WO2019220992A1 - 太陽光発電装置の製造方法、太陽光発電装置の製造治具および太陽光発電装置の製造装置 - Google Patents

太陽光発電装置の製造方法、太陽光発電装置の製造治具および太陽光発電装置の製造装置 Download PDF

Info

Publication number
WO2019220992A1
WO2019220992A1 PCT/JP2019/018487 JP2019018487W WO2019220992A1 WO 2019220992 A1 WO2019220992 A1 WO 2019220992A1 JP 2019018487 W JP2019018487 W JP 2019018487W WO 2019220992 A1 WO2019220992 A1 WO 2019220992A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
power generation
generation device
cell array
manufacturing
Prior art date
Application number
PCT/JP2019/018487
Other languages
English (en)
French (fr)
Inventor
博之 小中
宏治 森
斉藤 健司
隆裕 今井
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2020519590A priority Critical patent/JPWO2019220992A1/ja
Priority to US17/054,369 priority patent/US20210194426A1/en
Priority to EP19803169.2A priority patent/EP3796549A4/en
Priority to AU2019271460A priority patent/AU2019271460A1/en
Publication of WO2019220992A1 publication Critical patent/WO2019220992A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/10Aligning parts to be fitted together
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present disclosure relates to a method for manufacturing a solar power generation device, a manufacturing jig for the solar power generation device, and a manufacturing apparatus for the solar power generation device.
  • This application claims the priority based on Japanese Patent Application No. 2018-093581, which is a Japanese patent application filed on May 15, 2018. All the descriptions described in the Japanese patent application are incorporated herein by reference.
  • JP-A-2017-22838 discloses a concentrating solar power generation device.
  • power is generated by using a compound semiconductor element as a power generation element and causing sunlight condensed by a Fresnel lens to enter the power generation element.
  • the method for manufacturing a solar power generation device includes the following steps.
  • a solar cell array is formed by attaching a plurality of solar cell modules to a fixing member extending in the longitudinal direction.
  • a solar cell array is attached to the support arm.
  • a manufacturing jig for a solar power generation device is a manufacturing jig for a solar power generation device for holding a solar cell array having a pair of fixing members extending in a longitudinal direction. Mounting portion and a central region.
  • the pair of attachment portions are portions to which the pair of fixing members are attached.
  • the central region is provided between the pair of attachment portions.
  • An insertion hole is provided in the central region.
  • FIG. 1 is a schematic perspective view showing the configuration of the photovoltaic power generation apparatus according to this embodiment.
  • FIG. 2 is a flowchart schematically showing the method for manufacturing the solar power generation device according to this embodiment.
  • FIG. 3 is a schematic front view illustrating a first step of the method for manufacturing the solar power generation device according to the present embodiment.
  • FIG. 4 is a schematic plan view illustrating a first step of the method for manufacturing the solar power generation device according to the present embodiment.
  • FIG. 5 is a schematic front view illustrating a second step of the method for manufacturing the solar power generation device according to the present embodiment.
  • FIG. 6 is a schematic plan view illustrating a second step of the method for manufacturing the solar power generation device according to the present embodiment.
  • FIG. 1 is a schematic perspective view showing the configuration of the photovoltaic power generation apparatus according to this embodiment.
  • FIG. 2 is a flowchart schematically showing the method for manufacturing the solar power generation device according to this embodiment.
  • FIG. 3 is a schematic front view
  • FIG. 7 is a schematic cross-sectional view illustrating a configuration of a rail of the solar power generation device according to the present embodiment.
  • FIG. 8 is a schematic side view illustrating a second step of the method for manufacturing the solar power generation device according to the present embodiment.
  • FIG. 9 is a schematic perspective view illustrating a configuration of a manufacturing jig of the solar power generation device according to the present embodiment.
  • FIG. 10 is a schematic sectional view taken along line XX of FIG.
  • FIG. 11 is a schematic perspective view illustrating a state in which a manufacturing jig of the solar power generation device is attached to a rail.
  • FIG. 12 is a schematic side view illustrating a third step of the method for manufacturing the solar power generation device according to the present embodiment.
  • FIG. 12 is a schematic side view illustrating a third step of the method for manufacturing the solar power generation device according to the present embodiment.
  • FIG. 13 is a schematic front view illustrating a third step of the method for manufacturing the solar power generation device according to the present embodiment.
  • FIG. 14 is a schematic front view showing the configuration of the lift of the manufacturing apparatus for the photovoltaic power generation apparatus according to this embodiment.
  • FIG. 15 is a schematic front view illustrating a fourth step of the method for manufacturing the solar power generation device according to this embodiment.
  • FIG. 16 is a schematic front view illustrating a fifth step of the method for manufacturing the solar power generation device according to the present embodiment.
  • FIG. 17 is a schematic front view illustrating a sixth step of the method for manufacturing the solar power generation device according to the present embodiment.
  • FIG. 18 is a schematic front view showing a seventh step of the method for manufacturing the solar power generation device according to this embodiment.
  • FIG. 19 is a schematic cross-sectional view illustrating a configuration of a modified example of the rail of the solar power generation device according to the present embodiment.
  • the assembly of the concentrating solar power generation apparatus is generally performed in the following procedure.
  • a rail for fixing the solar cell module is attached to the support arm of the tracking base.
  • the level of the solar cell module mounting surface is adjusted by inserting a level adjusting spacer between the support arm and the solar cell module fixing rail.
  • the solar cell module is attached to the solar cell module fixing rail at the bottom of the solar cell module. Therefore, it is necessary to perform a fixing operation between the solar cell module fixing rail and the solar cell module while facing upward while the worker enters the lower side of the solar cell module. Moreover, the fixing work position of the solar cell module is around 1 meter above the ground. Therefore, workability of the fixing work between the solar cell module fixing rail and the solar cell module is poor.
  • One aspect of the present disclosure has been made in order to solve the above-described problems, and the object thereof is to provide a method for manufacturing a solar power generation device capable of improving productivity, a manufacturing jig for a solar power generation device, and It is providing the manufacturing apparatus of a solar power generation device.
  • the manufacturing method of the solar power generation device 100 includes the following steps.
  • the solar cell array 1 is formed by attaching the plurality of solar cell modules 10 to the fixing member 20 extending in the longitudinal direction.
  • the solar cell array 1 is attached to the support arm 2.
  • the step of forming the solar cell array 1 includes the step of arranging the bottom surfaces 11 of the plurality of solar cell modules 10 upward, A step of disposing the fixing member 20 on the bottom surface 11.
  • the plurality of solar cell modules 10 Each may be placed on the work table 30. Thereby, fixing work efficiency can further be improved.
  • the fixing member 20 can be attached to the bottom surface 11 from above, so that the mounting work efficiency is improved.
  • the work table 30 may have a flat mounting surface 31.
  • Each of the plurality of solar cell modules 10 may have a top surface 12 opposite to the bottom surface 11.
  • the upper surface 12 may be in contact with the placement surface 31.
  • the method for manufacturing the solar power generation device 100 includes the step of attaching the jig 50 to the fixing member 20 and the step of inverting the solar cell array 1 together with the jig 50. And a step of inserting the shaft 73 of the lifter 70 through the insertion hole 54 of the jig 50 may be further provided. In the step of reversing the solar cell array 1 together with the jig 50, the solar cell module 10 may be reversed with the shaft 73 as the rotation axis. Thereby, the heavy solar cell array 1 can be easily reversed.
  • the method for manufacturing the solar power generation device 100 according to the above (5) may further include a step of transporting the solar cell array 1 in a state where the solar cell array 1 is supported using the lifter 70. Thereby, the heavy solar cell array 1 can be easily conveyed.
  • the manufacturing method of the solar power generation device 100 according to the above (5) or (6) includes a step of adjusting the height of the solar cell array 1 in a state where the solar cell array 1 is supported using the lifter 70. Furthermore, you may provide. Thereby, the heavy solar cell array 1 can be conveyed in a stable state.
  • the step of adjusting the height of the solar cell array 1 may be performed before the step of transporting the solar cell array 1. Thereby, the height of the solar cell array 1 can be adjusted to a height suitable for transporting the solar cell array 1.
  • the height of the solar cell array 1 in the step of transporting the solar cell array 1 is the solar cell in the step of inverting the solar cell array 1. It may be lower than the height of the array 1. By maintaining the height of the solar cell array 1 low, the solar cell array 1 can be transported in a stable state.
  • the cross-sectional shape of the fixing member 20 may be Z-shaped. Thereby, the strength of the fixing member 20 can be increased. As a result, bending of the fixing member 20 can be suppressed. Therefore, the level of each of the plurality of solar cell modules 10 can be improved.
  • the manufacturing jig 50 of the solar power generation device 100 is provided for the solar power generation device 100 for holding the solar cell array 1 having the pair of fixing members 20 extending in the longitudinal direction.
  • the manufacturing jig 50 includes a pair of attachment portions 52 and a central region 51.
  • the pair of attachment portions 52 are portions to which the pair of fixing members 20 are attached.
  • the central region 51 is provided between the pair of attachment parts 52.
  • An insertion hole 54 is provided in the central region 51.
