WO2019205499A1 - 一种玻璃面板检测设备及检测图像拼接方法 - Google Patents

一种玻璃面板检测设备及检测图像拼接方法 Download PDF

Info

Publication number
WO2019205499A1
WO2019205499A1 PCT/CN2018/109480 CN2018109480W WO2019205499A1 WO 2019205499 A1 WO2019205499 A1 WO 2019205499A1 CN 2018109480 W CN2018109480 W CN 2018109480W WO 2019205499 A1 WO2019205499 A1 WO 2019205499A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass panel
frame
unit
scanning
dimensional line
Prior art date
Application number
PCT/CN2018/109480
Other languages
English (en)
French (fr)
Inventor
余劲松
胡明建
方明
Original Assignee
苏州玻色智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州玻色智能科技有限公司 filed Critical 苏州玻色智能科技有限公司
Priority to KR1020197024253A priority Critical patent/KR102157365B1/ko
Priority to JP2019543989A priority patent/JP6797440B2/ja
Publication of WO2019205499A1 publication Critical patent/WO2019205499A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9515Objects of complex shape, e.g. examined with use of a surface follower device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9515Objects of complex shape, e.g. examined with use of a surface follower device
    • G01N2021/9518Objects of complex shape, e.g. examined with use of a surface follower device using a surface follower, e.g. robot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/10Scanning
    • G01N2201/103Scanning by mechanical motion of stage
    • G01N2201/10353D motion

