WO2019221233A1 - リチウム二次電池 - Google Patents

リチウム二次電池 Download PDF

Info

Publication number
WO2019221233A1
WO2019221233A1 PCT/JP2019/019510 JP2019019510W WO2019221233A1 WO 2019221233 A1 WO2019221233 A1 WO 2019221233A1 JP 2019019510 W JP2019019510 W JP 2019019510W WO 2019221233 A1 WO2019221233 A1 WO 2019221233A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
experimental example
secondary battery
lithium secondary
lithium
Prior art date
Application number
PCT/JP2019/019510
Other languages
English (en)
French (fr)
Inventor
周平 阪本
陽子 小野
政彦 林
武志 小松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/055,890 priority Critical patent/US11961960B2/en
Publication of WO2019221233A1 publication Critical patent/WO2019221233A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery.
  • Lithium secondary batteries have higher energy density and superior charge / discharge cycle characteristics compared to other secondary batteries such as nickel cadmium secondary batteries and nickel hydride secondary batteries. Widely used as a power source for electronic devices. There are still high demands for downsizing and thinning.
  • Non-Patent Document 1 uses about 1 mmol / 1 LiPF 6 EC / DMC / EMC based on an organic solvent as an electrolyte, LiFePO 4 as a positive electrode, and Li as a counter electrode, so that the current density is about 15 mA / g. It discloses disclosing a capacity of 135 mAh / g.
  • Non-Patent Document 2 discloses that a gel polymer electrolyte based on a hydroxyethyl cellulose membrane is used as an electrolyte, LiFePO 4 is used as a positive electrode, and Li is used as a counter electrode, so that a capacity of about 110 mAh / g is obtained under a current density of 50 mA / g. Disclosed.
  • Non-Patent Document 3 uses a solid electrolyte that is NASICON-type LiZr 2 (PO 4 ) 3 as an electrolyte, LiFePO 4 as a positive electrode, and Li as a counter electrode, so that about 80 ° C. under a current density of 100 ⁇ A / cm 2. It discloses disclosing a capacity of 120 mAh / g.
  • Non-Patent Document 1-3 since the lithium secondary battery disclosed in Non-Patent Document 1-3 has a large resistance at the electrode (positive electrode) -electrolyte interface, it has a smaller capacity than the theoretical capacity of 169 mAh / g of the positive electrode active material. There are challenges.
  • the present invention has been made in view of this problem, and an object thereof is to provide a lithium secondary battery having a high capacity and a long life.
  • a lithium secondary battery includes a positive electrode including a material capable of inserting and extracting lithium ions, a lithium ion conductive electrolyte including a salen metal complex, and lithium metal or lithium ion.
  • a gist is to provide a negative electrode containing a material capable of occlusion and release.
  • the present invention it is possible to provide a lithium secondary battery having a high capacity and a long life by adding a salen metal complex to the electrolyte.
  • FIG. 1 is a schematic cross-sectional view schematically showing a basic configuration of a lithium secondary battery according to an embodiment of the present invention. It is a figure which shows structural formula of a salen type metal complex. It is sectional drawing which shows typically the structure of the lithium secondary battery which concerns on embodiment of this invention. It is a figure which shows the charging / discharging characteristic of the lithium secondary battery of Experimental example 1 and a comparative example.
  • FIG. 1 is a schematic cross-sectional view showing a basic configuration of a lithium secondary battery according to this embodiment.
  • the basic configuration of the lithium secondary battery 100 includes a positive electrode 10, an electrolyte 20, and a negative electrode 30, and is the same as a general lithium secondary battery.
  • the lithium secondary battery according to this embodiment is characterized in that the electrolyte 20 contains a salen metal complex as an additive.
  • the positive electrode 10 can include a catalyst and a conductive material as constituent elements.
  • the positive electrode 10 preferably contains a binder for integrating the catalyst and the conductive material.
  • the negative electrode 30 can have a constituent element such as lithium-containing alloy, carbon, and oxide capable of releasing and absorbing metallic lithium or lithium ions.
  • Electrolyte The electrolyte 20 of the lithium secondary battery 100 according to the present embodiment exhibits lithium ion conductivity, and includes a salen metal complex as an additive.
  • FIG. 2 shows a structural formula of a salen metal complex.
  • the salen metal complex includes (R, R)-( ⁇ )-N, N′-bis (3,5-di-tert-butylsalicylidene) -1,2-cyclohexanediaminotitanium chloride (TiSl), ( R, R)-(-)-N, N'-bis (3,5-di-tert-butylsalicylidene) -1,2-cyclohexanediaminovanadium chloride (VSl), (R, R)-(- ) -N, N'-bis (3,5-di-tert-butylsalicylidene) -1,2-cyclohexanediaminochromium chloride (CrSl), (R, R)-(-)-N, N'- Bis (3,5-di-tert-butylsalicylidene) -1,2-cyclohexanediaminomanganese chloride (MnSl), (R, R)-( ⁇ )-
  • one type may be selected from the above, or two or more types may be mixed and used.
  • the mixing ratio in the case of mixing is not specifically limited. Any mixing ratio may be used.
  • the electrolyte 20 contains a Li salt together with the salen metal complex.
  • Li salt is supplied from a metal salt containing lithium.
  • the metal salt include, for example, lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium trifluoromethanesulfonylamide (LiTFSA) [(CF 3 SO 2 ) 2 NLi], etc. Mention may be made of solute metal salts.
  • the electrolyte 20 contains a solvent.
  • the solvent include dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl isopropyl carbonate (MIPC), methyl butyl carbonate (MBC), diethyl carbonate (DEC), and ethyl propyl carbonate (EPC).
  • the mixing ratio in the case of using a mixed solvent is not particularly limited.
  • the electrolyte 20 may include a gel polymer.
  • a gel polymer for example, one of polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), and polyethylene oxide (PEO) gel polymer, or a gel polymer in which two or more kinds are mixed may be used.
  • the mixing ratio of the gel polymer is not particularly limited.
  • the electrolyte 20 may include a solid electrolyte.
  • the solid electrolyte is, for example, beta-eucryptite structure LiAlSiO 4, ramsdellite structure of Li 2 Ti 3 O 7, triple rutile structure of LiNb 0.75 Ta 0.25 WO 6, Li 14 ZnGe 4 O 16, Li 3 .6 Ge 0.6 V 0.4 O 4 ⁇ -Li 3 PO 4 structure, Li 5.5 Fe 0.5 Zn 0.5 O 4 inverted fluorite structure, Li 1.3 Ti 1.7 NASICON type of Al 0.3 (PO 4 ) 3 , ⁇ 3 -Fe 2 (SO 4 ) 3 structure of Li 3 Sc 0.9 Zr 0.1 (PO 4 ) 3 , La 2 / 3-x Li 3x TiO 3
  • An oxide solid electrolyte having a perovskite structure of (x ⁇ 0.1) or a garnet structure of Li 7 a 3 Zr 2 O 12 , Li4GeS4, Li4-xGe1-xPx
  • the positive electrode 10 of the lithium secondary battery 100 includes a conductive material capable of inserting and desorbing lithium ions, and includes both or one or both of a catalyst and a binder as necessary. Including.
  • the conductive material contained in the positive electrode 10 is preferably carbon.
  • Examples thereof include carbon blacks such as ketjen black and acetylene black, activated carbon, graphites, carbon fibers, carbon sheets, and carbon cloth.
  • cathode material of the cathode 10 examples include layered rock salt type materials such as LiCoO 2 and LiNiO 2, spinel type materials such as LiMn 2 O 4, and olipine type materials such as LiFePO 4. In addition, it will not specifically limit if it is a well-known positive electrode material other than this.
  • These positive electrode materials can be synthesized using a known process such as a solid phase method or a liquid phase method.
  • the positive electrode 10 may include a binder.
  • the binder is not particularly limited, and examples thereof include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and polybutadiene rubber. These binders can be used as a powder or as a dispersion.
  • the conductive material content in the positive electrode 10 is preferably less than 100% by weight based on the weight of the positive electrode 10, for example.