  • the thickness of the central region 51 may be larger than the thickness of each of the pair of attachment portions 52. Thereby, the rigidity of the manufacturing jig 50 of the solar power generation device 100 can be increased.
  • each of the pair of attachment portions 52 includes a first surface 52a that contacts the pair of fixing members 20, and a first The surface 52a and the 2nd surface 52b on the opposite side may be included.
  • the second surface 52b may be provided with a protrusion 53 that continues to the central region 51.
  • a manufacturing apparatus for a photovoltaic power generation apparatus 100 includes the manufacturing jig 50 and the insertion hole 54 for the photovoltaic power generation apparatus 100 according to any one of (11) to (13) above.
  • a lifter 70 having a shaft 73 that can be inserted.
  • the lifter 70 has a tire 75.
  • a metal caster is used in the case of a general lifter 70.
  • a metal caster for example, when the lifter 70 moves on an unpaved ground such as a desert, sand is caught in the caster and it is difficult to move smoothly.
  • the tire 75 is used instead of a caster, the lifter 70 can be easily moved even on an unpaved ground such as a desert.
  • the solar power generation device 100 is a concentrating solar power generation device, and includes a support column 3, a rotating shaft 4, a solar cell array 1, a support arm 2, It mainly has a drive part 5 and a fastening part 6.
  • the solar cell array 1 includes a plurality of solar cell modules 10 and a pair of rails 20 (a pair of fixing members 20 extending in the longitudinal direction). Although the number of the solar cell modules 10 which one solar cell array 1 has is not specifically limited, For example, it is eight.
  • the solar cell modules 10 are arranged in a direction parallel to the rotating shaft 4.
  • the pair of rails 20 extend in a direction parallel to the extending direction of the rotating shaft 4.
  • the pair of rails 20 are attached to the bottom surfaces 11 of the plurality of solar cell modules 10.
  • the plurality of solar cell arrays 1 constitute a solar cell array assembly 9.
  • the support arm 2 is a support for supporting a plurality of solar cell arrays 1.
  • the support arm 2 is attached to the rotating shaft 4 by a fastening portion 6.
  • the extending direction of the support arm 2 is a direction that intersects the extending direction of the rotating shaft 4.
  • the number of support arms 2 is not particularly limited, but is six, for example.
  • three support arms 2 are provided on the solar cell array assembly 9 arranged on one side with respect to the support column 3, and on the solar cell array assembly 9 arranged on the other side with respect to the support column 3. Three are provided.
  • a connecting portion 7 extending in a direction parallel to the extending direction of the rotary shaft 4 may be provided at each end portion of the three support arms 2.
  • the solar cell array assembly 9 is configured to be rotatable about two axes. Specifically, the solar cell array assembly 9 is configured to be rotatable around the first rotation axis A along the extending direction of the support column 3. As the solar cell array assembly 9 rotates around the first rotation axis A, the solar cell array assembly 9 rotates in the azimuth direction. The solar cell array assembly 9 is configured to be rotatable around the second rotation axis B along the extending direction of the rotation shaft 4. As the solar cell array assembly 9 rotates around the second rotation axis B, the solar cell array assembly 9 rotates in the elevation angle direction. As described above, the solar cell array assembly 9 can move by tracking the movement of the sun. Specifically, the solar cell array assembly 9 can move according to the movement of the sun so as to maintain an angle facing the sun.
  • the method for manufacturing the photovoltaic power generation apparatus 100 includes a step of forming a solar cell array (S10), a step of inverting the solar cell array (S20), and a solar cell array.
  • the step (S30) of attaching to the support arm is mainly included.
  • a step (S10) of forming the solar cell array 1 is performed. Specifically, each of the plurality of solar cell modules 10 is placed on the work table 30.
  • the height of the work table 30 is, for example, about 0.7 m or more and 1.0 m or less. Thereby, the efficiency of the work performed while the worker is standing is improved.
  • the work table 30 mainly includes an upper plate 32 and a support portion 33.
  • the support part 33 supports the upper plate 32.
  • the upper plate 32 has a flat mounting surface 31.
  • Each of the plurality of solar cell modules 10 has an upper surface 12, a bottom surface 11, and a side surface 13.
  • a concentrating solar cell module (not shown) is disposed on the upper surface 12.
  • the concentrating solar cell module includes, for example, a Fresnel lens (not shown).
  • the bottom surface 11 is a surface opposite to the top surface 12.
  • a power generation element (not shown) is disposed on the bottom surface 11.
  • each of the plurality of solar cell modules 10 is arranged with the bottom surface 11 facing upward Z.
  • the upward direction is a direction within ⁇ 1 ° with respect to the vertical upward direction. If it says from another viewpoint, each of the several solar cell module 10 will be arrange
  • the downward direction is a direction within ⁇ 1 ° with respect to the vertical downward direction.
  • Each upper surface 12 of the plurality of solar cell modules 10 may be in contact with the placement surface 31. Although the number of the solar cell modules 10 is not specifically limited, For example, it is eight.
  • each of the plurality of solar cell modules 10 has a substantially rectangular shape in plan view (viewed from the vertical direction).
  • Each of the plurality of solar cell modules 10 has a short side extending in the first direction X and a long side extending in the second direction Y.
  • the second direction Y is perpendicular to the first direction X.
  • each of the plurality of solar cell modules 10 is arranged in the first direction X. From another viewpoint, each of the plurality of solar cell modules 10 is arranged in the short side direction of the solar cell module 10. Two adjacent solar cell modules 10 may be in contact with each other.
  • the placement surface 31 extends in each of the first direction X and the second direction Y.
  • the placement surface 31 is, for example, rectangular.
  • the first direction X is the longitudinal direction of the placement surface 31.
  • Each of the plurality of solar cell modules 10 is arranged along the longitudinal direction of the mounting surface 31.
  • the upper plate 32 is preferably a single plate integrally formed. Specifically, the upper plate 32 is preferably made of a solid material. Thereby, compared with the case where the two work tables 30 are arranged side by side, the mounting surface 31 can be made flatter.
  • rails 20 are attached to the plurality of solar cell modules 10. As shown in FIGS. 5 and 6, rails 20 are arranged on the bottom surface 11 of each of the plurality of solar cell modules 10.
  • the rail 20 has a first rail 21 and a second rail 22.
  • the longitudinal direction of each of the one side rail 21 and the other side rail 22 is a first direction X. If it says from another viewpoint, each of the one side rail 21 and the other side rail 22 will be arrange
  • the extending direction of the one side rail 21 is parallel to the extending direction of the other side rail 22.
  • the rails 20 may be attached to the eight solar cell modules 10, or the two solar cell modules 10 on both sides may be placed on the placement surface. After arranging on 31, the rails 20 may be attached to the two solar cell modules 10 on both sides, and then the remaining six solar cell modules 10 may be attached to the rails 20. By attaching in such a procedure, it is possible to reduce the displacement of the plurality of solar cell modules 10. Moreover, a truss material (not shown) may be used so as to connect between the one side rail 21 and the other side rail 22.
  • the cross-sectional shape of the rail 20 is, for example, a Z shape.
  • the rail 20 includes a first rail portion 61, a second rail portion 62, and a third rail portion 63.
  • the first rail portion 61 is continuous with one end portion of the second rail portion 62.
  • the third rail portion 63 is continuous with the other end portion of the second rail portion 62.
  • the second rail portion 62 is located between the first rail portion 61 and the third rail portion 63.
  • the first rail portion 61 protrudes to one side
  • the third rail portion 63 protrudes to the other side. If it says from another viewpoint, seeing from the 2nd rail part 62, the 1st rail part 61 protrudes on the opposite side to the 3rd rail part 63.
  • the first rail portion 61 extends substantially perpendicular to the second rail portion 62 in a cross-sectional view.
  • the third rail portion 63 extends substantially perpendicular to the second rail portion 62.
  • the angle ⁇ 1 formed by the first rail portion 61 and the second rail portion 62 may be less than 90 ° or 90 ° or more.
  • the angle ⁇ 2 formed by the second rail portion 62 and the third rail portion 63 may be less than 90 ° or 90 ° or more.
  • the first rail portion 61 may be provided with a first through hole 64.
  • a second through hole 65 may be provided in the third rail portion 63. Bolts or rivets described later are inserted into the first through hole 64 and the second through hole 65, respectively.
  • the fixing unit 40 includes, for example, a first fixing member 41 and a second fixing member 42.
  • fixed part 40 will not be specifically limited if the rail 20 can be fixed to each of the some solar cell module 10, For example, it is a volt
  • the one-side rail 21 is disposed at one end portion in the second direction Y of the bottom surface 11 of each of the plurality of solar cell modules 10. The one-side rail 21 is fixed to the bottom surface 11 of each of the plurality of solar cell modules 10 using the first fixing member 41.
  • the other-side rail 22 is disposed at the other-side end portion in the second direction Y of the bottom surface 11 of each of the plurality of solar cell modules 10.
  • the other rail 22 is fixed to the bottom surface 11 of each of the plurality of solar cell modules 10 using the second fixing member 42.
  • the solar cell array 1 is formed (see FIG. 8).
  • the weight of the solar cell array 1 is, for example, 100 kg.
  • the manufacturing jig 50 of the solar power generation device 100 according to the present embodiment is a manufacturing jig 50 of the solar power generation device 100 for holding the solar cell array 1 having the pair of rails 20.
  • the manufacturing jig 50 of the solar power generation device 100 according to this embodiment includes a pair of rail attachment portions 52 (a pair of attachment portions 52) and a central region 51.
