the inner peripheral surface of the inner cylinder 32. 25a is formed.
  • the hybrid ice generated on the inner peripheral surface of the inner cylinder 32 becomes flake ice by being peeled off by the blade 25.
  • the flake ice falls from the flake ice outlet 26.
  • the flake ice that has fallen from the flake ice discharge port 26 is stored in an ice storage tank 500 (see FIG. 1) disposed immediately below the ice slurry raw material manufacturing apparatus 200.
  • the ice slurry raw material manufacturing apparatus 200 adjusts the amount of flake ice produced by adjusting the amount of brine ejected from the ejection unit 23. That is, the amount of flake ice produced can be increased by increasing the amount of brine ejected from the ejection unit 23. Conversely, the amount of flake ice produced can be reduced by reducing the amount of brine ejected from the ejection unit 23.
  • the upper bearing member 27 has a shape in which the pan is inverted, and seals the upper surface of the drum 21.
  • a bush 38 that supports the rotating shaft 22 is fitted in the central portion of the upper bearing member 27.
  • the rotary shaft 22 is supported only by the upper bearing member 27, and the lower end portion of the rotary shaft 22 is not pivotally supported.
  • the injection control unit 28 adjusts the amount of brine injected from the injection unit 23 when the injection unit 23 injects brine.
  • a specific method for adjusting the amount of brine to be ejected from the ejection unit 23 is not particularly limited.
  • the amount of brine to be injected may be adjusted by adjusting the number of pipes that inject brine and the number of pipes that do not inject brine.
  • the amount of brine to be injected may be adjusted by increasing or decreasing the amount of brine sent to the plurality of pipes for injecting brine.
  • the injection unit 23 is configured to be able to inject any of brine, ice slurry S, or a mixture thereof. Furthermore, the injection unit 23 is not limited to one that jets the brine, the ice slurry S, or a mixture thereof vigorously, but includes one that discharges along the inner peripheral surface of the inner cylinder 32.
  • the ice slurry raw material manufacturing apparatus 200 generates flake ice by freezing a part of the brine, ice slurry S, or a mixture thereof injected from the injection unit 23 on the inner peripheral surface of the inner cylinder 32, and the remaining part Although it cools, it is set not to freeze. That is, the cold heat of the inner cylinder refrigeration refrigerant supplied from the refrigerant supply unit 39 to the ice slurry raw material manufacturing apparatus 200 is necessary for freezing all of the brine, ice slurry S, or a mixture thereof injected from the injection unit 23. It is set smaller than cold.
  • the thermal protection cover 29 has a cylindrical shape and seals the side surface of the drum 21.
  • the refrigerant supply unit 39 supplies the inner cylinder refrigeration refrigerant that freezes the inner peripheral surface of the inner cylinder 32 to the refrigerant clearance 34 via the refrigerant pipe 42. As shown in FIG. 1, the refrigerant supply unit 39 is installed adjacent to the ice storage tank 500.
  • the inner cylinder refrigeration refrigerant supplied to the refrigerant clearance 34 circulates between the refrigerant clearance 34 and the refrigerant supply unit 39 via the refrigerant pipe 42. Thereby, the inner cylinder frozen refrigerant
  • coolant clearance 34 can be maintained in a state with high refrigerating capacity.
  • the ice slurry raw material manufacturing apparatus 200 is installed on an ice storage tank 500.
  • the ice storage tank 500 includes a disk-shaped bottom surface portion 51, a cylindrical wall surface portion 52, and a top surface portion 53 that covers the upper surface of the wall surface portion 52, and stores the ice slurry S.
  • An opening 53 a is provided at an eccentric position of the top surface portion 53.
  • the drum 21 of the ice slurry raw material manufacturing apparatus 200 is installed so that the opening 53a and the flake ice discharge port 26 communicate with each other.
  • the stirring means 54 includes a main body blade 54a, a rotating shaft 54b, and a drive unit 54c.
  • the main body blade 54a is not limited to a propeller blade as illustrated, but may be various types such as a paddle blade, an anchor blade, a turbine blade, and a ribbon blade (not illustrated).
  • the rotation shaft 54 b is arranged in a vertical posture on the central axis of the ice storage tank 500.
  • the main wing 54a is fixed to the lower end of the rotating shaft 54b.
  • the upper end portion of the rotation shaft 54 b protrudes upward from the top surface portion 53.
  • the drive part 54c is attached to the upper end part of the rotating shaft 54b.
  • the drive part 54c is installed on the top
  • the drive unit 54c may rotate the stirring unit 54 at a constant speed, or may rotate it so as to repeat acceleration and deceleration.
  • the ice storage tank 500 is connected to a return pipe 44 that supplies the ice slurry S in the ice storage tank 500 as raw water to the injection unit 23 of the ice slurry raw material manufacturing apparatus 200.
  • a pump 57 is connected in the middle of the return pipe 44.
  • the return pipe 44 has a concentration measurement unit (hereinafter referred to as “first measurement”) that measures the concentration of flake ice (IPF: Ice Packing Factor) in the ice slurry S stored in the ice storage tank 500 on the upstream side of the pump 57. Means ”) 55 is provided.
  • the concentration of the flake ice in the ice slurry S is preferably 10% or more and 60% or less.
  • the ice slurry manufacturing apparatus 1 can maintain the concentration of flake ice at a predetermined value (target) by controlling the amount of flake ice manufactured by the ice slurry raw material manufacturing apparatus 200.
  • the target of the flake ice concentration may be appropriately selected depending on the type of the object to be frozen.
  • the temperature of the ice slurry S can be adjusted by adding flake ice (adding cold heat to the ice slurry S) or conversely freezing the object to be frozen (even if the cold heat is removed from the ice slurry S).
  • the concentration of the flake ice in the ice slurry S is changed by the heat transfer to the ice slurry S. Therefore, by controlling the concentration of the flake ice in the ice slurry S, the amount of heat transferred between the ice slurry S can be controlled.
  • the first concentration measuring means 55 includes a heater and a thermometer in a substantial bypass pipe having an inlet and an outlet in the return pipe 44.
  • the first concentration measuring means 55 closes the inlet and the outlet at the time of measurement, and collects a sample of the ice slurry S to be measured between the inlet and the outlet.
  • the first concentration measuring means 55 may measure a temperature change of the sample by adding a predetermined amount of heat to the sample with a heater.
  • the temperature rising timing from the freezing point temperature is related to the concentration of the flake ice (the amount of heat applied is constant).
  • the concentration of the ice slurry S can be specified from the temperature change of the sample of the ice slurry S.
  • the inlet and outlet of the bypass pipe provided in the first concentration measuring means 55 are opened, and the sampled ice slurry S flows out to the return pipe 44.
  • the first concentration measuring means 55 again measures the concentration of flake ice in the same manner with the inlet and outlet closed again. This sampling and measurement are continuously performed.
  • the downstream end of the return pipe 44 is connected to the brine pipe 41 via the switching valve 43. Therefore, it is switched by the switching valve 43, and the virgin brine stored in the brine storage tank 40 and the recycled ice slurry S returned from the ice storage tank 500 are switched and supplied to the injection unit 23, or Virgin brine and recycled ice slurry S are mixed and supplied.
  • the ice storage tank 500 and the refrigeration apparatus 6 are connected by an ice slurry supply pipe 45 and an ice slurry return pipe 46.
  • the ice slurry supply pipe 45 and the ice slurry return pipe 46 are provided with on-off valves 45a and 46a.
  • the ice slurry supply pipe 45 sends the ice slurry S in the ice storage tank 500 to the refrigeration apparatus 6.
  • the ice slurry return pipe 46 returns the ice slurry S in the refrigeration apparatus 6 to the ice storage tank 500.
  • Each of the ice slurry supply pipe 45 and the ice slurry return pipe 46 is provided with a pump (not shown), and each pump is driven in synchronization with opening and closing of the on-off valves 45a and 46a.
  • the on-off valve 45a of the ice slurry supply pipe 45 and the on-off valve 46a of the ice slurry return pipe 46 are respectively “feed amount of ice slurry S to the refrigerating apparatus 6> return amount of ice slurry S from the refrigerating apparatus 6”. To be controlled.
  • the water surface of the ice slurry S in the refrigeration apparatus 6 may be kept constant by an overflow not shown.
  • the amount of ice slurry S that can be stored in the ice storage tank 500 is sufficiently larger than the amount of ice slurry S necessary to fill the refrigeration apparatus 6, and even if the concentration of flake ice in the ice slurry S of the refrigeration apparatus 6 changes. The concentration of the flake ice in the ice slurry S stored in the ice storage tank 500 hardly changes.
  • the ice storage tank 500 and the refrigeration apparatus 6 are connected by the ice slurry supply pipe 45 and the ice slurry return pipe 46, and the amount of ice slurry S that can be stored in the ice storage tank 500 is necessary to fill the refrigeration apparatus 6. Since the concentration of the ice slurry S is sufficiently larger than the amount of the ice slurry S, even if the concentration of the flake ice in the ice slurry S of the refrigeration apparatus 6 changes, the concentration of the flake ice in the ice slurry S stored in the ice storage tank 500 is Almost no change.
  • the ice slurry S is controlled so that “the amount of ice slurry S fed to the refrigeration apparatus 6> the amount of ice slurry S returned from the refrigeration apparatus 6”.
  • a part of the ice slurry S of the refrigeration apparatus 6 is discarded by an overflow not shown or the like, so that the change in the concentration of the flake ice in the ice slurry S stored in the ice storage tank 500 is even smaller.
  • the concentration of the flake ice in the ice slurry S in the ice storage tank 500 is measured by the first concentration measuring means 55 and is fed back to the operation of the ice slurry raw material manufacturing apparatus 200 to be controlled to a predetermined concentration. ing.
  • the refrigeration apparatus 6 freezes by wrapping the article A (see FIG. 4A and FIG. 4B) with ice slurry S.
  • a propulsion unit hereinafter referred to as “propulsion unit” 80 and a second concentration measurement unit 90.
  • the article A to be frozen is placed on a tray (not shown).
  • the tray is held, for example, in a rack (not shown) that is stacked in a plurality of stages at intervals.
  • the rack has a frame shape having four columns and a beam on which the tray is placed.
  • the article to be frozen A in the tray is wrapped in the ice slurry S.
  • the flow path 60 is annular and filled with the ice slurry S supplied from the ice slurry supply pipe 45, and the ice slurry S can be circulated.
  • the flow path 60 includes a supply port 61 for the ice slurry S, and a first discharge port 62 and a second discharge port 63 for the ice slurry S.
  • An ice slurry supply pipe 45 connected to the ice storage tank 500 is connected to the ice slurry S supply port 61.
  • An ice slurry return pipe 46 connected to the ice storage tank 500 is connected to the first discharge port 62 of the ice slurry S.
  • a nozzle 48 is connected to the second outlet 63 of the ice slurry S.
  • the nozzle 48 is provided with an on-off valve 48a.
  • the flow path 60 is a race having two parallel straight lines 64 and two curved lines 65 connecting the adjacent ends of the two straight lines 64. It has a track shape.
  • the channel 60 includes an oval outer wall portion 66, a partition portion 67 provided on the center line of the outer wall portion 66, and a bottom surface portion 68.
  • the straight line 64 is a freezing area 69 where the article A to be frozen is placed and frozen. Between each end of the partition part 67 and the semicircular part of the outer wall part 66, a space is provided, and a curved line 65 in which the ice slurry S turns is formed. A line connecting each end edge of the partition portion 67 and the outer wall portion 66, that is, a perpendicular line virtually drawn at each end of the partition portion 67 becomes a boundary line between the straight line 64 and the curved line 65.
  • At least one curved line 65 of the flow path 60 may be provided with a pit (deep hole) at the bottom thereof.
  • a pit deep hole
  • the curved line 65 is provided with a substantially semicircular (J-shaped) guide vane 70 that divides the curved line 65 into a plurality of (two in the drawing) lanes.
  • Guide vanes 70 are installed on the bottom surface 68 so that the widths of the lanes are equal.
  • the guide vane 70 may be installed on the bottom surface portion 68 so that the widths of the lanes are not uniform.
  • the upstream end portion 71 of the guide vane 70 is located at the boundary line between the straight line 64 and the curved line 65 of the flow path 60.
  • the downstream end portion 72 of the guide vane 70 extends beyond the downstream end of the curved line 65 to the upstream region of the straight line 64. Both ends of the guide vane 70 are not arranged side by side, but are formed in a J shape as a whole.
  • the downstream end 72 of the guide vane 70 may be located downstream of the boundary line between the curved line 65 and the straight line 64, that is, upstream of the curved line 65.
  • the end 71 on the upstream side of the guide vane 70 may be located on the boundary line between the straight line 64 and the curved line 65 or may be located on the downstream side of the curved line 65. Therefore, the guide vane 70 may be formed in a U shape.
  • the guide vane 70 Since the guide vane 70 is provided in the curved line 65, the ice slurry S can flow in this area without stagnation.
  • the downstream end 72 of the guide vane 70 extends into the upstream side of the straight line 64, the downstream end 72 of the guide vane 70 extends into the curved line 65.
  • the ice slurry S can flow more smoothly and smoothly without stagnation.
