WO2019189491A1 - 反応性ケイ素基含有重合体、および硬化性組成物 - Google Patents
反応性ケイ素基含有重合体、および硬化性組成物 Download PDFInfo
- Publication number
- WO2019189491A1 WO2019189491A1 PCT/JP2019/013405 JP2019013405W WO2019189491A1 WO 2019189491 A1 WO2019189491 A1 WO 2019189491A1 JP 2019013405 W JP2019013405 W JP 2019013405W WO 2019189491 A1 WO2019189491 A1 WO 2019189491A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- reactive silicon
- polymer
- silicon group
- curable composition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F283/00—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
- C08F283/06—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J163/00—Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/336—Polymers modified by chemical after-treatment with organic compounds containing silicon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/02—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
- C08L101/10—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J171/00—Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
- C09J171/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J201/00—Adhesives based on unspecified macromolecular compounds
- C09J201/02—Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
- C09J201/10—Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
Definitions
- the present invention relates to a reactive silicon group-containing polymer characterized by having a reactive silicon group at a terminal and an atom adjacent to the reactive silicon group having an unsaturated bond, and the reactive silicon group-containing polymer
- the present invention relates to a curable composition containing a polymer.
- the reactive silicon group-containing polymer is known as a moisture-reactive polymer.
- Reactive silicon group-containing polymers are included in many industrial products such as adhesives, sealing materials, coating materials, paints, and pressure-sensitive adhesives, and are used in a wide range of fields (Patent Document 1).
- Such a reactive silicon group-containing polymer has a main chain skeleton composed of various polymers such as a polyoxyalkylene polymer, a saturated hydrocarbon polymer, and a (meth) acrylic acid ester copolymer.
- Polymers are known.
- the reactive silicon group-containing polymer having a polyoxyalkylene polymer as a main chain skeleton is relatively low viscosity at room temperature and easy to handle, and the cured product obtained after the reaction also exhibits good elasticity. Its application range is wide.
- the physical properties of a cured product obtained by using a reactive silicon group-containing polymer are affected by the polymer structure and the position and number of reactive groups.
- factors such as crosslink density and molecular weight between crosslink points greatly influence the physical properties.
- an appropriate molecular weight between crosslinking points is required.
- strength is required.
- the reactive group needs to be efficiently present at the terminal.
- a reactive silicon group-containing polyoxyalkylene polymer which is one of reactive silicon group-containing polymers, is obtained by introducing a carbon-carbon unsaturated group into a terminal hydroxyl group after ring-opening polymerization of an epoxy compound. Then, it is obtained by performing a hydrosilylation reaction between a carbon-carbon unsaturated group and a silane compound (Patent Document 2).
- Patent Document 2 it has not been easy to obtain a polyoxyalkylene polymer in which a reactive group is present at the terminal efficiently by this method.
- Patent Document 3 a method for synthesizing a polyoxyalkylene polymer having a plurality of reactive silicon groups at one terminal is also known (Patent Document 3).
- the cured product obtained by using the polymer obtained by this synthesis method has the advantage of exhibiting excellent strength because of its high crosslink density, while the modulus tends to increase and flexibility is likely to decrease. There was a problem.
- a dialkoxymethylsilyl group is most used because it has a good balance between reactivity and storage stability.
- the curing rate may not be sufficient.
- the curing rate is improved by a method using a trialkoxysilyl group as a reactive silicon group (Patent Document 4) and a method using a silyl group having an electron-withdrawing group such as methoxymethyl and chloromethyl groups (Patent Document 5). It has been proposed to let However, these methods sometimes have insufficient curability, such as when the amount of catalyst is very small. Further, the polymers described in Patent Document 6 and Patent Document 7 are also known to improve the curing rate. However, since a tin compound is used in production, it is used when a complete non-tin system is required. I could not do it.
- the present invention provides a reactive silicon group-containing polymer having a low modulus, flexibility, a cured product excellent in tensile strength, tensile elongation and tear strength, and exhibiting excellent fast curability even under conditions of addition of a low activity catalyst. And a curable composition containing the polymer.
- each R 1 is independently a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group as R 1 may be substituted or have a hetero-containing group.
- X is a hydroxyl group or a hydrolyzable group, and a is 1, 2, or 3.
- the present invention relates to a reactive silicon group-containing polymer in which an atom adjacent to the reactive silicon group has an unsaturated bond.
- R 4 is a divalent linking group, and two bonds of R 4 are each bonded to a carbon atom, an oxygen atom, a nitrogen atom, or a sulfur atom in the linking group; 2 and R 3 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a silyl group, and R 1 , X, and a are as described above.
- the reactive silicon group-containing polymer according to (1) which has at least one structure selected from the group consisting of structures represented by: (3).
- the structures represented by the general formulas (2) to (4) are respectively represented by the general formulas (5) to (7): It is related with the reactive silicon group containing polymer as described in (2) which is a structure represented by these. (4).
- the present invention relates to a curable composition containing the (A) reactive silicon group-containing polymer as described in any one of (1) to (7). (9).
- (B) The curable composition according to (9), which contains at least one selected from the group consisting of an organic tin compound, a carboxylic acid metal salt, an amine compound, a carboxylic acid and an alkoxy metal as a curing catalyst.
- (B) As a curing catalyst, it contains the silane coupling agent which has a hydrolysable silicon group and an amino group in a molecule
- (B) It is related with the curable composition as described in (11) which does not contain curing catalysts other than the silane coupling agent which has a hydrolysable silicon group and an amino group in a molecule
- the present invention relates to a sealing material or an adhesive comprising the curable composition according to any one of (8) to (12).
- a reactive silicon group which gives a cured product having excellent tensile / tear strength and tensile elongation despite its low modulus, and exhibits excellent fast curability even under conditions of addition of a low activity catalyst.
- a containing polymer and a curable composition containing the polymer can be provided.
- the reactive silicon group-containing polymer has the general formula (1): -Si (R 1 ) 3-a (X) a (1)
- each R 1 is independently a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group as R 1 may be substituted and may have a hetero-containing group.
- X is a hydroxyl group or a hydrolyzable group, and a is 1, 2, or 3.
- It has the reactive silicon group represented by these.
- the atom adjacent to the reactive silicon group has an unsaturated bond.
- the reactive silicon group-containing polymer In the reactive silicon group-containing polymer, the atom adjacent to the reactive silicon group has an unsaturated bond, thereby significantly increasing the condensation reactivity of the reactive silicon group. For this reason, the reactive silicon group containing polymer which satisfy
- the reactive silicon group in the reactive silicon group-containing polymer has the general formula (1): -Si (R 1 ) 3-a (X) a (1)
- each R 1 is independently a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group as R 1 may be substituted and may have a hetero-containing group.
- X is a hydroxyl group or a hydrolyzable group, and a is 1, 2, or 3.
- R 1 is a hydrocarbon group having 1 to 20 carbon atoms.
- the number of carbon atoms of the hydrocarbon group as R 1 is preferably 1 to 12, more preferably 1 to 6, and particularly preferably 1 to 4.
- the hetero-containing group that the hydrocarbon group as R 1 may have as a substituent is a group containing a hetero atom.
- atoms other than carbon atoms and hydrogen atoms are heteroatoms.
- heteroatoms include N, O, S, P, Si, and halogen atoms.
- the total number of carbon atoms and heteroatoms is preferably 1 to 10, more preferably 1 to 6, and further preferably 1 to 4.
- hetero-containing group examples include: hydroxyl group; mercapto group; halogen atom such as Cl, Br, I, and F; nitro group; cyano group; methoxy group, ethoxy group, n-propyloxy group, and isopropyloxy group
- An alkoxy group such as methylthio, ethylthio, n-propylthio, and isopropylthio
- an acyl group such as acetyl, propionyl, and butanoyl
- acetyloxy, propionyloxy, and butanoyl Acyloxy group such as oxy group
- substituted or unsubstituted amino group such as amino group, methylamino group, ethylamino group, dimethylamino group, and diethylamino group
- aminocarbonyl group methylaminocarbonyl group, ethylaminocarbonyl group, dimethyl group Aminocarbonyl
- R 1 is a hydrocarbon group substituted with a hetero-containing group
- the total number of carbon atoms and hetero atoms in R 1 is preferably 2 to 30, more preferably 2 to 18, and even more preferably 2 to 10 2 to 6 are preferable.