  • the ratio of other components is the same as that of a conventional lithium secondary battery.
  • the positive electrode 10 is produced as follows.
  • the positive electrode 10 may be formed by dispersing the above mixture in a solvent such as an organic solvent to form a slurry, and applying the slurry mixture on a current collector and drying.
  • a hot press may be applied in addition to the cold press for the purpose of increasing the strength of the electrode and preventing leakage of the electrolyte.
  • the positive electrode 10 with more excellent stability can be produced.
  • the positive electrode 10 may be produced by depositing a positive electrode material on the current collector by using a film forming method such as RF (Radio-Frequency) sputtering.
  • RF Radio-Frequency
  • Current collectors include, for example, metals such as metal foil and metal mesh, carbon such as carbon cloth and carbon sheet, ITO (Indium Tin Oxide) with tin oxide added to indium oxide, and ATO doped with antimony in tin oxide An oxide film such as (Sb-doped Tin Oxide) can be given.
  • the negative electrode 30 of the lithium secondary battery 100 includes a negative electrode material.
  • the negative electrode material is not particularly limited as long as it can be used as a negative electrode for a lithium secondary battery.
  • metallic lithium can be mentioned.
  • the negative electrode 30 can be formed by a known method. For example, when lithium metal is used as the negative electrode, a plurality of metal lithium foils may be stacked to form a predetermined negative electrode.
  • the lithium secondary battery 100 includes, in addition to the above-described constituent elements, structural members such as a separator, a battery case, and a metal mesh, and other elements required for the lithium secondary battery. Including.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of the lithium secondary battery 100 according to this embodiment. A method for manufacturing a lithium secondary battery will be described with reference to FIGS.
  • the positive electrode 10 is fixed on the current collector 41 as described in the preparation of the positive electrode (II-4). Further, as described in (III), the negative electrode 30 is fixed on the current collector 42.
  • the electrolyte 20 described in (I) is disposed between the positive electrode 10 and the negative electrode 30. Then, the structure sandwiched between the current collector 41 and the current collector 42 is sealed with a housing 50 such as a laminate so that the lithium secondary battery 100 is not exposed to the atmosphere.
  • a member such as a separator is disposed between the positive electrode 10 and the negative electrode 30.
  • the lithium secondary battery 100 suitable for a use is produced by appropriately arranging other insulating members and fixtures.
  • Battery cycle test In the battery cycle test, a charge / discharge measurement system (manufactured by Bio Logic) is used to pass 1 mA / cm 2 at a current density per area of the positive electrode 10, and the battery voltage rises to 4.0 V from the open circuit voltage. The charging voltage was measured until. The battery discharge test was conducted at the same current density as that during charging until the battery voltage dropped to 2.5V. The charge / discharge test of the battery was performed in a normal living environment. The charge / discharge capacity was expressed as a value per weight (mAh / g) of the positive electrode material.
  • the electrolyte 20 of the lithium secondary battery 100 of Experimental Example 1 is (R, R)-( ⁇ )-N, N′-bis (3,5-di-tert-butylsalicylidene) -1,2-cyclohexane. Diamino titanium chloride (TiSl) is included.
  • TiSl was mixed with the organic electrolyte.
  • dispersion was performed for 10 minutes at maximum output using an ultrasonic cleaner.
  • the organic electrolyte used was a solution of LiPF 6 dissolved in an organic solvent EC: DMC (volume ratio 1: 1) at a concentration of 1 mol / l.
  • the organic electrolyte solution was mixed with 50 mmol / l of TiSl to obtain a TiSl-containing electrolyte.
  • the lithium secondary battery cell was produced in the following procedures.
  • the lithium secondary battery cell was assembled in dry air with a dew point of ⁇ 60 ° C. or lower.
  • the electrolyte of the lithium secondary battery to be compared with the experimental example according to this embodiment uses 1 mol / l LiPF6 / EC: DMC (volume ratio 1: 1) as an organic electrolytic solution contained in the solid electrolyte.
  • the next battery cell was produced in the same manner as in Example 1.
  • FIG. 4 shows the charge / discharge characteristics of the lithium secondary batteries of Experimental Example 1 and Comparative Example.
  • the horizontal axis represents capacity (mAh / g), and the vertical axis represents battery voltage (V).
  • the initial discharge capacity of Experimental Example 1 was 162 mAh / g.
  • the capacity retention rate in the 100th cycle of Experimental Example 1 was 98%.
  • Table 1 shows the initial discharge capacity and the discharge capacity retention rate.
  • the initial discharge capacity of the comparative example was 112 mAh / g. Further, the capacity retention rate at the 100th cycle was 62%.
  • the lithium secondary battery using the TiSl-containing electrolyte improves the battery characteristics.
  • other experimental conditions for evaluating the characteristics will be described.
  • Example 2 The electrolyte 20 of the lithium secondary battery 100 of Experimental Example 2 was prepared by mixing TiSl obtained in the same procedure as Experimental Example 1 at a ratio of 30 wt% (electrolyte important standard) to the gel polymer electrolyte.
  • the gel polymer film was prepared by dissolving hydroxyethyl cellulose (manufactured by Aldrich) in water, followed by heating and vacuum drying treatment.
  • the electrolyte 20 was produced by impregnating the obtained gel polymer film with the same organic electrolyte as in Experimental Example 1.
  • Experimental Example 2 the initial discharge capacity was 158 mAh / g, and the discharge capacity retention rate was 96%.
  • the evaluation result of each experimental example is collectively shown in Table 1 described later.
  • the electrolyte 20 of the lithium secondary battery 100 of Experimental Example 3 was prepared by mixing TiSl obtained by the same procedure as that of Experimental Example 1 at a ratio of 30 wt% (electrolyte important standard) to the solid electrolyte.
  • the solid electrolyte Li 2 S (manufactured by Wako Pure Chemical Industries, Ltd.), GeS 2 (manufactured by Wako Pure Chemical Industries, Ltd.) and P 2 S 5 (manufactured by Aldrich) are mixed in a glove box and heated at 700 ° C. for 8 hours. It was prepared by processing.
  • Experimental Example 3 had an initial discharge capacity of 155 mAh / g and a discharge capacity retention rate of 91%.
  • the electrolyte 20 of the lithium secondary battery 100 of Experimental Example 4 is (R, R)-( ⁇ )-N, N′-bis (3,5-di-tert-butylsalicylidene) -1,2-cyclohexane. Contains diaminovanadium chloride (VSl).
  • Experimental Example 4 had an initial discharge capacity of 168 mAh / g and a discharge capacity retention rate of 98%.
  • Example 5 The electrolyte 20 of the lithium secondary battery 100 of Experimental Example 5 was prepared by mixing VSl obtained by the same procedure as in Experimental Example 4 at a ratio of 30 wt% (electrolyte important standard) to the gel polymer electrolyte. Experimental Example 5 differs from Experimental Example 2 (TiSl) only in the type of additive (VSl).
  • the initial discharge capacity of Experimental Example 5 was 158 mAh / g, and the discharge capacity retention rate was 94%.
  • Example 6 The electrolyte 20 of the lithium secondary battery 100 of Experimental Example 6 was prepared by mixing VSl obtained by the same procedure as in Experimental Example 4 at a ratio of 30 wt% (electrolyte important standard) to the solid electrolyte. Experimental Example 6 differs from Experimental Example 3 (TiSl) only in the type of additive (VSl).
  • the initial discharge capacity of Experimental Example 6 was 158 mAh / g, and the discharge capacity retention rate was 91%.
  • Example 7 The electrolyte 20 of the lithium secondary battery 100 of Experimental Example 7 is (R, R)-( ⁇ )-N, N′-bis (3,5-di-tert-butylsalicylidene) -1,2-cyclohexane. Diaminochrome chloride (CrSl) is included.