  • the flow path 60 includes a propulsion unit 80 that imparts a propulsive force to the ice slurry S in the freezing region 69.
  • the number of propulsion means 80 is not limited to two as shown, and it is sufficient that at least one propulsion means 80 is provided. Needless to say, three or more propulsion means 80 may be provided.
  • the propulsion means 80 includes, for example, a screw 81 installed upstream of the straight line 64 in the flow path 60, a drive shaft 82 that connects the screw 81 at the tip and penetrates the semicircular portion of the outer wall portion 66, and a drive A drive source 83 connected to the base end of the shaft 82 and installed outside the flow path 60 is provided.
  • the second concentration measuring means 90 is configured in the same manner as the first concentration measuring means 55, and measures the concentration of the flake ice in the ice slurry S in the flow path 60.
  • the second concentration measuring means 90 is not limited to one place as shown in FIG. 1, and may be placed at a plurality of places.
  • the ice slurry S is manufactured by the ice slurry raw material manufacturing apparatus 200 provided in the ice slurry manufacturing apparatus 1.
  • the ice slurry raw material manufacturing apparatus 200 manufactures flake ice in a state where the inner cylinder 32 is cooled by the inner cylinder refrigeration refrigerant. Therefore, the inner cylinder refrigeration refrigerant is supplied from the refrigerant supply section 39 to the refrigerant clearance 34 and is cooled so that the temperature of the inner peripheral surface of the inner cylinder 32 is lower by about ⁇ 10 ° C. than the freezing point of the brine to be frozen.
  • the virgin brine stored in the brine storage tank 40, the ice slurry S supplied through the return pipe 44, or a mixture thereof is injected from the injection unit 23 toward the inner cylinder 32. Is done. A portion of the injected brine, ice slurry S, or a mixture thereof adheres to the inner cylinder 32, rapidly freezes without being given time to separate into solute and solvent, and becomes hybrid ice.
  • the hybrid ice generated on the inner peripheral surface of the inner cylinder 32 is peeled off by the peeling unit 24 that rotates in the inner cylinder 32.
  • the hybrid ice peeled off by the peeling unit 24 falls into the ice storage tank 500 from the flake ice discharge port 26 and is stored as flake ice.
  • the portion of the sprayed brine, ice slurry S, or mixture thereof that has not been frozen falls from the flake ice discharge port 26 into the ice storage tank 500 and is stored.
  • the ice slurry raw material manufacturing apparatus 200 freezes a portion of the brine, ice slurry S, or a mixture thereof injected from the injection unit 23 on the inner peripheral surface of the inner cylinder 32 to form flake ice.
  • the concentration of the flake ice in the ice slurry S falling from the ice 26 into the ice storage tank 500 is the concentration of the flake ice in the ice slurry S before injection (that is, the concentration of the flake ice in the ice slurry S stored in the ice storage tank 500). ) Will be higher.
  • the ice slurry S discharged from the ice slurry raw material manufacturing apparatus 200 and the ice slurry S stored in the ice storage tank 500 are mixed by the stirring means 54 and the flakes of the mixed ice slurry S in the ice storage tank 500 are mixed.
  • the ice concentration is kept uniform.
  • the ice slurry raw material manufacturing apparatus 200 can increase the flake ice concentration of the ice slurry S in the ice storage tank 500 by operating it.
  • the flake ice concentration of the ice slurry S is measured by the first concentration measuring means 55 provided in the return pipe 44 that is a passage for supplying the ice slurry S in the ice storage tank 500 to the injection unit 23 of the ice slurry raw material manufacturing apparatus 200. Is done.
  • the ice slurry raw material manufacturing apparatus 200 can increase the amount of the ice slurry S in the ice storage tank 500 by operating it.
  • the amount of ice slurry S in the ice storage tank 500 can be increased by supplying virgin brine stored in the brine storage tank 40.
  • the amount of ice slurry S in the ice storage tank 500 is measured by a storage amount sensor 56 provided in the ice storage tank 500.
  • the ice slurry raw material manufacturing apparatus 200 is controlled to operate and stop depending on the concentration of the flake ice in the ice slurry S in the ice storage tank 500 and the amount of the ice slurry S. That is, the ice slurry raw material manufacturing apparatus 200 operates when the concentration of the flake ice in the ice slurry S in the ice storage tank 500 is lower than the target concentration, and the concentration of the flake ice in the ice slurry S in the ice storage tank 500 is lower than the target concentration. If it is high, stop temporarily.
  • the ice slurry raw material manufacturing apparatus 200 operates when the amount of the ice slurry S in the ice storage tank 500 is lower than the target value, and temporarily when the amount of the ice slurry S in the ice storage tank 500 is higher than the target value. Stop.
  • the ice slurry raw material manufacturing apparatus 200 increases the supply amount of the inner cylinder refrigeration refrigerant from the refrigerant supply unit 39 to the refrigerant clearance 34 as well as the operation or temporary control, and the temperature of the inner peripheral surface of the inner cylinder 32.
  • the amount of hybrid ice generated on the inner peripheral surface of the inner cylinder 32 is increased by lowering or the supply amount of the inner cylinder refrigeration refrigerant from the refrigerant supply unit 39 to the refrigerant clearance 34 is decreased. Control such as reducing the amount of hybrid ice generated on the inner peripheral surface of the inner cylinder 32 by raising the temperature of the inner peripheral surface of the inner cylinder 32 may be performed.
  • the ice slurry S stored in the ice storage tank 500 has (a) a temperature when melting is less than 0 ° C., and (b) a rate of change in the solute concentration of brine in which the ice has melted during the melting process is within 30%. This condition is met.
  • the ice slurry S can take a large amount of latent heat from the surroundings when melting, but the temperature does not rise while the melting ice is not completely completed and the hybrid ice remains.
  • the concentration of the flake ice in the ice slurry S in the ice storage tank 500 was measured by the first concentration measuring means 55, and the concentration of the flake ice was adjusted to a predetermined concentration (a predetermined concentration of 10% or more and 60% or less).
  • the ice slurry S is sent from the ice slurry supply pipe 45 into the flow path 60 of the refrigeration apparatus 6.
  • the refrigeration apparatus 6 performs the freezing operation of the article to be frozen A with the ice slurry S sent.
  • the ice slurry S in the ice storage tank 500 is supplied to the refrigeration apparatus 6 through the ice slurry supply pipe 45 and the ice slurry return pipe 46 so as to ensure the cold heat necessary for the freezing operation of the article A to be frozen.
  • the amount of ice slurry S stored in the ice storage tank 500 is measured by the storage amount sensor 56.
  • virgin brine is supplied from the brine storage tank 40 to the ice slurry raw material manufacturing apparatus 200, and the ice slurry S is manufactured. Is done.
  • the refrigeration apparatus 6 does not perform a refrigeration operation, for example, when the refrigeration apparatus 6 is at rest, such as at night, if the flake ice concentration of the ice slurry S in the ice storage tank 500 is lower than the target concentration, the ice slurry raw material
  • the manufacturing apparatus 200 manufactures the ice slurry raw material, and the flake ice concentration of the ice slurry S in the ice storage tank 500 is increased.
  • the on / off valve 45a of the ice slurry supply rod 45 and the on / off valve 46a of the ice slurry return rod 46 may be closed, but the flakes of the ice slurry S of the entire system including the ice storage tank 500 and the refrigeration apparatus 6 are combined.
  • it is preferably in an open state.
  • the amount of the ice slurry S stored in the ice storage tank 500 is measured by the storage amount sensor 56, and the ice slurry S until the amount of the ice slurry S in the ice storage tank 500 reaches a predetermined amount. S is manufactured.
  • the product A to be frozen is disposed in a freezing region 69 provided in a straight line 64 of the flow path 60 through which the ice slurry S circulates.
  • the article A to be frozen is placed on a tray (not shown), and the tray is held in a rack (not shown) with an interval.
  • the plurality of racks are collectively arranged so as to be in series in the straight line 64 of the flow path 60.
  • the product A to be frozen in the rack is immersed in the circulating ice slurry S and is quickly frozen.
  • the ice slurry S filled in the flow path 60 is circulated in the flow path 60 by being given a propulsive force by the propulsion means 80.
  • the ice slurry S flows smoothly in the region along the outer wall 66 on the upstream side of the straight line 64 continuous to the curved line 65 by providing the guide vane 70 on the curved line 65 of the water channel,
  • the inside of the annular flow path 60 can be circulated with little resistance.
  • the solute When the solute is separated from the ice slurry S flowing through the flow path 60, the solute is collected in a pit provided at the bottom of at least one curved line 65. Therefore, the solute separated from the ice slurry S does not affect the freezing operation.
  • the ice slurry S Since the ice slurry S has fluidity, it can come into contact with the article to be frozen A more uniformly than the state of hard flake ice. Since the temperature of the ice slurry S is maintained at the melting point while the hybrid ice remains (for example, in the case of the saturated salt ice slurry S, it is maintained at ⁇ 21.3 ° C.) Thus, the article A to be frozen can be kept frozen. Moreover, even if the to-be-frozen goods A are foodstuffs, such as a fish, since the ice slurry S is harmless, there is no food safety problem.
  • the ice slurry S circulating in the flow path 60 freezes the product to be frozen A placed in the freezing area 69 (that is, gives cold heat), so that the concentration of the flake ice in the ice slurry S becomes the ice storage tank 500.
  • the concentration may decrease from within.
  • a second concentration measuring means 90 may be provided in the flow channel 60.
  • the concentration of the flake ice in the ice slurry S in the flow path 60 measured by the second concentration measuring means 90 is based on the concentration of the flake ice in the ice slurry S in the ice storage tank 500 measured by the first concentration measuring means 55. If it is lower than the predetermined value, it is fed back to the operation of the ice slurry raw material manufacturing apparatus 200, whereby the concentration of the flake ice in the ice slurry S in the flow path 60 can be controlled more precisely.
  • the ice slurry S thus adjusted in the concentration of flake ice contains a lot of fine voids (ie, air portions) in the state of being produced as flake ice, the voids are exhausted in the hybrid ice. And can be prepared in the form of snow or in the form of a sherbet. Since the hybrid ice prepared in the shape of snow or sherbet has flexibility as a whole, it does not damage the frozen product A, but rather functions as a sponge as a cushioning material to protect the frozen product A Fulfill.
  • the ice slurry S can freeze the to-be-frozen goods A more efficiently.
  • the ratio of the volume of the void portion (air portion) to the total volume of the ice slurry S is defined as “void ratio”
  • the lower the void ratio that is, the higher the bulk density
  • the cold storage effect Becomes higher. Therefore, when the ice slurry S is used for the purpose of refrigeration or freezing of fresh food products, the ice slurry S having a high porosity (that is, a low bulk density) is generated.
  • the ice slurry S having a low porosity ie, a high bulk density
  • the thermal conductivity of brine (brine) containing salt as a solute is about 0.58 W / m K, but the thermal conductivity of flake ice frozen from brine containing salt as a solute is about 2.2 W / m K. It is. That is, since the thermal conductivity of flake ice (solid) is higher than that of brine (liquid), flake ice (solid) can freeze the item A to be frozen earlier.
  • the flake ice (solid) remains as it is, the area in contact with the article A to be frozen will be small. Therefore, the flake ice and brine are mixed to form an ice slurry S, thereby providing fluidity. As a result, flake ice (solid) can be uniformly contacted with the article to be frozen A, and the article to be frozen A can be quickly frozen.
  • the bulk density that can be defined as the ice slurry S is 0.48 g / cm 3 to 0.78 g / cm 3 .
  • ice slurry S When using the ice slurry S for the purpose of fresh or chilled foodstuffs, it is preferable that a bulk density of 0.48g / cm 3 ⁇ 0.54g / cm 3. When ice slurry S is used for the purpose of transporting cold energy, ice with saturated saline is further mechanically compressed to a bulk density of 0.75 g / cm 3 to 0.95 g / cm 3 . It is good.
  • the heat required when ice as a solid changes (melts) into water as a liquid is called “latent heat”. Since this latent heat is not accompanied by a temperature change, the hybrid ice can continue to maintain a stable state at a temperature below the freezing point (0 ° C.) of fresh water at the time of melting. For this reason, the state which stored the cold energy can be maintained.
  • the freezing ability of ice frozen from an aqueous solution in which a solute such as salt is dissolved should be higher than ice frozen from fresh water.
  • the aqueous solution for example, salt water
  • the aqueous solution is hardly frozen as it is, and fresh water that does not contain a solute (salt etc.). The part of will freeze first.
  • the substance produced is a mixture of ice frozen in fresh water not containing a solute (salt etc.) and a solute (for example, crystals such as salt). End up. Moreover, even if ice with a reduced freezing point (ice frozen with salt water or the like) is produced, the amount is very small and not practical.
  • the ice slurry S is [ice] having a freezing point lower than the freezing point (0 ° C.) of fresh water, it can be manufactured by a flake ice manufacturing system.