- hydrocarbon group having 1 to 20 carbon atoms as R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl.
- n-pentyl group n-hexyl group, n-heptyl group, n-octyl group, 2-ethyl-n-hexyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group
- Alkyl groups such as n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-octadecyl group, n-nonadecyl group, and n-icosyl group; vinyl group, 2-propenyl group, 3 Alkenyl groups such as -butenyl group and 4-pentenyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, and A cycl
- R 1 include, for example, a hydrogen atom; an alkyl group such as a methyl group and an ethyl group; an alkyl group having a hetero-containing group such as a chloromethyl group and a methoxymethyl group; a cycloalkyl group such as a cyclohexyl group Aryl groups such as phenyl groups; aralkyl groups such as benzyl groups; R 1 is preferably a hydrogen atom, a methyl group, a methoxymethyl group, and a chloromethyl group, more preferably a methyl group and a methoxymethyl group, and even more preferably a methoxymethyl group.
- Examples of X include a hydroxyl group, hydrogen, halogen, alkoxy group, acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, mercapto group, and alkenyloxy group.
- alkoxy groups such as a methoxy group and an ethoxy group are more preferable, and a methoxy group and an ethoxy group are particularly preferable because the hydrolyzability is mild and easy to handle.
- A is 1, 2, or 3.
- the reactive silicon group is not particularly limited as long as it is a group represented by the above formula (1).
- Examples of the reactive silicon group represented by the formula (1) include the following general formula (1-1): -Si (R 10 ) 3-b (OR 11 ) b (1-1) (In the formula, each R 10 independently represents an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 6 carbon atoms, or —R 12 N (R 13 2 ) an N, N-dialkylaminoalkyl group represented by 2 , R 12 is a methyl group or an ethyl group, R 13 is a methyl group or an ethyl group, and R 11 is an alkyl having 1 to 6 carbon atoms.
- a alkenyl group having 2 to 6 carbon atoms, or an acyl group having 2 to 6 carbon atoms, and b is 2 or 3.
- the group represented by these is
- alkyl group having 1 to 6 carbon atoms as R 10 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group. , N-pentyl group, and n-hexyl group. In these, a methyl group and an ethyl group are preferable.
- haloalkyl group having 1 to 6 carbon atoms as R 10 include a chloromethyl group, a dichloromethyl group, a trichloromethyl group, a bromomethyl group, a dibromomethyl group, a tribromomethyl group, a 2-chloroethyl group, and 2 -A bromoethyl group etc. are mentioned. In these, a chloromethyl group and a bromomethyl group are preferable, and a chloromethyl group is more preferable.
- alkoxyalkyl group having 2 to 6 carbon atoms as R 10 include methoxymethyl group, 2-methoxyethyl group, 1-methoxyethyl group, ethoxymethyl group, 2-ethoxyethyl group, n-propyloxy group.
- examples include a methyl group and a 2-n-propyloxyethyl group.
- a methoxymethyl group, a 2-methoxyethyl group, and an ethoxymethyl group are preferable, and a methoxymethyl group is more preferable.
- N, N-dialkylaminoalkyl group represented by —R 12 N (R 13 ) 2 as R 10 include N, N-dimethylaminomethyl group, N, N-diethylaminomethyl group, 2 -N, N-dimethylaminoethyl group, 2-N, N-diethylaminoethyl group and the like can be mentioned.
- N, N-dimethylaminomethyl group and N, N-diethylaminomethyl group are preferable, and N, N-diethylaminomethyl group is more preferable.
- alkyl group having 1 to 6 carbon atoms as R 11 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group. , N-pentyl group, and n-hexyl group. In these, a methyl group and an ethyl group are preferable.
- alkenyl group having 2 to 6 carbon atoms as R 11 include a vinyl group, a 2-propenyl group, a 3-butenyl group, and a 4-pentenyl group. Of these, a vinyl group and a 2-propenyl group are preferable.
- acyl group having 2 to 6 carbon atoms as R 11 include an acetyl group, a propionyl group, a butanoyl group, and a pentanoyl group. Of these, the acetyl group is preferred.
- reactive silicon groups include trimethoxysilyl group, triethoxysilyl group, tris (2-propenyloxy) silyl group, triacetoxysilyl group, dimethoxymethylsilyl group, diethoxymethylsilyl group, dimethoxyethylsilyl group , (Chloromethyl) dimethoxysilyl group, (chloromethyl) diethoxysilyl group, (methoxymethyl) dimethoxysilyl group, (methoxymethyl) diethoxysilyl group, (N, N-diethylaminomethyl) dimethoxysilyl group, and (N , N-diethylaminomethyl) diethoxysilyl group and the like, but is not limited thereto.
- a dimethoxymethylsilyl group, a trimethoxysilyl group, a triethoxysilyl group, and a (methoxymethyl) dimethoxysilyl group are preferable because a cured product having good mechanical properties can be obtained.
- a trimethoxysilyl group, a (chloromethyl) dimethoxysilyl group, and a (methoxymethyl) dimethoxysilyl group are more preferable, and a trimethoxysilyl group and a (methoxymethyl) dimethoxysilyl group are particularly preferable.
- a dimethoxymethylsilyl group and a triethoxysilyl group are more preferable, and a dimethoxymethylsilyl group is particularly preferable.
- the average number of reactive silicon groups contained in one molecule is preferably 0.5 or more, more preferably 1.0 or more, and even more preferably 1.2 or more.
- the upper limit is preferably 4 or less, and more preferably 3 or less.
- the reactive silicon group-containing polymer preferably has an average of more than 0.8 reactive silicon groups at one end.
- a sufficient reactive silicon group is introduced into the terminal, a cured product having a sufficient crosslinking density is obtained, and the strength of the cured product is improved.
- the “terminal” includes a chain end in the polymer molecular chain and a structure in the vicinity thereof. More specifically, it may be defined as a group that substitutes on the number of atoms corresponding to 20%, more preferably 10%, from the terminal of the bonding atoms constituting the polymer molecular chain. In terms of the number of bonded atoms, the terminal site may be defined as the terminal site of 50 atoms from the end of the polymer molecular chain, more preferably up to 30 atoms.
- a method for obtaining a reactive silicon group-containing polymer having an average of more than 0.8 reactive silicon groups at one end is not particularly limited.
- Examples of such a method include (1) a method obtained by a hydrosilylation reaction between a polymer having a methallyl group at the terminal and hydrosilane, and (2) a method obtained by a reaction between a polymer having a hydroxyl group at the terminal and isocyanate silane. (3) There is a method obtained by a reaction between a polymer having an isocyanate group at the terminal and aminosilane.
- (1) has problems in lowering the curing rate and productivity, and (2) and (3) have heat resistance and a complete non-tin system in order to use tin compounds in production. There is a problem that it cannot be used when required.
- an atom adjacent to the reactive silicon group has an unsaturated bond.
- the atom adjacent to the reactive silicon is not particularly limited, but carbon is preferable.
- the unsaturated bond is not particularly limited, but a carbon-carbon double bond is preferable.
- the structure of the terminal site of the reactive silicon group-containing polymer is preferably at least one structure represented by the following general formulas (2) to (4).
- R 4 is a divalent linking group, and two bonds of R 4 are each bonded to a carbon atom, an oxygen atom, a nitrogen atom, or a sulfur atom in the linking group; 2 and R 3 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a silyl group.
- R 1 , X, and a are the same as described above.