  • Experimental Example 7 differs from Experimental Examples 1 and 4 only in the type of additive (CrSl).
  • Experimental Example 7 had an initial discharge capacity of 168 mAh / g and a discharge capacity retention rate of 97%.
  • Example 8 The electrolyte 20 of the lithium secondary battery 100 of Experimental Example 8 was prepared by mixing CrSl obtained in the same procedure as in Experimental Example 7 at a ratio of 30 wt% (electrolyte weight basis) to the gel polymer electrolyte.
  • Experimental Example 8 differs from Experimental Examples 2 and 5 only in the type of additive (CrSl).
  • Experimental Example 8 had an initial discharge capacity of 162 mAh / g and a discharge capacity retention rate of 97%.
  • Example 9 The electrolyte 20 of the lithium secondary battery 100 of Experimental Example 9 was prepared by mixing CrSl obtained in the same procedure as Experimental Example 7 at a ratio of 30 wt% (electrolyte important standard) to the solid electrolyte.
  • Experimental Example 9 differs from Experimental Examples 3 and 6 only in the type of additive (CrSl).
  • Experimental Example 9 had an initial discharge capacity of 158 mAh / g and a discharge capacity retention rate of 96%.
  • the electrolyte 20 of the lithium secondary battery 100 of Experimental Example 10 is (R, R)-( ⁇ )-N, N′-bis (3,5-di-tert-butylsalicylidene) -1,2-cyclohexane.
  • Diaminomanganese chloride (MnSl) is included.
  • Experimental example 10 differs from experimental examples 1, 4 and 7 only in the type of additive (MnSl).
  • the initial discharge capacity was 168 mAh / g, and the discharge capacity retention rate was 94%.
  • Example 11 The electrolyte 20 of the lithium secondary battery 100 of Experimental Example 11 was prepared by mixing MnSl obtained in the same procedure as Experimental Example 10 in a ratio of 30 wt% (electrolyte important standard) to the gel polymer electrolyte.
  • Experimental example 11 differs from experimental examples 2, 5, and 8 only in the type of additive (MnSl).
  • the initial discharge capacity was 168 mAh / g, and the discharge capacity retention rate was 92%.
  • Example 12 The electrolyte 20 of the lithium secondary battery 100 of Experimental Example 12 was prepared by mixing MnSl obtained in the same procedure as Experimental Example 10 at a ratio of 30 wt% (electrolyte important standard) to the solid electrolyte.
  • Experimental Example 12 differs from Experimental Examples 3, 6, and 9 only in the type of additive (MnSl).
  • the initial discharge capacity was 165 mAh / g, and the discharge capacity retention rate was 90%.
  • the electrolyte 20 of the lithium secondary battery 100 of Experimental Example 13 is (R, R)-( ⁇ )-N, N′-bis (3,5-di-tert-butylsalicylidene) -1,2-cyclohexane. Contains diaminoiron chloride (FeSl).
  • Experimental Example 13 differs from Experimental Examples 1, 4, 7, and 10 only in the type of additive (FeSl).
  • the initial discharge capacity was 165 mAh / g, and the discharge capacity retention rate was 98%.
  • Example 14 The electrolyte 20 of the lithium secondary battery 100 of Experimental Example 14 was prepared by mixing FeSl obtained in the same procedure as Experimental Example 13 at a ratio of 30 wt% (electrolyte important standard) to the gel polymer electrolyte.
  • Experimental Example 14 differs from Experimental Examples 2, 5, 8, and 11 only in the type of additive (FeSl).
  • Experimental Example 14 had an initial discharge capacity of 157 mAh / g and a discharge capacity retention rate of 97%.
  • Example 15 The electrolyte 20 of the lithium secondary battery 100 of Experimental Example 15 was prepared by mixing FeSl obtained in the same procedure as Experimental Example 13 at a ratio of 30 wt% (electrolyte important standard) to the solid electrolyte. Experimental Example 15 differs from Experimental Examples 3, 6, 9, and 12 only in the type of additive (FeSl).
  • Experimental Example 15 had an initial discharge capacity of 156 mAh / g and a discharge capacity retention rate of 94%.
  • the electrolyte 20 of the lithium secondary battery 100 of Experimental Example 16 is (R, R)-( ⁇ )-N, N′-bis (3,5-di-tert-butylsalicylidene) -1,2-cyclohexane. Diaminocobalt (CoSl) is included.
  • CoSl was mixed with the organic electrolyte in the same procedure as in Experimental Example 1.
  • Experimental Example 16 differs from Experimental Examples 1, 4, 7, and 10 only in the type of additive (CoSl).
  • the initial discharge capacity was 159 mAh / g, and the discharge capacity retention rate was 99%.
  • Example 17 The electrolyte 20 of the lithium secondary battery 100 of Experimental Example 17 was prepared by mixing CoSl obtained in the same procedure as in Experimental Example 16 at a ratio of 30 wt% (electrolyte important standard) to the gel polymer electrolyte.
  • Experimental Example 17 differs from Experimental Examples 2, 5, 8, and 11 only in the type of additive (CoSl).
  • the initial discharge capacity of Experimental Example 17 was 158 mAh / g, and the discharge capacity retention rate was 91%.
  • Example 18 The electrolyte 20 of the lithium secondary battery 100 of Experimental Example 18 was prepared by mixing CoSl obtained by the same procedure as that of Experimental Example 16 at a ratio of 30 wt% (electrolyte important standard) to the solid electrolyte. Experimental Example 18 differs from Experimental Examples 3, 6, 9, 12, and 15 only in the type of additive (CoSl). The initial discharge capacity of Experimental Example 18 was 156 mAh / g, and the discharge capacity retention rate was 91%.
  • the electrolyte 20 of the lithium secondary battery 100 of Experimental Example 16 is (R, R)-( ⁇ )-N, N′-bis (3,5-di-tert-butylsalicylidene) -1,2-cyclohexane.
  • Diaminoruthenium chloride (RuSl) is included.
  • RuSl was mixed with the organic electrolyte in the same procedure as in Experimental Example 1.
  • Experimental Example 19 differs from Experimental Examples 1, 4, 7, 10, 13, and 16 only in the type of additive (RuSl).
  • the initial discharge capacity was 164 mAh / g, and the discharge capacity retention rate was 99%.
  • Example 20 The electrolyte 20 of the lithium secondary battery 100 of Experimental Example 20 was prepared by mixing RuSl obtained in the same procedure as in Experimental Example 19 at a ratio of 30 wt% (electrolyte important standard) to the gel polymer electrolyte.
  • Experimental Example 20 differs from Experimental Examples 2, 5, 8, 11, 14, and 17 only in the type of additive (RuSl).
  • Experimental Example 20 had an initial discharge capacity of 164 mAh / g and a discharge capacity retention rate of 94%.
  • Example 21 The electrolyte 20 of the lithium secondary battery 100 of Experimental Example 21 was prepared by mixing RuSl obtained in the same procedure as in Experimental Example 19 at a ratio of 30 wt% (electrolyte important standard) to the solid electrolyte. Experimental Example 21 differs from Experimental Examples 3, 6, 9, 12, 15, and 18 only in the type of additive (RuSl). In Experimental Example 21, the initial discharge capacity was 161 mAh / g, and the discharge capacity retention rate was 90%.
  • the organic electrolyte was a salen-based metal complex at a rate of 50 mmol / l or less (1.0 to 50 mmol / l) based on the volume of the organic electrolyte. Is preferably added.
  • the gel polymer electrolyte and the solid electrolyte are preferably added with a salen metal complex at a ratio of 1.0 wt% or less (1.0 to 30 wt%) based on the weight of the electrolyte.
  • the average of the first discharge capacity of the experimental example is 161 mAh / g
  • the average of the discharge capacity maintenance rate at the 100th cycle of the experimental example is 94.6%, about 1.44 times the capacity of the comparative example (112 mAh / g, 62%), and the capacity The retention rate was about 1.53 times better.
  • a lithium secondary battery having a large discharge capacity and good charge / discharge cycle performance can be provided by including a salen metal complex as an additive in an electrolyte.
  • this invention is not limited to said embodiment, A deformation
  • This embodiment can produce a high-capacity, long-life lithium secondary battery, and can be used as a power source for various electronic devices and automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

