WO2017190366A1 - 一种二次电池及其制备方法 - Google Patents

一种二次电池及其制备方法 Download PDF

Info

Publication number
WO2017190366A1
WO2017190366A1 PCT/CN2016/081348 CN2016081348W WO2017190366A1 WO 2017190366 A1 WO2017190366 A1 WO 2017190366A1 CN 2016081348 W CN2016081348 W CN 2016081348W WO 2017190366 A1 WO2017190366 A1 WO 2017190366A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
carbonate
secondary battery
electrolyte layer
positive electrode
Prior art date
Application number
PCT/CN2016/081348
Other languages
English (en)
French (fr)
Inventor
唐永炳
季必发
张帆
圣茂华
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to CN201680085069.6A priority Critical patent/CN109155434A/zh
Priority to PCT/CN2016/081348 priority patent/WO2017190366A1/zh
Publication of WO2017190366A1 publication Critical patent/WO2017190366A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of batteries, and in particular to a secondary battery and a method of fabricating the same.
  • a secondary battery also called a rechargeable battery, is a battery that can be repeatedly charged and discharged and used multiple times. Compared with a non-reusable primary battery, the secondary battery has the advantages of low cost of use and low environmental pollution.
  • the main secondary battery technologies are lead-acid batteries, nickel-chromium batteries, nickel-hydrogen batteries, and lithium-ion batteries. Among them, lithium ion batteries are the most widely used. Lithium-ion batteries have become the power source for electric vehicles and power tools because of their high power density, low self-discharge rate, no memory effect and stable discharge voltage.
  • the core components of a lithium ion battery usually contain a positive electrode, a negative electrode, an electrolyte, and a separator.
  • the organic electrolyte secondary battery needs to further reduce the volume, increase the specific capacity and voltage, and further reduce the thickness of the separator. Therefore, there is a need to provide a secondary battery to solve the problems of low-energy, easy-corrosion electrode materials, difficulty in design and assembly, and necessity of using a separator in a conventional liquid electrolyte.
  • the present invention provides a secondary battery and a method for preparing the same, which aim to solve the problems that the existing liquid electrolyte has low specific energy, easy corrosion of the electrode material, difficulty in design and assembly, and necessity to use a separator.
  • the present invention provides a secondary battery including a battery negative electrode and a battery positive electrode; and further comprising a solid electrolyte layer or a gel electrolyte layer, wherein
  • the negative electrode of the battery includes a negative current collector, and does not include a negative active material;
  • the negative current collector includes a metal, a metal alloy or a metal composite conductive material;
  • the solid electrolyte layer includes a polymer material including an polymer material, an electrolyte, and a plasticizer; and an electrolyte;
  • the positive electrode of the battery includes a positive current collector and a positive active material layer
  • the positive current collector includes a metal, a metal alloy or a metal composite conductive material
  • the positive active material layer includes reversible deintercalation of lithium ions, sodium ions or magnesium ions Positive active material.
  • the anode current collector comprises one of aluminum, magnesium, lithium, vanadium, copper, iron, tin, zinc, nickel, titanium, manganese or a composite of any one of them or an alloy of any one of them .
  • the anode current collector is aluminum.
  • the structure of the anode current collector is a multi-layer composite structure of porous aluminum or aluminum coated with aluminum foil or porous aluminum or carbon material.
  • the cathode current collector comprises one of aluminum, magnesium, lithium, vanadium, copper, iron, tin, zinc, nickel, titanium, manganese or a composite of any one of them or an alloy of any one of them .
  • the cathode current collector is aluminum.
  • the polymer material is one of a polyether type, a polyacrylonitrile type, a polymethacrylate type, a polyvinylidene fluoride type, a polyphosphazene, or a blending or copolymerization of any one or any of them , grafting, combing, hyperbranched or crosslinked network.
  • the polymer material comprises polyethylene oxide, polyacrylonitrile, polymethyl methacrylate, polyvinylidene fluoride, polyoxypropylene, hexafluoropropylene, polyvinyl acetal, polyvinylpyrrolidone, sulfonylurea polymerization.
  • polyphenylenesulfone sulfonic acid polymer polyethylene oxide, styrene butadiene rubber, polybutadiene, polyvinyl chloride, polystyrene, acrylate, star polymer, chitosan, polyvinyl alcohol Blending, copolymerizing, grafting, combing, or any one or a combination of any one or any of polyvinyl butyral, polyethylene glycol, polyether acrylate, and phosphate Hyperbranched or crosslinked network.
  • the electrolyte concentration ranges from 0.1 to 10 mol/dm 3 .
  • the electrolyte comprises lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium acetate, lithium salicylate, lithium acetoacetate, lithium carbonate, lithium trifluoromethanesulfonate, lithium lauryl sulfate, citric acid
  • lithium lithium bis(trimethylsilyl)amide, lithium hexafluoroarsenate, and lithium trifluoromethanesulfonimide.
  • the plasticizer comprises one or more of an ester, a sulfone, an ether, a nitrile organic solvent or an ionic liquid.
  • the plasticizer comprises propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, dibutyl carbonate Ester, methylbutyl carbonate, methyl isopropyl carbonate, methyl ester, methyl formate, methyl acetate, N,N-dimethylacetamide, fluoroethylene carbonate, methyl propionate, ethyl propionate, Ethyl acetate, ⁇ -butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxocyclopentane, 4-methyl-1,3-dioxocyclopentane, dimethoxymethane, 1, 2-Dimethoxyethane, 1,2-dimethoxypropane, triethylene glycol dimethyl ether, dimethyl sulfone, dimethyl ether,
  • the solid electrolyte layer or the gel electrolyte layer further includes an additive including one or more of an ester, a sulfone, an ether, a nitrile or an olefin organic additive.
  • an additive including one or more of an ester, a sulfone, an ether, a nitrile or an olefin organic additive.
  • the additive comprises fluoroethylene carbonate, vinylene carbonate, ethylene carbonate, 1,3-propane sultone, 1,4-butane sultone, vinyl sulphate, propylene sulphate Ester, ethylene sulfate, vinyl sulfite, propylene sulfite, dimethyl sulfite, diethyl sulfite, ethylene sulfite, methyl chloroformate, dimethyl sulfoxide, benzene Methyl ether, acetamide, diazabenzene, m-diazabenzene, crown ether 12-crown-4, crown ether 18-crown-6, 4-fluoroanisole, fluorochain ether, difluoromethyl Ethylene carbonate, trifluoromethyl ethylene carbonate, vinyl chlorocarbonate, vinyl bromoacetate, trifluoroethylphosphonic acid, bromobutyrolactone, fluoroacetoxy
  • the positive electrode active material comprises lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate, lithium nickel cobaltate binary material, spinel structure oxide, lithium nickel cobalt manganese ternary material, layer A composite material of one or more or any one of lithium-rich high manganese materials.
  • the positive electrode active material layer further comprises a conductive agent and a binder
  • the positive electrode active material is contained in an amount of 60 to 95% by weight
  • the conductive agent is contained in an amount of 0.1 to 30% by weight
  • the binder is contained in an amount of 0.1 to 10% by weight. %.
  • the present invention also provides a method for preparing a secondary battery, the method comprising:
  • Preparing a battery negative electrode cutting a metal, metal alloy or metal composite conductive material into a desired size, and then washing the surface of the cut metal, metal alloy or metal composite conductive material, the washed metal, a metal alloy or a metal composite conductive material as a battery negative electrode;
  • Preparing a solid electrolyte layer or a gel electrolyte layer weighing a certain amount of polymer material and mixing with an appropriate amount of electrolyte salt to obtain a solid electrolyte layer; or weighing a certain amount of polymer material and mixing with an appropriate amount of electrolyte salt, Add a certain amount of plasticizer to obtain a polymer alkali metal salt complex solution, pour the solution into a certain size of aluminum trough plate, cast a film, evaporate all or part of the solvent, cut to a certain size, and obtain a solid electrolyte layer or a gel electrolyte layer;
  • the positive electrode of the battery prepares the positive electrode of the battery, weigh the living positive material, the conductive agent and the binder according to a certain ratio, add it into a suitable slurry and fully grind it into a uniform slurry, and then uniformly apply it to the surface of the positive current collector, and then cut the slurry after it is completely dried. Cutting to obtain a positive electrode of a desired size, the positive active material being a metal oxide or a metal compound;
  • Assembly is performed using the battery negative electrode, the solid electrolyte layer or the gel electrolyte layer, and the battery positive electrode.
  • the invention has the beneficial effects that the solid electrolyte layer is replaced by the solid electrolyte layer or the gel electrolyte layer, which is not easy to corrode the electrode material, thereby improving the stability of the battery during operation and increasing the stability.
  • the service life of the battery since the solid electrolyte layer or the gel electrolyte layer is used so that the separator is not required, the battery volume is reduced to increase the energy density of the battery; and the secondary battery provided by the present invention cancels the anode active material directly by using metal or
  • the metal alloy acts as both a negative electrode and a current collector, which not only reduces the cost of battery production, but also effectively increases the battery capacity and energy density of the battery, and has good charge and discharge cycle performance.
  • FIG. 1 is a schematic structural view of a secondary battery according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a secondary battery according to an embodiment of the present invention.