Definitions

  • the invention relates to the field of glass panel detection, in particular to a glass panel detecting device and a method for detecting image stitching.
  • ZL201710681350.2 discloses a detecting device and method for a curved or curved glass panel, but the glass panel loading table used in the device and method has a complicated shape and is inconvenient to process. The precision required for processing is high, and once the accuracy of the slight processing becomes low, the accuracy of detecting the curved glass panel is also lowered.
  • the technical problem to be solved by the present invention is to provide a glass panel detecting device, which can not only accurately detect a flat glass panel, but also accurately detect a curved glass panel, and has an accurate detection structure, and simplifies the structure of the panel fixing device and reduces the structure.
  • the processing difficulty of the panel fixing device is to provide a glass panel detecting device, which can not only accurately detect a flat glass panel, but also accurately detect a curved glass panel, and has an accurate detection structure, and simplifies the structure of the panel fixing device and reduces the structure.
  • a technical solution adopted by the present invention is to provide a glass panel detecting device, comprising: a rack, a movement control device, a panel fixing device, and a three-dimensional line scanning device; the three-dimensional line scanning device and the Mobile control devices are respectively disposed on the frame, the panel fixing device is fixed on the movement control device, and the movement control device controls the panel fixing device to scan a detection area of the sensor on the three-dimensional line scanning device Internally moving, the three-dimensional line scanning device analyzes and processes data information about the glass panel on the panel fixing device scanned by the scanning sensor; the panel fixing device includes a panel fixing fixture and a scanning positioning disposed on the panel fixing fixture The jig, the scanning and positioning fixture comprises a jig frame surrounded by four frames; the plane opposite to the scanning sensor on the jig frame is a reference surface, and the four frames of the jig frame are on or in any Two adjacent frames are provided with a slope opposite to the scanning sensor and a plurality of grooves
  • the fixture frame is further provided with two support plates, and the two support plates are respectively adjacent to the two ends of the jig frame, and the two support plates are flush and lower than the jig frame.
  • the length direction of the slope is the same as the length direction of the corresponding frame, and the length of the slope is equal to the length of the corresponding frame; a plurality of the grooves are distributed along the length direction of the corresponding frame.
  • the groove is a V-shaped groove or an arc-shaped groove
  • the inclined surface is an inclined plane or an arc-shaped concave surface or an arc-shaped convex surface; the position of each groove on the frame is set with a different digital mark. .
  • the frame includes two long frames and two short frames, and the length of the long frame is greater than the length of the short frame; the plurality of grooves on the long frame are divided into two segments, and the two grooves are respectively adjacent to the long frame. Set at both ends.
  • the panel fixing fixture comprises a clamp base, and a vacuum suction device and a jaw device fixed on the clamp base; the jaw device is disposed corresponding to a hollow portion of the fixture frame, and the jaw device comprises two The cylinders are oppositely disposed to clamp the glass panel and control the movement of the jaws; the vacuum suction device is disposed between the jaws.
  • the movement directions of the jaws on the two jaw devices are respectively the same as the length direction and the width direction of the glass panel; the height of the jaws is higher than that of the support plate
  • the height of the corresponding jaw on the support plate is provided with a jaw avoiding hole; the height of the adsorption fixing point on the vacuum adsorption device is flush with the support plate; and the vacuum adsorption device has three adsorption fixed points.
  • the movement control device comprises a Y-axis motion unit, an X-axis motion unit, a Z-axis motion unit, a first rotation unit and a second rotation unit;
  • the Y-axis motion unit is disposed on the frame, the Y-axis
  • the moving direction of the moving unit is perpendicular to the three-dimensional line scanning device;
  • the X-axis moving unit is disposed on the Y-axis moving unit, and the moving direction of the X-axis moving unit is parallel to the three-dimensional line scanning device;
  • a Z-axis moving unit is disposed on the X-axis moving unit, wherein a moving direction of the X-axis moving unit is the same as a height direction of the three-dimensional line scanning device;
  • the first rotating unit is vertically disposed on the X-axis moving unit,
  • the second rotating unit is vertically disposed on the first rotating unit, and both the first rotating unit and the second rotating unit perform a motion of rotating about its own axis
  • the scanning sensor is a white light confocal displacement sensor.
  • a method for detecting image stitching includes the following steps:
  • the glass panel is fixedly mounted on the panel fixing device
  • the Y-axis motion unit, the Z-axis motion unit, the first rotation unit and the second rotation unit are free to adjust the scanning state of the glass panel;
  • the X-axis motion unit moves the three-dimensional line scanning device to scan and collect a plurality of 3D point cloud data, and performs meshing processing on the plurality of 3D point cloud data;
  • the three-dimensional line scanning device performs the scanning and collecting process multiple times according to the method described in b and c, wherein the scanning state of each of the glass panels is different;
  • the splicing method uses the data of the reference plane, the slope plane and the groove surface of each acquisition as a coincidence splicing reference; wherein the splicing method may be each additional grid
  • the data is spliced once, or it can be waited until all the data is collected and meshed for total splicing;
  • the invention has the beneficial effects that the invention can not only accurately detect the flat glass panel, but also accurately detect the curved glass panel, and the detection structure is accurate, and the structure of the panel fixing device is simplified, and the processing difficulty of the panel fixing device is reduced.
  • the structure is relatively simple and convenient to use; and a method for detecting image stitching is provided, which makes the detection more convenient and the comparison stitching is easier.
  • FIG. 1 is a schematic perspective view of a preferred embodiment of a glass panel detecting device of the present invention
  • FIG. 2 is a perspective view showing a perspective view of another embodiment of the glass panel detecting device of the present invention after removing the frame and the three-dimensional line scanning device;
  • FIG. 3 is a perspective structural view of a panel fixing fixture for a glass panel detecting device of the present invention.
  • FIG. 4 is a schematic perspective view showing a scanning positioning fixture on a glass panel detecting device of the present invention.
  • FIG. 5 is a schematic plan view showing the scanning positioning fixture on a glass panel detecting device of the present invention.
  • an embodiment of the present invention includes:
  • a glass panel detecting device includes: a rack 1, a movement control device 2, a panel fixing device 3, and a three-dimensional line scanning device 4; the three-dimensional line scanning device 4 and the movement control device 2 are both disposed in the rack 1 , the panel fixing device 3 is fixed on the movement control device 2, and the movement control device 2 controls the panel fixing device 3 to move in the detection area of the scanning sensor on the three-dimensional line scanning device 4,
  • the three-dimensional line scanning device 4 analyzes and processes the data information about the glass panel 7 on the panel fixing device 3 scanned by the scanning sensor.
