WO2019221559A1 - 하이드로겔 제형 기반의 마이크로니들 접착 패치 - Google Patents

하이드로겔 제형 기반의 마이크로니들 접착 패치 Download PDF

Info

Publication number
WO2019221559A1
WO2019221559A1 PCT/KR2019/005952 KR2019005952W WO2019221559A1 WO 2019221559 A1 WO2019221559 A1 WO 2019221559A1 KR 2019005952 W KR2019005952 W KR 2019005952W WO 2019221559 A1 WO2019221559 A1 WO 2019221559A1
Authority
WO
WIPO (PCT)
Prior art keywords
microneedle patch
seq
microneedle
hydrogel layer
protein
Prior art date
Application number
PCT/KR2019/005952
Other languages
English (en)
French (fr)
Inventor
차형준
전은영
이중호
임근배
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to US17/056,340 priority Critical patent/US20210275359A1/en
Publication of WO2019221559A1 publication Critical patent/WO2019221559A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/00051Accessories for dressings
    • A61F13/00063Accessories for dressings comprising medicaments or additives, e.g. odor control, PH control, debriding, antimicrobic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/02Adhesive bandages or dressings
    • A61F13/023Adhesive bandages or dressings wound covering film layers without a fluid retention layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/02Adhesive bandages or dressings
    • A61F13/0246Adhesive bandages or dressings characterised by the skin-adhering layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0021Intradermal administration, e.g. through microneedle arrays, needleless injectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/32Proteins, polypeptides; Degradation products or derivatives thereof, e.g. albumin, collagen, fibrin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/58Adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/58Adhesives
    • A61L15/585Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/64Use of materials characterised by their function or physical properties specially adapted to be resorbable inside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0031Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0042Materials resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/10Polypeptides; Proteins
    • A61L24/108Specific proteins or polypeptides not covered by groups A61L24/102 - A61L24/106
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00365Plasters use
    • A61F2013/00451Plasters use for surgical sutures, e.g. butterfly type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00655Plasters adhesive
    • A61F2013/00676Plasters adhesive hydrogel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00902Plasters containing means
    • A61F2013/00906Plasters containing means for transcutaneous or transdermal drugs application
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/02Adhesive bandages or dressings
    • A61F13/0276Apparatus or processes for manufacturing adhesive dressings or bandages
    • A61F2013/0296Apparatus or processes for manufacturing adhesive dressings or bandages for making transdermal patches (chemical processes excluded)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0023Drug applicators using microneedles

