WO2019215847A1 - 電動機の制御方法及び電動機の制御装置 - Google Patents

電動機の制御方法及び電動機の制御装置 Download PDF

Info

Publication number
WO2019215847A1
WO2019215847A1 PCT/JP2018/017954 JP2018017954W WO2019215847A1 WO 2019215847 A1 WO2019215847 A1 WO 2019215847A1 JP 2018017954 W JP2018017954 W JP 2018017954W WO 2019215847 A1 WO2019215847 A1 WO 2019215847A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotational speed
rotation speed
electric motor
value
gain
Prior art date
Application number
PCT/JP2018/017954
Other languages
English (en)
French (fr)
Inventor
雄史 勝又
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2020517678A priority Critical patent/JP7006779B2/ja
Priority to PCT/JP2018/017954 priority patent/WO2019215847A1/ja
Publication of WO2019215847A1 publication Critical patent/WO2019215847A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/17Control strategies specially adapted for achieving a particular effect for noise reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an electric motor control method and an electric motor control device.
  • Patent Document 1 In an engine that applies torque to the output shaft through a movable member that is driven by gas burned in the combustion chamber, periodic torque fluctuations occur on the output shaft.
  • a hybrid prime mover in which an electric motor (motor generator) is coupled to an output shaft and a torque fluctuation control device for the hybrid prime mover are known (see Patent Document 1).
  • Patent Document 1 a pulsation correction torque to be generated on the output shaft is calculated according to the operating state and rotation speed of the engine, and the pulsation compensation torque is generated by an electric motor. Thereby, engine torque pulsation is suppressed.
  • the pulsation correction torque is calculated by feed-forward based on the engine related signals, and the motor torque is controlled. For this reason, when the calculated pulsation correction torque and the actual torque of the engine deviate from each other, the periodic torque fluctuation cannot be canceled out, the rotational speed fluctuation occurs, and vibration and noise occur.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an electric motor control method and control apparatus capable of obtaining a desired electric motor rotation speed while suppressing vibration and noise. is there.
  • the motor control method and control apparatus feedback control the motor mechanically connected to the output shaft of the engine.
  • the rotational speed correction value for suppressing the periodic fluctuation component included in the torque output from the engine to the output shaft is superimposed on the rotational speed detection value or the target rotational speed of the electric motor, and the rotational speed correction value is superimposed.
  • the motor is feedback controlled using the detected rotation speed value or the target rotation speed.
  • FIG. 1 is a block diagram showing a control apparatus for an electric motor 2 according to the first embodiment and a hybrid prime mover 3 including an engine 1 and an electric motor 2.
  • FIG. 2 is a block diagram showing a detailed configuration of the rotation speed correction value calculation unit 13 of FIG.
  • FIG. 3 is a flowchart showing an example of the operation procedure of the control device for the electric motor 2 and the hybrid prime mover 3 shown in FIG.
  • FIG. 4 is a flowchart showing the detailed operation of the gain adjuster 24, that is, the detailed procedure of step S13.
  • FIG. 5 is a graph showing an example of the relationship between the estimated value of the rotational speed fluctuation and a specific correction gain value.
  • FIG. 6 is a two-dimensional graph showing the operating point of the engine 1 determined from the rotational speed of the engine 1 and the output of the engine 1.
  • FIG. 7A shows a simulation result in the case where a gain for suppressing the torque pulsation component to the maximum is set, and a graph showing a time change of the rotation speed detection value ⁇ G (Comparative Example 1, Comparative Example 2, Example). It is.
  • FIG. 7B shows a simulation result when a gain for suppressing the torque pulsation component to the maximum is set. The torque pulsation component of the engine 1 and the time of the counter torque output by the electric motor 2 to cancel the torque pulsation component are shown. It is a graph which shows a change (comparative example 1, comparative example 2, an example).
  • FIG. 7A shows a simulation result in the case where a gain for suppressing the torque pulsation component to the maximum is set, and a graph showing a time change of the rotation speed detection value ⁇ G (Comparative Example 1, Comparative Example 2,
  • FIG. 8A shows a simulation result in the operation state of the electric motor 2 or the operation mode of the hybrid prime mover 3 that prioritizes the improvement of the power generation efficiency over the reduction of vibration or noise, and the time change of the rotation speed detection value ⁇ G (Comparative Example 1, It is a graph which shows the comparative example 2 and an Example.
  • FIG. 8B shows a simulation result in the operation state of the electric motor 2 or the operation mode of the hybrid prime mover 3 that prioritizes the improvement of power generation efficiency over the reduction of vibration or noise, in order to cancel the torque pulsation component and the torque pulsation component of the engine 1.
  • 6 is a graph showing a time change (Comparative Example 1, Comparative Example 2, Example) of the counter torque output by the electric motor 2.
  • FIG. 8C shows a simulation result in the operation state of the electric motor 2 or the operation mode of the hybrid prime mover 3 that prioritizes the improvement of the power generation efficiency over the reduction of vibration or noise, and the time change of the loss generated in the electric motor 2 (Comparative Example 1, It is a graph which shows the comparative example 2 and an Example.
  • FIG. 9 is a block diagram showing the control device for the electric motor 2 according to the second embodiment and the hybrid prime mover 3 including the engine 1 and the electric motor 2.
  • FIG. 10 is a block diagram showing a configuration of a series-type hybrid car to which the control device for the electric motor 2 of either FIG. 1 or FIG. 9 and the hybrid prime mover 3 are applied.
  • the electric motor 2 is mechanically connected to an output shaft 4 (for example, a crankshaft) of the engine 1.
  • the rotor shaft of the electric motor 2 is connected to the output shaft 4 of the engine 1 via a gear pair having a predetermined speed increasing ratio. Therefore, not only the torque generated by the engine 1 but also the torque generated by the electric motor 2 is applied to the output shaft 4.
  • the “predetermined speed increase ratio” is, for example, a ratio of one rotation of the engine 1 to two rotations of the electric motor 2.
  • the engine 1 converts the combustion pressure into torque of the output shaft 4 via a piston that reciprocates in the cylinder. For this reason, the torque output from the engine 1 to the output shaft 4 includes a periodic fluctuation component (referred to as “torque pulsation component”).
  • the torque pulsation component of the engine 1 causes periodic fluctuations in the rotational speed of the output shaft 4, and the fluctuations in the rotational speed cause noise (including a booming noise) or vibration, and give a sense of incongruity to surrounding people. End up. It is desired to reduce noise or vibration caused by the torque pulsation component of the engine 1. Note that the period and amplitude of the torque pulsation component can be calculated from the number of cylinders of the engine 1 and the rotational speed of the engine 1.
  • the control device for the electric motor 2 controls the electric motor 2 so that the rotation speed detection value ⁇ G that is a detection value of the rotation speed of the electric motor 2 matches the target rotation speed ⁇ CMD that is a control target of the rotation speed. This assumes feedback control (closed loop) for feedback control.
  • the control device for the electric motor 2 includes a rotation speed control unit 11 and a pulsation correction unit 12.
  • Ripple corrector 12 to the speed the motor 2 is a control amount of the feedback control, to superimpose the rotation speed correction value omega AM.
  • the “rotational speed correction value ⁇ AM ” is a rotational speed correction value for suppressing the torque pulsation component.
  • the number of revolutions of the electric motor 2 is a control amount of the feedback control
  • Ripple corrector 12 superimposes the rotational speed correction value omega AM relative to the rotational speed detection value omega G.
  • the pulsation correction unit 12 outputs a value obtained by superimposing the rotation speed correction value ⁇ AM on the rotation speed detection value ⁇ G to the rotation speed control unit 11 as “a corrected rotation speed detection value ⁇ FB ”.
  • a corrected rotation speed detection value ⁇ FB An example in which “the rotational speed of the electric motor 2 that is the control amount of the feedback control” is the target rotational speed ⁇ CMD will be described in the second embodiment.
  • Ripple corrector 12 includes a rotational speed correction value calculation unit 13 for calculating a revolution speed modification value omega AM, a superimposing section 14a for superposing a rotational speed correction value omega AM in rotation speed detection value omega G, a.
  • the rotational speed correction value calculation unit 13 calculates the rotational speed correction value from the disturbance component of the rotational speed, and adjusts the gain and phase of the rotational speed correction value, thereby generating the rotational speed correction value ⁇ AM and superimposing unit 14a.
  • the superimposing unit 14a can be configured by a normal adder circuit or adder having two inputs.
  • the superimposition unit 14a receives the rotation speed correction value ⁇ AM and the rotation speed detection value ⁇ G.
  • the superimposing unit 14a adds the rotation speed correction value ⁇ AM to the rotation speed detection value ⁇ G. In this way, the superimposing unit 14a outputs the corrected rotation speed detection value ⁇ FB by superimposing the rotation speed correction value ⁇ AM on the rotation speed detection value ⁇ G.
  • the detailed configuration and operation of the rotation speed correction value calculation unit 13 will be described later with reference to FIG.
  • the rotation speed control unit 11 feedback-controls the electric motor 2 using the corrected rotation speed detection value ⁇ FB instead of the rotation speed detection value ⁇ G.
  • the rotation speed control unit 11 uses the corrected rotation speed detection value ⁇ FB instead of the rotation speed detection value ⁇ G in the feedback control assumed by the control device.
  • the rotation speed control unit 11 feedback-controls the electric motor so that the corrected rotation speed detection value ⁇ FB matches the target rotation speed ⁇ CMD .
  • the rotation speed control unit 11 outputs the torque command value T ge * of the electric motor 2 in which the torque pulsation component is suppressed to the electric motor controller 44 by performing feedback control.
  • the rotation speed control unit 11 can be constituted by, for example, a PID controller (proportional-integral-derivative controller), and can be expressed by equation (1).
  • K P denotes the proportional gain (P gain)
  • K I denotes the integral gain (I gain)
  • K D represents a differential gain (D gain)
  • T D represents the time constant of the approximate differentiation
  • s is Laplace Indicates an operator.
  • the electric motor controller 44 is necessary for the electric motor 2 to output the torque command value T ge * according to the torque command value T ge * of the electric motor 2 and the rotation speed (for example, the rotation speed detection value ⁇ G ) of the electric motor 2.
  • the current value is determined, and the determined current is supplied to the electric motor 2.
  • the hybrid prime mover 3 includes a sensor unit 16 that measures a physical quantity indicating the rotation state of the electric motor 2 and detects a rotation speed detection value ⁇ G from the physical quantity.
  • the sensor unit 16 includes a rotation angle sensor that samples the rotation angle of the rotor shaft of the electric motor, and calculates the rotation speed of the rotor shaft, that is, the rotation speed detection value ⁇ G from the rotation angle measured by the rotation angle sensor. Also good.
  • the sensor unit 16 is not limited to the rotation angle sensor, and the rotation speed detection value ⁇ G may be obtained directly or indirectly by other known means.
  • an engine 1 and an electric motor 2 mounted on a series-type hybrid car will be described as an example of the hybrid prime mover 3. Therefore, the electric motor 2 can generate electric power with the driving force of the engine 1. Further, the electric motor 2 can consume electric power by rotating the output shaft 4 of the engine 1.
  • the driving force output by the engine 1 is used for power generation, but is not directly used for driving wheels, that is, for driving the vehicle.
  • control device for the hybrid prime mover 3 and the electric motor 2 can be applied not only to a series type hybrid car but also to a so-called parallel type hybrid car that uses both the engine 1 and the electric motor 2 for driving wheels.
  • control apparatus for the hybrid prime mover 3 and the electric motor 2 can be applied to other than the vehicle.
  • a control device for the hybrid prime mover 3 and the electric motor 2 can be used as a power generator used outdoors.
  • the target rotational speed ⁇ CMD input to the rotational speed control unit 11 is calculated by the operating point calculation unit 15.
  • the operating point calculation unit 15 Based on the target generated power P *, which is the target value of the power generated by the electric motor 2, the operating point calculation unit 15 outputs not only the target rotational speed ⁇ CMD but also the torque command of the engine 1 that the engine 1 outputs to the output shaft 1. to calculate the value T en *.
  • the target generated power P * is determined by, for example, a higher-level control block (not described in FIG. 1) included in the series-type hybrid car (described later with reference to FIG. 10) based on the accelerator pedal depression amount and the vehicle traveling speed. Calculated.
  • Engine controller 43 according to the rotation speed of the torque command value T en * and the engine 1 of the engine 1, and determines a control amount required for the engine 1 outputs a torque command value T en *, determined control amount
  • the engine 1 is driven based on the above.
  • the rotation speed correction value calculation unit 13 includes a plant model 21, a subtraction unit 22, a band pass filter 23, a gain adjuster 24, and a phase adjuster 25.
  • a torque command value T ge * of the electric motor 2 is input to the plant model 21.
  • the plant model 21 calculates a rotational speed estimated value ⁇ E that is an estimated value of the rotational speed of the electric motor 1 from the torque command value T ge * using a plant model in which a control target including the engine 1 and the electric motor 2 is modeled. .
  • the plant model 21 applies the plant model Gp (s) to be controlled represented by the equation (2) to the torque command value T ge * to calculate the estimated rotational speed value ⁇ E.
  • the plant model Gp (s) corresponds to a model of transfer characteristics between the torque command value T ge * and the rotation speed of the electric motor 1.
  • J indicates the inertia of the element connected to the motor 2
  • C indicates the viscosity coefficient
  • the subtraction unit 22 the rotational speed estimation value omega E and the rotational speed detection value omega G are input.
  • the subtracting unit 22 can be configured by a normal subtracting circuit or subtracter having two inputs.
  • Subtraction unit 22 subtracts the rotational speed estimate omega E from the rotational speed detection value omega G, and outputs the rotational speed of the disturbance component ⁇ motor 2.
  • the bandpass filter 23 receives a disturbance component ⁇ , which is the difference between the detected rotational speed value ⁇ G and the estimated rotational speed value ⁇ E.
  • the band-pass filter 23 performs a band-pass filter process with the frequency determined from the torque pulsation component as a center frequency on the disturbance component ⁇ , thereby calculating the rotation speed correction value ⁇ am .
  • the center frequency is a frequency that is equal to or close to the frequency of the torque pulsation component.
  • the rotation speed correction value ⁇ am output from the bandpass filter 23 is the rotation speed correction value before the gain and phase are adjusted.
  • the band pass filter 23 is expressed by, for example, the expression (3).
  • the bandpass filter 23 can be configured by a normal bandpass filter circuit.