- R 4 is a divalent linking group. Two bonds of R 4 are each bonded to a carbon atom, an oxygen atom, a nitrogen atom, or a sulfur atom in the linking group. Here, the two bonds R 4 has respectively bonded to the carbon atom, oxygen atom, nitrogen atom, or sulfur atom in the linking group means that the two bonds R 4 have respectively Means existing on a carbon atom, oxygen atom, nitrogen atom, or sulfur atom in the linking group.
- R 5 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
- the hydrocarbon group as R 5 include alkyl groups such as methyl group, ethyl group, n-propyl group, and isopropyl group, aryl groups such as phenyl group and naphthyl group, and aralkyl groups such as benzyl group. It is done.
- n is preferably an integer of 0 to 10, more preferably an integer of 0 to 5, further preferably an integer of 0 to 2, particularly preferably 0 or 1, and most preferably 1.
- R 2 and R 3 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a silyl group. It is.
- the number of carbon atoms in the alkyl group is preferably 1 to 12, more preferably 1 to 6, and particularly preferably 1 to 4.
- the number of carbon atoms in the aryl group is preferably 6 to 12, and more preferably 6 to 10.
- the number of carbon atoms in the aralkyl group is preferably 7-12.
- R 2 and R 3 include hydrogen; alkyl groups such as methyl group, ethyl group, and cyclohexyl; aryl groups such as phenyl group and tolyl group; aralkyl groups such as benzyl group and phenethyl group.
- a silyl group such as a trimethylsilyl group; Among these, hydrogen, a methyl group, and a trimethylsilyl group are preferable, hydrogen and a methyl group are more preferable, and hydrogen is more preferable.
- the terminal site of the reactive silicon group-containing polymer is more preferably at least one structure represented by the following general formulas (5) to (7).
- R 1 , X, and a are the same as described above.
- the terminal site of the reactive silicon group-containing polymer is more preferably at least one structure represented by the following general formulas (5-1) to (7-1).
- R 10 , R 11 , and b are the same as described above.
- the main chain structure of the reactive silicon group-containing polymer may be linear or may have a branched chain.
- the main chain skeleton of the reactive silicon group-containing polymer is not particularly limited.
- As the reactive silicon group-containing polymer polymers having various main chain skeletons can be used.
- Examples of the main chain skeleton of the reactive silicon group-containing polymer include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, and polyoxypropylene-poly Polyoxyalkylene polymers such as oxybutylene copolymers; ethylene-propylene copolymers, polyisobutylene, copolymers of isobutylene and isoprene, polychloroprene, polyisoprene, isoprene or butadiene and acrylonitrile and / or styrene Copolymers, polybutadiene, isoprene, copolymers of butadiene with acrylonitrile, styrene, etc., and hydrogenated polyolefins obtained by hydrogenating these polyolefin polymers Saturated hydrocarbon polymers such as polymers; polyester polymers; (meth) acrylate esters obtained by radical poly
- the reactive silicon group-containing polymer may be a polymer having any one of the main chain skeletons described above or a mixture of polymers having different main chain skeletons. Moreover, about a mixture, the mixture of the polymer each manufactured separately may be sufficient, and the mixture manufactured simultaneously so that it may become arbitrary mixed compositions may be sufficient.
- the number average molecular weight of the reactive silicon group-containing polymer is preferably from 3,000 to 100,000, more preferably from 3,000 to 50,000, and particularly preferably from 3,000 to 30,000, as the polystyrene-reduced molecular weight in GPC. .
- the introduction amount of the reactive silicon group is appropriate, so that the reactive silicon group has an easy-to-handle viscosity and excellent workability while keeping the production cost within an appropriate range. It is easy to obtain a group-containing polymer.
- the polymer precursor before introduction of the reactive silicon group is obtained by measuring the hydroxyl value of JIS K 1557 and the iodine value measuring method defined in JIS K 0070.
- the end group concentration can be directly measured by titration analysis based on the principle, and can be expressed by the end group converted molecular weight determined in consideration of the structure of the polymer (the degree of branching determined by the used polymerization initiator).
- the molecular weight of the reactive silicon group-containing polymer is calculated based on the number average molecular weight obtained by general GPC measurement of the polymer precursor and a calibration curve of the above-mentioned terminal group-converted molecular weight. It is also possible to obtain the number average molecular weight obtained by GPC in terms of the terminal group equivalent molecular weight.
- the molecular weight distribution (Mw / Mn) of the reactive silicon group-containing polymer is not particularly limited.
- the molecular weight distribution is preferably narrow, preferably less than 2.0, more preferably 1.6 or less, further preferably 1.5 or less, even more preferably 1.4 or less, particularly preferably 1.3 or less. Most preferred is 2 or less.
- the molecular weight distribution of the reactive silicon group-containing polymer can be determined from the number average molecular weight and the weight average molecular weight obtained by GPC measurement.
- polyoxyalkylene polymer When a polyoxyalkylene polymer is used as the main chain of the reactive silicon group-containing polymer, an epoxy compound is used as an initiator having a hydroxyl group using a double metal cyanide complex catalyst such as a zinc hexacyanocobaltate glyme complex. (I) after introducing a carbon-carbon triple bond into the hydroxyl group of the obtained hydroxyl-terminated polyoxyalkylene polymer, the carbon-carbon triplet is obtained.
- a double metal cyanide complex catalyst such as a zinc hexacyanocobaltate glyme complex
- a method of adding a silane compound to a bond by a hydrosilylation reaction (ii) The obtained hydroxyl-terminated polyoxyalkylene polymer, a group that reacts with a hydroxyl group, a reactive silicon group, and a compound having a carbon-carbon double bond And (iii) a hydroxyl-terminated polyoxyalkylene polymer and an excess of polyisocyanate. Reacting a sulfonate compound, after a polymer having a terminal isocyanate group, groups which react with isocyanate groups, reactive silicon groups, and carbon - method of reacting a compound having a carbon double bond, are preferred.
- the method (i) is more preferable because the reaction is simple, the amount of the reactive silicon group introduced is adjusted, and the physical properties of the resulting reactive silicon group-containing polymer are stable.
- it is difficult to hydrosilylate a polymer having an allyl group terminal, which is a carbon-carbon double bond, and a reactive silicon group containing 80% or more of the silyl group introduced into the polymer terminal A polymer is obtained.
- the initiator having a hydroxyl group examples include one or more hydroxyl groups such as ethylene glycol, propylene glycol, glycerin, pentaerythritol, low molecular weight polypropylene glycol, polyoxypropylene triol, allyl alcohol, polypropylene monoallyl ether, and polypropylene monoalkyl ether. The compound which has is mentioned.
- Examples of the epoxy compound include alkylene oxides such as ethylene oxide and propylene oxide, and glycidyl ethers such as methyl glycidyl ether and allyl glycidyl ether. Among these, propylene oxide is preferable.
- Examples of the group containing a carbon-carbon triple bond include an alkynyl group.
- other unsaturated groups such as a vinyl group, an allyl group, and a methallyl group may be introduced at the hydroxyl group terminal.
- an alkali metal salt is allowed to act on the hydroxyl group-containing polymer, and then a halogenated hydrocarbon compound having a carbon-carbon triple bond is reacted.
- the method is preferably used.
- the alkali metal salt include sodium hydroxide, sodium alkoxide, potassium hydroxide, potassium alkoxide, lithium hydroxide, lithium alkoxide, cesium hydroxide, and cesium alkoxide.
- sodium hydroxide, sodium methoxide, sodium ethoxide, potassium hydroxide, potassium methoxide, and potassium ethoxide are preferable, and sodium methoxide and potassium methoxide are more preferable.
- Sodium methoxide is particularly preferred from the standpoint of availability. You may use an alkali metal salt in the state melt
- Examples of the halogenated hydrocarbon compound having a carbon-carbon triple bond used in the method (i) include propargyl chloride, 1-chloro-2-butyne, 4-chloro-1-butyne, 1-chloro-2-octyne, -Chloro-2-pentyne, 1,4-dichloro-2-butyne, 5-chloro-1-pentyne, 6-chloro-1-hexyne, propargyl bromide, 1-bromo-2-butyne, 4-bromo-1 -Butyne, 1-bromo-2-octyne, 1-bromo-2-pentyne, 1,4-dibromo-2-butyne, 5-bromo-1-pentyne, 6-bromo-1-hexyne, propargyl iodide, 1 -Iodo-2-butyne, 4-iodo-1-butyne, 1-iod
- propargyl chloride, propargyl bromide, and propargyl iodide are more preferred.