  • the ice slurry S satisfies the condition (a) that the temperature at the completion of melting is less than 0 ° C. as described above. Since the ice slurry S is an aqueous solution (salt water or the like) containing a solute (salt etc.), the freezing point of the ice slurry S is lower than the freezing point of fresh water in which the solute is not dissolved. For this reason, the ice slurry S satisfies the condition that the temperature at the completion of melting is less than 0 ° C.
  • the “temperature at the time of completion of melting” means that the ice slurry S is melted by placing the ice slurry S in an environment above the melting point (for example, room temperature and atmospheric pressure), and all the ice slurries S are melted.
  • the temperature at the completion of melting is not too high, for example, ⁇ 21 ° C. or higher ( ⁇ 20 ° C. or higher, ⁇ 19 ° C. or higher, ⁇ 18 ° C.
  • ° C or higher -17 ° C or higher, -16 ° C or higher, -15 ° C or higher, -14 ° C or higher, -13 ° C or higher, -12 ° C or higher, -11 ° C or higher, -10 ° C or higher, -9 ° C or higher, -8 Or higher, -7 ° C or higher, -6 ° C or higher, -5 ° C or higher, -4 ° C or higher, -3 ° C or higher, -2 ° C or higher, -1 ° C or higher, -0.5 ° C or higher, etc. preferable.
  • the ice slurry S satisfies the condition (b) that the rate of change in the solute concentration of the aqueous solution in which the ice melted during the melting process is within 30% as described above.
  • the ice slurry S has a feature that the rate of change of the solute concentration of the aqueous solution in which the ice has melted in the melting process (hereinafter, sometimes referred to as “rate of change of the solute concentration” in this specification) is within 30%. . Even when using a conventional technique, ice with a slightly reduced freezing point may be produced, but most of it is only a mixture of water-free ice and solute crystals. Therefore, the refrigerating capacity is not sufficient.
  • the rate at which the solute elutes with melting becomes unstable when the ice is placed under melting conditions. . Specifically, the closer to the start of melting, the more solute elutes. As the melting progresses, the amount of solute eluting decreases. That is, the closer to the completion of melting, the smaller the amount of solute elution.
  • hybrid ice is ice obtained by freezing an aqueous solution containing a solute, it has a feature that there is little change in the elution rate of the solute during the melting process.
  • the change rate of the solute concentration of the aqueous solution in which the hybrid ice is melted in the process of melting the hybrid ice is 30%.
  • the rate of change in the solute concentration of the aqueous solution in which the hybrid ice melted during the melting process means the ratio of the concentration of the aqueous solution at the completion of melting to the solute concentration in the aqueous solution melted at an arbitrary timing in the melting process.
  • the “solute concentration” means the ratio of the mass of the solute dissolved in the aqueous solution.
  • the change rate of the solute concentration in the hybrid ice is not particularly limited as long as it is within 30%, but the smaller the change rate, the higher the purity of the hybrid ice, that is, the higher the freezing ability.
  • Hybrid ice is suitable for use as a refrigerant for freezing and freezing the item A to be frozen because of its excellent freezing ability.
  • coolant which freezes the to-be-frozen goods A the organic solvent used as antifreeze liquids, such as ethanol, is mentioned besides hybrid ice.
  • hybrid ice has higher thermal conductivity and higher specific heat than these antifreezes. For this reason, hybrid ice is useful in that it has a higher refrigerating capacity than other refrigerants of less than 0 ° C. such as antifreeze.
  • the ice slurry raw material manufacturing apparatus 200 in the embodiment described above includes the drum 21 having the inner cylinder 32.
  • the ice slurry raw material manufacturing apparatus 200 may be configured by a plate having a flat surface on which the ice slurry S returned from the brine or the return pipe 44 is jetted. A refrigerant clearance is provided on the inner surface of the plate.
  • the refrigeration system may connect the second ice slurry return pipe 47 for discharging the ice slurry S in the flow path 60 to the ice slurry raw material manufacturing apparatus 200, as indicated by the phantom line in FIG.
  • the downstream end of the second ice slurry return pipe 47 may be connected to a switching valve 43 between the brine pipe 41 and the return pipe 44.
  • the switching valve 43 in this case includes three input ports and one output port.
  • upstream ends of the return pipe 44, the ice slurry return pipe 46, and the second ice slurry return pipe 47 may be provided with a filter (not shown) for removing flake ice in the ice slurry S. .
  • the refrigeration system includes the first concentration measuring unit 55 in the bypass pipe provided in the return pipe 44 and the second concentration measuring unit 90 in the flow path 60.
  • the density measuring means 55 and 90 may be provided with only one or may not be provided.
  • the first concentration measuring means 55 may be provided in the ice storage tank 500.
  • the concentration measuring means 55 in this case includes a thermometer, a densitometer, and a density meter, and calculates the concentration of the flake ice from electrical signals of temperature, concentration, and density measured from these meters.
  • the first concentration measuring means 55 may be fixed to the inner surfaces of the two wall surface portions 52 on the bottom surface portion 51 side and the top surface portion 53 side. Even if the concentration of the flake ice is uneven in the ice storage tank 500, the average concentration of the flake ice can be detected by the respective first concentration measuring means 55.
  • the ice slurry raw material manufacturing apparatus 200 is activated or stopped depending on the concentration of the flake ice in the ice slurry S in the ice storage tank 500 or the amount of the ice slurry S.
  • the concentration of flake ice may be adjusted by changing the temperature of the inner peripheral surface of the inner cylinder of the ice slurry raw material manufacturing apparatus 200.
  • the concentration of flake ice is high, the supply amount of the inner cylinder refrigeration refrigerant from the refrigerant supply unit 39 to the refrigerant clearance 34 is decreased, and the temperature of the inner peripheral surface of the inner cylinder 32 is increased.
  • the virgin brine supplied from the brine storage tank 40 to the injection unit 23 is reduced or heated.
  • the amount of brine attached to the inner peripheral surface of the inner cylinder 32 decreases, and the brine falling into the ice storage tank 500 increases.
  • the hybrid ice adhering to the inner peripheral surface of the inner cylinder 32 decreases, the flake ice generated by peeling off the hybrid ice decreases. Due to the reduced flake ice and increased brine, the ice slurry S has a reduced flake ice concentration.
  • the concentration of flake ice is low, the supply amount of the inner cylinder refrigeration refrigerant from the refrigerant supply unit 39 to the refrigerant clearance 34 is increased, and the temperature of the inner peripheral surface of the inner cylinder 32 is lowered.
  • the amount of virgin brine supplied from the brine storage tank 40 to the injection unit 23 is increased or lowered.
  • the amount of brine attached to the inner peripheral surface of the inner cylinder 32 increases, and the brine falling into the ice storage tank 500 decreases.
  • the hybrid ice adhering to the inner peripheral surface of the inner cylinder 32 increases, flake ice generated by peeling off the hybrid ice increases. Due to the increased flake ice and the decreased brine, the ice slurry S has an increased flake ice concentration.
  • the flow path 60 is provided with the partition portion 67 on the center line of the outer wall portion 66, and the forward path side flow path 60 and the return path side flow path 60 are adjacent to each other.
  • the flow path 60 may be provided with an oval (track shape) inner wall instead of the partition portion 67 so that the straight line 64 on the forward path side and the straight line 64 on the return path side are separated from each other.
  • the arc 60 of the curved line 65 may be large, and the curved line 65 may be provided with a straight line portion.
  • the freezing region 69 in the above-described embodiment is provided in the forward-side flow path 60 and the return-path side flow path 60.
  • the freezing area 69 may be provided only in the forward-side flow path 60 or the return-path side flow path 60.
  • the propulsion unit 80 and the guide vane 70 may be provided only on the upstream side of the freezing region 69.
  • the propulsion means 80 is disposed at the boundary between the upstream side of the straight line 64 and the downstream side of the curved line 65.
  • the propulsion means 80 may be provided at any position of the flow path 60.
  • the propulsion means 80 includes a propeller installed in the flow path 60.
  • the propulsion means 80 may be provided with a throttle tube that reduces the cross section perpendicular to the flow direction of the flow path 60, thereby increasing the flow velocity.
  • a steep bottom surface may be provided instead of the gentle slope bottom surface.
  • the refrigeration apparatus 6 may not necessarily include the propulsion unit 80.
  • the refrigeration apparatus 6 in the above-described embodiment includes the supply port 61 of the ice slurry S and the first and second discharge ports 63 in the flow path 60.
  • the ice slurry S may be supplied from the upper opening surface of the flow path 60 or may be discharged by overflow.
  • the to-be-frozen product A in the above-described embodiment is a food or the like, it may be a medicine or the like.
  • the refrigeration apparatus 6 to which the present invention is applied only needs to have the following configuration, and can take various embodiments. That is, the refrigeration apparatus 6 to which the present invention is applied is An annular flow path 60 through which the ice slurry S circulates, two parallel straight lines 64 and two curved lines 65 connecting the adjacent ends of the two straight lines 64. A flow path 60 having Propulsion means 80 for imparting propulsive force to the ice slurry S; A guide vane 70 that divides at least one of the curved lines 65 into a plurality of lanes; Is provided.
  • the refrigeration apparatus 6 can be frozen by the ice slurry S that circulates the article to be frozen A placed in the straight line 64 of the flow path 60. Since the ice slurry S is given a propulsive force by the propulsion means 80, the frozen object A on the downstream side is frozen into the ice slurry S even if a plurality of the frozen objects A are placed in the flow path 60. Even if the flow path 60 includes the curved line 65, the ice slurry S is circulated by the guide vanes 70 so that it does not stagnate, and the article A to be frozen can be evenly frozen into the ice slurry S.
  • the guide vane 70 extends from the upstream end of the curved line 65 to the upstream side of the straight line 64 beyond the downstream end of the curved line 64.
  • the propulsion unit 80 is disposed at a boundary portion between at least one of the straight line 64 and the downstream side of the curved line 65.
  • the propulsion means 80 can be connected to the straight line 64 even if the item to be frozen A becomes an obstacle to the flow of the ice slurry S.
  • a propulsive force can be given to the ice slurry S inside so that the flow of the ice slurry S does not stagnate.
  • the flow path 60 includes an ice slurry S supply port 61, an ice slurry S discharge port 62, Is provided. Thereby, the refrigeration apparatus 6 can supply the ice slurry S from the supply port 61 into the flow path 60 and discharge the ice slurry S from the discharge port 62 of the ice slurry S.
  • the propulsion means 80 includes a screw 81 installed in the flow path 60.
  • the refrigeration apparatus can give a propulsive force to the ice slurry S by the screw 81.
  • the straight line 64 is an area for freezing the article A to be frozen.
  • the refrigeration apparatus 6 can arrange the some to-be-frozen goods A in series, and can freeze the ice slurry S to the to-be-frozen goods A equally.
  • a refrigeration apparatus 6 to which the present invention is applied A refrigeration apparatus 6 to which the present invention is applied;
  • An ice slurry manufacturing apparatus 1 for supplying ice slurry S to the flow path 60, An ice slurry raw material manufacturing unit (ice slurry raw material manufacturing apparatus) 200 that generates flake ice from a part of the supplied brine and flows out the remainder of the supplied brine;
  • An ice storage tank 500 for storing a mixture of the flake ice produced by the ice slurry raw material production unit (ice slurry raw material production apparatus) 200 and the brine that has flowed out as ice slurry S;
  • An ice slurry manufacturing apparatus 1 comprising: Is provided.
  • the refrigeration system can freeze the to-be-frozen product A well with the ice slurry S so that the ice slurry S manufactured by the ice slurry manufacturing apparatus 1 flows in the flow path 60.
  • the ice slurry production apparatus 1 produces an ice slurry S having a flake ice concentration of 10% or more and 60% or less. Thereby, when the to-be-frozen product A frozen by the freezing apparatus 6 is foods such as seafood and meat, this food can be accurately frozen by the ice slurry S.
  • Ice slurry manufacturing apparatus 200: Ice slurry raw material manufacturing apparatus (ice slurry raw material manufacturing section), 21: Drum, 22: Rotating shaft, 23: Injection section, 23a: Injection hole, 24: Stripping section, 25: Blade , 26: flake ice discharge port, 27: upper bearing member, 28: injection control section, 29: heat protection cover, 30: geared motor, 31: rotary joint, 32: inner cylinder, 33: outer cylinder, 34: refrigerant clearance 38: bush, 39: refrigerant supply unit, 40: brine storage tank, 41: brine pipe, 42: refrigerant pipe, 44: return pipe, 45: ice slurry supply pipe, 46: ice slurry return pipe, 47: second Ice slurry return pipe, 48: nozzle, 500: ice storage tank, 54: stirring means (stirring section), 55: concentration measuring section (first concentration measuring means), 6: refrigeration apparatus, 60: 61, supply port, 62: discharge port (first discharge port), 63: second discharge port, 64:

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)

Abstract

食品等の被冷凍品を高速に冷却することができるようにした冷凍装置及び冷凍システムを提供する。 本発明の冷凍装置6は、流路60と、ガイドベーン70と、推進手段80とを備える。流路60は、氷スラリーSが循環し、2本の並列した直線ライン64と、当該2本の直線ライン64の隣り合った各端部同士を接続する2本の曲線ライン65とを有する。ガイドベーン70は、少なくともいずれか一方の曲線ライン65を複数のレーンに分割する。ガイドベーン70は、曲線ライン65の上流端から曲線ライン65の下流端を超えてさらに下流側の直線ライン64まで延びている。

Description

冷凍装置及び冷凍システム
 本発明は、生鮮海産物等の魚介類や各種の精肉その他の食品等、さらに冷凍して保管乃至輸送される食品等といった被冷凍品を冷凍するための冷凍装置及び冷凍システムに関する。
 食品を加工する工程において、食品を冷却する方法や装置が種々提供されている。例えば、特許文献1には、屠体を連続的に吊り下げるチェーンコンベアと、このチェーンコンベアの下方に配置され、氷スラリーを貯留したチラータンクと、このチラータンクの上流側で食鳥屠体の内部に氷スラリーを充填するノズルとを備えた食鳥屠体の冷却装置が記載されている。
 チラータンクに貯留される氷スラリーは、氷蓄熱槽で製造され、配管を通って供給される。チラータンク内の氷スラリーは、チラータンクからオーバーフロー水として流出され、さらに循環使用が可能とされている。チェーンコンベアによってチラータンクの上流端まで搬送されてきた屠体の内部には、ノズルから氷スラリーが充填される。これによって屠体は、内部から冷却される。
 この屠体は、チェーンコンベアによって吊り下げられ、チラータンクに貯留された氷スラリー内に上流側で浸漬され、下流側で氷スラリー内から浮上して、次の切断工程に移送される。この食鳥屠体の冷却装置は、屠体を内側と外側とから冷却し、各部位の温度差をなくすことにより、冷却時間を短縮し、屠体の含水量を抑え、かつ、肉質の劣化を防止することができる。
特開2009-034023号公報
 特許文献1に開示された食鳥屠体の冷却装置は、チラータンク内の氷スラリーがオーバーフロー水として排出され、さらに循環使用可能とされるものの、高速でチラータンク内を流動しない。したがって、この食鳥屠体の冷却装置は、屠体を劣化させない程度に冷却することができるとしても、魚介類や精肉のような食品等を被冷凍品として冷凍したり保管したりすることが可能なように高速に冷却することができない。
 本発明は、食品等の被冷凍品を高速に冷凍することができるようにした冷凍装置及び冷凍システムを提供することを目的とする。
 本発明に係る冷凍装置は、
 氷スラリーが循環する環状の流路であって、2本の並列した直線ラインと、当該2本の直線ラインの隣り合った各端部同士を接続する2本の曲線ラインとを有する流路と、
 氷スラリーに推進力を与える推進手段と、
 少なくともいずれか一方の前記曲線ラインを複数のレーンに分割するガイドベーンと、
を備える。
 本発明に係る冷凍装置において、
 前記ガイドベーンは、前記曲線ラインの上流端から前記曲線ラインの下流端を超えてさらに前記直線ラインの上流側まで延びている。
 本発明に係る冷凍装置において、
 前記推進手段は、少なくともいずれか一方の前記直線ラインの上流側と前記曲線ラインの下流側との境界部に配備される。
 本発明に係る冷凍装置において、
 前記流路は、氷スラリーの供給口と、氷スラリーの排出口と、を備える。
 本発明に係る冷凍装置において、
 前記推進手段は、前記流路内に設置されたスクリューを備える。
 本発明に係る冷凍装置において、
 前記直線ラインは、被冷凍品を冷凍する領域とされている。
 本発明に係る冷凍システムは、
 本発明に係る冷凍装置と、
 前記流路に氷スラリーを供給する氷スラリー製造装置であって、
  供給されたブラインの一部からフレークアイスを生成し、供給されたブラインの残部を流出する氷スラリー原料製造部と、
  前記氷スラリー原料製造部によって生成されたフレークアイスと流出されたブラインとの混合物を氷スラリーとして貯留する貯氷タンクと、
 を備える、氷スラリー製造装置と、
を備える。
 本発明に係る冷凍システムにおいて、
 前記氷スラリー製造装置は、フレークアイスの濃度を10%以上かつ60%以下の氷スラリーを製造する。
 本発明によれば、食品等の被冷凍品を高速に冷却することができるようにした冷凍装置及び冷凍システムを提供することができる。
本発明に係る冷凍システムの一実施形態を示す概略正面図である。 本発明に係る冷凍システムに含まれる氷スラリー原料製造部の概略を示す断面斜視図である。 本発明に係る冷凍装置の一実施形態を示す概略斜視図である。 本発明に係る冷凍装置の一実施形態を示す概略平面図である。 本発明に係る冷凍装置の一実施形態を示す概略正面面である。
 本実施形態の冷凍装置及び冷凍システムは、生鮮海産物等の魚介類や各種の精肉その他の食品等の被冷凍品を氷スラリーによって冷凍(冷却を含む)するための装置及びシステムである。
 氷スラリーは、ハイブリッドアイス(後述する)をフレーク(剥片)状に加工したフレークアイス(固体)と、溶質を含有する水溶液(ブライン)とを所定の比率で混合させたシャーベット状の混合物で、流動性を有している。氷スラリーにフレークアイスを加えることにより、氷スラリーに含まれるフレークアイスとブラインとの構成比率を容易に調整することができる。
 ハイブリッドアイスは、溶質を含有する水溶液(ブライン)を、溶質の濃度がほぼ均一となるように凝固させた氷である。ハイブリッドアイスは、少なくとも(a)融解完了時の温度が0℃未満、かつ、(b)融解過程で氷が融解した水溶液(ブライン)の溶質濃度の変化率(以下、「溶質濃度の変化率」と略称する場合がある)が30%以内という条件を満たし、被冷凍品を効率よく冷凍することができるという特性を有している。
 ハイブリッドアイスに含まれる溶質の種類は、水を溶媒としたときの溶質であれば特に限定されず、所望の凝固点や使用する氷の用途等に応じて適宜選択することができる。溶質としては、固体状の溶質、あるいは液状の溶質等が挙げられるが、固体状の溶質として代表的なものには、塩類(無機塩、有機塩等)が挙げられる。
 特に、塩類のうち食塩(NaCl)は、凝固点の温度を過度に低下させることがないため、生鮮動植物又はその一部の冷凍に適している。また、食塩は海水に含まれているため、調達が容易であるという点でも適している。また、液状の溶質としては、エチレングリコール等が挙げられる。なお、溶質は1種単独で含まれてもよく、2種以上含まれてもよい。
 ブラインとは、例えば、塩化ナトリウム水溶液(塩水)や塩化カルシウム水溶液、塩化マグネシウム水溶液、エチレングリコール水溶液等のように溶質を含有し、凝固点の低い水溶液である。フレークアイスの原料となるブラインは、特に限定されないが、溶質として食塩を使用する場合、海水、海水に塩を追加した水、又は海水の希釈水であることが好ましい。海水、海水に塩を追加した水、又は海水の希釈水は、調達が容易であるため、調達コストを削減することができるからである。
 また、食塩を溶質とするブライン(塩水)の熱伝導率は、約0.58W/m Kであるが、食塩を溶質とするブラインが凍結したフレークアイスの熱伝導率は約2.2W/m Kである。即ち、熱伝導率は、ブライン(液体)よりもフレークアイス(固体)の方が高いため、フレークアイス(固体)の方が被冷凍品を早く冷凍することができることになる。
 しかしながら、フレークアイス(固体)のままでは被冷凍品と接触する面積が小さくなってしまう。そこで、フレークアイスとブラインとを混合させて氷スラリーの状態とすることにより流動性を持たせる。これにより、被冷凍品に対し万遍なくフレークアイス(固体)を接触させることができるようになり、被冷凍品を素早く冷凍することが可能となる。
 氷スラリーに含まれるフレークアイスとブラインとは、いずれも同じ溶質を含んでいるが、このとき、フレークアイスの溶質濃度と、ブラインの溶質濃度とが近い値である方が好ましい。その理由は、以下のとおりである。
 即ち、フレークアイスの溶質濃度がブラインの溶質濃度よりも高い場合、フレークアイスの温度がブラインの飽和凍結点よりも低くなるため、溶質濃度が低いブラインを混合させた直後にブラインが凍結する。
 これに対して、フレークアイスの溶質濃度がブラインの溶質濃度より低い場合、フレークアイスの飽和凍結点よりもブラインの飽和凍結点の方が低くなる。このため、フレークアイスとブラインとを混合させた氷スラリーの温度は低下する。
 したがって、フレークアイスとブラインとの混合物の状態(氷スラリーの状態)を変動させないようにするためには、上述のとおり、混合するフレークアイスとブラインの溶質濃度を同程度とすることが好ましい。
 また、氷スラリーの状態である場合、ブラインは、フレークアイスが融解したものであってもよく、別途調製したものであってもよいが、フレークアイスが融解してなるものであることが好ましい。
 ここで、氷スラリーによって被冷凍品を冷凍する冷凍装置及び冷凍システムの一実施形態について図1乃至図4A,図4Bを参照して説明する。図1は、本発明に係る冷凍システムの一実施形態を示す一部断面概略正面図である。図2は、本発明に係る冷凍システムに含まれる氷スラリー原料製造装置の概要を示す断面斜視図である。図3は、本発明に係る冷凍装置の一実施形態を示す概略斜視図である。図4Aは、本発明に係る冷凍装置の一実施形態を示す概略平面図である。図4Bは、本発明に係る冷凍装置の一実施形態を示す概略正面図である。
 図1に示すように、冷凍システムは、氷スラリー製造装置1と、冷凍装置6と、を備えている。氷スラリー製造装置1は、氷スラリー原料製造部(以下、「氷スラリー原料製造装置」という。)200と、貯氷タンク500と、を備えている。
 図2に示すように、氷スラリー原料製造装置200は、ドラム21と、回転軸22と、噴射部23と、剥取部24と、ブレード25と、フレークアイス排出口26と、上部軸受部材27と、噴射制御部28と、防熱保護カバー29と、ギヤードモータ30と、ロータリージョイント31と、冷媒クリアランス34と、回転制御部37と、ブッシュ38と、冷媒供給部39と、ブライン貯留タンク40(図1参照)とを備える。
 ドラム21は、内筒32と、この内筒32を囲繞する外筒33と、内筒32と外筒33との間に形成される冷媒クリアランス34とで構成される。また、ドラム21の外周面は、円筒状の防熱保護カバー29によって覆われている。冷媒クリアランス34には、冷媒供給部39から冷媒配管42を介して内筒冷凍冷媒が供給される。これにより内筒32の内周面が冷却される。
 回転軸22は、ドラム21の中心軸上に配置され、上部軸受部材27の上方に設置されたギヤードモータ30を動力源として、当該中心軸を軸として材軸回りに回転する。なお、ギヤードモータ30の回転速度は、後述の回転制御部37によって制御される。
 噴射部23は、内筒32の壁面に向けてブラインや後述する氷スラリーSを噴射する噴射孔23aを先端部に有する複数のパイプで構成され、回転軸22と共に回転する。噴射孔23aから噴射されたブラインは、冷媒によって冷却された内筒32の壁面に付着し、溶質と溶媒とに分離する時間も与えられずに急速に凍結しハイブリッドアイスになる。。噴射部23を構成する複数のパイプは、回転軸22からドラム21の半径方向に放射状に延出している。
 噴射部23から噴射されるバージンのブラインは、ブライン貯留タンク40に貯留されている。ブライン貯留タンク40と噴射部23とは、ブライン配管41によって接続されている。
 剥取部24は、内筒32の内周面に生成されたハイブリッドアイスを剥取るブレード25を先端部に備える複数のアームによって構成される。なお、剥取部24は、ドラム21の半径方向に延出し、回転軸22と共に回転する。剥取部24を構成する複数のアームは、回転軸22に関して対称となるように装着されている。なお、図2に示す氷スラリー原料製造装置200の剥取部24は、2本のアームによって構成されているが、アームの本数は特に限定されない。
 また、アームの先端に装着されているブレード25は、内筒32の全長(全高)に略等しい長さを有する部材からなり、内筒32の内周面に対向する端部には複数の鋸歯25aが形成されている。
 内筒32の内周面に生成されたハイブリッドアイスは、ブレード25によって剥取られることによりフレークアイスとなる。フレークアイスは、フレークアイス排出口26から落下する。フレークアイス排出口26から落下したフレークアイスは、氷スラリー原料製造装置200の直下に配置された貯氷タンク500(図1参照)内に貯えられる。
 また、氷スラリー原料製造装置200は、噴射部23から噴射されるブラインの量を調節することにより、生成されるフレークアイスの量を調節する。即ち、噴射部23から噴射されるブラインの量を増やすことにより、生成されるフレークアイスの量を増やすことができる。また反対に、噴射部23から噴射されるブラインの量を減らすことにより、製造されるフレークアイスの量を減らすことができる。
 上部軸受部材27は、鍋を逆さにした形状からなり、ドラム21の上面を封止している。上部軸受部材27の中心部には、回転軸22を支持するブッシュ38が嵌装されている。なお、回転軸22は、上部軸受部材27にのみ支持され、回転軸22の下端部は軸支されていない。