  • the pair of rail attachment portions 52 are portions to which the pair of rails 20 are attached.
  • the central region 51 is provided between the pair of rail attachment portions 52. That is, the central region 51 is sandwiched between the pair of rail attachment portions 52.
  • An insertion hole 54 is provided in the central region 51.
  • the cross-sectional shape of the insertion hole 54 is a circle.
  • the material of the manufacturing jig 50 is not particularly limited, but is aluminum or stainless steel, for example.
  • FIG. 10 is a schematic sectional view taken along line XX in FIG.
  • the thickness T ⁇ b> 1 of the central region 51 is larger than the thickness T ⁇ b> 2 of each of the pair of rail attachment portions 52.
  • Each of the pair of rail attachment portions 52 has a first surface 52a and a second surface 52b.
  • the first surface 52 a is a surface in contact with the pair of rails 20.
  • the second surface 52b is a surface opposite to the first surface 52a.
  • a mounting hole 55 is provided in the first surface 52a.
  • the number of mounting holes 55 is not particularly limited, but is, for example, four.
  • Two mounting holes 55 are provided in each of the pair of rail mounting portions 52.
  • a protrusion 53 is provided on the second surface 52b. The protrusion 53 is continuous with the central region 51.
  • the manufacturing jig 50 is disposed on the rail 20. As shown in FIG. 11, the manufacturing jig 50 is disposed in contact with the first rail portion 61 of the rail 20. The rail 20 contacts the pair of rail attachment portions 52 of the manufacturing jig 50. As shown in FIG. 12, a part of the central region 51 is disposed between the pair of rails 20. The central region 51 is separated from the solar cell module 10. Each first surface 52 a of the pair of rail attachment portions 52 faces the bottom surface 11 of the solar cell module 10.
  • the manufacturing jig 50 is fixed to the rail 20 using a fixing portion 90 such as a bolt or a rivet.
  • the fixing unit 90 includes, for example, a third fixing member 91 and a fourth fixing member 92.
  • the one side rail 21 is attached to one side of the pair of rail attaching portions 52 using the third fixing member 91.
  • the other side rail 22 is attached to the other side of the pair of rail attaching portions 52 using the fourth fixing member 92.
  • the manufacturing jig 50 is attached to both ends of the rail 20. Specifically, the manufacturing jig 50 is attached to one end of the rail 20 in the first direction X and the other end of the rail 20 in the first direction X. Each of the pair of manufacturing jigs 50 faces each other.
  • the manufacturing apparatus 80 of the photovoltaic power generation apparatus 100 includes a lifter 70 and a manufacturing jig 50.
  • the lifter 70 mainly includes a support portion 71, a movable portion 72, a shaft 73, a base portion 74, and a tire 75.
  • the movable part 72 is attached to the support part 71.
  • the movable part 72 can move in the vertical direction.
  • the shaft 73 is attached to the movable part 72.
  • the shaft 73 can move in the vertical direction together with the movable portion 72.
  • the shaft 73 can be inserted into the insertion hole 54 of the manufacturing jig 50.
  • the support portion 71 is attached to the base portion 74.
  • a tire 75 is attached to the base portion 74.
  • the tire 75 is made of rubber.
  • the number of tires 75 is not particularly limited. For example, two tires 75 are provided at the front and two tires are provided at the rear (four in total).
  • two lifters 70 are prepared.
  • One lifter 70 is disposed on one end side of the rail 20.
  • the other lifter 70 is disposed on the other end side of the rail 20.
  • Each of the shafts 73 of the two lifters 70 is inserted into the insertion hole 54 of the corresponding manufacturing jig 50.
  • the shaft 73 moves upward.
  • the solar cell array 1 is lifted by the lifter 70.
  • the plurality of solar cell modules 10 are separated from the mounting surface 31 of the work table 30.
  • the step of inverting the solar cell array is performed. Specifically, the solar cell array 1 is reversed together with the manufacturing jig 50. The solar cell array 1 is reversed with the shaft 73 as a rotation axis. The solar cell array 1 rotates about 180 °. The rotation direction R (see FIG. 11) may be clockwise or counterclockwise. The solar cell array 1 may be reversed by an operator applying a rotational force to the solar cell array 1. Thereby, each upper surface 12 of the plurality of solar cell modules 10 faces upward Z, and the bottom surface 11 faces downward (FIG. 16).
  • a step of transporting the solar cell array 1 is performed. Specifically, the solar cell array 1 is transported in a state where the solar cell array 1 is supported using the lifter 70. Before the solar cell array 1 is conveyed, the height of the solar cell array 1 may be adjusted. Specifically, the height of the solar cell array 1 is adjusted while the solar cell array 1 is supported using the lifter 70. By changing the height of the shaft 73 by the movable portion 72, the height of the solar cell array 1 is adjusted. As shown in FIG. 17, in the step of transporting the solar cell array 1, the height of the solar cell array 1 may be lower than the step of inverting the solar cell array 1. By maintaining the height of the solar cell array 1 low, the solar cell array 1 can be transported in a stable state.
  • the step of attaching the solar cell array to the support arm (S30) is performed.
  • the cross-sectional shape of the support arm 2 is, for example, H type or I type.
  • the support arm 2 has a web 81 and a pair of flanges 82. One of the pair of flanges 82 is attached to one end of the web 81. The other of the pair of flanges 82 is attached to the other end of the web 81.
  • the solar cell array 1 is disposed so as to be in contact with one of the pair of flanges 82 of the support arm 2.
  • the extending method of the support arm 2 is orthogonal to the extending direction of the rail 20 of the solar cell array 1.
  • the rail 20 of the solar cell array 1 is attached to one of the pair of flanges 82 of the support arm 2.
  • the rail 20 may have an L-shaped cross section, for example.
  • the rail 20 has a fourth rail portion 66 and a fifth rail portion 67.
  • the fourth rail portion 66 is continuous with the fifth rail portion 67.
  • the angle ⁇ 3 formed by the fourth rail portion 66 and the fifth rail portion 67 may be 90 ° or more, for example.
  • the fourth rail portion 66 may be provided with a third through hole 68. Bolts or rivets are inserted into the third through holes 68.
  • the rail 20 may be attached to the solar cell module 10 such that the fourth rail portion 66 is in contact with the bottom surface 11 of the solar cell module 10 and the fifth rail portion 67 is in contact with the side surface 13 of the solar cell module 10.
  • the solar cell array 1 is formed by attaching a plurality of solar cell modules 10 to the fixing member 20.
  • the solar cell array 1 is attached to the support arm 2.
  • the steps of forming the solar cell array 1 are a step of arranging each bottom surface 11 of the plurality of solar cell modules 10 facing upward Z, and a fixing to the bottom surface 11.
  • a step of arranging the member 20 thereby, each of the plurality of solar cell modules 10 and the fixing member 20 can be fixed from above the plurality of solar cell modules 10. Therefore, the working efficiency is improved as compared with the case where the fixing work is performed from the lower side. Further, the fixing state can be easily inspected by performing the fixing operation from above. Therefore, the quality of the solar power generation device 100 can be improved.
  • each of the plurality of solar cell modules 10 is the work table 30. Placed on. Thereby, fixing work efficiency can further be improved.
  • the fixing member 20 can be attached to the bottom surface 11 from above, so that the mounting work efficiency is improved.
  • the worktable 30 has a flat mounting surface 31.
  • the top surface 12 opposite to the bottom surface 11 is in contact with the placement surface 31.
  • the photovoltaic power generation apparatus 100 includes a step of attaching the jig 50 to the fixing member 20, a step of inverting the solar cell array 1 together with the jig 50, and The shaft 73 is inserted.
  • the step of reversing the solar cell array 1 together with the jig 50 the solar cell module 10 is reversed with the shaft 73 as the rotation axis. Thereby, the heavy solar cell array 1 can be easily reversed.
  • the solar power generation device 100 further includes a step of transporting the solar cell array 1 in a state where the solar cell array 1 is supported using the lifter 70. Thereby, the heavy solar cell array 1 can be easily conveyed.
  • the solar power generation device 100 further includes a step of adjusting the height of the solar cell array 1 in a state where the solar cell array 1 is supported using the lifter 70. Thereby, the heavy solar cell array 1 can be conveyed in a stable state.
  • the cross-sectional shape of the fixing member 20 is Z-shaped. Therefore, the strength of the fixing member 20 can be increased. As a result, bending of the fixing member 20 can be suppressed. Therefore, the level of each of the plurality of solar cell modules 10 can be improved.
  • the manufacturing jig 50 of the solar power generation device 100 is a manufacturing jig 50 of the solar power generation device 100 for holding the solar cell array 1 having the pair of fixing members 20, and is a pair of attachments.
  • a portion 52 and a central region 51 are included.
  • the pair of attachment portions 52 are portions to which the pair of fixing members 20 are attached.
  • the central region 51 is provided between the pair of attachment parts 52.
  • An insertion hole 54 is provided in the central region 51.
  • the thickness of the central region 51 is larger than the thickness of each of the pair of attachment portions 52. Therefore, the rigidity of the manufacturing jig 50 of the solar power generation device 100 can be increased.
  • each of the pair of attachment portions 52 includes a first surface 52a that contacts the pair of fixing members 20, and a first surface 52a opposite to the first surface 52a. 2 side 52b.
  • the second surface 52 b is provided with a protruding portion 53 that continues to the central region 51.
  • the manufacturing apparatus of the solar power generation device 100 includes a manufacturing jig 50 of the solar power generation device 100 and a lifter 70 having a shaft 73 that can be inserted into the insertion hole 54.
  • the lifter 70 has a tire 75.
  • a metal caster is used in the case of a general lifter 70.
  • the lifter 70 moves on an unpaved ground such as a desert, sand is caught in the caster and it is difficult to move smoothly.
  • the tire 75 is used instead of a caster, the lifter 70 can be easily moved even on an unpaved ground such as a desert.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