  • the secondary battery provided by the example includes a battery negative electrode 4, a solid electrolyte layer or a gel electrolyte layer 3, and a battery positive electrode, wherein the battery negative electrode includes a negative electrode current collector and does not include a negative electrode active material; and the negative electrode current collector includes a metal and a metal alloy. Or a metal composite conductive material.
  • the solid electrolyte layer includes a polymer material including a polymer material, an electrolyte, and a plasticizer;
  • the battery positive electrode includes a positive electrode current collector 1 and a positive electrode active material layer 2, and the positive electrode current collector includes a metal, a metal alloy Or a metal composite conductive material,
  • the positive active material layer includes a positive active material capable of reversibly deintercalating lithium or sodium ions, as long as lithium ions, sodium ions or magnesium ions are allowed to freely escape and embed, such as lithium, sodium, or magnesium. Transition metal oxides and their doped binary or ternary transition metal oxides and the like.
  • the working principle of the secondary battery provided by the embodiment of the invention is: the secondary battery provided by the embodiment of the invention does not contain the anode current collector, and during the charging process, the cathode active material is delithiated, sodium or magnesium, via a solid electrolyte layer or gel.
  • the electrolyte layer directly reacts with the metal or metal alloy of the negative electrode to form a lithium-metal alloy, a sodium-metal alloy or a magnesium-metal alloy; during discharge, the lithium-metal alloy, sodium-metal alloy or magnesium-metal alloy of the negative electrode is delithiated.
  • the sodium or magnesium is inserted into the positive electrode active material via the solid electrolyte layer or the gel electrolyte layer, a charge and discharge process is achieved.
  • the secondary battery provided by the embodiment of the invention replaces the common liquid organic electrolyte by using a solid electrolyte layer or a gel electrolyte layer, which is not easy to corrode the electrode material, improves the stability of the battery during operation, and increases the service life of the battery. Since the solid electrolyte layer or the gel electrolyte layer is used so that the separator is not required, the battery volume is reduced to increase the energy density of the battery; and the secondary battery provided by the present invention cancels the anode active material, and the metal or metal alloy is directly used as The negative electrode and the current collector not only reduce the cost of battery production, but also effectively improve the battery capacity and energy density of the battery, and have good charge and discharge cycle performance.
  • the anode current collector comprises one or a combination of any one of aluminum, magnesium, lithium, vanadium, copper, iron, tin, zinc, nickel, titanium, manganese or any one of them. Several alloys. Further, the anode current collector is preferably aluminum.
  • the anode current collector is an aluminum foil or a porous aluminum alloy coated with porous aluminum or carbon material and a multilayer composite of other aluminum.
  • the lithium ion which uses the porous aluminum foil to remove the positive active material is more fully reacted with the metal aluminum alloy to increase the battery capacity; and the carbon layer coated porous aluminum foil structure maintains the capacity of the battery, and the aluminum foil is maintained by the protection of the carbon layer.
  • the structure further improves the cycle stability of the battery; the use of the multi-layer aluminum composite material is also advantageous for suppressing and improving the volume expansion effect of the aluminum foil and improving the cycle performance of the battery.
  • the cathode current collector comprises one or a combination of any one of aluminum, magnesium, lithium, vanadium, copper, iron, tin, zinc, nickel, titanium, manganese or any one of them. Several alloys. Further, the cathode current collector is preferably aluminum.
  • the polymer material comprises polyethylene oxide, polyacrylonitrile, polymethyl methacrylate, polyvinylidene fluoride, polyoxypropylene, hexafluoropropylene, polyvinyl acetal, polyvinylpyrrolidone, sulfonate.
  • Urea polymer polyphenylenesulfone sulfonic acid polymer, polyethylene oxide, styrene butadiene rubber, polybutadiene, polyvinyl chloride, polystyrene, acrylate, star polymer, chitosan, poly One or any of vinyl alcohol, polyvinyl butyral, polyethylene glycol, polyether acrylate, and phosphate; or the above polymers or other polymers One or more of blending, copolymerization, grafting, combing, hyperbranched, and crosslinked networks of the polymer.
  • the electrolyte salt is not particularly limited as long as the electrolyte can be dissociated into a cation and an anion, and may be a lithium salt, a sodium salt or a magnesium salt, and the concentration of the electrolyte ranges from 0.1 to 10 mol/L.
  • the lithium salt may be selected from lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium acetate, lithium salicylate, lithium acetoacetate, lithium carbonate, lithium trifluoromethanesulfonate, lauryl sulfate
  • lithium, lithium citrate, lithium bis(trimethylsilyl)amide, lithium hexafluoroarsenate, lithium trifluoromethanesulfonimide One or more of lithium, lithium citrate, lithium bis(trimethylsilyl)amide, lithium hexafluoroarsenate, lithium trifluoromethanesulfonimide.
  • the sodium salt may be selected from the group consisting of sodium chloride, sodium fluoride, sodium sulfate, sodium carbonate, sodium phosphate, Sodium nitrate, sodium difluorooxalate borate, sodium pyrophosphate, sodium dodecylbenzene sulfonate, sodium lauryl sulfate, trisodium citrate, sodium metaborate, sodium borate, sodium molybdate, sodium tungstate, bromine Sodium, sodium nitrite, sodium iodate, sodium iodide, sodium silicate, sodium lignosulfonate, sodium hexafluorophosphate, sodium oxalate, sodium aluminate, sodium methanesulfonate, sodium acetate, sodium dichromate One or more of sodium hexafluoroarsenate, sodium tetrafluoroborate, sodium perchlorate, and trifluoromethanesulfonimide sodium
  • the electrolyte is a magnesium salt, it may be selected from magnesium bromide, magnesium chloride, magnesium perchlorate, magnesium format reagent, amino magnesium halide, Mg(BR2R'2)2 (R, R' is alkyl or aryl), Mg One or more of the (AX4-nR n'R'n") 2 complexes.
  • the plasticizer is also not particularly limited.
  • the plasticizer includes one or more of an ester, a sulfone, an ether, a nitrile organic solvent or an ionic liquid.
  • the plasticizer may be selected from the group consisting of propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, dibutyl carbonate.
  • the solid electrolyte layer or the gel electrolyte layer further includes an additive including one or more of an ester, a sulfone, an ether, a nitrile or an olefin organic additive, and the additive is selected from the group consisting of fluoroethylene carbonate and carbonate.
  • Vinyl ester ethylene carbonate, 1,3-propane sultone, 1,4-butane sultone, sulfur Acid vinyl ester, propylene sulfate, ethylene sulfate, vinyl sulfite, propylene sulfite, dimethyl sulfite, diethyl sulfite, ethylene sulfite, methyl chloroformate, two Methyl sulfoxide, anisole, acetamide, diazabenzene, m-diazabenzene, crown ether 12-crown-4, crown ether 18-crown-6, 4-fluoroanisole, fluorochain Ether, difluoromethyl ethylene carbonate, trifluoromethyl ethylene carbonate, vinyl chlorocarbonate, vinyl bromoacetate, trifluoroethylphosphonic acid, bromobutyrolactone, fluoroacetic acid Alkane, phosphate, phosphite, phosphazene, ethanol
  • the positive electrode active material in the positive electrode active layer is also not particularly limited, and the anion may be reversibly removed or embedded.
  • the electrolyte is a lithium salt
  • the positive electrode active material is selected from lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), lithium iron phosphate (LiFePO 4 ), nickel cobalt.
  • Lithium acid binary material LiNi 1-x Co x O 2
  • lithium cobalt cobalt manganate ternary material Li (Ni, Co, Mn)O 2
  • layered lithium-rich high manganese material Li 2 MnO 3 -Li(NiCoMn)O 2
  • the positive electrode active material may be selected from the group consisting of sodium phosphate polyanion compounds, ferricyanide and its Prussian blue complex, active redox polymer, tunnel structure compound, spinel oxide, layer form one or more transition metal oxides, for example: selected from Na 2 V 3 (PO 4) 3, Na 2 Zn 3 [Fe (CN) 6] 2 ⁇ xH 2 O, Na 2 Fe (SO 4 2 , one or more of NaMn 2 O 4 , Na 0.61 [Mn 0.27 Fe 0.34 Ti 0.39 ]O 2 , NaCoO 2 .
  • the positive electrode active material may be selected from the group consisting of sodium phosphate polyanion compounds, ferricyanide and its Prussian blue complex, active redox polymer, tunnel structure compound, spinel oxide, layer form one or more transition metal oxides, for example: selected from Na 2 V 3 (PO 4) 3, Na 2 Zn 3 [Fe (CN) 6] 2 ⁇ xH 2 O, Na 2 Fe (SO 4 2 , one or more of NaM
  • the positive electrode active material layer further includes a conductive agent and a binder
  • the content of the positive electrode active material is 60-95 wt%
  • the content of the conductive agent is 0.1-30 wt%
  • the content of the binder is 0.1-10 wt%.
  • the conductive agent and the binder are not particularly limited and may be used in the art.
  • Conductive agent is conductive One or more of carbon black, Super P conductive carbon spheres, conductive graphite KS6, carbon nanotubes, conductive carbon fibers, graphene, and reduced graphene oxide.
  • the binder is one or more of polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol, carboxymethyl cellulose, SBR rubber, and polyolefin.
  • the embodiment of the invention further provides a method for preparing the above secondary battery, comprising:
  • Step 101 Prepare a battery negative electrode.
  • the metal, metal alloy or metal composite conductive material comprises one or a combination of any one of aluminum, magnesium, lithium, vanadium, copper, iron, tin, zinc, nickel, titanium, manganese or Any alloy may be a metal or metal alloy foil.
  • Step 102 preparing a solid electrolyte layer or a gel electrolyte layer.
  • Preparing a solid electrolyte layer or a gel electrolyte layer weighing a certain amount of polymer material and mixing with an appropriate amount of electrolyte salt to obtain a solid electrolyte layer; or weighing a certain amount of polymer material and mixing with an appropriate amount of electrolyte salt, adding a certain amount of plasticizer