Definitions

  • the present invention relates to microneedle adhesive patches based on hydrogel formulations.
  • Bioadhesive material refers to a material having adhesion properties to various biological seals such as cell walls, cell membranes, proteins, DNA, growth factors, tissues, and the like, and hemostatic agents, tissue adhesives, tissue fillers, tissue regenerants, and drug delivery carriers. It can be applied in various ways.
  • the conventionally developed medical bioadhesive material serves only as an adjuvant for repairing wounds generated during surgery, and its functionality and physical properties are insufficient to be used independently in actual medical field. Medical adhesive materials are in direct contact with tissue and therefore require biocompatibility, and their function must be maintained for a long time, as well as the adhesion and ease of use that can momentarily terminate adhesion in the body environment.
  • bioadhesive materials commercialized and commercialized to date include cyanoacrylate based adhesives, fibrin glues and polyurethane adhesive patches. Although cyanoacrylates cure without initiators and have high adhesive strength in a short time, significant problems such as difficulty in controlling the adhesion time during polymerization, lack of heat resistance and water resistance, and generation of by-products showing biotoxicity are encountered. have. Fibrin-based bioadhesives have relatively good biocompatibility and biodegradability because they use the actual blood coagulation process, but their use is significantly lower than that of synthetic polymer-based adhesives. .
  • Polyurethane-based bioadhesive patch has a high adhesion and flexibility with the tissue, the tissue adhesion in the presence of moisture is greatly reduced, the problem of reducing the biotoxicity of the synthetic raw material remains.
  • most conventional adhesive materials are chemical synthetic based materials, and they are weak in moisture, toxic, and have limited bioavailability due to lack of biodegradability. In terms of adhesion and tissue adhesion is still far insufficient.
  • Microneedle technology forms micro-sized channels that penetrate the skin layer, rather than in the form of conventional simple patches, and has been studied for the development of local and effective transdermal drug delivery systems. This is to overcome the existing subcutaneous injection pain and drug degeneration and low absorption rate caused by oral administration, mainly aimed at transdermal delivery of active substances including various drugs, hormones, vaccines and the like.
  • various materials such as silicon, metal, glass, ceramic, etc. may be selected as the material, and the microneedle may be solid, coated, dissolving, hollow, or the like.
  • the active substance may be injected into the skin layer by changing the form of.
  • Hydrogel which is widely used in the field of tissue engineering, refers to a material that absorbs and swells a large amount of water or body fluid into a crosslinked lattice in water or body fluid, and maintains a three-dimensional structure without being dispersed in water. Even after swelling, it is thermodynamically stable and has mechanical and physicochemical properties corresponding to the intermediate form of liquid and solid. Such hydrogels usually exhibit good biocompatibility, high porosity and oxygen permeability, and can exhibit physical properties similar to soft tissue in vivo.
  • tissue engineering applications include hemostatic agents, tissue adhesives, drug delivery carriers, tissue fillers, tissue regenerants including cells and growth factors. The width is getting wider.
  • An object of the present invention is to overcome the technical limitations of the conventional adhesive patch, and to provide a microneedle patch that can be adhered underwater, with improved tissue adhesion, biocompatibility and biodegradability.
  • the inventors pay attention to the fact that mussel adhesive proteins are able to adhere underwater and have excellent biotissue adhesion and biocompatibility, and that hydrogels can swell by absorbing water or body fluids while maintaining their structure in water.
  • the present invention has been completed.
  • the present invention provides a microneedle patch comprising a first hydrogel layer comprising mussel adhesive protein and hyaluronic acid, and a second hydrogel layer comprising silk fibroin.
  • the present invention also provides a tissue adhesive comprising a microneedle patch according to the present invention.
  • a microneedle patch comprising a first hydrogel layer comprising mussel adhesive protein and hyaluronic acid, and a second hydrogel layer comprising silk fibroin, wherein the first hydrogel comprises mussel adhesive protein.
  • the gel layer provides good tissue adhesion.
  • microneedle patch according to the present invention has sufficient mechanical properties to penetrate the stratum corneum, epidermal layer and dermal layer, and after the permeation of the first hydrogel layer by water and / or body fluid, Induction of fixation provides good skin adhesion and wound closure effect.
  • the microneedle patch provided according to the present invention is capable of drug delivery to the transdermal body without biotoxicity, and can be used for inflammation prevention, wound regeneration, scar prevention or alleviation.
  • the composition of the hydrogels (a) to (e) is as follows: (a) 70% by weight SF (silk fibroin), 1 mM Ru (II) bpy3 2+ , 30 mM peroxide sulfate, distilled water dissolved; (b) 40 wt% fp-151, 5 wt% HA (hyaluronic acid), 1 mM Ru (II) bpy3 2+ , 40 mM peroxide sulfate, distilled water dissolved; (c) 40 wt% fp-151, 10 wt% HA, 1 mM Ru (II) bpy3 2+ , 40 mM peroxide sulfate, distilled water dissolved; (d) 40 wt% fp
  • FIG. 3 is a graph showing the results of confirming the cytotoxicity by performing a contact experiment with a light-crosslinked hydrogel eluate prepared according to Preparation Example 1.
  • FIG. 4 is a photograph of a vacuum chamber capable of backside vacuum system according to Preparation Example 2 and a view of a silicon mold.
  • FIG. 5 is a photograph of a single layer microneedle patch of a hydrogel formulation comprising mussel adhesive protein prepared according to Example 1-1.
  • FIG. 5 is a photograph of a single layer microneedle patch of a hydrogel formulation comprising mussel adhesive protein prepared according to Example 1-1.
  • FIG. 6 is an optical microscope, a fluorescence microscope, and a mold injection time (10 minutes to 120 minutes) of a first light-crosslinking solution containing mussel adhesive protein of a bilayer mitronic needle patch prepared according to Examples 1-2; FIG. Their fusion image.
  • FIG. 7 is a photograph of each needle according to the elapsed time when the bilayer microneedle patch having different ratios of swellable / non-swellable hydrogels was immersed in physiological saline according to Experimental Example 3.
  • FIG. 7 is a photograph of each needle according to the elapsed time when the bilayer microneedle patch having different ratios of swellable / non-swellable hydrogels was immersed in physiological saline according to Experimental Example 3.
  • Example 8 is a burst point of each of the single-layer microneedle containing the mussel adhesive protein and the double-layer microneedle including both the mussel adhesive protein and silk fibroin through a compression mode experiment using an instron according to Experimental Example 4-1 A graph showing the fracture force and a graph comparing the rupture points of the monolayer and bilayer microneedles with the force required to penetrate the skin tissue.
  • Figure 10 is a graph showing the change in tissue adhesion according to the swellable hydrogel ratio of the bilayer microneedle patch containing mussel adhesive protein and silk fibroin according to Experimental Example 5-1.
  • FIG. 11 is commercialized with a bilayer microneedle patch containing mussel adhesive protein and silk fibroin on a semi-dry surface or wet surface through instron experiments using pig skin according to Experimental Example 5-2. It is a graph comparing the tissue adhesion of the adhesive tape for wound closure.
  • FIG. 12 is a photograph showing the application of a wound bilayer microneedle patch including a mussel adhesive protein and a commercially available wound closure adhesive tape, respectively, on a 3 cm-long window of a lett skin tissue according to Experimental Example 6.
  • FIG. 12 is a photograph showing the application of a wound bilayer microneedle patch including a mussel adhesive protein and a commercially available wound closure adhesive tape, respectively, on a 3 cm-long window of a lett skin tissue according to Experimental Example 6.
  • FIG. 13 is an image of FITC-dextran mounted on a monolayer microneedle patch of a hydrogel formulation containing mussel adhesive protein according to Experimental Example 7 and immersed in physiological saline containing physiological saline or 0.02 mg / L trypsin and FITC. This graph shows the degree of -dextran release.
  • the present invention relates to a microneedle patch comprising a first hydrogel layer comprising mussel adhesive protein and hyaluronic acid, and a second hydrogel layer comprising silk fibroin.
  • the mussel adhesive protein is an adhesive protein derived from mussels, preferably Mytilus edulis, Mytilus galloprovincialis or Mytileus coruscus ( Mussel adhesion proteins derived from Mytilus coruscus) or variants thereof, but are not limited thereto.
  • Mussel adhesive proteins of the present invention are Mefp (Mytilus edulis foot protein) -1, Mgfp (Mytilus galloprovincialis foot protein) -1, Mcfp (Mytilus coruscus foot protein) -1, Mefp-2, Mefp- 3, Mgfp-3 and Mgfp-5 or variants thereof, preferably fp (foot protein) -1 (SEQ ID NO: 1), fp-2 (SEQ ID NO: 4), fp-3 (SEQ ID NO: 5) ), fp-4 (SEQ ID NO: 6), fp-5 (SEQ ID NO: 7), and fp-6 (SEQ ID NO: 8), or a fusion protein to which two or more proteins are linked, or Variants of the protein include, but are not limited to.
  • mussel adhesive proteins of the present invention include all mussel adhesive proteins described in International Publication No. WO2006 / 107183 or WO2005 / 092920.
  • the mussel adhesive protein is fp-151 (SEQ ID NO: 9), fp-131 (SEQ ID NO: 10), fp-353 (SEQ ID NO: 11), fp-153 (SEQ ID NO: 12), fp-351 (SEQ ID NO: 12) Fusion proteins such as No. 13), but are not limited thereto.
  • the mussel adhesive protein of the present invention may include a polypeptide in which decapeptides (SEQ ID NO: 2), which are repeated about 80 times at fp-1, are continuously connected 1 to 12 times or more.
  • the mussel adhesive protein of the present invention may include a polypeptide in which decapeptides (SEQ ID NO: 2), which are repeated about 80 times at fp-1, are continuously connected 1 to 12 times or more.
  • the decapeptide of SEQ ID NO: 2 may be a fp-1 variant polypeptide (SEQ ID NO: 3) linked 12 consecutive times, but is not limited thereto.
  • the mussel adhesive protein of the present invention may be a variant of fp-151 (SEQ ID NO: 15), but is not limited thereto.
  • the protein sequence of SEQ ID NO: 15 is a sequence in which a linker sequence and the like are excluded in comparison with SEQ ID NO: 9. Specifically, it is a fusion protein sequence in which the fp-1 variant sequence represented by SEQ ID NO: 14 is fused with the sequence of mgfp-5 represented by SEQ ID NO: 16.
  • the mussel adhesive protein according to the invention comprises the amino acid sequence of SEQ ID NO: 9 or SEQ ID NO: 15.
  • the present invention can also be modified mussel adhesive proteins in a range that includes conservative amino acid sequences capable of retaining the properties of the mussel adhesive proteins mentioned above. That is, at least 70%, preferably at least 80%, even more preferably at least 90%, ie 95%, 96%, 97%, 98%, 99 of the amino acid sequences of the sequence numbers exhibiting substantially equivalent effects Amino acid sequences having% or more sequence identity may also be included within the scope of the present invention.
  • the tissue is rapidly absorbed and swelled after tissue insertion, thereby inducing mechanical fixation between the inserted needle and the surrounding tissue, thereby improving tissue adhesion of the microneedle patch.
  • the silk fibroin-based non-swellable layer used in the microneedle patch portion used in the present invention uses silk fibroin inherently strong properties and hardly swells due to rigid optical crosslinking.
  • the first hydrogel layer may swell quickly by absorbing water or body fluids.
  • the second hydrogel layer hardly swells due to the strong mechanical properties and crosslinking of the silk fibroin, and can prevent tissue detachment of the microneedle patch, which may be caused when the microneedle portion swells rapidly after penetrating the tissue. have.
  • the first hydrogel layer is positioned from the tip end relative to the microneedle and the second hydrogel layer is positioned above it.
  • the first and second hydrogel layers may be crosslinked with each other.
  • the crosslinked first and second hydrogel layers may be three-dimensional network structures formed by crosslinking between tyrosine residues included in the mussel adhesive protein.
  • the first and second hydrogel layers may be photo-crosslinked with each other.
  • light-crosslinking may be performed by visible light, which may be a wavelength of 420 to 480 nm, preferably a wavelength of 449 to 455 nm, more preferably about 452 nm. .
  • the mussel adhesive protein in the microneedle patch according to the present invention may be included in 25 to 50% (w / v) relative to the first hydrogel layer. If the mussel adhesive protein content is lower than 25% (w / v), the microneedles are formed in a thin and incomplete form, and thus the mechanical strength necessary for skin penetration cannot be obtained. When the content of the mussel adhesive protein is higher than 50% (w / v), it is difficult to inject into the microneedle mold due to the high viscosity of the solution containing the mussel adhesive protein. When the microneedle is manufactured in this state, a problem arises in that an incomplete form of the microneedle is formed.
  • the hyaluronic acid may have an average molecular weight of 40 kDa to 150 kDa.
  • Hyaluronic acid is a living body-derived polymer material in which N-acetyl-D-glucosamine and D-glucuronic acid are alternately combined in a chain form, and is present in many tissues of animals such as skin and umbilical cords, and is suitable as a biomaterial and controls physical properties. This is an easy advantage.
  • the average molecular weight of hyaluronic acid is lower than 40 kDa, since the degree of crosslinking is high because of the high flexibility of the chain, a problem occurs that the swelling property of the first hydrogel layer containing hyaluronic acid is lowered.
  • the average molecular weight of hyaluronic acid is higher than 150 kDa, it is difficult to inject into the microneedle mold due to the high viscosity of the solution containing hyaluronic acid, a problem occurs that the microneedle of incomplete form is formed.
  • the hyaluronic acid may be included at 5 to 20% (w / v) with respect to the first hydrogel layer.
  • the content of hyaluronic acid is lower than 5% (w / v)
  • the content of hyaluronic acid is higher than 20% (w / v)
  • the first hydro The relatively low inclusion of mussel adhesive proteins in the gel layer results in a problem of insufficient crosslinking due to lack of tyrosine residues.
  • the hyaluronic acid may be included in the weight ratio of the mussel adhesive protein and 2: 8 to 3: 7.
  • the silk fibroin may be included at 40 to 70% (w / v) relative to the second hydrogel layer. If the content of silk fibroin is lower than 40% (w / v), the microneedles are formed in a thin and incomplete shape, and thus the mechanical strength necessary for skin penetration cannot be obtained. When the content of silk fibroin is higher than 70% (w / v), the viscosity of the solution containing the silk fibroin is high, it is difficult to inject into the mold using the pipette.
  • the silk fibroin may be included at 55 to 70% (w / v) relative to the second hydrogel layer.
  • the first hydrogel and the second hydrogel may be included in a height ratio of 2: 8 to 8: 2.