  • the panel fixing device 3 includes a panel fixing fixture and a scanning positioning fixture disposed on the panel fixing fixture.
  • the panel fixing fixture fixes the glass panel 7.
  • the scanning positioning fixture is a positioning reference of the scanning sensor for multiple scanning. It is a basis for the three-dimensional line scanning device 4 to analyze the processed data.
  • the scanning positioning fixture comprises a fixture frame surrounded by four frames and two support plates 66 disposed in the fixture frame.
  • the two support plates 66 are respectively adjacent to the two ends of the fixture frame, and the two support plates 66 is flush and lower than the fixture frame.
  • the two support plates 66 can conveniently support the glass panel 7 in order to adsorb and clamp the glass panel 7 at a later time, and at the same time prevent deformation of the glass panel 7 to a greater extent.
  • the plane opposite to the scanning sensor on the jig frame is a reference surface 61, and the inclined surface 52 opposite to the scanning sensor is disposed on the four frames of the jig frame or any two adjacent frames. And a plurality of grooves 63.
  • the groove 63 is a V-shaped groove or an arc-shaped groove
  • the inclined surface 52 is an inclined plane or an arc-shaped concave surface or an arc-shaped convex surface.
  • the structure of the groove 63 and the slope 52 is not limited.
  • the length direction of the inclined surface 52 is the same as the length direction of the corresponding frame, and the length of the inclined surface 52 is equal to the length of the corresponding frame; a plurality of the grooves 63 are distributed along the length direction of the corresponding frame; The reference plane 61, the slope 52, and the groove 63 face can be scanned at any time for subsequent work.
  • the frame includes two long frames and two short frames, and the length of the long frame is greater than the length of the short frame; the plurality of grooves 63 on the long frame are divided into two segments, and the two grooves 63 are respectively adjacent to the two sides of the long frame. End arrangement; since the central groove 63 is rarely or difficult to use, the groove 63 is not provided in the middle portion to reduce the processing of the groove 63, making the processing simpler and more efficient.
  • each of the grooves 63 on the frame is provided with a different digital mark 65 for manual reference positioning. After the reference positioning, the lower scan of the glass panel 7 can be directly started from the reference positioning point, and the blank position is reduced. Scan to improve detection efficiency.
  • the panel fixing fixture includes a clamp base 50, and a vacuum suction device and a jaw device fixed on the clamp base 50; the jaw device is disposed corresponding to a hollow portion of the fixture frame, and the jaw device includes two Oppositely disposed to clamp the jaw 52 of the glass panel 7 and the cylinder 53 that controls the movement of the jaw 52, the height of the jaw 52 is higher than the height of the support plate 66; the vacuum suction device is disposed between the jaws 52, The height of the adsorption fixing point 51 on the vacuum adsorption device is flush with the support plate 66.
  • the vacuum adsorption device has three adsorption fixing points 51;
  • the adsorption fixing point 51 adsorbs and fixes the glass panel 7, the glass panel 7 is not deformed, and the three-point fixing surface is relatively balanced.
  • the three adsorption points are best distributed around the center of the jaws 52, the three adsorption points are only required to be located between the jaws 52, and are not limited in terms of whether they are at the center.
  • a position of the jaws 62 corresponding to the jaws 52 is provided with a jaw escape hole 64 for the movement of the jaws 52.
  • the movement control device 2 includes a Y-axis motion unit, an X-axis motion unit, a Z-axis motion unit, a first rotation unit, and a second rotation unit;
  • the Y-axis motion unit is disposed on the frame 1 and moves in the Y-axis
  • the moving direction of the unit is perpendicular to the three-dimensional line scanning device 4;
  • the X-axis moving unit is disposed on the Y-axis moving unit, and the moving direction of the X-axis moving unit is parallel to the three-dimensional line scanning device 4;
  • the Z-axis moving unit is disposed on the X-axis moving unit, and the moving direction of the X-axis moving unit is the same as the height direction of the three-dimensional line scanning device 4;
  • the first rotating unit is vertically disposed on the X-axis moving unit,
  • the second rotating unit is vertically disposed on the first rotating unit, and both the first rotating unit and the second rotating unit perform a motion of rotating about its own
  • the Y-axis motion unit includes: a Y-axis base, a Y-axis servo motor mounted at one end of the Y-axis base, a Y-axis screw driven by a Y-axis servo motor, and a Y-axis screw nut matched with the Y-axis screw
  • a Y-axis slider fixedly connected to the Y-axis screw nut and a Y-axis encoder connected to the Y-axis screw.
  • the Y-axis slider can slide straight on the Y-axis base.
  • the structural composition and operation principle of the X-axis motion unit and the Z-axis motion unit are similar to the Y-axis motion unit.
  • the working principle of the Y-axis motion unit the Y-axis servo motor starts, drives the Y-axis screw to rotate, the Y-axis screw and the Y-axis screw nut advance or retreat, and the Y-axis screw nut drives the Y-axis slider. Forward or backward movement, the Y-axis slider drives the X-axis base forward or backward movement.
  • the first rotating unit includes a first rotating unit base and a first direct drive motor fixed to the first rotating unit base. The first rotating unit base is linearly driven by the Z-axis slider.
  • the second rotating unit includes a second rotating unit base and a second direct drive motor fixed to the second rotating unit base.
  • the second rotating unit base is rotationally driven by the first direct drive motor.
  • the movement control device 2 has five degrees of freedom and is capable of adjusting the positional state of the glass panel 7 in multiple directions for multiple scanning.
  • a method for detecting image stitching includes the following steps:
  • the glass panel 7 is fixedly mounted on the panel fixing device 3;
  • the Y-axis motion unit, the Z-axis motion unit, the first rotation unit and the second rotation unit operate to freely adjust the scanning state of the glass panel 7;
  • the X-axis motion unit moves the three-dimensional line scanning device 4 to scan and collect a plurality of 3D point cloud data, and performs meshing processing on the plurality of 3D point cloud data;
  • the three-dimensional line scanning device 4 performs the scanning acquisition process multiple times according to the method described in b and c, wherein the scanning state of the glass panel 7 is different each time;
  • splicing a plurality of data after the gridding process, and splicing the data with the reference plane 61, the slope 52, and the groove 63 surface of each acquisition as a coincidence splicing reference; wherein the splicing method may be every increase A gridded data is spliced once, or it can wait until all the data is collected and meshed for total splicing;
  • the invention can not only accurately detect the flat glass panel 7, but also accurately detect the curved glass panel 7, and the detection structure is accurate, and the structure of the panel fixing device 3 is simplified, and the processing difficulty of the panel fixing device 3 is reduced; It is simple and easy to use; it also provides a method for detecting image stitching, which makes the detection more convenient and makes the comparison stitching easier.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种玻璃面板检测设备及检测图像拼接方法,设备包括:机架(1)、移动控制装置(2)、面板固定装置(3)和三维线扫描设备(4);移动控制装置(2)控制面板固定装置(3)在三维线扫描设备(4)上扫描传感器的检测区域内移动,三维线扫描设备(4)分析处理扫描传感器扫描到的关于面板固定装置(3)上玻璃面板(7)的数据信息;面板固定装置(3)包括面板固定夹具和设置在面板固定夹具上的扫描定位治具,扫描定位治具包括通过四个边框围绕而成的治具框架;治具框架上与扫描传感器相对的平面为基准面(61),治具框架的四个边框上或任意两个相邻的边框上均设置有与扫描传感器相对的斜面(62)和若干个凹槽(63)。该设备能够精准地检测玻璃面板(7),且简化了面板固定装置(3)的结构,降低了加工难度。