  • a solution of the polymer alkali metal salt complex is obtained, and the solution is poured into a certain size aluminum slot plate, cast into a film, and all or part of the solvent is evaporated, and cut to a certain size to obtain a solid electrolyte layer or a gel electrolyte layer.
  • the polymer material is selected from the group consisting of polyethylene oxide, polyacrylonitrile, polymethyl methacrylate, polyvinylidene fluoride, polyoxypropylene, hexafluoropropylene, polyvinyl acetal, Polyvinylpyrrolidone, sulfonylurea polymer, polyphenylenesulfone sulfonic acid polymer, polyethylene oxide, styrene butadiene rubber, polybutadiene, polyvinyl chloride, polystyrene, acrylate, star polymer, One or a few of chitosolic acid, polyvinyl alcohol, polyvinyl butyral, polyethylene glycol, polyether acrylate, and phosphate Or any of several types of blending, copolymerization, grafting, combing, hyperbranched or crosslinked network.
  • the electrolyte concentration ranges from 0.1 to 10 mol/L.
  • Plasticizers include esters, sulfones, ethers, nitrile organic solvents or ionic liquids.
  • the plasticizer may be selected from the group consisting of propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, dibutyl carbonate, carbonic acid.
  • Methyl butyl ester methyl isopropyl carbonate, methyl ester, methyl formate, methyl acetate, N,N-dimethylacetamide, fluoroethylene carbonate, methyl propionate, ethyl propionate, ethyl acetate , ⁇ -butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxocyclopentane, 4-methyl-1,3-dioxocyclopentane, dimethoxymethane, 1,2-di Methoxyethane, 1,2-dimethoxypropane, triethylene glycol dimethyl ether, dimethyl sulfone, dimethyl ether, vinyl sulfite, propylene sulfite, dimethyl sulfite, sulfurous acid One or more of ethyl ester and crown ether.
  • the additive includes one or more of an ester, a sulfone, an ether, a nitrile or an olefin organic additive.
  • the additive is selected from the group consisting of vinyl fluorocarbonate, vinylene carbonate, ethylene carbonate, 1,3-propane sultone, 1,4-butane sultone, vinyl sulphate, propylene sulfate, sulphate Ethyl ester, vinyl sulfite, propylene sulfite, dimethyl sulfite, diethyl sulfite, ethylene sulfite, methyl chloroformate, dimethyl sulfoxide, anisole, B Amide, diazabenzene, m-diazabenzene, crown ether 12-crown-4, crown ether 18-crown-6, 4-fluoroanisole, fluorochain ether, difluoromethyl ethylene carbonate , trifluoromethyl ethylene carbonate, chloroethylene
  • Step 103 preparing a battery positive electrode.
  • the preparation of the positive electrode of the battery comprises: weighing the active positive electrode material, the conductive agent and the binder according to a certain ratio, adding the appropriate solvent to the slurry to be uniformly ground, and then uniformly coating the same.
  • the surface of the positive electrode current collector is cut after the slurry is completely dried to obtain a positive electrode of a battery of a desired size, and the positive electrode active material is a metal oxide or a metal compound.
  • the positive electrode active material may be selected from lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and iron phosphate.
  • Step 104 assembling using the battery negative electrode, the solid electrolyte layer or the gel electrolyte layer, and the battery positive electrode.
  • the prepared negative electrode, solid electrolyte layer or gel electrolyte layer, and battery positive electrode are sequentially closely stacked in an inert gas or anhydrous oxygen-free environment, and then packaged into a battery case to complete battery assembly.
  • steps 101-103 describe the operation of the preparation method of the present invention in a specific order, it is not required or implied that these operations must be performed in this particular order.
  • the preparation of steps 101-103 can be performed simultaneously or in any order.
  • the secondary battery preparation method and the foregoing secondary battery are based on the same inventive concept, and the secondary battery obtained by the secondary battery preparation method has all the effects of the foregoing secondary battery, and details are not described herein again.
  • Preparation of battery negative electrode Take aluminum foil with a thickness of 0.02 mm, cut into a 12 mm diameter disc, wash the aluminum foil with ethanol, and dry it as a negative current collector for use.
  • Electrolyte 600mgP (VDF-HFP), dissolved in 1ml EC, 1ml DMC and mass fraction 10% VC mixed solvent is added with lithium hexafluorophosphate, fully stirred until lithium hexafluorophosphate is completely dissolved to obtain a solution; the above solution is thoroughly mixed, poured into 8 ⁇ 8 aluminum trough plate, poured into a film, transferred to an oven, 80 The vacuum was dried for 24 hours, then quickly transferred to a glove box, and the cured electrolyte membrane was cut into pieces for use as a solid electrolyte or a gel electrolyte.
  • Preparation of battery positive electrode 0.4 g of lithium cobaltate, 0.05 g of carbon black, 0.05 g of polyvinylidene fluoride was added to 2 ml of nitromethylpyrrolidone solution, and fully ground to obtain a uniform slurry; then the slurry was uniformly coated on the surface of the aluminum foil and Dry in vacuum. The electrode sheet obtained by drying was cut into a disk having a diameter of 10 mm, and compacted as a battery positive electrode.
  • Battery assembly In the inert gas-protected glove box, the prepared negative electrode current collector, polymer electrolyte layer, and battery positive electrode are sequentially closely packed, and then the stacked portion is packaged into a button battery case to complete battery assembly.
  • the battery negative electrode take 0.4g graphite, 0.05g carbon black, 0.05g polyvinylidene fluoride into 2ml nitromethylpyrrolidone solution, fully grind to obtain a uniform slurry; then uniformly apply the slurry on the surface of aluminum foil and vacuum dry .
  • the electrode sheet obtained by drying was cut into a disk having a diameter of 10 mm, and compacted as a battery negative electrode.
  • the polymer polyethylene was cut into a disk having a diameter of 16 mm, and dried for use as a separator.
  • the electrolyte was prepared: 0.75 g of lithium hexafluorophosphate was weighed and added to 2.5 ml of ethylene carbonate and 2.5 ml of dimethyl carbonate, and the mixture was thoroughly stirred until lithium hexafluorophosphate was completely dissolved, and then it was used as an electrolyte.
  • Preparation of battery positive electrode 0.4 g of lithium cobaltate positive electrode material, 0.05 g of carbon black, 0.05 g of polyvinylidene fluoride was added to 2 ml of nitromethylpyrrolidone solution, and fully ground to obtain a uniform slurry; then the slurry was uniformly coated on aluminum foil. The surface was dried under vacuum. The electrode sheet obtained by drying was cut into a disk having a diameter of 10 mm, and compacted as a battery positive electrode.
  • the prepared negative electrode current collector, separator, and battery positive electrode are closely stacked in sequence, and the electrolyte is dripped to completely infiltrate the separator, and then the stacked portion is packaged into the button battery case. , complete battery assembly.
  • the secondary battery prepared in the above embodiment of the secondary battery preparation method was charged by a constant current of 100 mA/g of the positive electrode active material until its voltage reached 4.8 V, and then discharged at the same current until the voltage reached 3V, measuring its battery capacity and energy density, testing its cycle stability, expressed in cycles, the number of cycles is the number of times the battery is charged and discharged when the battery capacity is attenuated to 85%.
  • Example 6 uses a carbon layer to coat porous aluminum as a cathode current collector.
  • the number of cycles of the battery was optimized, in contrast to Example 5 using porous aluminum as the negative electrode material and Example 1 using aluminum foil as the negative electrode material to obtain a larger battery capacity.
  • the electrolyte was added with 5 wt% of the additive, and the number of cycles was increased as compared with Example 1.
  • Examples 7-12 use different positive active materials in combination
  • the corresponding polymer electrolyte achieves good battery capacity and cycle performance of the battery.
  • Examples 12-14 used different concentrations of electrolyte, and the electrolyte concentration of 1 mol/dm 3 was more than that of other concentrations, and the capacity was higher.
  • the number of cycles and the capacity of Examples 15-17 in which the vinylene carbonate was added as an additive in the electrolytic solution was more than that in Example 12 in which no vinylene carbonate was added to the electrolytic solution, and the example in which the additive concentration was 5% was higher than the other examples.
  • the number of cycles and capacity of the concentration should be large.
  • Example 16 of the vinylene carbonate the number of cycles and capacity of Examples 18 and 19 in which the additive is another material is large, and the additive is preferably vinylene carbonate.
  • Examples 1, 12, 20, and 21 used different types of plasticizers, and Examples 1 and 12 in which an ester was used as a solvent had more cycles and higher capacity than the examples in which other types of solvents were used.
  • Examples 22-26 used different high molecular weight polymers, and the present invention achieved good battery capacity and cycle performance of the battery under different different high molecular weight polymers.
  • the secondary batteries provided in the embodiments of the present invention are mostly better in cycle performance than the conventional lithium batteries; the cycle performance, battery capacity and energy density are better than conventional lithium batteries after adding appropriate amounts of additives, such as implementation Example 16.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及电池领域尤其涉及一种二次电池及其制备方法。该二次电池包括电池负极、电池正极以及固态电解质层或凝胶态电解质层,其中,电池负极包括负极集流体,不包含负极活性材料;电池正极包括正极集流体和正极活性材料层,正极活性材料为自由可逆脱嵌锂离子、钠离子或镁离子的正极活性材料。由于采用固态电解质层或凝胶态电解质层替代了常用的液态有机电解液,不易腐蚀电极材料,提高了电池运行时的稳定性,增加了电池的使用寿命;由于采用固态电解质层或凝胶态电解质层从而不需要隔膜,缩小了电池体积,增大了电池的能量密度;同时本发明提供的二次电池取消负极活性物质,不仅降低电池生产的成本,同时还能有效的提高电池的电池容量及能量密度,并且具有良好的充放电循环性能。

