WO2019203082A1 - 端子及び端子の接合方法 - Google Patents
端子及び端子の接合方法 Download PDFInfo
- Publication number
- WO2019203082A1 WO2019203082A1 PCT/JP2019/015565 JP2019015565W WO2019203082A1 WO 2019203082 A1 WO2019203082 A1 WO 2019203082A1 JP 2019015565 W JP2019015565 W JP 2019015565W WO 2019203082 A1 WO2019203082 A1 WO 2019203082A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- terminal
- metal wire
- columnar
- wire
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/04—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
- H01F41/10—Connecting leads to windings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F5/00—Coils
- H01F5/04—Arrangements of electric connections to coils, e.g. leads
Definitions
- This disclosure relates to a terminal and a method for joining the terminal.
- Patent Document 1 discloses a terminal to which a coil terminal is connected by winding the coil terminal around the terminal.
- the coil terminal is sandwiched between the clamping portions.
- the coil terminal may be separated from the clamping portion, and in this case, it is difficult to ensure a sufficient bonding strength between the coil terminal and the terminal. For this reason, there is a demand for securing the bonding strength between the coil terminal and the terminal.
- an object of the present disclosure is to provide a terminal and a method for joining the terminal, which can ensure the joining strength between the columnar metal terminal and the metal wire.
- a terminal includes a columnar metal terminal and a metal wire, and the electrical resistance value of the metal wire is larger than the electrical resistance value of the columnar metal terminal,
- the metal wire is wound around the columnar metal terminal, and the metal wire and the columnar metal terminal are metal-bonded.
- the terminal joining method includes a first step of winding a metal wire having an electric resistance value larger than an electric resistance value of the columnar metal terminal around the columnar metal terminal, and the first step. Later, a pair of opposing welding electrodes are brought into contact with the metal wire, a current is passed from the welding electrode to the metal wire and the columnar metal terminal, and the metal wire is heated by Joule heat of the metal wire and the columnar metal terminal. And a second step of metal joining the columnar metal terminals.
- the bonding strength between the columnar metal terminal and the metal wire can be ensured.
- FIG. 1 is a schematic diagram illustrating a terminal according to an embodiment.
- FIG. 2 is a cross-sectional view showing the terminal according to the embodiment taken along line II-II in FIG.
- FIG. 3 is a diagram illustrating a state in which a metal wire is bound to a columnar metal terminal according to the embodiment.
- FIG. 4 is a flowchart showing a process of tying a metal wire to a columnar metal terminal according to the embodiment.
- FIG. 5 is a diagram showing the steps of creating an assembly, thermocompression bonding, and metal joining according to the embodiment.
- FIG. 6 is a flowchart showing a process of metal-joining an assembly according to the embodiment.
- FIG. 1 is a schematic diagram illustrating a terminal according to an embodiment.
- FIG. 2 is a cross-sectional view showing the terminal according to the embodiment taken along line II-II in FIG.
- FIG. 3 is a diagram illustrating a state in which a metal wire is bound to a columnar metal
- FIG. 7 is an explanatory diagram illustrating the amount of pressing during thermocompression bonding when the diameter of the metal wire is the same, according to the embodiment.
- FIG. 8 is an explanatory diagram illustrating a conduction path when performing metal bonding according to the embodiment.
- FIG. 9 is a schematic view showing a columnar metal terminal around which a plurality of metal wires are wound, according to the embodiment.
- FIG. 10 is an explanatory diagram illustrating the amount of pressing during thermocompression bonding when the diameters of the metal wires are different according to the embodiment.
- FIG. 1 is a schematic diagram showing a terminal 1 according to an embodiment.
- the terminal 1 is provided in each of a plurality of coils constituting a stator constituting a part of a motor mounted on the apparatus.
- the terminal 1 supplies power to the coil from a circuit board mounted on the power supply unit of the apparatus.
- the terminal 1 includes a columnar metal terminal 10 and a metal wire 20.
- FIG. 2 is a cross-sectional view showing the terminal 1 according to the embodiment taken along the line II-II in FIG.
- the columnar metal terminal 10 is a columnar metal member electrically connected to the coil.
- the columnar metal terminal 10 is electrically connected to a metal wire 21 constituting a part of the metal wire 20. Specifically, the columnar metal terminal 10 is welded to the metal wire 21 in a state where the metal wire 21 is wound, that is, metal-bonded to the metal wire 21.
- the columnar metal terminal 10 is, for example, a member in which the periphery of iron (Fe) is configured with a copper (Cu) layer and the periphery of copper is covered with tin (Sn).
- the metal wire 21 and the columnar metal terminal 10 are metal-bonded in a state where the metal wire 21 is entangled with the columnar metal terminal 10. Entangling means that it is tied in a wound state, and means that there is a portion where the metal wires 21 overlap.
- the metal wire 21 is wound around the columnar metal terminal 10 in a single manner except for the intersection.
- metal bonding refers to solid bonding such as thermocompression bonding, ultrasonic bonding, fusing, etc., diffusion bonding, and fusion bonding such as resistance welding.
- resistance welding which is an example of welding, will be mainly described.
- the metal wire 21 and the columnar metal terminal 10 are bonded to each other by solid-phase bonding and diffusion bonding such as thermocompression bonding, ultrasonic bonding, and fusing. It may be joined.
- the columnar metal terminal 10 is a rectangle having a short side of about 0.4 mm and a long side of 0.6 mm, the thickness of the copper layer is about 25 ⁇ m, and the thickness of the tin layer is about 3 to 6 ⁇ m. Moreover, in the metal wire 20, the diameter of the metal wire 21 is about 0.15 mm.
- the columnar metal terminal 10 may be made of a material mainly composed of copper, or a member obtained by laminating a tin layer on the surface of copper. For this reason, iron and tin are not essential constituent requirements for the columnar metal terminal 10.
- the columnar metal terminal 10 has a polygonal column shape.
- the columnar metal terminal 10 has a quadrangular shape when viewed from the longitudinal direction.
- the columnar metal terminal 10 is not limited to a quadrangle when viewed from the longitudinal direction, and may be a polygonal shape, a circular shape, or a combination thereof.
- the columnar metal terminal 10 has a rectangular cross section in a direction intersecting with the longitudinal direction of the columnar metal terminal 10, and has a pair of long side surfaces and a pair of short side surfaces.
- the long side surface is a surface whose cross section forms a long side of a rectangle
- the short side surface is a surface whose cross section forms a short side of a rectangle.
- the short side surface and the long side surface are terminal surfaces 11 to be described later.
- a long side surface is the junction terminal surface 11a mentioned later.
- the metal wire 21 is a wire that constitutes a part of the metal wire 20 and has an insulating coating formed thereon.
- the metal wire 21 is metal-bonded to the pair of long side surfaces.
- the metal wire 21 forms an intersection 23 where the metal wires 21 overlap in the circumferential direction of the columnar metal terminal 10.
- the intersection 23 is formed so as to be in contact with any one of the short side surfaces.
- the cross section in the direction intersecting the longitudinal direction of the columnar metal terminal 10 does not distinguish between the long side and the short side, that is, it may be a square.
- the terminal surface 11 and the terminal surface 11a are long sides. Identification that does not originate from a shape such as a surface or a short side surface is performed.
- the columnar metal terminal 10 has a plurality of terminal surfaces 11. A part of the terminal surfaces 11 among the plurality of terminal surfaces 11 is a junction terminal surface 11a where the crossing portion 23 is not disposed.
- the joining terminal surface 11a is a surface where the columnar metal terminal 10 and the metal wire 20 are joined. As described above, the columnar metal terminal 10 used in this joining method has a rectangular column shape.
- the metal wire 20 is a wire in which an insulating coating is formed on the metal wire 21, and is, for example, an enamel wire, a lead wire or the like.
- the metal wire 21 is made of, for example, a material mainly composed of aluminum.
- the insulating coating is made of a resin material such as urethane, polyester, polyesterimide, or polyamideimide.
- the electric resistance value of the metal wire 20 is larger than the electric resistance value of the copper layer of the columnar metal terminal 10.
- FIG. 3 shows a state where the metal wire 20 is bound to the columnar metal terminal 10 according to the embodiment.
- FIG. 3A shows a state in which the metal wire 20 is entangled with the columnar metal terminal 10 when viewed from the direction intersecting the longitudinal direction of the columnar metal terminal 10.
- FIG. 3B shows a state in which the metal wire 20 is bound to the columnar metal terminal 10 when viewed from the longitudinal direction of the columnar metal terminal 10.
- FIG. 4 is a flowchart showing a process of binding the metal wire 20 to the columnar metal terminal 10 according to the embodiment.
- the columnar metal terminal 10 is fixed, and the metal wire 20 can be wound (S111).
- a portion where the metal wire 20 starts to be wound is disposed in contact with the terminal surface 11 of the columnar metal terminal 10, and the portion where the metal wire 20 starts to be wound is pulled around the columnar metal terminal 10.
- Step S112 is an example of a first step.