Description

一种玻璃面板检测设备及检测图像拼接方法 技术领域
本发明涉及玻璃面板检测领域,特别是涉及一种玻璃面板检测设备及检测图像拼接方法。
背景技术
随着移动互联网行业的迅猛发展及手机、平板电脑等电子产品市场的快速扩张,用于保护电子产品显示屏的玻璃面板也越来越多样化。为满足用户舒适度要求,越来越多的电子产品开始配备带弧边的玻璃面板。近年来随着曲面显示屏的出现并在部分手机上的成功应用,用于保护曲面屏的带弧边的玻璃面板的市场也飞速发展。各类电子显示屏玻璃面板需求量日益增大,其加工过程中的质量控制也备受关注,而缺陷(尺寸)检测是其中非常重要的环节。
传统的检测平台大多以人工检测平台为主,工人通过测量仪器如点规、卡尺以及读数放大镜等,通过在各种光照情况下,利用肉眼观察触摸屏表面或者读取测量仪器读数来对玻璃面板的外观缺陷(尺寸)和几何尺寸进行评估和测量。目前,也出现了一些利用视觉检测的方法来检测玻璃面板。但是,目前的一些视觉检测的方法存在效率低且检测精度低的问题,尤其是对于带弧边的玻璃面板。
传统技术存在以下技术问题:
ZL201710681350.2公开了一种曲面或弧面玻璃面板的检测设备及方法,但是该设备和方法使用的玻璃面板载台的形状较复杂,加工不方便。对加工的要求精度高,一旦稍微加工的精度变低,从而导致对曲面玻璃面板检测的精度也下降。
发明内容
本发明主要解决的技术问题是提供一种玻璃面板检测设备,不单能够精准的检测平面型的玻璃面板,也能够精准的检测曲面型玻璃面板,检测结构准确,且简化了面板固定装置结构,降低了面板固定装置的加工难度。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种玻璃面板检测设备,包括:机架、移动控制装置、面板固定装置和三维线扫描设备;所述三维线扫描设备和所述移动控制装置均设置在所述机架上,所述面板固定装置固定在所述移动控制装置上,所述移动控制装置控制所述面板固定装置在所述三维线扫描设备上扫描传感器的检测区域内移动,所述三维线扫描设备分析处理所述扫描传感器扫描到的关于所述面板固定装置上玻璃面板的数据信息;所述面板固定装置包括面板固定夹具和设置在面板固定夹具上的扫描定位治具,扫描定位治具包括通过四个边框围绕而成的治具框架;所述治具框架上与所述扫描传感器相对的平面为基准面,所述治具框架的四个边框上或任意两个相邻的边框上均设置有与所述扫描传感器相对的斜面和若干个凹槽。
优选的,所述治具框架内还设置有两个支板,两个支板分别靠近治具框架的两端,两个支板平齐且低于治具框架。
优选的,所述斜面的长度方向与相应边框的长度方向相同,且斜面的长度与该相应边框的长度相等;若干个所述凹槽沿相应边框的长度方向分布。
优选的,所述凹槽为V型凹槽或弧形凹槽,所述斜面为斜平面或弧形凹面或弧形凸面;所述边框上对应每个凹槽的位置设置有不同的数字标记。
优选的,所述边框包括两个长边框和两个短边框,长边框的长度大于短边框的长度;所述长边框上的若干凹槽分为两段,两段凹槽分别靠近长边框的两端设置。
优选的,所述面板固定夹具包括夹具基座、以及固定在夹具基座上的真空吸附装置和夹爪装置;所述夹爪装置对应所述治具框架的中空部分设置,夹爪 装置包括两个相对设置以装夹所述玻璃面板的夹爪和控制夹爪移动的气缸;所述真空吸附装置设置在夹爪之间。
优选的,所述夹爪装置有两个,两个夹爪装置上夹爪的运动方向分别与所述玻璃面板的长度方向和宽度方向相同;所述夹爪的高度高于所述支板的高度,支板上对应夹爪的位置开有夹爪避让孔;所述真空吸附装置上吸附固定点的高度与所述支板平齐;所述真空吸附装置上有三个吸附固定点。
优选的,所述移动控制装置包括Y轴运动单元、X轴运动单元、Z轴运动单元、第一旋转单元和第二旋转单元;所述Y轴运动单元设置在所述机架上,Y轴运动单元的运动方向垂直于所述三维线扫描设备;所述X轴运动单元设置在设置在所述Y轴运动单元上,X轴运动单元的运动方向平行于所述三维线扫描设备;所述Z轴运动单元设置在所述X轴运动单元上,X轴运动单元的运动方向与所述三维线扫描设备的高度方向相同;所述第一旋转单元垂直设置在X轴运动单元上,所述第二旋转单元垂直设置在第一旋转单元上,第一旋转单元和第二旋转单元均做绕自身轴线旋转的运动。
优选的,所述扫描传感器为白光共焦位移传感器。
一种检测图像拼接方法,包括如下步骤:
a、将玻璃面板固定安装在面板固定装置上;
b、Y轴运动单元、Z轴运动单元、第一旋转单元和第二旋转单元动作自由调整玻璃面板的扫描状态;
c、X轴运动单元动作使三维线扫描设备扫描采集若干条3D点云数据,并对这若干条3D点云数据进行网格化处理;
d、三维线扫描设备按b、c所述的方法多次进行扫描采集处理,其中,玻 璃面板每次的扫描状态都不相同;
e、将网格化处理后的多个数据进行拼接,拼接方式以每次采集到的基准面、斜面和凹槽面的数据作为重合拼接基准;其中,该拼接方式可以是每增加一个网格化的数据就进行一次拼接,也可以是等到所有的数据都采集并网格化后进行总的拼接;
f、将拼接完成后的图像与理论模型进行对比,生成全尺寸报告和彩虹图。
本发明的有益效果是:本发明不单能够精准的检测平面型的玻璃面板,也能够精准的检测曲面型玻璃面板,检测结构准确,且简化了面板固定装置结构,降低了面板固定装置的加工难度;其结构较为简单、使用方便;还提供了一种检测图像拼接方法,使得检测更加方便,对比拼接更加容易。
附图说明
图1是本发明一种玻璃面板检测设备一较佳实施例的立体结构示意图;
图2是本发明一种玻璃面板检测设备上去除机架和三维线扫描设备后另一角度的立体结构示意图;
图3是本发明一种玻璃面板检测设备上面板固定夹具的立体结构示意图;
图4是本发明一种玻璃面板检测设备上扫描定位治具的立体结构示意图;