  • represents a damping coefficient
  • ⁇ n represents a natural frequency.
  • the natural frequency is adjusted so as to match or approximate the frequency of the torque pulsation component using the rotation speed detection value ⁇ G or the target rotation speed ⁇ CMD .
  • bandpass filters of other orders may be used.
  • the rotational speed correction value for suppressing the torque pulsation component is a correction value for canceling the torque pulsation component, it is a value obtained by reversing the sign of the rotational speed fluctuation caused by the torque pulsation component. Therefore, although not shown, the rotational speed correction value ⁇ am is calculated by inverting the sign of the value after the band pass filter processing.
  • a rotation speed correction value ⁇ am is input to the gain adjuster 24.
  • the gain adjuster 24 adjusts the gain of the rotation speed correction value ⁇ am . Detailed operation of the gain adjuster 24 will be described later with reference to FIGS.
  • the phase adjuster 25 receives the rotation speed correction value ⁇ am after the gain is adjusted.
  • Phase adjuster 25, the phase of the rotational speed correction value omega am is to match the phase of the torque ripple components, adjusting the rotational speed correction value omega am phases.
  • the order of gain adjustment and phase adjustment is not particularly limited. Either may be implemented first.
  • the phase adjuster 25 adjusts various delay components including the detection delay of the rotational speed by the sensor unit 16, the phase delay in the feedback control (rotational speed control system), and the response delay of the electric motor 2 with respect to the control command. Thereby, the periodic fluctuation of the rotational speed of the electric motor 2 caused by the torque pulsation component and the torque pulsation component can be efficiently suppressed.
  • phase characteristics are obtained in advance by calculation or experiment for the detection delay of the rotational speed, the phase delay in feedback control, and the response delay of the electric motor 2 with respect to the control command.
  • the phase delay of the rotational speed detection value ⁇ G or the target rotational speed ⁇ CMD is calculated in these frequency bands, and the response delay time ⁇ t1 is calculated.
  • the torque command value T ge * of the electric motor 2 is matched with the phase effective for suppressing the torque pulsation component, that is, the peak of the torque pulsation component of the next cycle.
  • Delay correction of the phase (T ⁇ t1) obtained by subtracting the response delay time ⁇ t1 is performed.
  • the response delay time ⁇ t1 corresponds to a delay component obtained by adding the rotation speed detection delay, the phase delay in the feedback control, and the response delay of the electric motor 2 to the control command.
  • the rotational speed is determined based on the time change of the torque value of the engine 1. It is possible to determine the torque pulsation component and its period (T) from the time change (detected value) of the rotational speed. Since the torque pulsation component is a periodic fluctuation, it is estimated that the same fluctuation occurs in the next period after the period in which the torque pulsation component is detected. Therefore, the rotational speed correction value omega AM, superimposes a rotation speed of the correction value for canceling the torque ripple component in the next period of the periodic detecting the variation of the rotational speed (period of the current).
  • the phase adjuster 25 is generated in the period following the period in which the detection delay, the phase delay, and the response delay occur based on the detection delay of the rotational speed, the phase delay in the feedback control, and the response delay of the electric motor 2 with respect to the control command. the variation of the rotation speed to adjust the phase of the rotational speed correction value omega AM for suppressing the.
  • Rotational speed correction value omega AM after gain and phase are adjusted is input to the superimposing unit 14a.
  • the superimposing unit 14a outputs the corrected rotation speed detection value ⁇ FB by superimposing the rotation speed correction value ⁇ AM after the gain and phase are adjusted on the rotation speed detection value ⁇ G.
  • FIG. 3 is a flowchart showing an operation procedure of the control device for the electric motor 2 and the hybrid prime mover 3 shown in FIGS. 1 and 2 with reference to FIG. The series of procedures in FIG. 3 is repeatedly performed at a predetermined repetition period.
  • step S01 the sensor unit 16 detects the rotation speed detection value omega G.
  • step S03 the operating point calculating section 15 calculates a target rotation speed omega CMD based on the target generated power P *.
  • step S05 the rotation speed control unit 11 calculates the torque command value T ge * of the electric motor 2 so that the corrected rotation speed detection value ⁇ FB coincides with the target rotation speed ⁇ CMD that is the control target of the rotation speed.
  • the motor controller 44 determines a current value necessary for the motor 2 to output the torque command value T ge * according to the torque command value T ge * of the motor 2 and the rotation speed of the motor 2, and determines the determined current.
  • the electric motor 2 is supplied.
  • the plant model 21 calculates the estimated rotational speed value ⁇ E from the torque command value T ge * using a plant model obtained by modeling the control target including the engine 1 and the electric motor 2. Proceeding to step S09, the subtraction unit 22 outputs the disturbance component ⁇ of the rotational speed of the electric motor 2 by subtracting the rotational speed estimation value ⁇ E from the rotational speed detection value ⁇ G.
  • step S11 the band-pass filter 23, with respect to disturbance component [Delta] [omega, by applying the band-pass filter process having a center frequency determined from the torque ripple component, and calculates the rotational speed correction value omega am.
  • step S13 the gain adjuster 24 adjusts the gain of the rotation speed correction value ⁇ am . The detailed procedure of step S13 will be described later with reference to FIGS.
  • step S15 the phase adjuster 25 adjusts the phase of the rotational speed correction value ⁇ am so that the phase of the rotational speed correction value ⁇ am matches the phase of the torque pulsation component.
  • step S13 and step S15 may be performed in reverse order.
  • step S17 the superimposing unit 14a calculates the corrected rotational speed detection value ⁇ FB by superimposing the rotational speed correction value ⁇ AM after adjusting the gain and phase on the rotational speed detection value ⁇ G. To do.
  • the corrected rotation speed detection value ⁇ FB calculated in step S17 is an input value in step 05 of the next cycle in the flowchart of FIG.
  • the control device for the electric motor 2 shown in FIG. 1 performs the rotation speed of the electric motor 2 so that the rotation speed detection value (corrected rotation speed detection value ⁇ FB ) matches the target rotation speed ⁇ CMD by feedback control. Constitutes a rotation speed control system for controlling.
  • step S111 the gain adjuster 24 performs “gain compensation 1”.
  • the gain adjuster 24 compensates for a decrease in the gain of the rotation speed correction value ⁇ am due to a torque pulsation component or a fluctuation in the rotation speed. Periodic fluctuations occur in the rotational speed of the electric motor 2 due to the torque pulsation component.
  • the amplitude of the fluctuation of the rotational speed includes a magnitude (peak-to-peak) between the maximum value and the minimum value of the rotational speed.
  • the gain of the rotational speed correction value ⁇ am decreases greatly as the amplitude of the rotational speed fluctuation increases.
  • the gain adjuster 24 estimates the amplitude of fluctuations in the rotational speed in accordance with the operating state of the engine 1. A larger correction gain is applied as the estimated value of the amplitude of the rotation speed fluctuation increases. Thereby, the gain of the rotational speed correction value ⁇ am can be adjusted according to the magnitude of the rotational speed fluctuation.
  • “amplitude of torque pulsation component” may be used instead of “amplitude of fluctuation in rotational speed”.
  • a map indicating the estimated value of the rotational speed fluctuation associated with the rotational speed and the torque by previously obtaining a value of the torque pulsation component or the rotational speed fluctuation value with respect to the rotational speed and torque value of the electric motor 2 by calculation or experiment. Is previously stored in the memory. Based on the map, an estimated value of the rotational speed fluctuation is calculated from the rotational speed detection value or the torque command value. Based on the graph shown in FIG. 5, the gain of the rotational speed correction value ⁇ am is calculated from the estimated value of the rotational speed fluctuation.
  • the gain of the rotational speed correction value ⁇ am is increased, and when the estimated value of the rotational speed fluctuation is small, the gain of the rotational speed correction value ⁇ am is set small.
  • the relationship between the estimated value of the rotational speed fluctuation and the specific value of the correction gain is obtained by calculation or experiment, and is stored in advance in a memory, for example, as a graph shown in FIG.
  • the relationship between the estimated value of the torque pulsation component and the specific value of the correction gain is obtained by calculation or experiment and stored in advance in a memory as a graph.
  • step S112 the gain adjuster 24 performs “gain compensation 2”.
  • the response delay of the electric motor 2 with respect to the control command causes not only a phase shift but also a gain decrease.
  • gain compensation 2 a decrease in the gain of the rotational speed correction value ⁇ am caused by the response delay of the control command is compensated.
  • the higher the rotation speed the greater the delay in detection of the rotation speed, and the gain decreases.
  • the detection delay of the rotational speed can be a factor that decreases the gain.
  • the gain adjuster 24 compensates for a decrease in gain that decreases due to a response delay of the electric motor 2 with respect to the control command and a detection delay of the rotational speed.
  • the gain adjuster 24 multiplies the gain coefficient by 1 / (K1 ⁇ K2).
  • the rotation speed detection value ⁇ G or the rotation speed detection delay gain in the frequency band near the target rotation speed ⁇ CMD is set as K1
  • the response delay gain of the control command is set as K2.
  • the gain adjuster 24 performs “gain compensation 3”.
  • the gain adjuster 24 sets a smaller gain in the operating state of the electric motor 2 that prioritizes the power generation efficiency of the electric motor 2 than in other operating states of the electric motor 2 excluding this operating state.
  • the gain adjuster 24 adjusts the gain of the rotational speed correction value ⁇ am based on the priority between the power generation efficiency of the motor and the vibration or noise caused by the torque pulsation component.
  • the “priority” is an index indicating whether to give priority to increasing the power generation efficiency of a motor or reducing vibration or noise caused by a torque pulsation component.
  • the gain adjuster 24 sets a smaller gain when the priority of the power generation efficiency of the electric motor 2 is higher than when the priority of vibration or noise is high. On the other hand, the gain adjuster 24 sets a larger gain when the priority of vibration or noise is high than when the priority of power generation efficiency of the electric motor 2 is high. Note that a specific gain value or gain change value is obtained in advance by experiment or calculation.
  • FIG. 6 is a two-dimensional graph showing the operating point of the engine 1 determined from the rotational speed of the engine 1 and the output of the engine 1.
  • the gain adjuster 24 sets a higher priority for the power generation efficiency of the electric motor in an operation region including a specific operation point.
  • An operation region in which vibration or noise is a concern and an operation region in which power generation efficiency or fuel consumption is given priority are obtained in advance and stored in, for example, a map shown in FIG.
  • a region where the priority of power generation efficiency of the electric motor 2 is high is determined in advance as a fuel efficiency priority operation region RG_OPT and stored in the memory.
  • the other driving regions except the fuel efficiency priority driving region RG_OPT are determined in advance as a region having high vibration or noise priority and stored in the memory.
  • the gain adjuster 24 refers to the graph shown in FIG. 6 and determines whether or not the current operating point of the engine 1 is the fuel efficiency priority operation region RG_OPT . In other words, it is determined whether the electric motor 2 is in an operating state that prioritizes the power generation efficiency of the electric motor 2 or whether the electric motor 2 is in an operating state that prioritizes vibration or noise. In the operation state of the electric motor 2 that prioritizes the power generation efficiency of the electric motor 2, a smaller gain is set as compared with the other operation states of the electric motor 2.
  • the fuel efficiency priority operation region RG_OPT is an operation region in which it is desired to operate with the loss of the electric motor 2 as low as possible at the best fuel efficiency point, for example.
  • the gain adjuster 24 can automatically determine the priority described above based on the graph shown in FIG. 6 and adjust the gain of the rotation speed correction value ⁇ am .
  • the fuel consumption priority operation region RG_OPT is set to an operation region including a part of the engine optimum fuel consumption line P_OPT composed of an operation point where the combustion efficiency of the engine 1 is high.
  • a dotted line in FIG. 6 indicates an engine maximum output line P_MAX including an operating point at which the output of the engine 1 is maximized.
  • the fuel consumption priority operation region RG_OPT may be set to an operation region other than the example shown in FIG.
  • the gain of the rotational speed correction value ⁇ am in the operation region in which vibration or noise can be reduced and the power generation efficiency of the electric motor 2 can be improved may be set larger than in other operation regions. Vibration or noise due to fluctuations in the rotational speed can be suppressed without significantly increasing power generation loss. Even if the gain of the rotational speed correction value ⁇ am is increased, an operation region in which the loss of the electric motor 2 does not increase so much is obtained in advance by experiments or calculations.
  • the gain adjuster 24 determines whether or not the motor 2 is in an operating state giving priority to the power generation efficiency of the motor 2 based on the operation mode of the hybrid prime mover 3. Good.
  • the hybrid prime mover 3 has a plurality of operation modes including a quietness priority mode for driving with priority on quietness and a fuel efficiency priority mode (including an eco mode) for driving with priority on energy efficiency. Yes.
  • the hybrid prime mover 3 is operated in the quiet priority mode, it is determined that the motor 2 is in an operating state that gives priority to vibration or noise, or that the motor 2 is not in an operating state that gives priority to the power generation efficiency of the motor 2. it can.
  • the gain adjuster 24 can set a larger gain when the hybrid prime mover 3 is operated in the quiet priority mode than in the fuel efficiency priority mode.
  • the “energy efficiency of the hybrid prime mover 3” includes the combustion efficiency of the engine 1, the power generation efficiency of the electric motor 2, or the energy efficiency of the entire hybrid prime mover 3 that combines the combustion efficiency of the engine 1 and the power generation efficiency of the electric motor 2.
  • the gain adjuster 24 is based on the state of a switch provided for operation by a passenger of the hybrid car or a user of the hybrid prime mover 3, and the power generation efficiency of the motor 2 is as follows. It may be determined whether or not the electric motor 2 is in an operating state in which priority is given.
  • the switch may be a switch that can directly select the operation state of the electric motor 2 that prioritizes the power generation efficiency of the electric motor 2 and the other operation state.
  • the switch may be a switch in which the operation mode of the hybrid prime mover 3 can be switched between a plurality of operation modes including a quietness priority mode and a fuel efficiency priority mode (including an eco mode).