Description

一种二次电池及其制备方法 技术领域
本发明涉及电池领域,特别涉及一种二次电池及其制备方法。
背景技术
二次电池也称为可充电电池,是一种可重复充放电、使用多次的电池。相比于不可重复使用的一次电池,二次电池具有使用成本低、对环境污染小的优点。目前主要的二次电池技术有铅酸电池、镍铬电池、镍氢电池、锂离子电池。其中尤其以锂离子电池应用最为广泛。锂离子电池由于具有功率密度高、自放电率低、无记忆效应和放电电压稳定等优点,已逐步成为电动汽车、电动工具等产品的动力来源。锂离子电池的核心组成部件通常包含正极、负极、电解液及隔膜。一般的正极材料通常有钴酸锂(LiCoO2)、镍酸锂(LiNiO2)、锰酸锂(LiMn2O4)、磷酸铁锂(LiFePO4)、镍钴酸锂二元材料(LiNi1-xCoxO2)、尖晶石结构(LiMn2-xMxO4,M=Ni,Co,Cr等)、镍钴锰酸锂三元材料[Li(Ni,Co,Mn)O2]、层状富锂高锰材料[Li2MnO3-Li(NiCoMn)O2等。目前具有高比容量,高电压,高能量密度的电池几乎使用的都是各种液态有机电解液。常用的液态电解质存在比能量低、易腐蚀电极材料、设计组装困难等缺点。而在所有使用液态有机电解液的电池中,还必须使用多孔聚合物隔膜,隔膜的作用是在物理隔绝正负极活性材料的同时允许离子通过。聚乙烯或聚丙烯薄膜作为电池的隔膜存在以下问题:其耐热性差,同时,为了使薄膜具有足够的强度,薄膜必须具有一定的厚度下限,这就限制了电池容量的进一步提高。如果单纯的降低薄膜厚度,将会造成薄膜的局部强度不足,同时在高温下会造成形态缺陷,所以,这些薄膜厚度的降低空间是有限的。而有机电解液二次电池需要进一步缩小体积,提高比容量和电压,又需要进一步减小隔膜的厚度。 因此,需要提供一种二次电池以解决常用的液态电解质存在比能量低、易腐蚀电极材料、设计组装困难以及必须使用隔膜等问题。
发明内容
为了克服上述的技术问题,本发明提供一种二次电池及其制备方法,旨在解决现有的液态电解质存在比能量低、易腐蚀电极材料、设计组装困难以及必须使用隔膜等问题。
第一方面的,本发明提供了一种二次电池,包括电池负极以及电池正极;其特征在于,还包括固态电解质层或凝胶态电解质层,其中,
电池负极包括负极集流体,不包含负极活性材料;所述负极集流体包括金属、金属合金或金属复合物导电材料;
所述固态电解质层包括聚合物材料以及电解质,所述凝胶态电解质层包括聚合物材料、电解质以及增塑剂;
所述电池正极包括正极集流体和正极活性材料层,所述正极集流体包括金属、金属合金或金属复合物导电材料,所述正极活性材料层包括能可逆脱嵌锂离子、钠离子或镁离子的正极活性材料。
优选的,所述负极集流体包括铝、镁、锂、钒、铜、铁、锡、锌、镍、钛、锰中的一种或其中任意一种金属的复合物或其中任意几种的合金。
优选的,所述负极集流体为铝。
优选的,所述负极集流体的结构为铝箔或多孔铝或碳材料包覆的多孔铝或铝的多层复合结构。
优选的,所述正极集流体包括铝、镁、锂、钒、铜、铁、锡、锌、镍、钛、锰中的一种或其中任意一种金属的复合物或其中任意几种的合金。
优选的,所述正极集流体为铝。
所述聚合物材料为聚醚系、聚丙烯腈系、聚甲基丙烯酸酯系、聚偏氟乙烯系、聚膦嗪中的一种或其中任意几种或者其中任意几种的共混、共聚、接枝、梳化、超支化或交联网络物。
优选的,所述聚合物材料包括聚氧化乙烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚偏氟乙烯、聚氧丙烯、六氟丙烯、聚乙烯醇缩醛、聚乙烯吡咯烷酮、磺脲聚合物、聚亚苯基砜磺酸聚合物、聚环氧乙烷、丁苯橡胶、聚丁二烯、聚氯乙烯、聚苯乙烯、丙烯酸酯、星型聚合物、壳糖酸、聚乙烯醇、聚乙烯醇缩丁醛、聚乙二醇、聚醚丙烯酸乙二醇酯、磷酸酯类中的一种或其中任意几种或者其中任意几种的共混、共聚、接枝、梳化、超支化或交联网络物。
优选的,所述电解质浓度范围为0.1-10mol/dm3
优选的,所述电解质包括六氟磷酸锂、高氯酸锂、四氟硼酸锂、醋酸锂、水杨酸锂、乙酰乙酸锂、碳酸锂、三氟甲磺酸锂、十二烷基硫酸锂、柠檬酸锂、双(三甲基硅烷基)氨基锂、六氟砷酸锂、三氟甲烷磺酰亚胺锂的一种或者几种。
优选的,所述增塑剂包括酯类、砜类、醚类、腈类有机溶剂或离子液体的一种或几种。
优选的,所述增塑剂包括碳酸丙烯酯、碳酸乙烯酯、碳酸丁烯酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲乙酯、碳酸甲丙酯、碳酸二丁酯、碳酸甲丁酯、碳酸甲异丙酯、甲酯、甲酸甲酯、乙酸甲酯、N,N-二甲基乙酰胺、氟代碳酸乙烯酯,丙酸甲酯,丙酸乙酯、乙酸乙酯、γ-丁内酯、四氢呋喃、2-甲基四氢呋喃、1,3-二氧环戊烷、4-甲基-1,3-二氧环戊烷、二甲氧甲烷、1,2-二甲氧乙烷、1,2-二甲氧丙烷、三乙二醇二甲醚、二甲基砜、二甲醚、亚硫酸乙烯酯、亚硫酸丙烯脂、亚硫酸二甲脂、亚硫酸二乙脂、冠醚中的一种或多种。
优选的,所述固态电解质层或凝胶态电解质层还包括添加剂,所述添加剂包括酯类、砜类、醚类、腈类或烯烃类有机添加剂的一种或几种。
优选的,所述添加剂包括氟代碳酸乙烯酯、碳酸亚乙烯酯、碳酸乙烯亚乙酯、1,3-丙磺酸内酯、1,4-丁磺酸内酯、硫酸乙烯酯、硫酸丙烯酯、硫酸亚乙酯、亚硫酸乙烯酯、亚硫酸丙烯酯、二甲基亚硫酸酯、二乙基亚硫酸酯、亚硫酸亚乙酯、氯代甲酸甲脂、二甲基亚砜、苯甲醚、乙酰胺、二氮杂苯、间二氮杂苯、冠醚12-冠-4、冠醚18-冠-6、4-氟苯甲醚、氟代链状醚、二氟代甲基碳酸乙烯酯、三氟代甲基碳酸乙烯酯、氯代碳酸乙烯酯、溴代碳酸乙烯酯、三氟乙基膦酸、溴代丁内酯、氟代乙酸基乙烷、磷酸酯、亚磷酸酯、磷腈、乙醇胺、碳化二甲胺、环丁基砜、1,3-二氧环戊烷、乙腈、长链烯烃、三氧化二铝、氧化镁、氧化钡、碳酸钠、碳酸钙、二氧化碳、二氧化硫、碳酸锂中的一种或几种的一种或几种。
优选的,所述正极活性材料包括钴酸锂、镍酸锂、锰酸锂、磷酸铁锂、镍钴酸锂二元材料、尖晶石结构氧化物、镍钴锰酸锂三元材料、层状富锂高锰材料中的一种或几种或其中任意一种的复合材料。
优选的,所述正极活性材料层还包括导电剂以及粘结剂,所述正极活性材料的含量为60-95wt%,导电剂的含量为0.1-30wt%,粘结剂的含量为0.1-10wt%。
第二方面,本发明还提供了一种二次电池的制备方法,该方法包括:
制备电池负极,将金属、金属合金或金属复合物导电材料裁切成所需的尺寸,然后将裁切后的金属、金属合金或金属复合物导电材料表面洗净,将洗净后的金属、金属合金或金属复合物导电材料作为电池负极;
制备固态电解质层或凝胶态电解质层,称取一定量聚合物材料与适量电解质盐混合,得到固态电解质层;或者称取一定量聚合物材料与适量电解质盐混合, 加入一定量的增塑剂得到聚合物碱金属盐络合物溶液,将溶液倒入一定尺寸的铝槽板中,浇筑成膜,蒸发全部或者部分溶剂,裁剪至一定尺寸,得到固态电解质层或凝胶态电解质层;
制备电池正极,按一定比例称取活正极性材料、导电剂以及粘结剂,加入适当溶剂中充分研磨成均匀浆料,然后均匀涂覆于正极集流体表面,待浆料完全干燥后进行裁切,得所需尺寸的电池正极,所述正极活性材料为金属氧化物或金属化合物;
利用所述电池负极、固态电解质层或凝胶态电解质层以及电池正极进行组装。
与现有技术相比,本发明的有益效果在于:由于采用固态电解质层或凝胶态电解质层替代了常用的液态有机电解液,不易腐蚀电极材料,提高了电池运行时的稳定性,增加了电池的使用寿命;由于采用固态电解质层或凝胶态电解质层从而不需要隔膜,缩小了电池体积增大了电池的能量密度;同时本发明提供的二次电池取消负极活性物质,直接采用金属或金属合金同时作为负极和集流体,不仅降低电池生产的成本,同时还能有效的提高电池的电池容量及能量密度,并且具有良好的充放电循环性能。
附图说明
图1是本发明实施例提供的二次电池的结构示意图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明。以下所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
图一为本发明实施例提供的二次电池的结构示意图。参照图一,本发明实施 例提供了的二次电池,包括电池负极4、固态电解质层或凝胶态电解质层3以及电池正极,其中,电池负极包括负极集流体,不包含负极活性材料;负极集流体包括金属、金属合金或金属复合物导电材料。固态电解质层包括聚合物材料以及电解质,凝胶态电解质层包括聚合物材料、电解质以及增塑剂;所述电池正极包括正极集流体1和正极活性材料层2,正极集流体包括金属、金属合金或金属复合物导电材料,正极活性材料层包括能可逆脱嵌锂或钠离子的正极活性材料,只要容许锂离子、钠离子或镁离子自由脱出与嵌入就可以,比如锂、钠、或镁的过渡金属氧化物及其掺杂的二元或三元过渡金属氧化物等。