图5是本发明一种玻璃面板检测设备上扫描定位治具的平面结构示意图。
附图中各部件的标记如下:1、机架;2、移动控制装置;3、面板固定装置;4、三维线扫描设备;50、夹具基座;51、吸附固定点;52、夹爪;53、气缸;61、基准面;62、斜面;63、凹槽;64、夹爪避让孔;65、数字标记;66、支板;7、玻璃面板。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
请参阅图1至图5,本发明实施例包括:
一种玻璃面板检测设备,包括:机架1、移动控制装置2、面板固定装置3和三维线扫描设备4;所述三维线扫描设备4和所述移动控制装置2均设置在所述机架1上,所述面板固定装置3固定在所述移动控制装置2上,所述移动控制装置2控制所述面板固定装置3在所述三维线扫描设备4上扫描传感器的检测区域内移动,所述三维线扫描设备4分析处理所述扫描传感器扫描到的关于所述面板固定装置3上玻璃面板7的数据信息。所述面板固定装置3包括面板固定夹具和设置在面板固定夹具上的扫描定位治具,面板固定夹具固定所述玻璃面板7,扫描定位治具为所述扫描传感器多次扫描的一个定位基准且是所述三维线扫描设备4分析处理数据的一个依据。
所述扫描定位治具包括通过四个边框围绕而成的治具框架和设置在治具框架内的两个支板66,两个支板66分别靠近治具框架的两端,两个支板66平齐且低于治具框架。两个支板66能够方便的对玻璃面板7进行初步的支撑,以便后期对玻璃面板7进行吸附、夹持固定,同时可以更大程度上的防止玻璃面板7的变形。所述治具框架上与所述扫描传感器相对的平面为基准面61,所述治具框架的四个边框上或任意两个相邻的边框上均设置有与所述扫描传感器相对的斜面52和若干个凹槽63。所述凹槽63为V型凹槽或弧形凹槽,所述斜面52为斜平面或弧形凹面或弧形凸面。凹槽63与斜面52的结构不做限定。
所述斜面52的长度方向与相应边框的长度方向相同,且斜面52的长度与该相应边框的长度相等;若干个所述凹槽63沿相应边框的长度方向分布;能够 使三维线扫描设备4在任何时候都可以扫描到基准面61、斜面52和凹槽63面,以进行后续的工作。
所述边框包括两个长边框和两个短边框,长边框的长度大于短边框的长度;所述长边框上的若干凹槽63分为两段,两段凹槽63分别靠近长边框的两端设置;因为中部凹槽63很少或难以用到,所以中部不设置凹槽63,以减少凹槽63的加工,使得加工更加简单、效率更高。
所述边框上对应每个凹槽63的位置设置有不同的数字标记65,以便人工进行基准定位,基准定位后,对于玻璃面板7的下会扫描可以直接从基准定位点开始,减少空白位置的扫描,以提高检测效率。
所述面板固定夹具包括夹具基座50、以及固定在夹具基座50上的真空吸附装置和夹爪装置;所述夹爪装置对应所述治具框架的中空部分设置,夹爪装置包括两个相对设置以装夹所述玻璃面板7的夹爪52和控制夹爪52移动的气缸53,夹爪52的高度高于支板66的高度;所述真空吸附装置设置在夹爪52之间,真空吸附装置上吸附固定点51的高度与所述支板66平齐。
所述夹爪装置有两个,两个夹爪装置上夹爪52的运动方向分别与所述玻璃面板7的长度方向和宽度方向相同;所述真空吸附装置上有三个吸附固定点51;三个吸附固定点51吸附固定玻璃面板7时,不会造成玻璃面板7的变形,三点固定面,较为平衡。虽然该三个吸附点围绕夹爪52中心分布固定效果最好,但该三个吸附点只要位于夹爪52之间即可,对于是否在中心位置不做限定。所述支板66上对应夹爪52的位置开有夹爪避让孔64,以便夹爪52的移动。
所述移动控制装置2包括Y轴运动单元、X轴运动单元、Z轴运动单元、第一旋转单元和第二旋转单元;所述Y轴运动单元设置在所述机架1上,Y轴运动单元的运动方向垂直于所述三维线扫描设备4;所述X轴运动单元设置在 设置在所述Y轴运动单元上,X轴运动单元的运动方向平行于所述三维线扫描设备4;所述Z轴运动单元设置在所述X轴运动单元上,X轴运动单元的运动方向与所述三维线扫描设备4的高度方向相同;所述第一旋转单元垂直设置在X轴运动单元上,所述第二旋转单元垂直设置在第一旋转单元上,第一旋转单元和第二旋转单元均做绕自身轴线旋转的运动。Y轴运动单元包括:Y轴基座、安装在所述Y轴基座一端的Y轴伺服电机、被Y轴伺服电机驱动的Y轴丝杆、与Y轴丝杆配合的Y轴丝杆螺母、与Y轴丝杆螺母固定连接的Y轴滑块和与Y轴丝杆连接的Y轴编码器。Y轴滑块能够在Y轴基座上直线滑动。通过Y轴编码器与Y轴丝杆连接,可以更好的知道Y方向的运动情况,知道Y方向的位移大小。可以理解,X轴运动单元、Z轴运动单元的结构组成与动作原理与该Y轴运动单元类似。Y轴运动单元的工作原理:Y轴伺服电机启动,驱动Y轴丝杆旋转,Y轴丝杆与所述Y轴丝杆螺母前进或者后退运动,Y轴丝杆螺母带动Y轴滑块相应的前进或者后退运动,Y轴滑块带动X轴基座前进或者后退运动。第一旋转单元包括第一旋转单元基座和固定在所述第一旋转单元基座上的第一直驱电机。所述第一旋转单元基座被所述Z轴滑块直线驱动。第二旋转单元包括第二旋转单元基座和固定在所述第二旋转单元基座上的第二直驱电机。所述第二旋转单元基座被所述第一直驱电机旋转驱动。移动控制装置2具有五个自由度,能够多方位的调整玻璃面板7的位置状态,以便多次扫描。
一种检测图像拼接方法,包括如下步骤:
a、将玻璃面板7固定安装在面板固定装置3上;
b、Y轴运动单元、Z轴运动单元、第一旋转单元和第二旋转单元动作自由调整玻璃面板7的扫描状态;
c、X轴运动单元动作使三维线扫描设备4扫描采集若干条3D点云数据, 并对这若干条3D点云数据进行网格化处理;
d、三维线扫描设备4按b、c所述的方法多次进行扫描采集处理,其中,玻璃面板7每次的扫描状态都不相同;