  • a quietness priority mode and a fuel efficiency priority mode (including an eco mode).
  • a fuel efficiency priority mode including an eco mode
  • the switch may be a switch that can switch the operation mode of the hybrid car equipped with the hybrid prime mover 3.
  • the operation mode of the hybrid car includes operation modes similar to the quietness priority mode and the fuel efficiency priority mode of the hybrid prime mover 3.
  • the gain adjuster 24 can set a larger gain when the hybrid prime mover 3 is operated in the quiet priority mode than in the fuel efficiency priority mode.
  • the gain adjuster 24 operates the motor 2 with priority on the power generation efficiency of the motor 2 based on the state of charge (SOC) of the battery included in the hybrid car. It may be determined whether or not it is in a state.
  • the battery secondary battery
  • the gain adjuster 24 is in the operating state of the electric motor 2 giving priority to vibration or noise, or the operating state of the electric motor 2 giving priority to the power generation efficiency of the electric motor 2 Judge that it is not.
  • the gain adjuster 24 can adjust the gain based on the SOC of the battery included in the hybrid car. Specifically, the gain adjuster 24 can set a smaller gain when the SOC of the battery is less than or equal to the threshold, compared to when the SOC of the battery is greater than the threshold.
  • gain compensation 3 has been described with reference to the four embodiments, a plurality of embodiments arbitrarily selected from the four embodiments may be combined.
  • FIG. 7A and FIG. 7B show the simulation results when a gain for setting the torque pulsation component to the maximum is set.
  • Figure 7A shows the time variation of the rotation speed detection value omega G.
  • FIG. 7B shows the time change of the counter torque output from the electric motor 2 in order to cancel the torque pulsation component of the engine 1.
  • Example indicates the result of using the control device and the control method according to the first embodiment.
  • Comparative Example 1 indicates a comparative example in which the phase adjustment by the phase adjuster 25 (step S15 in FIG. 3) is not performed in the control device and the control method according to the first embodiment.
  • “Comparative example 2” indicates a comparative example in which the gain adjustment by the gain adjuster 24 (step S13 in FIG. 3) is not performed in the control device and control method according to the first embodiment.
  • the phase of the counter torque related to “Comparative Example 1” does not match the phase of the torque pulsation component. For this reason, even if the counter torque is superimposed on the torque pulsation component, as shown in FIG. 7A, the rotational speed detection value ⁇ G still has a periodic fluctuation with a large amplitude.
  • a pulsation compensation torque is calculated based on a signal acquired from a sensor related to the engine 1.
  • the phase of the counter torque cannot be matched with the phase of the actual torque pulsation component due to a signal communication delay or a control response delay. For this reason, the fluctuation
  • the phase of the counter torque according to the “example” coincides with the phase of the torque pulsation component because the phase adjustment is performed. Since the gain compensation 1 to gain compensation 3 shown in FIG. 4 are performed, the gain (amplitude) of the counter torque is larger than that of the comparative example 2. For this reason, by superimposing the counter torque whose phase and gain are adjusted on the torque pulsation component, as shown in FIG. 7A, the amplitude of the periodic fluctuation of the rotation speed detection value ⁇ G is changed to Comparative Example 1. And compared with the comparative example 2, it can suppress small. That is, since fluctuations in the rotational speed caused by the torque pulsation component of the engine 1 can be suppressed, vibrations or noises caused by the fluctuations in the rotational speed can be reduced.
  • FIGS. 8A to 8C show the simulation results in the operation state of the electric motor 2 or the operation mode of the hybrid prime mover 3 that prioritizes the improvement of power generation efficiency over the reduction of vibration or noise.
  • Figure 8A shows the time variation of the rotation speed detection value omega G.
  • FIG. 8B shows the time change of the counter torque output from the electric motor 2 in order to cancel the torque pulsation component of the engine 1.
  • FIG. 8C shows the time change of the loss occurring in the electric motor 2.
  • the conditions indicated by “Comparative Example 1”, “Comparative Example 2”, and “Example” are the same as those in FIGS. 7A and 7B.
  • the correction gain for compensating the torque pulsation component is set low.
  • the gain (amplitude) of the counter torque of the “example” is smaller than that of FIG. 7B, and the effect of suppressing the torque pulsation component is lower than that of the example shown in FIGS. 7A and 7B.
  • FIG. 8C although “Example” and “Comparative Example 1” have the same loss, as shown in FIG. 8A, “Example” is better than “Comparative Example 1”.
  • the amplitude of fluctuations in the rotational speed can be kept small. As a result, it is possible to reduce vibrations or noise caused by fluctuations in the rotational speed while maintaining the power generation efficiency of the electric motor 2 and thus the fuel consumption of the hybrid car at a high level.
  • the periodic fluctuation component (torque pulsation component) included in the torque output from the engine 1 to the output shaft 4 is suppressed with respect to the rotation speed (rotation speed detection value ⁇ G ) of the electric motor 2 which is a control amount of feedback control.
  • the rotational speed correction value omega AM for the gain of the frequency components of the engine torque pulsation in the frequency response of the feedback control (closed loop) is improved.
  • the torque pulsation component of the engine 1 and the actual engine torque are prevented from deviating, and the rotational speed of the electric motor 2 can be feedback controlled to the target value while suppressing fluctuations in the rotational speed due to the torque pulsation component. it can. That is, the desired number of rotations of the electric motor 2 can be obtained while suppressing vibration and noise.
  • both the stability of the rotational speed control and the pulsation compensation of the engine 1 can be achieved.
  • the rotational speed control unit 11 and the pulsation correcting unit 12 can be designed individually. It can. For this reason, it is possible to correct the torque pulsation component while ensuring the stability of the rotational speed control.
  • the frequency response of feedback control (closed loop) is determined by the gain set for the purpose of speed control. For this reason, it is possible to easily ensure the stability of the rotational speed control system despite correcting the torque pulsation component. Specifically, it is possible to easily set the gains of the rotational speed control and torque pulsation correction.
  • the estimated rotational speed value is calculated using the plant model, the disturbance component of the torque output from the engine 1 is extracted, and the rotational speed correction value ⁇ AM for suppressing the torque pulsation component from the disturbance component is calculated by the bandpass filter processing. To do. Thereby, the fluctuation
  • the phase of the rotation speed correction value for suppressing the fluctuation in the rotation speed that occurs in the period following the period in which the detection delay of the rotation speed, the phase delay in the feedback control, and the response delay of the electric motor 2 with respect to the control command has occurred is adjusted. .
  • the rotational speed correction value can be accurately adjusted using the periodicity of the rotational speed fluctuation.
  • the vibration or noise can be effectively suppressed by adjusting the gain by correcting the gain component decreased due to the detection delay of the rotational speed and the response delay of the electric motor 2 with respect to the control command.
  • the amplitude of the torque pulsation component or the amplitude of the rotation speed fluctuation caused by the torque pulsation component is estimated, and the larger the estimated amplitude is, the larger the gain is set. It can be effectively suppressed.
  • the gain is adjusted by setting a smaller gain than in other operating states other than the operating state.
  • the rotor shaft of the electric motor 2 is connected to the output shaft 4 of the engine 1 through a gear pair having a predetermined speed increasing ratio. Since the torque output from the electric motor 2 is applied to the output shaft 4 of the engine 1 via the gear pair, fluctuations in the rotational speed of the rotating shaft can be reduced to suppress vibration or noise.
  • a counter torque command value for compensating for the engine pulsation component is calculated by feedforward control based on a signal related to the engine 1, and the torque output from the electric motor 2 is controlled based on the counter torque command value. It is difficult to synchronize the counter torque of the motor 2 with the torque pulsation component of the engine 1 due to a response delay such as a detection delay of the crank angle sensor of the engine 1, a communication delay between the engine controller and the motor controller, and a torque response delay of the motor 2. It is. For this reason, the torque pulsation component cannot be canceled out by the counter torque, the rotational speed fluctuates, and vibration or noise occurs. Further, since the feed-forward control is performed, when the calculated counter torque command value and the actual torque of the engine 1 deviate, the torque pulsation component cannot be canceled out, the rotational speed fluctuates, and vibration or noise occurs. Will occur.
  • a rotation speed correction value for canceling the torque pulsation component is superimposed on the rotation speed (rotation speed detection value ⁇ G ) of the electric motor 2 that is a control amount of feedback control.
  • the gain of the torque pulsation component in the frequency response of the feedback control (closed loop) is improved.
  • the torque pulsation component of the engine 1 and the actual engine torque are prevented from deviating, and the rotational speed of the electric motor 2 can be feedback controlled to the target value while suppressing fluctuations in the rotational speed due to the torque pulsation component. it can.
  • the control device for the electric motor 2 according to the second embodiment is different from the first embodiment (FIG. 1) in the following points. That is, the superimposing section 14b according to the second embodiment, the rotational speed correction value omega AM generated by the revolution speed modification value calculating unit 13, by superimposing the target rotation speed omega CMD, the corrected target rotational speed omega CMD2 Is output.
  • the pulsation correction unit 12 according to the second embodiment is different from the other examples is the target rotation speed omega CMD of the "rotational speed of the electric motor 2 is a control amount of the feedback control", the rotational speed correction value omega Superimpose AM .
  • Rotation speed control unit 11 instead of the target rotation speed omega CMD with the corrected target rotation speed omega CMD2, feedback control of the electric motor 2.
  • the rotation speed control unit 11, in the feedback control by the control device is assumed to use the corrected target rotational speed omega CMD2 instead of the target rotational speed omega CMD.
  • the rotation speed control unit 11 feedback-controls the electric motor so that the rotation speed detection value ⁇ G matches the corrected target rotation speed ⁇ CMD2 .
  • the rotation speed control unit 11 outputs the torque command value T ge * of the electric motor 2 in which the torque pulsation component is suppressed to the electric motor controller 44 by performing feedback control.
  • the engine 1 is a drive source when the electric motor 2 is used as a generator.
  • the engine 1 transmits a driving force (torque) for generating power by the electric motor (generator) 2 to the generator 2 in the firing state.
  • the generator 2 generates electricity by rotating with the driving force (torque) of the engine 1.
  • the engine 1 when the engine 1 is stopped, the engine 1 can be cranked and started by supplying electric power to the generator 2 to drive the generator 2 in power.
  • the engine 1 is rotated by a driving force (torque) output from the electric motor (generator) 2 in the motoring state. Thereby, the electric motor (generator) 2 can also consume electric power.
  • the generator inverter 46 is connected to the generator 2, the battery 47, and the drive inverter 49.
  • the generator inverter 46 converts AC power generated by the generator 2 in the fired state into DC power and supplies it to the battery 47 or the drive inverter 49.
  • the generator inverter 46 reversely converts DC power into AC power in the motoring state and supplies it to the generator 2.
  • the battery 47 charges the regenerative power of the generator 2 and the drive motor 50 and discharges the drive power.
  • the drive inverter 49 converts the DC power supplied from the battery 47 and the generator inverter 46 into AC power and supplies the AC power to the drive motor 50.
  • the drive inverter 49 reversely converts the regenerative power (AC power) of the drive motor 50 into DC power and supplies it to the battery 47 and the generator inverter 46.
  • the driving motor 50 generates a driving force (torque) and transmits the driving force (torque) to the driving wheels (52a, 52b) via the speed reducer 51.
  • the drive motor 50 is rotated by the drive wheels (52a, 52b) when the hybrid car (simply called “vehicle”) travels. Energy is regenerated by generating regenerative power with the regenerative driving force at this time.
  • the engine controller 43 in order to realize the torque command value of the engine 1 commanded by the system controller 41 T en *, in response to signals such as rotational speed and temperature of the engine 1, the engine 1 throttle, ignition timing, and Adjust the fuel injection amount.
  • the generator controller 44 performs switching control of the generator inverter 46 in accordance with the rotation speed and voltage of the generator 2 in order to realize the torque command value T ge * of the electric motor 2 that is commanded from the system controller 41.
  • the battery controller 45 measures the state of charge (SOC) of the battery 47 based on the current and voltage charged / discharged to the battery 47 and outputs it to the system controller 41. Further, the power that can be input and the power that can be output are calculated according to the temperature, internal resistance, and SOC of the battery 47 and output to the system controller 41.
  • SOC state of charge
  • the drive motor controller 48 performs switching control of the drive inverter 49 according to the rotation speed and voltage of the drive motor 50 in order to realize the command value of the drive torque commanded from the system controller 41.
  • the system controller 41 inputs the vehicle driver's accelerator pedal operation amount, vehicle speed, vehicle condition including the gradient, data indicating the SOC received from the battery controller 45, input power, output power, and power generated by the generator 2. Is done. Based on the input information, a command value for the drive torque is calculated to the drive motor controller 48. Further, the system controller 41 calculates a target generated power P * that is a target value of the generated power for charging the battery 47 or supplying it to the drive motor 50. The target generated power P * is input to the operating point calculation unit 15 in FIG. 1 or FIG.
  • the control device (the rotational speed control unit 11, the pulsation correction unit 12, and the operating point calculation unit 15) of the electric motor 2 shown in the first embodiment (FIG. 1) or the second embodiment (FIG. 9) is, for example, the system shown in FIG. It corresponds to the power generation control unit 42 of the controller 41.
  • the whole or a part of the control device for the electric motor 2 shown in the first embodiment (FIG. 1) or the second embodiment (FIG. 9) is a third controller that is neither the system controller 41 nor the generator controller 44. Can also be realized.
  • the processing circuit includes a programmed processing device such as a processing device including an electrical circuit.
  • Processing devices also include devices such as application specific integrated circuits (ASICs) and conventional circuit components arranged to perform the functions described in the embodiments.
  • ASICs application specific integrated circuits