複数の太陽電池モジュールを固定部材に取り付けることにより、太陽電池アレイを形成する工程と、太陽電池アレイをサポートアームに取り付ける工程とを備えた、太陽光発電装置の製造方法。

Description

太陽光発電装置の製造方法、太陽光発電装置の製造治具および太陽光発電装置の製造装置
 本開示は、太陽光発電装置の製造方法、太陽光発電装置の製造治具および太陽光発電装置の製造装置に関する。本出願は、2018年5月15日に出願した日本特許出願である特願2018-093581号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 特開2017-22838号公報には、集光型太陽光発電装置が記載されている。上記集光型太陽光発電装置においては、化合物半導体素子を発電素子として用い、フレネルレンズで集光させた太陽光を当該発電素子に入射させることにより発電を行っている。
特開2017-22838号公報
 本開示の一態様に係る太陽光発電装置の製造方法は以下の工程を備えている。複数の太陽電池モジュールを長手方向に延在する固定部材に取り付けることにより、太陽電池アレイが形成される。太陽電池アレイがサポートアームに取り付けられる。
 本開示の一態様に係る太陽光発電装置の製造治具は、長手方向に延在する一対の固定部材を有する太陽電池アレイを保持するための太陽光発電装置の製造治具であって、一対の取付け部と、中央領域とを備えている。一対の取付け部は、一対の固定部材が取り付けられる部分である。中央領域は、一対の取付け部の間に設けられている。中央領域には、挿通孔が設けられている。
図1は、本実施形態に係る太陽光発電装置の構成を示す斜視模式図である。 図2は、本実施形態に係る太陽光発電装置の製造方法を概略的に示すフロー図である。 図3は、本実施形態に係る太陽光発電装置の製造方法の第1工程を示す正面模式図である。 図4は、本実施形態に係る太陽光発電装置の製造方法の第1工程を示す平面模式図である。 図5は、本実施形態に係る太陽光発電装置の製造方法の第2工程を示す正面模式図である。 図6は、本実施形態に係る太陽光発電装置の製造方法の第2工程を示す平面模式図である。 図7は、本実施形態に係る太陽光発電装置のレールの構成を示す断面模式図である。 図8は、本実施形態に係る太陽光発電装置の製造方法の第2工程を示す側面模式図である。 図9は、本実施形態に係る太陽光発電装置の製造治具の構成を示す斜視模式図である。 図10は、図9のX-X線に沿った断面模式図である。 図11は、太陽光発電装置の製造治具をレールに取り付けた状態を示す斜視模式図である。 図12は、本実施形態に係る太陽光発電装置の製造方法の第3工程を示す側面模式図である。 図13は、本実施形態に係る太陽光発電装置の製造方法の第3工程を示す正面模式図である。 図14は、本実施形態に係る太陽光発電装置の製造装置のリフトの構成を示す正面模式図である。 図15は、本実施形態に係る太陽光発電装置の製造方法の第4工程を示す正面模式図である。 図16は、本実施形態に係る太陽光発電装置の製造方法の第5工程を示す正面模式図である。 図17は、本実施形態に係る太陽光発電装置の製造方法の第6工程を示す正面模式図である。 図18は、本実施形態に係る太陽光発電装置の製造方法の第7工程を示す正面模式図である。 図19は、本実施形態に係る太陽光発電装置のレールの変形例の構成を示す断面模式図である。
 [本開示が解決しようとする課題]
 集光型太陽光発電装置の組み立ては一般的に以下のような手順で行われる。まず、太陽電池モジュールを固定するためのレールが追尾架台のサポートアームに取付けられる。この際、太陽電池モジュール取付け面のレベル(水平度)の調整が必要である。たとえばサポートアームと太陽電池モジュール固定用レールとの間にレベル調整用スペーサーを挿入することにより、太陽電池モジュール取付け面のレベルの調整が行われる。
 太陽電池モジュールは、太陽電池モジュールの底部において太陽電池モジュール固定用レールに取り付けられる。そのため、作業員が太陽電池モジュールの下側に入った状態で、上方を向きながら太陽電池モジュール固定用レールと太陽電池モジュールとの固定作業を行う必要がある。また太陽電池モジュールの固定作業位置は、地上1メートル前後である。そのため、太陽電池モジュール固定用レールと太陽電池モジュールとの固定作業の作業性が悪い。
 本開示の一態様は、上記のような課題を解決するためになされたものであり、その目的は、生産性を向上可能な太陽光発電装置の製造方法、太陽光発電装置の製造治具および太陽光発電装置の製造装置を提供することである。
 [本開示の効果]
 本開示の一態様によれば、生産性を向上可能な太陽光発電装置の製造方法、太陽光発電装置の製造治具および太陽光発電装置の製造装置を提供することができる。
 [本開示の実施形態の概要]
 まず、本開示の実施形態の概要について説明する。
 (1)本開示の一態様に係る太陽光発電装置100の製造方法は以下の工程を備えている。複数の太陽電池モジュール10を長手方向に延在する固定部材20に取り付けることにより、太陽電池アレイ1が形成される。太陽電池アレイ1がサポートアーム2に取り付けられる。施工環境が安定している工場等において太陽電池アレイ1を先に準備することにより、環境や天候による施工効率に対する悪影響を最小限に抑えることができる。結果として、太陽光発電装置100の生産性が向上する。
 (2)上記(1)に係る太陽光発電装置100の製造方法において、太陽電池アレイ1を形成する工程は、複数の太陽電池モジュール10の各々の底面11を上方に向けて配置する工程と、底面11に固定部材20を配置する工程とを含んでいてもよい。これにより、複数の太陽電池モジュール10の各々と固定部材20との固定作業を、複数の太陽電池モジュール10の上側から行うことができる。そのため、下側から固定作業を行う場合と比較して、作業効率が向上する。また上側から固定作業を行うことにより、固定状態を容易に検査することができる。そのため、太陽光発電装置100の品質を向上することができる。
 (3)上記(2)に係る太陽光発電装置100の製造方法によれば、複数の太陽電池モジュール10の各々の底面11を上方に向けて配置する工程においては、複数の太陽電池モジュール10の各々が作業台30に載置されてもよい。これにより、固定作業効率をさらに向上することができる。また複数の太陽電池モジュール10の各々が底面11を上に向けて作業台30に載置されることで、上方から底面11に固定部材20を取り付けることができるため、取り付け作業効率が向上する。
 (4)上記(3)に係る太陽光発電装置100の製造方法によれば、作業台30は、平面状の載置面31を有していてもよい。複数の太陽電池モジュール10の各々は、底面11と反対側の上面12を有していてもよい。上面12は、載置面31に接していてもよい。これにより、複数の太陽電池モジュール10の各々の水平度を容易に向上することができる。そのため、複数の太陽電池モジュール10の各々と固定部材20との間にレベル調整用スペーサーを挿入する必要性を低減することができる。結果として、太陽光発電装置100の生産性を向上することができる。
 (5)上記(1)~(4)のいずれかに係る太陽光発電装置100の製造方法は、固定部材20に治具50を取り付ける工程と、太陽電池アレイ1を治具50とともに反転させる工程と、治具50の挿通孔54にリフター70のシャフト73が挿通する工程とをさら備えていてもよい。太陽電池アレイ1を治具50とともに反転させる工程においては、シャフト73を回転軸として太陽電池モジュール10を反転させてもよい。これにより、重い太陽電池アレイ1を容易に反転させることができる。
 (6)上記(5)に係る太陽光発電装置100の製造方法は、リフター70を用いて太陽電池アレイ1を支持した状態で、太陽電池アレイ1を搬送する工程をさらに備えていてもよい。これにより、重い太陽電池アレイ1を容易に搬送することができる。
 (7)上記(5)または(6)に係る太陽光発電装置100の製造方法は、リフター70を用いて太陽電池アレイ1を支持した状態で、太陽電池アレイ1の高さを調整する工程をさらに備えていてもよい。これにより、重い太陽電池アレイ1を安定した状態で搬送することができる。
 (8)上記(7)に係る太陽光発電装置100の製造方法において、太陽電池アレイ1の高さを調整する工程は、太陽電池アレイ1を搬送する工程の前に行われてもよい。これにより、太陽電池アレイ1の高さを、太陽電池アレイ1の搬送に適した高さに調整することができる。
 (9)上記(8)に係る太陽光発電装置100の製造方法によれば、太陽電池アレイ1を搬送する工程における太陽電池アレイ1の高さは、太陽電池アレイ1を反転させる工程における太陽電池アレイ1の高さよりも低くてもよい。太陽電池アレイ1の高さを低く維持することにより、太陽電池アレイ1を安定な状態で搬送することができる。
 (10)上記(1)~(9)のいずれかに係る太陽光発電装置100の製造方法は、固定部材20の断面形状は、Z型であってもよい。これにより、固定部材20の強度を高くすることができる。結果として、固定部材20がたわむことを抑制することができる。そのため、複数の太陽電池モジュール10の各々の水平度を向上することができる。
 (11)本開示の一態様に係る太陽光発電装置100の製造治具50は、長手方向に延在する一対の固定部材20を有する太陽電池アレイ1を保持するための太陽光発電装置100の製造治具50であって、一対の取付け部52と、中央領域51とを備えている。一対の取付け部52は、一対の固定部材20が取り付けられる部分である。中央領域51は、一対の取付け部52の間に設けられている。中央領域51には、挿通孔54が設けられている。これにより、太陽電池アレイ1を容易に反転することができる。結果として、太陽光発電装置100の生産性を向上することができる。
 (12)上記(11)に係る太陽光発電装置100の製造治具50においては、中央領域51の厚みは、一対の取付け部52の各々の厚みよりも大きくてもよい。これにより、太陽光発電装置100の製造治具50の剛性を高めることができる。
 (13)上記(11)または(12)に係る太陽光発電装置100の製造治具50においては、一対の取付け部52の各々は、一対の固定部材20に接する第1面52aと、第1面52aと反対側の第2面52bとを含んでいてもよい。第2面52bには、中央領域51に連なる突出部53が設けられていてもよい。これにより、太陽光発電装置100の製造治具50の剛性をさらに高めることができる。
 (14)本開示の一態様に係る太陽光発電装置100の製造装置は、上記(11)~(13)のいずれかに記載の太陽光発電装置100の製造治具50と、挿通孔54に挿通可能なシャフト73を有するリフター70とを備えている。リフター70は、タイヤ75を有する。一般的なリフター70の場合には、金属製のキャスタが使用されている。金属製のキャスタの場合には、たとえば砂漠のような未舗装の地面上をリフター70が移動する際、砂がキャスタに噛み込まれ、スムーズに移動することが困難である。一方、キャスタの代わりにタイヤ75を使用する場合には、砂漠のような未舗装の地面であってもリフター70を容易に移動させることができる。
 [本開示の実施形態の詳細]