- Simultaneously with halogenated hydrocarbon compounds having a carbon-carbon triple bond vinyl chloride, allyl chloride, methallyl chloride, vinyl bromide, allyl bromide, methallyl bromide, vinyl iodide, allyl iodide, and methallyl iodide.
- a halogenated hydrocarbon compound having an unsaturated bond other than the halogenated hydrocarbon compound having a carbon-carbon triple bond such as may be used.
- hydrosilane compound used in the method (i) examples include halogenated silanes such as trichlorosilane, dichloromethylsilane, chlorodimethylsilane, and dichlorophenylsilane; trimethoxysilane, triethoxysilane, dimethoxymethylsilane, diethoxymethylsilane, Dimethoxyphenylsilane, ethyldimethoxysilane, methoxydimethylsilane, ethoxydimethylsilane, (chloromethyl) dimethoxysilane, (chloromethyl) diethoxysilane, (methoxymethyl) dimethoxysilane, (methoxymethyl) diethoxysilane, (N, N Alkoxysilanes such as -diethylaminomethyl) dimethoxysilane and (N, N-diethylaminomethyl) diethoxysilane; diacetoxymethylsilane and di
- the method for producing the reactive silicon group-containing polymer includes (I) a reaction with a polymerizable unsaturated group.
- a compound having a functional functional group (for example, acrylic acid, 2-hydroxyethyl acrylate) is copolymerized with a monomer having a (meth) acrylic structure to obtain a polymer, and any one of the obtained polymers
- the polymer is obtained at any position (preferably The carbon molecular chain terminals) - introducing carbon triple bond, then the carbon by a hydrosilylation reaction - a method for adding a silane compound to give a reactive silicon group into carbon triple bond.
- the method for producing the reactive silicon group-containing polymer includes ethylene, propylene, 1-butene, and isobutylene.
- a polymer is obtained by polymerizing an olefinic compound having 2 to 6 carbon atoms as a main monomer, and then a carbon-carbon triple bond is introduced at any position (preferably at the end of the molecular chain) of the obtained polymer. Then, a method of adding a silane compound that gives a reactive silicon group to a carbon-carbon triple bond by a hydrosilylation reaction, and the like can be mentioned.
- the curable composition can be obtained by mixing the above-described (A) reactive silicon group-containing polymer (hereinafter also referred to as the component (A)) with various additives as necessary.
- the curable composition typically contains a combination of (A) a reactive silicon group-containing polymer and (B) a curing catalyst (hereinafter also referred to as (B) component).
- B) As additives other than the curing catalyst fillers, adhesion promoters, plasticizers, sagging inhibitors, antioxidants, light stabilizers, ultraviolet absorbers, physical property modifiers, compounds containing epoxy groups, Examples thereof include a photocurable material, an oxygen curable material, and other resins other than the reactive silicon group-containing polymer.
- additives for the purpose of adjusting various physical properties of the curable composition or the cured product, other additives than the above may be added to the curable composition as necessary.
- other additives include, for example, tackifier resins, solvents, diluents, epoxy resins, surface property improvers, foaming agents, curability modifiers, flame retardants, silicates, radical inhibitors, metal inhibitors.
- activators include ozone degradation inhibitors, phosphorus peroxide decomposers, lubricants, pigments, fungicides, and the like.
- the curable composition acts as a silanol condensation catalyst for the purpose of accelerating the reaction of hydrolyzing and condensing the reactive silicon group of the reactive silicon group-containing polymer and extending or cross-linking the polymer (B).
- a curing catalyst may be used.
- Examples of the curing catalyst include organic tin compounds, carboxylic acid metal salts, amine compounds, carboxylic acids, and alkoxy metals.
- organic tin compound examples include dibutyltin dilaurate, dibutyltin dioctanoate, dibutyltin bis (butyl maleate), dibutyltin diacetate, dibutyltin oxide, dibutyltin bis (acetylacetonate), dioctyltin bis (acetylacetate). Natto), a reaction product of dibutyltin oxide and a silicate compound, a reaction product of dioctyltin oxide and a silicate compound, a reaction product of dibutyltin oxide and a phthalate, and the like.
- carboxylic acid metal salt examples include tin carboxylate, bismuth carboxylate, titanium carboxylate, zirconium carboxylate, and iron carboxylate.
- carboxylic acid metal salt the salt which combined the following carboxylic acid and various metals can be used.
- amine compounds include amines such as octylamine, 2-ethylhexylamine, laurylamine, and stearylamine; pyridine, 1,8-diazabicyclo [5,4,0] undecene-7 (DBU), and 1 , 5-diazabicyclo [4,3,0] nonene-5 (DBN) and other heterocyclic compounds; guanidines such as guanidine, phenylguanidine and diphenylguanidine; butylbiguanide, 1-o-tolylbiguanide, and Examples include biguanides such as 1-phenylbiguanide; amino group-containing silane coupling agents; ketimine compounds and the like.
- amines such as octylamine, 2-ethylhexylamine, laurylamine, and stearylamine
- pyridine 1,8-diazabicyclo [5,4,0] undecene-7 (DBU), and 1 , 5-di
- carboxylic acid examples include acetic acid, propionic acid, butyric acid, 2-ethylhexanoic acid, lauric acid, stearic acid, oleic acid, linoleic acid, neodecanoic acid, and versatic acid.
- the alkoxy metal include titanium compounds such as tetrabutyl titanate, titanium tetrakis (acetylacetonate), and diisopropoxytitanium bis (ethylacetocetate), aluminum tris (acetylacetonate), and diisopropoxy.
- titanium compounds such as tetrabutyl titanate, titanium tetrakis (acetylacetonate), and diisopropoxytitanium bis (ethylacetocetate), aluminum tris (acetylacetonate), and diisopropoxy.
- aluminum compounds such as aluminum ethyl acetoacetate and zirconium compounds such as zirconium tetrakis (acetylacetonate).
- a fluorine anion-containing compound As other (B) curing catalyst, a fluorine anion-containing compound, a photoacid generator, and a photobase generator can also be used.
- the reactive silicon group contained in the above (A) reactive silicon group-containing polymer has high activity.
- Aminosilane is usually added as an adhesion promoter.
- aminosilane is used as the (B) curing catalyst, a curable composition that does not use a commonly used curing catalyst can be produced. Therefore, it is preferable not to add another curing catalyst.
- the reactive silicon group is a trimethoxysilyl group or a methoxymethyldimethoxysilyl group, excellent curability is exhibited even when only aminosilane is used as the (B) curing catalyst.
- the typical use amount of the curing catalyst is preferably 0.001 to 20 parts by weight, more preferably 0.01 to 15 parts by weight with respect to 100 parts by weight of the (A) reactive silicon group-containing polymer.
- the amount is preferably 0.01 to 10 parts by weight.
- organotin compound, carboxylic acid metal salt, amine compound, carboxylic acid, alkoxy metal, inorganic acid and the like are used as (B) curing catalyst.
- the amount is preferably 0.001 to 10 parts by weight, more preferably 0.001 to 5 parts by weight, still more preferably 0.001 to 1 part by weight, and more preferably 0.001 to 0.005 parts by weight based on 100 parts by weight of the silicon group-containing polymer.
- the amount of (B) curing catalyst used is 0.001 to 100 parts by weight with respect to 100 parts by weight of the reactive silicon group-containing polymer. 10 parts by weight is preferable, and 0.001 to 5 parts by weight is particularly preferable.
- the blending amount of these (B) curing catalysts is within the above range, curing can proceed at a sufficiently high speed while maintaining a curing speed at which work can be easily performed. The storage stability of the composition is good.