 噴射制御部28は、噴射部23によるブラインの噴射時に、噴射部23から噴射されるブラインの量を調節する。なお、噴射部23から噴射させるブラインの量を調節する具体的な手法は特に限定されない。例えば、噴射部23を構成する複数のパイプの夫々について、ブラインを噴射させるパイプの数とブラインを噴射させないパイプの数とを調節することにより、噴射されるブラインの量を調節してもよい。また例えば、ブラインを噴射させる複数のパイプに送り込むブラインの量を増減させることにより、噴射されるブラインの量を調節してもよい。
 噴射部23からは、ブラインが噴射されるだけでなく、氷スラリーS、ブラインと氷スラリーSとの混合物が噴射される場合もある。したがって、噴射部23は、ブライン、氷スラリーS、又はそれらの混合物のいずれであっても噴射できるように構成されている。さらに、噴射部23は、ブライン、氷スラリーS、又はそれらの混合物を勢いよく噴射するものに限らず、内筒32の内周面に沿わせるように排出するものも含まれる。
 氷スラリー原料製造装置200は、内筒32の内周面において、噴射部23から噴射されたブライン、氷スラリーS、又はそれらの混合物の一部を冷凍することでフレークアイスを生成し、残部を冷却するものの冷凍しないように設定している。すなわち、冷媒供給部39から氷スラリー原料製造装置200に供給される内筒冷凍冷媒の冷熱は、噴射部23から噴射されるブライン、氷スラリーS、又はそれらの混合物をすべて冷凍させるために必要な冷熱より小さく設定されている。
 防熱保護カバー29は、円筒形状からなり、ドラム21の側面を封止している。
 冷媒供給部39は、冷媒クリアランス34に対して、内筒32の内周面を冷凍する内筒冷凍冷媒を、冷媒配管42を介して供給する。図1に示すように、冷媒供給部39は、貯氷タンク500に隣接して設置される。
 冷媒クリアランス34に供給される内筒冷凍冷媒は、冷媒クリアランス34と冷媒供給部39との間を冷媒配管42を介して循環する。これにより、冷媒クリアランス34に供給された内筒冷凍冷媒を冷凍能が高い状態で維持させることができる。
 図1に示すように、氷スラリー原料製造装置200は、貯氷タンク500上に設置される。貯氷タンク500は、円盤状の底面部51と、円筒状の壁面部52と、壁面部52の上面を覆う天面部53とを備え、氷スラリーSを貯留する。天面部53の偏芯した位置には、開口部53aが設けられている。この開口部53aとフレークアイス排出口26とが連通するように氷スラリー原料製造装置200のドラム21が設置される。
 貯氷タンク500内には、貯留された氷スラリーSを撹拌する撹拌部(以下、「撹拌手段」という。)54が付設されている。撹拌手段54は、本体翼54aと、回転軸54bと、駆動部54cとを備えている。本体翼54aは、図示したようなプロペラ翼だけでなく、図示しないパドル翼やアンカー翼、タービン翼、リボン翼等種々のタイプを採用してもよい。
 回転軸54bは、貯氷タンク500の中心軸に鉛直姿勢で配置される。回転軸54bの下端部に本体翼54aが固定される。回転軸54bの上端部は、天面部53から上方へ突出する。回転軸54bの上端部に駆動部54cが取り付けられている。駆動部54cは、天面部53上に設置され、モータを備える。駆動部54cは、撹拌手段54を等速で回転させるようにしてもよいし、加速と減速を繰り返すように回転させてもよい。
 貯氷タンク500には、貯氷タンク500内の氷スラリーSを原水として氷スラリー原料製造装置200の噴射部23に供給するリターンパイプ44が接続されている。リターンパイプ44の途中には、ポンプ57が接続されている。
 リターンパイプ44には、ポンプ57の上流側に貯氷タンク500内に貯留された氷スラリーS中のフレークアイスの濃度(IPF:Ice Packing Factor)を計測する濃度計測部(以下、「第1の計測手段」という。)55が備えられている。フレークアイスの濃度IPFは、「IPF=(フレークアイスの質量)/(フレークアイスの質量+ブラインの質量)」で算出される。
 氷スラリーSのフレークアイスの濃度は、10%以上かつ60%以下であることが好ましい。氷スラリー製造装置1は、氷スラリー原料製造装置200が製造するフレークアイスの量を制御することによって、フレークアイスの濃度を所定の値(目標)に保持することができる。フレークアイスの濃度の目標は、冷凍しようとする被冷凍物の種類によって適宜選択すればよい。氷スラリーSの温度は、フレークアイスを加えても(氷スラリーSに冷熱を加えても)、逆に被冷凍物を冷凍しても(氷スラリーSから冷熱を取り去っても)、氷スラリーSを生成するブラインの凝固点に保持されており、氷スラリーSに対する熱授受によって氷スラリーSのフレークアイスの濃度が変化する。従って、氷スラリーSのフレークアイスの濃度を制御することで、氷スラリーSの授受冷熱量を制御することができる。
 第1の濃度計測手段55は、図示しないが、リターンパイプ44に入口、出口を有する実質的なバイパス管内にヒータ及び温度計を備えている。第1の濃度計測手段55は、計測時には入口及び出口を閉じ、入口と出口の間に計測しようとする氷スラリーSのサンプルを採取する。第1の濃度計測手段55は、ヒータで所定の熱量を当該サンプルに加え、当該サンプルの温度変化を計測するものであってよい。
 すなわち、氷スラリーSのサンプルは、その中にフレークアイスが残っている間は凝固点温度を維持するため、その凝固点温度からの昇温タイミングはフレークアイスの濃度と関連し(印加する熱量が一定の場合、フレークアイスの濃度が高いほど、昇温タイミングは遅くなる)、氷スラリーSのサンプルの温度変化から氷スラリーSの濃度を特定できる。
 フレークアイスの濃度の計測が完了すると、第1の濃度計測手段55に備えられたバイパス管の入口及び出口が開かれ、サンプリングされた氷スラリーSがリターンパイプ44に流出する。所定時間後、第1の濃度計測手段55は、再び入口、出口が閉じて同様にフレークアイスの濃度を計測する。このサンプリング、計測は、継続的に行われる。
 リターンパイプ44の下流端は、切替弁43を介してブライン配管41に接続される。したがって、切替弁43によって切り替えられ、噴射部23には、ブライン貯留タンク40に貯留されているバージンのブラインと貯氷タンク500内から戻されたリサイクルの氷スラリーSとが切り替えられて供給され、又はバージンのブラインとリサイクルの氷スラリーSとが混合して供給される。
 貯氷タンク500と冷凍装置6とは、氷スラリー供給管45と氷スラリー戻管46とによって接続される。氷スラリー供給管45と氷スラリー戻管46とには、開閉弁45a、46aが設けられている。氷スラリー供給管45は、貯氷タンク500内の氷スラリーSを冷凍装置6に送る。氷スラリー戻管46は、冷凍装置6内の氷スラリーSを貯氷タンク500に戻す。氷スラリー供給管45、氷スラリー戻管46にはそれぞれ図示しないポンプが設けられていて、それぞれのポンプは開閉弁45a、46aの開閉に同期して駆動される。
 氷スラリー供給管45の開閉弁45a及び氷スラリー戻管46の開閉弁46aは、それぞれ、「氷スラリーSの冷凍装置6への送り量>氷スラリーSの冷凍装置6からの戻し量」となるように制御される。冷凍装置6の氷スラリーSの水面は、図示しないオーバーフロー菅等によって一定に保たれていてよい。
 また、貯氷タンク500に貯留できる氷スラリーSの量は、冷凍装置6を満たすのに必要な氷スラリーSの量より十分大きく、冷凍装置6の氷スラリーSのフレークアイスの濃度が変化しても、貯氷タンク500に貯留された氷スラリーSのフレークアイスの濃度は、ほとんど変化しない。
 前述の通り、貯氷タンク500と冷凍装置6とは氷スラリー供給管45及び氷スラリー戻管46によって接続され、さらに貯氷タンク500に貯留できる氷スラリーSの量は冷凍装置6を満たすのに必要な氷スラリーSの量より十分大きいように構成されているため、冷凍装置6の氷スラリーSのフレークアイスの濃度が変化しても、貯氷タンク500に貯留された氷スラリーSのフレークアイスの濃度はほとんど変化しない。
 また、貯氷タンク500と冷凍装置6との間では、氷スラリーSは、「氷スラリーSの冷凍装置6への送り量>氷スラリーSの冷凍装置6からの戻し量」となるように制御されることにより、冷凍装置6の氷スラリーSは、図示しないオーバーフロー菅等によって一部が廃棄されるので、貯氷タンク500に貯留された氷スラリーSのフレークアイスの濃度の変化はさらに小さい。
 貯氷タンク500の氷スラリーSのフレークアイスの濃度は、第1の濃度計測手段55によって計測され、それを氷スラリー原料製造装置200の運転にフィードバックさせることによって、所定の濃度になるように制御されている。
 図3及び図4A,図4Bに示すように、冷凍装置6は、氷スラリーSによって被冷凍品A(図4A,図4B参照)を包むことによって冷凍するため、流路60と、ガイドベーン70と、推進部(以下、「推進手段」という。)80と、第2の濃度計測手段90と、を備えている。被冷凍品Aは、例えば、トレー(図示せず)上に載せられる。トレーは、例えば、間隔を開けて複数段積み重ねられるラック(図示せず)内に保持される。ラックは、例えば、4本の支柱と、トレーを載せるビームとを有するフレーム状とされている。トレー内の被冷凍品Aは、氷スラリーSに包まれるようになる。
 流路60は、環状で、氷スラリー供給管45から供給される氷スラリーSで満たされ、氷スラリーSを循環させることができる。流路60は、氷スラリーSの供給口61と、氷スラリーSの第1の排出口62及び第2の排出口63とを備えている。氷スラリーSの供給口61には、貯氷タンク500に接続された氷スラリー供給管45が接続される。氷スラリーSの第1の排出口62には、貯氷タンク500に接続された氷スラリー戻管46が接続される。氷スラリーSの第2の排出口63には、ノズル48が接続される。このノズル48には、開閉弁48aが設けられている。
 図3に示すように、流路60は、2本の並列した直線ライン64と、当該2本の直線ライン64の隣り合った各端部同士を接続する2本の曲線ライン65とを有するレーストラック形状とされている。流路60は、長円形の外壁部66と、この外壁部66の中心線上に設けられた仕切部67と、底面部68とを備えている。
 直線ライン64は、被冷凍品Aが置かれて冷凍される冷凍領域69とされる。仕切部67の各端部と外壁部66の半円形部との間は、間隔が空けられ、氷スラリーSがターンする曲線ライン65とされる。仕切部67の各端縁と外壁部66とを結ぶライン、すなわち、仕切部67の各端で仮想的に引いた垂線が、直線ライン64と曲線ライン65との境界線となる。
 図4Bに示すように、流路60の少なくとも一つの曲線ライン65は、その底部にピット(深堀部)を備えてもよい。冷凍操作中に氷スラリーSから溶質が分離して沈殿する場合、溶質がピットに集められる。ピットに集められた溶質は、冷凍操作に影響を与えることがない。
 曲線ライン65には、曲線ライン65を複数(図面では2本)のレーンに分割するほぼ半円形(J字状)のガイドベーン70が備えられている。各レーンの幅が等しくなるように、ガイドベーン70が底面部68上に設置される。ガイドベーン70が備えられない場合は、曲線ライン65に連続する直線ライン64の上流側の外壁部66に沿った領域に氷スラリーSが淀むことがある。なお、ガイドベーン70は、各レーンの幅が不均等になるようにガイドベーン70が底面部68上に設置されてよい。
 ガイドベーン70の上流側の端部71は、流路60の直線ライン64と曲線ライン65の境界線に位置している。ガイドベーン70の下流側の端部72は、曲線ライン65の下流端を超えて直線ライン64の上流領域にまで延びている。このようなガイドベーン70の両端部は横並びにならず、全体としてJ字状とされている。
 図示しないが、ガイドベーン70の下流側の端部72は、曲線ライン65と直線ライン64との境界線よりも下流側、すなわち曲線ライン65の上流側に位置してもよい。図示しないが、ガイドベーン70の上流側の端部71は、直線ライン64と曲線ライン65との境界線に位置していてもよいし、曲線ライン65の下流側に位置してもよい。したがって、ガイドベーン70は、U字状に形成されてもよい。
 ガイドベーン70が曲線ライン65に備えられることで、この領域に氷スラリーSが淀むことなく流れるようにすることができる。ガイドベーン70の下流側の端部72が直線ライン64の上流側内にまで延びているときは、ガイドベーン70の下流側の端部72が曲線ライン65内までとなっているときよりも、より効果的に氷スラリーSが淀むことなくスムーズに流れるようにすることができる。
 流路60は、冷凍領域69の氷スラリーSに推進力を与える推進手段80を備えている。推進手段80は、図示したような二つでなくてもよく、少なくとも一つ備えていればよい。また、推進手段80は、三つ以上設けられてもよいことはいうまでもない。推進手段80は、例えば、流路60内の直線ライン64の上流に設置されたスクリュー81と、スクリュー81を先端部で接続し、外壁部66の半円形部を貫通する駆動軸82と、駆動軸82の基端部に接続され、流路60外に設置された駆動源83とを備えている。
 第2の濃度計測手段90は、第1の濃度計測手段55と同様に構成され、流路60内の氷スラリーSのフレークアイスの濃度を計測する。第2の濃度計測手段90は、図1に示したような1か所に限らず、複数か所に置かれてもよい。