  • the height ratio of the first hydrogel to the second hydrogel is lower than 2: 8, the mechanical fixation effect on the tissue is drastically reduced due to the decrease of the swellable portion after the tissue penetration, and the height ratio is higher than 8: 2
  • the height of the microneedle portion may be 40 to 70%, preferably 55 to 65%, based on the entire needle height.
  • the invention also relates to a tissue adhesive comprising the microneedle patch according to the invention.
  • the tissue adhesive according to the present invention can be applied locally to a living body to replace surgical sutures and can be used for easy, immediate adhesion and suture to wounds.
  • biological tissue and tissue include, but are not limited to, tissues of the skin, nerves, brain, lungs, liver, kidneys, stomach, small intestine, and rectum.
  • the bioadhesive material of the invention is preferably in the form of a microneedle patch in a dried gel formulation.
  • the dried gel form can be induced through a photocrosslinking reaction, allowing rapid swelling through body fluid absorption after tissue insertion.
  • gradually the gel-like protein is biodegraded and does not require separate removal after suturing, such as sutures or staples.
  • drugs such as anti-inflammatory agents
  • direct drug delivery to the transdermal through tissue insertion and gel decomposition is possible, and thus can be used for the purpose of preventing inflammation, effective wound regeneration, scar prevention or alleviation. have.
  • the drug is not particularly limited and includes protein medicines, peptides, anti-inflammatory agents and the like.
  • the present invention also provides a manufacturing method for producing a bioadhesive material of the present invention excellent in wound closure and regeneration effect.
  • the present invention provides a method for producing a bioadhesive material in the form of a microneedle patch comprising a swellable hydrogel layer comprising a mussel adhesive protein and hyaluronic acid and a non-swellable hydrogel layer comprising silk fibroin.
  • the present invention in order to provide a microneedle patch type bioadhesive material of a hydrogel formulation including a mussel adhesive protein for wound closure and regeneration, it may be prepared by inducing a photocrosslinking reaction using a fluorescent lamp. That is, the present invention includes adding a solution containing a photoreactive metal ligand and an electron acceptor to a solution containing a protein and inducing a photocrosslinking reaction through light irradiation under a fluorescent lamp including a blue light. It provides a method for producing an adhesive material.
  • the photocrosslinked bioadhesive material based on the mussel adhesive protein prepared by the manufacturing method may be in the form of a gel having a three-dimensional network structure formed by crosslinking between tyrosine residues included in the mussel adhesive protein.
  • photoreactive metal ligands for providing molecules that strongly absorb visible light include ruthenium (Ru (II)), palladium (Pd (II)), copper (Cu (II)), nickel (Ni ( II)), manganese (Mn (II)), and iron (Fe (III)).
  • Ru (II) palladium
  • Pd (II) palladium
  • Cu (II) copper
  • Ni ( II) nickel
  • manganese (Mn (II) manganese
  • Fe (III) iron
  • it is preferable to use [Ru (II) bpy3] Cl 2 but is not limited thereto.
  • IV ammonium cerium
  • oxalic acid oxalic acid
  • EDTA EDTA
  • Ru (II) bpy2 + and sodium persulfate solution are added to a solution in which the mussel adhesive protein or silk fibroin protein is dissolved, and a fluorescent lamp containing light of 420 to 480 nm wavelength is exposed to form a three-dimensional network structure.
  • a bioadhesive material in the form of a gel can be formed.
  • a microneedle patch-type bioadhesive material of a hydrogel formulation including a mussel adhesive protein for wound closure and regeneration in order to prepare a microneedle patch-type bioadhesive material of a hydrogel formulation including a mussel adhesive protein for wound closure and regeneration, it may be prepared using a backside vacuum chamber.
  • the present invention provides a method for producing a bioadhesive material including a step of injecting a solution into a mold by injecting a photocrosslinked protein solution into a mold for fabricating a microneedle patch on a rear vacuum chamber.
  • Mussel adhesive protein solution with high surface adhesion and viscosity is designed due to the difficulty of application such as vacuum chamber and centrifugal separation method used in microneedle patch fabrication.
  • a microneedle patch of a normal shape can be manufactured, and bubble formation in the microneedle generated when using a conventional vacuum chamber was prevented. It may be about 12 to 20 hours, preferably 14 to 16 hours for the back vacuum chamber usage time for solution injection into the mold for microneedle patch fabrication, photocrosslinking and sufficient drying, but depending on the amount of solution placed on the mold It can be adjusted appropriately.
  • the present invention provides a method for tissue adhesion or conjugation comprising locally applying a microneedle patch type bioadhesive material of a hydrogel formulation comprising a mussel adhesive protein for wound closure and regeneration to the percutaneous of an individual. .
  • the subject may be a mammal, for example, a human, a cow, a horse, a pig, a dog, a sheep, a goat, or a cat.
  • the present invention provides a method of treating a wound of a patient, the method comprising the step of contacting a microneedle patch to the wound site of the patient, wherein the microneedle patch is a first hydro containing mussel adhesive protein and hyaluronic acid Gel layer; And a second hydrogel layer comprising silk fibroin.
  • a “treat” provided by the present invention may be one that provides for the wound to heal at a shorter time compared to natural healing.
  • the treatment may include amelioration and / or alleviation of the wound.
  • the treatment may include both treatment of a wound and / or a disease associated with the wound. Said treatment may refer to healing and / or regeneration of damaged tissue resulting from the wound.
  • the wound treatment may include the meaning of skin regeneration.
  • the treatment may be to maintain the original composition of the damaged tissue.
  • the treatment may be to promote healing and / or regeneration of the damaged tissue while minimizing the complications and / or scarring of diseases associated with the wound.
  • the wound site tissue may generally comprise any tissue that can be at least partially penetrated by one or more microneedles of the microneedle patch.
  • tissue having a surface that can be in contact with the plurality of microneedles include skin, eyes (eg cornea, conjunctiva), gastrointestinal tract (eg mouth, esophagus, stomach, small intestine and large intestine, rectum). And anus), inside the nose, inside the vagina, inside the ear (eg, the tympanic membrane), muscle, blood vessels, cell membranes, or a combination thereof.
  • the tissue may be a living tissue of a mammal such as mammalian skin.
  • the microneedle patch may be one containing a mussel adhesive protein and hyaluronic acid in a "therapeutically effective amount".
  • the amount of active ingredients according to the invention effective for the treatment of wounds is indicated. That is, it is sufficient to deliver the desired effect, but within the medical judgment range, it is an appropriate amount sufficient to prevent serious side effects.
  • the amount to which the microneedle patch of the present invention is applied can be appropriately adjusted in consideration of the route of administration and the subject of administration.
  • the present invention also provides a microneedle patch for use in the treatment of a wound, wherein the microneedle patch comprises a first hydrogel layer comprising mussel adhesive protein and hyaluronic acid; And a second hydrogel layer comprising silk fibroin.
  • the present invention also provides the use of a microneedle patch in the manufacture of a kit for treating a wound, wherein the microneedle patch comprises a first hydrogel layer comprising mussel adhesive protein and hyaluronic acid; And a second hydrogel layer comprising silk fibroin.
  • a decapeptide (decapeptide) consisting of 10 amino acids repeated about 80 times was synthesized in Escherichia coli to synthesize a fp-1 variant consisting of 6 decapeptides and 2 fp.
  • Mgfp-5 gene (Genbank No. AAS00463 or AY521220) was inserted between -1 variants, and then successfully expressed in E. coli. Thereafter, mussel adhesive protein fp-151 was produced by simple purification using acetic acid (see D.S. Hwang et. Al., Biomaterials 28, 3560-3568, 2007). Specifically, in the amino acid sequence of fp-1 (Genbank No.
  • a fp-1 variant represented by SEQ ID NO: 14 in which a peptide consisting of AKPSYPPTYK represented by SEQ ID NO: 2 is repeatedly linked six times hereinafter, referred to as 6xAKPSYPPTYK.
  • 6xAKPSYPPTYK a peptide consisting of AKPSYPPTYK represented by SEQ ID NO: 2 is repeatedly linked six times
  • 6xAKPSYPPTYK a fp-1 variant represented by SEQ ID NO: 14 in which a peptide consisting of AKPSYPPTYK represented by SEQ ID NO: 2 is repeatedly linked six times
  • 6xAKPSYPPTYK a fp-1 variant represented by SEQ ID NO: 14 in which a peptide consisting of AKPSYPPTYK represented by SEQ ID NO: 2 is repeatedly linked six times
  • the photo before and after the photo-crosslinking of the hydrogel including the mussel adhesive protein and hyaluronic acid is shown on the left side, and after the photo-crosslinking, yellow color was shown due to the addition of ruthenium ions.
  • the photo before and after the photo-crosslinking of the hydrogel containing the silk fibroin protein is shown on the right side of FIG. 1, and after the photo-crosslinking, yellow color was shown due to the addition of ruthenium ions.
  • the hydrogels prepared according to Preparation Examples 1-3 and 1-4 were completely dried to confirm the swelling degree of the hydrogel. After measuring the weight of the dried hydrogel, the degree of swelling was confirmed by measuring the weight of the swollen hydrogel to dry weight by immersion in physiological saline. The degree of swelling at points that do not change over time is designated as the equilibrium swelling ratio. The swelling degree of equilibrium of the hydrogels of various components and concentrations was measured and shown in FIG. 2.
  • the gel was not formed under natural light including a fluorescent lamp when using the peroxide sulfate less than 30 mM in all experimental conditions.
  • the highest degree of swelling was achieved under 35 wt% fp-151, 15 wt% HA, 1 mM Ru (II) bpy 3 2+ , 30 mM peroxide sulfate, physiological saline solution, and nearly 70% by weight SF. Did not do it.
  • both the hydrogel containing the mussel adhesive protein and hyaluronic acid and the hydrogel containing silk fibroin did not show cytotoxicity to keratinocytes and fibroblasts (FIG. 3).
  • a backside vacuum chamber was produced in which vacuum was applied only in the downward direction of the mold.
  • the mold side of the lid side was cut out with a hole inward so that a vacuum was applied to the front surface of the PDMS mold for making a microneedle patch.
  • the net was fitted with a copper mesh so that the mold for making the microneedle patch was not bent (FIG. 4).
  • a cone-shaped microneedle (250 ⁇ m in diameter, 750 ⁇ m in height) was fabricated in a SU-8 master mold consisting of 10 X 10 at 500 ⁇ m intervals, and PDMS solution was poured into the mold to produce microneedle patches.
  • a mold was prepared.
  • Example 1-1 Preparation of single layer microneedle patches of hydrogel formulations comprising mussel adhesive protein and hyaluronic acid
  • Example 1-2 Preparation of bilayer microneedle patches comprising a hydrogel layer comprising mussel adhesive protein and a hydrogel layer comprising silk fibroin
  • the first photo-crosslinking solution 35 wt% of fp-151, 30 ul of physiological saline containing 15 wt% of HA
  • the first photo-crosslinking solution was placed on the mold under the backside vacuum condition using the chamber according to Preparation Example 2 After injection for 10 minutes to 2 hours, the remaining solution on the surface was scraped off.
  • a patch was prepared after mixing rhodamine B staining solution with silk fibroin solution.
  • the bilayer microneedle patch thus obtained was confirmed through an optical microscope and a fluorescence microscope, and is shown in FIG. 6. It was confirmed that the swelling (first hydrogel layer) / non-swelling (second hydrogel layer) ratio of the microneedle patch can be adjusted by adjusting the injection time of the first photo-crosslinking solution.
  • the microneedle patch was immersed in physiological saline and confirmed by an optical microscope at a predetermined time. Shown in
  • Instron was used to identify the tear points of each needle of the monolayer or bilayer microneedle patch prepared according to Example 1. Instron was used to compress the microneedle patch fixed at the bottom at a constant speed of 1.2 mm / min to confirm the breaking point, which is the force at which the needle broke (FIG. 8).
  • both the single layer microneedle patch containing mussel adhesive protein as well as the double layer microneedle patch containing silk fibroin had sufficient force (0.05 N / needle) or more to penetrate skin tissue.
  • the double layer microneedle rupture point is increased by about 4.5 times due to the excellent mechanical fibroin mechanical properties.
  • a patch consisting of a single layer microneedles 10 X 10 containing mussel adhesive protein prepared according to Example 1-1 was gently pressed against the rat skin tissue for 5 minutes with a thumb, and then micro permeated through the tissue staining drug. The number of needles was measured to confirm the transmission ratio (FIG. 9).
  • the microneedle patch was pressed onto the lower pig skin with a final force of 30 N / patch at a constant rate of 100 mm / min and detached at a rate of 2 mm / min after 10 minutes. At this time, the value of the highest force divided by the area was shown as a graph of the tissue adhesion (Fig. 10).
  • Bilayer microneedle patches with a swelling ratio of 60% have the highest tissue adhesion by mechanical fixation and bonding with the surrounding tissue by swelling, and at 80%, the swellable layer separates from the non-swellable layer and patch, rather the tissue adhesion It was confirmed that the decrease.
  • the pig skin surface conditions used in the experiment were as follows: For semi-dry, lightly wipe off the water on the surface with a tissue and then used in the experiment. When wet, wet 100 ul of saline on the surface. Immediately after spraying was used for the experiment.
  • tissue adhesion 134.7 ⁇ 27.7 kPa
  • commercially available adhesive tapes (122.3 ⁇ 29.1 kPa)
  • wet surface conditions In contrast to commercially available adhesive tapes that lose tissue adhesion, they exhibited similar levels of tissue adhesion (123.3 ⁇ 21.1 kPa) in dry surface conditions.
  • the bilayer microneedle patch prepared according to Example 1 was stripped (swelling ratio 60%). , 1 X 4 cm 2 ) using a thumb lightly pressed.
  • a commercial wound adhesive tape (3M Steri-Strip TM ) was applied according to the attachment manual to compare the wound closure potential (FIG. 12).
  • the tape was not firmly fixed to the tissue, but opened with the wound, and the higher the blood, the easier the detachment was because the blood was not absorbed.
  • the wound of 3 cm length was easily sutured, and after the suture, blood was absorbed without lifting the patch even when blood was accumulated between the wounds, and the suture was maintained. Indicated.
  • FITC-dextran (77 kDa) per patch of microneedle was mounted in an aqueous solution of photo-crosslinked mussel adhesive protein to a final concentration of 5 mg / ml, using a backside vacuum system for A needle patch was produced.
  • the microneedle patch was immersed in physiological saline at 37 ° C. or physiological saline added with 0.02 mg / L trypsin, and samples were taken at regular intervals and quantified using a fluorescence spectrometer. The release rate and amount of fluorescent material was confirmed.
  • a standard curve representing the fluorescence value according to FITC-dextran concentration was used (FIG. 13).

