WO2019223372A1 - 三聚氰胺的检测方法 - Google Patents

三聚氰胺的检测方法 Download PDF

Info

Publication number
WO2019223372A1
WO2019223372A1 PCT/CN2019/075144 CN2019075144W WO2019223372A1 WO 2019223372 A1 WO2019223372 A1 WO 2019223372A1 CN 2019075144 W CN2019075144 W CN 2019075144W WO 2019223372 A1 WO2019223372 A1 WO 2019223372A1
Authority
WO
WIPO (PCT)
Prior art keywords
melamine
solution
different concentrations
absorption
terahertz
Prior art date
Application number
PCT/CN2019/075144
Other languages
English (en)
French (fr)
Inventor
王志琪
李辰
Original Assignee
深圳市太赫兹科技创新研究院
深圳市太赫兹科技创新研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市太赫兹科技创新研究院, 深圳市太赫兹科技创新研究院有限公司 filed Critical 深圳市太赫兹科技创新研究院
Publication of WO2019223372A1 publication Critical patent/WO2019223372A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation

Definitions

  • the invention relates to the field of spectrum detection, in particular to a method for detecting melamine.
  • a method for detecting melamine includes the following steps:
  • the melamine concentration in the test milk is calculated and obtained.
  • the step of extracting melamine in the milk to be tested and making the volume constant to obtain the solution to be tested includes:
  • a premix solution wherein the solvent is selected from at least one of methanol and ethanol;
  • the mixed solution was subjected to ultrasound and filtration in order, and then the volume was adjusted with water to obtain the test solution.
  • the ratio of the milk to be tested to the premixed liquid is 1 g: 5 mL to 10 mL, and the ratio of the milk to be tested to the fat-absorbing material is 1 g: 1 g to 2 g.
  • the solvent is methanol, and the volume percentage concentration of CH 3 OH in the solvent is 60% to 100%.
  • the step of obtaining terahertz absorption spectra of the melamine solution at a plurality of different concentrations includes:
  • the terahertz frequency is 0.06THz ⁇ 4.0THz.
  • the Fourier transform and correction are performed on the reference signal and the plurality of sample signals, respectively, to obtain an unloaded frequency domain spectrum of the sample cell and a plurality of loaded multi-sample signals.
  • the steps of the frequency domain spectrum of the sample cell of the melamine solution of different concentrations include:
  • the frequency domain data of the reference signal and the frequency domain data of a plurality of the sample signals are corrected according to the Blackman-Harris window function method, and the frequency domain spectrum graph of the unloaded sample cell and a plurality of Frequency-domain spectrum diagrams of the sample cell of the melamine solution at a plurality of different concentrations.
  • the frequency-domain spectrum diagrams of the sample cell according to no load and a plurality of the sample cell containing the melamine solution with different concentrations are based on data of Fresnel formula.
  • the steps of processing the model, calculating the absorption coefficients of the melamine solutions of different concentrations, and establishing the terahertz absorption spectra of the melamine solutions of different concentrations based on the absorption coefficients include the steps of:
  • n ( ⁇ ) is the refractive index of the melamine solution
  • is the angular frequency of the spectrum
  • ⁇ ( ⁇ ) is the sample signal and the reference
  • d is the optical path thickness of the melamine solution
  • c is the propagation velocity of the terahertz wave in a vacuum
  • ⁇ ( ⁇ ) is the absorption coefficient of the melamine solution
  • a plurality of terahertz absorption spectra of the melamine solution with different concentrations are established according to the absorption coefficient.
  • the function of the melamine absorption peak area of the test solution, the concentration of the melamine solution, and the function of the absorption peak area of the melamine solution calculates the melamine of the test solution.
  • concentration step the relationship between the concentration of the melamine standard and the absorption peak area of the melamine solution:
  • y is the absorption peak area of the melamine solution
  • x is the concentration of the melamine solution
  • the sample cell is a quartz sample cell, and the optical path of the sample cell is 0.1 mm to 0.5 mm.
  • the above melamine detection method uses a terahertz time-domain spectrum to directly detect an aqueous solution of melamine, and the detection speed is fast.
  • traditional terahertz time-domain spectroscopy is used to detect the content of melamine in milk
  • solid forms are generally used, such as pressing milk powder into tablets first. Therefore, the melamine in the existing liquid milk cannot be directly detected and detected by the terahertz time-domain spectroscopy, and the liquid milk needs to be detected after drying.
  • the above melamine detection method makes up for this deficiency in terahertz time-domain spectrum detection. It can directly detect the extracted melamine aqueous solution, and the liquid milk does not require additional drying. And compared with traditional high-performance liquid chromatography, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry for melamine detection, it has the advantages of fastness and high accuracy.
  • FIG. 1 is a terahertz time-domain waveform diagram of an unloaded quartz sample cell and a quartz sample cell containing a 100 ⁇ g / mL melamine solution according to an embodiment
  • FIG. 2 is a terahertz absorption spectrum of a melamine solution having a partial concentration according to the embodiment shown in FIG. 1;
  • FIG. 3 is a graph showing the relationship between the concentration of the melamine solution and the absorption peak area of the melamine solution in the embodiment shown in FIG. 1.
  • the melamine standard is mixed with water to prepare a plurality of melamine solutions with different concentrations.
  • the melamine standard is mixed with deionized water to prepare a plurality of melamine solutions with different concentrations.
  • the mother liquor is first configured with a melamine standard, and then diluted with deionized water to obtain melamine solutions with different concentrations.
  • a melamine standard was weighed, and then the volume was adjusted with deionized water to prepare a mother liquid, and then the mother liquid was diluted with deionized water to obtain melamine solutions of different concentrations.
  • melamine standards of different masses are weighed and the volume is adjusted with deionized water to obtain melamine solutions of different concentrations.
  • the operation of extracting melamine in the milk to be tested and volume-adjusting it with water to obtain the solution to be tested includes S121 to S125.
  • the milk to be tested and the solvent are mixed uniformly to obtain a premixed solution.
  • the solvent is selected from at least one of methanol and ethanol.
  • the ratio of the milk to be measured and the premixed liquid is 1 g: 5 mL to 10 mL.
  • the ratio of the milk to be tested to the premixed liquid is 1.0 g: 5 mL.
  • the solvent is methanol, and the volume percentage concentration of CH 3 OH in the solvent is 60% to 100%. Preferably, the volume percentage concentration of CH 3 OH in the solvent is 70% to 90%.
  • the volume percent concentration of CH 3 OH in the agent is 90%.
  • the solvent is ethanol, and the volume percentage concentration of C 2 H 5 OH in the solvent is 70% to 95%.
  • the volume percentage concentration of C 2 H 5 OH in the solvent is 95%.
  • 1 g of the milk to be tested is weighed, and the volume is adjusted to 5 mL to 10 mL with 70% to 90% methanol by volume of CH 3 OH to obtain a premix solution.
  • 1 g of the milk to be measured is weighed, and the volume is adjusted to 5 mL with CH 3 OH volume concentration of 70% to 90% methanol to obtain a premix solution.
  • 1 g of the milk to be tested is weighed, and the volume is adjusted to 5 mL with 95% ethanol by volume of C 2 H 5 OH to obtain a premix solution.
  • the milk to be measured may be liquid milk formed after the milk powder is mixed on the market, or it may be liquid milk on the market.
  • the ratio of the milk to be measured to the fat-absorbing material is 1 g: 1 g to 2 g.
  • the ratio of the milk to be measured to the fat-absorbing material is 1 g: 1 g.
  • the fat-absorbing material includes a LAS material.