本发明实施例提供的二次电池工作原理为:本发明实施例提供的二次电池不含负极集流体,在充电过程中,正极活性材料脱锂、钠或镁,经由固态电解质层或凝胶态电解质层直接与负极的金属或金属合金反应形成锂-金属合金、钠-金属合金或镁-金属合金;放电过程中,负极的锂-金属合金、钠-金属合金或镁-金属合金脱锂、钠或镁后经由固态电解质层或凝胶态电解质层嵌入正极活性材料中,从而实现充放电过程。
本发明实施例提供的二次电池,由于采用固态电解质层或凝胶态电解质层替代了常用的液态有机电解液,不易腐蚀电极材料,提高了电池运行时的稳定性,增加了电池的使用寿命;由于采用固态电解质层或凝胶态电解质层从而不需要隔膜,缩小了电池体积增大了电池的能量密度;同时本发明提供的二次电池取消负极活性物质,直接采用金属或金属合金同时作为负极和集流体,不仅降低电池生产的成本,同时还能有效的提高电池的电池容量及能量密度,并且具有良好的充放电循环性能。
本发明实施例中,优选的,负极集流体包括铝、镁、锂、钒、铜、铁、锡、锌、镍、钛、锰中的一种或其中任意一种金属的复合物或其中任意几种的合金。进一步的,所述负极集流体优选为铝。
本发明实施例中,更优选的,负极集流体为铝箔或多孔铝或碳材料包覆的多孔铝结及其他铝的多层复合材料。采用多孔铝箔使得正极活性材料脱出的锂离子,与金属铝合金化反应更充分,提高电池容量;采用碳层包覆多孔铝箔结构在提高电池容量的情况下,因碳层的保护作用维持铝箔的结构,进一步提高电池的循环稳定性;采用多层铝复合材料也有利于抑制和改善铝箔的体积膨胀效应,提高电池循环性能。
本发明实施例中,优选的,正极集流体包括铝、镁、锂、钒、铜、铁、锡、锌、镍、钛、锰中的一种或其中任意一种金属的复合物或其中任意几种的合金。进一步的,所述正极集流体优选为铝。
在本发明实施例中,聚合物材料包括聚氧化乙烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚偏氟乙烯、聚氧丙烯、六氟丙烯、聚乙烯醇缩醛、聚乙烯吡咯烷酮、磺脲聚合物、聚亚苯基砜磺酸聚合物、聚环氧乙烷、丁苯橡胶、聚丁二烯、聚氯乙烯、聚苯乙烯、丙烯酸酯、星型聚合物、壳糖酸、聚乙烯醇、聚乙烯醇缩丁醛、聚乙二醇、聚醚丙烯酸乙二醇酯、磷酸酯类中的一种或其中任意几种;也可以为上述高分子聚合物相互或与其它高分子聚合物的共混、共聚、接枝、梳化、超支化、交联网络物中的一种或几种。
电解质盐没有特别限制,只要电解质可以离解成阳离子和阴离子即可,可以为锂盐、钠盐或镁盐,电解质的浓度范围为0.1-10mol/L。
若电解质为锂盐,锂盐可选自六氟磷酸锂、高氯酸锂、四氟硼酸锂、醋酸锂、水杨酸锂、乙酰乙酸锂、碳酸锂、三氟甲磺酸锂、十二烷基硫酸锂、柠檬酸锂、双(三甲基硅烷基)氨基锂、六氟砷酸锂、三氟甲烷磺酰亚胺锂的一种或者几种。
若电解质为钠盐,钠盐可以选自氯化钠、氟化钠、硫酸钠、碳酸钠、磷酸钠、 硝酸钠、二氟草酸硼酸钠、焦磷酸钠、十二烷基苯磺酸钠、十二烷基硫酸钠、柠檬酸三钠、偏硼酸钠、硼酸钠、钼酸钠、钨酸钠、溴化钠、亚硝酸钠、碘酸钠、碘化钠、硅酸钠、木质素磺酸钠、六氟磷酸钠、草酸钠、铝酸钠、甲基磺酸钠、醋酸钠、重铬酸钠、六氟砷酸钠、四氟硼酸钠、高氯酸钠、三氟甲烷磺酰亚胺钠的一种或几种。
若电解质为镁盐,可以选自溴化镁、氯化镁、高氯酸镁、镁格式试剂、氨基镁卤化物、Mg(BR2R′2)2(R、R′为烷基或芳基)、Mg(AX4-nR n′R′n″)2络合物中的一种或多种。
本发明实施例中,增塑剂也没有特别限制。增塑剂包括酯类、砜类、醚类、腈类有机溶剂或离子液体中的一种或几种。例如,增塑剂可以选自碳酸丙烯酯、碳酸乙烯酯、碳酸丁烯酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲乙酯、碳酸甲丙酯、碳酸二丁酯、碳酸甲丁酯、碳酸甲异丙酯、甲酯、甲酸甲酯、乙酸甲酯、N,N-二甲基乙酰胺、氟代碳酸乙烯酯,丙酸甲酯,丙酸乙酯、乙酸乙酯、γ-丁内酯、四氢呋喃、2-甲基四氢呋喃、1,3-二氧环戊烷、4-甲基-1,3-二氧环戊烷、二甲氧甲烷、1,2-二甲氧乙烷、1,2-二甲氧丙烷、三乙二醇二甲醚、二甲基砜、二甲醚、亚硫酸乙烯酯、亚硫酸丙烯脂、亚硫酸二甲脂、亚硫酸二乙脂、冠醚中的一种或多种。
为了防止负极集流体在充放电时因体积变化所造成的破坏,使负极集流体结构和功能稳定,提高负极集流体的使用寿命和性能,以提高二次电池的循环率,本发明实施例中固态电解质层或凝胶态电解质层还包括添加剂,该添加剂包括酯类、砜类、醚类、腈类或烯烃类有机添加剂的一种或几种,添加剂选自氟代碳酸乙烯酯、碳酸亚乙烯酯、碳酸乙烯亚乙酯、1,3-丙磺酸内酯、1,4-丁磺酸内酯、硫 酸乙烯酯、硫酸丙烯酯、硫酸亚乙酯、亚硫酸乙烯酯、亚硫酸丙烯酯、二甲基亚硫酸酯、二乙基亚硫酸酯、亚硫酸亚乙酯、氯代甲酸甲脂、二甲基亚砜、苯甲醚、乙酰胺、二氮杂苯、间二氮杂苯、冠醚12-冠-4、冠醚18-冠-6、4-氟苯甲醚、氟代链状醚、二氟代甲基碳酸乙烯酯、三氟代甲基碳酸乙烯酯、氯代碳酸乙烯酯、溴代碳酸乙烯酯、三氟乙基膦酸、溴代丁内酯、氟代乙酸基乙烷、磷酸酯、亚磷酸酯、磷腈、乙醇胺、碳化二甲胺、环丁基砜、1,3-二氧环戊烷、乙腈、长链烯烃、三氧化二铝、氧化镁、氧化钡、碳酸钠、碳酸钙、二氧化碳、二氧化硫、碳酸锂中的一种或几种的一种或几种。添加剂在负极集流体表面形成稳定的固体电解质膜(SEI)。
优选的,本发明实施例中,正极活性层中的正极活性材料也没有特别限制,能够可逆脱出或嵌入阴离子即可。例如,若电解质为锂盐,则正极活性材料选自钴酸锂(LiCoO2)、镍酸锂(LiNiO2)、锰酸锂(LiMn2O4)、磷酸铁锂(LiFePO4)、镍钴酸锂二元材料(LiNi1-xCoxO2)、尖晶石结构(LiMn2-xMxO4,M=Ni,Co,Cr等)、镍钴锰酸锂三元材料[Li(Ni,Co,Mn)O2]、层状富锂高锰材料[Li2MnO3-Li(NiCoMn)O2]、NASCION结构的Li3M2(PO4)3(M=V,Fe,Ti等)等中的一种或几种或其复合材料。若电解质为钠盐,则正极活性材料可选自钠的磷酸盐类聚阴离子化合物,铁氰化物及其普鲁士蓝配合物,活性氧化还原聚合物,隧道结构化合物,尖晶石型氧化物,层状过渡金属氧化物的一种或几种,例如:可选自Na2V3(PO4)3、Na2Zn3[Fe(CN)6]2`xH2O、Na2Fe(SO4)2、NaMn2O4、Na0.61[Mn0.27Fe0.34Ti0.39]O2、NaCoO2中的一种或几种。
本发明实施例中,正极活性材料层还包括导电剂以及粘结剂,正极活性材料的含量为60-95wt%,导电剂的含量为0.1-30wt%,粘结剂的含量为0.1-10wt%。同时,导电剂和粘结剂没有特别的限制,采用本领域常用的即可。导电剂为导电 炭黑、Super P导电碳球、导电石墨KS6、碳纳米管、导电碳纤维、石墨烯、还原氧化石墨烯中的一种或多种。粘结剂为聚偏氟乙烯、聚四氟乙烯、聚乙烯醇、羧甲基纤维素、SBR橡胶、聚烯烃类中的一种或多种。
第二方面的,本发明实施例还提供了制备上述二次电池的方法,包括:
步骤101、制备电池负极。
将金属、金属合金或金属复合物导电材料裁切成所需的尺寸,然后将裁切后的金属、金属合金或金属复合物导电材料表面洗净,将洗净后的金属、金属合金或金属复合物导电材料作为电池负极;
具体的,金属、金属合金或金属复合物导电材料包括铝、镁、锂、钒、铜、铁、锡、锌、镍、钛、锰中的一种或其中任意一种金属的复合物或其中任意一种的合金,可以为金属或金属合金箔片。
步骤102、制备固态电解质层或凝胶态电解质层。
制备固态电解质层或凝胶态电解质层,称取一定量聚合物材料与适量电解质盐混合,得到固态电解质层;或者称取一定量聚合物材料与适量电解质盐混合,加入一定量的增塑剂得到聚合物碱金属盐络合物溶液,将溶液倒入一定尺寸的铝槽板中,浇筑成膜,蒸发全部或者部分溶剂,裁剪至一定尺寸,得到固态电解质层或凝胶态电解质层。
具体的,本发明实施例中,所述聚合物材料选自聚氧化乙烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚偏氟乙烯、聚氧丙烯、六氟丙烯、聚乙烯醇缩醛、聚乙烯吡咯烷酮、磺脲聚合物、聚亚苯基砜磺酸聚合物、聚环氧乙烷、丁苯橡胶、聚丁二烯、聚氯乙烯、聚苯乙烯、丙烯酸酯、星型聚合物、壳糖酸、聚乙烯醇、聚乙烯醇缩丁醛、聚乙二醇、聚醚丙烯酸乙二醇酯、磷酸酯类中的一种或其中任意几种 或者其中任意几种的共混、共聚、接枝、梳化、超支化或交联网络物。