 ここで、冷凍システムによって氷スラリーSを製造し、この氷スラリーSによって被冷凍品Aを冷凍する方法について説明する。氷スラリーSは、氷スラリー製造装置1に備えられた氷スラリー原料製造装置200によって製造される。
 氷スラリー原料製造装置200は、内筒冷凍冷媒によって内筒32を冷却した状態でフレークアイスを製造する。そのため、内筒冷凍冷媒が冷媒供給部39から冷媒クリアランス34に供給され、内筒32の内周面の温度を冷凍しようとするブラインの凝固点より-10℃程度低くなるように冷却する。
 このような状態下において、ブライン貯留タンク40に貯留されているバージンのブライン、リターンパイプ44を通って供給される氷スラリーS、又はそれらの混合物は、噴射部23から内筒32に向けて噴射される。噴射されたブライン、氷スラリーS、又はそれらの混合物の一部は、内筒32に付着し、溶質と溶媒とに分離する時間を与えられずに急速に冷凍し、ハイブリッドアイスとなる。
 内筒32の内周面に生成されたハイブリッドアイスは、内筒32内で回転する剥取部24によって剥ぎ取られる。剥取部24によって剥ぎ取られたハイブリッドアイスは、フレークアイスとしてフレークアイス排出口26から貯氷タンク500内に落下して、貯えられる。噴射されたブライン、氷スラリーS、又はそれらの混合物のうち冷凍されなかった部分は、同じくフレークアイス排出口26から貯氷タンク500内に落下して、貯えられる。
 氷スラリー原料製造装置200は、噴射部23から噴射されたブライン、氷スラリーS、又はそれらの混合物の一部を内筒32の内周面において冷凍させてフレークアイスにするため、フレークアイス排出口26から貯氷タンク500内に落下する氷スラリーSのフレークアイスの濃度は、噴射前の氷スラリーSのフレークアイスの濃度(すなわち、貯氷タンク500内に貯留されていた氷スラリーSのフレークアイスの濃度)より高くなる。
 この氷スラリー原料製造装置200から排出された氷スラリーSと貯氷タンク500内に貯留されていた氷スラリーSとは、攪拌手段54によって混合され、貯氷タンク500内の混合された氷スラリーSのフレークアイス濃度は、均一に保たれる。
 したがって、氷スラリー原料製造装置200は、それを作動することによって、貯氷タンク500内の氷スラリーSのフレークアイス濃度を高くすることができる。氷スラリーSのフレークアイス濃度は、貯氷タンク500内の氷スラリーSを氷スラリー原料製造装置200の噴射部23に供給する通路であるリターンパイプ44に備えられた第1の濃度計測手段55によって計測される。
 また、氷スラリー原料製造装置200は、それを作動することによって、貯氷タンク500内の氷スラリーSの量を増加させることができる。貯氷タンク500内の氷スラリーSの量は、ブライン貯留タンク40内に貯留されたバージンのブラインを供給することによって、増加できる。貯氷タンク500内の氷スラリーSの量は、貯氷タンク500に設けられた貯留量センサ56によって計測される。
 氷スラリー原料製造装置200は、貯氷タンク500内の氷スラリーSのフレークアイスの濃度や氷スラリーSの量によって、作動したり停止したりするように制御される。すなわち、氷スラリー原料製造装置200は、貯氷タンク500内氷スラリーSのフレークアイスの濃度が目標濃度よりも低い場合、作動し、貯氷タンク500内氷スラリーSのフレークアイスの濃度が目標濃度よりも高い場合、一時的に停止する。また、氷スラリー原料製造装置200は、貯氷タンク500内氷スラリーSの量が目標値よりも低い場合、作動し、貯氷タンク500内氷スラリーSの量が目標値よりも高い場合、一時的に停止する。
 また、氷スラリー原料製造装置200は、作動又は一時停止の制御だけでなく、冷媒供給部39から冷媒クリアランス34への内筒冷凍冷媒の供給量を多くし、内筒32の内周面の温度を下げることによって内筒32の内周面で生成されるハイブリッドアイスの量を増加させる、又は逆に冷媒供給部39から冷媒クリアランス34への内筒冷凍冷媒の供給量を少なくし、内筒32の内周面の温度を上げることによって内筒32の内周面で生成されるハイブリッドアイスの量を減少させる等の制御を併せて行ってよい。
 貯氷タンク500内に貯留されている氷スラリーSは、(a)融解完了時の温度が0℃未満、かつ、(b)融解過程で氷が融解したブラインの溶質濃度の変化率が30%以内という条件を満たしている。氷スラリーSは、融解する際に大量の潜熱を周囲から奪うことができるが、融解が完全に完了せずにハイブリッドアイスが残存している間は温度が上昇することがない。
 貯氷タンク500内の氷スラリーSのフレークアイスの濃度は、第1の濃度計測手段55によって計測され、フレークアイスの濃度が所定の濃度(10%以上かつ60%以下の所定濃度)に調整された氷スラリーSは、氷スラリー供給管45から冷凍装置6の流路60内へ送られる。冷凍装置6は、送られた氷スラリーSによって被冷凍品Aの冷凍操作を行う。貯氷タンク500内の氷スラリーSは、氷スラリー供給管45、氷スラリー戻管46を介して、被冷凍品Aの冷凍操作に必要な冷熱を確保できるように冷凍装置6に供給される。
 貯氷タンク500内に貯留された氷スラリーSの量は、貯留量センサ56によって計測される。貯留量センサ56によって、貯氷タンク500内の氷スラリーSの量が減少したことが計測されると、ブライン貯留タンク40からバージンのブラインが氷スラリー原料製造装置200に供給され、氷スラリーSが製造される。
 冷凍装置6が冷凍操作を行わない場合、例えば、夜間等、冷凍装置6が休止している場合において、貯氷タンク500内の氷スラリーSのフレークアイス濃度が目標濃度よりも低いと、氷スラリー原料製造装置200は氷スラリー原料を製造し、貯氷タンク500内の氷スラリーSのフレークアイス濃度が高められる。このとき、氷スラリー供給菅45の開閉弁45a及び氷スラリー戻菅46の開閉弁46aは、閉じられた状態でもよいが、貯氷タンク500及び冷凍装置6を合せた系全体の氷スラリーSのフレークアイス濃度を目標濃度領域に調整するためには、開かれた状態であることが好ましい。
 また、前述のとおり、貯氷タンク500内に貯留された氷スラリーSの量は、貯留量センサ56によって計測されており、貯氷タンク500内の氷スラリーSの量が所定の量に達するまで氷スラリーSが製造される。
 冷凍装置6における被冷凍品Aの冷凍操作において、被冷凍品Aは、氷スラリーSが循環している流路60の直線ライン64内に設けられた冷凍領域69内に配置される。被冷凍品Aはトレー(図示せず)上に載せられ、トレーはラック(図示せず)内に間隔を空けて保持される。複数台のラックは、流路60の直線ライン64内に直列するように一括して並べられる。ラック内の被冷凍品Aは、循環している氷スラリーS内に漬けられた状態になり、急速に冷凍される。
 流路60内に満たされた氷スラリーSは、推進手段80によって推進力が付与されて流路60内を循環する。氷スラリーSは、水路の曲線ライン65にガイドベーン70が備えられていることによって、曲線ライン65に連続する直線ライン64の上流側の外壁部66に沿った領域でも淀むことなくスムーズに流れ、環状の流路60内を少ない抵抗で循環できる。
 流路60を流れている氷スラリーSは、溶質が分離すると、少なくとも一つの曲線ライン65の底部に備えられたピットに溶質が集められる。したがって、氷スラリーSから分離した溶質は、冷凍操作に影響を与えない。
 氷スラリーSは、流動性を有するため、硬いフレークアイスの状態よりも被冷凍品Aに対して万遍なく接触することができる。氷スラリーSは、ハイブリッドアイスが残存している間は温度が融点に保持される(例えば、飽和食塩水の氷スラリーSの場合、-21.3℃に保持される)ため、長時間に亘って被冷凍品Aを冷凍し続けることができる。また、被冷凍品Aが魚等の食品であっても、氷スラリーSは無害であるため、食品安全上の問題はない。
 ここで、流路60内の氷スラリーS中のフレークアイスの濃度を調整する方法について説明する。流路60内で循環している氷スラリーSは、冷凍領域69に置かれた被冷凍品Aを冷凍する(すなわち、冷熱を与える)ことによって氷スラリーS中のフレークアイスの濃度が貯氷タンク500内での濃度から低下することがある。
 また、このような流路60内の氷スラリーS中のフレークアイスの濃度の変化を速やかに把握するために、流路60に第2の濃度計測手段90を設けてもよい。
 第2の濃度計測手段90によって計測された流路60内の氷スラリーSのフレークアイスの濃度が、第1の濃度計測手段55によって計測された貯氷タンク500の氷スラリーSのフレークアイスの濃度より、所定値以上低下している場合、それを氷スラリー原料製造装置200の運転にフィードバックさせることによって、流路60内の氷スラリーSのフレークアイスの濃度をより精密に制御することができる。
 このようにしてフレークアイスの濃度が調整された氷スラリーSは、フレークアイスとして製造された状態で細かな空隙部(即ち空気の部分)を多く含むため、この空隙部がハイブリッドアイス内で縦横無尽に連結した状態であり、雪状に調製したり、シャーベット状に調製したりすることができる。雪状またはシャーベット状に調製されたハイブリッドアイスは、全体として柔軟性を備えているため、被冷凍品Aを傷つけることがなく、むしろ被冷凍品Aを保護する緩衝材としてのスポンジのような役割を果たす。
 また、氷スラリーSは、多くの空隙部(空気の部分)を有する状態であっても、あるいは氷スラリーSの融解によって当該空隙部にブラインが充填された状態であっても、氷スラリーS全体として十分な流動性(柔軟性)を保持することができる。このため、氷スラリーSは、被冷凍品Aをより効率良く冷凍することができる。
 ここで、氷スラリーS全体の体積に対する空隙部(空気の部分)の体積の割合を「空隙率」と定義した場合、空隙率は、より低い方が(即ち嵩密度が高い方が)蓄冷効果が高くなる。したがって、生鮮食料品の冷蔵や冷凍を目的として氷スラリーSを使用する場合には、空隙率が高い(即ち嵩密度が低い)氷スラリーSを生成する。なお、冷熱エネルギーの運搬を目的として氷スラリーSを使用する場合には、空隙率が低い(即ち嵩密度が高い)氷スラリーSを生成する。
 また、食塩を溶質とするブライン(塩水)の熱伝導率は約0.58W/m Kであるが、食塩を溶質とするブラインが凍結したフレークアイスの熱伝導率は約2.2W/m Kである。即ち、熱伝導率は、ブライン(液体)よりもフレークアイス(固体)の方が高いため、フレークアイス(固体)の方が被冷凍品Aを早く冷凍することができることになる。
 しかしながら、フレークアイス(固体)のままでは被冷凍品Aと接触する面積が小さくなってしまう。そこで、フレークアイスとブラインとを混合させて氷スラリーSの状態とすることにより流動性を持たせる。これにより、被冷凍品Aに対し万遍なくフレークアイス(固体)を接触させることができるようになり、被冷凍品Aを素早く冷凍することが可能となる。
 ここで、氷スラリーSの嵩密度について、具体的な数値を示す。氷スラリーSとして定義可能な嵩密度は、0.48g/cm~0.78g/cmとなる。生鮮食料品の冷凍を目的として氷スラリーSを使用する場合には、0.69g/cm~0.78g/cmの嵩密度とするのが好適である。
 なお、生鮮食料品の冷蔵を目的として氷スラリーSを使用する場合には、0.48g/cm~0.54g/cmの嵩密度とするのが好適である。また、冷熱エネルギーの運搬を目的として氷スラリーSを使用する場合には、飽和食塩水を用いた氷をさらに機械的に圧縮して0.75g/cm~0.95g/cmの嵩密度としてもよい。
 従来から、溶媒に溶質を溶解させると、その水溶液の凝固点は、溶質を溶解させる前の溶媒の凝固点よりも低くなることが知られている(凝固点降下現象)。つまり、食塩等の溶質を溶解させた水溶液を凍結させた氷は、真水(即ち、食塩等の溶質が溶解していない水)を凍結させた氷よりも低い温度(即ち0℃未満)で凍結した氷となる。
 ここで、固体としての氷が、液体としての水に変化(融解)するときに必要となる熱を「潜熱」という。この潜熱は温度変化を伴わないため、ハイブリッドアイスは、融解時に真水の凝固点(0℃)未満の温度で安定した状態を維持し続けることができる。このため、冷熱エネルギーを蓄えた状態を持続させることができる。
 つまり、本来であれば、食塩等の溶質を溶解させた水溶液を凍結させた氷の冷凍能は、真水を凍結させた氷よりも高くなるはずである。しかしながら、食塩等の溶質を溶解させた水溶液を凍結させた氷を製造しようとしても、実際には、水溶液(例えば塩水)がそのまま凍結することは殆どなく、まず溶質(食塩等)を含まない真水の部分が先に凍結してしまう。
 このため、食塩等の溶質を溶解させた水溶液を凍結させた結果、生成される物質は、溶質(食塩等)を含まない真水が凍結した氷と、溶質(例えば食塩等の結晶)との混合物となってしまう。また、たとえ凝固点が低下した氷(塩水等が凍結した氷)が生成されたとしても、その量はほんの僅かであり実用性がない。このように、氷スラリーSは、真水の凝固点(0℃)未満の凝固点を有する[氷]であるが、フレークアイス製造システムによって、製造することができる。
 氷スラリーSは、上述したような(a)融解完了時の温度が0℃未満であるという条件を満たしている。氷スラリーSは、溶質(食塩等)を含む水溶液(塩水等)であるため、氷スラリーSの凝固点は、溶質が溶解していない真水の凝固点よりも低い。このため、氷スラリーSは、融解完了時の温度が0℃未満であるという条件を満たしている。