  • the particle diameter of the LAS material is preferably 40 ⁇ m to 100 ⁇ m, and more preferably 60 ⁇ m.
  • 1 g to 2 g of the fat-adsorbing material is weighed and mixed with the pre-mixed liquid, wherein the ratio of the measured milk to the fat-adsorbing material is 1 g: 1 g to 2 g.
  • 1 g to 2 g of the LAS material is weighed and mixed with the pre-mixed liquid, wherein the ratio of the measured milk to the LAS material is 1 g: 1 g to 2 g.
  • the mixed solution is subjected to ultrasound and filtration in order, and then nitrogen blowing and volume adjustment with water to obtain a test solution.
  • the ultrasound time is 10 min to 20 min.
  • the filtration is centrifugal filtration.
  • the centrifugation speed is 6000 r / min to 10000 / min, and the centrifugation time is 10 min to 20 min. Still more preferably, the centrifugation speed is 7000 r / min to 9000 r / min, and the centrifugation time is 15 min.
  • the temperature of the nitrogen blowing is 40 ° C to 50 ° C.
  • the temperature of the nitrogen blowing is 40 ° C.
  • the method further includes passing the supernatant obtained by the centrifugal filtration through a microporous filter membrane of 0.2 ⁇ m to 0.5 ⁇ m to obtain a filtrate, and then blowing the filtrate through nitrogen. Furthermore, the pore diameter of the microporous membrane was 0.22 ⁇ m.
  • the mixed solution was subjected to ultrasonic filtration for 15 min and centrifugation at 8000 r / min for 15 min in order to obtain a supernatant.
  • the supernatant was then passed through a 0.22 ⁇ m microporous membrane to obtain a filtrate. Blow and make up to volume with deionized water to obtain the test solution.
  • Liquid milk has a complex matrix component and contains a large amount of protein and fat. Effective extraction of melamine from liquid milk is a key step in the detection of melamine.
  • the general method is to select a solvent to remove some impurities, and then pass through a solid-phase extraction column (or a melamine-specific molecular imprinting column), and test after volume adjustment with nitrogen.
  • Gas chromatography-mass spectrometry also requires the addition of derivatizing agents.
  • Liquid chromatography-mass spectrometry also requires the addition of ion-pairing reagents.
  • the currently used ion-pairing reagents such as sodium octane sulfonate, are not easily volatile, which greatly brings liquid chromatography-mass spectrometry to the electrospray ion source (ESI) influences. Therefore, the traditional processing method has the disadvantages of complicated steps and time-consuming.
  • the melamine extraction process uses toxic organic solvents such as acetonitrile, which adversely affects operators and the environment.
  • the melamine in the milk to be tested is extracted with a fat adsorption material and a solvent.
  • the extraction method can quickly and simply obtain melamine, and the obtained melamine has no interference with the detection, and the extraction method is friendly to operators and the environment.
  • melamine in the milk to be tested may also be extracted by other extraction methods, as long as the melamine in the milk to be tested can be effectively and completely extracted.
  • operations of obtaining terahertz absorption spectra of a plurality of melamine solutions with different concentrations include S131 to S137.
  • the sample cell is a quartz sample cell, and the optical path of the sample cell is 0.1 mm to 0.5 mm.
  • a plurality of melamine solutions with different concentrations are placed in a plurality of sample cells, and then an unloaded sample cell and a plurality of melamine containing a plurality of different concentrations are obtained at a terahertz spectral frequency of 0.06 THz to 4.0 THz, respectively.
  • the terahertz time-domain waveform of the sample cell of the solution is defined as the reference signal
  • the terahertz time-domain waveform of the sample cell containing the melamine solution is defined as the multiple sample signals.
  • the sample cell carrying the liquid sample itself has a certain absorption of the terahertz wave, and it will produce multiple reflection (F-P effect) time-domain signal interference.
  • F-P effect multiple reflection
  • a terahertz time-domain spectroscopy system is used to obtain the terahertz time-domain waveforms of an unloaded sample cell and a plurality of sample cells containing a plurality of melamine solutions with different concentrations.
  • an unloaded quartz absorption cell is detected to obtain an unloaded terahertz absorption cell.
  • Time-domain waveform, and the terahertz time-domain waveform of an unloaded quartz absorption cell is defined as the reference signal.
  • the scanning range is 0 ps to 1200 ps
  • the acquisition rate is 30 scans / s
  • the terahertz time-domain spectral resolution is 1.2 cm -1 .
  • the terahertz time-domain waveform includes phase information and amplitude information.
  • S135 Perform Fourier transform and correction on the reference signal and the multiple sample signals to obtain the frequency domain spectrum of the unloaded sample cell and the frequency domain spectrum of the multiple sample cells containing multiple melamine solutions with different concentrations. .
  • the Fourier transform is performed on the reference signal and the plurality of sample signals to obtain frequency domain data of the reference signal and the plurality of sample signals. Then, the frequency domain data of the reference signal and the frequency domain data of multiple sample signals are corrected according to the Blackman-Harris window function method, and the frequency domain spectrum of the unloaded sample cell and a plurality of melamine with different concentrations are calculated. Frequency domain spectrum of a sample cell of a solution.
  • the Fourier transform is performed on the reference signal and the plurality of sample signals to obtain frequency domain data of the reference signal and the plurality of sample signals.
  • the frequency domain data of the reference signal and the plurality of sample signals includes the reference signal and the plurality of sample signals. Frequency domain distribution.
  • the frequency domain distribution of the reference signal and the plurality of sample signals is:
  • is the angular frequency
  • Ar ( ⁇ ) and As ( ⁇ ) are the amplitudes of the electric field of the reference signal and the sample signal
  • ⁇ r ( ⁇ ) and i ⁇ s ( ⁇ ) are the phases of the electric field of the reference signal and the sample signal
  • i is an imaginary number.
  • Er ( ⁇ ) is the frequency domain signal of the reference signal
  • Es ( ⁇ ) is the frequency domain signal of the sample
  • Er (t) is the time domain signal of the reference signal
  • Es (t) is the time domain signal of the sample signal.
  • the physical parameters include phase information and amplitude information.
  • n ( ⁇ ) is the refractive index of the melamine solution
  • is the angular frequency of the spectrum
  • ⁇ ( ⁇ ) is the phase difference between the sample signal and the reference signal
  • d is the melamine
  • the optical path thickness of the solution c is the propagation speed of the terahertz wave in a vacuum
  • ⁇ ( ⁇ ) is the absorption coefficient of the melamine solution
  • ⁇ ( ⁇ ) is the amplitude ratio of the sample signal to the reference signal.
  • the absorption peak of the melamine standard is 1.98 THz.
  • the function of the concentration of the melamine solution and the area of the absorption peak of the melamine solution is:
  • y is the absorption peak area of the melamine solution
  • x is the concentration of the melamine solution
  • the method for obtaining the terahertz absorption spectrum of the solution to be tested is similar to the method for obtaining the terahertz absorption spectra of multiple melamine solutions with different concentrations, the difference is that the number of the solutions to be tested can be one or Multiple, and the number of melamine solutions is multiple.
  • the above melamine detection method uses a terahertz time-domain spectrum to directly detect an melamine aqueous solution, and the detection speed is fast.
  • traditional terahertz time-domain spectroscopy is used to detect the content of melamine in milk