- a reactive silicon group-containing polymer having a trialkoxysilyl group as a reactive silicon group exhibits good curability when an organotin compound is used as the (B) curing catalyst.
- an organotin compound is used as the (B) curing catalyst.
- a salt, an amine compound, a carboxylic acid, an alkoxy metal, an inorganic acid, or the like is used as the (B) curing catalyst, the curability may be deteriorated.
- a reactive silicon group-containing polymer having a methoxymethyldimethoxysilyl group as a reactive silicon group shows good curability when an amine compound is used as the (B) curing catalyst.
- the curability is deteriorated.
- an organic tin compound, a carboxylic acid, an alkoxy metal, an inorganic acid or the like is used as the (B) curing catalyst, the curability may be deteriorated.
- the combination of any reactive silicon group and (B) curing catalyst shows high activity and good curability.
- Fillers include heavy calcium carbonate, colloidal calcium carbonate, magnesium carbonate, diatomaceous earth, clay, talc, titanium oxide, fumed silica, precipitated silica, crystalline silica, fused silica, anhydrous silicic acid, hydrous silicic acid, Examples thereof include carbon black, ferric oxide, aluminum fine powder, zinc oxide, activated zinc white, PVC powder, PMMA powder, glass fiber and filament.
- the amount of filler used is preferably 1 to 300 parts by weight, particularly preferably 10 to 250 parts by weight, based on 100 parts by weight of the reactive silicon group-containing polymer.
- Balloons such as organic balloons and inorganic balloons may be added for the purpose of reducing the weight (reducing specific gravity) of the cured product formed using the curable composition.
- the balloon is a spherical filler with a hollow inside.
- the balloon material include inorganic materials such as glass, shirasu, and silica, and organic materials such as phenol resin, urea resin, polystyrene, and saran.
- the amount of balloon used is preferably from 0.1 to 100 parts by weight, particularly preferably from 1 to 20 parts by weight, based on 100 parts by weight of the reactive silicon group-containing polymer.
- An adhesiveness imparting agent can be added to the curable composition.
- an adhesiveness imparting agent a silane coupling agent or a reaction product of a silane coupling agent can be added.
- silane coupling agent examples include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ -aminoethyl- ⁇ -aminopropyltrimethoxysilane, N- ⁇ -aminoethyl- ⁇ - Amino group-containing silanes such as aminopropylmethyldimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, and (2-aminoethyl) aminomethyltrimethoxysilane; ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropyl Isocyanate group-containing silanes such as triethoxysilane, ⁇ -isocyanatopropylmethyldimethoxysilane, ⁇ -isocyanatemethyltrimethoxysilane, and ⁇ -isocyanatemethyldimethoxymethyl
- the amount of the silane coupling agent used is preferably from 0.1 to 20 parts by weight, particularly preferably from 0.5 to 10 parts by weight, based on 100 parts by weight of the reactive silicon group-containing polymer.
- the amino group-containing silane (aminosilane) in the silane coupling agent is used as a curing catalyst.
- aminosilane becomes an additive having both a curing catalyst and an adhesion-imparting agent.
- plasticizer can be added to the curable composition.
- plasticizers include phthalate compounds such as dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di (2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), and butyl benzyl phthalate; Terephthalic acid ester compounds such as ethylhexyl) -1,4-benzenedicarboxylate; non-phthalic acid ester compounds such as 1,2-cyclohexanedicarboxylic acid diisononyl ester; dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate And aliphatic polycarboxylic acid ester compounds such as tributyl acetylcitrate; unsaturated fatty acid ester compounds such as butyl
- a polymer plasticizer can be used.
- the polymer plasticizer include vinyl polymers; polyester plasticizers; polyether polyols such as polyethylene glycol and polypropylene glycol having a number average molecular weight of 500 or more, and hydroxy groups of these polyether polyols as ester groups and ether groups.
- Polyethers such as derivatives converted into, etc .; polystyrenes; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, and polychloroprene.
- the amount of the plasticizer used is preferably 5 to 150 parts by weight, more preferably 10 to 120 parts by weight, and particularly preferably 20 to 100 parts by weight with respect to 100 parts by weight of the reactive silicon group-containing polymer.
- a plasticizer is used within the above range, it is easy to obtain a curable composition capable of forming a cured product having excellent mechanical strength while obtaining a desired effect as a plasticizer.
- a plasticizer may be used independently and may use 2 or more types together.
- An anti-sagging agent may be added to the curable composition as necessary in order to prevent sagging and improve workability.
- the anti-sagging agent is not particularly limited.
- examples of the sagging inhibitor include polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate, and barium stearate. These anti-sagging agents may be used alone or in combination of two or more.
- the amount of the sagging inhibitor used is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the reactive silicon group-containing polymer.
- An antioxidant can be used for the curable composition. If an antioxidant is used, the weather resistance of the cured product can be increased.
- examples of the antioxidant include hindered phenols, monophenols, bisphenols, and polyphenols. Specific examples of the antioxidant are described in, for example, JP-A-4-283259 and JP-A-9-194731.
- the amount of the antioxidant used is preferably from 0.1 to 10 parts by weight, particularly preferably from 0.2 to 5 parts by weight, based on 100 parts by weight of the reactive silicon group-containing polymer.
- a light stabilizer can be used for the curable composition. Use of a light stabilizer can prevent photooxidation degradation of the cured product. Examples of the light stabilizer include benzotriazole-based, hindered amine-based, and benzoate-based compounds. As the light stabilizer, a hindered amine system is particularly preferable.
- the amount of the light stabilizer used is preferably 0.1 to 10 parts by weight, particularly preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the reactive silicon group-containing polymer.
- An ultraviolet absorber can be used for the curable composition. When the ultraviolet absorber is used, the surface weather resistance of the cured product can be enhanced.
- ultraviolet absorbers include benzophenone, benzotriazole, salicylate, substituted tolyl, and metal chelate compounds.
- a benzotriazole type is particularly preferable.
- suitable benzotriazole-based UV absorbers include commercially available names Tinuvin P, Tinuvin 213, Tinuvin 234, Tinuvin 326, Tinuvin 327, Tinuvin 328, Tinuvin 329, and Tinuvin 571 (above, manufactured by BASF). .
- the amount of the UV absorber used is preferably from 0.1 to 10 parts by weight, particularly preferably from 0.2 to 5 parts by weight, based on 100 parts by weight of the reactive silicon group-containing polymer.
- ⁇ Physical property modifier> You may add the physical property modifier which adjusts the tensile characteristic of the hardened
- the physical property modifier include alkylalkoxysilanes such as phenoxytrimethylsilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane; diphenyldimethoxysilane, and phenyltrimethoxysilane.
- Arylalkoxysilanes alkylisopropenoxysilanes such as dimethyldiisopropenoxysilane, methyltriisopropenoxysilane, and ⁇ -glycidoxypropylmethyldiisopropenoxysilane; tris (trimethylsilyl) borate, and tris (triethyl) And trialkylsilyl borates such as silyl) borate; silicone varnishes; polysiloxanes and the like.
- a physical property modifier the hardness of the cured product of the curable composition can be increased, or conversely, the hardness can be decreased and elongation at break can be produced.
- the physical property modifiers may be used alone or in combination of two or more.
- a compound that generates a compound having a monovalent silanol group in the molecule by hydrolysis has an action of reducing the modulus of the cured product without deteriorating the stickiness of the surface of the cured product.
- Particularly preferred are compounds that produce trimethylsilanol.
- Compounds that generate monovalent silanol groups in the molecule by hydrolysis include alcohol derivatives such as hexanol, octanol, phenol, trimethylolpropane, glycerin, pentaerythritol, and sorbitol. Mention may be made of silicon compounds that produce monools.
- the amount of the physical property modifier used is preferably 0.1 to 10 parts by weight, particularly preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the reactive silicon group-containing polymer.
- a compound containing an epoxy group in the curable composition, can be used.
- the restorability of the cured product can be improved.