高容量化、及び長寿命化したリチウム二次電池を提供する。リチウムイオンの挿入及び脱離が可能な材料を含む正極10と、サレン系金属錯体を含むリチウムイオン導電性の電解質20と、リチウム金属又はリチウムイオンの吸蔵及び放出が可能な材料を含む負極30とを備え、上記のサレン系金属錯体は、(R,R)-(-)-N,N'-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノチタンクロリド(TiSl)、VSl、CrSl、MnSl、FeSl、CoSl、及びRuSlの何れかから選択される。

Description

リチウム二次電池
 本発明は、リチウム二次電池に関する。
 リチウム二次電池は、ニッケルカドミウム二次電池及びニッケル水素二次電池等の他の二次電池と比較してエネルギー密度が高く、充放電サイクル特性に優れることから、小型化、薄型化が進むモバイル電子機器の電源として広く利用されている。今後も小型化及び薄型化に対する要求は高い。
 例えば、有機電解液、ゲルポリマー電解質、及び固体電解質等と様々な電解質を用いることで小型化及び薄型化の検討が行われている。例えば、非特許文献1は、電解質に有機溶媒をベースにした1mmol/1LiPFEC/DMC/EMC、正極にLiFePO、対極にLiを使用することで、電流密度15mA/gの条件下で約135mAh/gの容量を示すことを開示している。
 また、非特許文献2は、電解質にヒドロキシエチルセルロース膜をベースとしたゲルポリマー電解質、正極にLiFePO、対極にLiを使用することで電流密度50mA/gの条件下で約110mAh/gの容量を示すことを開示している。
 非特許文献3は、電解質にNASICON型のLiZr(POである固体電解質、正極にLiFePO、対極にLiを使用することで、80℃、電流密度100μA/cm2の条件下で約120mAh/gの容量を示すことを開示している。
H.C. Shin, et al.,"Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries", J. Power Sources, 259, 1383-1388, (2006). M. X. Li, et al.,"A dense cellulose-based membrane as a renewable host for gel polymerelectrolyte of lithium ion batteries", J. Member. Sci., 476, 112-118 (2015). Y. Li, et al.,"Mastering the interface for advanced all-solid-state lithium rechargeable batteries", Proc. Natl. Acad. Sci. USA, 113, 13313-13317 (2016).
 しかしながら、非特許文献1-3に開示されたリチウム二次電池は、電極(正極)-電解質界面における抵抗が大きいため、正極活物質の理論容量である169mAh/gと比較して容量が小さいという課題がある。
 本発明は、この課題に鑑みてなされたものであり、高容量化、及び長寿命化したリチウム二次電池を提供することを目的とする。
 本実施形態の一態様に係るリチウム二次電池は、リチウムイオンの挿入及び脱離が可能な材料を含む正極と、サレン系金属錯体を含むリチウムイオン導電性の電解質と、リチウム金属又はリチウムイオンの吸蔵及び放出が可能な材料を含む負極とを備えることを要旨とする。
 本発明によれば、電解質にサレン系金属錯体を添加することで、高容量化、及び長寿命化したリチウム二次電池を提供することができる。
本発明の実施の形態に係るリチウム二次電池の基本的な構成を模式的に示す概略の断面図である。 サレン系金属錯体の構造式を示す図である。 本発明の実施の形態に係るリチウム二次電池の構成を模式的に示す断面図である。 実験例1と比較例のリチウム二次電池の充放電特性を示す図である。
 以下、本発明の実施の形態について図面を用いて説明する。
 〔リチウム二次電池の構成〕
 図1は、本実施形態に係るリチウム二次電池の基本的な構成を示す概略の断面図である。同図に示すように、リチウム二次電池100の基本的な構成は、正極10、電解質20、及び負極30を備え、一般的なリチウム二次電池と同じである。
 本実施形態に係るリチウム二次電池は、電解質20に、添加剤としてサレン系金属錯体を含むことを特徴とする。
 正極10は、触媒及び導電性材料を構成要素に含むことができる。また、正極10には、触媒及び導電性材料を一体化するための結着剤を含むのが好ましい。
 負極30は、金属リチウム又はリチウムイオンを放出及び吸収できるリチウム含有合金、炭素、及び酸化物などの物質を構成要素とすることができる。
 以下、本実施形態のリチウム二次電池100の各構成要素について説明する。
 (I)電解質
 本実施形態に係るリチウム二次電池100の電解質20は、リチウムイオン導電性を示し、添加剤としてサレン系金属錯体を含む。図2は、サレン系金属錯体の構造式を示す。
 サレン系金属錯体は、(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノチタンクロリド(TiSl)、(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノバナジウムクロリド(VSl)、(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノクロムクロリド(CrSl)、(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノマンガンクロリド(MnSl)、(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノ鉄クロリド(FeSl)、(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノコバルト(CoSl)、及び(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノルテニウムクロリド(RuSl)の何れかから選択されることが好ましい。
 添加剤は、上記の中から一種類を選択してもよいし、二種類以上を混合して用いてもよい。混合する場合の混合割合は、特に限定されない。どのような混合割合であってもよい。
 電解質20は、上記のサレン系金属錯体と共にLi塩を含む。Li塩は、リチウムを含む金属塩から供給される。金属塩の具体例は、例えば、六フッ化リン酸リチウム(LiPF)、過塩素酸リチウム(LiClO)、リチウムトリフルオロメタンスホニルアミド(LiTFSA)[(CFSONLi]などの溶質の金属塩を挙げることができる。