  • solid forms are generally used, such as pressing milk powder into tablets first. Therefore, the melamine in the existing liquid milk cannot be directly detected and detected by the terahertz time-domain spectroscopy, and the liquid milk needs to be detected after drying.
  • the above melamine detection method makes up for this deficiency in terahertz time-domain spectrum detection. It can directly detect the extracted melamine aqueous solution, and the liquid milk does not require additional drying. And compared with traditional high-performance liquid chromatography, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry for melamine detection, it has the advantages of fastness and high accuracy.
  • the above melamine detection method can quickly process samples, and the processing method is simple and has no effect on subsequent detection.
  • the reagents used in the processing are all environmentally friendly.
  • the melamine standard was purchased from ChemService, USA, with a purity of 99.3%.
  • the terahertz time-domain spectroscopy system is a terahertz time-domain spectroscopy system of the model TPS-4000 produced by Teraview. Other instruments and reagents are For market products.
  • the terahertz time-domain waveforms of melamine solutions of different concentrations are defined as the reference signal, and the terahertz time-domain waveforms of multiple melamine solutions of different concentrations are defined as the multiple sample signals.
  • Figure 1 shows the terahertz time-domain waveform of an unloaded quartz sample cell and a 100 ⁇ g / mL melamine solution.
  • the reference signal and the plurality of sample signals Fourier transform the reference signal and the plurality of sample signals to obtain the frequency domain data of the reference signal and the plurality of sample signals. Then, the frequency domain data of the reference signal and the frequency domain data of multiple sample signals are corrected according to the Blackman-Harris window function method, and the frequency domain spectrum diagrams of the reference signal and the frequency domain spectrum diagrams of multiple melamine solutions with different concentrations are calculated.
  • the physical parameters include phase information and amplitude information.
  • n ( ⁇ ) is the refractive index of the melamine solution
  • is the angular frequency of the spectrum
  • ⁇ ( ⁇ ) is the phase difference between the sample signal and the reference signal
  • d is the melamine
  • the optical path thickness of the solution c is the propagation speed of the terahertz wave in a vacuum
  • ⁇ ( ⁇ ) is the absorption coefficient of the melamine solution
  • ⁇ ( ⁇ ) is the amplitude ratio of the sample signal to the reference signal.
  • the terahertz absorption spectra of the above-mentioned melamine solutions with different concentrations were established.
  • the figures are terahertz absorption spectra of melamine solutions of 2 ⁇ g / mL, 100 ⁇ g / mL, and 1000 ⁇ g / mL.
  • y is the absorption peak area of the melamine solution
  • x is the concentration of the melamine solution
  • Example 1 is a plurality of different tests.
  • Concentration of melamine solution and this example is a test solution of a concentration of Yili liquid pure milk.
  • the steps of the third embodiment are substantially the same as those of the second embodiment. The difference is that in this embodiment, the Yili liquid pure milk is replaced by Mengniu liquid pure milk.
  • Example 4 The steps of Example 4 are roughly the same as those of Example 2. The difference is that after the obtained solution of Yili liquid pure milk in this example is added, a final concentration of 2 ⁇ g / mL melamine solution is added and mixed to obtain Yili liquid pure milk. The standard test solution is spiked, and then steps (3) to (6) of Example 2 are performed using the standard test solution of Yili liquid pure milk.
  • the melamine concentration was 2.9 ⁇ g / mL.
  • Example 5 The steps of Example 5 are roughly the same as those of Example 4, except that in this example, a melamine solution with a final concentration of 5 ⁇ g / mL is added and mixed instead of a melamine solution with a final concentration of 2 ⁇ g / mL.
  • the melamine concentration was 6.1 ⁇ g / mL.
  • Example 6 The steps of Example 6 are substantially the same as those of Example 4, except that in this example, a melamine solution with a final concentration of 10 ⁇ g / mL is added and mixed instead of a melamine solution with a final concentration of 2 ⁇ g / mL.
  • the melamine concentration was 12.3 ⁇ g / mL.
  • Example 7 The steps of Example 7 are roughly the same as those of Example 2, except that this example uses a 200 ⁇ g / mL melamine acetonitrile solution (prepared from a standard melamine with pure acetonitrile as a solvent, where the concentration of melamine is 200 ⁇ g / mL) as The test solution of the liquid pure milk of Yili in Example 4 was replaced, and then subjected to Fourier transform, and then the rectangular window function method, triangular window function method, Gaussian window function method, and Blackman-Harris window function method were used for correction processing. .
  • a 200 ⁇ g / mL melamine acetonitrile solution prepared from a standard melamine with pure acetonitrile as a solvent, where the concentration of melamine is 200 ⁇ g / mL
  • the test solution of the liquid pure milk of Yili in Example 4 was replaced, and then subjected to Fourier transform, and then the rectangular window function method, triangular window
  • Example 7 As a result of Example 7, the terahertz absorption peak of melamine in the acetonitrile solution of melamine could not be obtained.
  • Example 8 The steps of Example 8 are roughly the same as those of Example 7, except that this example uses a 200 ⁇ g / mL melamine methanol solution (prepared from a melamine standard with pure methanol as the solvent, where the concentration of melamine is 200 ⁇ g / mL). The test was performed instead of the 200 ⁇ g / mL melamine acetonitrile solution of Example 7.
  • Example 9 The steps of Example 9 are roughly the same as those of Example 6, except that in the step of extracting melamine in Yili liquid pure milk, the volume percentage concentration of CH 3 OH in this example is 90% and the volume is adjusted to 10 mL. the amount and the volume percent concentration of CH 3 OH in Example 6 with the embodiment of 90% methanol to 5mL, the present embodiment LAS material (particle diameter 60 m) is 2g, LAS implemented material of Example 6 (tablets The diameter of 60 ⁇ m) is 1 g, and other operation steps are the same.
  • the melamine concentration was 13.0 ⁇ g / mL.
  • Mengniu liquid pure milk was used to detect the melamine concentration in accordance with GB / T 22400-2008 "Rapid Detection of Melamine in Raw Milk by Liquid Chromatography".
  • Comparative Example 3 The test samples of Comparative Example 3 are roughly the same as those in Example 4, both of which were added to the melamine solution at a final concentration of 2 ⁇ g / mL before loading and testing. The difference is that the present example is based on GB / T22400-2008 "Raw materials Rapid detection of melamine in milk by liquid chromatography "to detect the concentration of melamine in it.
  • the concentration of melamine was 2.1 ⁇ g / mL.
  • the test sample of Comparative Example 4 is substantially the same as that of Example 5. They are all loaded and mixed with a final concentration of 5 ⁇ g / mL melamine solution before loading and testing. The difference is that this example is based on GB / T22400-2008 “Raw materials” Rapid detection of melamine in milk by liquid chromatography "to detect the concentration of melamine in it.
  • Comparative Example 5 The test samples of Comparative Example 5 are roughly the same as those in Example 4. They are all added to the melamine solution with a final concentration of 10 ⁇ g / mL before loading and testing. The difference is that this example is based on GB / T22400-2008 “Raw materials” Rapid detection of melamine in milk by liquid chromatography "to detect the concentration of melamine in it.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及一种三聚氰胺的检测方法。包括将三聚氰胺标准品与水混合配制成多个不同浓度的三聚氰胺溶液;提取待测奶中的三聚氰胺并用水定容得到待测溶液;获取多个不同浓度的三聚氰胺溶液的太赫兹吸收谱图;并以此确定三聚氰胺标准品的吸收峰及吸收峰面积,建立三聚氰胺溶液的浓度与吸收峰面积的函数关系;获取待测溶液的太赫兹吸收谱图,并与三聚氰胺标准品的吸收吸收谱图对比,确定待测溶液的三聚氰胺的吸收峰及吸收峰面积;根据待测溶液的三聚氰胺的吸收峰面积、三聚氰胺溶液的浓度与吸收峰面积的函数关系,计算得到待测奶中的三聚氰胺的浓度。上述三聚氰胺的检测方法能够以太赫兹光谱检测水溶液中的三聚氰胺,且检测快、准确。