Abstract

電動機(2)の制御方法では、エンジン(1)の出力軸(4)に機械的に接続された電動機(2)を、電動機(2)の回転数の検出値である回転数検出値(ω)が、回転数の制御目標である目標回転数(ωCMD)に一致するように、フィードバック制御する。回転数検出値(ω)又は目標回転数(ωCMD)に対して、エンジン(1)が出力軸(4)に出力するトルクに含まれる周期的な変動成分を抑制するための回転数の補正値である回転数補正値(ωAM)を重畳し、回転数補正値(ωAM)を重畳した回転数検出値(ω)又は目標回転数(ωCMD)を用いて、電動機(2)をフィードバック制御する。

Description

電動機の制御方法及び電動機の制御装置
 本発明は、電動機の制御方法及び電動機の制御装置に関するものである。
 燃焼室で燃焼したガスにより駆動される可動部材を介して出力軸にトルクを付与するエンジンにおいて、出力軸には、周期的なトルクの変動が生じる。この周期的なトルクの変動を抑制するために、出力軸に電動機(モータジェネレータ)を結合したハイブリッド原動機、及び、ハイブリッド原動機のトルク変動制御装置が知られている(特許文献1参照)。特許文献1では、エンジンの運転状態と回転速度に応じて出力軸に発生させる脈動補正トルクを演算し、電動機で脈動補償トルクを発生させる。これにより、エンジントルク脈動を抑制している。
特開平11-350998号公報
 しかし、エンジン関連信号に基づき、フィードフォワードで脈動補正トルクを算出し、電動機のトルクを制御する。このため、算出した脈動補正トルクとエンジンの実トルクが乖離した場合、周期的なトルクの変動を打ち消すことができず、回転数の変動が発生し、振動や騒音が発生する。
 本発明は、上記課題に鑑みて成されたものであり、その目的は、振動や騒音を抑制しつつ所望の電動機の回転数を得ることができる電動機の制御方法及び制御装置を提供することである。
 本発明の一態様に係わる電動機の制御方法及び制御装置は、エンジンの出力軸に機械的に接続された電動機をフィードバック制御する。電動機の回転数検出値又は目標回転数に対して、エンジンが出力軸に出力するトルクに含まれる周期的な変動成分を抑制するための回転数補正値を重畳し、回転数補正値を重畳した回転数検出値又は目標回転数を用いて、電動機をフィードバック制御する。
 本発明の一態様によれば、振動や騒音を抑制しつつ所望の電動機の回転数を得ることができる。
図1は、第1実施形態に係わる電動機2の制御装置、及びエンジン1及び電動機2を含むハイブリッド原動機3を示すブロック図である。 図2は、図1の回転数補正値演算部13の詳細な構成を示すブロック図である。 図3は、図1に示した電動機2の制御装置及びハイブリッド原動機3の動作手順の一例を示すフローチャートである。 図4は、ゲイン調整器24の詳細な動作、つまりステップS13の詳細な手順を示すフローチャートである。 図5は、回転数変動の推定値と具体的な補正ゲインの値との関係の一例を示すグラフである。 図6は、エンジン1の回転数とエンジン1の出力から定まるエンジン1の運転点を示す2次元のグラフである。 図7Aは、トルク脈動成分を最大限に抑制するためのゲインを設定した場合のシミュレーション結果を示し、回転数検出値ωの時間変化(比較例1、比較例2、実施例)を示すグラフである。 図7Bは、トルク脈動成分を最大限に抑制するためのゲインを設定した場合のシミュレーション結果を示し、エンジン1のトルク脈動成分、及びトルク脈動成分を打ち消すために電動機2が出力するカウンタートルクの時間変化(比較例1、比較例2、実施例)を示すグラフである。 図8Aは、振動又は騒音の低減よりも発電効率の向上を優先する電動機2の運転状態又はハイブリッド原動機3の運転モードにおけるシミュレーション結果を示し、回転数検出値ωの時間変化(比較例1、比較例2、実施例)を示すグラフである。 図8Bは、振動又は騒音の低減よりも発電効率の向上を優先する電動機2の運転状態又はハイブリッド原動機3の運転モードにおけるシミュレーション結果を示し、エンジン1のトルク脈動成分、及びトルク脈動成分を打ち消すために電動機2が出力するカウンタートルクの時間変化(比較例1、比較例2、実施例)を示すグラフである。 図8Cは、振動又は騒音の低減よりも発電効率の向上を優先する電動機2の運転状態又はハイブリッド原動機3の運転モードにおけるシミュレーション結果を示し、電動機2に発生する損失の時間変化(比較例1、比較例2、実施例)を示すグラフである。 図9は、第2実施形態に係わる電動機2の制御装置、及びエンジン1及び電動機2を含むハイブリッド原動機3を示すブロック図である。 図10は、図1又は図9のいずれか一方の電動機2の制御装置及びハイブリッド原動機3を適用したシリーズ方式のハイブリッドカーの構成を示すブロック図である。
 図面を参照して、実施形態を説明する。図面の記載において同一部分には同一符号を付して説明を省略する。
 (第1実施形態)
 図1を参照して、エンジン1及び電動機2を含むハイブリッド原動機3、及び第1実施形態に係わる電動機2の制御装置の構成を説明する。電動機2は、エンジン1の出力軸4(例えば、クランク軸)に機械的に接続されている。詳細には、電動機2のロータ軸は、エンジン1の出力軸4に対して、所定の増速比をもった歯車対を介して接続されている。よって、出力軸4には、エンジン1が生成するトルクのみならず、電動機2が生成するトルクも付与される。なお、「所定の増速比」は、例えば、電動機2の2回転に対してエンジン1の1回転の割合である。
 エンジン1は、シリンダを往復するピストンを介して燃焼圧力を出力軸4のトルクに変換する。このため、エンジン1が出力軸4に出力するトルクには、周期的な変動成分(「トルク脈動成分」と呼ぶ)が含まれる。エンジン1のトルク脈動成分によって出力軸4の回転数に周期的な変動が生じ、この回転数の変動は、騒音(こもり音を含む)又は振動を引き起こし、周囲の人間に対して違和感を与えてしまう。エンジン1のトルク脈動成分に起因する騒音又は振動を低減することが望まれる。なお、トルク脈動成分の周期及び振幅は、エンジン1の気筒数及びエンジン1の回転数から算出可能である。
 実施形態に係わる電動機2の制御装置は、電動機2の回転数の検出値である回転数検出値ωが、回転数の制御目標である目標回転数ωCMDに一致するように、電動機2をフィードバック制御するフィードバック制御(閉ループ)を前提としている。
 電動機2の制御装置は、回転数制御部11と、脈動補正部12とを備える。脈動補正部12は、フィードバック制御の制御量である電動機2の回転数に対して、回転数補正値ωAMを重畳する。「回転数補正値ωAM」は、トルク脈動成分を抑制するための回転数の補正値である。第1実施形態では、「フィードバック制御の制御量である電動機2の回転数」が回転数検出値ωである例を説明する。脈動補正部12は、回転数検出値ωに対して回転数補正値ωAMを重畳する。脈動補正部12は、回転数検出値ωに回転数補正値ωAMが重畳された値を、「補正後回転数検出値ωFB」として回転数制御部11へ出力する。なお、「フィードバック制御の制御量である電動機2の回転数」が目標回転数ωCMDである例は、第2実施形態で説明する。
 脈動補正部12は、回転数補正値ωAMを演算する回転数補正値演算部13と、回転数検出値ωに回転数補正値ωAMを重畳する重畳部14aと、を備える。回転数補正値演算部13は、回転数の外乱成分から回転数補正値を算出し、回転数補正値のゲイン及び位相を調整することにより、回転数補正値ωAMを生成して重畳部14aに出力する。重畳部14aは、2つの入力を有する通常の加算回路又は加算器で構成することができる。重畳部14aには、回転数補正値ωAM及び回転数検出値ωが入力される。重畳部14aは、回転数検出値ωに回転数補正値ωAMを加算する。このようにして、重畳部14aは、回転数検出値ωに対して回転数補正値ωAMを重畳することにより、補正後回転数検出値ωFBを出力する。なお、回転数補正値演算部13の詳細な構成及び動作は、図2を参照して後述する。
 回転数制御部11は、回転数検出値ωの代わりに補正後回転数検出値ωFBを用いて、電動機2をフィードバック制御する。換言すれば、回転数制御部11は、制御装置が前提とするフィードバック制御において、回転数検出値ωの代わりに補正後回転数検出値ωFBを使用する。回転数制御部11は、補正後回転数検出値ωFBが目標回転数ωCMDに一致するように、電動機をフィードバック制御する。回転数制御部11は、フィードバック制御を行うことにより、トルク脈動成分を抑制した電動機2のトルク指令値Tge*を電動機コントローラ44へ出力する。
 回転数制御部11は、例えば、PID制御器(比例-積分-微分制御器)で構成することができ、(1)式で表現することができる。
Figure JPOXMLDOC01-appb-M000001
 Kは比例ゲイン(Pゲイン)を示し、Kは積分ゲイン(Iゲイン)を示し、Kは微分ゲイン(Dゲイン)を示し、Tは近似微分の時定数を示し、sはラプラス演算子を示す。
 電動機コントローラ44は、電動機2のトルク指令値Tge*及び電動機2の回転数(例えば、回転数検出値ω)に応じて、電動機2がトルク指令値Tge*を出力するために必要な電流値を決定し、決定した電流を電動機2に供給する。
 ハイブリッド原動機3は、電動機2の回転状態を示す物理量を計測し、当該物理量から回転数検出値ωを検出するセンサユニット16を備える。例えば、センサユニット16は、電動機のロータ軸の回転角度をサンプリングする回転角度センサを備え、回転角度センサが計測する回転角度からロータ軸の回転数、即ち、回転数検出値ωを算出してもよい。センサユニット16には、回転角度センサに限らず、その他の既知の手段によって、回転数検出値ωを直接或いは間接的に求めてもよい。
 実施形態では、ハイブリッド原動機3の一例として、シリーズ方式のハイブリッドカーに搭載されるエンジン1及び電動機2について説明する。よって、電動機2はエンジン1の駆動力により発電することができる。また、電動機2がエンジン1の出力軸4を回転させることにより電力を消費することができる。エンジン1が出力する駆動力は発電に用いられるが、車輪の駆動、即ち、車両の推進力として直接用いられない。
 なお、ハイブリッド原動機3及び電動機2の制御装置は、シリーズ方式のハイブリッドカーのみならず、エンジン1及び電動機2の双方を車輪の駆動に使用する、所謂、パラレル方式のハイブリッドカーにも適用可能である。更に、ハイブリッド原動機3及び電動機2の制御装置は、車両以外にも適用可能である。例えば、野外に使用する発電装置として、ハイブリッド原動機3及び電動機2の制御装置を用いることができる。
 回転数制御部11に入力される目標回転数ωCMDは、運転点演算部15によって演算される。運転点演算部15は、電動機2が発電する電力の目標値である目標発電電力P*に基づいて、目標回転数ωCMDのみならず、エンジン1が出力軸1に出力するエンジン1のトルク指令値Ten*を演算する。目標発電電力P*は、例えば、アクセルペダルの踏み込み量、車両の走行速度に基づいて、シリーズ方式のハイブリッドカーが備える図1に図示しない上位の制御ブロック(図10を参照して後述する)によって算出される。
 エンジンコントローラ43は、エンジン1のトルク指令値Ten*及びエンジン1の回転数に応じて、エンジン1がトルク指令値Ten*を出力するために必要な制御量を決定し、決定した制御量に基づいてエンジン1を駆動する。