- FIG. 5 is a diagram showing the steps of creating an assembly, thermocompression bonding, and joining according to the embodiment.
- the metal wire 20 and the columnar metal terminal 10 are joined.
- the metal wire 20 is realized by thermocompression bonding and resistance welding to the columnar metal terminal 10.
- FIG. 6 is a flowchart showing a process of joining an assembly according to the embodiment.
- the above-described assembly is placed between a pair of welding electrodes 30 provided in the resistance welder (S121). Specifically, the assembly is arranged between the pair of welding electrodes 30 so that the pair of joining terminal surfaces 11a of the columnar metal terminals 10 and the pair of welding electrodes 30 face each other.
- the assembly is thermocompression bonded with the pair of welding electrodes 30 (S122).
- the resistance welder applies a current to the pair of welding electrodes 30 as indicated by broken line arrows in FIG.
- a load is applied to the metal wire 21 by the pair of welding electrodes 30 so that the metal wire 21 is crushed in a natural state.
- the pair of welding electrodes 30 generate heat, and the metal wire 20 is heated, whereby the insulating coating 22 of the metal wire 20 is peeled off from the metal wire 21 of the metal wire 20 and melted away.
- the pair of welding electrodes 30 pushes the metal wire 21 by a predetermined push amount.
- Step S122 is an example of a second step.
- Step S123 is an example of a second step.
- the resistance welder releases the load applied to the assembly by the pair of welding electrodes 30.
- the terminal 1 in which the metal wire 21 is electrically connected to the columnar metal terminal 10 can be obtained.
- FIG. 2 illustrates a state where the metal wire 21 is metal-bonded to the columnar metal terminal 10. Since the melting point of the tin layer of the columnar metal terminal 10 is lower than the melting point of aluminum forming the metal wire 21, the tin layer is pushed right and left by the metal wire 21, and the metal wire 21 is melt-bonded to the copper layer of the columnar metal terminal 10. At the interface between the metal wire 21 and the copper layer, the metal wire 21 and the copper layer are melted and metal-bonded. The pushed-out tin forms a metal compound with aluminium forming the metal wire 21 and copper of the columnar metal terminal 10, and contributes to reinforcement of the joint between the metal wire 21 and the columnar metal terminal 10.
- FIG. 7 is an explanatory diagram showing the amount of pressing during thermocompression bonding according to the embodiment.
- the joining by the welding electrode 30a on one side will be described.
- a metal wire 20 having the same diameter is wound around the columnar metal terminal 10.
- the resistance welder pushes the metal wire 21 in a direction in which the pair of welding electrodes 30 approach each other. Specifically, the resistance welder pushes the metal wire 20 by applying a load to the metal wire 20 by a pair of welding electrodes 30 at a load greater than or equal to a predetermined load calculated using the diameter, number of turns, and yield strength of the metal wire 20. , Transform. A position obtained by subtracting the amount of pressing of the metal wire 20 from the diameter of the metal wire 20 is the height of the metal wire 20 from the columnar metal terminal 10. The same applies to the other welding electrode 30b.
- the metal wire 21 and the pair of welding electrodes 30 are in contact with each other using a load cell in order to appropriately thermocompress the metal wire 20 with the pair of welding electrodes 30. Is detected. Thereby, the resistance welder can push in the metal wire with the pushing amount from the point in contact with the metal wire 21.
- the metal wire 21 When the metal wire 21 is pushed into the welding electrode 30 on one side by a predetermined pushing amount, the metal wire 21 is deformed according to the pushing amount. In the metal wire 21 of FIG. 7, the height of the metal wire 21 after bonding is indicated by (d0 ⁇ indentation amount). In this way, the surface of the metal wire 21 on the outer peripheral side of the terminal 1 is flattened, the metal wire 21 wound several turns and the plurality of contact surfaces of the welding electrode 30 are evenly contacted, and energization is performed through all the contact surfaces. It becomes possible.
- step S123 of FIG. 6 Next, the bonding in step S123 of FIG. 6 will be specifically described.
- FIG. 8 illustrates an assembly disposed between a pair of welding electrodes 30.
- FIG. 8 is an explanatory diagram illustrating a conduction path when joining according to the embodiment.
- FIG. 8 shows a view of the assembly in the longitudinal direction of the columnar metal terminal 10 as shown in FIG.
- a path through which a current flows from one welding electrode 30a to the other welding electrode 30b through the assembly is defined as a conduction path D1, and the columnar metal terminal 10 from one welding electrode 30a to the other welding electrode 30b.
- a path of current flowing through the metal wire 21 bypassing the line is defined as conduction paths D2 and D3.
- the metal of the metal wire 20 having the lowest melting point except for the copper layer of the columnar metal terminal 10 and the tin layer in the elements constituting the metal wire 21 at the contact surface between the metal wire 21 of the metal wire 20 and the columnar metal terminal 10.
- Line 21 begins to melt locally.
- the columnar metal terminal 10 is a three-layer structure including an iron layer, a copper layer, and a tin layer.
- a structure in which an iron layer having a high electrical resistivity is thinly coated with a copper layer having a low electrical resistivity generates Joule heat at the peripheral portion of the columnar metal terminal 10 in contact with the metal wire 21, and the heat transfer to the metal wire 21. Increases speed and contributes to accelerated melting.
- the electrical resistance values of the conduction paths D1 to D3 are expressed by the following formulas (1) and (2).
- R 1 is an electric resistance of the conduction path D1.
- R 2 is an electric resistance of the conduction path D2.
- R 3 is an electric resistance of the conduction path D3.
- R D1 is a contact resistance value between one welding electrode 30 a and the metal wire 21 of the metal wire 20.
- R A1 is an electric resistance value of the metal wire 21 of the metal wire 20 between the one welding electrode 30a and the columnar metal terminal 10.
- RC is the electrical resistance value of the columnar metal terminal 10.
- R A2 is the electric resistance value of the metal wire 21 of the metal wire 20 between the other welding electrode 30b and the columnar metal terminal 10.
- R D2 is a contact resistance value between the other welding electrode 30 b and the metal wire 21 of the metal wire 20.
- R A3 is the electrical resistance value of the conduction paths D2 and D3.
- the conduction paths D2 and D3 are made as long as possible, that is, the metal wire 21 of the metal wire 20 in the conduction paths D2 and D3 is bent.
- the electric resistance value R A3 can be increased. For example, by making the sum of the thickness S1 of the metal wire 21 that is the electrical resistance value R A1 and the thickness S2 of the metal wire 21 that is the electrical resistance value R A2 smaller than the length of the conduction path D2 or the conduction path D3, (R A1 + R A2 ) ⁇ R A3 can be satisfied.
- the electrical resistance value R A3 of the conduction paths D2 and D3 is increased, and (R A1 + R A2 ) ⁇ R A3 is satisfied.
- the electrical resistivity of the copper layer of the columnar metal terminal 10 is smaller than the electrical resistivity of the metal wire 21 of the metal wire 20.
- the columnar metal terminal 10 is made of a material having a lower electrical resistivity than the material of the metal wire 21 of the metal wire 20, or the thickness of the columnar metal terminal 10 on the conduction path D1 is further reduced.
- route D1 is larger than the diameter of the metal wire 21 of the metal wire 20, it is made thinner than the diameter of the metal wire 21 of the metal wire 20, for example. Also good.
- the contact area between the metal wire 21 of the metal wire 20 on one side and the columnar metal terminal 10 is reduced, or the metal on the other side. This is realized by reducing the contact area between the metal wire 21 of the wire 20 and the columnar metal terminal 10. At this time, the load applied to the assembly by the pair of welding electrodes 30 is further reduced so as not to crush the metal wire 21 of the metal wire 20.
- the electrical resistance value of the conduction path D1 is made smaller than the electrical resistance values of the conduction paths D2 and D3.
- FIG. 9 is a schematic diagram showing a columnar metal terminal 10 around which a plurality of metal wires 20 are wound according to the embodiment.
- the first metal wire 20 a is wound around the columnar metal terminal 10. At this time, the first metal wire 20a is wound around the columnar metal terminal 10 with the first metal wires 20a spaced apart from each other by a predetermined distance.
- the second metal wire 20b is wound around the columnar metal terminal 10 so as not to overlap the first metal wire 20a.
- the second metal wires 20b are wound around the columnar metal terminals 10 so as to be alternately arranged without overlapping the first metal wires 20a.
- first metal wire 20a and the second metal wire 20b are wound around the columnar metal terminal 10 in a double spiral shape.
- the intersecting portion 23 of the first metal wire 20a and the intersecting portion 23 of the second metal wire 20b are arranged so as to face the joining terminal surface 11a. These intersections 23 may be arranged on the same junction terminal surface 11a side, but may be arranged so as to be paired with the columnar metal terminals 10 interposed therebetween.
- FIG. 10 is an explanatory diagram showing the amount of pressing during thermocompression bonding when the diameter of the metal wire 20 is different according to the embodiment.
- the joining by the welding electrode 30 on one side will be described.