 なお、「融解完了時の温度」とは、氷スラリーSを融点以上の環境下(例えば、室温、大気圧下)に置くことにより氷スラリーSの融解を開始させ、全ての氷スラリーSが融解しきって水溶液(ブライン)になった時点におけるその水溶液の温度をいう。
 他方、氷スラリーSの凝固点を、被冷凍品Aの凍結点に近づけた方が好ましい場合もある。例えば、生鮮動植物の損傷を防ぐため等の理由がある場合には、融解完了時の温度が高すぎない方が好ましく、例えば、-21℃以上(-20℃以上、-19℃以上、-18℃以上、-17℃以上、-16℃以上、-15℃以上、-14℃以上、-13℃以上、-12℃以上、-11℃以上、-10℃以上、-9℃以上、-8℃以上、-7℃以上、-6℃以上、-5℃以上、-4℃以上、-3℃以上、-2℃以上、-1℃以上、-0.5℃以上等)であることが好ましい。
 氷スラリーSは、上述したような(b)融解過程で氷が融解した水溶液の溶質濃度の変化率が30%以内であるという条件を満たしている。氷スラリーSは、融解過程で氷が融解した水溶液の溶質濃度の変化率(以下、本明細書において「溶質濃度の変化率」と略称する場合がある)が30%以内であるという特徴を有する。従来からある技術を用いた場合であっても、凝固点が僅かに低下した氷が生成される場合もあるが、その殆どは、溶質を含まない水の氷と溶質の結晶との混合物に過ぎないため、冷凍能が十分ではない。
 このように、溶質を含まない水を凍結させた氷と、溶質の結晶との混合物である場合には、氷を融解条件下に置くと、融解に伴い溶質が溶出する速度が不安定となる。具体的には、融解開始に近いタイミングであればある程、溶質が多く溶出する。そして、融解の進行に伴い、溶質が溶出する量は少なくなっていく。即ち、融解完了に近いタイミングであればある程、溶質の溶出量が少なくなる。
 これに対し、ハイブリッドアイスは、溶質を含む水溶液を凍結させた氷であるため、融解過程における溶質の溶出速度の変化が少ないという特徴を有する。具体的には、ハイブリッドアイスが融解する過程でハイブリッドアイスが融解した水溶液の溶質濃度の変化率は30%である。ここで、「融解過程でハイブリッドアイスが融解した水溶液の溶質濃度の変化率」とは、融解過程の任意のタイミングで融解した水溶液における溶質濃度に対する、融解完了時における水溶液の濃度の割合を意味する。なお、「溶質濃度」とは、水溶液に溶解している溶質の質量の割合を意味する。
 ハイブリッドアイスにおける溶質濃度の変化率は30%以内であれば特に限定されないが、その変化率は少なければ少ない程、純度が高いハイブリッドアイス、即ち、冷凍能が高いハイブリッドアイスであることを意味する。
 ハイブリッドアイスは、冷凍能に優れているため、被冷凍品Aを冷凍し凍結させるための冷媒としての使用に適している。被冷凍品Aを冷凍する低温の冷媒としては、ハイブリッドアイス以外に、エタノール等の不凍液として使用される有機溶媒が挙げられる。しかしながら、これらの不凍液よりもハイブリッドアイスの方が熱伝導率が高く、比熱が高い。このため、ハイブリッドアイスは、不凍液のような他の0℃未満の冷媒よりも冷凍能が優れている点で有用である。
 以上、本発明の実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。また本発明の要旨を逸脱しない範囲内であれば種々の変更や上記実施の形態の組み合わせを施してもよい。
 上述した実施形態における氷スラリー原料製造装置200は、内筒32を有するドラム21を備えた。しかし、氷スラリー原料製造装置200は、ブラインやリターンパイプ44から戻された氷スラリーSが噴射される面を平面としたプレートによって構成してもよい。このプレートの内面には、冷媒クリアランスが設けられる。
 図1の仮想線に示すように、冷凍システムは、流路60内の氷スラリーSを排出する第2の氷スラリー戻管47を氷スラリー原料製造装置200に接続してもよい。第2の氷スラリー戻管47の下流端は、ブライン配管41とリターンパイプ44との切替弁43に接続してもよい。ただし、この場合の切替弁43は、三つの入力ポートと一つの出力ポートを備えるものとする。また、リターンパイプ44や氷スラリー戻管46、第2の氷スラリー戻管47の上流端は、氷スラリーS中のフレークアイスの固まりを除去するためのフィルタ(図示せず)を備えてもよい。
 上述した実施形態における冷凍システムは、リターンパイプ44に備えられたバイパス管に第1の濃度計測手段55を備え、流路60内に第2の濃度計測手段90を備えるとした。しかし、濃度計測手段55,90は、いずれか一方のみ備えるようにしてもよいし、備えないようにしてもよい場合もある。
 また、第1の濃度計測手段55は、貯氷タンク500内に備えられてもよい。この場合の濃度計測手段55は、温度計と濃度計と密度計の計器を備え、これらの計器から計測される温度と濃度と密度の電気信号からフレークアイスの濃度を算出する。この第1の濃度計測手段55は、底面部51側と天面部53側の2か所の壁面部52の内面に固定されてもよい。フレークアイスの濃度が貯氷タンク500内で不均等であっても、それぞれの第1の濃度計測手段55によって、フレークアイスの平均的な濃度を検出することができる。
 上述した実施形態では、貯氷タンク500内の氷スラリーSのフレークアイスの濃度や氷スラリーSの量によって、氷スラリー原料製造装置200が作動したり停止したりした。しかし、フレークアイスの濃度は、氷スラリー原料製造装置200の内筒の内周面の温度を変更することによって、調整してもよい。
 例えば、フレークアイスの濃度が高いと、冷媒供給部39から冷媒クリアランス34への内筒冷凍冷媒の供給量を少なくし、内筒32の内周面の温度を上げる。あるいは、ブライン貯留タンク40から噴射部23へ供給するバージンのブラインを減量又は昇温する。そうすると、ブラインが内筒32の内周面に付着する量が減少し、貯氷タンク500内に落下するブラインが増加する。内筒32の内周面に付着するハイブリッドアイスが減少すると、ハイブリッドアイスを剥がし取って生成するフレークアイスが減少する。この減少したフレークアイスと増加したブラインとによって、氷スラリーSはフレークアイスの濃度が低下したものとなる。
 逆に、フレークアイスの濃度が低いと、冷媒供給部39から冷媒クリアランス34への内筒冷凍冷媒の供給量を多くし、内筒32の内周面の温度を下げる。あるいは、ブライン貯留タンク40から噴射部23へ供給するバージンのブラインを増量又は降温する。そうすると、ブラインが内筒32の内周面に付着する量が増加し、貯氷タンク500内に落下するブラインが減少する。内筒32の内周面に付着するハイブリッドアイスが増加すると、ハイブリッドアイスを剥がし取って生成するフレークアイスが増加する。この増加したフレークアイスと減少したブラインとによって、氷スラリーSはフレークアイスの濃度が増加したものとなる。
 上述した実施形態における流路60は、外壁部66の中心線上に仕切部67を設け、往路側の流路60と復路側の流路60とが隣り合わされた。しかし、流路60は、仕切部67に替え、長円形(トラック形状)の内壁を備え、往路側の直線ライン64と復路側の直線ライン64とが離れるようにしてもよい。この場合の流路60は、曲線ライン65の円弧が大きくなってもよく、曲線ライン65においても直線の部分が設けられてもよい。
 上述した実施形態における冷凍領域69は、往路側の流路60と復路側の流路60とに設けられた。しかし、冷凍領域69は、往路側の流路60又は復路側の流路60にのみ設けられてもよい。この場合は、推進手段80及びガイドベーン70は冷凍領域69の上流側にのみ設けられてもよい。
 上述した実施形態では、推進手段80が直線ライン64の上流側と曲線ライン65の下流側との境界部に配備された。しかし、推進手段80は、流路60のいずれの位置に設けられてもよい。上述した実施形態では、推進手段80は流路60内に設置されるプロペラを備えた。しかし、推進手段80は、流路60の流れ方向に直交する断面を小さくする絞り管を備えることで、流速を早めるようにしてもよい。この場合は、緩勾配の底面に替えて急勾配の底面を備えてもよい。あるいは、冷凍装置6は、推進手段80を必ずしも備えなくてもよい。
 上述した実施形態における冷凍装置6は、流路60に氷スラリーSの供給口61と第1及び第2の排出口63とを備えた。しかし、氷スラリーSは、流路60の上側開口面から供給してもよいし、オーバーフローによって排出してもよい。
 上述した実施形態における被冷凍品Aは、食品等としたが、医薬品等であってもよい。
 以上まとめると、本発明が適用される冷凍装置6は、次のような構成を取れば足り、各種各様な実施形態を取ることができる。
 即ち、本発明が適用される冷凍装置6は、
 氷スラリーSが循環する環状の流路60であって、2本の並列した直線ライン64と、当該2本の直線ライン64の隣り合った各端部同士を接続する2本の曲線ライン65とを有する流路60と、
 氷スラリーSに推進力を与える推進手段80と、
 少なくともいずれか一方の前記曲線ライン65を複数のレーンに分割するガイドベーン70と、
を備える。
 これにより、冷凍装置6は、流路60の直線ライン64内に置かれた被冷凍品Aを循環する氷スラリーSによって冷凍することができる。氷スラリーSは、推進手段80によって推進力が与えられるため、流路60内に複数の被冷凍品Aが置かれても、下流側の被冷凍品Aは氷スラリーSに冷凍される。流路60が曲線ライン65を備えていても、ガイドベーン70によって氷スラリーSが淀まないように循環し、被冷凍品Aを均等に氷スラリーSに冷凍することができる。
 本発明が適用される冷凍装置6の一態様は、
 前記ガイドベーン70は、前記曲線ライン65の上流端から前記曲線ライン64の下流端を超えてさらに前記直線ライン64の上流側まで延びている。
 これにより、氷スラリーSが被冷凍品Aに衝突するようになって、被冷凍品Aに付着して被冷凍品Aを冷凍させることができる。
 本発明が適用される冷凍装置6の一態様は、
 前記推進手段80は、少なくともいずれか一方の前記直線ライン64の上流側と前記曲線ライン65の下流側との境界部に配備される。
 これにより、冷凍装置は、流路60の直線ライン64に被冷凍品Aが置かれたときに、被冷凍品Aが氷スラリーSの流れの障害となっても、推進手段80が直線ライン64内の氷スラリーSに推進力を与え、氷スラリーSの流れが滞らないようにすることができる。
 本発明が適用される冷凍装置6の一態様は、
 前記流路60は、氷スラリーSの供給口61と、氷スラリーSの排出口62と、
を備える。
 これにより、冷凍装置6は、氷スラリーSを供給口61から流路60内に供給し、氷スラリーSの排出口62から排出することができる。
 本発明が適用される冷凍装置6の一態様は、
 前記推進手段80は、前記流路60内に設置されたスクリュー81を備える。
 これにより、冷凍装置は、スクリュー81によって氷スラリーSに推進力を与えることができる。
 本発明が適用される冷凍装置6の一態様は、
 前記直線ライン64は、被冷凍品Aを冷凍する領域とされている。
 これにより、冷凍装置6は、複数の被冷凍品Aを直列に並べ、均等に氷スラリーSを被冷凍品Aに冷凍することができる。
 本発明が適用される冷凍システムは、
 本発明が適用される冷凍装置6と、
 前記流路60に氷スラリーSを供給する氷スラリー製造装置1であって、
  供給されたブラインの一部からフレークアイスを生成し、供給されたブラインの残部を流出する氷スラリー原料製造部(氷スラリー原料製造装置)200と、
  前記氷スラリー原料製造部(氷スラリー原料製造装置)200によって生成されたフレークアイスと流出されたブラインとの混合物を氷スラリーSとして貯留する貯氷タンク500と、
 を備える、氷スラリー製造装置1と、
を備える。
 これにより、冷凍システムは、氷スラリー製造装置1によって製造された氷スラリーSが流路60内を流れるようにして、被冷凍品Aを氷スラリーSによって良好に冷凍することができる。
 本発明が適用される冷凍システムの一態様において、
 前記氷スラリー製造装置1は、フレークアイスの濃度を10%以上かつ60%以下の氷スラリーSを製造する。
 これにより、冷凍装置6で冷凍される被冷凍品Aが魚介類や精肉等の食品である場合において、この食品を氷スラリーSによって的確に冷凍することができる。
1:氷スラリー製造装置、200:氷スラリー原料製造装置(氷スラリー原料製造部)、21:ドラム、22:回転軸、23:噴射部、23a:噴射孔、24:剥取部、25:ブレード、26:フレークアイス排出口、27:上部軸受部材、28:噴射制御部、29:防熱保護カバー、30:ギヤードモータ、31:ロータリージョイント、32:内筒、33:外筒、34:冷媒クリアランス、38:ブッシュ、39:冷媒供給部、40:ブライン貯留タンク、41:ブライン配管、42:冷媒配管、44:リターンパイプ、45:氷スラリー供給管、46:氷スラリー戻管、47:第2の氷スラリー戻管、48:ノズル、500:貯氷タンク、54:撹拌手段(撹拌部)、55:濃度計測部(第1の濃度計測手段)、6:冷凍装置、60:流路、61:供給口、62:排出口(第1の排出口)、63:第2の排出口、64:直線ライン、65:曲線ライン、67:仕切部、68:底面部、69:冷凍領域、70:ガイドベーン、80:推進手段(推進部)、90:第2の濃度計測手段、A:被冷凍品、S:氷スラリー