 また、電解質20は、溶媒を含む。溶媒は、例えば、炭酸ジメチル(DMC)、炭酸メチルエチル(MEC)、炭酸メチルプロピル(MPC)、炭酸メチルイソプロピル(MIPC)、炭酸メチルブチル(MBC)、炭酸ジエチル(DEC)、炭酸エチルプロピル(EPC)、炭酸エチルイソプロピル(EIPC)、炭酸エチルブチル(EBC)、炭酸ジプロピル(DPC)、炭酸ジイソプロピル(DIPC)、炭酸ジブチル(DBC)、炭酸エチレン(EC)、炭酸プロピレン(PC)、炭酸1,2-ブチレン(1,2-BC)などの炭酸エステル系溶媒、1,2-ジメトキシエタン(DME)、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、及びテトラエチレングリコールジメチルエーテルなどのエーテル系溶媒、γ-ブチロタクトン(GBL)などのラクトン系溶媒、又はこれらの中から二種類以上を混合した溶媒を挙げることができる。本実施形態では、混合溶媒を用いる場合の混合割合は、特に限定されない。
 また、電解質20は、ゲルポリマーを含んでもよい。ゲルポリマーは、例えば、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、及びポリエチレンオキシド(PEO)系ゲルポリマーの中の一つ、又は二種類以上を混合したゲルポリマーを用いてもよい。ゲルポリマーの混合割合は特に限定されない。
 また、電解質20は、固体電解質を含んでもよい。固体電解質は、例えば、LiAlSiOのβユークリプタイト構造、LiTiのラムスデライト構造、LiNb0.75Ta0.25WOの三重ルチル構造、Li14ZnGe16、Li3.6Ge0.60.4のγ-LiPO構造、Li5.5Fe0.5Zn0.5の逆蛍石型構造、Li1.3Ti1.7Al0.3(POのNASICON型、LiSc0.9Zr0.1(POのβ-Fe(SO構造、La2/3-xLi3xTiO(x≒0.1)のペロブスカイト構造、またはLiZr12のガーネット構造を有する酸化物固体電解質、Li4GeS4,Li4-xGe1-xPxS4,Li4-3xAlxGeS4,及びLi3+5xP1-xS4のチオリシコン物質群を有する硫化物固体電解質が挙げられる。
 (II)正極
 本実施形態に係るリチウム二次電池100の正極10は、リチウムイオンの挿入及び脱離が可能な導電性材料を含み、必要に応じて触媒と結着剤の両方、又は一方を含む。
 (II-1)導電性材料
 正極10に含まれる導電性材料は、カーボンであることが好ましい。例えば、ケッチェンブラック、アセチレンブラックなどのカーボンブラック類、活性炭素、グラファイト類、カーボンファイバー類、カーボンシート、及びカーボンクロス等を挙げることができる。
 (II-2)正極材料
 正極10の正極材料は、LiCoO2、LiNiO2などの層状岩塩型材料、LiMn2O4等のスピネル型材料、及びLiFePO4等のオリピン型材料等を挙げることができる。なお、これ以外の公知の正極材料であれば特に限定されない。
 具体的には、LiNi(CoAl)O、LiNi1/3Mn1/3Co1/3、LiNi0.5Mn0.5、LiMnO-LiMO(M=Co、Ni、Mn)、Li1+xMn2-x、Li(MnAl)、LiMn1.5Ni0.5、LiMnPO、LiMSiO、及びLiMPOFなどを用いることができる。これらの正極材料は、固相法や液相法などの公知のプロセスを用いて合成することができる。
 (II-3)結着剤(バインダー)
 正極10は、結着剤を含んでもよい。結着剤は、特に限定されないがポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、及びポリブタジエンゴムなどを例として挙げることができる。これらの結着剤は、粉末として又は分散液として用いることができる。
 正極10内での導電性材料含有量は、正極10の重量を基準に例えば、100重量%未満であることが望ましい。その他の成分の割合は、従来のリチウム二次電池と同じである。
 (II-4)正極の作製
 正極10は、次のようにして作製する。
 正極材料である酸化物粉末、カーボン粉末、及びポリフッ化ビニリデン(PVDF)のようなバインダー粉末を所定量混合し、該混合物を集電体上に圧着することで、正極10を成形する。また、上記の混合物を、有機溶剤等の溶媒中に分散させてスラリー状にし、スラリー状の混合物を集電体上に塗布して乾燥することによって正極10を形成してもよい。なお、電極の強度を高め、電解液の漏洩を防止する目的で、冷間プレスの他にホットプレスを適用してもよい。より安定性に優れた正極10を作製することができる。
 また、RF(Radio Frequency)スパッタなどの成膜法を用いて正極材料を集電体上に蒸着させて正極10を作製してよい。
 集電体は、例えば、金属箔や金属メッシュなどの金属、カーボンクロスやカーボンシートなどのカーボン、及び酸化物インジウムに酸化スズを添加したITO(Indium Tin Oxide)や酸化スズにアンチモンをドープしたATO(Sb-doped Tin Oxide)などの酸化物膜が挙げられる。
 (III)負極
 本実施形態に係るリチウム二次電池100の負極30は、負極材料を含む。この負極材料は、リチウム二次電池の負極として用いることができる材料であれば特に限定されない。例えば、金属リチウムを挙げることができる。
 負極30は、公知の方法で形成することができる。例えば、リチウム金属を負極とする場合は、複数枚の金属リチウム箔を重ねて所定の形状の負極を成形すればよい。
 (IV)他の要素
 本実施形態に係るリチウム二次電池100は、上記の構成要素に加えて、セパレータ、電池ケース、金属メッシュなどの構造部材、及びその他リチウム二次電池に要求される要素を含む。
 (V)リチウム二次電池の作製
 図3は、本実施形態に係るリチウム二次電池100の構成を模式的に示す断面図である。図3を参照してリチウム二次電池の作製方法について説明する。
 正極の作製(II-4)で述べたように集電体41の上に正極10を固定する。また、(III)で述べたように集電体42の上に負極30を固定する。
 次に正極10と負極30の間に、(I)で述べた電解質20を配置する。そして、集電体41と集電体42で挟んだ構成を、例えばラミネートなどの筐体50で大気に触れないように封止してリチウム二次電池100を作製する。
 なお、図3では省略しているが、正極10と負極30の間にセパレータ等の部材を配置する。また、その他の絶縁部材、及び固定具などを適宜配置して用途に合わせたリチウム二次電池100を作製する。
 (実験)
 以上述べた本実施形態の効果を確認する目的で、電解質20の組成を変えたリチウム二次電池100を作製し、その特性を評価する実験を行った。実験条件は後述する。電解質20の組成を変えたリチウム二次電池100も特性は、電池のサイクル試験で評価した。
 (電池のサイクル試験)
 電池のサイクル試験は、充放電測定システム(Bio Logic社製)を用いて、正極10の面積当たりの電流密度で1mA/cm2を通電し、開回路電圧から電池電圧が、4.0Vに上昇するまで充電電圧の測定を行った。また、電池の放電試験は、充電時と同じ電流密度で、電池電圧が、2.5Vに低下するまで行った。電池の充放電試験は、通常の生活環境下で行った。充放電容量は正極材料の重量当たりの値(mAh/g)で表した。