本发明实施例中,电解质浓度范围为0.1-10mol/L。
增塑剂包括酯类、砜类、醚类、腈类有机溶剂或离子液体。增塑剂可选自碳酸丙烯酯、碳酸乙烯酯、碳酸丁烯酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲乙酯、碳酸甲丙酯、碳酸二丁酯、碳酸甲丁酯、碳酸甲异丙酯、甲酯、甲酸甲酯、乙酸甲酯、N,N-二甲基乙酰胺、氟代碳酸乙烯酯,丙酸甲酯,丙酸乙酯、乙酸乙酯、γ-丁内酯、四氢呋喃、2-甲基四氢呋喃、1,3-二氧环戊烷、4-甲基-1,3-二氧环戊烷、二甲氧甲烷、1,2-二甲氧乙烷、1,2-二甲氧丙烷、三乙二醇二甲醚、二甲基砜、二甲醚、亚硫酸乙烯酯、亚硫酸丙烯脂、亚硫酸二甲脂、亚硫酸二乙脂、冠醚中的一种或多种。
添加剂包括酯类、砜类、醚类、腈类或烯烃类有机添加剂中的一种或几种。添加剂选自氟代碳酸乙烯酯、碳酸亚乙烯酯、碳酸乙烯亚乙酯、1,3-丙磺酸内酯、1,4-丁磺酸内酯、硫酸乙烯酯、硫酸丙烯酯、硫酸亚乙酯、亚硫酸乙烯酯、亚硫酸丙烯酯、二甲基亚硫酸酯、二乙基亚硫酸酯、亚硫酸亚乙酯、氯代甲酸甲脂、二甲基亚砜、苯甲醚、乙酰胺、二氮杂苯、间二氮杂苯、冠醚12-冠-4、冠醚18-冠-6、4-氟苯甲醚、氟代链状醚、二氟代甲基碳酸乙烯酯、三氟代甲基碳酸乙烯酯、氯代碳酸乙烯酯、溴代碳酸乙烯酯、三氟乙基膦酸、溴代丁内酯、氟代乙酸基乙烷、磷酸酯、亚磷酸酯、磷腈、乙醇胺、碳化二甲胺、环丁基砜、1,3-二氧环戊烷、乙腈、长链烯烃、三氧化二铝、氧化镁、氧化钡、碳酸钠、碳酸钙、二氧化碳、二氧化硫、碳酸锂中的一种或几种的一种或几种。
步骤103、制备电池正极。制备电池正极包括:按一定比例称取活正极性材料、导电剂以及粘结剂,加入适当溶剂中充分研磨成均匀浆料,然后均匀涂覆于 正极集流体表面,待浆料完全干燥后进行裁切,得所需尺寸的电池正极,所述正极活性材料为金属氧化物或金属化合物。
优选的,本发明实施例中,若电解质为锂盐,则正极活性材料可选自钴酸锂(LiCoO2)、镍酸锂(LiNiO2)、锰酸锂(LiMn2O4)、磷酸铁锂(LiFePO4)、镍钴酸锂二元材料(LiNi1-xCoxO2)、尖晶石结构(LiMn2-xMxO4,M=Ni,Co,Cr等)、镍钴锰酸锂三元材料[Li(Ni,Co,Mn)O2]、层状富锂高锰材料[Li2MnO3-Li(NiCoMn)O2]、NASCION结构的Li3M2(PO4)3(M=V,Fe,Ti等)等中的一种或几种或其复合材料。
步骤104、利用所述电池负极、固态电解质层或凝胶态电解质层以及电池正极进行组装。
优选的,在惰性气体或无水无氧环境下,将制备好的负极、固态电解质层或凝胶态电解质层、电池正极依次紧密堆叠,然后封装入电池壳体,完成电池组装。
需要说明的是尽管上述步骤101-103是以特定顺序描述了本发明制备方法的操作,但是,这并非要求或者暗示必须按照该特定顺序来执行这些操作。步骤101-103的制备可以同时或者任意先后执行。
该二次电池制备方法与前述二次电池是基于同一发明构思的,采用该二次电池制备方法得到的二次电池具有前述二次电池的所有效果,在此不再赘述。
下面通过具体的实施例进一步说明上述二次电池制备方法,但是,应当理解为,这些实施例仅仅是用于更详细地说明之用,而不应理解为用于以任何形式限制本发明。
实施例1
制备电池负极:取厚度为0.02mm的铝箔,裁切成直径12mm的圆片,用乙醇清洗铝箔,晾干作为负极集流体备用。
配制电解液:称取600mgP(VDF-HFP),溶于1mlEC、1mlDMC以及质量分数为 10%的VC组成的混合溶剂中并加入六氟磷酸锂,充分搅拌至六氟磷酸锂完全溶解后得到溶液;将上述溶液充分混合后倒入8×8的铝槽板中,浇筑成膜,转移至烘箱中,80度真空干燥24小时,之后迅速转移至手套箱,并将固化好的电解质膜裁片,作为固体电解质或凝胶电解质使用。
制备电池正极:将0.4g钴酸锂、0.05g碳黑、0.05g聚偏氟乙烯加入到2ml氮甲基吡咯烷酮溶液中,充分研磨获得均匀浆料;然后将浆料均匀涂覆于铝箔表面并真空干燥。对干燥所得电极片裁切成直径10mm的圆片,压实后作为电池正极备用。
电池组装:在惰性气体保护的手套箱中,将上述制备好的负极集流体、聚合物电解质层、电池正极依次紧密堆叠,然后将上述堆叠部分封装入扣式电池壳体,完成电池组装。
实施例2-21
实施例2-21与实施例1二次电池制备过程步骤与实施例1相同,区别在于制备材料不同或者材料含量的不同,具体参见表1和表2。
表1实施例1-26负极材料、锂盐、添加剂以及聚合物材料的比较
Figure PCTCN2016081348-appb-000001
Figure PCTCN2016081348-appb-000002
Figure PCTCN2016081348-appb-000003
表2实施例1-26正极材料比较
Figure PCTCN2016081348-appb-000004
Figure PCTCN2016081348-appb-000005
Figure PCTCN2016081348-appb-000006
对比实施例
制备电池负极:取0.4g石墨,0.05g碳黑、0.05g聚偏氟乙烯加入到2ml氮甲基吡咯烷酮溶液中,充分研磨获得均匀浆料;然后将浆料均匀涂覆于铝箔表面并真空干燥。对干燥所得电极片裁切成直径10mm的圆片,压实后作为电池负极备用。
制备隔膜:将高分子聚乙烯裁切成直径16mm的圆片,烘干后作为隔膜备用。
配制电解液:称取0.75g六氟磷酸锂加入到)加入到2.5ml碳酸乙烯酯与2.5ml碳酸二甲酯中,充分搅拌至六氟磷酸锂完全溶解后作为电解液备用。
制备电池正极:将0.4g钴酸锂正极材料、0.05g碳黑、0.05g聚偏氟乙烯加入到2ml氮甲基吡咯烷酮溶液中,充分研磨获得均匀浆料;然后将浆料均匀涂覆于铝箔表面并真空干燥。对干燥所得电极片裁切成直径10mm的圆片,压实后作为电池正极备用。
电池组装:在惰性气体保护的手套箱中,将上述制备好的负极集流体、隔膜、电池正极依次紧密堆叠,滴加电解液使隔膜完全浸润,然后将上述堆叠部分封装入扣式电池壳体,完成电池组装。
电池的性能测试:
充电-放电试验:将上述二次电池制备方法实施例中制备的二次电池通过100mA/g正极活性材料的恒定电流充电,直至其电压达到4.8V,然后以相同的电流放电,直至其电压达到3V,测量其电池容量及能量密度,测试其循环稳定性,以循环圈数表示,循环圈数是指电池容量衰减至85%时电池所充放电次数。
表3电池性能测试结果
Figure PCTCN2016081348-appb-000007
Figure PCTCN2016081348-appb-000008
从上述实验数据可知:本发明实施例1-6使用不同负极材料(负极集流体)及不同组分的正极活性物质,相比之下,实施例6采用碳层包覆多孔铝作为负极集流体的电池的循环圈数最优,相比之下,使用多孔铝作为负极材料的实施例5比使用铝箔作为负极材料的实施例1获得更大的电池容量。
通过实施例7与实施例1相比,电解液加入了5wt%的添加剂,相比于实施例1,其循环圈数提高。
在用相同的负极集流体情况下,实施例7-12使用不同正活性材料,在配合使用 相应的聚合物电解质,都实现了良好的电池容量及电池的循环性能。
在电解液配方一定的情况下,实施例12-14使用不同浓度的电解质,电解质浓度为1mol/dm3的实施例比其他浓度的循环圈数要多,容量更高。
电解液中加入了碳酸亚乙烯酯为添加剂的实施例15-17的循环圈数及容量比电解液中未加入碳酸亚乙烯酯的实施例12多,其中添加剂浓度为5%的实施例比其他浓度的循环圈数及容量要多。
添加剂含量相同的情况下,碳酸亚乙烯酯的实施例16比添加剂为其他材料的实施例18、19循环圈数及容量多,使用添加剂优选为碳酸亚乙烯酯。
实施例1、12、20、21使用不同种类的增塑剂,其中使用酯类为溶剂的实施例1,12要比使用其他种类的溶剂的实施例的循环圈数要多,容量更高。
实施例22-26使用不同高分子聚合物,在不同的不同高分子聚合物下,本发明都实现了良好的电池容量及电池的循环性能。
同时从实验结果可知,本发明实施例中提供的二次电池大多比常规锂电池的循环性能更好;在加入适量添加剂后其循环性能、电池容量以及能量密度都比常规锂电池好,如实施例16。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (16)