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Dermatology (AREA)
  • Vascular Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Surgery (AREA)
  • Anesthesiology (AREA)
  • Medicinal Chemistry (AREA)
  • Medical Informatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 홍합 접착 단백질 및 히알루론산을 포함하는 제1 하이드로겔 층 및 실크 피브로인을 포함하는 제2 하이드로겔 층을 포함하는 마이크로니들 패치, 및 그 제조 방법에 관한 것으로서, 본 발명에 따른 마이크로니들 패치는 우수한 조직 접착력, 생체 적합성, 생분해성을 나타내며, 상처 재생 촉진을 위한 경피로의 약물 전달에 활용될 수 있다.

Description

하이드로겔 제형 기반의 마이크로니들 접착 패치
본 발명은 하이드로겔 제형 기반의 마이크로니들 접착 패치에 관한 것이다.
종래 외과 수술 시 발생하는 창상의 봉합에는 봉합사, 스테이플 (staple)과 같은 기계적 고정법이 주로 이용되어 왔다. 하지만, 봉합사 및 스테이플의 경우, 강하고 깊은 투과로 인해 조직 손상, 염증, 괴사 등이 유발되며, 투과된 부위로 장력이 집중되고, 추후에 제거가 필요하다는 등의 한계가 있었다. 이러한 문제점 및 한계를 극복하기 위해 생체 접착 소재에 대한 연구가 경쟁적으로 진행되고 있다.
생체 접착 소재는 세포벽, 세포막, 단백질, DNA, 성장인자, 조직 등과 같은 다양한 생체 실에 대해 부착 특성을 갖는 물질을 의미하며, 지혈제, 조직 접착제, 조직 충전제, 조직 재생제, 약물 전달용 담체 등 의학적으로 다양하게 응용할 수 있다. 그러나 종래 개발된 의료용 생체 접착 소재는 외과 수술 시에 발생하는 상처를 봉합하기 위한 보조제 역할을 할 뿐, 실제 의료 현장에서 독립적으로 활용하기에는 그 기능성과 물성이 부족한 수준이다. 의료용 접착 소재는 조직에 직접 접촉하므로 생체 적합성이 요구되며, 체내 환경에서 순간적으로 접착이 종결될 수 있는 접착력과 사용 편의성 뿐만 아니라 그 기능이 오랫동안 유지되어야 한다.
현재까지 상용화 및 실용화된 대표적인 생체 접착 소재로는 시아노아크릴레이트 계열의 순간 접착제, 피브린 (fibrin) 글루 및 폴리우레탄계 접착 패치 등이 있다. 시아노아크릴레이트는 빠른 시간 내에 개시제 없이 경화되고 높은 접착 강도를 갖지만, 중합 (polymerization)시 접착 시간을 조절하기 어렵고, 내열성 및 내수성이 부족하며, 생체 독성을 나타내는 부산물을 발생시키는 것과 같은 중대한 문제점이 있다. 피브린 기반의 생체 접착제는 실제 혈액 응고 과정을 이용하는 것이기 때문에 비교적 우수한 생체 적합성과 생분해성을 가지지만, 합성 고분자 기반의 접착제에 비해 접착력이 현저히 낮은 수준이므로 수중 접착을 필요로 하는 부위에는 사용이 제한된다. 폴리우레탄계 생체 접착용 패치는 조직과의 높은 밀착성 및 유연성을 가지나, 수분 존재시 조직 접착력이 크게 떨어지고, 합성 원료의 생체 독성을 줄여야 하는 문제점이 남아있다. 이처럼 종래 접착 소재들은 대부분이 화학합성 기반의 소재로서, 이들은 수분에 약하고, 독성이 있으며, 생분해성 부족으로 인해 생체 내 사용에 제한이 있고, 그 대안으로 제시되고 있는 생합성 기반의 바이오 접착 소재는 수중 접착 및 조직 접착력 측면에서 아직 크게 부족한 실정이다.
마이크로니들 기술은 기존의 단순 패치 형태가 아닌 피부층을 관통하는 마이크로 크기의 채널을 형성하는 것으로서, 국부적이고 효과적인 경피 약물 전달 시스템 (transdermal drug delivery system) 개발을 위해 연구되어 왔다. 이는 기존의 피하주사의 통증 및 경구 투여시 발생하는 약물 변성 및 낮은 흡수율을 극복한 것으로, 주로 다양한 약물, 호르몬, 백신 등을 포함하는 유효 물질을 경피 전달하는 것을 목적으로 한다. 이러한 목적을 달성하는 수단으로서, 실리콘, 금속, 유리, 세라믹 등의 다양한 물질이 재료로 선택될 수 있고, 고형 (solid), 코팅 (coated), 용해성 (dissolving) 및 할로우 (hollow) 등으로 마이크로니들의 형태를 다르게 하여 유효 물질을 피부층에 주입시킬 수 있다.
조직 공학 분야에서 널리 활용되고 있는 하이드로겔 (hydrogel)은 물 또는 체액 내에서 가교된 격자 안으로 많은 양의 물 또는 체액을 흡수하여 팽윤되며, 물 속에서도 흩어지지 않고 삼차원 구조를 유지하는 재료를 의미한다. 팽윤된 이후에도, 열역학적으로 안정하게 존재하여 액체와 고체의 중간 형태에 해당하는 기계적 및 물리화학적 특성을 갖는다. 이러한 하이드로겔은 대개 우수한 생체 적합성, 높은 다공성 및 산소 투과도를 보이며, 생체 연조직과 비슷한 물리적 특성을 나타낼 수 있다. 천연 및 합성 고분자 기반의 하이드로겔의 초기 응용 분야는 렌즈 및 상처 드레싱 정도였지만, 최근에는 지혈제, 조직 접착제, 약물 전달용 담체, 조직 충진재, 세포 및 성장인자를 포함하는 조직 재생제 등의 조직 공학 분야로 그 폭이 넓어지고 있다.
따라서, 종래 시아노아크릴레이트 계열의 순간 접착제, 피브린 글루 및 폴리우레탄계를 포함한 접착 패치의 문제점을 개선하고, 우수한 생체 적합성, 생분해성 및 생체 접착력를 갖추는 동시에, 상처 치료 촉진을 위한 약물 전달까지 가능한 새로운 플랫폼의 접착 소재의 개발이 절실한 실정이다.
본 발명의 목적은 종래 접착 패치의 기술적 한계를 극복하기 위한 것으로서, 생체 조직 접착력, 생체 적합성 및 생분해성이 개선된, 수중 접착이 가능한 마이크로니들 패치를 제공하는 것이다.
또한, 본 발명의 목적은 조직 재생 및 상처 치료 촉진을 위한 약물을 경피 전달할 수 있는 마이크로니들 패치를 제공하는 것이다.
본 발명자들은 홍합 접착 단백질이 수중 접착이 가능하고, 우수한 생체 조직 접착력 및 생체 적합성을 가진다는 점과, 하이드로겔이 수중에서도 그 구조를 유지하면서 물 또는 체액을 흡수하여 팽윤할 수 있다는 점에 착안하여 본 발명을 완성하였다.
따라서, 본 발명은 홍합 접착 단백질 및 히알루론산을 포함하는 제1 하이드로겔 층, 및 실크 피브로인을 포함하는 제2 하이드로겔 층을 포함하는 마이크로니들 패치를 제공한다.
또한, 본 발명은 본 발명에 따른 마이크로니들 패치를 포함하는 조직 접착재를 제공한다.
본 발명에 따라 홍합 접착 단백질 및 히알루론산을 포함하는 제1 하이드로겔 층, 및 실크 피브로인을 포함하는 제2 하이드로겔 층을 포함하는 마이크로니들 패치가 제공되며, 홍합 접착 단백질을 포함하는 상기 제1 하이드로겔 층으로 인해 조직 접착력이 우수하다.
또한, 본 발명에 따른 마이크로니들 패치는 각질층, 표피층 민 진피층까지 투과할 수 있는 충분한 기계적 물성을 가지며, 투과 후 물 및/또는 체액에 의해 상기 제1 하이드로겔 층이 빠르게 팽윤함으로써, 마이크로니들의 기계적 고정을 유도하여 우수한 피부 접착 및 창상 봉합 효과를 제공한다.
본 발명에 따라 제공되는 마이크로니들 패치는 생체 독성 없이, 경피로의 약물 전달이 가능하며, 이를 통해 염증 예방, 상처 재생, 흉터 예방 또는 완화에 이용될 수 있다.
도 1은 제조예 1에 따라 제조한 홍합 접착 단백질과 히알루론산을 포함하는 용액 및 실크 피브로인 용액을 광-가교하기 전후의 이미지이다.
도 2는 제조예 1에 따라 제조한 다양한 조성의 하이드로겔을 건조시킨 후, 생리 식염수에 침지시켜 건조한 겔의 무게 대비 최대 팽윤 정도를 나타낸 그래프이다. 하이드로겔 (a) 내지 (e)의 조성은 다음과 같다: (a) 70 중량% SF (실크 피브로인), 1 mM Ru(Ⅱ)bpy₃2+, 30 mM 과산화황산염, 증류수 용해; (b) 40 중량% fp-151, 5 중량% HA (히알루론산), 1 mM Ru(Ⅱ)bpy₃2+, 40 mM 과산화황산염, 증류수 용해; (c) 40 중량% fp-151, 10 중량% HA, 1 mM Ru(Ⅱ)bpy₃2+, 40 mM 과산화황산염, 증류수 용해; (d) 40 중량% fp-151, 10 중량% HA, 1 mM Ru(Ⅱ)bpy₃2+, 30 mM 과산화황산염, 증류수 용해; (e) 35 중량% fp-151, 15 중량% HA, 1 mM Ru(Ⅱ)bpy₃2+, 30 mM 과산화황산염, 증류수 용해; (f) 35 중량% fp-151, 15 중량% HA, 1 mM Ru(Ⅱ)bpy₃2+, 30 mM 과산화황산염, 생리 식염수 용해.
도 3은 제조예 1에 따라 제조한 광-가교 하이드로겔 용출액으로 접촉 실험을 수행하여 세포 독성을 확인한 결과를 나타낸 그래프이다.
도 4는 제조예 2에 따른 후면 진공 시스템이 가능한 진공 챔버의 사진 및 실리콘 몰드의 도면이다.
도 5는 실시예 1-1에 따라 제조한 홍합 접착 단백질을 포함하는 하이드로겔 제형의 단일층 마이크로니들 패치의 사진이다.
도 6은 실시예 1-2에 따라 제조한 이중층 마이트로니들 패치의, 홍합 접착 단백질을 포함하는 제1 광-가교 용액의 몰드 주입 시간 (10분 내지 120분)에 따른 광학 현미경, 현광 현미경 및 이들의 융합 이미지이다.
도 7은 실험예 3에 따라 팽윤성/비팽윤성 하이드로겔의 비율이 각기 다른 이중층 마이크로니들 패치를 생리 식염수에 담궜을 때 경과 시간에 따른 각 니들의 사진이다.
도 8은 실험예 4-1에 따라 인스트론을 이용한 압축 (compression mode) 실험을 통해 홍합 접착 단백질을 포함하는 단일층 마이크로니들 및 홍합 접착 단백질과 실크 피브로인을 모두 포함하는 이중층 마이크로니들 각각의 파열점 (fracture force)을 나타낸 그래프 및 단일층 및 이중층 마이크로니들의 파열점과 피부 조직을 뚫기 위해 필요한 힘을 비교한 그래프이다.
도 9는 실험예 4-2에 따라 홍합 접착 단백질을 포함하는 팽윤성의 단일층 마이크로니들 패치를 엄지 손가락을 이용해 렛 (rat) 피부 조직에 투과시킨 후, 투과 비율을 조직 염색 약을 통해 확인한 결과를 나타낸 사진이다.
도 10은 실험예 5-1에 따라 홍합 접착 단백질 및 실크 피브로인을 포함하는 이중층 마이크로니들 패치의 팽윤성 하이드로겔 비율에 따른 조직 접착력의 변화를 나타낸 그래프이다.
도 11은 실험예 5-2에 따라 돼지 피부를 이용한 인스트론 실험을 통해 건조 (semi-dry) 표면 또는 젖은 (wet) 표면에서, 홍합 접착 단백질 및 실크 피브로인을 포함하는 이중층 마이크로니들 패치와 상용화된 상처 봉합용 접착 테이프의 조직 접착력을 비교한 그래프이다.
도 12는 실험예 6에 따라 렛 피부 조직의 3 cm 길이의 창상에 홍합 접착 단백질을 포함하는 이중층 마이크로니들 패치와 상용화된 상처 봉합용 접착 테이프를 각각 적용한 모습을 나타낸 사진이다.
도 13은 실험예 7에 따라 홍합 접착 단백질을 포함하는 하이드로겔 제형의 단일층 마이크로니들 패치에 FITC-dextran을 탑재한 이미지와 이를 생리 식염수 또는 0.02 mg/L trypsin을 포함하는 생리 식염수에 침지시켜 FITC-dextran 방출 정도를 나타낸 그래프이다.
본 발명은 홍합 접착 단백질 및 히알루론산을 포함하는 제1 하이드로겔 층, 및 실크 피브로인을 포함하는 제2 하이드로겔 층을 포함하는 마이크로니들 패치에 관한 것이다.
본 발명에서, 상기 홍합 접착 단백질은 홍합 유래의 접착 단백질로, 바람직하게는 미틸러스 에둘리스(Mytilus edulis), 미틸러스 갈로프로빈시얼리스(Mytilus galloprovincialis) 또는 미틸러스 코루스커스(Mytilus coruscus) 에서 유래한 홍합 접착 단백질 또는 이의 변이체를 포함하나, 이에 제한되지 않는다.
본 발명의 홍합접착단백질은 상기 홍합 종에서 각각 유래한 Mefp(Mytilus edulis foot protein)-1, Mgfp(Mytilus galloprovincialis foot protein)-1, Mcfp(Mytilus coruscus foot protein)-1, Mefp-2, Mefp-3, Mgfp-3 및 Mgfp-5 또는 이의 변이체를 포함할 수 있으며, 바람직하게는 fp(foot protein)-1 (서열번호 1), fp-2 (서열번호 4), fp-3 (서열번호 5), fp-4 (서열번호 6), fp-5 (서열번호 7), 및 fp-6 (서열번호 8)로 이루어진 군에서 선택된 단백질, 또는 2종 이상의 단백질이 연결되어 있는 융합 단백질, 또는 상기 단백질의 변이체를 포함하나, 이에 제한되지 않는다.
또한, 본 발명의 홍합접착단백질은 국제공개번호 제 WO2006/107183호 또는 제WO2005/092920호에 기재된 모든 홍합 접착 단백질을 포함한다. 바람직하게는, 상기 홍합접착단백질은 fp-151(서열번호 9), fp-131(서열번호 10), fp-353(서열번호 11), fp-153(서열번호 12), fp-351(서열번호 13) 등의 융합 단백질을 포함할 수 있으나, 이에 제한되지 않는다. 또한, 본 발명의 홍합 접착단백질은 fp-1 에서 80번 정도 반복되는 데카펩타이드(서열번호 2)가 1 내지 12회 또는 그 이상으로 연속하여 연결된 폴리펩타이드를 포함할 수 있다.
또한, 본 발명의 홍합 접착 단백질은 fp-1 에서 80번 정도 반복되는 데카펩타이드(서열번호 2)가 1 내지 12회 또는 그 이상으로 연속하여 연결된 폴리펩타이드를 포함할 수 있다. 바람직하게, 상기 서열번호 2의 데카펩타이드가 12회 연속하여 연결된 fp-1 variant 폴리펩타이드(서열번호 3)일 수 있으나, 이에 제한되지 않는다.
또한, 본 발명의 홍합접착단백질은 fp-151의 변이체(서열번호 15)일 수 있으나, 이에 제한되지 않는다. 서열번호 15의 단백질 서열은 서열번호 9와 대비하여 링커 서열 등이 제외된 서열이다. 구체적으로, 서열번호 14로 표시되는 fp-1 변이체 서열 사이에 서열번호 16으로 표시되는 mgfp-5의 서열을 융합한 융합 단백질 서열이다.
본 발명의 바람직한 측면에서, 본 발명에 따른 홍합접착단백질은 서열번호 9 또는 서열번호 15의 아미노산 서열을 포함한다.
본 발명은 또한 위 언급된 홍합접착단백질들의 특성을 유지할 수 있는 보존적 아미노산 서열을 포함하는 범위에서 홍합접착단백질은 변형될 수 있다. 즉, 실질적으로 동등한 효과를 나타내는 상기 서열번호들의 아미노산 서열과 70% 이상, 바람직하게는 80% 이상, 보다 더 바람직하게는 90%이상, 즉, 95%, 96%, 97%, 98%, 99% 또는 그 이상의 서열 동일성을 가지는 아미노산 서열은 또한 본 발명의 범주에 포함될 수 있다.
상기 홍합 접착 단백질과 히알루론산으로 이루어진 니들의 경우 조직 삽입 후, 빠르게 체액을 흡수하여 팽윤하는 특성으로 삽입된 니들과 주변 조직과의 기계적 고정을 유도하여 마이크로니들 패치의 조직 접착력을 향상시킨다. 더불어, 본 발명에서 사용되는 마이크로니들 패치 부분에 사용되는 실크 피브로인 기반의 비팽윤성 층의 경우 실크 피브로인 본래의 강한 기계적 물성과 단단한 광가교로 인해 거의 부풀지 않는 특성을 이용하여, 조직 삽입 후 조직과 패치의 경계에서 팽윤에 의한 마이크로니들 패치의 이탈을 예방하고, 팽윤성 층 내의 홍합 접착 단백질의 아미노산과의 광가교를 통해 팽윤성 층과 비팽윤성 층 간의 분리가 되지 않도록 유도하였다.