Claims (8)

  1.  氷スラリーが循環する環状の流路であって、2本の並列した直線ラインと、当該2本の直線ラインの隣り合った各端部同士を接続する2本の曲線ラインとを有する流路と、
     氷スラリーに推進力を与える推進手段と、
     少なくともいずれか一方の前記曲線ラインを複数のレーンに分割するガイドベーンと、
    を備える、
     冷凍装置。
  2.  前記ガイドベーンは、前記曲線ラインの上流端から前記曲線ラインの下流端を超えてさらに前記直線ラインの上流側まで延びている、
     請求項1に記載の冷凍装置。
  3.  前記推進手段は、少なくともいずれか一方の前記直線ラインの上流側と前記曲線ラインの下流側との境界部に配備される、
     請求項1又は2に記載の冷凍装置。
  4.  前記流路は、氷スラリーの供給口と、氷スラリーの排出口と、
    を備える、
     請求項1乃至3のうちいずれか1項に記載の冷凍装置。
  5.  前記推進手段は、前記流路内に設置されたスクリューを備える、
     請求項1乃至4のうちいずれか1項に記載の冷凍装置。
  6.  前記直線ラインは、被冷凍品を冷凍する領域とされている、
     請求項1乃至5のうちいずれか1項に記載の冷凍装置。
  7.  請求項1乃至6のうち少なくともいずれか1項に記載の冷凍装置と、
     前記流路に氷スラリーを供給する氷スラリー製造装置であって、
      供給されたブラインの一部からフレークアイスを生成し、供給されたブラインの残部を流出する氷スラリー原料製造部と、
      前記氷スラリー原料製造部によって生成されたフレークアイスと流出されたブラインとの混合物を氷スラリーとして貯留する貯氷タンクと、
     を備える、氷スラリー製造装置と、
    を備える、
     冷凍システム。
  8.  前記氷スラリー製造装置は、フレークアイスの濃度を10%以上かつ60%以下の氷スラリーを製造する、
     請求項7に記載の冷凍システム。
PCT/JP2019/016306 2018-05-28 2019-04-16 冷凍装置及び冷凍システム WO2019230231A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-101596 2018-05-28
JP2018101596A JP7148112B2 (ja) 2018-05-28 2018-05-28 冷凍装置及び冷凍システム

Publications (1)

Publication Number Publication Date
WO2019230231A1 true WO2019230231A1 (ja) 2019-12-05

Family

ID=68697450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016306 WO2019230231A1 (ja) 2018-05-28 2019-04-16 冷凍装置及び冷凍システム

Country Status (2)

Country Link
JP (1) JP7148112B2 (ja)
WO (1) WO2019230231A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183443A1 (ja) * 2019-03-14 2020-09-17 株式会社マッシュアップ 冷凍設備用ヒートポンプ、液体急速凍結装置、調圧・バイパス制御ユニット、及び、冷凍システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7296098B2 (ja) * 2019-03-29 2023-06-22 ブランテックインターナショナル株式会社 食品の冷凍装置及び食品の冷凍方法並びに冷凍食品の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057927A (ja) * 2006-09-01 2008-03-13 Santebelle:Kk スラリー氷、スラリー氷の製造方法及びスラリー氷の製造装置
JP2009216329A (ja) * 2008-03-11 2009-09-24 Technican:Kk 凍結物の製造方法および製造装置
JP2018021745A (ja) * 2016-08-05 2018-02-08 ティーエスプラント有限会社 急速冷凍方法及び急速冷凍装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3004245C (en) 2015-11-19 2022-03-15 Blanctec Co., Ltd. Ice, refrigerant, ice production method, method for producing cooled article, method for producing refrigerated article of plant/animal or portion thereof, refrigerating material for plant/animal or portion thereof, method for producing frozen fresh plant/animal or portion thereof, defrosted article or processed article thereof, and freezing material for ...

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057927A (ja) * 2006-09-01 2008-03-13 Santebelle:Kk スラリー氷、スラリー氷の製造方法及びスラリー氷の製造装置
JP2009216329A (ja) * 2008-03-11 2009-09-24 Technican:Kk 凍結物の製造方法および製造装置
JP2018021745A (ja) * 2016-08-05 2018-02-08 ティーエスプラント有限会社 急速冷凍方法及び急速冷凍装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183443A1 (ja) * 2019-03-14 2020-09-17 株式会社マッシュアップ 冷凍設備用ヒートポンプ、液体急速凍結装置、調圧・バイパス制御ユニット、及び、冷凍システム

Also Published As

Publication number Publication date
JP7148112B2 (ja) 2022-10-05
JP2019205366A (ja) 2019-12-05

Similar Documents

Publication Publication Date Title
WO2019230232A1 (ja) 氷スラリー製造装置及び冷凍システム
RU2694972C1 (ru) Устройство для производства чешуйчатого льда, система производства чешуйчатого льда, способ производства чешуйчатого льда и подвижный объект
CN102413702B (zh) 用于解冻食品的设备
JP4249137B2 (ja) タンク内で製品ユニットを調整する方法およびシステム、ならびにその応用
WO2019230231A1 (ja) 冷凍装置及び冷凍システム
CA2983390C (en) Method and device for delaying rigor mortis in fish
WO2017086463A1 (ja) フレークアイス製造装置、フレークアイス製造システム、フレークアイス製造方法、移動体
JP2018017490A (ja) フレークアイス製造装置、氷、冷媒、氷の製造方法、被冷却物の製造方法、動植物又はその部分の被冷蔵物の製造方法、動植物又はその部分の冷蔵剤、被冷凍生鮮動植物又はその部分の製造方法、被解凍物又はその加工物、及び生鮮動植物又はその部分の凍結剤
CN103189692A (zh) 冻结方法及冻结装置
WO2018212335A1 (ja) 状態変化制御装置及び状態変化制御方法
CA2411223A1 (en) Methods and apparatus for freezing tissue
WO2019082918A1 (ja) 冷凍装置及び冷凍方法
US3004395A (en) Method of handling refrigerant
WO2020203732A1 (ja) 食品の冷凍装置及び食品の冷凍方法並びに冷凍食品
JP2020022369A (ja) 食肉の熟成方法
WO2018110506A1 (ja) フレークアイス製造装置及び製造方法
JP6905739B2 (ja) 冷却装置及び冷却方法
JP2009034023A (ja) 食鳥屠体の冷却方法及び装置
JP2018191591A (ja) 解凍装置及び解凍方法
JP2575321B2 (ja) 食品冷凍法およびその冷凍装置
JP2021108556A (ja) 冷却方法及び冷却装置
NO20210272A1 (en) Arrangement for freezing and thawing seafood
JP2005344995A (ja) 氷温貯蔵庫及び氷温貯蔵方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810548

Country of ref document: EP

Kind code of ref document: A1