- a plurality of metal wires 20 having different diameters are wound around the columnar metal terminal 10.
- the plurality of metal wires 20 are, for example, a first metal wire 20a and a second metal wire 20b, and the diameter of the first metal wire 20a is larger than the diameter of the second metal wire 20b.
- the diameter of the first metal wire 20a and the diameter of the second metal wire 20b are different.
- the metal wire 20 and the columnar metal terminal 10 are joined so as to match the metal wire 20 having the smallest diameter among the plurality of metal wires 20.
- the resistance welder pushes the metal wire 20 having the smallest diameter with one welding electrode 30 a of the pair of welding electrodes 30, thereby reducing the metal wire 20 from the diameter of the metal wire 20 having the smallest diameter.
- the position obtained by subtracting the amount of pushing in is the height of the metal wire 20 from the columnar metal terminal 10. The same applies to the other welding electrode 30b.
- the load cell it is detected that the metal wire 20 having the largest diameter among the plurality of metal wires 20 and the pair of welding electrodes 30 are in contact with each other. Thereby, the resistance welder can push in the metal wire 20 with the pushing amount from the point which contacted the metal wire 21 with the largest diameter among the plurality of metal wires 20.
- the terminal 1 since the diameter d1 of the 1st metal wire 21a of the metal wire 20 is larger than the diameter d2 of the 2nd metal wire 21b of the metal wire 20, the terminal 1 has the diameter of the 2nd metal wire 21b. Flattening is performed at a position in accordance with d2.
- the second metal wire 21b is pushed by a predetermined pushing amount with respect to the diameter d2 of the second metal wire 21b. For this reason, the first metal wire 21a is pushed in by a value calculated from (the diameter d1 of the first metal wire 21a ⁇ the diameter d2 + the second metal wire + the predetermined pushing amount).
- the second metal wire 21b is deformed according to the pushing amount.
- the height of the metal line 21 after bonding is indicated by (d2—the amount of pressing).
- the metal wire 21 of the first metal wire 20a When the metal wire 21 of the first metal wire 20a is pushed into the welding electrode 30 on one side with respect to the diameter d1 of the metal wire 21 of the first metal wire 20a by (d1 ⁇ d2 + predetermined pushing amount), the metal wire 21 of the first metal wire 20a is It is deformed according to (d1-d2 + predetermined pressing amount).
- the surface of the metal wire 21 on the outer peripheral side of the terminal 1 is flattened, and the contact surfaces of the metal wire 21 and the welding electrode 30 are equal even if a plurality of metal wires 21 having different wire diameters are wound several turns. Can be energized through all contact surfaces.
- the terminal 1 can be manufactured by flattening it so as to match the metal wire 20 having the smallest diameter.
- the terminal 1 includes the columnar metal terminal 10 and the metal wire 20. Further, the electric resistance value of the metal wire 20 is larger than the electric resistance value of the columnar metal terminal 10. Further, the metal wire 20 is wound around the columnar metal terminal 10. The metal wire 20 and the columnar metal terminal 10 are metal-bonded.
- the metal wire 20 is wound around the columnar metal terminal 10 and the metal wire 20 and the columnar metal terminal 10 are metal bonded, the metal wire 20 and the columnar metal terminal 10 are firmly bonded. .
- the terminal 1 can reduce the manufacturing cost.
- the columnar metal terminal 10 has a polygonal column shape having a plurality of terminal surfaces 11.
- the terminal 1 has an intersection 23 where the metal wires 20 overlap each other in the circumferential direction of the columnar metal terminal 10.
- a part of the terminal surfaces 11 among the plurality of terminal surfaces 11 is a junction terminal surface 11a where the intersecting portion 23 is not disposed.
- the columnar metal terminal 10 and the metal wire 20 are metal-joined.
- the metal wire 20 overlaps with the intersecting portion 23, and the height of the metal wire 20 from the columnar metal terminal 10 is approximately doubled. Even if it detects using the metal wire 21 of the metal wire 20 and a pair of welding electrode 30 that it contacted, the pushing amount of a pair of welding electrode 30 cannot be controlled appropriately. Thereby, not only may the columnar metal terminal 10 and the metal wire 20 not be appropriately joined, but also the metal wire 21 may be broken. However, in this terminal 1, the crossing portion 23 where the metal wires 20 overlap each other in the circumferential direction of the columnar metal terminal 10 is arranged on the side surface side of the columnar metal terminal 10 different from the pair of joint terminal surfaces 11a. Since the metal wire 20 and the columnar metal terminal 10 are metal-bonded on the bonding terminal surface 11a without breaking, the strength between the metal wire 20 and the columnar metal terminal 10 can be ensured.
- a plurality of metal wires 20 having different diameters are wound around one columnar metal terminal 10.
- the terminal 1 joining method includes a first step in which a metal wire 20 having an electrical resistance value larger than that of the columnar metal terminal 10 is wound around the columnar metal terminal 10, and a first step. After that, a pair of opposing welding electrodes 30 are brought into contact with the metal wire 20, current is passed from the pair of welding electrodes 30 to the metal wire 20 and the columnar metal terminal 10, and the Joule heat of the metal wire 20 and the columnar metal terminal 10 And a second step of metal joining the metal wire 20 and the columnar metal terminal 10 to each other.
- the metal wire 20 and the columnar metal terminal are connected from the welding electrode 30 with the metal wire 20 wound around the columnar metal terminal 10.
- current flowing through the metal wire 21 of the metal wire 20 by bypassing the columnar metal terminal 10 can be suppressed, and current can be efficiently passed through the columnar metal terminal 10. Therefore, the fusing of the metal wire 21 is prevented and the Joule heat caused by the electrical resistance of the columnar metal terminal 10 and the Joule heat caused by the contact resistance between the columnar metal terminal 10 and the metal wire 21 are efficiently used.
- the metal wire 20 and the columnar metal terminal 10 can be metal-bonded.
- the metal wire in the first step, is formed so that an intersection 23 where the metal wires 20 overlap each other is formed at a portion where the metal wire 20 starts to be wound around the columnar metal terminal 10. 20 is wound around the columnar metal terminal 10.
- the columnar metal terminal 10 around which the metal wire 20 is wound is disposed so as to avoid contact between the opposed welding electrode 30 and the intersecting portion 23 of the metal wire 20, and the metal wire 20 and the columnar metal are arranged. The terminal 10 is joined.
- the metal wire 20 overlaps with the intersecting portion 23, and the height of the metal wire 20 from the columnar metal terminal 10 is approximately doubled. Even if it detects using the metal wire 21 of the metal wire 20 and a pair of welding electrode 30 that it contacted, the pushing amount of a pair of welding electrode 30 cannot be controlled appropriately. As a result, not only the columnar metal terminal 10 and the metal wire 20 cannot be appropriately metal-bonded, but also the metal wire 21 may be broken.
- the intersecting portion 23 is arranged on the side surface side of the columnar metal terminal 10 different from the pair of joining terminal surfaces 11a, and the metal wire 20 and the columnar metal are formed on the joining terminal surface 11a without breaking the metal wire 21. Since the terminal 10 is metal-bonded, the terminal 1 in which the strength between the metal wire 20 and the columnar metal terminal 10 is ensured can be manufactured.
- the several metal wire 20 is wound around the one columnar metal terminal 10, and each metal wire 20 is the circumferential direction of the columnar metal terminal 10 mutually. Overlapping intersections 23 are formed respectively.
- the columnar metal terminal 10 around which the metal wire 20 is wound is disposed so as to avoid contact between the pair of welding electrodes 30 facing each other and the intersecting portions 23 of the plurality of metal wires 20. 20 and the columnar metal terminal 10 are joined.
- the metal wire 20 is pushed in by one welding electrode 30a of a pair of welding electrodes 30, and it is metal from the diameter of the metal wire 20 A position obtained by subtracting the amount of pushing that the wire 20 has been pushed into is the height of the metal wire 20 from the columnar metal terminal 10.
- the outer peripheral side of the metal wire 20 is flat at the position of the pair of welding electrodes 30 because the metal wire 20 wound around the columnar metal terminal 10 by the pair of welding electrodes 30 is pushed from both sides.
- the metal wire 21 of the metal wire 20 that has been turned and wound several turns and the plurality of contact surfaces of the welding electrode 30 are in uniform contact, and energization is possible through all the contact surfaces.
- the metal wire 20 and the columnar metal terminal 10 can be securely bonded to each other, and the terminal 1 in which the outer peripheral side of the metal wire 20 is flattened can be manufactured.
- the metal wire 20 wound around the columnar metal terminal 10 by the pair of welding electrodes 30 is pushed from both sides, that is, sandwiched.
- the pair of welding electrodes 30 matches the diameter of the metal wire 20 having the smallest diameter
- the outer peripheral side of the metal wire 20 is flattened at the position of the pair of welding electrodes 30.
- the metal wires 21 of the plurality of metal wires 20 having different diameters are wound several turns, the metal wires 21 and the plurality of contact surfaces of the welding electrode 30 are in uniform contact, and energization is possible through all the contact surfaces.