상기 제1 하이드로겔 층은 조직을 투과한 후, 빠르게 물 또는 체액을 흡수하여 팽윤할 수 있다. 상기 제2 하이드로겔 층은 실크 피브로인의 강한 기계적 물성과 가교결합으로 인해 거의 팽윤하지 않으며, 상기 마이크로니들부가 조직을 투과한 후에 빠르게 팽윤하는 경우에 유발될 수 있는 마이크로니들 패치의 조직 이탈을 예방할 수 있다.
마이크로니들을 기준으로하여 팁 끝으로부터 제1 하이드로겔 층이 위치하며 그 위로 제2 하이드로겔 층이 위치한다.
본 발명에 따른 마이크로니들 패치에서 상기 제1 및 상기 제2 하이드로겔 층은 서로 가교된 것일 수 있다. 가교된 제1 및 제2 하이드로겔 층은 홍합 접착 단백질에 포함된 타이로신 잔기들 사이의 가교결합으로 형성된 3 차원 그물망 구조일 수 있다. 상기 제1 및 상기 제2 하이드로겔 층을 가교 시킴으로써, 상기 제1 하이드로겔 층이 조직을 투과한 후, 체액을 흡수하여 빠르게 팽윤하더라도, 제2 하이드로겔 층과 분리되지 않을 수 있다. 여기서, 상기 제1 및 상기 제2 하이드로겔 층은 서로 광-가교된 것일 수 있다. 이 경우, 광-가교는 가시광선에 의해 수행될 수 있고, 상기 가시광선은 420 내지 480 nm의 파장일 수 있고, 바람직하게는 449 내지 455 nm, 더욱 바람직하게는 약 452 nm의 파장일 수 있다.
본 발명에 따른 마이크로니들 패치에서 상기 홍합 접착 단백질은 상기 제1 하이드로겔 층에 대해 25 내지 50% (w/v)로 포함될 수 있다. 홍합 접착 단백질의 함량이 25 % (w/v)보다 낮은 경우, 마이크로니들이 가늘고 불완전한 형태로 형성되기 때문에 피부 투과에 필요한 기계적 강도를 확보할 수 없다. 홍합 접착 단백질의 함량이 50% (w/v)보다 높은 경우, 홍합 접착 단백질을 포함하는 용액의 점도가 높아 마이크로니들 몰드 내로 주입이 어렵다. 이러한 상태에서 마이크로니들을 제조하는 경우 불완전한 형태의 마이크로니들이 형성되는 문제점이 발생한다.
본 발명에 따른 마이크로니들 패치에서 상기 히알루론산은 평균 분자량이 40 kDa 내지 150 kDa일 수 있다. 히알루론산은 N-아세틸-D-글루코사민과 D-글루쿠론산이 교대로 사슬 형태로 결합된 생체 유래 고분자 물질로서, 피부, 탯줄 등 동물의 조직에 많이 존재하며, 생체 재료로 적합하고, 물성 조절이 용이한 장점이 있다. 히알루론산의 평균 분자량이 40 kDa보다 낮은 경우, 사슬의 유연성이 높기 때문에 가교 정도가 높아지므로, 히알루론산을 포함하는 제1 하이드로겔 층의 팽윤성이 낮아지는 문제가 발생한다. 히알루론산의 평균 분자량이 150 kDa보다 높은 경우, 히알루론산을 포함하는 용액의 점도가 높아 마이크로니들 몰드 내로 주입이 어렵고, 불완전한 형태의 마이크로니들이 형성되는 문제점이 발생한다.
본 발명에 따른 마이크로니들 패치에서 상기 히알루론산은 상기 제1 하이드로겔 층에 대해 5 내지 20% (w/v)로 포함될 수 있다. 히알루론산의 함량이 5% (w/v)보다 낮은 경우, 제1 하이드로겔 층의 팽윤성이 낮아지는 문제점이 발생하고, 히알루론산의 함량이 20% (w/v)보다 높은 경우, 제1 하이드로겔 층에 홍합 접착 단백질이 상대적으로 적게 포함됨으로써 타이로신 잔기 부족으로 인해 충분한 가교가 일어나지 않는 문제점이 발생한다. 바람직하게는, 상기 히알루론산은 상기 홍합 접착 단백질과 2:8 내지 3:7의 중량비로 포함되는 것일 수 있다. 이는 히알루론산과 홍합 접착 단백질 간의 이온 결합을 통한 코아세르베이트 형성을 유도함으로써, 코아세르베이트의 매우 낮은 표면 장력 특성을 이용하여, 표면 접착력과 점도가 높은 홍합 접착 단백질 기반의 용액을 마이크로니들 몰드로 주입하기 쉽게 하기 위한 것이다. 또한, 물과 섞이지 않고 액상으로 존재하는 코아세르베이트의 특성을 이용하여, 이중층 마이크로니들 패치 제작시에 주입되는 두 번째 층인 실크 피브로인 기반의 용액과의 섞이는 현상 없이 이중층 형태의 마이크로니들 패치를 제작할 수 있다.
본 발명에 따른 마이크로니들 패치에서 상기 실크 피브로인은 상기 제2 하이드로겔 층에 대해 40 내지 70% (w/v)로 포함될 수 있다. 실크 피브로인의 함량이 40% (w/v)보다 낮은 경우, 마이크로니들이 가늘고 불완전한 형태로 형성되기 때문에 피부 투과에 필요한 기계적 강도를 확보할 수 없다. 실크 피브로인의 함량이 70% (w/v)보다 높은 경우, 실크 피브로인을 포함하는 용액의 점도가 높아 파이펫을 이용한 몰드 내로의 주입이 어려워지는 문제점이 발생한다. 바람직하게는, 상기 실크 피브로인은 상기 제2 하이드로겔 층에 대해 55 내지 70% (w/v)로 포함될 수 있다.
본 발명에 따른 마이크로니들 패치에서 상기 제1 하이드로겔 및 상기 제2 하이드로겔은 2:8 내지 8:2의 높이비로 포함될 수 있다. 상기 제1 하이드로겔 대 상기 제2 하이드로겔의 높이비가 2:8보다 낮은 경우, 조직 투과 후 팽윤 가능한 부분의 감소로 인해 조직에의 기계적 고정 효과가 급격히 감소하고, 높이비가 8:2보다 높은 경우, 조직 투과 후 마이크로니들부의 밑면을 비롯한 아래 부위가 심하게 팽윤하면서 패치부와 분리되는 현상이 발생한다. 상기 마이크로니들부의 충분한 팽윤을 통한 효과적인 조직 접착을 유도하기 위해 상기 마이크로니들부의 높이는 니들 전체 높이를 기준으로 40 내지 70%, 바람직하게는 55 내지 65%일 수 있다.
또한, 본 발명은 본 발명에 따른 마이크로니들 패치를 포함하는 조직 접착재에 관한 것이다. 본 발명에 따른 조직 접착재는 생체에 국소적으로 적용되어 외과 수술용 봉합사를 대체하여 손쉽고, 즉각적으로 상처에 접착 및 봉합을 위해 이용될 수 있다. 본 명세서에서 용어 ‘생체 조직’, ‘조직’은 피부, 신경, 뇌, 폐, 간, 신장, 위, 소장 및 직장의 조직을 포함하나, 이에 한정되지는 않는다.
본 발명의 생체 접착 소재는 건조된 젤 제형의 마이크로니들 패치 형태인 것이 바람직하다. 건조된 젤 형태는 광가교 반응을 통해 유도될 수 있으며, 조직 삽입 후에 체액 흡수를 통해 빠른 팽윤이 가능하다. 또한, 시간이 지남에 따라, 점차 젤 형태의 단백질은 생분해되어 봉합사 또는 스테이플처럼 봉합 후 별도의 제거과정을 필요로 하지 않는다. 또한, 항염제 등의 약물을 포함하는 마이크로니들 패치의 경우, 조직 삽입 및 젤 분해를 통한 경피로의 직접적인 약물 전달이 가능하며 이를 통해 염증 예방, 효과적인 상처 재생, 흉터 예방 또는 완화 등의 목적으로 사용될 수 있다. 상기 약물은 특별하게 제한되지 않으며, 단백질 의약품, 펩타이드, 항염제 등을 포함한다.
또한 본 발명은 상처 봉합 및 재생 효과가 우수한 본 발명의 생체 접착 소재를 제조하기 위한 제조방법을 제공한다.
보다 구체적으로 본 발명은 홍합 접착 단백질과 히알루론산을 포함하는 팽윤성 하이드로겔 층과 실크 피브로인을 포함하는 비팽윤성 하이드로겔 층으로 이루어진 마이크로니들 패치 형태의 생체 접착 소재의 제조방법을 제공한다.
본 발명에서는, 상처 봉합 및 재생을 위한 홍합 접착 단백질을 포함하는 하이드로겔 제형의 마이크로니들 패치 타입의 생체 접착 소재를 제공하기 위하여 바람직하게, 형광등을 이용한 광 가교 반응을 유도하여 제조할 수 있다. 즉, 본 발명은 단백질을 포함하는 용액에, 광반응성 금속리간드와 전자수용체가 포함된 용액을 첨가하고 블루 라이트를 포함하는 형광등 아래에서의 광조사를 통해 광가교 반응을 유도하는 단계를 포함하는 생체 접착 소재의 제조방법을 제공한다.
이와 같은 제조방법으로 제조된 홍합접착 단백질 기반의 광가교성 생체 접착 소재는 홍합접착 단백질에 포함된 타이로신 잔기들 사이의 가교결합으로 형성된 3차원 그물망 구조의 젤 형태일 수 있다.
본 발명에서, 가시광선을 강하게 흡수하는 분자를 제공하기 위한 광반응성 금속 리간드는 루테니움(Ru(Ⅱ)), 팔라디움(Pd(Ⅱ)), 구리(Cu(Ⅱ)), 니켈(Ni(Ⅱ)), 망간(Mn(Ⅱ)), 및 철(Fe(Ⅲ))로 이루어진 군에서 선택된 1종 이상일 수 있다. 예를 들어 [Ru(Ⅱ)bpy₃]Cl₂를 이용하는 것이 바람직하나 이에 제한되지는 않는다.
또한 전자 수용체를 제공하기 위해 과황산 나트륨(sodium persulfate), 과아이오딘산염(periodate), 과브롬산염(perbromate), 과염소산염(perchlorate), 비타민(B12), 펜타아민클로로코발트(Pentaamminechlorocobalt(Ⅲ)), 암모늄 세륨 질산염(ammonium cerium(IV) nitrate), 옥살산(oxalic acid), 및 이디티에이(EDTA)로 이루어진 군에서 선택된 1종 이상을 더 포함할 수 있다. 예를 들어 과황산 나트륨을 이용하는 것이 바람직하나 이에 제한되지는 않는다.
보다 바람직하게 상기 홍합접착 단백질 또는 실크 피브로인 단백질이 용해되어 있는 용액에 Ru(Ⅱ)bpy2+과 과황산 나트륨 용액을 첨가시키고, 420 내지 480 nm 파장대의 빛을 포함하는 형광등을 쬐어주면 3차원 그물망 구조인 젤 형태의 생체 접착 소재를 형성시킬 수 있다.
본 발명에서는, 상처 봉합 및 재생을 위한 홍합 접착 단백질을 포함하는 하이드로겔 제형의 마이크로니들 패치 타입의 생체 접착 소재를 제조하기 위하여 바람직하게, 후면 진공 챔버를 이용하여 제조할 수 있다. 본 발명은 광가교성 단백질 용액을 후면 진공 챔버 위의 마이크로니들 패치 제작용 몰드에 얹어 후면 진공을 유도하여, 몰드 내로의 용액 주입 단계를 포함하는 생체 접착 소재의 제조방법을 제공한다.
높은 표면 접착력 및 점도를 갖는 홍합 접착 단백질 용액은 기존에 마이크로니들 패치 제작시 사용되는 진공 챔버 및 원심분리 방법 등의 적용의 어려움 때문에 고안한 것으로, 후면 진공만을 유도하여 몰드 내로의 단백질 용액의 쉽고 빠른 주입을 통해 정상적인 형태의 마이크로니들 패치 제작이 가능하며, 기존 진공 챔버 사용시 발생하는 마이크로니들 내의 버블 (bubble) 형성 등을 방지할 수 있었다. 마이크로니들 패치 제작용 몰드 내로의 용액 주입, 광가교 및 충분한 건조를 위해 후면 진공 챔버 사용시간의 경우 약 12 내지 20시간, 바람직하게 14시간 내지 16시간 일 수 있으나, 몰드 위에 얹은 용액의 양에 따라 적절하게 조절될 수 있다.
또한 본 발명에서는, 상처 봉합 및 재생을 위한 홍합 접착 단백질을 포함하는 하이드로겔 제형의 마이크로니들 패치 타입의 생체 접착 소재를 개체의 경피에 국부적으로 적용하는 단계를 포함하는 조직 접착 또는 접합 방법을 제공한다.
본 발명에서 상기 개체는 포유동물, 예를 들면, 인간, 소, 말, 돼지, 개, 양, 염소, 또는 고양이일 수 있다.
또한, 본 발명에서는 환자의 상처를 치료하는 방법으로, 상기 방법은 환자의 상처부위에 마이크로니들 패치를 접촉시키는 단계를 포함하고, 여기서 마이크로니들 패치는 홍합 접착 단백질 및 히알루론산을 포함하는 제1 하이드로겔 층; 및 실크 피브로인을 포함하는 제2 하이드로겔 층;을 포함한다.
본 발명에 의하여 제공되는 "치료 (treat)"는 자연 치유에 비하여 단축된 시간에 상처가 치유되는 것을 제공하는 것일 수 있다. 상기 치료는 상처의 개선 및/또는 완화를 포함할 수 있다. 또한, 상기 치료는 상처 및/또는 상처와 관련된 질환의 치료를 모두 포함하는 것일 수 있다. 상기 치료는 상처로부터 유발되는 손상된 조직의 치유 및/또는 재생을 의미할 수 있다. 상기 상처 치료는 피부 재생의 의미를 포함할 수 있다. 또한, 상기 치료는 상기 손상된 조직의 원래 조성을 유지하는 것일 수 있다. 또한, 상기 치료는 상처와 관련된 질환의 합병증 및/또는 흉터를 최소화하면서 상기 손상된 조직을 치유 및/또는 재생을 촉진하는 것일 수 있다.
상기 상처 부위 조직은 일반적으로 상기 마이크로니들 패치의 1개 이상의 마이크로니들에 의해 적어도 부분적으로 침투될 수 있는 임의의 조직을 포함할 수 있다. 상기 복수 개의 마이크로니들과 접촉될 수 있는 표면을 갖는 조직의 비제한적인 예는 피부, 눈(예를 들어, 각막, 결막), 위장관(예를 들어, 입, 식도, 위, 소장 및 대장, 직장 및 항문), 코 내부, 질, 귀 내부(예를 들어, 고막), 근육, 혈관, 세포막 또는 이들의 조합을 포함한다. 상기 조직은 포유류 피부와 같은 포유류의 생체 조직일 수 있다.
본 발명에서 마이크로니들 패치는 "치료학적으로 유효한 양"으로 홍합 접착 단백질 및 히알루론산을 포함하는 것일 수 있다. 상처의 치료에 유효한 본 발명에 따른 유효성분들의 양을 나타낸다. 즉 바람직한 효과를 전달하기에는 매우 충분하지만 의학적 판단 범위 내에서 심각한 부작용을 충분히 방지할 정도의 적절한 양을 의미한다. 본 발명의 마이크로니들 패치가 적용되는 양은 투여 경로, 투여 대상을 고려하여 적절하게 조정될 수 있다.
또한, 본 발명은 상처의 치료에 사용하기 위한 마이크로니들 패치를 제공하며, 여기서 마이크로니들 패치는 홍합 접착 단백질 및 히알루론산을 포함하는 제1 하이드로겔 층; 및 실크 피브로인을 포함하는 제2 하이드로겔 층;을 포함한다.
또한, 본 발명은 상처 치료를 위한 키트의 제조에서 마이크로니들 패치의 용도를 제공하며, 여기서 마이크로니들 패치는 홍합 접착 단백질 및 히알루론산을 포함하는 제1 하이드로겔 층; 및 실크 피브로인을 포함하는 제2 하이드로겔 층;을 포함한다.
실시예
이하, 제조예 및 실시예를 통해 본 발명을 더욱 상세히 설명한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 본 발명의 범위가 실시예에 의해 한정되는 것은 아니다.
제조예 1. 홍합 접착 단백질을 포함하는 하이드로겔 및 실크 피브로인을 포함하는 하이드로겔의 제조
제조예 1-1. 재조합 홍합 접착 단백질 fp-151의 생산
자연에 존재하는 홍합 접착 단백질 fp-1 중에서 80회 정도 반복되는 10개의 아미노산으로 구성된 데카펩타이드 (decapeptide)가 대장균에서 발현될 수 있도록 6개의 데카펩타이드로 이루어진 fp-1 변이체를 합성하고, 2개의 fp-1 변이체 사이에 Mgfp-5의 유전자(Genbank No. AAS00463 또는 AY521220)를 넣은 후, 대장균에서 성공적으로 발현하도록 하였다. 이후, 아세트산을 이용한 단순한 정제 분리과정을 통해 홍합 접착 단백질 fp-151을 생산하였다 (D.S. Hwang et. al., Biomaterials 28, 3560-3568, 2007 참조). 구체적으로 fp-1 (Genbank No. Q27409 또는 S23760)의 아미노산 서열에서, 서열번호 2로 표시되는 AKPSYPPTYK로 이루어진 펩타이드가 6회 반복 연결된 서열번호 14로 표시되는 fp-1 변이체 (이하, 6xAKPSYPPTYK라 함)를 제조하고 서열번호 16으로 표시되는 mgfp-5의 N-말단에 상기 6xAKPSYPPTYK을 적절히 조합하고 또한 mgfp-5의 C-말단에 6xAKPSYPPTYK를 적절히 조합하여 서열번호 9로 표시되는 홍합 접착단백질 fp-151을 제조하였다.