  1. 一种二次电池,包括电池负极以及电池正极;其特征在于,还包括固态电解质层或凝胶态电解质层,其中,
    电池负极包括负极集流体,不包含负极活性材料;所述负极集流体包括金属、金属合金或金属复合物导电材料;
    所述固态电解质层包括聚合物材料以及电解质,所述凝胶态电解质层包括聚合物材料、电解质以及增塑剂;
    所述电池正极包括正极集流体和正极活性材料层,所述正极集流体包括金属、金属合金或金属复合物导电材料,所述正极活性材料层包括能可逆脱嵌锂离子、钠离子或镁离子的正极活性材料。
  2. 如权利要求1所述的二次电池,其特征在于,所述负极集流体包括铝、镁、锂、钒、铜、铁、锡、锌、镍、钛、锰中的一种或其中任意一种金属的复合物或其中任意一种的合金。
  3. 如权利要求2所述的二次电池,其特征在于,所述负极集流体优选为铝。
  4. 如权利要求3所述的二次电池,其特征在于,所述负极集流体的结构为铝箔或多孔铝或碳材料包覆的多孔铝或铝的多层复合结构。
  5. 如权利要求1所述的二次电池,其特征在于,所述正极集流体包括铝、镁、锂、钒、铜、铁、锡、锌、镍、钛、锰中的一种或其中任意一种金属的复合物或其中任意一种的合金。
  6. 如权利要求5所述的二次电池,其特征在于,所述正极集流体优选为铝。
  7. 如权利要求1所述的二次电池,其特征在于,所述聚合物材料包括聚醚系、 聚丙烯腈系、聚甲基丙烯酸酯系、聚偏氟乙烯系、聚膦嗪中的一种或其中任意几种或者其中任意几种的共混、共聚、接枝、梳化、超支化或交联网络物。
  8. 如权利要求7所述的二次电池,其特征在于,所述聚合物材料选自聚氧化乙烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚偏氟乙烯、聚氧丙烯、六氟丙烯、聚乙烯醇缩醛、聚乙烯吡咯烷酮、磺脲聚合物、聚亚苯基砜磺酸聚合物、聚环氧乙烷、丁苯橡胶、聚丁二烯、聚氯乙烯、聚苯乙烯、丙烯酸酯、星型聚合物、壳糖酸、聚乙烯醇、聚乙烯醇缩丁醛、聚乙二醇、聚醚丙烯酸乙二醇酯、磷酸酯类中的一种或其中任意几种或者其中任意几种的共混、共聚、接枝、梳化、超支化或交联网络物。
  9. 如权利要求1所述的二次电池,其特征在于,所述电解质浓度范围为0.1-10mol/dm3
  10. 如权利要求9所述的二次电池,其特征在于,所述电解质为锂盐、钠盐、镁盐中的一种。
  11. 如权利要求1-10之一所述的二次电池,其特征在于,所述增塑剂包括酯类、砜类、醚类、腈类有机溶剂或离子液体的一种或几种。
  12. 如权利要求11所述的二次电池,其特征在于,所述增塑剂选自碳酸丙烯酯、碳酸乙烯酯、碳酸丁烯酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲乙酯、碳酸甲丙酯、碳酸二丁酯、碳酸甲丁酯、碳酸甲异丙酯、甲酯、甲酸甲酯、乙酸甲酯、N,N-二甲基乙酰胺、氟代碳酸乙烯酯,丙酸甲酯,丙酸乙酯、乙酸乙酯、γ-丁内酯、四氢呋喃、2-甲基四氢呋喃、1,3-二氧环戊烷、4-甲基-1,3-二氧环戊烷、二甲氧甲烷、1,2-二甲氧乙烷、1,2-二甲氧丙烷、三乙二醇二甲醚、二甲基砜、二甲醚、亚硫酸乙烯酯、亚硫酸丙烯脂、亚硫酸二甲脂、亚硫酸二乙脂、 冠醚中的一种或多种。
  13. 如权利要求1-10之一所述的二次电池,其特征在于,所述固态电解质层或凝胶态电解质层还包括添加剂,所述添加剂包括酯类、砜类、醚类、腈类或烯烃类有机添加剂的一种或几种。
  14. 如权利要求13所述的二次电池,其特征在于,所述添加剂选自氟代碳酸乙烯酯、碳酸亚乙烯酯、碳酸乙烯亚乙酯、1,3-丙磺酸内酯、1,4-丁磺酸内酯、硫酸乙烯酯、硫酸丙烯酯、硫酸亚乙酯、亚硫酸乙烯酯、亚硫酸丙烯酯、二甲基亚硫酸酯、二乙基亚硫酸酯、亚硫酸亚乙酯、氯代甲酸甲脂、二甲基亚砜、苯甲醚、乙酰胺、二氮杂苯、间二氮杂苯、冠醚12-冠-4、冠醚18-冠-6、4-氟苯甲醚、氟代链状醚、二氟代甲基碳酸乙烯酯、三氟代甲基碳酸乙烯酯、氯代碳酸乙烯酯、溴代碳酸乙烯酯、三氟乙基膦酸、溴代丁内酯、氟代乙酸基乙烷、磷酸酯、亚磷酸酯、磷腈、乙醇胺、碳化二甲胺、环丁基砜、1,3-二氧环戊烷、乙腈、长链烯烃、三氧化二铝、氧化镁、氧化钡、碳酸钠、碳酸钙、二氧化碳、二氧化硫、碳酸锂中的一种或几种。
  15. 如权利要求1-10之一所述的二次电池,其特征在于,所述正极活性材料层还包括导电剂以及粘结剂,所述正极活性材料的含量为60-95wt%,导电剂的含量为0.1-30wt%,粘结剂的含量为0.1-10wt%。
  16. 一种制备如权利要求1-16之一所述的二次电池的制备方法,其特征在于包括:
    制备电池负极,将金属、金属合金或金属复合物导电材料裁切成所需的尺寸,然后将裁切后的金属、金属合金或金属复合物导电材料表面洗净,将洗净后的金属、金属合金或金属复合物导电材料作为电池负极;
    制备固态电解质层或凝胶态电解质层,称取一定量聚合物材料与适量电解质盐混合,得到固态电解质层;或者称取一定量聚合物材料与适量电解质盐混合,加入一定量的增塑剂得到聚合物碱金属盐络合物溶液,将溶液倒入一定尺寸的铝槽板中,浇筑成膜,蒸发全部或者部分溶剂,裁剪至一定尺寸,得到固态电解质层或凝胶态电解质层;
    制备电池正极,按一定比例称取活正极性材料、导电剂以及粘结剂,加入适当溶剂中充分研磨成均匀浆料,然后均匀涂覆于正极集流体表面,待浆料完全干燥后进行裁切,得所需尺寸的电池正极,所述正极活性材料为金属氧化物或金属化合物;
    利用所述电池负极、固态电解质层或凝胶态电解质层以及电池正极进行组装。
PCT/CN2016/081348 2016-05-06 2016-05-06 一种二次电池及其制备方法 WO2017190366A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680085069.6A CN109155434A (zh) 2016-05-06 2016-05-06 一种二次电池及其制备方法
PCT/CN2016/081348 WO2017190366A1 (zh) 2016-05-06 2016-05-06 一种二次电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/081348 WO2017190366A1 (zh) 2016-05-06 2016-05-06 一种二次电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2017190366A1 true WO2017190366A1 (zh) 2017-11-09