 (実験例1)
 実験例1のリチウム二次電池100の電解質20は、(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノチタンクロリド(TiSl)を含む。
 (R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-ジクロヘキサンジアミン(アルドリッチ社製)及び塩化チタン(和光純薬工業社製)をエタノール中で混合することにより、TiSlを得た。
 TiSlを有機電解液に混合した。混合する際、超音波洗浄機を用いて最大出力で10分間の分散を行った。また、有機電解液はLiPFを有機溶媒EC:DMC(体積比1:1)に1mol/lの濃度で溶解したものを用いた。上記の有機電解液に、TiSlを50mmol/lを混合し、TiSl含有電解質を得た。
 そして、リチウム二次電池セルを以下の手順で作製した。
 LiFePO4:アセチレンブラック:PVdF=85:10:5(重量比)をスラリー化し、Al箔上に塗布、乾燥させることで正極10を得た。リチウム二次電池セルは、露点が-60℃以下の乾燥空気中で組み立てを行った。
 (比較例)
 本実施形態に係る実験例と比較するリチウム二次電池の電解質は、固体電解質に含有させた有機電解液として1mol/lのLiPF6/EC:DMC(体積比1:1)を用いて,リチウム二次電池セルを実施例1と同様にして作製した。
 (放電特性)
 図4は、実験例1と比較例のリチウム二次電池の充放電特性を示す。図4の横軸は容量(mAh/g)、縦軸は電池電圧(V)である。
 実験例1の初回放電容量は、162mAh/gであった。実験例1の100サイクル目における容量維持率は98%であった。初回放電容量と放電容量維持率を表1に示す。
 比較例の初回放電容量は、112mAh/gを示した。また、100サイクル目における容量維持率は62%であった。
 このようにTiSl含有電解質を使用したリチウム二次電池は、電池特性を向上させることが確認できた。以下、特性を評価した他の実験条件を示す。
 (実験例2)
 実験例2のリチウム二次電池100の電解質20は、ゲルポリマー電解質に30wt%(電解質重要基準)の割合で、実験例1と同様の手順で得たTiSlを混合させて作製した。ゲルポリマーの膜は、ヒドロキシエチルセルロース(アルドリッチ社製)を水に溶かし、加熱、真空乾燥処理を経て作製した。
 得たゲルポリマーの膜に、実験例1と同様の有機電解液を含浸させることにより電解質20を作製した。実験例2の初回放電容量は158mAh/g、放電容量維持率は96%であった。なお、各実験例の評価結果は、後述する表1にまとめて示す。
 (実験例3)
 実験例3のリチウム二次電池100の電解質20は、固体電解質に30wt%(電解質重要基準)の割合で、実験例1と同様の手順で得たTiSlを混合させて作製した。固体電解質は、LiS(和光純薬工業社製)、GeS(和光純薬工業社製)、P(アルドリッチ社製)をグローブボックス内で混合し、700℃、8時間加熱処理することで作製した。
 実験例3の初回放電容量は155mAh/g、放電容量維持率は91%であった。
 (実験例4)
 実験例4のリチウム二次電池100の電解質20は、(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノバナジウムクロリド(VSl)を含む。
 (R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-ジクロヘキサンジアミン(アルドリッチ社製)及び塩化バナジウム(和光純薬工業社製)をエタノール中で混合することにより、VSlを得た。
 実験例4の初回放電容量は168mAh/g、放電容量維持率は98%であった。
 (実験例5)
 実験例5のリチウム二次電池100の電解質20は、ゲルポリマー電解質に30wt%(電解質重要基準)の割合で、実験例4と同様の手順で得たVSlを混合させて作製した。実験例5は、実験例2(TiSl)に対して添加剤の種類(VSl)のみが異なる。
 実験例5の初回放電容量は158mAh/g、放電容量維持率は94%であった。
 (実験例6)
 実験例6のリチウム二次電池100の電解質20は、固体電解質に30wt%(電解質重要基準)の割合で、実験例4と同様の手順で得たVSlを混合させて作製した。実験例6は、実験例3(TiSl)に対して添加剤の種類(VSl)のみが異なる。
 実験例6の初回放電容量は158mAh/g、放電容量維持率は91%であった。
 (実験例7)
 実験例7のリチウム二次電池100の電解質20は、(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノクロムクロリド(CrSl)を含む。
 (R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-ジクロヘキサンジアミン(アルドリッチ社製)及び塩化クロム(和光純薬工業社製)をエタノール中で混合することにより、CrSlを得た。
 実験例1と同様の手順で、CrSlを有機電解液に混合した。実験例7は、実験例1,4に対して添加剤の種類(CrSl)のみが異なる。
 実験例7の初回放電容量は168mAh/g、放電容量維持率は97%であった。
 (実験例8)
 実験例8のリチウム二次電池100の電解質20は、ゲルポリマー電解質に30wt%(電解質重量基準)の割合で、実験例7と同様の手順で得たCrSlを混合させて作製した。実験例8は、実験例2,5に対して添加剤の種類(CrSl)のみが異なる。
 実験例8の初回放電容量は162mAh/g、放電容量維持率は97%であった。
 (実験例9)
 実験例9のリチウム二次電池100の電解質20は、固体電解質に30wt%(電解質重要基準)の割合で、実験例7と同様の手順で得たCrSlを混合させて作製した。実験例9は、実験例3,6に対して添加剤の種類(CrSl)のみが異なる。
 実験例9の初回放電容量は158mAh/g、放電容量維持率は96%であった。
 (実験例10)
 実験例10のリチウム二次電池100の電解質20は、(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノマンガンクロリド(MnSl)を含む。
 R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-ジクロヘキサンジアミン(アルドリッチ社製)及び塩化マンガン(和光純薬工業社製)をエタノール中で混合することにより、MnSlを得た。
 実験例10は、実験例1,4,7に対して添加剤の種類(MnSl)のみが異なる。実験例10の初回放電容量は168mAh/g、放電容量維持率は94%であった。
 (実験例11)
 実験例11のリチウム二次電池100の電解質20は、ゲルポリマー電解質に30wt%(電解質重要基準)の割合で、実験例10と同様の手順で得たMnSlを混合させて作製した。