e、将网格化处理后的多个数据进行拼接,拼接方式以每次采集到的基准面61、斜面52和凹槽63面的数据作为重合拼接基准;其中,该拼接方式可以是每增加一个网格化的数据就进行一次拼接,也可以是等到所有的数据都采集并网格化后进行总的拼接;
f、将拼接完成后的图像与理论模型进行对比,生成全尺寸报告和彩虹图。
本发明不单能够精准的检测平面型的玻璃面板7,也能够精准的检测曲面型玻璃面板7,检测结构准确,且简化了面板固定装置3结构,降低了面板固定装置3的加工难度;其结构较为简单、使用方便;还提供了一种检测图像拼接方法,使得检测更加方便,对比拼接更加容易。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种玻璃面板检测设备,包括:机架、移动控制装置、面板固定装置和三维线扫描设备;所述三维线扫描设备和所述移动控制装置均设置在所述机架上,所述面板固定装置固定在所述移动控制装置上,所述移动控制装置控制所述面板固定装置在所述三维线扫描设备上扫描传感器的检测区域内移动,所述三维线扫描设备分析处理所述扫描传感器扫描到的关于所述面板固定装置上玻璃面板的数据信息;其特征在于:所述面板固定装置包括面板固定夹具和设置在面板固定夹具上的扫描定位治具,扫描定位治具包括通过四个边框围绕而成的治具框架;所述治具框架上与所述扫描传感器相对的平面为基准面,所述治具框架的四个边框上或任意两个相邻的边框上均设置有与所述扫描传感器相对的斜面和若干个凹槽。
  2. 根据权利要求1所述的一种玻璃面板检测设备,其特征在于:所述治具框架内还设置有两个支板,两个支板分别靠近治具框架的两端,两个支板平齐且低于治具框架。
  3. 根据权利要求1或2所述的一种玻璃面板检测设备,其特征在于:所述斜面的长度方向与相应边框的长度方向相同,且斜面的长度与该相应边框的长度相等;若干个所述凹槽沿相应边框的长度方向分布。
  4. 根据权利要求1所述的一种玻璃面板检测设备,其特征在于:所述凹槽为V型凹槽或弧形凹槽,所述斜面为斜平面或弧形凹面或弧形凸面;所述边框上对应每个凹槽的位置设置有不同的数字标记。
  5. 根据权利要求1所述的一种玻璃面板检测设备,其特征在于:所述边框包括两个长边框和两个短边框,长边框的长度大于短边框的长度;所述长边框上的若干凹槽分为两段,两段凹槽分别靠近长边框的两端设置。
  6. 根据权利要求1所述的一种玻璃面板检测设备,其特征在于:所述面板固定夹具包括夹具基座、以及固定在夹具基座上的真空吸附装置和夹爪装置;所述夹爪装置对应所述治具框架的中空部分设置,夹爪装置包括两个相对设置以装夹所述玻璃面板的夹爪和控制夹爪移动的气缸;所述真空吸附装置设置在夹爪之间。
  7. 根据权利要求2和6所述的一种玻璃面板检测设备,其特征在于:所述夹爪装置有两个,两个夹爪装置上夹爪的运动方向分别与所述玻璃面板的长度方向和宽度方向相同;所述夹爪的高度高于所述支板的高度,支板上对应夹爪的位置开有夹爪避让孔;所述真空吸附装置上吸附固定点的高度与所述支板平齐;所述真空吸附装置上有三个吸附固定点。
  8. 根据权利要求1所述的一种玻璃面板检测设备,其特征在于:所述移动控制装置包括Y轴运动单元、X轴运动单元、Z轴运动单元、第一旋转单元和第二旋转单元;所述Y轴运动单元设置在所述机架上,Y轴运动单元的运动方向垂直于所述三维线扫描设备;所述X轴运动单元设置在设置在所述Y轴运动单元上,X轴运动单元的运动方向平行于所述三维线扫描设备;所述Z轴运动单元设置在所述X轴运动单元上,X轴运动单元的运动方向与所述三维线扫描设备的高度方向相同;所述第一旋转单元垂直设置在X轴运动单元上,所述第二旋转单元垂直设置在第一旋转单元上,第一旋转单元和第二旋转单元均做绕自身轴线旋转的运动。
  9. 根据权利要求1所述的一种玻璃面板检测设备,其特征在于:所述扫描传感器为白光共焦位移传感器。
  10. 一种检测图像拼接方法,其特征在于:采用以上任一权利要求所述的一种玻璃面板检测设备,包括如下步骤:
    a、将玻璃面板固定安装在面板固定装置上;
    b、Y轴运动单元、Z轴运动单元、第一旋转单元和第二旋转单元动作自由调整玻璃面板的扫描状态;
    c、X轴运动单元动作使三维线扫描设备扫描采集若干条3D点云数据,并对这若干条3D点云数据进行网格化处理;
    d、三维线扫描设备按b、c所述的方法多次进行扫描采集处理,其中,玻璃面板每次的扫描状态都不相同;
    e、将网格化处理后的多个数据进行拼接,拼接方式以每次采集到的基准面、斜面和凹槽面的数据作为重合拼接基准;其中,该拼接方式可以是每增加一个网格化的数据就进行一次拼接,也可以是等到所有的数据都采集并网格化后进行总的拼接;
    f、将拼接完成后的图像与理论模型进行对比,生成全尺寸报告和彩虹图。
PCT/CN2018/109480 2018-04-28 2018-10-09 一种玻璃面板检测设备及检测图像拼接方法 WO2019205499A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197024253A KR102157365B1 (ko) 2018-04-28 2018-10-09 유리 패널 검출 장치 및 검출 이미지 합성 방법
JP2019543989A JP6797440B2 (ja) 2018-04-28 2018-10-09 ガラスパネル検出機器および検出画像合成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810403009.5A CN110412054B (zh) 2018-04-28 2018-04-28 一种玻璃面板检测设备及检测图像拼接方法
CN201810403009.5 2018-04-28