Description

三聚氰胺的检测方法 技术领域
本发明涉及光谱检测领域,特别是涉及一种三聚氰胺的检测方法。
背景技术
近年来,食品工业伴随着我国经济的高速发展蓬勃成长,但是在食品加工的复杂环节之中不可避免的出现了各种各类的食品安全问题。因此,为了监管企业遵纪守法生产乳制品,对乳制品中三聚氰胺含量的高效快速检测方法进行探究具显著的现实意义。
目前国标法有三种方法检测原料奶、奶制品和含奶制品中的三聚氰胺含量三聚氰胺,分别是高效液相色谱法、气相色谱-质谱联用法、液相色谱-质谱/质谱法。这三种方法具有分离效率高、选择性好、检测准确的优点,但受实验条件影响大、样品的前处理复杂、检测耗时等缺点。因此,国标法在检测的时效性和灵活性上还有改善的空间。
发明内容
基于此,有必要提供一种检测快速且准确度高的三聚氰胺的检测方法。
一种三聚氰胺的检测方法,包括以下步骤:
将三聚氰胺标准品与水混合配制成多个不同浓度的三聚氰胺溶液;
提取待测奶中的三聚氰胺,并用水进行定容,得到待测溶液;
获取所述待测溶液的太赫兹吸收谱图;
获取多个不同浓度的所述三聚氰胺溶液的太赫兹吸收谱图;
根据多个不同浓度的所述三聚氰胺溶液的太赫兹吸收谱图,确定所述三聚氰胺标准品的吸收峰,并根据所述三聚氰胺标准品的吸收峰分别获取多个不同浓度的所述三聚氰胺溶液的吸收峰面积,建立所述三聚氰胺溶液的浓度与所述三聚氰胺溶液的吸收峰面积的函数关系;
根据所述待测溶液的太赫兹吸收谱图及所述三聚氰胺标准品的吸收峰,确定所述待测溶液的三聚氰胺的吸收峰,并计算得到所述待测溶液的三聚氰胺的吸收峰面积;
根据所述待测溶液的三聚氰胺的吸收峰面积、所述三聚氰胺溶液的浓度与所述三聚氰胺溶液的吸收峰面积的函数关系,计算得到所述待测溶液的三聚氰胺的浓度;及
根据所述待测溶液的三聚氰胺的浓度,计算得到所述待测奶中的三聚氰胺的浓度。
在其中一个实施例中,所述提取待测奶中的三聚氰胺,并进行定容,得到待测溶液的步骤包括:
将所述待测奶与溶剂混合,得预混液,其中,所述溶剂选自甲醇及乙醇中的至少一种;
将所述预混液与脂肪吸附材料混合,得混合液;及
将所述混合溶液依次进行超声和过滤,然后用水定容,得到所述待测溶液。
在其中一个实施例中,所述待测奶与所述预混液的比例为1g:5mL~10mL,所述待测奶与所述脂肪吸附材料的比例为1g:1g~2g。
在其中一个实施例中,所述溶剂为甲醇,所述溶剂中的CH 3OH的体积百分浓度为60%~100%。
在其中一个实施例中,所述获取多个不同浓度的所述三聚氰胺溶液的太赫兹吸收谱图的步骤包括:
将多个不同浓度的所述三聚氰胺溶液置于多个样品池中,然后分别获取空载的所述样品池和多个装有多个不同浓度的所述三聚氰胺溶液的所述样品池的太赫兹时域波形,并将空载的所述样品池的太赫兹时域波形定义为参考信号,装有所述三聚氰胺溶液的所述样品池的太赫兹时域波形定义为样品信号;
对所述参考信号及多个所述样品信号分别进行傅里叶变换及校正,分别得到空载的所述样品池的频域光谱图和多个装有多个不同浓度的所述三聚氰胺溶液的所述样品池的频域光谱图;及
根据空载的所述样品池和多个装有多个不同浓度的所述三聚氰胺溶液的所述样品池的频域光谱图,并基于菲涅尔公式的数据处理模型,计算多个不同浓度的所述三聚氰胺溶液的吸收系数,并根据所述吸收系数建立多个不同浓度的所述三聚氰胺溶液的太赫兹吸收谱图。
在其中一个实施例中,所述获取空载的所述样品池的频域光谱图和多个装有多个不同浓度的所述三聚氰胺溶液的所述样品池的太赫兹时域波形的步骤中,太赫兹谱频率为0.06THz~4.0THz。
在其中一个实施例中,所述对所述参考信号及多个所述样品信号分别进行傅里叶变换及校正,分别得到空载的所述样品池的频域光谱图和多个装有多个不同浓度的所述三聚氰胺溶液的所述样品池的频域光谱图的步骤包括:
对所述参考信号及多个所述样品信号分别进行傅里叶变换,得到所述参考信号的频域数据及多个所述样品信号的频域数据;及
根据Blackman-Harris窗函数法对所述参考信号的频域数据及多个所述样品信号的频域数据进行校正,分别计算得到空载的所述样品池的频域光谱图和多 个装有多个不同浓度的所述三聚氰胺溶液的所述样品池的频域光谱图。
在其中一个实施例中,所述根据空载的所述样品池和多个装有多个不同浓度的所述三聚氰胺溶液的所述样品池的频域光谱图,并基于菲涅尔公式的数据处理模型,计算多个不同浓度的所述三聚氰胺溶液的吸收系数,并根据所述吸收系数建立多个不同浓度的所述三聚氰胺溶液的太赫兹吸收谱图的步骤包括:
根据公式
Figure PCTCN2019075144-appb-000001
Figure PCTCN2019075144-appb-000002
分别计算多个不同浓度的所述三聚氰胺溶液的吸收系数,其中,n(ω)为所述三聚氰胺溶液的折射率,ω为光谱的角频率,Φ(ω)为所述样品信号与所述参考信号的相位差,d为所述三聚氰胺溶液的光程厚度;c为太赫兹波在真空中的传播速度,α(ω)为所述三聚氰胺溶液的吸收系数,ρ(ω)为所述样品信号与所述参考信号的振幅比值;及
根据所述吸收系数建立多个不同浓度的所述三聚氰胺溶液的太赫兹吸收谱图。
在其中一个实施例中,所述根据所述待测溶液的三聚氰胺的吸收峰面积、所述三聚氰胺溶液的浓度与所述三聚氰胺溶液的吸收峰面积的函数关系,计算得到所述待测溶液的三聚氰胺的浓度的步骤中,所述三聚氰胺标准品的浓度与所述三聚氰胺溶液的吸收峰面积的函数关系:
y=-0.0032x 2+6.7613x-22.793,
其中,y为所述三聚氰胺溶液的吸收峰面积,x为所述三聚氰胺溶液的浓度。
在其中一个实施例中,所述样品池为石英样品池,所述样品池的光程为0.1mm~0.5mm。
上述三聚氰胺的检测方法利用太赫兹时域光谱直接检测三聚氰胺的水溶 液,且检测速度快。传统的太赫兹时域光谱检测奶中的三聚氰胺的含量时,一般采用固体形式,比如先将奶粉压片等。因此,现有的液态奶中的三聚氰胺无法直接采用太赫兹时域光谱检测检测,需要将液态奶干燥后检测。上述三聚氰胺的检测方法弥补了太赫兹时域光谱检测时的此项不足,能够直接检测提取的三聚氰胺的水溶液,液态奶不需要额外干燥。而且与传统检测三聚氰胺的高效液相色谱法、气相色谱-质谱联用法、液相色谱-质谱相比,且具有快速且准确度高的优势。
附图说明
图1为一实施方式的空载的石英样品池及装有100μg/mL三聚氰胺溶液的石英样品池的太赫兹时域波形图;
图2为图1所示的实施方式的部分浓度的三聚氰胺溶液的太赫兹吸收谱图;
图3为图1所示的实施方式中三聚氰胺溶液的浓度与三聚氰胺溶液的吸收峰面积的函数关系图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的部分实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本发明公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
一实施方式的三聚氰胺的检测方法,包括以下步骤:
S110、将三聚氰胺标准品与水混合,配制成多个不同浓度的三聚氰胺溶液。
具体地,将三聚氰胺标准品与去离子水混合,配制成多个不同浓度的三聚氰胺溶液。
在其中一个实施例中,先以三聚氰胺标准品配置母液,然后用去离子水稀释,得到不同浓度的三聚氰胺溶液。
进一步地,称取三聚氰胺标准品,然后用去离子水定容,配置成母液,然后取母液用去离子水稀释,得到不同浓度的三聚氰胺溶液。
在其中一个实施例中,称取不同质量的三聚氰胺标准品,用去离子水定容,得到不同浓度的三聚氰胺溶液。
S120、提取待测奶中的三聚氰胺,并用水进行定容,得到待测溶液。
具体地,提取待测奶中的三聚氰胺,并用水进行定容,得到待测溶液的操作包括S121~S125。
S121、将待测奶与溶剂混合,得预混液。
具体地,将待测奶与溶剂混合均匀,得预混液。其中,溶剂选自甲醇及乙醇中的至少一种。
进一步地,待测奶与预混液的比例为1g:5mL~10mL。
更进一步优选地,待测奶与预混液的比例为1.0g:5mL。
进一步地,溶剂为甲醇,溶剂中的CH 3OH的体积百分浓度为60%~100%。优选地,溶剂中的CH 3OH的体积百分浓度为70%~90%。
更进一步优选地,剂中的CH 3OH的体积百分浓度90%。