 実験例11は、実験例2,5,8に対して添加剤の種類(MnSl)のみが異なる。実験例11の初回放電容量は168mAh/g、放電容量維持率は92%であった。
 (実験例12)
 実験例12のリチウム二次電池100の電解質20は、固体電解質に30wt%(電解質重要基準)の割合で、実験例10と同様の手順で得たMnSlを混合させて作製した。
 実験例12は、実験例3,6,9に対して添加剤の種類(MnSl)のみが異なる。実験例12の初回放電容量は165mAh/g、放電容量維持率は90%であった。
 (実験例13)
 実験例13のリチウム二次電池100の電解質20は、(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノ鉄クロリド(FeSl)を含む。
 (R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-ジクロヘキサンジアミン(アルドリッチ社製)及び塩化鉄(和光純薬工業社製)をエタノール中で混合することにより、FeSlを得た。
 実験例1と同様の手順で、FeSlを有機電解液に混合した。実験例13は、実験例1,4,7,10に対して添加剤の種類(FeSl)のみが異なる。実験例13の初回放電容量は165mAh/g、放電容量維持率は98%であった。
 (実験例14)
 実験例14のリチウム二次電池100の電解質20は、ゲルポリマー電解質に30wt%(電解質重要基準)の割合で、実験例13と同様の手順で得たFeSlを混合させて作製した。実験例14は、実験例2,5,8,11に対して添加剤の種類(FeSl)のみが異なる。
 実験例14の初回放電容量は157mAh/g、放電容量維持率は97%であった。
 (実験例15)
 実験例15のリチウム二次電池100の電解質20は、固体電解質に30wt%(電解質重要基準)の割合で、実験例13と同様の手順で得たFeSlを混合させて作製した。実験例15は、実験例3,6,9,12に対して添加剤の種類(FeSl)のみが異なる。
 実験例15の初回放電容量は156mAh/g、放電容量維持率は94%であった。
 (実験例16)
 実験例16のリチウム二次電池100の電解質20は、(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノコバルト(CoSl)を含む。
 (R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-ジクロヘキサンジアミン(アルドリッチ社製)及び塩化コバルト(和光純薬工業社製)をエタノール中で混合することにより、CoSlを得た。
 実験例1と同様の手順で、CoSlを有機電解液に混合した。実験例16は、実験例1,4,7,10に対して添加剤の種類(CoSl)のみが異なる。実験例16の初回放電容量は159mAh/g、放電容量維持率は99%であった。
 (実験例17)
 実験例17のリチウム二次電池100の電解質20は、ゲルポリマー電解質に30wt%(電解質重要基準)の割合で、実験例16と同様の手順で得たCoSlを混合させて作製した。実験例17は、実験例2,5,8,11に対して添加剤の種類(CoSl)のみが異なる。
 実験例17の初回放電容量は158mAh/g、放電容量維持率は91%であった。
 (実験例18)
 実験例18のリチウム二次電池100の電解質20は、固体電解質に30wt%(電解質重要基準)の割合で、実験例16と同様の手順で得たCoSlを混合させて作製した。実験例18は、実験例3,6,9,12,15に対して添加剤の種類(CoSl)のみが異なる。実験例18の初回放電容量は156mAh/g、放電容量維持率は91%であった。
 (実験例19)
 実験例16のリチウム二次電池100の電解質20は、(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノルテニウムクロリド(RuSl)を含む。(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-ジクロヘキサンジアミン(アルドリッチ社製)及び塩化ルテニウム(和光純薬工業社製)をエタノール中で混合することにより、RuSlを得た。
 実験例1と同様の手順で、RuSlを有機電解液に混合した。実験例19は、実験例1,4,7,10,13,16に対して添加剤の種類(RuSl)のみが異なる。実験例19の初回放電容量は164mAh/g、放電容量維持率は99%であった。
 (実験例20)
 実験例20のリチウム二次電池100の電解質20は、ゲルポリマー電解質に30wt%(電解質重要基準)の割合で、実験例19と同様の手順で得たRuSlを混合させて作製した。実験例20は、実験例2,5,8,11,14,17に対して添加剤の種類(RuSl)のみが異なる。
 実験例20の初回放電容量は164mAh/g、放電容量維持率は94%であった。
 (実験例21)
 実験例21のリチウム二次電池100の電解質20は、固体電解質に30wt%(電解質重要基準)の割合で、実験例19と同様の手順で得たRuSlを混合させて作製した。実験例21は、実験例3,6,9,12,15,18に対して添加剤の種類(RuSl)のみが異なる。実験例21の初回放電容量は161mAh/g、放電容量維持率は90%であった。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、サレン系金属錯体を添加した電解質20を使用したリチウム二次電池は、比較例よりも容量が大きく、且つ100サイクル目における放電容量維持率も高いことが確認できた。この結果から、サレン系金属錯体は、リチウム二次電池用の電解質の添加剤として有効であることが確認された。
 実験例1,4,7,10,13,16,19の結果から、有機電解液は、該有機電解液の体積基準で50mmol/l以下の割合(1.0~50mmol/l)でサレン系金属錯体が添加されると好ましい。また、実験例2,3等の結果から、ゲルポリマー電解質及び固体電解質は、電解質重量基準で30wt%以下の割合(1.0~30wt%)でサレン系金属錯体が添加されると好ましい。
 実験例の初回放電容量の平均は161mAh/g、実験例の100サイクル目の放電容量維持率の平均は94.6%と、比較例(112mAh/g、62%)よりも容量で約1.44倍、容量維持率で約1.53倍良い値を示した。このように本発明によれば、電解質に添加剤としてサレン系金属錯体を含有させることで、放電容量が大きく、且つ充放電サイクル性能の良いリチウム二次電池を提供することができる。なお、本発明は、上記の実施形態に限定されるものではなく、その要旨の範囲内で変形が可能である。
 本実施の形態は、高容量、長寿命なリチウム二次電池を作製することができ、様々な電子機器や自動車等の電源として利用可能である。
10:正極
20:電解質
30:負極
41、42:集電体
50:筐体
100:リチウム二次電池