Publications (1)

Publication Number Publication Date
WO2019205499A1 true WO2019205499A1 (zh) 2019-10-31

Family

ID=68293725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109480 WO2019205499A1 (zh) 2018-04-28 2018-10-09 一种玻璃面板检测设备及检测图像拼接方法

Country Status (4)

Country Link
JP (1) JP6797440B2 (zh)
KR (1) KR102157365B1 (zh)
CN (1) CN110412054B (zh)
WO (1) WO2019205499A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307732A (zh) * 2020-02-21 2020-06-19 黎明职业大学 一种图像扫描检测碳纤维板方法
CN111551448A (zh) * 2020-05-25 2020-08-18 彩虹集团(邵阳)特种玻璃有限公司 一种盖板玻璃抗弯曲强度测试的自动定位装置及方法
CN112907508A (zh) * 2021-01-14 2021-06-04 中国第一汽车股份有限公司 一种以工装为载体的点云虚拟匹配装置及方法
CN113909886A (zh) * 2021-11-04 2022-01-11 中国兵器装备集团自动化研究所有限公司 一种玻璃贴合压装设备
CN114211434A (zh) * 2022-01-10 2022-03-22 上海思客琦智能装备科技股份有限公司 一种电芯六面外观视觉检测夹具及其使用方法
DE102022124224A1 (de) 2022-08-15 2024-02-15 Jenoptik Industrial Metrology Germany Gmbh Optische Prüfvorrichtung
CN117825280A (zh) * 2024-03-05 2024-04-05 宁德时代新能源科技股份有限公司 外观检测系统及电池生产线
CN117889717A (zh) * 2024-03-18 2024-04-16 中笛(北京)文化发展有限公司 一种新型卯榫积木产品尺寸测量装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117400210B (zh) * 2023-12-14 2024-03-05 泰州光丽光电科技有限公司 一种玻璃盖板加工用夹具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287505A (ja) * 2002-03-27 2003-10-10 Toshiba Corp 欠陥検査装置
JP2009216539A (ja) * 2008-03-11 2009-09-24 Nippon Steel Corp 帯状体の穴・割れ欠陥検出装置
CN203534524U (zh) * 2013-09-18 2014-04-09 睿志达光电(成都)有限公司 玻璃面板检测治具
CN204585020U (zh) * 2015-01-28 2015-08-26 深圳市深科达智能装备股份有限公司 基板用定位治具
CN205356500U (zh) * 2014-09-22 2016-06-29 安东尼奥·马卡里 用于定位扫描装置的工具以及该工具和扫描装置的组合
CN107504930A (zh) * 2017-08-10 2017-12-22 苏州玻色智能科技有限公司 曲面或弧面玻璃面板的检测设备及方法
CN107526372A (zh) * 2017-08-25 2017-12-29 苏州玻色智能科技有限公司 五轴控制装置及曲面或弧面玻璃面板的检测设备

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3013671B2 (ja) * 1993-11-10 2000-02-28 日産自動車株式会社 三次元形状計測装置
FI97646C (fi) * 1994-10-19 1997-01-27 Kvaerner Masa Yards Oy Laitteisto hitsattujen levykokonaisuuksien tarkastamiseksi
JPH11295035A (ja) * 1998-04-10 1999-10-29 Enplas Corp 電気部品検査用位置合わせ治具
JP4208615B2 (ja) * 2003-03-24 2009-01-14 富士機械製造株式会社 画像処理方法及び画像取込み用治具
JP2005249423A (ja) * 2004-03-01 2005-09-15 Tokyo Cathode Laboratory Co Ltd フラット表示パネルの目視検査装置
JP4592070B2 (ja) * 2004-10-14 2010-12-01 株式会社日本マイクロニクス 液晶パネルの外観検査装置及び外観検査方法
US7417748B2 (en) * 2005-04-28 2008-08-26 Corning Incorporated Method and apparatus for measuring dimensional changes in transparent substrates
JP2007082005A (ja) * 2005-09-15 2007-03-29 Ricoh Co Ltd 画像読み取り装置、画像読み取り方法
JP4443497B2 (ja) * 2005-11-02 2010-03-31 パルステック工業株式会社 多自由度ロボットの位置決め誤差補正装置および同位置決め誤差補正方法
JP2008076269A (ja) * 2006-09-22 2008-04-03 Tokyo Univ Of Agriculture & Technology 縦型形状測定装置、および形状測定方法。
JP2008151707A (ja) * 2006-12-19 2008-07-03 Sharp Corp 表示パネル用検査装置
CN102184566A (zh) * 2011-04-28 2011-09-14 湘潭大学 基于微型投影仪手机平台的便携式三维扫描系统及方法
US9208571B2 (en) * 2011-06-06 2015-12-08 Microsoft Technology Licensing, Llc Object digitization
JP2013113767A (ja) * 2011-11-30 2013-06-10 Dainippon Screen Mfg Co Ltd 厚み計測装置および厚み計測方法
JP2013213729A (ja) * 2012-04-02 2013-10-17 Fuji Electric Co Ltd ワーククランプ装置、ワーク検査システムおよびワーク検査方法
US10775159B2 (en) * 2013-02-05 2020-09-15 Renishaw Plc Method and apparatus for illumination and inspection of an object in a machine vision apparatus
KR101477185B1 (ko) * 2013-03-21 2014-12-29 부산대학교 산학협력단 3차원 스캐너 플랫폼 및 이를 구비한 3차원 스캔장치
CN203518953U (zh) * 2013-09-12 2014-04-02 深圳市大族激光科技股份有限公司 非接触式间隙、断差光学测量设备
EP3288711B1 (en) * 2015-04-30 2021-02-24 BAE Systems PLC Inspection of drilled features in objects
CN106791259B (zh) * 2017-02-15 2018-11-06 南京航空航天大学 大幅面扫描仪和扫描方法
CN207113812U (zh) * 2017-05-05 2018-03-16 苏州天准科技股份有限公司 一种3d曲面玻璃用的五轴测量装置
CN106895782A (zh) * 2017-05-05 2017-06-27 苏州天准科技股份有限公司 一种3d曲面玻璃的快速测量装置
CN107270833A (zh) * 2017-08-09 2017-10-20 武汉智诺维科技有限公司 一种复杂曲面零件三维测量系统及方法
CN108731615B (zh) * 2018-03-19 2020-12-25 苏州玻色智能科技有限公司 曲面玻璃面板的检测用设备及方法
CN208476823U (zh) * 2018-04-28 2019-02-05 苏州玻色智能科技有限公司 一种玻璃面板检测设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287505A (ja) * 2002-03-27 2003-10-10 Toshiba Corp 欠陥検査装置
JP2009216539A (ja) * 2008-03-11 2009-09-24 Nippon Steel Corp 帯状体の穴・割れ欠陥検出装置
CN203534524U (zh) * 2013-09-18 2014-04-09 睿志达光电(成都)有限公司 玻璃面板检测治具
CN205356500U (zh) * 2014-09-22 2016-06-29 安东尼奥·马卡里 用于定位扫描装置的工具以及该工具和扫描装置的组合
CN204585020U (zh) * 2015-01-28 2015-08-26 深圳市深科达智能装备股份有限公司 基板用定位治具
CN107504930A (zh) * 2017-08-10 2017-12-22 苏州玻色智能科技有限公司 曲面或弧面玻璃面板的检测设备及方法
CN107526372A (zh) * 2017-08-25 2017-12-29 苏州玻色智能科技有限公司 五轴控制装置及曲面或弧面玻璃面板的检测设备