- the metal wire 20 and the columnar metal terminal 10 can be securely bonded to each other, and the terminal 1 in which the outer peripheral side of the metal wire 20 is flattened can be manufactured.
- the metal wire is formed by the pair of welding electrodes 30 with a load equal to or greater than the prescribed load calculated using the diameter, the number of turns, and the proof stress of the metal wire 20.
- a load is applied to 20 to control the amount of pushing in the direction in which the metal wire 20 is pushed.
- the metal wire 20 is deformed by the amount of pushing according to the diameter, the number of turns, and the proof strength of the metal wire 20. .
- the metal wire 20 and the columnar metal are secured while ensuring the joining strength between the columnar metal terminal 10 and the metal wire 20.
- the terminal 10 can be reliably metal-bonded.
- the metal material of the metal wire 20 is mainly composed of aluminum.
- manufacturing cost can be suppressed by adopting aluminum which is cheaper than copper.
- the columnar metal terminal and the metal wire are metal-bonded in a state where the metal wire is not entangled with the columnar metal terminal, that is, in a state where the metal wire is simply wound around. May be.
- the metal wire 20 having an electric resistance value larger than the electric resistance value of the columnar metal terminal 10 is wound around the columnar metal terminal 10 in step S113 of FIG.
- the metal wire 20 having an electrical resistivity higher than that of the columnar metal terminal 10 may be wound around the columnar metal terminal 10.
- the electrical resistance value of the metal wire since the electrical resistance value of the metal wire only needs to be larger than the electrical resistance value of the columnar metal terminal, the electrical resistance value of a part of the metal wire is a part of the terminal. However, it may be smaller than the electrical resistance value of a part of the columnar metal terminal.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Resistance Welding (AREA)
- Coils Of Transformers For General Uses (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Manufacturing Of Electrical Connectors (AREA)
- Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
Abstract
端子(1)は、柱状金属端子(10)と、金属ワイヤ(20)とを備える。また、金属ワイヤ(20)の電気抵抗値は、柱状金属端子(10)の電気抵抗値よりも大きい。さらに、金属ワイヤ(20)は、柱状金属端子(10)に巻き付けられる。そして、金属ワイヤ(20)と柱状金属端子(10)とは、金属接合している。
Description
本開示は、端子及び端子の接合方法に関する。
従来、コイル端末を端子に巻き付けることで、コイル端末が接続された端子が特許文献1に開示されている。この端子では、コイル端末の強度を確保するために、コイル端末が挟持部によって挟まれている。
しかしながら、従来の端子では、挟持部からコイル端末が離間することもあり、この場合では、コイル端末と端子との接合強度を十分に確保し難くなる。このことから、コイル端末と端子との接合強度を確保したいという要望がある。
そこで本開示は、柱状金属端子と金属ワイヤとの接合強度を確保することができる端子及び端子の接合方法を提供することを目的とする。
上記目的を達成するために、本開示の一形態に係る端子は、柱状金属端子と、金属ワイヤとを備え、前記金属ワイヤの電気抵抗値は、前記柱状金属端子の電気抵抗値よりも大きく、前記金属ワイヤは、前記柱状金属端子に巻き付けられ、前記金属ワイヤと前記柱状金属端子とは、金属接合している。
また、本開示の一形態に係る端子の接合方法は、柱状金属端子の電気抵抗値よりも大きい電気抵抗値を有する金属ワイヤを、前記柱状金属端子に巻き付ける第1ステップと、前記第1ステップの後に、対向する一対の溶接電極を前記金属ワイヤに接触させ、前記溶接電極から前記金属ワイヤと前記柱状金属端子とに電流を流し、前記金属ワイヤと前記柱状金属端子のジュール熱で、前記金属ワイヤと前記柱状金属端子とを金属接合する第2ステップとを含む。
本開示によれば、柱状金属端子と金属ワイヤとの接合強度を確保することができる。
以下、本開示の実施の形態について、図面を参照しながら説明する。以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
以下、本開示の実施の形態に係る端子及び端子の接合方法について説明する。
(実施の形態)
[構成]
図1は、実施の形態に係る端子1を示す概略図である。
[構成]
図1は、実施の形態に係る端子1を示す概略図である。
図1に示すように、端子1は、装置に搭載されるモータの一部を構成するステータを構成する複数のコイルに、それぞれ備えられている。端子1は、装置の電源部に搭載される回路基板からコイルに電力供給を行う。端子1は、柱状金属端子10と、金属ワイヤ20とを有する。
図2は、図1のII-II線における実施の形態に係る端子1を示す断面図である。
図2に示すように、柱状金属端子10は、コイルと電気的に接続された柱状の金属部材である。柱状金属端子10は、金属ワイヤ20の一部を構成する金属線21と電気的に接続されている。具体的には、柱状金属端子10は、金属線21が巻き付けられた状態で金属線21と溶接、つまり金属線21と金属接合している。柱状金属端子10は、例えば、鉄(Fe)の周囲を銅(Cu)層で構成し、さらに銅の周囲を錫(Sn)で被覆した部材である。本実施の形態では、金属線21が柱状金属端子10に絡げられた状態で、金属線21と柱状金属端子10とが金属接合している。絡げるとは、巻き付けた状態で結わえていることをいい、金属線21が重なる部分が存在していることをいう。本実施の形態では、金属線21は、交差部を除き、柱状金属端子10に1重に巻き付けられている。
ここでいう金属接合は、熱圧着、超音波接合、ヒュージング等である固相接合、拡散接合、及び抵抗溶接等の溶融接合を含む意味である。本実施の形態では、主に溶接の一例である抵抗溶接について説明するが、熱圧着、超音波接合、ヒュージング等である固相接合、拡散接合によって、金属線21と柱状金属端子10とが接合されてもよい。
本実施の形態では、柱状金属端子10は短辺が約0.4mm、長辺が0.6mmの長方形であり、銅層の厚みは約25μm、錫層の厚みは約3~6μmである。また、金属ワイヤ20では、金属線21の直径は約0.15mmである。
なお、柱状金属端子10は、銅を主成分とする材料で構成されていてもよく、銅の表面に錫層を積層した部材を用いてもよい。このため、鉄及び錫は、柱状金属端子10について必須の構成要件ではない。
柱状金属端子10は、多角柱形状である。本実施の形態では、柱状金属端子10は、長手方向から見た場合に、四角形である。なお、柱状金属端子10は、長手方向から見た場合に、四角形であることに限定されず、多角形状、円形状及びこれらの組み合わせであってもよい。