- the compound containing an epoxy group include epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, compounds shown in epichlorohydrin derivatives, and mixtures thereof.
- epoxidized soybean oil epoxidized linseed oil, bis (2-ethylhexyl) -4,5-epoxycyclohexane-1,2-dicarboxylate (E-PS), epoxy octyl stearate, and epoxy Examples include butyl stearate.
- the amount of the epoxy compound used is preferably 0.5 to 50 parts by weight with respect to 100 parts by weight of the reactive silicon group-containing polymer.
- a photocurable material can be used for the curable composition.
- a photocurable material When a photocurable material is used, a film of the photocurable material is formed on the surface of the cured product, and the stickiness of the cured product and the weather resistance of the cured product can be improved.
- this type of substance many substances such as organic monomers, oligomers, resins or compositions containing them are known.
- typical substances there can be used unsaturated acrylic compounds, polyvinyl cinnamates or azide resins which are monomers, oligomers or mixtures thereof having one or several acrylic or methacrylic unsaturated groups.
- the amount of the photocurable substance used is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the reactive silicon group-containing polymer.
- a photocurable substance is used within the above range, it is easy to obtain a curable composition that can form a cured product that is excellent in weather resistance, is flexible, and does not easily crack.
- An oxygen curable substance can be used for the curable composition.
- the oxygen curable substance include unsaturated compounds that can react with oxygen in the air.
- the oxygen curable substance reacts with oxygen in the air to form a cured film in the vicinity of the surface of the cured product, and has an effect of preventing stickiness of the surface and adhesion of dust and dust to the surface of the cured product.
- oxygen curable substance examples include drying oil typified by drill oil and linseed oil, and various alkyd resins obtained by modifying the compound; acrylic polymers, epoxy resins, silicone resins, etc. Modified products of these resins with drying oil; 1,2-polybutadiene, 1,4-polybutadiene obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, and 1,3-pentadiene, and C5 ⁇ Examples thereof include liquid polymers such as C8 diene polymers. These may be used alone or in combination of two or more.
- the amount of the oxygen curable substance used is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the reactive silicon group-containing polymer.
- the oxygen curable substance is preferably used in combination with a photocurable substance.
- the curable composition described above can be prepared as a one-component type in which all the blending components are preliminarily blended and stored and cured by moisture in the air after construction.
- (B) a curing catalyst, a filler, a plasticizer, water, and other components as a curing agent are blended and prepared as a two-component type in which the blending material and the polymer composition are mixed before use.
- the curable composition is a one-component type
- all the ingredients are pre-blended, so the water-containing ingredients are dehydrated and dried before use, or dehydrated during decompression or the like during compounding and kneading. It is preferable.
- n-propyltrimethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldiethoxysilane, and ⁇ -glycidoxypropyl By adding a silicon compound that can react with water such as trimethoxysilane as a dehydrating agent, the storage stability is further improved.
- the amount of the silicon compound capable of reacting with water such as vinyltrimethoxysilane is preferably 0.1 to 20 parts by weight, based on 100 parts by weight of the reactive silicon group-containing polymer, and preferably 0.5 to 10 parts. Part by weight is more preferred.
- the curable composition described above Prior to curing, the curable composition described above is adjusted to a desired shape by a method such as coating, casting, or filling.
- the curable composition that has been coated, cast, or filled and shaped is cured in a desired environment such as normal temperature and normal humidity.
- the curable composition containing (A) a reactive silicon group-containing polymer having a structure represented by 2) to (4) is more preferable than a curable composition containing a conventionally known reactive silicon group-containing polymer. It can be cured in a remarkably short time.
- the curable composition described above can be used for pressure-sensitive adhesives, sealing materials for sealing construction in buildings, ships, automobiles, roads, and the like, mold preparations, adhesives, paints, and sprays.
- the cured product of the curable composition described above is suitably used as a waterproof material, a waterproof coating material, a vibration-proof material, a vibration-damping material, a sound-proof material, and a foam material. Since the cured product obtained by curing the curable composition is excellent in flexibility and adhesiveness, the curable composition is more preferably used as a sealing material or an adhesive among the above applications.
- the number average molecular weight in the examples is the GPC molecular weight measured under the following conditions.
- Liquid feeding system HLC-8120GPC manufactured by Tosoh Corporation Column: Tosoh TSK-GEL H type Solvent: THF Molecular weight: Polystyrene conversion Measurement temperature: 40 ° C
- the molecular weight in terms of end groups in the examples is determined by measuring the hydroxyl value by the measuring method of JIS K 1557 and the iodine value by the measuring method of JIS K 0070, and calculating the structure of the organic polymer (the degree of branching determined by the polymerization initiator used). This is the molecular weight determined in consideration.
- the average number of silyl groups introduced per terminal of the polymers (A) and (B) shown in the examples was calculated by NMR measurement.
- polyoxypropylene (Q-III) having a terminal structure having two or more carbon-carbon unsaturated bonds was obtained.
- polymer (Q-III) it was found that an average of 2.0 carbon-carbon unsaturated bonds were introduced at one terminal site.
- Platinum divinyldisiloxane complex (3% by weight of isopropanol solution in terms of platinum) with respect to 500 g of polyoxypropylene (Q-III) having an average of 2.0 carbon-carbon unsaturated bonds at one terminal site.
- 150 ⁇ L and 9.6 g of dimethoxymethylsilane were added to carry out the hydrosilylation reaction. After reacting at 90 ° C.
- Example 1 and Comparative Examples 1 and 2 55 parts by weight of DINP (manufactured by Jplus Co., Ltd .: diisononyl phthalate), 100% by weight of white glossy CCR per 100 parts by weight of the polymer (AI), (BI), or (B-II) listed in Table 1 (Shiraishi Calcium Co., Ltd .: Precipitated Calcium Carbonate) 120 parts by weight, Taipei R820 (Ishihara Sangyo Co., Ltd .: Titanium Oxide) 20 parts by weight, Dispalon 6500 (Enomoto Chemical Co., Ltd .: fatty acid amide wax) 2 parts by weight , Tinuvin 770 (BASF: bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate) 1 part by weight, Tinuvin 326 (BASF: 2- (3-tert-butyl-2-hydroxy-5) -Methylphenyl) -5-chlorobenzotriazole) 1 part by weight, mixed uniform
- A-171 product of Momentive: vinyltrimethoxysilane
- A-1120 product of Momentive: N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane
- U-220H manufactured by Nitto Kasei Co., Ltd .: dibutyltin bisacetylacetonate
- the obtained composition was filled in a mold and cured at 23 ° C. and 50% RH for 3 days, and further at 50 ° C. for 4 days to produce a sheet-like cured product having a thickness of about 3 mm.
- the sheet-like cured product was punched into a No. 3 dumbbell mold and subjected to a tensile strength test at 23 ° C. and 50% RH to measure the modulus at 100% elongation, the strength at break, and the elongation.
- the measurement was performed using an autograph (AGS-J) manufactured by Shimadzu Corporation at a tension speed of 200 mm / min. The results are shown in Table 1.
- the obtained composition was filled in a mold and cured at 23 ° C. and 50% RH for 3 days, and further at 50 ° C. for 4 days to produce a sheet-like cured product having a thickness of about 3 mm.
- the sheet-like cured product was punched into a tear test dumbbell type (JIS A type), and a tear test was performed at 23 ° C. and 50% RH.
- the measurement was performed using an autograph (AGS-J) manufactured by Shimadzu Corporation at a tension speed of 200 mm / min. The results are shown in Table 1.
- the curable composition of Example 1 containing the reactive silicon group-containing polymer (AI) whose end group structure satisfies the above-mentioned predetermined requirements is such that the atoms adjacent to the silicon group do not have an unsaturated bond.
- the strength (TB) of the cured product is excellent.
- the curable composition of Example 1 containing the reactive silicon group-containing polymer (AI) the atoms adjacent to the silicon group do not have an unsaturated bond, and an average of 1.
- the cured product is excellent in flexibility (low modulus, high elongation) and strength (TB).