Claims (5)

  1.  リチウムイオンの挿入及び脱離が可能な材料を含む正極と、
     サレン系金属錯体を含むリチウムイオン導電性の電解質と、
     リチウム金属又はリチウムイオンの吸蔵及び放出が可能な材料を含む負極と
     を備えることを特徴とするリチウム二次電池。
  2.  前記サレン系金属錯体は、
     (R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノチタンクロリド、(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノバナジウムクロリド、(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノクロムクロリド、(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノマンガンクロリド、(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノ鉄クロリド、(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノコバルト、及び(R,R)-(-)-N,N‘-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノルテニウムクロリドの何れかから選択されることを特徴とする請求項1に記載のリチウム二次電池。
  3.  前記電解質は、
     リチウムイオン導電性の有機電解液を含む
     ことを特徴とする請求項1又は2に記載のリチウム二次電池。
  4.  前記電解質は、
     リチウムイオン導電性のゲルポリマー電解質を含む
     ことを特徴とする請求項1又は2に記載のリチウム二次電池。
  5.  前記電解質は、
     リチウムイオン導電性の固体電解質を含む
     ことを特徴とする請求項1又は2に記載のリチウム二次電池。
PCT/JP2019/019510 2018-05-18 2019-05-16 リチウム二次電池 WO2019221233A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/055,890 US11961960B2 (en) 2018-05-18 2019-05-16 Lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-096015 2018-05-18
JP2018096015A JP6982244B2 (ja) 2018-05-18 2018-05-18 リチウム二次電池

Publications (1)

Publication Number Publication Date
WO2019221233A1 true WO2019221233A1 (ja) 2019-11-21

Family

ID=68539683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019510 WO2019221233A1 (ja) 2018-05-18 2019-05-16 リチウム二次電池

Country Status (3)

Country Link
US (1) US11961960B2 (ja)
JP (1) JP6982244B2 (ja)
WO (1) WO2019221233A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867687A (ja) * 1994-07-21 1996-03-12 Ciba Geigy Ag 布地漂白組成物
JP2005516424A (ja) * 2002-01-25 2005-06-02 エンゲン グループ インコーポレイテッド エネルギー蓄積装置用高分子修飾電極、および該高分子修飾電極を基礎とした電気化学スーパーキャパシタ
JP2007508709A (ja) * 2003-10-14 2007-04-05 ジェン3 パートナーズ, インコーポレイテッド エネルギー貯蔵装置のための電極および該電極に基づいた電気化学スーパーコンデンサー
JP2010287446A (ja) * 2009-06-12 2010-12-24 Sanyo Chem Ind Ltd 二次電池用電解質
WO2017033805A1 (ja) * 2015-08-21 2017-03-02 リンテック株式会社 固体電解質および電池
CN107344917A (zh) * 2017-05-03 2017-11-14 上海大学 苯基‑酰胺材料、其组合物及其作为电解液添加剂的应用
JP2017536702A (ja) * 2014-08-19 2017-12-07 パワーマース インコーポレイテッド 多孔質金属−炭素材料を生成する方法
JP2018006180A (ja) * 2016-07-04 2018-01-11 日本電信電話株式会社 アルミニウム空気電池
WO2018016444A1 (ja) * 2016-07-19 2018-01-25 富士フイルム株式会社 非水二次電池用電解液および非水二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008510A1 (ja) * 2011-07-11 2013-01-17 株式会社Ihi 電気二重層キャパシタ用材料
WO2015066630A1 (en) * 2013-11-01 2015-05-07 University Of Tennessee Research Foundation Reversible bifunctional air electrode catalyst
JP6310420B2 (ja) * 2015-06-04 2018-04-11 日本電信電話株式会社 リチウム空気二次電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867687A (ja) * 1994-07-21 1996-03-12 Ciba Geigy Ag 布地漂白組成物
JP2005516424A (ja) * 2002-01-25 2005-06-02 エンゲン グループ インコーポレイテッド エネルギー蓄積装置用高分子修飾電極、および該高分子修飾電極を基礎とした電気化学スーパーキャパシタ
JP2007508709A (ja) * 2003-10-14 2007-04-05 ジェン3 パートナーズ, インコーポレイテッド エネルギー貯蔵装置のための電極および該電極に基づいた電気化学スーパーコンデンサー
JP2010287446A (ja) * 2009-06-12 2010-12-24 Sanyo Chem Ind Ltd 二次電池用電解質
JP2017536702A (ja) * 2014-08-19 2017-12-07 パワーマース インコーポレイテッド 多孔質金属−炭素材料を生成する方法
WO2017033805A1 (ja) * 2015-08-21 2017-03-02 リンテック株式会社 固体電解質および電池
JP2018006180A (ja) * 2016-07-04 2018-01-11 日本電信電話株式会社 アルミニウム空気電池
WO2018016444A1 (ja) * 2016-07-19 2018-01-25 富士フイルム株式会社 非水二次電池用電解液および非水二次電池
CN107344917A (zh) * 2017-05-03 2017-11-14 上海大学 苯基‑酰胺材料、其组合物及其作为电解液添加剂的应用

Also Published As

Publication number Publication date
US11961960B2 (en) 2024-04-16
JP6982244B2 (ja) 2021-12-17
US20210202979A1 (en) 2021-07-01
JP2019200951A (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
US10026955B2 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
KR102362887B1 (ko) 리튬이차전지용 음극의 전리튬화 방법 및 이에 사용되는 리튬 메탈 적층체
KR101678798B1 (ko) 비수 전해액 2차 전지의 제조 방법
KR101546251B1 (ko) 전기화학 장치용 전해액 및 전기화학 장치
US10062925B2 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery
JP2018510459A (ja) ゲル高分子電解質、その製造方法およびゲル高分子電解質を含む電気化学素子
WO2017190366A1 (zh) 一种二次电池及其制备方法
JP2014044895A (ja) 電解質−負極構造体及びそれを備えるリチウムイオン二次電池
US20160294006A1 (en) Nonaqueous electrolyte secondary cell and method for producing same
US20140011083A1 (en) Electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery including the same
CN108780926B (zh) 制备二次电池的方法
US10305108B2 (en) Graphite-based active material, negative electrode, and lithium ion secondary battery
JP2011192561A (ja) 非水電解液二次電池の製造方法
JP6250941B2 (ja) 非水電解質二次電池
WO2019221107A1 (ja) リチウム二次電池
JP6812827B2 (ja) 非水電解液およびそれを用いた非水電解液電池
JP2013186972A (ja) 非水電解質二次電池
JP6982244B2 (ja) リチウム二次電池
JP7116310B2 (ja) リチウム二次電池
JP7011176B2 (ja) リチウム二次電池
JPWO2019065288A1 (ja) リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池
JP2019061827A (ja) リチウムイオン二次電池
JP2018160382A (ja) リチウムイオン二次電池
JP6946719B2 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極およびリチウムイオン二次電池
KR20130125919A (ko) 전극 및 이를 포함하는 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19804000

Country of ref document: EP

Kind code of ref document: A1