进一步地,溶剂为乙醇,溶剂中C 2H 5OH的体积百分浓度为70%~95%。
优选地,溶剂中C 2H 5OH的体积百分浓度为95%。
在其中一个实施例中,称取1g的待测奶,用CH 3OH体积百分浓度70%~90%的甲醇定容至5mL~10mL,得到预混液。
在其中一个实施例中,称取1g的待测奶,用CH 3OH体积百分浓度70%~90%的甲醇定容至5mL,得到预混液。
在其中一个实施例中,称取1g的待测奶,用C 2H 5OH体积百分浓95%的乙醇定容至5mL,得到预混液。
需要说明的是,待测奶可以市售奶粉冲兑之后形成的液态奶,也可以是市售的液态奶。
S123、将预混液与脂肪吸附材料混合均匀,得混合液。
具体地,待测奶与脂肪吸附材料的比例为1g:1g~2g。
优选地,待测奶与脂肪吸附材料的比例为1g:1g。
具体地,脂肪吸附材料包括LAS材料。
优选地,LAS材料的粒径为40μm~100μm,进一步优选为60μm。
在其中一个实施例中,称取1g~2g脂肪吸附材料与预混液混合均匀,其中,测奶与脂肪吸附材料的比例为1g:1g~2g。
在其中一个实施例中,称取1g~2g的LAS材料与预混液混合均匀,其中,测奶与LAS材料的比例为1g:1g~2g。
S125、将混合溶液依次进行超声和过滤,然后用水定容,得到待测溶液。
具体地,将混合溶液依次进行超声和过滤,然后氮吹、用水定容,得到待测溶液。
具体地,超声时间为10min~20min。
具体地,过滤为离心过滤。优选地,离心转速为6000r/min~10000/min,离心时间为10min~20min。更进一步优选地,离心转速为7000r/min~9000r/min, 离心时间为15min。
具体地,氮吹的温度为40℃~50℃。优选地,氮吹的温度为40℃。
进一步地,离心过滤之后,氮吹之前,还包括将离心过滤得到的上清液过0.2μm~0.5μm的微孔滤膜,得到滤液,然后将滤液氮吹。更进一步地,微孔滤膜的孔径为0.22μm。
在其中一个实施例中,将混合溶液依次进行超声15min、8000r/min离心15min过滤,得到上清液,然后将上清液过0.22μm的微孔滤膜,得到滤液,然后将滤液40℃氮吹、用去离子水定容,得到待测溶液。
液态奶的基质成分复杂,含有大量蛋白质和脂肪,有效的提取液态奶中的三聚氰胺是检测三聚氰胺的关键步骤。一般方法选择溶剂除去部分杂质后,再过固相萃取柱(或者三聚氰胺专用分子印迹柱),氮吹定容后测试。气相色谱-质谱法检测时还需要加入衍生剂。液相色谱-质谱法检测时还需要加入离子对试剂,而目前使用的离子对试剂如辛烷磺酸钠不易挥发,给液相色谱-质谱的电喷雾离子源(ESI)带来极大的影响。因此,传统的处理方法存在步骤繁琐、耗时等缺点。
目前的一些快速方法,如国家标准GB/T22400-2008,使用乙腈提取会引起部分脂肪类物质溶解,对检测产生较大干扰。
再者,提取三聚氰胺过程使用乙腈等有毒有机溶剂,对操作人员和环境存在不利影响。
上述待测奶中的三聚氰胺采用脂肪吸附材料及溶剂提取,该提取方法能够快速、简捷地得到三聚氰胺,而且得到的三聚氰胺对检测无干扰,且该提取方法对操作人员及环境友好。
可以理解的是,在其他实施方式中,也可以采用其他提取方式提取待测奶 中的三聚氰胺,只要能够有效地、完整地提取待测奶中的三聚氰胺即可。
S130、获取多个不同浓度的三聚氰胺溶液的太赫兹吸收谱图。
具体地,获取多个不同浓度的三聚氰胺溶液的太赫兹吸收谱图的操作包括S131~S137。
S131、提供多个样品池。
具体地,样品池为石英样品池,样品池的光程为0.1mm~0.5mm。
S133、将多个不同浓度的三聚氰胺溶液置于多个样品池中,然后分别获取空载的样品池和多个装有多个不同浓度的三聚氰胺溶液的样品池的太赫兹时域波形,并将空载的样品池的太赫兹时域波形定义为参考信号,装有三聚氰胺溶液的样品池的太赫兹时域波形定义为样品信号。
具体地,将多个不同浓度的三聚氰胺溶液置于多个样品池中,然后在太赫兹谱频率为0.06THz~4.0THz下分别获取空载的样品池和多个装有多个不同浓度的三聚氰胺溶液的样品池的太赫兹时域波形,并将样品池的太赫兹时域波形定义为参考信号,装有三聚氰胺溶液的样品池的太赫兹时域波形定义为多个样品信号。
在液体样品测试时,承载液态样本的样品池本身对太赫兹波有一定的吸收,且会产生多重反射(F-P效应)的时域信号干扰。获取空载的样品池的太赫兹时域波形,以作为空白,以消除吸收池本身的干扰。
具体地,利用透射式太赫兹时域光谱系统,分别获取空载的样品池和多个装有多个不同浓度的三聚氰胺溶液的样品池的太赫兹时域波形。
在其中一个实施例中,在氮气吹扫情况下,透射式太赫兹时域光谱系统的样品仓相对湿度≤5%时,检测空载的石英吸收池,获得空载的石英吸收池的太赫兹时域波形,并将空载的石英吸收池的太赫兹时域波形定义为参考信号。
具体地,透射式太赫兹时域光谱系统在信号的扫描过程中,扫描范围0ps~1200ps,采集速率为30scans/s,太赫兹时域光谱分辨率为1.2cm -1
需要说明的是,太赫兹时域波形包括相位信息、振幅信息。
S135、对参考信号及多个样品信号分别进行傅里叶变换及校正,得到空载的样品池的频域光谱图和多个装有多个不同浓度的三聚氰胺溶液的样品池的频域光谱图。
具体地,对参考信号及多个样品信号分别进行傅里叶变换,得到参考信号及多个样品信号的频域数据。然后根据Blackman-Harris窗函数法对参考信号的频域数据及多个样品信号的频域数据进行校正,计算得到空载的样品池的频域光谱图和多个装有多个不同浓度的三聚氰胺溶液的样品池的频域光谱图。
经研究发现,提取三聚氰胺的溶解样品的溶剂,比如常用甲醇、乙醇、乙腈等对在太赫兹波段有强烈的吸收,而且这些干扰使用不同的窗函数法(例如矩形窗、三角窗、高斯窗、Blackman-Harris窗函数等),都无法获取三聚氰胺太赫兹吸收峰。
经研究发现,虽然水作为溶剂在太赫兹波段有强烈的吸收与干扰,但能够通过Blackman-Harris窗函数法,消除回波及其他干扰噪声的影响。
具体地,对参考信号及多个样品信号分别进行傅里叶变换,得到参考信号及多个样品信号的频域数据,参考信号及多个样品信号的频域数据包括参考信号及多个样品信号的频域分布。
进一步地,参考信号及多个样品信号的频域分布为:
Er(ω)=Ar(ω)exp[-iφr(ω)]=∫Er(t)exp(-iωt)dt
Es(ω)=As(ω)exp[-iφs(ω)]=∫Es(t)exp(-iωt)dt
其中,ω为角频率,Ar(ω)和As(ω)分别为参考信号和样品信号电场的振 幅;φr(ω)和iφs(ω)分别为参考信号和样品信号电场的相位;i是虚数单位、Er(ω)是参考信号的频域信号、Es(ω)是样品的频域信号、Er(t)是参考信号的时域信号、Es(t)是样品信号的时域信号。
S137、根据空载的样品池和多个装有多个不同浓度的三聚氰胺溶液的样品池的频域光谱图,并基于菲涅尔公式的数据处理模型,计算多个不同浓度的三聚氰胺溶液的吸收系数,并根据吸收系数建立多个不同浓度的三聚氰胺溶液的太赫兹吸收谱图。
具体地,根据空载的样品池和多个装有多个不同浓度的三聚氰胺溶液的样品池的频域光谱图中的物理参数,物理参数包括相位信息、振幅信息。然后根据公式
Figure PCTCN2019075144-appb-000003
Figure PCTCN2019075144-appb-000004
分别计算多个不同浓度的三聚氰胺溶液的吸收系数,其中,n(ω)为三聚氰胺溶液的折射率,ω为光谱的角频率,Φ(ω)为样品信号与参考信号的相位差,d为三聚氰胺溶液的光程厚度;c为太赫兹波在真空中的传播速度,α(ω)为三聚氰胺溶液的吸收系数,ρ(ω)为样品信号与参考信号的振幅比值。然后根据吸收系数建立多个不同浓度的三聚氰胺溶液的太赫兹吸收谱图。
S140、根据多个不同浓度的三聚氰胺溶液的样品池的太赫兹吸收谱图,确定三聚氰胺标准品的吸收峰,并根据三聚氰胺标准品的吸收峰分别获取多个不同浓度的三聚氰胺溶液的吸收峰面积,建立三聚氰胺溶液的浓度与三聚氰胺溶液的吸收峰面积的函数关系。
在其中一个实施例中,三聚氰胺标准品的吸收峰1.98THz。
在其中一个实施例中,三聚氰胺溶液的浓度与三聚氰胺溶液的吸收峰面积的函数关系为:
y=-0.0032x 2+6.7613x-22.793,