- the obtained unpurified allyl group-terminated polyoxypropylene was mixed and stirred with n-hexane and water, and then the water was removed by centrifugation, and hexane was removed from the resulting hexane solution under reduced pressure to remove the hexane.
- the metal salt was removed.
- a polyoxypropylene polymer (Q-2) having an allyl group at the terminal site was obtained.
- 150 ⁇ L of a platinum divinyldisiloxane complex (3 wt% isopropanol solution in terms of platinum) and 6.5 g of methoxymethyldimethoxysilane were added to carry out a hydrosilylation reaction.
- Examples 2 to 16, Comparative Examples 3 to 10 Using the polymers described in Synthesis Examples 1 to 7 and commercially available products, the curability was examined according to the formulations shown in Tables 2 to 4. A condensation catalyst was added to the polymer weighed in the minicup, kneaded and stirred, and allowed to stand under constant temperature and humidity conditions of 23 ° C. and 50%. This time was defined as the curing start time. For the first 20 minutes, the surface of the mixture was touched with a spatula every 1 minute and thereafter every 10 minutes, and the time taken until the mixture did not adhere to the spatula was measured as the skinning time. The results are shown in Tables 2-4.
- Examples 2 to 16 and Comparative Examples 3 to 10 the following condensation catalysts were used.
- DBU 1,8-diazabicyclo [5,4,0] undecene-7 (manufactured by Tokyo Chemical Industry Co., Ltd.)
- PhGu 45% Nn-butylbenzenesulfonamide solution of 1-phenylguanidine (manufactured by Nippon Carbide Corporation)
- U-810 Neostan U-810 (manufactured by Nitto Kasei Co., Ltd.)
- A-1120 N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane (manufactured by Momentive)
- a reactive silicon group-containing polymer having a reactive silicon group represented by the general formula (1) and an atom adjacent to the reactive silicon group having an unsaturated bond (A -1), (A-2), or (A-3) has a reactive silicon group represented by the general formula (1), and atoms adjacent to the reactive silicon group are Compared to the organic polymer (E-1) or (E-2) not corresponding to the reactive silicon group-containing polymer having an unsaturated bond, and a curable composition containing the commercially available organic polymer STP-E10, The fast curing property was also exhibited in the above condensation catalyst.
- the comparative organic polymer (E-1) or (E-2) had insufficient activity and was uncured.
- the curable composition containing the union (A-1) or (A-2) showed good curability.
- the curable composition containing the organic polymer (A-1) or (A-2) showed fast curability as compared with the curable composition containing the commercially available organic polymer STP-E10.
- Examples 17 and 18, Comparative Example 11 With respect to 100 parts by weight of the polymer of the type described in Table 5, 55 parts by weight of DINP (manufactured by Jplus Co., Ltd .: diisononyl phthalate), 120 parts by weight of Shiraka Hana CCR (manufactured by Shiraishi Calcium Co., Ltd .: precipitated calcium carbonate), Typek R820 (manufactured by Ishihara Sangyo Co., Ltd .: titanium oxide) 20 parts by weight, Disparon 6500 (manufactured by Enomoto Chemical Co., Ltd .: fatty acid amide wax), 2 parts by weight, Tinuvin 770 (manufactured by BASF: bis (2,2,6,6) -Tetramethyl-4-piperidyl) sebacate) and 1 part by weight of TINUVIN 326 (manufactured by BASF: 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chlorobenz
- A-171 product of Momentive: vinyltrimethoxysilane
- A-1120 product of Momentive: N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane
- DBU 1,8-diazabicyclo [5,4,0] undecene-7
- Example 19 and 20, Comparative Example 12 With respect to 100 parts by weight of the polymer of the type described in Table 5, 55 parts by weight of DINP (manufactured by Jplus Co., Ltd .: diisononyl phthalate), 120 parts by weight of Shiraka Hana CCR (manufactured by Shiraishi Calcium Co., Ltd .: precipitated calcium carbonate), Typek R820 (manufactured by Ishihara Sangyo Co., Ltd .: titanium oxide) 20 parts by weight, Disparon 6500 (manufactured by Enomoto Chemical Co., Ltd .: fatty acid amide wax), 2 parts by weight, Tinuvin 770 (manufactured by BASF: bis (2,2,6,6) -Tetramethyl-4-piperidyl) sebacate) and 1 part by weight of TINUVIN 326 (manufactured by BASF: 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chlorobenz
- A-1120 (Mentive: N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane) is added and mixed, and then substantially free of moisture. And sealed in a moisture-proof cartridge.
- dumbbell tensile properties In the same manner as in Example 1, the dumbbell tensile physical properties were measured. The results are shown in Table 5.
- the curable composition containing the organic polymer (A-1) or (A-3) even when a small amount of a non-tin condensation catalyst such as DBU is used or not used Showed better curability than the curable composition containing the organic polymer (E-1).
- Example 21, Comparative Example 13 With respect to 100 parts by weight of the polymer of the type described in Table 6, DINP (manufactured by Jplus Co., Ltd .: diisononyl phthalate) 55 parts by weight, Shiraka Hana CCR (manufactured by Shiraishi Calcium Co., Ltd .: precipitated calcium carbonate) 120 parts by weight, Typek R820 (manufactured by Ishihara Sangyo Co., Ltd .: titanium oxide) 20 parts by weight, Disparon 6500 (manufactured by Enomoto Chemical Co., Ltd .: fatty acid amide wax), 2 parts by weight, Tinuvin 770 (manufactured by BASF: bis (2,2,6,6) -Tetramethyl-4-piperidyl) sebacate) and 1 part by weight of TINUVIN 326 (manufactured by BASF: 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chlorobenzotriazo