 図2を参照して、図1の回転数補正値演算部13の詳細な構成を説明する。回転数補正値演算部13は、プラントモデル21と、減算部22と、バンドパスフィルタ23と、ゲイン調整器24と、位相調整器25とを備える。プラントモデル21には、電動機2のトルク指令値Tge*が入力される。プラントモデル21は、エンジン1及び電動機2を含む制御対象をモデル化したプラントモデルを用いて、トルク指令値Tge*から電動機1の回転数の推定値である回転数推定値ωを算出する。換言すれば、プラントモデル21は、トルク指令値Tge*に対して、(2)式で表される制御対象のプラントモデルGp(s)を施して、回転数推定値ωを算出する。プラントモデルGp(s)は、トルク指令値Tge*と電動機1の回転数との伝達特性のモデルに相当する。
Figure JPOXMLDOC01-appb-M000002
 Jは電動機2につながる要素のイナーシャを示し、Cは粘性係数を示す。
 減算部22には、回転数推定値ω及び回転数検出値ωが入力される。減算部22は、2つの入力を有する通常の減算回路又は減算器で構成することができる。減算部22は、回転数検出値ωから回転数推定値ωを減算することにより、電動機2の回転数の外乱成分Δωを出力する。
 バンドパスフィルタ23には、回転数検出値ωと回転数推定値ωとの差である外乱成分Δωが入力される。バンドパスフィルタ23は、外乱成分Δωに対して、トルク脈動成分から定まる周波数を中心周波数とするバンドパスフィルタ処理を施すことにより、回転数補正値ωamを算出する。例えば、中心周波数は、トルク脈動成分の周波数に等しい又は近い周波数である。但し、バンドパスフィルタ23が出力する回転数補正値ωamは、ゲイン及び位相が調整される前の回転数補正値である。バンドパスフィルタ23は、例えば、(3)式で表される。なお、バンドパスフィルタ23は、通常のバンドパスフィルタ回路で構成することができる。
Figure JPOXMLDOC01-appb-M000003
 ζは減衰係数を示し、ωは固有振動数を示す。固有振動数は、回転数検出値ω又は目標回転数ωCMDを用いて、トルク脈動成分の周波数と一致又は近似するように調整される。なお、ここでは2次のバンドパスフィルタの実施例を記載したが、他の次数のバンドパスフィルタを用いてもよい。
 トルク脈動成分を抑制するための回転数の補正値は、トルク脈動成分を打ち消すための補正値であるから、トルク脈動成分に起因する回転数の変動の正負を反転させた値である。よって、図示は省略するが、バンドパスフィルタ処理を施した後の値の正負を反転させることにより、回転数補正値ωamが算出される。
 ゲイン調整器24には、回転数補正値ωamが入力される。ゲイン調整器24は、回転数補正値ωamのゲインを調整する。ゲイン調整器24の詳細な動作は、図4~図6を参照して、後述する。
 位相調整器25には、ゲインが調整された後の回転数補正値ωamが入力される。位相調整器25は、回転数補正値ωamの位相がトルク脈動成分の位相に整合するように、回転数補正値ωamの位相を調整する。なお、ゲイン調整と位相調整の順番は特に問わない。どちらを先に実施しても構わない。
 位相調整器25は、センサユニット16による回転数の検出遅れ、フィードバック制御(回転数制御系)における位相遅れ、及び制御指令に対する電動機2の応答遅れを含む各種の遅れ成分の調整を行う。これにより、トルク脈動成分及びトルク脈動成分に起因する電動機2の回転数の周期的な変動を効率よく抑制することが出来る。
 具体的には、回転数の検出遅れ、フィードバック制御における位相遅れ、及び制御指令に対する電動機2の応答遅れについて、位相特性をあらかじめ計算または実験により求めておく。次に、回転数検出値ω又は目標回転数ωCMDの位相遅れをこれらの周波数帯において算出し、かつ、応答遅れ時間Δt1を算出する。次に、電動機2のトルク指令値Tge*がトルク脈動成分を抑制するために効果的な位相、すなわち、次周期のトルク脈動成分のピークに合わせるように、トルク脈動成分の周期(T)から応答遅れ時間Δt1を減算した位相(T-Δt1)の遅れ補正を実施する。応答遅れ時間Δt1は、回転数の検出遅れ、フィードバック制御における位相遅れ、及び制御指令に対する電動機2の応答遅れを加算した遅れ成分に相当する。
 エンジン1の実際の点火タイミング、エンジン1へ供給される空気量をリアルタイムに求めることは難しく、検出遅れの要素となる。エンジン1のトルク値の時間変化に基づいて回転数が定まる。回転数の時間変化(検出値)からトルク脈動成分及びその周期(T)を求めることが可能である。トルク脈動成分は周期的な変動であるため、それを検出した周期の次の周期でも同様な変動が生じることが推測される。そこで、回転数補正値ωAMを、回転数の変動を検出した周期(現在の周期)の次の周期におけるトルク脈動成分を打ち消すための回転数の補正値として重畳する。
 位相調整器25は、回転数の検出遅れ、フィードバック制御における位相遅れ、及び制御指令に対する電動機2の応答遅れに基づいて、検出遅れ、位相遅れ、及び応答遅れが発生した周期の次の周期で発生する回転数の変動を抑制するための回転数補正値ωAMの位相を調整する。
 ゲイン及び位相が調整された後の回転数補正値ωAMは、重畳部14aに入力される。重畳部14aは、回転数検出値ωに対して、ゲイン及び位相が調整された後の回転数補正値ωAMを重畳することにより、補正後回転数検出値ωFBを出力する。
 図3を参照して、図1及び2に示した電動機2の制御装置及びハイブリッド原動機3の動作手順を示すフローチャートである。図3の一連の手順は、所定の繰り返し周期において繰り返し実施される。
 ステップS01において、センサユニット16は回転数検出値ωを検出する。ステップS03に進み、運転点演算部15は目標発電電力P*に基づいて目標回転数ωCMDを演算する。ステップS05に進み、回転数制御部11は、補正後回転数検出値ωFBが回転数の制御目標である目標回転数ωCMDに一致するように、電動機2のトルク指令値Tge*を算出する。電動機コントローラ44は、電動機2のトルク指令値Tge*及び電動機2の回転数に応じて、電動機2がトルク指令値Tge*を出力するために必要な電流値を決定し、決定した電流を電動機2に供給する。
 ステップS07に進み、プラントモデル21は、エンジン1及び電動機2を含む制御対象をモデル化したプラントモデルを用いて、トルク指令値Tge*から回転数推定値ωを算出する。ステップS09に進み、減算部22は、回転数検出値ωから回転数推定値ωを減算することにより、電動機2の回転数の外乱成分Δωを出力する。
 ステップS11に進み、バンドパスフィルタ23は、外乱成分Δωに対して、トルク脈動成分から定まる周波数を中心周波数とするバンドパスフィルタ処理を施すことにより、回転数補正値ωamを算出する。ステップS13に進み、ゲイン調整器24は、回転数補正値ωamのゲインを調整する。ステップS13の詳細な手順は、図4~図6を参照して後述する。
 ステップS15に進み、位相調整器25は、回転数補正値ωamの位相がトルク脈動成分の位相に整合するように、回転数補正値ωamの位相を調整する。ステップS13とステップS15は順番を逆にして実施してもよい。ステップS17に進み、重畳部14aは、回転数検出値ωに対して、ゲイン及び位相を調整した後の回転数補正値ωAMを重畳することにより、補正後回転数検出値ωFBを算出する。ステップS17で算出された補正後回転数検出値ωFBは、図3のフローチャートの次の周期のステップ05における入力値となる。
 このようにして、図1に示す電動機2の制御装置は、フィードバック制御により回転数の検出値(補正後回転数検出値ωFB)が目標回転数ωCMDに一致するように電動機2の回転数を制御する回転数制御系を構成する。
 図4を参照して、ゲイン調整器24の詳細な動作、つまりステップS13の詳細な手順を説明する。ステップS111において、ゲイン調整器24は、「ゲイン補償1」を実施する。ゲイン補償1において、ゲイン調整器24は、トルク脈動成分又は回転数の変動による回転数補正値ωamのゲインの減少を補償する。トルク脈動成分に起因して電動機2の回転数に周期的な変動が生じる。回転数の変動の振幅には、回転数の極大値と極小値の間の大きさ(ピーク・ツー・ピーク)が含まれる。回転数の変動の振幅が大きいほど、回転数補正値ωamのゲインが大きく減少する。同様に、トルク脈動成分の振幅が大きいほど、回転数補正値ωamのゲインが大きく減少する。そこで、例えば図4に示すように、ゲイン調整器24は、エンジン1の運転状態に応じて、回転数の変動の振幅を推定する。そして、回転数の変動の振幅の推定値が大きくなるほど、より大きな補正ゲインを付与する。これにより、回転数の変動の大きさに応じて回転数補正値ωamのゲインを調整することができる。なお、ゲイン補償1において、「回転数の変動の振幅」の代わりに、「トルク脈動成分の振幅」を用いても構わない。
 具体的には、計算また実験にて、電動機2の回転数及びトルク値に対するトルク脈動成分の値又は回転数の変動値を予め求め、回転数及びトルクに伴う回転数変動の推定値を示すマップとしてメモリに予め格納しておく。マップに基づいて、回転数検出値又はトルク指令値から回転数変動の推定値を算出する。図5に示すグラフに基づいて、回転数変動の推定値から回転数補正値ωamのゲインを算出する。回転数変動の推定値が大きい場合、回転数補正値ωamのゲインを大きくし、回転数変動の推定値が小さい場合は回転数補正値ωamのゲインを小さく設定する。回転数変動の推定値と具体的な補正ゲインの値との関係は、計算または実験にて求め、例えば図5に示すグラフとしてメモリに予め格納しておく。同様にして、トルク脈動成分の推定値と具体的な補正ゲインの値との関係は、計算または実験にて求め、グラフとしてメモリに予め格納しておく。
 ステップS112に進み、ゲイン調整器24は、「ゲイン補償2」を実施する。制御指令に対する電動機2の応答遅れは、位相のズレのみならず、ゲイン減少の原因となる。ゲイン補償2では、制御指令の応答遅れによって生じる回転数補正値ωamのゲインの減少を補償する。回転数が高いほど、回転数の検出遅れも大きくなり、ゲインが減少してしまう。回転数の検出遅れは、ゲインが低下する要因となりうる。ゲイン補償2において、ゲイン調整器24は、制御指令に対する電動機2の応答遅れ及び回転数の検出遅れによって減少するゲインの低下分を補償する。すなわち、ゲイン調整器24は、ゲイン係数に対して1/(K1・K2)を乗ずる。ここで、回転数検出値ω又は目標回転数ωCMD付近の周波数帯の回転数の検出遅れのゲインをK1とし、制御指令の応答遅れのゲインをK2とする。これにより、制御指令に対する電動機2の応答遅れ分及び回転数の検出遅れ分に伴うゲインの低下を補正することができる。なお、回転数の検出遅れのゲインK1及び制御指令の応答遅れのゲインK2は、実験又は計算により予め求めておく。
 ステップS113に進み、ゲイン調整器24は、「ゲイン補償3」を実施する。ゲイン補償3において、ゲイン調整器24は、電動機2の発電効率を優先する電動機2の運転状態では、この運転状態を除く電動機2の他の運転状態に比べて、小さなゲインを設定する。具体的に、ゲイン調整器24は、電動機の発電効率とトルク脈動成分に起因する振動又は騒音との間の優先度に基づいて、回転数補正値ωamのゲインを調整する。「優先度」とは、電動機の発電効率を高めることと、トルク脈動成分に起因する振動又は騒音を低減することとのどちらを優先するかを示す指標である。ゲイン調整器24は、電動機2の発電効率の優先度が高い場合、振動又は騒音の優先度が高い場合に比べて、小さなゲインを設定する。一方、ゲイン調整器24は、振動又は騒音の優先度が高い場合、電動機2の発電効率の優先度が高い場合に比べて、大きなゲインを設定する。なお、具体的なゲインの値又はゲインの変更値は、実験又は計算により予め求めておく。