其中,y为三聚氰胺溶液的吸收峰面积,x为三聚氰胺溶液的浓度。
S150、获取待测溶液的太赫兹吸收谱图。
具体地,获取待测溶液的太赫兹吸收谱图的方法与获取多个不同浓度的三聚氰胺溶液的太赫兹吸收谱图的方法类似,其不同在于,待测溶液的数量可以是一个,也可以是多个,而三聚氰胺溶液的数量为多个。
S160、根据待测溶液的太赫兹吸收谱图及三聚氰胺标准品的吸收峰,确定待测溶液的三聚氰胺的吸收峰,并计算得到待测溶液的三聚氰胺的吸收峰面积。
S170、根据待测溶液的三聚氰胺的吸收峰面积、三聚氰胺溶液的浓度与三聚氰胺溶液的吸收峰面积的函数关系,计算得到待测溶液的三聚氰胺的浓度。
S180、根据待测溶液的三聚氰胺的浓度,计算得到待测奶中的三聚氰胺的浓度。
上述三聚氰胺的检测方法至少包括以下优点:
(1)经验证,上述三聚氰胺的检测方法利用太赫兹时域光谱直接检测三聚氰胺的水溶液,且检测速度快。传统的太赫兹时域光谱检测奶中的三聚氰胺的含量时,一般采用固体形式,比如先将奶粉压片等。因此,现有的液态奶中的三聚氰胺无法直接采用太赫兹时域光谱检测检测,需要将液态奶干燥后检测。上述三聚氰胺的检测方法弥补了太赫兹时域光谱检测时的此项不足,能够直接检测提取的三聚氰胺的水溶液,液态奶不需要额外干燥。而且与传统检测三聚氰胺的高效液相色谱法、气相色谱-质谱联用法、液相色谱-质谱相比,且具有快速且准确度高的优势。
(2)液态奶的基质成分复杂,含有大量蛋白质和脂肪,有效的样品前处理是检测三聚氰胺的关键步骤。一般方法选择溶剂除去部分杂质后,再过固相萃 取柱(或者三聚氰胺专用分子印迹柱),氮吹定容后测试。气相色谱-质谱法还需要加入衍生剂,液相色谱-质谱法需要加入离子对试剂,而目前使用的离子对试剂如辛烷磺酸钠不易挥发,给液相色谱-质谱法的电喷雾离子源(ESI)带来极大的影响。传统的处理方法存在步骤繁琐、耗时等缺点。
一些快速方法,如国家标准GB/T22400-2008,使用乙腈提取会引起部分脂肪类物质溶解,对检测产生较大干扰。再者,提取三聚氰胺过程使用乙腈等有毒有机溶剂,对操作人员和环境存在不利影响。
上述三聚氰胺的检测方法能够快速的处理样品,并且处理的方法简捷、对后续检测无影响,处理中用的试剂均为环境友好型。
以下为具体实施例部分(以下实施例如无特殊说明,则不含有除不可避免
的杂质以外的其它未明确指出的组分):
以下实施例中,三聚氰胺标准品购自美国ChemService公司,纯度为99.3%。
LAS材料(粒径60μm)购自于华谱科仪(北京)科技有限公司,太赫兹时域光谱系统为Teraview公司生产的型号为TPS-4000的太赫兹时域光谱系统,其他仪器及试剂均为市场产品。
实施例1
(1)称取三聚氰胺标准品0.01g,精确到0.1mg,用去离子水稀释并定容至10mL以作为母液,母液最终浓度为1000μg/mL,存放在4℃冰箱中备用。
(2)取母液用去离子水稀释后,得到2μg/mL、10μg/mL、100μg/mL、500μg/mL、1000μg/mL的三聚氰胺溶液。
(3)分别取1mL上述多个不同浓度的三聚氰胺溶液置于多个石英样品池中,石英吸收池的光程为0.5mm,石英吸收池的容积为1mL。然后在太赫兹谱 频率为0.06THz~4.0THz,扫描范围0ps-1200ps,采集速率为30scans/s,太赫兹时域光谱分辨率为1.2cm -1下分别获取空载的石英样品池和多个不同浓度的三聚氰胺溶液的太赫兹时域波形,并将样品池的太赫兹时域波形定义为参考信号,多个不同浓度的三聚氰胺溶液的太赫兹时域波形定义为多个样品信号。如图1为空载的石英样品池及100μg/mL三聚氰胺溶液的太赫兹时域波形。
(4)对参考信号及多个样品信号分别进行傅里叶变换,得到参考信号及多个样品信号的频域数据。然后根据Blackman-Harris窗函数法对参考信号的频域数据及多个样品信号的频域数据进行校正,计算得到参考信号的频域光谱图及多个不同浓度的三聚氰胺溶液的频域光谱图。
(5)根据参考信号的频域光谱图、多个不同浓度的三聚氰胺溶液的频域光谱图中的物理参数,物理参数包括相位信息、振幅信息。然后根据
Figure PCTCN2019075144-appb-000005
Figure PCTCN2019075144-appb-000006
分别计算多个不同浓度的三聚氰胺溶液的吸收系数,其中,n(ω)为三聚氰胺溶液的折射率,ω为光谱的角频率,Φ(ω)为样品信号与参考信号的相位差,d为三聚氰胺溶液的光程厚度;c为太赫兹波在真空中的传播速度,α(ω)为三聚氰胺溶液的吸收系数,ρ(ω)为样品信号与参考信号的振幅比值。然后建立上述多个不同浓度的三聚氰胺溶液的太赫兹吸收谱图。如图2所示,图中为2μg/mL、100μg/mL、1000μg/mL的三聚氰胺溶液的太赫兹吸收谱图。
(6)根据多个不同浓度的三聚氰胺溶液的太赫兹吸收谱图,确定三聚氰胺标准品的吸收峰为1.98THz,并根据三聚氰胺标准品的吸收峰分别获取多个不同浓度的三聚氰胺溶液的吸收峰面积。建立三聚氰胺溶液的浓度与三聚氰胺溶液的吸收峰面积的函数关系。如图3所示,三聚氰胺溶液的浓度与三聚氰胺溶 液的吸收峰面积的函数关系为:
y=-0.0032x 2+6.7613x-22.793,
其中,y为三聚氰胺溶液的吸收峰面积,x为三聚氰胺溶液的浓度。
实施例2
(1)称取1.0g伊利液态纯牛奶(精确到0.01g),置于10mL离心管中,用CH 3OH的体积百分浓度为90%的甲醇定容至5mL,混匀,得预混液。
(2)将1g LAS材料(粒径60μm)加入预混液中,混匀,超声15min后,于8000r/min离心15min,取上清液过0.22μm微孔滤膜,得滤液。取滤液至氮吹仪上40℃氮吹,最后用水定容至2mL,得到伊利液态纯牛奶的待测溶液。
(3)获取伊利液态纯牛奶的待测溶液的太赫兹吸收谱图步骤与实施例1中步骤(3)~(5)步骤大致相同,其不同在于,实施例1是分别检测的多个不同浓度的三聚氰胺溶液,而本实施例是检测的一个浓度的伊利液态纯牛奶的待测溶液。
(4)根据伊利液态纯牛奶的待测溶液的太赫兹吸收谱图及实施例1中三聚氰胺标准品的吸收峰,确定伊利液态纯牛奶的待测溶液的三聚氰胺的吸收峰,并计算得到伊利液态纯牛奶的溶液的三聚氰胺的吸收峰面积;
(5)将伊利液态纯牛奶的溶液的三聚氰胺的吸收峰面积、代入实施例1中三聚氰胺溶液的浓度与三聚氰胺溶液的吸收峰面积的函数关系中,计算得到伊利液态纯牛奶的待测溶液的三聚氰胺的浓度;及
(6)根据伊利液态纯牛奶的待测溶液的三聚氰胺的浓度,计算得到伊利液态纯牛奶的待测溶液中的三聚氰胺的浓度。
实施例2的结果为未检出三聚氰胺。
实施例3
实施例3的步骤大致与实施例2相同,其不同在于,本实施例将伊利液态纯牛奶替换为蒙牛液态纯牛奶。
实施例3的结果未检出三聚氰胺。
实施例4
实施例4的步骤大致与实施例2相同,其不同在于,本实施例在获得的伊利液态纯牛奶的待测溶液后,另外加入终浓度为2μg/mL三聚氰胺溶液混合,得伊利液态纯牛奶的加标待测溶液,然后用伊利液态纯牛奶的加标待测溶液进行实施例2的步骤(3)~(6)。
实施例4的结果为三聚氰胺浓度为2.9μg/mL。
实施例5
实施例5的步骤大致与实施例4相同,其不同在于,本实施例以另外加入终浓度为5μg/mL三聚氰胺溶液混合替换实施例4的另外加入终浓度为2μg/mL三聚氰胺溶液混合。
实施例5的结果为三聚氰胺浓度为6.1μg/mL。
实施例6
实施例6的步骤大致与实施例4相同,其不同在于,本实施例以另外加入终浓度为10μg/mL三聚氰胺溶液混合替换实施例4的另外加入终浓度为2μg/mL三聚氰胺溶液混合。
实施例4的结果为三聚氰胺浓度为12.3μg/mL。
实施例7
实施例7的步骤大致与实施例2相同,其不同在于,本实施例以200μg/mL的三聚氰胺乙腈溶液(由三聚氰胺标准品以纯乙腈为溶剂配制而成,其中三聚氰胺的浓度为200μg/mL)为替换实施例4的伊利液态纯牛奶的待测溶液进行检测,然后经傅里叶变换,然后分别使用矩形窗函数法、三角窗函数法、高斯窗函数法、Blackman-Harris窗函数法进行校正处理。
实施例7的结果为:无法获取三聚氰胺的乙腈溶液中三聚氰胺的太赫兹吸收峰。
实施例8