この柱状金属端子10は、柱状金属端子10の長手方向と交差する方向の断面が長方形であり、一対の長辺面と、一対の短辺面とを有する。長辺面は、断面が長方形の長辺側を構成する面であり、短辺面は、断面が長方形の短辺側を構成する面である。短辺面、及び長辺面は、後述する端子面11である。また、長辺面は、後述する接合端子面11aである。
金属線21は、金属ワイヤ20の一部を構成し、絶縁被覆が形成されているワイヤである。金属線21は、一対の長辺面と金属接合している。
金属線21は、柱状金属端子10近傍において、金属線21同士が柱状金属端子10の周方向に重なりあう交差部23を形成している。交差部23は、いずれかの短辺面と接触するように形成されている。
なお、柱状金属端子10の長手方向と交差する方向の断面は、長辺と短辺の区別がない、つまり正方形であってもよく、この場合、上述の端子面11および端子面11aは長辺面、或いは短辺面といった形状に由来しない識別を行う。
[端子の接合方法]
柱状金属端子10への金属ワイヤ20の巻き付け方について説明する。
柱状金属端子10への金属ワイヤ20の巻き付け方について説明する。
まず、接合前の、柱状金属端子10と金属ワイヤ20とについて説明をする。
柱状金属端子10は、複数の端子面11を有する。複数の端子面11のうちの一部の端子面11は、交差部23が配置されない接合端子面11aである。接合端子面11aは、柱状金属端子10と金属ワイヤ20とが接合する面である。この接合方法で使用する柱状金属端子10は、上述のように、四角柱状である。
また、金属ワイヤ20は、金属線21に絶縁被覆が形成されているワイヤであり、例えば、エナメル線、リード線等である。金属線21は、例えば、アルミニウムを主成分とする材料等で構成されている。絶縁被覆は、例えばウレタン、ポリエステル、ポリエステルイミド、ポリアミドイミド等の樹脂材料で構成されている。また、金属ワイヤ20の電気抵抗値は、柱状金属端子10の銅層の電気抵抗値よりも大きくなっている。
図3は、実施の形態に係り、柱状金属端子10に金属ワイヤ20を絡げる状態を示している。図3の(a)は、柱状金属端子10の長手方向と交差する方向から見て、柱状金属端子10に金属ワイヤ20を絡げる状態を示す。図3の(b)は、柱状金属端子10の長手方向から見て、柱状金属端子10に金属ワイヤ20を絡げる状態を示す。また、図4は、実施の形態に係り、柱状金属端子10に金属ワイヤ20を絡げる工程を示すフロー図である。
図3及び図4に示すように、まず、柱状金属端子10を固定し、金属ワイヤ20を巻き付けることが可能な状態にする(S111)。金属ワイヤ20を巻き付け始める部分を柱状金属端子10の端子面11と接触させた状態で配置し、金属ワイヤ20の巻き付け始める部分を引っ張りながら、柱状金属端子10に巻き付ける。
次に、巻き付け始める部分に対して1及び2ターン目を巻き付ける際に、金属ワイヤ20の巻き付け始める部分と重なって交差するようにコイル状に巻き付ける(S112)。これにより、金属ワイヤ20は、柱状金属端子10のある一面において、交差部23が形成される。具体的には、交差部23は、金属ワイヤ20を柱状金属端子10に巻き付ける場合、金属ワイヤ20と柱状金属端子10とを平面視したときに、金属ワイヤ20の巻き付け始めの部分と巻き付ける金属ワイヤ20とを交差させることで、単一の金属ワイヤ20同士が重なり合う部分である。本実施の形態では、交差部23は、端子面11と対向する位置に構成されている。ステップS112は、第1ステップの一例である。
さらに、金属ワイヤ20を柱状金属端子10に数ターン巻き付ける(S113)。こうして、金属ワイヤ20の巻き付け始める部分をニッパ等で切断して金属ワイヤ20を整えることで、柱状金属端子10に金属ワイヤ20が巻き付けられた、図5に示す組立品を得ることができる。図5は、実施の形態に係り、組立品の作成、熱圧着、及び接合の工程を示す図である。
次に、金属ワイヤ20と柱状金属端子10とを接合する。本実施の形態では、金属ワイヤ20を柱状金属端子10に熱圧着及び抵抗溶接を行うことで実現する。
図6は、実施の形態に係り、組立品を接合する工程を示すフロー図である。
図5及び図6に示すように、まず、上述の組立品を、抵抗溶接器が備える一対の溶接電極30の間に配置する(S121)。具体的には、柱状金属端子10の一対の接合端子面11aと一対の溶接電極30とが一対一で対抗するように、組立品を一対の溶接電極30の間に配置する。
次に、組立品を一対の溶接電極30によって熱圧着する(S122)。この際に、抵抗溶接器は、一対の溶接電極30に図5の破線矢印で示すように電流を流す。この際に、金属線21が自然な状態で潰れるように、一対の溶接電極30で金属線21に荷重をかける。すると、一対の溶接電極30が発熱し、金属ワイヤ20を加熱することで、金属ワイヤ20の絶縁被覆22は、金属ワイヤ20の金属線21から剥離し、溶融除去される。一対の溶接電極30は、所定の押込み量だけ、金属線21を押込む。また、一対の溶接電極30により金属線21と柱状金属端子10とが圧着されているため、金属線21と柱状金属端子10とが接触する。押込み量については後述する。ステップS122は、第2ステップの一例である。
次に、抵抗溶接器は、一対の溶接電極30に図5の破線矢印で示すように電流を流すことで、柱状金属端子10と金属線21との電気抵抗に起因して、金属線21及び柱状金属端子10にジュール熱が生じる。これにより、金属線21が溶融することで、金属線21が柱状金属端子10に抵抗溶接される(S123)。ステップS123は、第2ステップの一例である。
そして、抵抗溶接器は、一対の溶接電極30が組立品にかけていた荷重を解除する。こうして、金属線21が柱状金属端子10と電気的に接続された端子1を得ることができる。
金属線21が柱状金属端子10に金属接合された状態を、図2に例示する。金属線21を成すアルミニウムの融点より柱状金属端子10の錫層の融点が低いため、金属線21により錫層が左右に押しのけられ、金属線21が柱状金属端子10の銅層と溶融接合する。金属線21と銅層との界面では、金属線21と銅層とが溶融し、金属接合している。押しのけられた錫は、金属線21を成すアルムニウム及び柱状金属端子10の銅と金属化合物を形成し、金属線21と柱状金属端子10との接合の補強に寄与する。
次に、図6のステップS122で行われる熱圧着の際の押込み量について、具体的に説明する。
図7は、実施の形態に係り、熱圧着の際の押込み量を示す説明図である。図7では、一方側の溶接電極30aによる接合について説明する。ここでは、同一の径の金属ワイヤ20が柱状金属端子10に巻き付けられている。
抵抗溶接器は、一対の溶接電極30が互いに近づく方向に、金属線21を押込む。具体的には、抵抗溶接器は、金属ワイヤ20の径、ターン数、耐力を用いて算出される規定の荷重以上で、一対の溶接電極30によって金属ワイヤ20に荷重をかけ金属ワイヤ20を押込み、変形させる。金属ワイヤ20の径から金属ワイヤ20が押込まれた押込み量を差し引いた位置が、柱状金属端子10からの金属ワイヤ20の高さとなる。また、他方の溶接電極30bにおいても同様である。
また、一対の溶接電極30を規定するために、一対の溶接電極30により金属ワイヤ20を適切に熱圧着するために、ロードセルを用いて、金属線21と一対の溶接電極30とが接触したことを検知する。これにより、抵抗溶接器は、金属線21と接触した地点からの押込み量で金属ワイヤを押込むことができる。
金属線21は、一方側の溶接電極30に所定の押込み量だけ押込まれると、押込み量の分に応じて変形する。図7の金属線21は、接合後の金属線21の高さが(d0-押込み量)で示される。こうして、端子1の外周側の金属線21の表面が平坦化され、数ターン巻き付けられた金属線21と溶接電極30の複数の接触面が均等に接触し、全ての接触面を介して通電が可能となる。
次に、図6のステップS123での接合について、具体的に説明する。
まず、金属ワイヤ20を柱状金属端子10に抵抗溶接する際に、金属線21の温度が上がり過ぎると、金属線21が潰れて断線したり、溶断したりすることがある。このため、抵抗溶接器は、金属線21が潰れて断線したり、溶断したりする不具合が発生しないように、一対の溶接電極30に流す電流を制御する。
一対の溶接電極30の間に配置した組立品を図8に例示する。図8は、実施の形態に係り、接合をする際の、導通経路を例示した説明図である。図8は、図3の様に、組立品を柱状金属端子10の長手方向に見た図を示している。
図8に示すように、一方の溶接電極30aから組立品を介して他方の溶接電極30bまで電流が流れる経路を導通経路D1とし、一方の溶接電極30aから他方の溶接電極30bまで柱状金属端子10を迂回して金属線21を流れる電流の経路を導通経路D2、D3とする。
ここで、一方の溶接電極30aから他方の溶接電極30bに電流を流すと、一方側の金属ワイヤ20の金属線21と柱状金属端子10との間の電気抵抗値RB1と、他方側の金属ワイヤ20の金属線21と柱状金属端子10との間の電気抵抗値RB2とにより、金属ワイヤ20の金属線21及び柱状金属端子10にジュール熱が生じる。加えて、金属線21および柱状金属端子10を構成する各要素の電気抵抗値に起因するジュール熱が生じる。そして次第に、柱状金属端子10のコア材である鉄に生じたジュール熱が柱状金属端子10の銅層および金属線21に伝播していく。これにより、金属ワイヤ20の金属線21と柱状金属端子10との接触面で、柱状金属端子10の銅層および金属線21を構成する要素で錫層を除き最も融点の低い金属ワイヤ20の金属線21が局所的に溶融し始める。
本実施の形態では、柱状金属端子10は、鉄層、銅層、及び錫層の3つの積層構造体である。電気抵抗率の高い鉄層に電気抵抗率の小さい銅層を薄く被覆した構造が、金属線21に接する柱状金属端子10の周縁部でジュール熱を生じさせ、金属線21への熱の伝番速度を速め、溶融促進に寄与している。