 ゲイン補償3の第1の実施例を、図6を参照して説明する。図6は、エンジン1の回転数とエンジン1の出力から定まるエンジン1の運転点を示す2次元のグラフである。図6のグラフにおいて、ゲイン調整器24は、特定の運転点からなる運転領域において、電動機の発電効率の優先度を高く設定する。振動又は騒音が懸念される運転領域、及び発電効率又は燃費を優先する運転領域を予め求め、例えば図6に示すマップに格納する。図6に示すように、電動機2の発電効率の優先度が高い領域を、燃費優先運転領域RG_OPTとして予め定め、メモリに格納する。燃費優先運転領域RG_OPTを除く他の運転領域を、振動又は騒音の優先度が高い領域として予め定めメモリに格納する。ゲイン調整器24は、図6に示すグラフを参照して、エンジン1の現在の動作点が、燃費優先運転領域RG_OPTであるか否かを判断する。換言すれば、電動機2の発電効率を優先する電動機2の運転状態であるか、或いは振動又は騒音を優先する電動機2の運転状態であるかを判断する。電動機2の発電効率を優先する電動機2の運転状態である場合、電動機2の他の運転状態に比べて、小さなゲインを設定する。燃費優先運転領域RG_OPTとは、例えば、最良燃費点にて電動機2の損失を極力下げて運転することが望まれる運転領域である。
 回転数補正値ωamのゲインを大きくすると、電動機2が出力するトルクも大きくなる。これに伴い、電動機2が消費する電力が増加するため、電動機2の損失も大きくなり、電動機2の発電効率が低下する。一方、回転数補正値ωamのゲインを大きくすることにより、回転数の変動も小さくなり、振動又は騒音も低減される。即ち、電動機2の発電効率の向上と振動又は騒音の低減との間には、一定のトレードオフの関係が存在する。ゲイン調整器24は、図6に示すグラフに基づき、自動的に上記した優先度を判定して、回転数補正値ωamのゲインを調整することができる。
 図6に示す例では、燃費優先運転領域RG_OPTは、エンジン1の燃焼効率が高い運転点からなるエンジン最適燃費線P_OPTの一部を含む運転領域に設定されている。なお、図6中の点線は、エンジン1の出力が最も大きくなる運転点からなるエンジン最大出力線P_MAXを示す。勿論、燃費優先運転領域RG_OPTは、図6に示す例以外の運転領域に設定しても構わない。
 更に、回転数補正値ωamのゲインを大きくしても、電動機2の損失があまり増えることが無い運転領域が存在する場合がある。すなわち、振動又は騒音の低減と電動機2の発電効率の向上とを両立可能な運転領域が存在する場合がある。この場合、振動又は騒音の低減と電動機2の発電効率の向上とを両立可能な運転領域における回転数補正値ωamのゲインを、その他の運転領域に比べて大きく設定してもよい。発電の損失をあまり増やすことなく、回転数の変動による振動又は騒音を抑制できる。回転数補正値ωamのゲインを大きくしても、電動機2の損失があまり増えることが無い運転領域は、実験或いは計算により、予め求めておく。
 ゲイン補償3の第2の実施例として、ゲイン調整器24は、ハイブリッド原動機3の運転モードに基づいて、電動機2の発電効率を優先する電動機2の運転状態であるか否かを判断してもよい。例えば、ハイブリッド原動機3は、静粛性を優先して運転する静粛性優先モードと、エネルギー効率を優先して運転する燃費優先モード(エコモードを含む)と、を含む複数の運転モードを有している。ハイブリッド原動機3が静粛性優先モードで運転されている場合は、振動又は騒音を優先する電動機2の運転状態である、或いは、電動機2の発電効率を優先する電動機2の運転状態ではない、と判断できる。一方、燃費優先モードで運転されている場合には、電動機2の発電効率を優先する電動機2の運転状態であると判断することができる。従って、ゲイン調整器24は、ハイブリッド原動機3が静粛性優先モードで運転されている場合には、燃費優先モードで運転されている場合に比べて、大きなゲインを設定することができる。
 「ハイブリッド原動機3のエネルギー効率」には、エンジン1の燃焼効率、電動機2の発電効率、又はエンジン1の燃焼効率と電動機2の発電効率とを組み合わせたハイブリッド原動機3全体のエネルギー効率が含まれる。
 更に、ゲイン補償3の第3の実施例として、ゲイン調整器24は、ハイブリッドカーの乗員又はハイブリッド原動機3の使用者が操作するために設けられたスイッチの状態に基づいて、電動機2の発電効率を優先する電動機2の運転状態である否かを判断してもよい。例えば、スイッチは、電動機2の発電効率を優先する電動機2の運転状態と、それ以外の運転状態とを、直接選択することができるスイッチであってもよい。
 或いは、スイッチは、ハイブリッド原動機3の運転モードが、静粛性優先モード及び燃費優先モード(エコモードを含む)を含む複数の運転モードの間で切り替えることができるスイッチであってもよい。上記したように、ハイブリッド原動機3の運転モードの切り替えに応じて、電動機2の運転状態も変更される。よって、スイッチの操作によって、間接的に、ゲインを調整することができる。
 更に、スイッチは、ハイブリッド原動機3を搭載したハイブリッドカーの運転モードを切り替えることができるスイッチであってもよい。ハイブリッドカーの運転モードには、ハイブリッド原動機3の静粛性優先モード及び燃費優先モードと同様な運転モードが含まれている。ゲイン調整器24は、ハイブリッド原動機3が静粛性優先モードで運転されている場合は、燃費優先モードで運転されている場合に比べて、大きなゲインを設定することができる。
 更に、ゲイン補償3の第4の実施例として、ゲイン調整器24は、ハイブリッドカーが備えるバッテリの充電状態(SOC:State Of Charge)に基づいて、電動機2の発電効率を優先する電動機2の運転状態である否かを判断してもよい。バッテリ(二次電池)は、後述するように、ハイブリッドカーが備える電動機2により生成された電力を一時的に蓄えておく蓄電手段である。ゲイン調整器24は、バッテリが蓄積する電気量が所定の閾値よりも大きい場合、振動又は騒音を優先する電動機2の運転状態である、或いは、電動機2の発電効率を優先する電動機2の運転状態ではない、と判断する。一方、バッテリが蓄積する電気量が所定の閾値以下である場合、電動機2の発電効率を優先する電動機2の運転状態である、と判断する。従って、ゲイン補償3において、ゲイン調整器24は、ハイブリッドカーが備えるバッテリのSOCに基づいて、ゲインを調整することができる。具体的には、ゲイン調整器24は、バッテリのSOCが閾値以下である場合には、バッテリのSOCが閾値よりも大きい場合に比べて、小さなゲインを設定することができる。
 なお、ゲイン補償3を、4つの実施例を挙げて説明したが、4つの実施例から任意に選んだ複数の実施例を組み合わせて実施しても構わない。
 図7A及び図7Bのグラフは、トルク脈動成分を最大限に抑制するためのゲインを設定した場合のシミュレーション結果を示す。図7Aは、回転数検出値ωの時間変化を示す。図7Bは、エンジン1のトルク脈動成分を打ち消すために電動機2が出力するカウンタートルクの時間変化を示す。図7A及び図7Bにおいて、「実施例」は、第1実施形態に係わる制御装置及び制御方法を用いた結果を示す。一方、「比較例1」は、第1実施形態に係わる制御装置及び制御方法において、位相調整器25による位相の調整(図3のステップS15)を実施しない比較例を示す。また、「比較例2」は、第1実施形態に係わる制御装置及び制御方法において、ゲイン調整器24によるゲインの調整(図3のステップS13)を実施しない比較例を示す。
 図7Bに示すように、「比較例1」に係わるカウンタートルクの位相は、トルク脈動成分の位相に一致していない。このため、トルク脈動成分に対してカウンタートルクを重畳しても、図7Aに示すように、回転数検出値ωには、大きな振幅を持つ周期的な変動が残ってしまう。エンジン1に関連するセンサから取得される信号に基づき脈動補償トルクを算出する。「比較例1」では、位相調整を行わないため、信号の通信遅れや制御応答遅れにより、カウンタートルクの位相を実際のトルク脈動成分の位相に整合させることが出来ない。このため、回転数の変動が大きくなってしまう。
 「比較例2」では、図4に示すゲイン補償1~ゲイン補償3を実施していないため、カウンタートルクのゲイン(振幅)は小さい。このため、トルク脈動成分に対してカウンタートルクを重畳しても、図7Aに示すように、回転数検出値ωには、大きな振幅を持つ周期的な変動が残ってしまう。「比較例2」では、ゲイン調整を行わないため、補正ゲインを大きく設定することができず、トルク脈動成分付近の周波数帯のゲインが高くない。このため、回転数の変動が大きくなってしまう。
 これに対して、「実施例」に係わるカウンタートルクの位相は、位相調整を実施するため、トルク脈動成分の位相に一致している。また、図4に示すゲイン補償1~ゲイン補償3を実施しているため、カウンタートルクのゲイン(振幅)は、比較例2に比べて大きい。このため、トルク脈動成分に対して、位相及びゲインが調整されたカウンタートルクを重畳することにより、図7Aに示すように、回転数検出値ωの周期的な変動の振幅を、比較例1及び比較例2に比べて、小さく抑えることができる。すなわち、エンジン1のトルク脈動成分に起因する回転数の変動を抑制することができるので、回転数の変動に起因して生じる振動又は騒音を低減することができる。
 図8A~図8Cのグラフは、振動又は騒音の低減よりも発電効率の向上を優先する電動機2の運転状態又はハイブリッド原動機3の運転モードにおけるシミュレーション結果を示す。図8Aは、回転数検出値ωの時間変化を示す。図8Bは、エンジン1のトルク脈動成分を打ち消すために電動機2が出力するカウンタートルクの時間変化を示す。図8Cは、電動機2に発生する損失の時間変化を示す。なお、「比較例1」、「比較例2」及び「実施例」が示す条件は、図7A及び図7Bと同じである。
 発電効率の向上を優先する場合、トルク脈動成分を補償するための補正ゲインは低く設定される。このため、図8Bに示すように、「実施例」のカウンタートルクのゲイン(振幅)は図7Bに比べて小さくなり、トルク脈動成分の抑制効果は、図7A及び図7Bに示す実施例に比べて小さくなる。しかし、図8Cに示すように、「実施例」と「比較例1」とは損失が同等でありながら、図8Aに示すように、「比較例1」に比べて「実施例」の方が、回転数の変動の振幅を小さく抑えることができる。結果として、電動機2の発電効率、ひいては、ハイブリッドカーの燃費を高い状態に維持しつつ、回転数の変動に起因する振動又は騒音を低減することができる。
 第1実施形態によれば、以下の作用効果を得ることができる。
 フィードバック制御の制御量である電動機2の回転数(回転数検出値ω)に対して、エンジン1が出力軸4に出力するトルクに含まれる周期的な変動成分(トルク脈動成分)を抑制するための回転数補正値ωAMを重畳することで、フィードバック制御(閉ループ)の周波数応答におけるエンジントルク脈動の周波数成分のゲインが向上する。その結果、エンジン1のトルク脈動成分と実際のエンジントルクが乖離することが抑制され、トルク脈動成分に起因する回転数の変動を抑えつつ、電動機2の回転数を目標値にフィードバック制御することができる。つまり、振動や騒音を抑制しつつ所望の電動機2の回転数を得ることができる。これにより、回転数制御の安定性とエンジン1の脈動補償を両立することができる。