实施例8的步骤大致与实施例7相同,其不同在于,本实施例以200μg/mL的三聚氰胺甲醇溶液(由三聚氰胺标准品以纯甲醇为溶剂配制而成,其中三聚氰胺的浓度为200μg/mL)浓度为替换实施例7的200μg/mL的三聚氰胺乙腈溶液进行检测。
实施8的结果为:无法获取三聚氰胺的甲醇溶液中三聚氰胺的太赫兹吸收峰。
实施例9
实施例9的步骤大致与实施例6相同,其不同在于,在提取伊利液态纯牛奶中的三聚氰胺的步骤中,本实施例的CH 3OH的体积百分浓度为90%的甲醇定容至10mL,而实施例6的用CH 3OH的体积百分浓度为90%的甲醇定容至5mL,本实施例的LAS材料(粒径60μm)的用量为2g,而实施例6的LAS材料(粒径60μm)的用量为1g,其它操作步骤相同。
实施例9的结果为三聚氰胺浓度为13.0μg/mL。
对比例1
以伊利液态纯牛奶,按照GB/T 22400-2008《原料乳中三聚氰胺的快速检测液相色谱法》检测其中的三聚氰胺的浓度。
对比例1的结果为未检出三聚氰胺。
对比例2
以蒙牛液态纯牛奶,按照GB/T 22400-2008《原料乳中三聚氰胺的快速检测液相色谱法》检测其中的三聚氰胺的浓度。
对比例2的结果为未检出三聚氰胺。
对比例3
对比例3的检测样品大致与实施例4相同,均是在上样检测之前加入终浓度为2μg/mL三聚氰胺溶液混合后上样检测,其不同在于,本实施例按照GB/T22400-2008《原料乳中三聚氰胺的快速检测液相色谱法》检测其中的三聚氰胺的浓度。
对比例3的结果为三聚氰胺的浓度为2.1μg/mL。
对比例4
对比例4的检测样品大致于实施例5相同,均是在上样检测之前加入终浓度为5μg/mL三聚氰胺溶液混合后上样检测,其不同在于,本实施例按照GB/T22400-2008《原料乳中三聚氰胺的快速检测液相色谱法》检测其中的三聚氰胺 的浓度。
对比例4的结果为三聚氰胺的浓度为5.1μg/mL。
对比例5
对比例5的检测样品大致于实施例4相同,均是在上样检测之前加入终浓度为10μg/mL三聚氰胺溶液混合后上样检测,其不同在于,本实施例按照GB/T22400-2008《原料乳中三聚氰胺的快速检测液相色谱法》检测其中的三聚氰胺的浓度。
对比例5的结果为三聚氰胺的浓度为9.9μg/mL。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种三聚氰胺的检测方法,其特征在于,包括以下步骤:
    将三聚氰胺标准品与水混合,配制成多个不同浓度的三聚氰胺溶液;
    提取待测奶中的三聚氰胺,并用水进行定容,得到待测溶液;
    获取所述待测溶液的太赫兹吸收谱图;
    获取多个不同浓度的所述三聚氰胺溶液的太赫兹吸收谱图;
    根据多个不同浓度的所述三聚氰胺溶液的太赫兹吸收谱图,确定所述三聚氰胺标准品的吸收峰,并根据所述三聚氰胺标准品的吸收峰分别获取多个不同浓度的所述三聚氰胺溶液的吸收峰面积,建立所述三聚氰胺溶液的浓度与所述三聚氰胺溶液的吸收峰面积的函数关系;
    根据所述待测溶液的太赫兹吸收谱图及所述三聚氰胺标准品的吸收峰,确定所述待测溶液的三聚氰胺的吸收峰,并计算得到所述待测溶液的三聚氰胺的吸收峰面积;
    根据所述待测溶液的三聚氰胺的吸收峰面积、所述三聚氰胺溶液的浓度与所述三聚氰胺溶液的吸收峰面积的函数关系,计算得到所述待测溶液的三聚氰胺的浓度;及
    根据所述待测溶液的三聚氰胺的浓度,计算得到所述待测奶中的三聚氰胺的浓度。
  2. 根据权利要求1所述的三聚氰胺的检测方法,其特征在于,所述提取待测奶中的三聚氰胺,并进行定容,得到待测溶液的步骤包括:
    将所述待测奶与溶剂混合,得预混液,其中,所述溶剂选自甲醇及乙醇中的至少一种;
    将所述预混液与脂肪吸附材料混合,得混合液;及
    将所述混合溶液依次进行超声和过滤,然后用水定容,得到所述待测溶液。
  3. 根据权利要求2所述的三聚氰胺的检测方法,其特征在于,所述待测奶与所述预混液的比例为1g:5mL~10mL,所述待测奶与所述脂肪吸附材料的比例为1g:1g~2g。
  4. 根据权利要求2所述的三聚氰胺的检测方法,其特征在于,所述溶剂为甲醇,所述溶剂中的CH 3OH的体积百分浓度为60%~100%。
  5. 根据权利要求1所述的三聚氰胺的检测方法,其特征在于,所述获取多个不同浓度的所述三聚氰胺溶液的太赫兹吸收谱图的步骤包括:
    将多个不同浓度的所述三聚氰胺溶液置于多个样品池中,然后分别获取空载的所述样品池和多个装有多个不同浓度的所述三聚氰胺溶液的所述样品池的太赫兹时域波形,并将空载的所述样品池的太赫兹时域波形定义为参考信号,装有所述三聚氰胺溶液的所述样品池的太赫兹时域波形定义为样品信号;
    对所述参考信号及多个所述样品信号分别进行傅里叶变换及校正,分别得到空载的所述样品池的频域光谱图和多个装有多个不同浓度的所述三聚氰胺溶液的所述样品池的频域光谱图;及
    根据空载的所述样品池和多个装有多个不同浓度的所述三聚氰胺溶液的所述样品池的频域光谱图,并基于菲涅尔公式的数据处理模型,计算多个不同浓度的所述三聚氰胺溶液的吸收系数,并根据所述吸收系数建立多个不同浓度的所述三聚氰胺溶液的太赫兹吸收谱图。
  6. 根据权利要求5所述的三聚氰胺的检测方法,其特征在于,所述获取空载的所述样品池的频域光谱图和多个装有多个不同浓度的所述三聚氰胺溶液的所述样品池的太赫兹时域波形的步骤中,太赫兹谱频率为0.06THz~4.0THz。
  7. 根据权利要求5所述的三聚氰胺的检测方法,其特征在于,所述对所述 参考信号及多个所述样品信号分别进行傅里叶变换及校正,分别得到空载的所述样品池的频域光谱图和多个装有多个不同浓度的所述三聚氰胺溶液的所述样品池的频域光谱图的步骤包括:
    对所述参考信号及多个所述样品信号分别进行傅里叶变换,得到所述参考信号的频域数据及多个所述样品信号的频域数据;及
    根据Blackman-Harris窗函数法对所述参考信号的频域数据及多个所述样品信号的频域数据进行校正,分别计算得到空载的所述样品池的频域光谱图和多个装有多个不同浓度的所述三聚氰胺溶液的所述样品池的频域光谱图。
  8. 根据权利要求5所述的三聚氰胺的检测方法,其特征在于,所述根据空载的所述样品池和多个装有多个不同浓度的所述三聚氰胺溶液的所述样品池的频域光谱图,并基于菲涅尔公式的数据处理模型,计算多个不同浓度的所述三聚氰胺溶液的吸收系数,并根据所述吸收系数建立多个不同浓度的所述三聚氰胺溶液的太赫兹吸收谱图的步骤包括:
    根据公式
    Figure PCTCN2019075144-appb-100001
    Figure PCTCN2019075144-appb-100002
    分别计算多个不同浓度的所述三聚氰胺溶液的吸收系数,其中,n(ω)为所述三聚氰胺溶液的折射率,ω为光谱的角频率,Φ(ω)为所述样品信号与所述参考信号的相位差,d为所述三聚氰胺溶液的光程厚度;c为太赫兹波在真空中的传播速度,α(ω)为所述三聚氰胺溶液的吸收系数,ρ(ω)为所述样品信号与所述参考信号的振幅比值;及
    根据所述吸收系数建立多个不同浓度的所述三聚氰胺溶液的太赫兹吸收谱图。
  9. 根据权利要求1所述的三聚氰胺的检测方法,其特征在于,所述根据所 述待测溶液的三聚氰胺的吸收峰面积、所述三聚氰胺溶液的浓度与所述三聚氰胺溶液的吸收峰面积的函数关系,计算得到所述待测溶液的三聚氰胺的浓度的步骤中,所述三聚氰胺标准品的浓度与所述三聚氰胺溶液的吸收峰面积的函数关系:
    y=-0.0032x 2+6.7613x-22.793,
    其中,y为所述三聚氰胺溶液的吸收峰面积,x为所述三聚氰胺溶液的浓度。
  10. 根据权利要求5所述的三聚氰胺的检测方法,其特征在于,所述样品池为石英样品池,所述样品池的光程为0.1mm~0.5mm。
PCT/CN2019/075144 2018-05-22 2019-02-15 三聚氰胺的检测方法 WO2019223372A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810494104.0 2018-05-22
CN201810494104.0A CN108760672B (zh) 2018-05-22 2018-05-22 三聚氰胺的检测方法