 以下、図面に基づいて本開示の実施形態の詳細について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。
 (太陽光発電装置)
 まず、本実施形態に係る太陽光発電装置100の構成について説明する。
 図1に示されるように、本実施形態に係る太陽光発電装置100は、集光型太陽光発電装置であり、支柱3と、回転シャフト4と、太陽電池アレイ1と、サポートアーム2と、駆動部5と、締結部6を主に有している。太陽電池アレイ1は、複数の太陽電池モジュール10と、一対のレール20(一対の長手方向に延在する固定部材20)とを有している。1つの太陽電池アレイ1が有する太陽電池モジュール10の数は、特に限定されないが、たとえば8個である。太陽電池モジュール10は、回転シャフト4と平行な方向に配列されている。一対のレール20は、回転シャフト4の延在方向と平行な方向に延在している。一対のレール20は、複数の太陽電池モジュール10の各々の底面11に取り付けられている。複数の太陽電池アレイ1は、太陽電池アレイ集合体9を構成する。
 サポートアーム2は、複数の太陽電池アレイ1を支持するための支持体である。サポートアーム2は、締結部6によって回転シャフト4に取り付けられている。サポートアーム2の延在方向は、回転シャフト4の延在方向に対して交差する方向である。サポートアーム2の数は、特に限定されないが、たとえば6本である。サポートアーム2は、たとえば支柱3に対して一方側に配置されている太陽電池アレイ集合体9に3本設けられ、かつ支柱3に対して他方側に配置されている太陽電池アレイ集合体9に3本設けられている。3本のサポートアーム2の各々の端部には、回転シャフト4の延在方向に平行な方向に延在する連結部7が設けられていてもよい。
 太陽電池アレイ集合体9は、2軸で回転可能に構成されている。具体的には、太陽電池アレイ集合体9は、支柱3の延在方向に沿った第1回転軸Aの周りに回転可能に構成されている。太陽電池アレイ集合体9が第1回転軸Aの周りに回転することで、太陽電池アレイ集合体9は方位角方向に回転する。また太陽電池アレイ集合体9は、回転シャフト4の延在方向に沿った第2回転軸Bの周りに回転可能に構成されている。太陽電池アレイ集合体9が第2回転軸Bの周りに回転することで、太陽電池アレイ集合体9は仰角方向に回転する。以上のように、太陽電池アレイ集合体9は、太陽の動きを追尾して移動することができる。具体的には、太陽電池アレイ集合体9は、太陽に対向する角度を維持するように太陽の動きに従って可動することができる。
 (太陽光発電装置の製造方法)
 次に、本実施形態に係る太陽光発電装置100の製造方法について説明する。
 図2に示されるように、本実施形態に係る太陽光発電装置100の製造方法は、太陽電池アレイを形成する工程(S10)と、太陽電池アレイを反転する工程(S20)と、太陽電池アレイをサポートアームに取り付ける工程(S30)とを主に有している。
 まず、太陽電池アレイ1を形成する工程(S10)が実施される。具体的には、複数の太陽電池モジュール10の各々が作業台30に載置される。作業台30の高さは、たとえば0.7m以上1.0m以下程度である。これにより、作業者が立った状態で行う作業の効率が向上する。図3に示されるように、作業台30は、上板32と、支持部33とを主に有している。支持部33は、上板32を支持している。上板32は、平面状の載置面31を有している。複数の太陽電池モジュール10の各々は、上面12と、底面11と、側面13とを有している。上面12には、たとえば集光型太陽電池モジュール(図示せず)が配置されている。集光型太陽電池モジュールは、たとえばフレネルレンズ(図示せず)を含んでいる。底面11は、上面12とは反対側の面である。底面11には、たとえば発電素子(図示せず)が配置されている。
 図3に示されるように、複数の太陽電池モジュール10の各々は、底面11を上方Zに向けて配置される。上方とは、鉛直上方に対して±1°以内の方向である。別の観点から言えば、複数の太陽電池モジュール10の各々は、上面12が載置面31に対向するように配置される。さらに別の観点から言えば、複数の太陽電池モジュール10の各々の上面12は、下方に向けて配置される。下方とは、鉛直下方に対して±1°以内の方向である。複数の太陽電池モジュール10の各々の上面12は、載置面31に接していてもよい。太陽電池モジュール10の数は、特に限定されないが、たとえば8個である。
 図4に示されるように、複数の太陽電池モジュール10の各々は、平面視(鉛直方向から見て)において略長方形の形状を有している。複数の太陽電池モジュール10の各々は、第1方向Xに延在する短辺と、第2方向Yに延在する長辺とを有する。第2方向Yは、第1方向Xに対して垂直である。図4に示されるように、複数の太陽電池モジュール10の各々は、第1方向Xに配列される。別の観点から言えば、複数の太陽電池モジュール10の各々は、太陽電池モジュール10の短辺方向に配列される。隣り合う2つの太陽電池モジュール10は、互いに接していてもよい。
 図4に示されるように、載置面31は、第1方向Xおよび第2方向Yの各々において延在している。平面視において、載置面31は、たとえば長方形である。第1方向Xは、載置面31の長手方向である。載置面31の長手方向に沿って、複数の太陽電池モジュール10の各々が配列される。上板32は、一体形成された一枚板であることが望ましい。具体的には、上板32は、無垢材により構成されていることが望ましい。これにより、2つの作業台30を並べて配置する場合と比較して、載置面31をより平坦にすることができる。
 次に、複数の太陽電池モジュール10にレール20が取り付けられる。図5および図6に示されるように、複数の太陽電池モジュール10の各々の底面11にレール20が配置される。レール20は、一方側レール21と他方側レール22とを有している。一方側レール21および他方側レール22の各々の長手方向は、第1方向Xである。別の観点から言えば、一方側レール21および他方側レール22の各々は、太陽電池モジュール10の短辺方向に沿って配置される。一方側レール21の延在方向は、他方側レール22の延在方向と平行である。
 たとえば8個の太陽電池モジュール10を載置面31上に配置した後に、8個の太陽電池モジュール10にレール20が取り付けられてもよいし、両側の2個の太陽電池モジュール10を載置面31上に配置した後に、両側の2個の太陽電池モジュール10にレール20を取付け、その後、残り6個の太陽電池モジュール10をレール20に取り付けてもよい。このような手順で取り付けることにより、複数の太陽電池モジュール10の位置ずれを低減することができる。また一方側レール21と他方側レール22との間を繋ぐようにトラス材(図示せず)が用いられてもよい。
 図7に示されるように、レール20の断面形状は、たとえばZ型である。具体的には、レール20は、第1レール部61と、第2レール部62と、第3レール部63とを有している。第1レール部61は、第2レール部62の一方側端部に連なっている。第3レール部63は、第2レール部62の他方側端部に連なっている。第2レール部62は、第1レール部61と第3レール部63との間に位置している。第2レール部62から見て、第1レール部61は一方側に突出しており、第3レール部63は他方側に突出している。別の観点から言えば、第2レール部62から見て、第1レール部61は、第3レール部63とは反対側に突出している。
 図7に示されるように、断面視において、第1レール部61は、第2レール部62に対してほぼ垂直に延在している。同様に、第3レール部63は、第2レール部62に対してほぼ垂直に延在している。断面視において、第1レール部61と第2レール部62とがなす角度θ1は、90°未満であってもよいし、90°以上であってもよい。断面視において、第2レール部62と第3レール部63とがなす角度θ2は、90°未満であってもよいし、90°以上であってもよい。第1レール部61には、第1貫通孔64が設けられていてもよい。同様に、第3レール部63には、第2貫通孔65が設けられていてもよい。第1貫通孔64および第2貫通孔65の各々には、後述するボルトまたはリベットが挿入される。
 次に、レール20が固定部40により複数の太陽電池モジュール10の各々に取り付けられる。固定部40は、たとえば第1固定部材41と、第2固定部材42とを有している。固定部40は、レール20を複数の太陽電池モジュール10の各々に固定できるものであれば特に限定されないが、たとえばボルトまたはリベットである。図8に示されるように、一方側レール21は、複数の太陽電池モジュール10の各々の底面11の第2方向Yにおける一方側の端部に配置される。一方側レール21は、第1固定部材41を用いて、複数の太陽電池モジュール10の各々の底面11に固定される。他方側レール22は、複数の太陽電池モジュール10の各々の底面11の第2方向Yにおける他方側の端部に配置される。他方側レール22は、第2固定部材42を用いて、複数の太陽電池モジュール10の各々の底面11に固定される。以上により、太陽電池アレイ1が形成される(図8参照)。太陽電池アレイ1の重量は、たとえば100kgである。
 次に、本実施形態に係る太陽光発電装置100の製造治具50について説明する。
 本実施形態に係る太陽光発電装置100の製造治具50は、一対のレール20を有する太陽電池アレイ1を保持するための太陽光発電装置100の製造治具50である。図9に示されるように、本実施形態に係る太陽光発電装置100の製造治具50は、一対のレール取付け部52(一対の取付け部52)と、中央領域51とを有している。一対のレール取付け部52は、一対のレール20が取り付けられる部分である。中央領域51は、一対のレール取付け部52の間に設けられている。つまり、中央領域51は、一対のレール取付け部52によって挟まれている。中央領域51には、挿通孔54が設けられている。挿通孔54の断面形状は、円形である。製造治具50の材料は、特に限定されないが、たとえばアルミニウムまたはステンレスである。
 図10は、図9のX-X線に沿った断面模式図である。図10に示されるように、中央領域51の厚みT1は、一対のレール取付け部52の各々の厚みT2よりも大きい。一対のレール取付け部52の各々は、第1面52aと、第2面52bとを有している。第1面52aは、一対のレール20に接する面である。第2面52bは、第1面52aと反対側の面である。第1面52aには、取付孔55が設けられている。取付孔55の数は、特に限定されないが、たとえば4個である。取付孔55は、一対のレール取付け部52の各々において2個ずつ設けられている。第2面52bには、突出部53が設けられている。突出部53は、中央領域51に連なっている。
 次に、レール20に治具50を取り付ける工程が実施される。まず、製造治具50が、レール20上に配置される。図11に示されるように、製造治具50は、レール20の第1レール部61に接するように配置される。レール20は、製造治具50の一対のレール取付け部52に接する。図12に示されるように、中央領域51の一部は、一対のレール20の間に配置される。中央領域51は、太陽電池モジュール10から離間している。一対のレール取付け部52の各々の第1面52aは、太陽電池モジュール10の底面11に対向している。たとえばボルトまたはリベットなどの固定部90を用いて、製造治具50がレール20に固定される。固定部90は、たとえば第3固定部材91と、第4固定部材92とを有している。一方側レール21は、第3固定部材91を用いて、一対のレール取付け部52の一方側に取り付けられる。他方側レール22は、第4固定部材92を用いて、一対のレール取付け部52の他方側に取り付けられる。