 電動機2の回転数を目標回転数に一致するように、回転数を制御する回転数制御系(閉ループを成すフィードバック制御)において、回転数制御部11と脈動補正部12を個別に設計することができる。このため、回転数制御の安定性を確保しつつトルク脈動成分を補正することができる。
 フィードバック制御の周波数応答におけるトルク脈動成分ではない周波数領域では、回転数制御を目的に設定したゲインによって、フィードバック制御(閉ループ)の周波数応答が決まる。このため、トルク脈動成分を補正しているにもかかわらず回転数制御系の安定性を容易に確保することができる。具体的には、回転数制御とトルク脈動補正の各々のゲインを容易に設定することができる。
 電動機2の回転数をフィードバック制御の制御量とする回転数制御系において、トルク脈動成分を補正するための補正トルクをトルク指令値Tge*に重畳した場合、補正トルクの重畳は、回転数制御系の外乱となる。これにより、回転数制御の安定性とエンジン1の脈動補償を両立するための制御定数の設定が煩雑となってしまう。これに対して、制御量である回転数(回転数検出値ω)に対して回転数補正値を重畳することで、上記した回転数制御系の外乱は発生し難くなる。よって、安定した回転数制御が実現可能である。
 プラントモデルを用いて回転数推定値を算出し、エンジン1が出力するトルクの外乱成分を抽出し、バンドパスフィルタ処理により外乱成分からトルク脈動成分を抑制するための回転数補正値ωAMを算出する。これにより、トルク脈動成分による回転数の変動をより精度良く抑制することができる。
 回転数補正値ωamのゲインを調整し、回転数補正値ωamの位相を調整し、ゲイン及び位相を調整した後の回転数補正値ωAMを、回転数検出値ωに対して重畳する。これにより、回転数の変動を効率よく抑制することができる。
 回転数の検出遅れ、フィードバック制御における位相遅れ、及び制御指令に対する電動機2の応答遅れが発生した周期の次の周期で発生する回転数の変動を抑制するための回転数補正値の位相を調整する。回転数の変動の周期性を利用して回転数補正値を精度良く調整することができる。
 回転数の検出遅れ、制御指令に対する電動機2の応答遅れにより減少したゲイン成分を補正することによりゲインを調整することにより、振動又は騒音を効果的に抑制することができる。
 エンジン1の運転状態に応じて、トルク脈動成分の振幅又はトルク脈動成分に起因する回転数の変動の振幅を推定し、推定した振幅が大きいほど、大きなゲインを設定することにより、振動又は騒音を効果的に抑制することができる。
 電動機2の発電効率を優先する電動機2の運転状態では、当該運転状態を除く他の運転状態に比べて、小さなゲインを設定することによりゲインを調整する。これにより、電動機2の発電効率の向上と振動又は騒音の低減を両立することができるので、ユーザの利便性が向上する。
 電動機2のロータ軸は、所定の増速比をもった歯車対を介してエンジン1の出力軸4に接続されている。電動機2が出力するトルクが、歯車対を介してエンジン1の出力軸4へ付加されるので、回転軸の回転数の変動を小さくして、振動又は騒音を抑制することができる。
 以下に示す比較例3との対比により、実施形態の作用効果を説明する。比較例3では、エンジン1に関連する信号に基づき、フィードフォワード制御にてエンジン脈動成分を補償するカウンタートルク指令値を算出し、カウンタートルク指令値に基づき、電動機2が出力するトルクを制御する。エンジン1のクランク角センサの検出遅れ、エンジンコントローラと電動機コントローラ間の通信遅れ、電動機2のトルク応答遅れなどの応答遅れによって、電動機2のカウンタートルクをエンジン1のトルク脈動成分に同期させることが困難である。このため、カウンタートルクによりトルク脈動成分を打ち消すことができず、回転数の変動が発生し、振動又は騒音が発生してしまう。また、フィードフォワード制御であるため、算出したカウンタートルク指令値とエンジン1の実際のトルクとが乖離した場合、トルク脈動成分を打ち消すことができず、回転数の変動が発生し、振動又は騒音が発生してしまう。
 これに対して、第1実施形態では、フィードバック制御の制御量である電動機2の回転数(回転数検出値ω)に対して、トルク脈動成分を打ち消すための回転数補正値を重畳する。これにより、フィードバック制御(閉ループ)の周波数応答におけるトルク脈動成分のゲインが向上する。その結果、エンジン1のトルク脈動成分と実際のエンジントルクが乖離することが抑制され、トルク脈動成分に起因する回転数の変動を抑えつつ、電動機2の回転数を目標値にフィードバック制御することができる。
 (第2実施形態)
 図9を参照して、第2実施形態に係わる電動機2の制御装置、及びエンジン1及び電動機2を含むハイブリッド原動機3を説明する。
 第2実施形態に係わる電動機2の制御装置は、第1実施形態(図1)に比べて、次の点が相違する。即ち、第2実施形態に係わる重畳部14bは、回転数補正値演算部13により生成された回転数補正値ωAMを、目標回転数ωCMDに重畳することにより、補正後目標回転数ωCMD2を出力する。換言すれば、第2実施形態に係わる脈動補正部12は、「フィードバック制御の制御量である電動機2の回転数」の他の例である目標回転数ωCMDに対して、回転数補正値ωAMを重畳する。
 回転数制御部11は、目標回転数ωCMDの代わりに補正後目標回転数ωCMD2を用いて、電動機2をフィードバック制御する。換言すれば、回転数制御部11は、制御装置が前提とするフィードバック制御において、目標回転数ωCMDの代わりに補正後目標回転数ωCMD2を使用する。回転数制御部11は、回転数検出値ωが補正後目標回転数ωCMD2に一致するように、電動機をフィードバック制御する。回転数制御部11は、フィードバック制御を行うことにより、トルク脈動成分を抑制した電動機2のトルク指令値Tge*を電動機コントローラ44へ出力する。
 その他は、第1実施形態に係わる電動機2の制御装置、及びエンジン1及び電動機2を含むハイブリッド原動機3と同じであり、説明を省略する。
 第2実施形態によれば、第1実施形態と同様な作用効果を得ることができる。
 (第3実施形態)
 第3実施形態では、第1実施形態(図1)又は第2実施形態(図9)のいずれか一方の電動機2の制御装置及びハイブリッド原動機3を適用したシリーズ方式のハイブリッドカーの構成例を説明する。
 エンジン1は、電動機2を発電機として用いる場合の駆動源である。エンジン1は、ファイヤリング状態において、電動機(発電機)2が発電するための駆動力(トルク)を発電機2へ伝達する。発電機2は、エンジン1の駆動力(トルク)によって回転することにより発電する。一方、エンジン1が停止している時に、発電機2に電力を供給して発電機2を力行駆動させることによりエンジン1はクランキングされ、始動することができる。なお、エンジン1は、モータリング状態において、電動機(発電機)2が出力する駆動力(トルク)によって力行回転する。これにより、電動機(発電機)2は電力を消費することもできる。
 発電機インバータ46は、発電機2、バッテリ47、及び駆動インバータ49に接続されている。発電機インバータ46は、ファイヤリング状態において発電機2が発電する交流電力を直流電力に変換して、バッテリ47又は駆動インバータ49へ供給する。一方、発電機インバータ46は、モータリング状態において直流電力を交流電力へ逆変換して、発電機2に供給する。
 バッテリ47は、発電機2と駆動モータ50のそれぞれの回生電力を充電し、駆動電力を放電する。駆動インバータ49は、バッテリ47及び発電機インバータ46から供給される直流電力を交流電力に変換して、駆動モータ50へ供給する。一方、駆動インバータ49は、駆動モータ50の回生電力(交流電力)を直流電力に逆変換して、バッテリ47及び発電機インバータ46へ供給する。
 駆動モータ50は、駆動力(トルク)を発生し、減速機51を介して駆動輪(52a、52b)に駆動力(トルク)を伝達する。駆動モータ50は、ハイブリッドカー(単に「車両」と呼ぶ)の走行時に駆動輪(52a、52b)に連れ回されて回転する。このときの回生駆動力により回生電力を生成することでエネルギーを回生する。
 エンジンコントローラ43は、システムコントローラ41から指令されるエンジン1のトルク指令値Ten*を実現するために、エンジン1の回転数や温度などの信号に応じて、エンジン1のスロットル、点火時期、及び燃料噴射量を調整する。
 発電機コントローラ44は、システムコントローラ41から指令される電動機2のトルク指令値Tge*を実現するために、発電機2の回転数や電圧に応じて、発電機インバータ46をスイッチング制御する。
 バッテリコントローラ45は、バッテリ47へ充放電される電流や電圧基づいて、バッテリ47充電状態(SOC)を計測し、システムコントローラ41へ出力する。また、バッテリ47の温度や内部抵抗、SOCに応じて入力可能パワー、出力可能パワーを演算しシステムコントローラ41へ出力する。
 駆動モータコントローラ48は、システムコントローラ41から指令される駆動トルクの指令値を実現するために、駆動モータ50の回転数や電圧に応じて、駆動インバータ49をスイッチング制御する。
 システムコントローラ41は、車両の運転者のアクセルペダル操作量、車速、勾配を含む車両状態、バッテリコントローラ45から受信するSOCを示すデータ、入力可能パワー、出力可能パワー、発電機2の発電電力が入力される。これらの入力情報に基づいて、駆動モータコントローラ48へ駆動トルクの指令値を演算する。さらに、システムコントローラ41は、バッテリ47へ充電するため、又は駆動モータ50へ供給するための発電電力の目標値である目標発電電力P*を演算する。目標発電電力P*は、図1又は図9の運転点演算部15に入力される。
 第1実施形態(図1)又は第2実施形態(図9)に示す電動機2の制御装置(回転数制御部11、脈動補正部12、運転点演算部15)は、例えば、図10のシステムコントローラ41の発電制御部42に相当する。勿論、第1実施形態(図1)又は第2実施形態(図9)に示す電動機2の制御装置の全体或いはその一部分を、発電機コントローラ44の内部に配置しても構わない。更に、第1実施形態(図1)又は第2実施形態(図9)に示す電動機2の制御装置の全体或いはその一部分を、システムコントローラ41及び発電機コントローラ44のいずれでもない、第3のコントローラによって実現することも可能である。
 第3実施形態によれば、第1実施形態と同様な作用効果を得ることができる。
 上述の各実施形態で示した各機能は、1又は複数の処理回路により実装され得る。処理回路は、電気回路を含む処理装置等のプログラムされた処理装置を含む。処理装置は、また、実施形態に記載された機能を実行するようにアレンジされた特定用途向け集積回路(ASIC)や従来型の回路部品のような装置を含む。
 上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
 1 エンジン
 4 出力軸
 2 電動機
 11 回転数制御部
 12 脈動補正部
 14a、14b 重畳部
 21 プラントモデル
 23 バンドパスフィルタ
 24 ゲイン調整器
 25 位相調整器
 ω 回転数検出値
 ωCMD 目標回転数
 ωCMD2 補正後目標回転数
 ωam ゲイン及び位相を調整する前の回転数補正値
 ωAM ゲイン及び位相を調整した後の回転数補正値
 ω 回転数推定値
 ωFB 補正後回転数検出値
 Tge* 電動機のトルク指令値
 Δω 外乱成分