제조예 1-2. 홍합 접착 단백질 및 히알루론산을 포함하는 하이드로겔의 제조
증류수 또는 생리 식염수에 제조예 1-1을 통해 생산된 홍합 접착 단백질 30 내지 35 중량%, 평균 분자량 100 kDa의 히알루론산 파우더 5 내지 20 중량%를 첨가하여 혼합하고, 트리스비피리딘루테늄디클로라이드 1 mM 및 과황산나트륨 용액 20~40 mM을 첨가한 후, 형광등을 포함한 자연광 아래에 16 내지 20시간 동안 노출시켜 건조된 하이드로겔을 수득하였다.
홍합 접착 단백질 및 히알루론산을 포함하는 하이드로겔의 광-가교 전후의 사진을 도 1 좌측에 나타내었으며, 광-가교 후에는 루테늄 이온 첨가로 인해 노란색을 나타내었다.
제조예 1-3. 실크 피브로인의 생산
0.75 g의 올레산나트륨 및 0.45 g의 탄산나트륨을 녹인 증류수 8 L를 끓인 후, 깨끗한 누에고치 150 g을 넣고 약 40분간 끓이는 과정을 두 번 반복하여, 누에고치의 세리신을 제거하였다. 끓는 물을 이용하여 세리신이 제거된 누에고치의 염을 제거하고 완전히 건조시켰다. 증류기계에서 염화칼슘:증류수:100% 에탄올의 몰 비율이 1:8:2인 용액을 100도까지 끓인 후, 정련된 솜을 1:20 비율로 넣고 98-100도에서 약 20시간 동안 랜덤 분열 (random cleavage) 시켰다. 실크 피브로인 용액을 Miracloth를 이용하여 여과시킨 후에 투석 및 동결 건조 과정을 거쳐 정제된 실크 피브로인 파우더를 수득하였다.
제조예 1-4. 실크 피브로인을 포함하는 하이드로겔의 제조
증류수에 제조예 1-3을 통해 생산된 실크 피브로인 단백질 70 중량%을 첨가하고, 트리스비피리딘루테늄디클로라이드 1 mM 및 과황산나트륨 용액 30 mM을 첨가한 후, 형광등을 포함한 자연광 아래에 16 내지 20시간 동안 노출시켜 건조된 하이드로겔을 수득하였다.
실크 피브로인 단백질을 포함하는 하이드로겔의 광-가교 전후의 사진을 도 1 우측에 나타내었으며, 광-가교 후에는 루테늄 이온 첨가로 인해 노란색을 나타내었다.
실험예 1. 제조예 1-3 및 1-4에 따라 제조한 하이드로겔의 팽윤도 확인
제조예 1-3 및 1-4에 따라 제조한 하이드로겔을 완전히 건조하여 하이드로겔의 팽윤도를 확인하였다. 건조된 하이드로겔의 무게를 측정한 후에, 생리 식염수에 침지시켜 건조 무게 대비 팽윤된 하이드로겔의 무게를 측정하여 팽윤 정도를 확인하였다. 시간이 지나도 변하지 않는 지점의 팽윤도를 평형 상태의 팽윤도 (equilibrium swelling ratio)로 지정하였다. 다양한 구성 요소 및 농도의 하이드로겔의 평형 상태의 팽윤도를 측정하여 도 2에 나타내었다.
그 결과, 모든 실험 조건에서 30 mM 미만의 과산화황산염을 사용할 경우, 형광등을 포함한 자연광 아래에서 겔이 형성되지 않음을 확인하였다. 또한, 35 중량%의 fp-151, 15 중량%의 HA, 1 mM Ru(Ⅱ)bpy3 2+, 30 mM 과산화황산염, 생리 식염수 용해 조건에서 팽윤도가 가장 높았고, 70 중량%의 SF 사용시 거의 팽윤하지 않았다.
실험예 2. 제조예 1-3 및 1-4에 따라 제조한 하이드로겔의 세포 독성 확인
35 중량%의 fp-151, 15 중량%의 HA를 포함하는 용액과 70 중량%의 실크 피브로인 용액에 각각 1 mM Ru(Ⅱ)bpy3 2+, 30 mM 과산화황산염을 섞고 형광등을 포함한 자연광 아래에서 가교시킨 하이드로겔을 ISO 10993-5 방법에 따라 용출비율 0.1 g/L로 세포 배지에 담궈 37 ℃에서 24 시간 동안 용출시켰다. 이 용출액을 HaCaT 각질형성세포 (keratinocyte)와 NIH3T3 섬유아세포 (fibroblast) 단일층에 처리하여 72 시간 동안 세포 성장에 미치는 영향을 cck-8 용액을 이용하여 450 nm의 OD 값으로 확인하였다. 아무 처리 하지 않은 그룹과 15 % DMSO 용액을 처리한 그룹이 대조군으로 사용되었다.
그 결과, 홍합 접착 단백질 및 히알루론산을 포함하는 하이드로겔과 실크 피브로인을 포함하는 하이드로겔 모두 각질형성세포 및 섬유아세포에 대해 세포 독성을 나타내지 않았다 (도 3).
제조예 2. 마이크로니들 패치 제조용 진공 챔버 및 몰드 제작
기존의 마이크로니들 패치 제작을 위해 주로 사용되는 일반 진공 챔버와 원심분리 방법의 경우, 접착력과 점도가 높은 고농도의 홍합 접착 단백질 용액을 사용하면 몰드에 주입하는 과정 중에 공기 방울이 발생하거나, 몰드 끝까지 채워지기 전에 말라버리는 등의 어려움이 많았다.
이에, 몰드 아래 방향으로만 진공이 가해지는 후면 진공 챔버를 제작하였다. 뚜껑 쪽의 몰드가 얹어질 부위에는 마이크로니들 패치 제작용 PDMS 몰드 전면에 진공이 잡히도록, 안쪽으로 구멍을 포함한 계단을 내었다. 또한, 그 계단에는 구리 그물망을 끼워 마이크로니들 패치 제작용 몰드가 휘지 않도록 하였다 (도 4).
grayscale lithography technology를 이용하여, 원뿔 형태의 마이크로니들 (지름 250 μm, 높이 750 μm)이 500 μm 간격으로 10 X 10로 구성된 SU-8 마스터 몰드를 제작하고, 몰드에 PDMS 용액을 부어 마이크로니들 패치 제작용 몰드를 제작하였다.
실시예 1. 마이크로니들 패치 제조
실시예 1-1. 홍합 접착 단백질 및 히알루론산을 포함하는 하이드로겔 제형의 단일층 마이크로니들 패치 제조
35 중량%의 fp-151, 15 중량%의 HA, 1 mM Ru(Ⅱ)bpy3 2+, 30 mM 과산화황산염을 포함하는 생리 식염수 50 ul를 제조예 2에서 제작한 마이크로니들 몰드 위에 얹은 후, -80 kPa의 진공이 되게 하였다. 진공으로 인해 마이크로니들 몰드 안으로 단백질 용액이 주입되는 동시에 형광등을 포함한 자연광을 통해 광-가교가 일어날 수 있도록 하였다. 약 16-20시간 후, 진공을 제거한 후에 투명 접착 테이프를 통해 몰드와 생산된 단백질 기반의 마이크로니들 패치를 분리한다. 이렇게 생산된 홍합 접착 단백질 기반의 단일층 마이크로니들 패치를 도 5에 나타내었다.
실시예 1-2. 홍합 접착 단백질을 포함하는 하이드로겔 층 및 실크 피브로인을 포함하는 하이드로겔 층을 포함하는 이중층 마이크로니들 패치 제조
제조예 2에 따른 챔버를 이용한 후면 진공 조건에서 홍합 접착 단백질을 포함하는 제1 광-가교 용액 (35 중량%의 fp-151, 15 중량%의 HA를 포함하는 생리 식염수 30 ul)을 몰드에 얹어 10 분 내지 2 시간 동안 주입시킨 후, 표면의 남은 용액을 긁어서 제거하였다. 곧바로 실크 피브로인을 포함하는 제2 광-가교 용액 (70 중량%의 SF, 1 mM Ru(Ⅱ)bpy3 2+, 30 mM 과산화황산염, 1 mg/ml rhodamine B를 포함하는 증류수 40 ul)을 몰드에 얹고 16 내지 20 시간 후, 진공을 제거하고 투명 접착 테이프를 이용하여 몰드로부터 마이크로니들 패치를 분리해냈다.
2 개의 하이드로겔 층을 구분하기 위해, 실크 피브로인 용액에 rhodamine B 염색 용액을 섞은 후 패치를 제조하였다. 이에 따라 수득한 이중층 마이크로니들 패치의 모습을 광학 현미경과 형광 현미경을 통해 확인하고 이를 도 6에 나타내었다. 상기 제1 광-가교 용액의 주입 시간을 조절함에 따라 마이크로니들 패치의 팽윤성 (제1 하이드로겔 층)/비팽윤성 (제2 하이드로겔 층) 비율을 조절할 수 있음을 확인하였다.
실험예 3. 하이드로겔 비율에 따른 마이크로니들 패치의 팽윤 모습 확인
실시예 1-2에 따라 제조한 각기 다른 팽윤성/비팽윤성 비율을 갖는 이중층 마이크로니들 패치의 팽윤 모습을 확인하기 위해, 마이크로니들 패치를 생리 식염수에 침지시켜 일정 시간마다 광학 현미경으로 확인하였고 이를 도 7에 나타내었다.
도 7에 나타난 것과 같이, 팽윤성 비율이 커짐에 따라 마이크로니들의 전체적인 팽윤 정도가 커짐을 확인하였고, 팽윤성 비율이 80%인 경우, 니들이 아래가 심하게 부풀면서 비팽윤성 부위와 분리되는 현상을 확인하였다. 따라서, 접착 실험을 제외한 추후 실험에서는 비팽윤성 패치 부위와 분리 없이 가장 안정적으로 팽윤하는, 팽윤성 비율이 60%인 이중층 마이크로니들 패치를 사용하였다.
실험예 4. 마이크로니들 패치의 피부 투과 및 팽윤 확인
실험예 4-1. 파열점 확인 실험
실시예 1에 따라 제조한 단일층 또는 이중층 마이크로니들 패치의 각 니들의 파열점을 확인하기 위해 인스트론을 이용하였다. 인스트론을 이용하여 바닥에 고정된 마이크로니들 패치를 1.2 mm/min의 일정한 속도로 압축하여 니들이 부러지는 힘인 파열점을 확인하였다 (도 8).
그 결과, 홍합 접착 단백질을 포함하는 단일층 마이크로니들 패치뿐만 아니라 실크 피브로인이 포함된 이중층 마이크로니들 패치 모두 피부조직을 뚫기 위해 필요한 힘 (0.05 N/needle) 이상의 충분한 힘을 갖는 것을 확인하였다. 또한, 기계적 물성이 훌륭한 실크 피브로인으로 인해 이중층 마이크로니들 파열점이 약 4.5배 넘게 증가하는 것을 확인하였다.
실험예 4-2. 마이크로니들의 피부 조직 투과 비율 확인 실험
실시예 1-1에 따라 제조한 홍합 접착 단백질을 포함하는 단일층 마이크로니들 10 X 10으로 구성된 패치를 렛 (rat) 피부 조직에 엄지 손가락으로 부드럽게 5 분간 누른 후, 조직 염색 약을 통해 투과된 마이크로니들 수를 측정하여 투과비율을 확인하였다 (도 9).
그 결과, 상대적으로 파열점이 낮았던 단일층 마이크로니들의 경우에도 니들 한 개의 부러짐 없이 렛 피부 조직을 투과할 수 있음을 확인하였다.
실험예 5. 마이크로니들 패치의 조직 접착력 확인 실험
실험예 5-1. 팽윤성 비율에 따른 이중층 마이크로니들 패치의 조직 접착력 비교 실험
아래쪽 알루미늄 로드 한 면 (지름 1.4 cm)에 돼지 피부를 순간 접착제로 부착하고 인스트론 기기 센서에 연결된 위 쪽 알루미늄 로드 면에는 양면 테이프를 이용해 실시예 1에 따라 제조한 마이크로니들 패치 (팽윤성 비율 20, 40, 60, 80% 사용)를 부착하였다. 100 mm/min의 일정한 속도로 최종 힘이 30 N/patch가 되도록 마이크로니들 패치를 아래쪽 돼지 피부에 누르고 10 분 뒤에 2 mm/min의 속도로 떼어 내었다. 이때, 가장 높은 힘을 면적으로 나눈 값을 조직 접착력으로 두고 이를 그래프로 나타내었다 (도 10).
팽윤성 비율이 60%인 이중층 마이크로니들 패치가 팽윤에 의한 주변 조직과의 기계적 고정 및 접합으로 가장 높은 조직 접착력을 갖으며, 80%일 때는 팽윤성 층이 비팽윤성 층 및 패치에서 분리되면서 오히려 조직 접착력이 감소함을 확인하였다.
실험예 5-2. 상용화된 접착 테이프와의 조직 접착력 비교 실험
아래쪽 알루미늄 로드 한 면 (지름 1.4 cm)에 돼지 피부를 순간 접착제로 부착하고 인스트론 기기 센서에 연결된 위 쪽 알루미늄 로드 면에는 양면 테이프를 이용해 실시예 1에 따라 제조한 마이크로니들 패치 (팽윤성 비율 60%) 또는 상용화된 상처 봉합용 접착 테이프 (3M Steri-StripTM)를 부착하였다. 100 mm/min의 일정한 속도로 최종 힘이 30 N/patch가 되도록 마이크로니들 패치를 아래쪽 돼지 피부에 누르고 2분 뒤에 2 mm/min의 속도로 떼어 내었다. 이때, 가장 높은 힘을 면적으로 나눈 값 (조직 접착력)을 그래프에 나타내었다 (도 11). 실험에 사용된 돼지 피부 표면 조건은 다음과 같다: 건조 (semi-dry)일 경우, 휴지로 표면에 있는 물을 가볍게 닦아낸 후 실험에 사용하였고, 젖은 경우 (wet), 표면에 생리 식염수 100 ul를 뿌려준 후 곧바로 실험에 사용하였다.
홍합 접착 단백질을 포함하는 하이드로겔 제형의 이중층 마이크로니들 패치의 경우, 건조 표면 조건에서는 상용화된 접착 테이프 (122.3 ± 29.1 kPa)에 견줄 만한 우수한 조직 접착력 (134.7 ± 27.7 kPa)을 나타냈고, 젖은 표면 조건에서는 조직 접착력을 잃는 상용화된 접착 테이프와 달리 건조 표면 조건에서의 조직 접착력과 비슷한 수준의 조직 접착력 (123.3 ± 21.1 kPa)을 나타내었다.
실험예 6. 마이크로니들 패치의 상처 봉합 효과 확인
털이 완전히 제거되지 않은 렛 피부 조직에 상처 양쪽으로 상처가 벌어질 수 있는 충분한 길이 (3 cm)의 창상을 유도한 후, 실시예 1에 따라 제조한 이중층 마이크로니들 패치를 스트립 형태 (팽윤성 비율 60%, 1 X 4 cm2)로 엄지 손가락을 이용해 가볍게 눌러주었다. 대조군으로는 상용화된 상처 봉합용 접착 테이프 (3M Steri-StripTM)를 부착 메뉴얼에 따라 적용하여 상처 봉합 가능성을 비교 확인하였다 (도 12).
상용화된 의료용 접착 테이프의 경우, 테이프가 조직에 단단히 고정되지 않고 상처와 함께 벌어졌으며, 피를 흡수하지 못하기 때문에 피가 고일수록 쉽게 탈착되었다. 반면에, 실시예 1에 따라 제조한 마이크로니들 패치의 경우, 3 cm 길이의 창상을 손쉽게 봉합하였으며, 봉합 이후에 상처 사이로 피가 더 고였을 때에도 패치의 들뜸 없이 피를 흡수하며 봉합을 유지하는 양상을 나타내었다.
실험예 7. 마이크로니들 패치의 물질 전달 효과 확인
마이크로니들 한 패치당 FITC-dextran (77 kDa)을 최종 농도 5 mg/ml가 되도록 광-가교성 홍합 접착 단백질 수용액에 탑재하여 후면 진공 시스템을 이용하여, FITC-dextran이 탑재된 하이드로겔 제형의 마이크로니들 패치를 제작하였다. 마이크로니들 패치를 37 ℃의 생리 식염수 또는 0.02 mg/L 트립신이 첨가된 생리 식염수에 침지시켜 일정 기간마다 샘플을 채취하고 형광 분광기를 사용하여 정량 하여, 하이드로겔의 팽윤에 의한 확산 현상에 따른 탑재된 형광 물질의 방출 속도 및 양을 확인하였다. 형광 물질의 정량을 위해, FITC-dextran 농도에 따른 형광값을 나타내는 표준 곡선을 사용하였다 (도 13).
0.02 mg/L 트립신이 첨가된 생리 식염수에서는 이틀 안에 단백질 기반 마이크로니들 패치가 모두 분해되면서 탑재된 FITC-dextran이 모두 방출되는 것을 확인하였다. 효소가 없는 생리 식염수의 경우, 일주일 째에 탑재된 FITC-dextran의 약 35 %가 방출되는 것을 확인하였다. 이는 광-가교로 이루어진 하이드로겔 제형의 팽윤에 의한 확산 현상으로, 광-가교 정도에 따라 방출 속도 및 방출량을 조절할 수 있다는 것을 의미하며, 이는 홍합 접착 단백질을 포함하는 마이크로니들 패치를 약물 전달 시스템에 응용이 가능하다는 것을 의미한다.
이상과 같이 실시예를 통하여 본 발명을 설명하였다. 본 발명이 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 상술한 실시예들은 모든 면에 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 한다. 본 발명의 범위는 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (13)