なお、導通経路D2、D3に、過大な電流が流れると、金属ワイヤ20の金属線21との電気抵抗値RA3に起因するジュール熱により、金属ワイヤ20の金属線21が溶断してしまう。この観点から、できる限り、導通経路D2、D3には、電流が流れないことが好ましい。このため、導通経路D1の銅層の電気抵抗値は、導通経路D2、D3のそれぞれの電気抵抗値よりも小さくする必要があると考えられる。
ところで、導通経路D1~D3のそれぞれの電気抵抗値を、以下の式(1)、式(2)で表してみる。
電気抵抗値R1=RD1+RA1+RB1+RC+RB2+RA2+RD2 式(1)
導通経路D2の電気抵抗値R2=導通経路D3の電気抵抗値R3=RD1+RA3+RD2 式(2)
R1は、導通経路D1の電気抵抗値である。R2は、導通経路D2の電気抵抗値である。R3は、導通経路D3の電気抵抗値である。RD1は、一方の溶接電極30aと金属ワイヤ20の金属線21との接触抵抗値である。RA1は、一方の溶接電極30aと柱状金属端子10との間の、金属ワイヤ20の金属線21の電気抵抗値である。RCは、柱状金属端子10の電気抵抗値である。RA2は、他方の溶接電極30bと柱状金属端子10との間の、金属ワイヤ20の金属線21の電気抵抗値である。RD2は、他方の溶接電極30bと金属ワイヤ20の金属線21との接触抵抗値である。RA3は、導通経路D2、D3の電気抵抗値である。
式(1)と式(2)とを見比べると、導通経路D1と導通経路D2、D3との電気抵抗値の差異は、導通経路D1ではRA1+RB1+RC+RB2+RA2、導通経路D2、D3ではRA3である。このため、(RA1+RB1+RC+RB2+RA2)<RA3とする必要があることが分かる。その一方で、電気抵抗値RB1と電気抵抗値RB2とを大きくすることで、金属ワイヤ20の金属線21を溶融させる必要がある。
そこで、(RA1+RB1+RC+RB2+RA2)<RA3となるには、(RA1+RA2)<RA3を満たすことと、柱状金属端子10の電気抵抗値を小さくすることとが必要であると考えられる。
導通経路D2、D3の長さは金属線21の厚みよりも大きいため、導通経路D2、D3をできるだけ長くすること、つまり導通経路D2、D3の部分の金属ワイヤ20の金属線21を撓ませることで電気抵抗値RA3を大きくすることができる。例えば、電気抵抗値RA1である金属線21の厚みS1と電気抵抗値RA2である金属線21の厚みS2との和を、導通経路D2又は導通経路D3の長さよりも小さくすることで、(RA1+RA2)<RA3を満たすことができる。
さらに、金属ワイヤ20の金属線21を細くすることで、導通経路D2、D3の電気抵抗値RA3が大きくなり、(RA1+RA2)<RA3が満たされる。
また、柱状金属端子10の銅層の電気抵抗率は金属ワイヤ20の金属線21の電気抵抗率よりも小さい。このように、柱状金属端子10の材料を金属ワイヤ20の金属線21の材料よりも電気抵抗率の低い材料を用いたり、導通経路D1上の柱状金属端子10の厚みをさらに薄くしたりする。また、本実施の形態では、導通経路D1上の柱状金属端子10の厚みは、例えば金属ワイヤ20の金属線21の径よりも大きいが、金属ワイヤ20の金属線21の径よりも薄くしてもよい。
次に、電気抵抗値RB1及び電気抵抗値RB2を大きくするには、一方側の金属ワイヤ20の金属線21と柱状金属端子10との間の接触面積を小さくしたり、他方側の金属ワイヤ20の金属線21と柱状金属端子10との間の接触面積を小さくしたりして実現する。この際には、金属ワイヤ20の金属線21を潰さないように、一対の溶接電極30による組立品に対する荷重をさらに小さくする。
このように、上記の点を考慮することで、導通経路D1の電気抵抗値は、導通経路D2、D3のそれぞれの電気抵抗値よりも小さくする。
図9は、実施の形態に係り、複数の金属ワイヤ20が巻き付けられた柱状金属端子10を示す概略図である。
次に、複数種類の金属ワイヤ20を柱状金属端子10に巻き付ける場合を説明する。ここでは、柱状金属端子10にメインコイルの第1金属ワイヤ20aとサブコイルの第2金属ワイヤ20bとを巻き付ける場合を想定している。
まず、図9のように、第1金属ワイヤ20aを柱状金属端子10に巻き付ける。この際に、第1金属ワイヤ20aは、第1金属ワイヤ20a同士が所定の間隔を空けた状態で柱状金属端子10に巻き付けられる。
さらに、第2金属ワイヤ20bは、第1金属ワイヤ20aと重なり合わないように、柱状金属端子10に巻き付けられる。第2金属ワイヤ20bは、第1金属ワイヤ20aと重なり合わずに交互に配置されるように、柱状金属端子10に1重に巻き付けられる。
こうして、第1金属ワイヤ20a及び第2金属ワイヤ20bは、2重螺旋状に柱状金属端子10に巻き付けられる。ここで、第1金属ワイヤ20aの交差部23と、第2金属ワイヤ20bの交差部23とが接合端子面11aと対向するように配置される。これらの交差部23は、同一の接合端子面11a側に配置されていてもよいが、柱状金属端子10を挟んで対になるように配置されてもよい。
次に、径の異なる複数の金属ワイヤ20を柱状金属端子10に接合する場合について説明する。
図10は、実施の形態に係り、金属ワイヤ20の径が異なる場合の熱圧着の際の押込み量を示す説明図である。図10では、一方側の溶接電極30による接合について説明する。ここでは、径が異なる複数の金属ワイヤ20が柱状金属端子10に巻き付けられている。複数の金属ワイヤ20は、例えば、第1金属ワイヤ20aと第2金属ワイヤ20bとであり、第1金属ワイヤ20aの径が第2金属ワイヤ20bの径よりも大きい。
図10に示すように、第1金属ワイヤ20a及び第2金属ワイヤ20bを柱状金属端子10に巻き付けた状態では、第1金属ワイヤ20aの径と第2金属ワイヤ20bの径とが異なっている。
この際に、複数の金属ワイヤ20の中で最も径の小さい金属ワイヤ20に合わせるように、金属ワイヤ20と柱状金属端子10とを接合する。具体的には、抵抗溶接器は、一対の溶接電極30のうちの一方の溶接電極30aによって最も径の小さい金属ワイヤ20を押込むことで、最も径の小さい金属ワイヤ20の径から金属ワイヤ20が押込まれた押込み量を差し引いた位置が、柱状金属端子10からの金属ワイヤ20の高さとなる。他方の溶接電極30bにおいても同様である。
また、ロードセルを用いて、複数の金属ワイヤ20の中で最も径の大きい金属ワイヤ20と一対の溶接電極30とが接触したことを検知する。これにより、抵抗溶接器は、複数の金属ワイヤ20の中で最も径の大きい金属線21と接触した地点からの押込み量で金属ワイヤ20を押込むことができる。
これにより、本実施の形態では、端子1は、金属ワイヤ20の第1金属線21aの径d1が金属ワイヤ20の第2金属線21bの径d2よりも大きいため、第2金属線21bの径d2に合わせた位置で平坦化される。
第2金属線21bは、第2金属線21bの径d2に対して所定の押込み量だけ押込まれる。このため、第1金属線21aは、(第1金属線21aの径d1-第2金属線の径d2+所定の押込み量)を算出した値だけ押込まれる。
第2金属線21bの径d2に対して一方側の溶接電極30に所定の押込み量だけ押込まれると、第2金属線21bは、押込み量に応じて変形する。図10の第2金属線21bは、接合後の金属線21の高さが(d2-押込み量)で示される。
また、第1金属ワイヤ20aの金属線21の径d1に対して一方側の溶接電極30に(d1-d2+所定の押込み量)だけ押込まれると、第1金属ワイヤ20aの金属線21は、(d1-d2+所定の押込み量)に応じて変形する。
こうして、端子1の外周側の金属線21の表面が平坦化され、線径の異なる複数の金属線21が数ターン巻き付けられていても、金属線21と溶接電極30の複数の接触面が均等に接触し、全ての接触面を介して通電が可能となる。
線径の異なる複数の金属ワイヤ20を柱状金属端子10に接合する場合も図6と同様であるため、その説明を省略する。
このようにして、金属ワイヤ20の径が異なるものが柱状金属端子10に巻き付けられていても、最も径の小さい金属ワイヤ20に合わせるように平坦化することで端子1を製造できる。
[作用効果]
次に、本実施の形態おける端子1及び端子1の接合方法の作用効果について説明する。
次に、本実施の形態おける端子1及び端子1の接合方法の作用効果について説明する。
上述したように、本実施の形態に係る端子1は、柱状金属端子10と、金属ワイヤ20とを備える。また、金属ワイヤ20の電気抵抗値は、柱状金属端子10の電気抵抗値よりも大きい。さらに、金属ワイヤ20は、柱状金属端子10に巻き付けられる。そして、金属ワイヤ20と柱状金属端子10とは、金属接合している。
これによれば、金属ワイヤ20が柱状金属端子10に巻き付けられ、金属ワイヤ20と柱状金属端子10とが金属接合しているため、金属ワイヤ20と柱状金属端子10とが強固に接合されている。
したがって、柱状金属端子10と金属ワイヤ20との接合強度を確保することができている。
特に、金属ワイヤ20と柱状金属端子10との接合を補強するために、補強部材で金属ワイヤ20を固定する必要もないため、端子1は製造コストを抑制することができる。
また、本実施の形態に係る端子1において、柱状金属端子10は、複数の端子面11を有する多角柱形状をしている。端子1は、柱状金属端子10近傍において、金属ワイヤ20同士が柱状金属端子10の周方向に重なりあう交差部23を有する。そして、複数の端子面11のうちの一部の端子面11は、交差部23が配置されない接合端子面11aである。そして、接合端子面11aでは、柱状金属端子10と金属ワイヤ20とが金属接合している。