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307732B (zh) * 2020-02-21 2022-09-20 黎明职业大学 一种图像扫描检测碳纤维板方法
CN111307732A (zh) * 2020-02-21 2020-06-19 黎明职业大学 一种图像扫描检测碳纤维板方法
CN111551448A (zh) * 2020-05-25 2020-08-18 彩虹集团(邵阳)特种玻璃有限公司 一种盖板玻璃抗弯曲强度测试的自动定位装置及方法
CN111551448B (zh) * 2020-05-25 2022-10-21 彩虹集团(邵阳)特种玻璃有限公司 一种盖板玻璃抗弯曲强度测试的自动定位装置及方法
CN112907508A (zh) * 2021-01-14 2021-06-04 中国第一汽车股份有限公司 一种以工装为载体的点云虚拟匹配装置及方法
CN112907508B (zh) * 2021-01-14 2022-08-16 中国第一汽车股份有限公司 一种以工装为载体的点云虚拟匹配装置及方法
CN113909886A (zh) * 2021-11-04 2022-01-11 中国兵器装备集团自动化研究所有限公司 一种玻璃贴合压装设备
CN114211434A (zh) * 2022-01-10 2022-03-22 上海思客琦智能装备科技股份有限公司 一种电芯六面外观视觉检测夹具及其使用方法
DE102022124224A1 (de) 2022-08-15 2024-02-15 Jenoptik Industrial Metrology Germany Gmbh Optische Prüfvorrichtung
DE102022124224B4 (de) 2022-08-15 2024-09-12 Jenoptik Industrial Metrology Germany Gmbh Optische Prüfvorrichtung und Verfahren zur Prüfung von flachen Prüfobjekten
CN117825280A (zh) * 2024-03-05 2024-04-05 宁德时代新能源科技股份有限公司 外观检测系统及电池生产线
CN117889717A (zh) * 2024-03-18 2024-04-16 中笛(北京)文化发展有限公司 一种新型卯榫积木产品尺寸测量装置
CN117889717B (zh) * 2024-03-18 2024-05-07 中笛(北京)文化发展有限公司 一种新型卯榫积木产品尺寸测量装置

Also Published As

Publication number Publication date
CN110412054B (zh) 2024-04-30
KR20190125973A (ko) 2019-11-07
KR102157365B1 (ko) 2020-09-18
JP2020520442A (ja) 2020-07-09
CN110412054A (zh) 2019-11-05
JP6797440B2 (ja) 2020-12-09

Similar Documents

Publication Publication Date Title
WO2019205499A1 (zh) 一种玻璃面板检测设备及检测图像拼接方法
CN110044263B (zh) 检测设备及检测设备的工作方法
CN208476823U (zh) 一种玻璃面板检测设备
CN105403156B (zh) 三维测量设备及用于该三维测量设备的数据融合标定方法
CN108827187B (zh) 一种三维轮廓测量系统
CN102706889B (zh) 料盘装卸方便的视觉检测设备
WO2022236917A1 (zh) 一种表面性能检测装置及其检测方法
CN102620684A (zh) 三维形貌痕迹比对测量仪
WO2018201589A1 (zh) 一种3d曲面玻璃用的五轴测量装置
CN104315979A (zh) 一种三维扫描仪及三维扫描方法
TWI480514B (zh) 影像測量儀
CN202432999U (zh) 曲面抛光表面粗糙度非接触测量装置
CN105910553A (zh) 一种检测平面的检测仪及其检测方法
CN104515487A (zh) 二合一全自动三z轴测量仪
CN105841618A (zh) 二维三维复合式测量仪及其数据融合标定方法
TWI387721B (zh) 三維形貌檢測裝置
JP2007078635A (ja) 校正用治具、及び画像測定機のオフセット算出方法
JP5580553B2 (ja) カメラ設置位置検出装置及び検出方法並びにカメラ設置位置検出用治具
CN110864624A (zh) 一机两用型测量仪器
CN113932733B (zh) 一种大型密封圈三维外形尺寸视觉测量系统
JPS62265520A (ja) 2つの検出子を備えた三次元測定機
CN216791106U (zh) 一种笔记本电脑外壳尺寸检测装置
CN110044264B (zh) 检测设备及检测设备的工作方法
CN212483389U (zh) 一种全自动三维aoi检测设备
CN211373501U (zh) 多功能测量仪器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019543989

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197024253

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: KR1020197024253

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18917001

Country of ref document: EP

Kind code of ref document: A1