  1. 홍합 접착 단백질 및 히알루론산을 포함하는 제1 하이드로겔 층; 및
    실크 피브로인을 포함하는 제2 하이드로겔 층;
    을 포함하는 마이크로니들 패치.
  2. 제1항에 있어서, 홍합 접착 단백질은 서열번호 1, 서열번호 4, 서열번호 5, 서열번호 6, 서열번호 7 및 서열번호 8의 아미노산 서열로 이루어진 군에서 선택된 아미노산 서열로 이루어진 단백질 또는 상기 군에서 선택된 1종 이상의 아미노산 서열이 연결된 융합 단백질인, 마이크로니들 패치.
  3. 제2항에 있어서, 융합 단백질은 서열번호 9, 서열번호 10, 서열번호 11, 서열번호 12 서열번호 13 및 서열번호 15의 아미노산 서열로 이루어진 군에서 선택된 아미노산 서열로 이루어진 융합 단백질인, 마이크로니들 패치.
  4. 제2항에 있어서, 융합 단백질은 서열번호 9 또는 서열번호 15의 아미노산 서열인 융합 단백질인, 마이크로니들 패치.
  5. 제1항에 있어서,
    제1 하이드로겔 층 및 제2 하이드로겔 층은 서로 가교된 것인, 마이크로니들 패치.
  6. 제1항에 있어서,
    홍합 접착 단백질은 제1 하이드로겔 층에 대해 25 내지 50% (w/v)로 포함되는 것인, 마이크로니들 패치.
  7. 제1항에 있어서,
    히알루론산은 평균 분자량이 40 kDa 내지 150 kDa인, 마이크로니들 패치.
  8. 제1항에 있어서,
    히알루론산은 제1 하이드로겔 층에 대해 5 내지 20% (w/v)로 포함되는 것인, 마이크로니들 패치.
  9. 제1항에 있어서,
    실크 피브로인은 제2 하이드로겔 층에 대해 40 내지 70% (w/v)로 포함되는 것인, 마이크로니들 패치.
  10. 제1항에 있어서,
    제1 하이드로겔 층 및 제2 하이드로겔 층을 2:8 내지 8:2 높이비로 포함하는 마이크로니들 패치.
  11. 제1항 내지 제10항 중 어느 하나의 항에 따른 마이크로니들 패치를 포함하는 조직 접착제.
  12. 환자의 상처를 치료하는 방법으로, 상기 방법은 환자의 상처부위에 마이크로니들 패치를 접촉시키는 단계를 포함하고, 여기서 마이크로니들 패치는 홍합 접착 단백질 및 히알루론산을 포함하는 제1 하이드로겔 층; 및 실크 피브로인을 포함하는 제2 하이드로겔 층;을 포함하는 방법.
  13. 상처의 치료에 사용하기 위한 마이크로니들 패치로, 여기서 마이크로니들 패치는 홍합 접착 단백질 및 히알루론산을 포함하는 제1 하이드로겔 층; 및 실크 피브로인을 포함하는 제2 하이드로겔 층을 포함하는 것인, 마이크로니들 패치.
PCT/KR2019/005952 2018-05-18 2019-05-17 하이드로겔 제형 기반의 마이크로니들 접착 패치 WO2019221559A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/056,340 US20210275359A1 (en) 2018-05-18 2019-05-17 Microneedle Adhesive Patch Based on Hydrogel Formulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180057040 2018-05-18
KR10-2018-0057040 2018-05-18