 図13に示されるように、製造治具50は、レール20の両端に取り付けられる。具体的には、製造治具50は、第1方向Xにおけるレール20の一方端と、第1方向Xにおけるレール20の他方端とに取り付けられる。一対の製造治具50の各々は、互いに対向している。
 次に、本実施形態に係る太陽光発電装置の製造装置の構成について説明する。本実施形態に係る太陽光発電装置100の製造装置80は、リフター70と、製造治具50とを有している。図14に示されるように、リフター70は、支持部71と、可動部72と、シャフト73と、台部74と、タイヤ75とを主に有している。可動部72は、支持部71に取り付けられている。可動部72は、上下方向に移動することができる。シャフト73は、可動部72に取り付けられている。シャフト73は、可動部72とともに上下方向に移動することができる。シャフト73は、製造治具50の挿通孔54に挿通可能である。支持部71は、台部74に取り付けられている。台部74には、タイヤ75が取り付けられている。タイヤ75は、ゴム製である。タイヤ75の数は、特に限定されないが、たとえば前方に2個、後方に2個(合計4個)設けられている。
 図15に示されるように、2台のリフター70が準備される。一方のリフター70は、レール20の一端側に配置される。他方のリフター70は、レール20の他端側に配置される。2台のリフター70のシャフト73の各々が、対応する製造治具50の挿通孔54に挿入される。次に、シャフト73が上方に移動する。これにより、太陽電池アレイ1が、リフター70によって持ち上げられる。別の観点から言えば、複数の太陽電池モジュール10は、作業台30の載置面31から離間する。
 次に、太陽電池アレイを反転する工程(S20)が実施される。具体的には、太陽電池アレイ1は、製造治具50とともに反転する。太陽電池アレイ1は、シャフト73を回転軸として反転する。太陽電池アレイ1は、約180°回転する。回転方向R(図11参照)は、時計回りであってもよいし、反時計回りであってもよい。作業員が太陽電池アレイ1に対して回転力を付与することで、太陽電池アレイ1が反転してもよい。これにより、複数の太陽電池モジュール10の各々の上面12が上方Zを向き、かつ底面11が下方を向く(図16)。
 次に、太陽電池アレイ1を搬送する工程が実施される。具体的には、リフター70を用いて太陽電池アレイ1を支持した状態で、太陽電池アレイ1が搬送される。太陽電池アレイ1を搬送する前に、太陽電池アレイ1の高さが調整されてもよい。具体的には、リフター70を用いて太陽電池アレイ1を支持した状態で、太陽電池アレイ1の高さが調整される。可動部72によってシャフト73の高さを変化させることにより、太陽電池アレイ1の高さが調整される。図17に示されるように、太陽電池アレイ1を搬送する工程においては、太陽電池アレイ1を反転させる工程よりも、太陽電池アレイ1の高さが低くてもよい。太陽電池アレイ1の高さを低く維持することにより、太陽電池アレイ1を安定な状態で搬送することができる。
 次に、太陽電池アレイをサポートアームに取り付ける工程(S30)が実施される。図18に示されるように、サポートアーム2の断面形状は、たとえばH型またはI型である。サポートアーム2は、ウェブ81と、一対のフランジ82とを有している。一対のフランジ82の一方は、ウェブ81の一端に取り付けられている。一対のフランジ82の他方は、ウェブ81の他端に取り付けられている。
 図18に示されるように、太陽電池アレイ1は、サポートアーム2の一対のフランジ82の一方に接するように配置される。サポートアーム2の延在方法は、太陽電池アレイ1のレール20の延在方向に対して直交している。太陽電池アレイ1のレール20が、サポートアーム2の一対のフランジ82の一方に取り付けられる。
 次に、レール20の変形例の構成について説明する。
 図19に示されるように、レール20の断面形状は、たとえばL型であってもよい。具体的には、レール20は、第4レール部66と、第5レール部67とを有している。第4レール部66は、第5レール部67に連なっている。断面視において、第4レール部66と第5レール部67とがなす角度θ3は、たとえば90°以上であってもよい。第4レール部66には、第3貫通孔68が設けられていてもよい。第3貫通孔68には、ボルトまたはリベットが挿入される。第4レール部66が太陽電池モジュール10の底面11に接し、かつ第5レール部67が太陽電池モジュール10の側面13に接するように、レール20が太陽電池モジュール10に取り付けられてもよい。
 次に、本実施形態に係る太陽光発電装置100の作用効果について説明する。
 本実施形態に係る太陽光発電装置100においては、複数の太陽電池モジュール10を固定部材20に取り付けることにより、太陽電池アレイ1が形成される。太陽電池アレイ1がサポートアーム2に取り付けられる。施工環境が安定している工場等において太陽電池アレイ1を先に準備することにより、環境や天候による施工効率に対する悪影響を最小限に抑えることができる。結果として、太陽光発電装置100の生産性が向上する。
 また本実施形態に係る太陽光発電装置100においては、太陽電池アレイ1を形成する工程は、複数の太陽電池モジュール10の各々の底面11を上方Zに向けて配置する工程と、底面11に固定部材20を配置する工程とを含んでいる。これにより、複数の太陽電池モジュール10の各々と固定部材20との固定作業を、複数の太陽電池モジュール10の上側から行うことができる。そのため、下側から固定作業を行う場合と比較して、作業効率が向上する。また上側から固定作業を行うことにより、固定状態を容易に検査することができる。そのため、太陽光発電装置100の品質を向上することができる。
 さらに本実施形態に係る太陽光発電装置100によれば、複数の太陽電池モジュール10の各々の底面11を上方Zに向けて配置する工程においては、複数の太陽電池モジュール10の各々が作業台30に載置される。これにより、固定作業効率をさらに向上することができる。また複数の太陽電池モジュール10の各々が底面11を上に向けて作業台30に載置されることで、上方から底面11に固定部材20を取り付けることができるため、取り付け作業効率が向上する。
 さらに本実施形態に係る太陽光発電装置100によれば、作業台30は、平面状の載置面31を有している。底面11と反対側の上面12は、載置面31に接している。これにより、複数の太陽電池モジュール10の各々の水平度を容易に向上することができる。そのため、複数の太陽電池モジュール10の各々と固定部材20との間にレベル調整用スペーサーを挿入する必要性を低減することができる。結果として、太陽光発電装置100の生産性を向上することができる。
 さらに本実施形態に係る太陽光発電装置100は、固定部材20に治具50を取り付ける工程と、太陽電池アレイ1を治具50とともに反転させる工程と、治具50の挿通孔54にリフター70のシャフト73が挿通される。太陽電池アレイ1を治具50とともに反転させる工程においては、シャフト73を回転軸として太陽電池モジュール10を反転させる。これにより、重い太陽電池アレイ1を容易に反転させることができる。
 さらに本実施形態に係る太陽光発電装置100は、リフター70を用いて太陽電池アレイ1を支持した状態で、太陽電池アレイ1を搬送する工程をさらに有している。これにより、重い太陽電池アレイ1を容易に搬送することができる。
 さらに本実施形態に係る太陽光発電装置100は、リフター70を用いて太陽電池アレイ1を支持した状態で、太陽電池アレイ1の高さを調整する工程をさらに有している。これにより、重い太陽電池アレイ1を安定した状態で搬送することができる。
 さらに本実施形態に係る太陽光発電装置100においては、固定部材20の断面形状は、Z型である。これにより、固定部材20の強度を高くすることができる。結果として、固定部材20がたわむことを抑制することができる。そのため、複数の太陽電池モジュール10の各々の水平度を向上することができる。
 本実施形態に係る太陽光発電装置100の製造治具50は、一対の固定部材20を有する太陽電池アレイ1を保持するための太陽光発電装置100の製造治具50であって、一対の取付け部52と、中央領域51とを有している。一対の取付け部52は、一対の固定部材20が取り付けられる部分である。中央領域51は、一対の取付け部52の間に設けられている。中央領域51には、挿通孔54が設けられている。これにより、太陽電池アレイ1を容易に反転することができる。結果として、太陽光発電装置100の生産性を向上することができる。
 また本実施形態に係る太陽光発電装置100の製造治具50においては、中央領域51の厚みは、一対の取付け部52の各々の厚みよりも大きい。これにより、太陽光発電装置100の製造治具50の剛性を高めることができる。
 さらに本実施形態に係る太陽光発電装置100の製造治具50においては、一対の取付け部52の各々は、一対の固定部材20に接する第1面52aと、第1面52aと反対側の第2面52bとを含んでいる。第2面52bには、中央領域51に連なる突出部53が設けられている。これにより、太陽光発電装置100の製造治具50の剛性をさらに高めることができる。
 本実施形態に係る太陽光発電装置100の製造装置は、太陽光発電装置100の製造治具50と、挿通孔54に挿通可能なシャフト73を有するリフター70とを有している。リフター70は、タイヤ75を有する。一般的なリフター70の場合には、金属製のキャスタが使用されている。金属製のキャスタの場合には、たとえば砂漠のような未舗装の地面上をリフター70が移動する際、砂がキャスタに噛み込まれ、スムーズに移動することが困難である。一方、キャスタの代わりにタイヤ75を使用する場合には、砂漠のような未舗装の地面であってもリフター70を容易に移動させることができる。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1 太陽電池アレイ、2 サポートアーム、3 支柱、4 回転シャフト、5 駆動部、6 締結部、7 連結部、9 太陽電池アレイ集合体、10 太陽電池モジュール、11 底面、12 上面、13 側面、20 レール(固定部材)、21 一方側レール、22 他方側レール、30 作業台、31 載置面、32 上板、33,71 支持部、40,90 固定部、41 第1固定部材、42 第2固定部材、50 治具(製造治具)、51 中央領域、52 レール取付け部(取付け部)、52a 第1面、52b 第2面、53 突出部、54 挿通孔、55 取付孔、61 第1レール部、62 第2レール部、63 第3レール部、64 第1貫通孔、65 第2貫通孔、66 第4レール部、67 第5レール部、68 第3貫通孔、70 リフター、72 可動部、73 シャフト、74 台部、75 タイヤ、80 製造装置、81 ウェブ、82 フランジ、91 第3固定部材、92 第4固定部材、100 太陽光発電装置、A 第1回転軸、B 第2回転軸、T1,T2 厚み、X 第1方向、Y 第2方向、Z 上方。