Claims (9)

  1.  エンジンの出力軸に機械的に接続された電動機を、前記電動機の回転数の検出値である回転数検出値が、前記回転数の制御目標である目標回転数に一致するように、フィードバック制御する前記電動機の制御方法であって、
     前記回転数検出値又は前記目標回転数に対して、前記エンジンが前記出力軸に出力するトルクに含まれる周期的な変動成分を抑制するための前記回転数の補正値である回転数補正値を重畳し、
     前記回転数補正値を重畳した前記回転数検出値又は前記目標回転数を用いて、前記電動機をフィードバック制御する
    ことを特徴とする電動機の制御方法。
  2.  前記回転数検出値及び前記目標回転数から、前記電動機が出力するトルクの指令値であるトルク指令値を算出し、
     前記エンジン及び前記電動機を含む制御対象をモデル化したプラントモデルを用いて、前記トルク指令値から前記電動機の回転数の推定値である回転数推定値を算出し、
     前記回転数推定値と前記回転数検出値との差である外乱成分に対して、前記周期的な変動成分から定まる周波数を中心周波数とするバンドパスフィルタ処理を施すことにより、前記回転数補正値を算出する
    ことを特徴とする請求項1に記載の電動機の制御方法。
  3.  前記回転数補正値のゲインを調整し、
     前記回転数補正値の位相を調整し、
     前記回転数検出値又は前記目標回転数に対して、前記ゲイン及び前記位相を調整した後の前記回転数補正値を重畳する
    ことを特徴とする請求項1又は2に記載の電動機の制御方法。
  4.  前記回転数の検出遅れ、前記フィードバック制御における位相遅れ、及び制御指令に対する前記電動機の応答遅れに基づいて、前記検出遅れ、前記位相遅れ、及び前記応答遅れが発生した周期の次の周期で発生する前記回転数の変動を抑制するための前記回転数補正値の位相を調整する
    ことを特徴とする請求項3に記載の電動機の制御方法。
  5.  前記回転数の検出遅れ、制御指令に対する前記電動機の応答遅れにより減少したゲイン成分を補正することにより前記ゲインを調整することを特徴とする請求項3又は4に記載の電動機の制御方法。
  6.  前記エンジンの運転状態に応じて、前記周期的な変動の振幅又は前記周期的な変動に起因する前記回転数の変動の振幅を推定し、
     推定した前記振幅が大きいほど、大きな前記ゲインを設定することにより前記ゲインを調整する
    ことを特徴とする請求項3~5の何れか一項に記載の電動機の制御方法。
  7.  前記電動機の発電効率を優先する前記電動機の運転状態では、前記運転状態を除く他の運転状態に比べて、小さな前記ゲインを設定することにより前記ゲインを調整することを特徴とする請求項3~6の何れか一項に記載の電動機の制御方法。
  8.  前記電動機のロータ軸は、所定の増速比をもった歯車対を介して前記出力軸に接続されていることを特徴とする請求項1~7の何れか一項に記載の電動機の制御方法。
  9.  エンジンの出力軸に機械的に接続された電動機を、前記電動機の回転数の検出値である回転数検出値が、前記回転数の制御目標である目標回転数に一致するように、フィードバック制御する制御部を備える前記電動機の制御装置であって、前記制御部は、
     前記回転数検出値又は前記目標回転数に対して、前記エンジンが前記出力軸に出力するトルクに含まれる周期的な変動成分を抑制するための前記回転数の補正値である回転数補正値を重畳し、
     前記回転数補正値を重畳した前記回転数検出値又は前記目標回転数を用いて、前記電動機をフィードバック制御する
     ことを特徴とする電動機の制御装置。
PCT/JP2018/017954 2018-05-09 2018-05-09 電動機の制御方法及び電動機の制御装置 WO2019215847A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020517678A JP7006779B2 (ja) 2018-05-09 2018-05-09 電動機の制御方法及び電動機の制御装置
PCT/JP2018/017954 WO2019215847A1 (ja) 2018-05-09 2018-05-09 電動機の制御方法及び電動機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017954 WO2019215847A1 (ja) 2018-05-09 2018-05-09 電動機の制御方法及び電動機の制御装置

Publications (1)

Publication Number Publication Date
WO2019215847A1 true WO2019215847A1 (ja) 2019-11-14

Family

ID=68467505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017954 WO2019215847A1 (ja) 2018-05-09 2018-05-09 電動機の制御方法及び電動機の制御装置

Country Status (2)

Country Link
JP (1) JP7006779B2 (ja)
WO (1) WO2019215847A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023235908A1 (de) * 2022-06-07 2023-12-14 Avl List Gmbh Verfahren und system zum optimieren der systemeffizienz und zum reduzieren der hör- und/oder spürbaren schwingungen eines elektrischen antriebssystems eines kraftfahrzeugs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003219514A (ja) * 2002-01-21 2003-07-31 Hitachi Ltd 電気自動車の制御装置
JP2012200128A (ja) * 2011-03-04 2012-10-18 Aisin Aw Co Ltd 制御装置
JP2013038868A (ja) * 2011-08-05 2013-02-21 Nissan Motor Co Ltd トルク制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491434B2 (ja) 2006-05-29 2010-06-30 トヨタ自動車株式会社 電力制御装置およびそれを備えた車両
JP2008162491A (ja) 2006-12-28 2008-07-17 Toyota Motor Corp 車両およびその制御方法
JP2012224304A (ja) 2011-04-22 2012-11-15 Toyota Motor Corp 車両の制振制御装置
JP5737123B2 (ja) 2011-10-12 2015-06-17 株式会社デンソー 回転機の制御装置及び回転角算出装置
JP6250445B2 (ja) 2014-03-19 2017-12-20 Ntn株式会社 電気自動車のスリップ制御装置
JP6551289B2 (ja) 2016-04-18 2019-07-31 株式会社デンソー 回転電機制御装置
JP2018058453A (ja) 2016-10-04 2018-04-12 スズキ株式会社 ハイブリッド車両の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003219514A (ja) * 2002-01-21 2003-07-31 Hitachi Ltd 電気自動車の制御装置
JP2012200128A (ja) * 2011-03-04 2012-10-18 Aisin Aw Co Ltd 制御装置
JP2013038868A (ja) * 2011-08-05 2013-02-21 Nissan Motor Co Ltd トルク制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023235908A1 (de) * 2022-06-07 2023-12-14 Avl List Gmbh Verfahren und system zum optimieren der systemeffizienz und zum reduzieren der hör- und/oder spürbaren schwingungen eines elektrischen antriebssystems eines kraftfahrzeugs

Also Published As

Publication number Publication date
JPWO2019215847A1 (ja) 2021-08-19
JP7006779B2 (ja) 2022-01-24

Similar Documents

Publication Publication Date Title
JP5899695B2 (ja) トルク制御装置
EP1439296B1 (en) Torque transmission device and method of reducing effects of torque pulsations
JP5347702B2 (ja) 車両のバネ上制振制御装置
RU2707471C1 (ru) Способ для управления гибридным транспортным средством и устройство для управления гибридным транспортным средством
KR100494919B1 (ko) 병렬형 하이브리드 전기자동차의 모터 제어방법 및 그제어장치
JP2010023790A (ja) 電動機の制御装置
JP6326755B2 (ja) 電動車両の発電制御装置
CN110352296B (zh) 微混合动力系统的自适应扭矩减轻
JP7452500B2 (ja) 車両用制御システム
WO2019215847A1 (ja) 電動機の制御方法及び電動機の制御装置
JP6331924B2 (ja) ハイブリッド車両の制御装置
JP2012214179A (ja) ハイブリッド車
JP6011170B2 (ja) モータ制御装置およびモータ制御方法
JP2015020588A (ja) ハイブリッド車両用駆動装置
JP3777975B2 (ja) ハイブリッド車の制御装置
JP7027937B2 (ja) ハイブリッド車両の制御装置
JP6007475B2 (ja) トルク制御装置
JP5962335B2 (ja) ハイブリッド車のモータ制御装置
KR20110011437A (ko) 하이브리드 자동차의 pid 피드백 제어 신호 보정 방법 및 시스템
JP7409514B2 (ja) ハイブリッド車両の制御方法、及び、ハイブリッド車両の制御装置
JP6299094B2 (ja) 電動車両の発電制御装置
JP4937878B2 (ja) 車両用制御装置
JP2023023269A (ja) 車両制御方法、及び、車両制御装置
KR20220063782A (ko) 하이브리드 차량의 엔진 시동 시스템 및 방법
JP2023023270A (ja) 車両制御方法、及び、車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020517678

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918211

Country of ref document: EP

Kind code of ref document: A1