Publications (1)

Publication Number Publication Date
WO2019221559A1 true WO2019221559A1 (ko) 2019-11-21

Family

ID=68540609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005952 WO2019221559A1 (ko) 2018-05-18 2019-05-17 하이드로겔 제형 기반의 마이크로니들 접착 패치

Country Status (3)

Country Link
US (1) US20210275359A1 (ko)
KR (1) KR102222704B1 (ko)
WO (1) WO2019221559A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111228563A (zh) * 2020-01-17 2020-06-05 华南理工大学 丝素蛋白和单宁酸复合医用胶黏剂的制备方法
CN111467575A (zh) * 2020-04-17 2020-07-31 南京鼓楼医院 一种集成有诱导多能干细胞来源的心肌细胞导电微针补片及其制备方法和应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102372226B1 (ko) * 2019-12-19 2022-03-08 주식회사 포스코 폴리페놀이 결합된 홍합 접착 단백질 및 그의 용도
KR102122208B1 (ko) * 2020-04-07 2020-06-12 주식회사 라파스 마이크로니들 패치를 이용한 최소 침습적 아토피 피부염 검사 방법 및 마이크로니들 패치를 포함하는 최소 침습적 아토피 검사 키트
WO2022025319A1 (ko) * 2020-07-30 2022-02-03 주식회사 바이오셀트란 피부투과성 재조합 뉴로펩타이드 콤플렉스가 함유된 용해성 마이크로니들 패치
KR102234446B1 (ko) 2020-07-30 2021-04-01 주식회사 바이오셀트란 피부투과성 재조합 뉴로펩타이드 콤플렉스가 함유된 용해성 마이크로니들 패치
KR20230024669A (ko) * 2021-08-12 2023-02-21 주식회사 페로카 마이크로니들 패치
CN114099476B (zh) * 2021-11-22 2023-07-28 西安德诺海思医疗科技有限公司 一种功能性凝胶层、疤痕贴及其制备方法
KR20230116976A (ko) * 2022-01-28 2023-08-07 동국대학교 산학협력단 바이오 의약품의 경피 전달용 용해성 마이크로니들 및 이의 제조 방법
CN114376993B (zh) * 2022-02-16 2023-05-23 中南大学湘雅三医院 一种促进糖尿病人伤口愈合的载氧化酶微针及其制备方法
CN114848505A (zh) * 2022-04-29 2022-08-05 深圳市宗匠科技有限公司 一种水凝胶贴片及其制备方法和应用
KR20240009072A (ko) 2022-07-13 2024-01-22 금오공과대학교 산학협력단 금 나노입자를 함유하는 마이크로니들 광열 패치
CN115260557B (zh) * 2022-07-27 2023-06-16 华南理工大学 一种两面粘附性不同的木质素基抗紫外、导电水凝胶及其制备方法与应用
CN115919736B (zh) * 2022-11-24 2024-06-18 暨南大学 一种用于瘢痕治疗的缓释水凝胶微针贴片及其制备与应用
CN115737534A (zh) * 2023-01-09 2023-03-07 媄典(北京)医疗器械有限公司 一种基于丝素蛋白的复合微针贴及其制备方法
CN117159510A (zh) * 2023-10-16 2023-12-05 中科微针(北京)科技有限公司 一种含透气基底材料的微针膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140027031A (ko) * 2012-08-23 2014-03-06 포항공과대학교 산학협력단 홍합 접착 단백질 기반의 생체접착 하이드로젤
KR20160026441A (ko) * 2014-09-01 2016-03-09 포항공과대학교 산학협력단 홍합접착 단백질을 포함하는 하이드로젤 제조용 조성물 및 이를 이용한 하이드로겔의 생산방법
JP2017176238A (ja) * 2016-03-28 2017-10-05 株式会社シード フィブロイン−ヒアルロン酸ハイドロゲル複合体
KR20170118669A (ko) * 2015-02-13 2017-10-25 주식회사 엔도더마 가교된 히알루론산 및 비가교 히알루론산을 포함하는 마이크로니들 제조용 조성물
KR20180000477A (ko) * 2016-06-23 2018-01-03 (주)뷰티화장품 마이크로니들 어레이가 도입된 하이드로겔 팩
KR20180034170A (ko) * 2016-09-27 2018-04-04 (주) 제이씨바이오 히알루론산 및 실크 단백질을 함유하는 투명 하이드로겔 막 및 이의 제조 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040087B2 (en) * 2008-10-31 2015-05-26 The Invention Science Fund I, Llc Frozen compositions and methods for piercing a substrate
WO2011115420A2 (en) * 2010-03-16 2011-09-22 Kollodis Biosciences, Inc. Adhesive extracellular matrix mimetic
WO2012054582A2 (en) * 2010-10-19 2012-04-26 Trustees Of Tufts College Silk fibroin-based microneedles and methods of making the same
KR101311325B1 (ko) * 2012-09-13 2013-09-30 이상재 합성 디자인된 3차원 미세환경 구조물
WO2017101024A1 (zh) * 2015-12-15 2017-06-22 江阴市本特塞缪森生命科学研究院有限公司 一种改良的生物医用材料产品
KR101807593B1 (ko) * 2015-12-30 2017-12-11 포항공과대학교 산학협력단 흉터 최소화 상처 재생 촉진용 재조합 폴리펩타이드 및 이를 포함하는 생체 접착 소재

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140027031A (ko) * 2012-08-23 2014-03-06 포항공과대학교 산학협력단 홍합 접착 단백질 기반의 생체접착 하이드로젤
KR20160026441A (ko) * 2014-09-01 2016-03-09 포항공과대학교 산학협력단 홍합접착 단백질을 포함하는 하이드로젤 제조용 조성물 및 이를 이용한 하이드로겔의 생산방법
KR20170118669A (ko) * 2015-02-13 2017-10-25 주식회사 엔도더마 가교된 히알루론산 및 비가교 히알루론산을 포함하는 마이크로니들 제조용 조성물
JP2017176238A (ja) * 2016-03-28 2017-10-05 株式会社シード フィブロイン−ヒアルロン酸ハイドロゲル複合体
KR20180000477A (ko) * 2016-06-23 2018-01-03 (주)뷰티화장품 마이크로니들 어레이가 도입된 하이드로겔 팩
KR20180034170A (ko) * 2016-09-27 2018-04-04 (주) 제이씨바이오 히알루론산 및 실크 단백질을 함유하는 투명 하이드로겔 막 및 이의 제조 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111228563A (zh) * 2020-01-17 2020-06-05 华南理工大学 丝素蛋白和单宁酸复合医用胶黏剂的制备方法
CN111467575A (zh) * 2020-04-17 2020-07-31 南京鼓楼医院 一种集成有诱导多能干细胞来源的心肌细胞导电微针补片及其制备方法和应用

Also Published As

Publication number Publication date
KR102222704B1 (ko) 2021-03-04
US20210275359A1 (en) 2021-09-09
KR20190132291A (ko) 2019-11-27

Similar Documents

Publication Publication Date Title
WO2019221559A1 (ko) 하이드로겔 제형 기반의 마이크로니들 접착 패치
Jeon et al. Bio-inspired swellable hydrogel-forming double-layered adhesive microneedle protein patch for regenerative internal/external surgical closure
Guo et al. Responsive hydrogel-based microneedle dressing for diabetic wound healing
US8163714B2 (en) Injectable crosslinked and uncrosslinked alginates and the use thereof in medicine and in cosmetic surgery
JP6502352B2 (ja) 流体の移動を制御するための移植可能なメッシュ
EP3031466B1 (en) Purified amphiphilic peptide compositions and uses thereof
KR100260672B1 (ko) 방출 조절된 이식체로서 유용한 중합체성 조성물
CA2680824C (en) Treatment of leaky or damaged tight junctions and enhancing extracellular matrix
KR101766679B1 (ko) 유착 방지를 위한 히드로겔 막
CN106913902A (zh) 多糖基水凝胶
WO2003090765A1 (fr) Compositions medicinales contenant un derive de chitosan photo-reticulable
CN107823692B (zh) 一种创伤敷料复合纳米纤维膜及其制备方法
AU2014229273A1 (en) Materials for gastrointestinal obstruction prevention
BRPI0718615B1 (pt) processo para produzir um material elástico a partir de tropoelastina e material elástico
EP3305339B1 (en) Method for manufacturing collagen film using ultraviolet light, collagen film manufactured by using same, and biomaterial prepared using collagen film
KR101005287B1 (ko) 공막돌륭술 밴드 및 이의 제조 방법
CN110624112A (zh) 一种连接前列腺素e2的水凝胶及其制备方法和应用
KR101182417B1 (ko) 나노섬유 인공양막 및 이의 제조방법
He et al. Recent advances in photo-crosslinkable methacrylated silk (Sil-MA)-based scaffolds for regenerative medicine: A review
JPH06504546A (ja) 貯蔵製剤
KR100262142B1 (ko) 치주조직재생용약물함유생분해성차폐막및그의제조방법
CN112386740A (zh) 一种成纤维细胞生长因子自粘性人工硬膜修补片及其制备方法
CN111748088B (zh) 高强度和韧性的光交联水凝胶材料及其制备方法与应用
CN211068233U (zh) 一种成纤维细胞生长因子自粘性人工硬膜修补片
JPH0824326A (ja) 人工血管およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803052

Country of ref document: EP

Kind code of ref document: A1