Family

ID=60202524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081348 WO2017190366A1 (zh) 2016-05-06 2016-05-06 一种二次电池及其制备方法

Country Status (2)

Country Link
CN (1) CN109155434A (zh)
WO (1) WO2017190366A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111342123A (zh) * 2020-03-09 2020-06-26 中国科学院青岛生物能源与过程研究所 一种选择性浸润聚合物电解质及其制备和应用
CN113707934A (zh) * 2020-05-22 2021-11-26 比亚迪股份有限公司 一种锂电池及其制作方法
CN114188595A (zh) * 2020-09-15 2022-03-15 珠海冠宇电池股份有限公司 一种固态聚合物电解质及包括该固态聚合物电解质的锂离子电池
CN114361564A (zh) * 2022-01-11 2022-04-15 清华大学深圳国际研究生院 电解液及锂电池
CN114380930A (zh) * 2021-12-28 2022-04-22 广东马车动力科技有限公司 一种聚合物电解质及其制备方法与电池
CN114725370A (zh) * 2022-04-07 2022-07-08 珠海汉格能源科技有限公司 一种水性正极浆料及其制备方法
CN114976225A (zh) * 2022-07-29 2022-08-30 江苏蓝固新能源科技有限公司 一种混合导电浆料、其制备方法及应用
CN115911246A (zh) * 2022-12-19 2023-04-04 宁德时代新能源科技股份有限公司 极片及包含其的二次电池
US12062771B2 (en) 2019-03-08 2024-08-13 Sk On Co., Ltd. Coated electrode for energy storage device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110504484A (zh) * 2019-08-06 2019-11-26 河南电池研究院有限公司 一种凝胶态电解质膜的制备方法及其应用
CN110635107A (zh) * 2019-10-24 2019-12-31 邦泰宏图(深圳)科技有限责任公司 无基材的双极固态锂离子电池及其制作方法
CN111490287A (zh) * 2020-04-09 2020-08-04 湖南立方新能源科技有限责任公司 固态电解质、固态电池及其制备方法
CN114132966B (zh) * 2020-09-03 2024-07-09 星恒电源(滁州)有限公司 一种表面修饰锰酸锂材料及其制备方法
CN113258127B (zh) * 2021-05-31 2023-09-15 浙江大学 一种集流体-负极一体化的双极型锂二次电池及其方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456991A (zh) * 2013-09-02 2013-12-18 宁德时代新能源科技有限公司 锂离子电池及其凝胶电解质以及其制备方法
CN104241687A (zh) * 2014-10-10 2014-12-24 东莞新能源科技有限公司 一种聚合物固态电解质薄膜的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203707250U (zh) * 2014-01-24 2014-07-09 湖北金泉新材料有限责任公司 锂电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456991A (zh) * 2013-09-02 2013-12-18 宁德时代新能源科技有限公司 锂离子电池及其凝胶电解质以及其制备方法
CN104241687A (zh) * 2014-10-10 2014-12-24 东莞新能源科技有限公司 一种聚合物固态电解质薄膜的制备方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12062771B2 (en) 2019-03-08 2024-08-13 Sk On Co., Ltd. Coated electrode for energy storage device
CN111342123A (zh) * 2020-03-09 2020-06-26 中国科学院青岛生物能源与过程研究所 一种选择性浸润聚合物电解质及其制备和应用
CN113707934A (zh) * 2020-05-22 2021-11-26 比亚迪股份有限公司 一种锂电池及其制作方法
CN113707934B (zh) * 2020-05-22 2023-12-12 比亚迪股份有限公司 一种锂电池及其制作方法
CN114188595A (zh) * 2020-09-15 2022-03-15 珠海冠宇电池股份有限公司 一种固态聚合物电解质及包括该固态聚合物电解质的锂离子电池
CN114380930A (zh) * 2021-12-28 2022-04-22 广东马车动力科技有限公司 一种聚合物电解质及其制备方法与电池
CN114380930B (zh) * 2021-12-28 2022-09-27 广东马车动力科技有限公司 一种聚合物电解质及其制备方法与电池
CN114361564A (zh) * 2022-01-11 2022-04-15 清华大学深圳国际研究生院 电解液及锂电池
CN114725370A (zh) * 2022-04-07 2022-07-08 珠海汉格能源科技有限公司 一种水性正极浆料及其制备方法
CN114976225A (zh) * 2022-07-29 2022-08-30 江苏蓝固新能源科技有限公司 一种混合导电浆料、其制备方法及应用
CN114976225B (zh) * 2022-07-29 2022-10-14 江苏蓝固新能源科技有限公司 一种混合导电浆料、其制备方法及应用
CN115911246A (zh) * 2022-12-19 2023-04-04 宁德时代新能源科技股份有限公司 极片及包含其的二次电池

Also Published As

Publication number Publication date
CN109155434A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
JP6896725B2 (ja) 二次電池及びその製造方法
WO2017190366A1 (zh) 一种二次电池及其制备方法
WO2017190365A1 (zh) 一种钠离子电池及其制备方法
EP3761436B1 (en) Lithium ion secondary battery and manufacturing method therefor
KR101772754B1 (ko) 리튬 이온 전지용 정극 활물질층의 제조 방법 및 리튬 이온 전지용 정극 활물질층
WO2017190367A1 (zh) 一种二次电池及其制备方法
US10734688B2 (en) Constant-current charging and discharging method for lithium secondary battery by controlling current based on internal resistance measurement
KR20210038501A (ko) 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
JP2013143380A (ja) リチウム電池用の正極素材、それから得られる正極、及び該正極を採用したリチウム電池
CN103931030B (zh) 锂离子二次电池及其制造方法
JP6341151B2 (ja) 電極シートの製造方法
JP7481503B2 (ja) リチウムイオン二次電池の電解液及びその使用
US20220328863A1 (en) Secondary battery and preparation method therefor
CN111092255B (zh) 一种锂离子电池
KR20210098314A (ko) 비수전해액 축전 디바이스 및 비수전해액 축전 디바이스의 제조 방법
EP4362138A1 (en) Electrode sheet, lithium ion battery, battery module, battery pack, and electrical device
CN116454274A (zh) 一种负极片及包括该负极片的钠离子电池
JP2002175836A (ja) 非水電解質電池
JP2019200880A (ja) リチウム二次電池
JP7116310B2 (ja) リチウム二次電池
US20230046215A1 (en) Electrode binder for lithium secondary battery, and electrode and lithium secondary battery including the same
US20220131134A1 (en) Positive electrode active material
WO2024169402A1 (zh) 负极添加剂、负极极片、二次电池和用电装置
US20220115643A1 (en) Positive electrode active material
JP6982244B2 (ja) リチウム二次電池

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900888

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 14/01/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16900888

Country of ref document: EP

Kind code of ref document: A1