Claims (14)

  1.  複数の太陽電池モジュールを長手方向に延在する固定部材に取り付けることにより、太陽電池アレイを形成する工程と、
     前記太陽電池アレイをサポートアームに取り付ける工程とを備えた、太陽光発電装置の製造方法。
  2.  前記太陽電池アレイを形成する工程は、前記複数の太陽電池モジュールの各々の底面を上方に向けて配置する工程と、前記底面に前記固定部材を配置する工程とを含む、請求項1に記載の太陽光発電装置の製造方法。
  3.  前記複数の太陽電池モジュールの各々の底面を上方に向けて配置する工程においては、前記複数の太陽電池モジュールの各々が作業台に載置される、請求項2に記載の太陽光発電装置の製造方法。
  4.  前記作業台は、平面状の載置面を有し、
     前記複数の太陽電池モジュールの各々は、前記底面と反対側の上面を有し、
     前記上面は、前記載置面に接する、請求項3に記載の太陽光発電装置の製造方法。
  5.  前記固定部材に治具を取り付ける工程と、
     前記太陽電池アレイを前記治具とともに反転させる工程と、
     前記治具の挿通孔にリフターのシャフトを挿通する工程とをさらに備え、
     前記太陽電池アレイを前記治具とともに反転させる工程においては、前記シャフトを回転軸として前記太陽電池モジュールを反転させる、請求項1~請求項4のいずれか1項に記載の太陽光発電装置の製造方法。
  6.  前記リフターを用いて前記太陽電池アレイを支持した状態で、前記太陽電池アレイを搬送する工程をさらに備えた、請求項5に記載の太陽光発電装置の製造方法。
  7.  前記リフターを用いて前記太陽電池アレイを支持した状態で、前記太陽電池アレイの高さを調整する工程をさらに備えた、請求項5または請求項6に記載の太陽光発電装置の製造方法。
  8.  前記太陽電池アレイの高さを調整する工程は、前記太陽電池アレイを搬送する工程の前に行われる、請求項7に記載の太陽光発電装置の製造方法。
  9.  前記太陽電池アレイを搬送する工程における前記太陽電池アレイの高さは、前記太陽電池アレイを反転させる工程における前記太陽電池アレイの高さよりも低い、請求項8に記載の太陽光発電装置の製造方法。
  10.  前記固定部材の断面形状は、Z型である、請求項1~請求項9のいずれか1項に記載の太陽光発電装置の製造方法。
  11.  長手方向に延在する一対の固定部材を有する太陽電池アレイを保持するための太陽光発電装置の製造治具であって、
     前記一対の固定部材が取り付けられる一対の取付け部と、
     前記一対の取付け部の間に設けられた中央領域とを備え、
     前記中央領域には、挿通孔が設けられている、太陽光発電装置の製造治具。
  12.  前記中央領域の厚みは、前記一対の取付け部の各々の厚みよりも大きい、請求項11に記載の太陽光発電装置の製造治具。
  13.  前記一対の取付け部の各々は、前記一対の固定部材に接する第1面と、前記第1面と反対側の第2面とを含み、
     前記第2面には、前記中央領域に連なる突出部が設けられている、請求項11または請求項12に記載の太陽光発電装置の製造治具。
  14.  請求項11~請求項13のいずれか1項に記載の太陽光発電装置の製造治具と、
     前記挿通孔に挿通可能なシャフトを有するリフターとを備え、
     前記リフターは、タイヤを有する、太陽光発電装置の製造装置。
PCT/JP2019/018487 2018-05-15 2019-05-09 太陽光発電装置の製造方法、太陽光発電装置の製造治具および太陽光発電装置の製造装置 WO2019220992A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020519590A JPWO2019220992A1 (ja) 2018-05-15 2019-05-09 太陽光発電装置の製造方法、太陽光発電装置の製造治具および太陽光発電装置の製造装置
US17/054,369 US20210194426A1 (en) 2018-05-15 2019-05-09 Method for manufacturing solar photovoltaic power generation apparatus, jig for manufacturing solar photovoltaic power generation apparatus, and apparatus for manufacturing solar photovoltaic power generation apparatus
EP19803169.2A EP3796549A4 (en) 2018-05-15 2019-05-09 METHOD FOR MANUFACTURING SOLAR PHOTOVOLTAIC POWER GENERATING DEVICE, JIG FOR MANUFACTURING SOLAR PHOTOVOLTAIC POWER GENERATING DEVICE, AND EQUIPMENT FOR MANUFACTURING SOLAR PHOTOVOLTAIC POWER GENERATING DEVICE
AU2019271460A AU2019271460A1 (en) 2018-05-15 2019-05-09 Method for producing solar photovoltaic power generation device, jig for producing solar photovoltaic power generation device, and apparatus for producing solar photovoltaic power generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018093581 2018-05-15
JP2018-093581 2018-05-15