Publications (1)

Publication Number Publication Date
WO2019223372A1 true WO2019223372A1 (zh) 2019-11-28

Family

ID=64007767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075144 WO2019223372A1 (zh) 2018-05-22 2019-02-15 三聚氰胺的检测方法

Country Status (2)

Country Link
CN (1) CN108760672B (zh)
WO (1) WO2019223372A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111366556A (zh) * 2020-04-29 2020-07-03 蓝科微电子(深圳)有限公司 一种微生物和生物机体内含物的太赫兹检测方法及系统
CN113655023A (zh) * 2021-07-15 2021-11-16 上海理工大学 一种检测低浓度莠去津快速检测的方法
CN114878726A (zh) * 2022-04-29 2022-08-09 四川新希望乳业有限公司 一种三聚氰胺液相色谱的快检方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760672B (zh) * 2018-05-22 2020-01-10 深圳市太赫兹科技创新研究院 三聚氰胺的检测方法
CN109490245A (zh) * 2019-01-04 2019-03-19 上海理工大学 基于太赫兹时域光谱技术的丙酮液体浓度检测方法
CN110082293A (zh) * 2019-06-03 2019-08-02 云南电网有限责任公司电力科学研究院 一种绝缘油中水分无损检测装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323411A (zh) * 2013-05-30 2013-09-25 中国石油大学(北京) 一种检测塑化剂的方法及装置
CN107192689A (zh) * 2017-04-28 2017-09-22 浙江必达科技有限公司 一种基于多尺度太赫兹光谱的原包装奶粉无损检测方法
CN108760672A (zh) * 2018-05-22 2018-11-06 深圳市太赫兹科技创新研究院 三聚氰胺的检测方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8716666B1 (en) * 2010-06-10 2014-05-06 Emcore Corporation Method of detecting contaminant materials in food products
CN102565170A (zh) * 2010-12-10 2012-07-11 江南大学 灵敏的检测配方奶粉中三聚氰胺的毛细管电泳方法
JP5848621B2 (ja) * 2012-01-25 2016-01-27 浜松ホトニクス株式会社 薬物評価方法及び薬物評価装置
CN103335976B (zh) * 2013-06-04 2015-12-23 中国石油大学(北京) 利用太赫兹时域光谱检测硫酸盐、硝酸盐溶液浓度的方法
CN105628669A (zh) * 2014-10-28 2016-06-01 河北伊诺光学科技有限公司 一种牛奶和奶粉中三聚氰胺的检测方法
CN105004695A (zh) * 2015-07-22 2015-10-28 河南工业大学 利用THz-TDS技术检测酸性饮料中苯甲酸钠含量的方法
CN105806801A (zh) * 2016-04-11 2016-07-27 河南工业大学 奶制品中山梨酸钾的检测方法
CN105866281A (zh) * 2016-04-25 2016-08-17 广西壮族自治区梧州食品药品检验所 气相色谱法检测奶粉中三聚氰胺的方法
CN106525761A (zh) * 2016-11-08 2017-03-22 浙江大学 基于太赫兹光谱扫描的亚硝酸盐检测方法
CN107727608A (zh) * 2017-11-17 2018-02-23 深圳市太赫兹系统设备有限公司 吲哚美辛的检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323411A (zh) * 2013-05-30 2013-09-25 中国石油大学(北京) 一种检测塑化剂的方法及装置
CN107192689A (zh) * 2017-04-28 2017-09-22 浙江必达科技有限公司 一种基于多尺度太赫兹光谱的原包装奶粉无损检测方法
CN108760672A (zh) * 2018-05-22 2018-11-06 深圳市太赫兹科技创新研究院 三聚氰胺的检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CUI, YE: "Application of Terahertz Spectroscopy Technology in Food Safety", SCIENCE -ENGINEERING (A), CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 October 2009 (2009-10-15), pages 35, ISSN: 1674-0246 *
ZHANG, FANG ET AL.: "Quantitative Analysis of Plasticizer Based on Terahertz Time-Domain Spectroscopy", LASER & OPTOELECTRONICS PROGRESS, vol. 54, no. 3, 31 March 2017 (2017-03-31), pages 2, ISSN: 1006-4125 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111366556A (zh) * 2020-04-29 2020-07-03 蓝科微电子(深圳)有限公司 一种微生物和生物机体内含物的太赫兹检测方法及系统
CN113655023A (zh) * 2021-07-15 2021-11-16 上海理工大学 一种检测低浓度莠去津快速检测的方法
CN113655023B (zh) * 2021-07-15 2023-09-05 上海理工大学 一种检测低浓度莠去津快速检测的方法
CN114878726A (zh) * 2022-04-29 2022-08-09 四川新希望乳业有限公司 一种三聚氰胺液相色谱的快检方法

Also Published As

Publication number Publication date
CN108760672B (zh) 2020-01-10
CN108760672A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
WO2019223372A1 (zh) 三聚氰胺的检测方法
Bothner et al. Electrospray ionization of a whole virus: analyzing mass, structure, and viability
CN109060714B (zh) 甲基异柳磷的浓度的检测方法和应用
CN108776187A (zh) 一种超高效液相色谱-串联质谱检测烟用接装纸中5种甜味剂的方法
CN111239267B (zh) 一种基于gc-ms检测血清、淋巴组织中短链脂肪酸的方法
CN112326819B (zh) 一种同时测定毛发中依替唑仑、氟硝西泮以及7氨基氟硝西泮的分析方法
CN108387663B (zh) 一种用气质联用检测玩具中邻苯二甲酸酐含量的方法
CN111443152B (zh) 检测喹诺酮类化合物含量的方法和试剂盒
CN106093248A (zh) 高效液相色谱‑串联四级杆质谱联用同步测定气溶胶中左旋葡聚糖、甘露聚糖和半乳聚糖的方法
CN112198265A (zh) 用于同时检测血液类样本中多种类固醇激素的预处理方法、检测方法及试剂盒
CN108845063B (zh) 水产添加剂的检测试剂组合及检测方法
CN113325103A (zh) 一种同时测定毛发中钩吻素子、钩吻素甲和钩吻素己的分析方法
Sannino Development of a gas chromatographic/mass spectrometric method for determination of phthalates in oily foods
CN108982703B (zh) 一种多酚类物质的液质联用检测方法
CN113267589B (zh) 一种头发中16种合成大麻素类物质及其代谢物的分析方法
CN111487329A (zh) 一种同时测定血液和玻璃体液中乙醇非氧化代谢物的方法
TWI412494B (zh) 三聚氰胺檢驗試劑及其檢驗方法
Kalinoski Chemical analysis of polyoxyalkylene block copolymers
CN114674953A (zh) 一种测定乌梅中化学成分含量的方法
CN113281288A (zh) 烟用接装纸前处理方法及测定烟用接装纸中糖精钠的方法
CN110749691A (zh) 一种测定婴幼儿辅助食品中黄曲霉毒素及其同系物的hplc-ms/ms方法
RU2768892C2 (ru) Способ количественного определения многофункциональной моющей присадки в бензинах методом инфракрасной спектрометрии с предварительным концентрированием
Carlson et al. Determination of polymer composition of rubber vulcanizates
Hioki et al. An improved sample preparation method for the sensitive detection of peptides by MALDI‐MS
TWI794923B (zh) 燕窩酸快速檢測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807292

Country of ref document: EP

Kind code of ref document: A1