例えば、交差部23を接合端子面11aと接合した場合では、金属ワイヤ20が交差部23で重なり、柱状金属端子10からの金属ワイヤ20の高さが概ね2倍になっているため、ロードセルを用いて、金属ワイヤ20の金属線21と一対の溶接電極30とが接触したことを検知したとしても、一対の溶接電極30の押込み量を適切に制御することができない。これにより、柱状金属端子10と金属ワイヤ20とが適切に接合できない場合があるだけでなく、金属線21を破断させてしまう場合がある。しかしながらこの端子1では、金属ワイヤ20同士が柱状金属端子10の周方向に重なりあう交差部23は、一対の接合端子面11aとは異なる柱状金属端子10の側面側に配置され、金属線21を破断させることなく接合端子面11aで金属ワイヤ20と柱状金属端子10とが金属接合しているため、金属ワイヤ20と柱状金属端子10との間の強度を確保することができている。
また、本実施の形態に係る端子1において、径が異なる複数の金属ワイヤ20は、1つの柱状金属端子10に巻き付けられている。
これによれば、1つの柱状金属端子10に複数の金属ワイヤ20を巻き付けているため、1つの柱状金属端子10に複数の金属ワイヤ20を共通化することができる。このため、個別に柱状金属端子10を用意する必要も無いため、端子1の製造コストを抑制することができる。
また、本実施の形態に係る端子1の接合方法は、柱状金属端子10の電気抵抗値よりも大きい電気抵抗値を有する金属ワイヤ20を、柱状金属端子10に巻き付ける第1ステップと、第1ステップの後に、対向する一対の溶接電極30を金属ワイヤ20に接触させ、一対の溶接電極30から金属ワイヤ20と柱状金属端子10とに電流を流し、金属ワイヤ20と柱状金属端子10のジュール熱で、金属ワイヤ20と柱状金属端子10とを金属接合する第2ステップとを含む。
これによれば、金属ワイヤ20の電気抵抗値は柱状金属端子10の電気抵抗値よりも大きいため、金属ワイヤ20が柱状金属端子10に巻き付けた状態で溶接電極30から金属ワイヤ20と柱状金属端子10とに電流を流す際に、柱状金属端子10を迂回して金属ワイヤ20の金属線21を流れる電流を抑制し、効率的に柱状金属端子10を介して電流を流すことができる。このため、金属線21の溶断などを防止するとともに、柱状金属端子10の電気抵抗に起因するジュール熱及び柱状金属端子10と金属線21との接触抵抗に起因するジュール熱を効率的に利用し、金属ワイヤ20と柱状金属端子10とを金属接合することができる。
したがって、柱状金属端子10と金属ワイヤ20との接合強度を確保することができる。
特に、金属ワイヤ20と柱状金属端子10との接合を補強するために、補強部材で金属ワイヤ20を固定する必要もないため、この接合方法では、端子1を製造する作業効率が向上する。
また、本実施の形態に係る端子1の接合方法において、第1ステップでは、柱状金属端子10に金属ワイヤ20を巻き付け始める部分に、金属ワイヤ20同士が重なり合う交差部23ができるように、金属ワイヤ20を柱状金属端子10に巻き付ける。そして、第2ステップでは、対向する一対の溶接電極30と金属ワイヤ20の交差部23との接触を避けるように、金属ワイヤ20を巻き付けた柱状金属端子10を配置し、金属ワイヤ20と柱状金属端子10とを接合する。
例えば、交差部23を接合端子面11aと接合した場合では、金属ワイヤ20が交差部23で重なり、柱状金属端子10からの金属ワイヤ20の高さが概ね2倍になっているため、ロードセルを用いて、金属ワイヤ20の金属線21と一対の溶接電極30とが接触したことを検知したとしても、一対の溶接電極30の押込み量を適切に制御することができない。これにより、柱状金属端子10と金属ワイヤ20とが適切に金属接合できない場合があるだけでなく、金属線21を破断させてしまう場合がある。しかしながらこの接合方法では、交差部23は、一対の接合端子面11aとは異なる柱状金属端子10の側面側に配置し、金属線21を破断させることなく接合端子面11aで金属ワイヤ20と柱状金属端子10とを金属接合するため、金属ワイヤ20と柱状金属端子10との間の強度が確保された端子1を製造することができる。
また、本実施の形態に係る端子1の接合方法において、第1ステップでは、複数の金属ワイヤ20を1つの柱状金属端子10に巻き付け、各々の金属ワイヤ20同士が柱状金属端子10の周方向に重なりあう交差部23をそれぞれ形成する。そして、第2ステップでは、対向する一対の溶接電極30と複数の金属ワイヤ20のそれぞれの交差部23との接触を避けるように、金属ワイヤ20を巻き付けた柱状金属端子10を配置し、金属ワイヤ20と柱状金属端子10とを接合する。
これによれば、複数の柱状金属端子10を用意する必要も無く、1つの柱状金属端子10に複数の金属ワイヤ20を巻き付けることで、複数の金属ワイヤ20と柱状金属端子10とを金属接合することができる。このため、この方法によれば、端子1の製造コストを抑制することができる。
また、本実施の形態に係る端子1の接合方法において、第2ステップでは、一対の溶接電極30のうちの一方の溶接電極30aによって金属ワイヤ20を押込むことで、金属ワイヤ20の径から金属ワイヤ20が押込まれた押込み量を差し引いた位置が、柱状金属端子10からの金属ワイヤ20の高さとなる。
これによれば、一対の溶接電極30によって柱状金属端子10に巻き付けられた金属ワイヤ20が両側から押込まれる、つまり挟まれることで、一対の溶接電極30の位置で金属ワイヤ20の外周側が平坦化され、数ターン巻き付けられた金属ワイヤ20の金属線21と溶接電極30の複数の接触面が均等に接触し、全ての接触面を介して通電が可能となる。これにより、金属ワイヤ20と柱状金属端子10とが確実に金属接合し、金属ワイヤ20の外周側が平坦化された端子1を製造することができる。
また、本実施の形態に係る端子1の接合方法において、柱状金属端子10に径の異なる複数の金属ワイヤ20が巻き付けられている場合、第2ステップでは、一対の溶接電極30のうちの一方の溶接電極30aによって最も径の小さい金属ワイヤ20を押込むことで、最も径の小さい金属ワイヤ20の径から金属ワイヤ20が押込まれた押込み量を差し引いた位置が、柱状金属端子10からの金属ワイヤ20の高さとなる。
これによれば、一対の溶接電極30によって柱状金属端子10に巻き付けられた金属ワイヤ20が両側から押込まれる、つまり挟まれる。一対の溶接電極30が最も径の小さい金属ワイヤ20の径に合わせるように、金属ワイヤ20を両側から押込むことで、一対の溶接電極30の位置で金属ワイヤ20の外周側が平坦化され、線径の異なる複数の金属ワイヤ20の金属線21が数ターン巻き付けられていても、金属線21と溶接電極30の複数の接触面が均等に接触し、全ての接触面を介して通電が可能となる。これにより、金属ワイヤ20と柱状金属端子10とが確実に金属接合し、金属ワイヤ20の外周側が平坦化された端子1を製造することができる。
また、本実施の形態に係る端子1の接合方法において、第2ステップでは、金属ワイヤ20の径、ターン数、耐力を用いて算出される規定の荷重以上で、一対の溶接電極30によって金属ワイヤ20に荷重をかけ、金属ワイヤ20が押込まれる方向の押込み量を制御する。
このように、荷重に基づいて一対の溶接電極30による押込み量を制御することで、金属ワイヤ20は、金属ワイヤ20の径、ターン数、耐力に応じた押込み量で金属ワイヤ20を変形される。これにより、金属ワイヤ20が押込まれ過ぎることで断線するといった不具合が抑制されるため、この接合方法では、柱状金属端子10と金属ワイヤ20との接合強度を確保しつつ、金属ワイヤ20と柱状金属端子10とを確実に金属接合することができる。
また、本実施の形態に係る端子1の接合方法において、金属ワイヤ20の金属材料は、アルミニウムを主成分とする。
これによれば、銅に比べ安価なアルミニウムを採用することで製造コストを抑制することができる。
(その他の変形例等)
以上、本発明について、実施の形態に基づいて説明したが、本発明は、上記実施の形態に限定されるものではない。以降の説明において、上記実施の形態と同一の部分においては、同一の符号を付してその説明を省略する場合がある。
以上、本発明について、実施の形態に基づいて説明したが、本発明は、上記実施の形態に限定されるものではない。以降の説明において、上記実施の形態と同一の部分においては、同一の符号を付してその説明を省略する場合がある。
例えば、本実施の形態の端子及び端子の接合方法について、柱状金属端子に金属線が絡げられていない状態、つまり単に1重に巻き付けられる状態で、柱状金属端子と金属線とが金属接合されてもよい。
また、本実施の形態の端子及び端子の接合方法について、図4のステップS113で柱状金属端子10の電気抵抗値よりも大きい電気抵抗値を有する金属ワイヤ20を、柱状金属端子10に巻き付けているが、柱状金属端子10の電気抵抗率よりも大きい電気抵抗率を有する金属ワイヤ20を、柱状金属端子10に巻き付けてもよい。
また、本実施の形態の端子及び端子の接合方法について、金属ワイヤの電気抵抗値が柱状金属端子の電気抵抗値よりも大きければよいため、端子の一部分においては、金属ワイヤの一部分の電気抵抗値が、柱状金属端子の一部分の電気抵抗値よりも小さくなっていてもよい。
その他、実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
1 端子
10 柱状金属端子
11 端子面
11a 接合端子面
20、20a、20b 金属ワイヤ
23、23a、23b 交差部
30、30a、30b 溶接電極
10 柱状金属端子
11 端子面
11a 接合端子面
20、20a、20b 金属ワイヤ
23、23a、23b 交差部
30、30a、30b 溶接電極
Claims (10)
- 柱状金属端子と、
金属ワイヤとを備え、
前記金属ワイヤの電気抵抗値は、前記柱状金属端子の電気抵抗値よりも大きく、
前記金属ワイヤは、前記柱状金属端子に巻き付けられ、
前記金属ワイヤと前記柱状金属端子とは、金属接合している
端子。 - 前記柱状金属端子は、複数の端子面を有する多角柱形状をしており、