Publications (1)

Publication Number Publication Date
WO2019220992A1 true WO2019220992A1 (ja) 2019-11-21

Family

ID=68539822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018487 WO2019220992A1 (ja) 2018-05-15 2019-05-09 太陽光発電装置の製造方法、太陽光発電装置の製造治具および太陽光発電装置の製造装置

Country Status (6)

Country Link
US (1) US20210194426A1 (ja)
EP (1) EP3796549A4 (ja)
JP (1) JPWO2019220992A1 (ja)
AU (1) AU2019271460A1 (ja)
TW (1) TW201947781A (ja)
WO (1) WO2019220992A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10801755B1 (en) * 2019-05-31 2020-10-13 Nemat, Inc. Apparatuses and methods for simplified installation of solar panels
CN117620634A (zh) * 2023-12-14 2024-03-01 英利新能源(宁夏)有限公司 一种光伏储能电池组自动组装设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959940A (ja) * 1995-08-22 1997-03-04 Nissin Electric Co Ltd 太陽電池パネル
US20100071755A1 (en) * 2008-09-25 2010-03-25 Kruse John S Attaching Solar Collectors to a Structural Framework Utilizing a Flexible Clip
US20110289750A1 (en) * 2010-06-01 2011-12-01 Emcore Solar Power, Inc. Methods and Devices for Assembling a Terrestrial Solar Tracking Photovoltaic Array
JP2013239495A (ja) * 2012-05-11 2013-11-28 Sharp Corp 太陽電池モジュールの接着装置
JP2013258264A (ja) * 2012-06-12 2013-12-26 Sharp Corp 太陽電池モジュール、太陽電池モジュールの設置方法、及び太陽光発電システム
JP2014525228A (ja) * 2011-07-19 2014-09-25 ブリットモア グループ エルエルシー 太陽電池モジュールのための取り付けシステム
JP2017022838A (ja) 2015-07-09 2017-01-26 住友電気工業株式会社 集光型太陽光発電モジュール用筐体取付構造、集光型太陽光発電モジュール、集光型太陽光発電パネル、及び集光型太陽光発電装置
JP2018093581A (ja) 2016-11-30 2018-06-14 日本電産テクノモータ株式会社 ステータ、モータ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170826A (ja) * 2008-01-21 2009-07-30 Mitsubishi Heavy Ind Ltd 太陽電池パネル及び太陽電池パネルの製造方法
KR20150018341A (ko) * 2013-08-09 2015-02-23 엘에스산전 주식회사 태양광 패널 지지체
US9923511B2 (en) * 2015-08-03 2018-03-20 Jason Sen Xie Connecting solar modules
BR112018067844B1 (pt) * 2016-03-07 2022-08-16 Array Technologies, Inc Conjunto de suporte de montagem e conjunto de montagem

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959940A (ja) * 1995-08-22 1997-03-04 Nissin Electric Co Ltd 太陽電池パネル
US20100071755A1 (en) * 2008-09-25 2010-03-25 Kruse John S Attaching Solar Collectors to a Structural Framework Utilizing a Flexible Clip
US20110289750A1 (en) * 2010-06-01 2011-12-01 Emcore Solar Power, Inc. Methods and Devices for Assembling a Terrestrial Solar Tracking Photovoltaic Array
JP2014525228A (ja) * 2011-07-19 2014-09-25 ブリットモア グループ エルエルシー 太陽電池モジュールのための取り付けシステム
JP2013239495A (ja) * 2012-05-11 2013-11-28 Sharp Corp 太陽電池モジュールの接着装置
JP2013258264A (ja) * 2012-06-12 2013-12-26 Sharp Corp 太陽電池モジュール、太陽電池モジュールの設置方法、及び太陽光発電システム
JP2017022838A (ja) 2015-07-09 2017-01-26 住友電気工業株式会社 集光型太陽光発電モジュール用筐体取付構造、集光型太陽光発電モジュール、集光型太陽光発電パネル、及び集光型太陽光発電装置
JP2018093581A (ja) 2016-11-30 2018-06-14 日本電産テクノモータ株式会社 ステータ、モータ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10801755B1 (en) * 2019-05-31 2020-10-13 Nemat, Inc. Apparatuses and methods for simplified installation of solar panels
CN117620634A (zh) * 2023-12-14 2024-03-01 英利新能源(宁夏)有限公司 一种光伏储能电池组自动组装设备

Also Published As

Publication number Publication date
AU2019271460A1 (en) 2020-12-03
US20210194426A1 (en) 2021-06-24
TW201947781A (zh) 2019-12-16
EP3796549A1 (en) 2021-03-24
JPWO2019220992A1 (ja) 2021-07-08
EP3796549A4 (en) 2022-02-23

Similar Documents

Publication Publication Date Title
US8881415B2 (en) Solar system alignment tool and method
WO2019220992A1 (ja) 太陽光発電装置の製造方法、太陽光発電装置の製造治具および太陽光発電装置の製造装置
US8677701B2 (en) Attaching solar collectors to a structural framework utilizing a flexible clip
CN104823376A (zh) 一体式扭矩耦接件与安装座
US9074797B2 (en) Assembling and aligning a two-axis tracker assembly in a concentrated photovoltaic system
US10625430B2 (en) Robot gripper
US20130206712A1 (en) Solar Assembly Structure
WO2016149034A1 (en) Work station and method for joining metallic sheets
KR101619949B1 (ko) 태양전지 구조물
US20130145893A1 (en) Ceiling-mounted scara robot
JP6418596B2 (ja) 太陽電池パネルの取付金具及び該取付金具による太陽電池パネルの取付構造
JP5472535B2 (ja) パネル支持架台
JP6277209B2 (ja) 太陽光発電パネル設置用架台を構成するための部材
CN110773934A (zh) 车顶正反组装焊接工装
JP3213752U (ja) 太陽光パネル用架台
CN208019661U (zh) 高精度定位焊接转台
CN114800562B (zh) 一种可伸入翼盒内的自动化装配机器人及其工作方法
CN205817854U (zh) 一种带对中功能的全景天窗安装机械手
CN219760931U (zh) 光伏跟踪装置的推杆连接结构及光伏跟踪装置
CN220827456U (zh) 移动机构、移动装置及镀膜设备
CN214265674U (zh) 一种机械臂维修装置
CN217097397U (zh) 用于固定风电齿轮箱的支撑装置
CN210360003U (zh) 一种挖掘机下车架便于固定的焊接工装
CN212145110U (zh) 联板焊接工装
CN208825888U (zh) 槽式光热发电设备中悬臂的焊接工装

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803169

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519590

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019271460

Country of ref document: AU

Date of ref document: 20190509

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019803169

Country of ref document: EP

Effective date: 20201215