前記柱状金属端子近傍において、前記金属ワイヤ同士が前記柱状金属端子の周方向に重なりあう交差部を有し、
前記複数の端子面のうちの一部の端子面は、前記交差部が配置されない接合端子面であり、
前記接合端子面では、前記柱状金属端子と前記金属ワイヤとが金属接合している
請求項1に記載の端子。 - 径が異なる複数の前記金属ワイヤは、1つの前記柱状金属端子に巻き付けられている
請求項1又は2に記載の端子。 - 柱状金属端子の電気抵抗値よりも大きい電気抵抗値を有する金属ワイヤを、前記柱状金属端子に巻き付ける第1ステップと、
前記第1ステップの後に、対向する一対の溶接電極を前記金属ワイヤに接触させ、前記一対の溶接電極から前記金属ワイヤと前記柱状金属端子とに電流を流し、前記金属ワイヤと前記柱状金属端子のジュール熱で、前記金属ワイヤと前記柱状金属端子とを金属接合する第2ステップとを含む
端子の接合方法。 - 前記第1ステップでは、前記柱状金属端子に前記金属ワイヤを巻き付け始める部分に、前記金属ワイヤ同士が前記柱状金属端子の周方向に重なりあう交差部ができるように、前記金属ワイヤを前記柱状金属端子に巻き付け、
前記第2ステップでは、対向する前記一対の溶接電極と前記金属ワイヤの前記交差部との接触を避けるように、前記金属ワイヤを巻き付けた前記柱状金属端子を配置し、前記金属ワイヤと前記柱状金属端子とを金属接合する
請求項4に記載の端子の接合方法。 - 前記第1ステップでは、
複数の前記金属ワイヤを1つの前記柱状金属端子に巻き付け、
各々の前記金属ワイヤ同士が前記柱状金属端子の周方向に重なりあう交差部をそれぞれ形成し、
前記第2ステップでは、対向する前記一対の溶接電極と複数の前記金属ワイヤのそれぞれの前記交差部との接触を避けるように、前記金属ワイヤを巻き付けた前記柱状金属端子を配置し、前記金属ワイヤと前記柱状金属端子とを金属接合する
請求項4又は5に記載の端子の接合方法。 - 前記第2ステップでは、前記一対の溶接電極のうちの一方の溶接電極によって前記金属ワイヤを押込むことで、前記金属ワイヤの径から前記金属ワイヤが押込まれた押込み量を差し引いた位置が、前記柱状金属端子からの前記金属ワイヤの高さとなる
請求項4~6のいずれか1項に記載の端子の接合方法。 - 前記柱状金属端子に径の異なる複数の前記金属ワイヤが巻き付けられている場合、前記第2ステップでは、前記一対の溶接電極のうちの一方の溶接電極によって最も径の小さい前記金属ワイヤを押込むことで、最も径の小さい前記金属ワイヤの径から前記金属ワイヤが押込まれた押込み量を差し引いた位置が、前記柱状金属端子からの前記金属ワイヤの高さとなる
請求項6に記載の端子の接合方法。 - 前記第2ステップでは、前記金属ワイヤの径、ターン数、耐力を用いて算出される規定の荷重以上で、前記一対の溶接電極によって前記金属ワイヤに荷重をかけ、前記金属ワイヤが押込まれる方向の押込み量を制御する
請求項4~8のいずれか1項に記載の端子の接合方法。 - 前記金属ワイヤの金属材料は、アルミニウムを主成分とする
請求項4~9のいずれか1項に記載の端子の接合方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020514101A JP6990858B2 (ja) | 2018-04-19 | 2019-04-10 | 端子及び端子の接合方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-081005 | 2018-04-19 | ||
JP2018081005 | 2018-04-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019203082A1 true WO2019203082A1 (ja) | 2019-10-24 |
Family
ID=68239487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/015565 WO2019203082A1 (ja) | 2018-04-19 | 2019-04-10 | 端子及び端子の接合方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6990858B2 (ja) |
WO (1) | WO2019203082A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11186023A (ja) * | 1997-12-25 | 1999-07-09 | Honda Lock Mfg Co Ltd | コイル装置 |
JPH11297560A (ja) * | 1998-04-08 | 1999-10-29 | Nittoku Eng Co Ltd | コイル製造装置 |
JP2008137033A (ja) * | 2006-11-30 | 2008-06-19 | Yazaki Corp | 抵抗溶接方法及び導体ユニット |
JP2010073930A (ja) * | 2008-09-19 | 2010-04-02 | Panasonic Corp | 巻線コイルと銅線との電気接続手段 |
JP2010245456A (ja) * | 2009-04-09 | 2010-10-28 | Sumitomo Electric Ind Ltd | リアクトル集合体 |
-
2019
- 2019-04-10 JP JP2020514101A patent/JP6990858B2/ja active Active
- 2019-04-10 WO PCT/JP2019/015565 patent/WO2019203082A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11186023A (ja) * | 1997-12-25 | 1999-07-09 | Honda Lock Mfg Co Ltd | コイル装置 |
JPH11297560A (ja) * | 1998-04-08 | 1999-10-29 | Nittoku Eng Co Ltd | コイル製造装置 |
JP2008137033A (ja) * | 2006-11-30 | 2008-06-19 | Yazaki Corp | 抵抗溶接方法及び導体ユニット |
JP2010073930A (ja) * | 2008-09-19 | 2010-04-02 | Panasonic Corp | 巻線コイルと銅線との電気接続手段 |
JP2010245456A (ja) * | 2009-04-09 | 2010-10-28 | Sumitomo Electric Ind Ltd | リアクトル集合体 |
Also Published As
Publication number | Publication date |
---|---|
JP6990858B2 (ja) | 2022-02-03 |
JPWO2019203082A1 (ja) | 2021-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6414242B2 (ja) | コイル装置 | |
JP6544323B2 (ja) | コイル部品 | |
JP4844848B2 (ja) | 電子部品の継線構造 | |
KR20110021834A (ko) | 전기 기기용 코일 및 코일 제조 방법 | |
TWI699073B (zh) | 定子、旋轉電機及定子的製造方法 | |
WO2004017681A1 (ja) | 誘導加熱用コイル | |
JP4644559B2 (ja) | 電磁溶接方法 | |
JP3552189B2 (ja) | ワイヤを有する電子部品 | |
WO2019203082A1 (ja) | 端子及び端子の接合方法 | |
JPH04306817A (ja) | コイル形電気部品の自動化製造方法 | |
JP3903849B2 (ja) | 電動機の固定子構造およびその製造方法 | |
CN106373710A (zh) | 一种电子元件及电感 | |
JP7016022B2 (ja) | 端子 | |
JP6686978B2 (ja) | コイル部品およびその製造方法 | |
JP7016065B2 (ja) | 端子 | |
JP6117258B2 (ja) | 複合導体線、接続構造体、導体接続部材、溶融接続装置、及び複合導体線の接続方法 | |
JP6648100B2 (ja) | 導電端子、導電端子の製造装置、及び導電端子を備えた回転電機 | |
JP5216119B2 (ja) | ターミナル接続構造 | |
JP5879769B2 (ja) | 巻線型電子部品の製造方法および巻線型電子部品 | |
JP6416959B2 (ja) | 電気導体の接合方法 | |
JP6890222B2 (ja) | インダクター部品 | |
JP4584064B2 (ja) | 線材の接続方法 | |
JP7063671B2 (ja) | 回転電機、及び回転電機の製造方法 | |
JPH01151220A (ja) | フィルムコンデンサ及びその製造方法 | |
JP5558292B2 (ja) | 導電接合端子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19789464 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020514101 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19789464 Country of ref document: EP Kind code of ref document: A1 |