- A-171 product of Momentive: vinyltrimethoxysilane
- A-1120 product of Momentive: N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane
- U-220H dibutyltin diacetylacetonate
- Example 22 With respect to 100 parts by weight of the polymer of the type described in Table 6, DINP (manufactured by Jplus Co., Ltd .: diisononyl phthalate) 55 parts by weight, Shiraka Hana CCR (manufactured by Shiraishi Calcium Co., Ltd .: precipitated calcium carbonate) 120 parts by weight, Typek R820 (manufactured by Ishihara Sangyo Co., Ltd .: titanium oxide) 20 parts by weight, Disparon 6500 (manufactured by Enomoto Chemical Co., Ltd .: fatty acid amide wax), 2 parts by weight, Tinuvin 770 (manufactured by BASF: bis (2,2,6,6) -Tetramethyl-4-piperidyl) sebacate) and 1 part by weight of TINUVIN 326 (manufactured by BASF: 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chlorobenzotriazo
- A-171 product of Momentive: vinyltrimethoxysilane
- A-1120 product of Momentive: N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane
- DBU 1,8-diazabicyclo [5,4,0] undecene-7
- the curable composition containing the organic polymer (A-4) is an organic polymer ( Compared with the curable composition containing E-3), it exhibits good curability.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Sealing Material Composition (AREA)
- Polyethers (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
モジュラスが低く柔軟性があり、なおかつ引張り強度、引張伸び、引き裂き強度が優れた硬化物を与え、低活性の触媒添加の条件でも優れた速硬化性を示す反応性ケイ素基含有重合体、および該重合体を含有する硬化性組成物を提供する。 反応性ケイ素基含有重合体において、該重合体の分子鎖に、一般式(1): -Si(R1)3-a(X)a (1) (式中、R1はそれぞれ独立に、炭素原子数1~20の炭化水素基であり、R1としての炭化水素基は、置換されてもいてもよく、且つヘテロ含有基を有してもよく、Xは水酸基または加水分解性基であり、aは1、2、または3である。) で表される反応性ケイ素基を結合させ、反応性ケイ素基に隣接する原子が不飽和結合を有するようにする。
Description
本発明は、末端に反応性ケイ素基を有し、且つ、反応性ケイ素基に隣接する原子が不飽和結合を有することを特徴とする反応性ケイ素基含有重合体と、当該反応性ケイ素基含有重合体を含む硬化性組成物とに関する。
反応性ケイ素基含有重合体は、湿分反応性ポリマーとして知られている。反応性ケイ素基含有重合体は、接着剤、シーリング材、コーティング材、塗料、粘着剤などの多くの工業製品に含まれ、幅広い分野で利用されている(特許文献1)。
このような反応性ケイ素基含有重合体としては、ポリオキシアルキレン系重合体、飽和炭化水素系重合体、および(メタ)アクリル酸エステル系共重合体などの各種重合体からなる主鎖骨格を有する重合体が知られている。中でもポリオキシアルキレン系重合体を主鎖骨格として有する反応性ケイ素基含有重合体は、室温において比較的低粘度で取扱いやすく、また反応後に得られる硬化物も良好な弾性を示すなどの特徴から、その適用範囲は広い。
反応性ケイ素基含有重合体を利用して得られる硬化物の物性には、重合体構造と反応性基の位置や個数が影響する。特に硬化物の弾性や強度に関しては、架橋密度や架橋点間分子量といった要素が物性を大きく左右する。弾性を付与するためには適度な架橋点間分子量が必要である。また、架橋密度が高い方が強度は強くなる傾向がある。優れた強度を有する硬化物を得るためには架橋点間分子量をある程度そろえることが効果的である。このため、分子鎖の末端に反応性基が存在することが好ましい。一方で、架橋密度を高めるためには反応性基が効率よく末端に存在する必要がある。
例えば、反応性ケイ素基含有重合体の1つである反応性ケイ素基含有ポリオキシアルキレン系重合体は、エポキシ化合物を開環重合させた後、末端の水酸基に炭素-炭素不飽和基を導入させた後、炭素-炭素不飽和基とシラン化合物とのヒドロシリル化反応を行うことによって得られる(特許文献2)。しかしながら、この方法で反応性基が効率よく末端に存在するポリオキシアルキレン系重合体を得ることは容易ではなかった。
一方、1つの末端に複数の反応性ケイ素基を有するポリオキシアルキレン系重合体の合成方法についても知られている(特許文献3)。この合成方法で得られた重合体を利用して得られる硬化物には、架橋密度が高いため優れた強度を示す利点がある一方で、モジュラスが高くなる傾向にあり柔軟性が低下しやすいという課題があった。
また、前述の反応性ケイ素基としては、ジアルコキシメチルシリル基が、反応性と貯蔵安定性のバランスが優れているため、最も使用されている。しかし、硬化速度が求められる接着剤用途においては、硬化速度が十分ではない場合があった。
そこで、反応性ケイ素基としてトリアルコキシシリル基を用いる方法(特許文献4)、メトキシメチル、およびクロロメチル基などの電子吸引基を有するシリル基を用いる方法(特許文献5)により、硬化速度を向上させることが提案されている。しかし、これらの方法では、触媒量が非常に少ない場合など硬化性が十分でない場合があった。
また、特許文献6、および特許文献7に記載のポリマーも硬化速度を向上させることが知られているが、製造上スズ化合物を使用するため、完全な非錫系を求められる場合は用いることが出来なかった。
また、特許文献6、および特許文献7に記載のポリマーも硬化速度を向上させることが知られているが、製造上スズ化合物を使用するため、完全な非錫系を求められる場合は用いることが出来なかった。
本発明は、モジュラスが低く柔軟性があり、なおかつ引張り強度、引張伸び、引き裂き強度に優れる硬化物を与え、低活性の触媒添加の条件でも優れた速硬化性を示す反応性ケイ素基含有重合体、および該重合体を含有する硬化性組成物を提供することを目的とする。
本発明者らは、上記問題を解決するために鋭意検討した結果、以下の発明を完成させた。
すなわち本発明は、
(1).一般式(1):
-Si(R1)3-a(X)a (1)
(式中、R1はそれぞれ独立に、炭素原子数1~20の炭化水素基であり、R1としての炭化水素基は、置換されてもいてもよく、且つヘテロ含有基を有してもよく、Xは水酸基または加水分解性基であり、aは1、2、または3である。)
で表される反応性ケイ素基を有し、
反応性ケイ素基に隣接する原子が不飽和結合を有する、反応性ケイ素基含有重合体に関する。
(2).一般式(2)~(4):
(式中、R4は2価の連結基であり、R4が有する2つの結合手は、それぞれ、連結基内の炭素原子、酸素原子、窒素原子、または硫黄原子に結合しており、R2、およびR3は、それぞれ独立に水素、炭素原子数1~20のアルキル基、炭素原子数6~20のアリール基、炭素原子数7~20のアラルキル基、またはシリル基であり、R1、X、およびaは前述の通りである。)
で表される構造からなる群より選ばれる少なくとも1種の構造を有する(1)に記載の反応性ケイ素基含有重合体に関する。
(3).一般式(2)~(4)で表される構造が、それぞれ一般式(5)~(7):
で表される構造である、(2)に記載の反応性ケイ素基含有重合体に関する。
(4).一般式(1)で表される反応性ケイ素基を、1つの末端に平均して0.8個より多く有する、(1)~(3)のいずれか1つに記載の反応性ケイ素基含有重合体に関する。
(5).反応性ケイ素基が、ジメトキシメチルシリル基である(1)~(4)のいずれか1つに記載の反応性ケイ素基含有重合体に関する。
(6).反応性ケイ素基が、トリメトキシシリル基、および/または(メトキシメチル)ジメトキシシリル基である(1)~(4)のいずれか1つに記載の反応性ケイ素基含有重合体に関する。
(7).反応性ケイ素基含有重合体の主鎖骨格がポリオキシアルキレン系重合体である(1)~(6)のいずれかに記載の反応性ケイ素基含有重合体に関する。
(8).(1)~(7)のいずれか1つに記載の(A)反応性ケイ素基含有重合体を含有する硬化性組成物に関する。
(9).(A)反応性ケイ素基含有重合体と、
(B)硬化触媒と、
を含有する、(8)に記載の硬化性組成物に関する。
(10).(B)硬化触媒として、有機錫化合物、カルボン酸金属塩、アミン化合物、カルボン酸およびアルコキシ金属からなる群より選ばれる少なくとも一種を含む、(9)に記載の硬化性組成物に関する。
(11).(B)硬化触媒として、分子内に加水分解性ケイ素基とアミノ基とを有するシランカップリング剤を含み、(9)に記載の硬化性組成物に関する。
(12).(B)硬化触媒として、分子内に加水分解性ケイ素基とアミノ基とを有するシランカップリング剤以外の硬化触媒を含まない、(11)に記載の硬化性組成物に関する。
(13).(8)~(12)のいずれか1つに記載の硬化性組成物の硬化物に関する。
(14).(8)~(12)のいずれか1つに記載の硬化性組成物を、塗布、注型、または充填することと、
塗布、注型、または充填された硬化性組成物を硬化させることと、を含む、硬化物の製造方法に関する。
(15).(8)~(12)のいずれか1つに記載の硬化性組成物からなる、シーリング材、または接着剤に関する。
すなわち本発明は、
(1).一般式(1):
-Si(R1)3-a(X)a (1)
(式中、R1はそれぞれ独立に、炭素原子数1~20の炭化水素基であり、R1としての炭化水素基は、置換されてもいてもよく、且つヘテロ含有基を有してもよく、Xは水酸基または加水分解性基であり、aは1、2、または3である。)
で表される反応性ケイ素基を有し、
反応性ケイ素基に隣接する原子が不飽和結合を有する、反応性ケイ素基含有重合体に関する。
(2).一般式(2)~(4):
で表される構造からなる群より選ばれる少なくとも1種の構造を有する(1)に記載の反応性ケイ素基含有重合体に関する。
(3).一般式(2)~(4)で表される構造が、それぞれ一般式(5)~(7):
(4).一般式(1)で表される反応性ケイ素基を、1つの末端に平均して0.8個より多く有する、(1)~(3)のいずれか1つに記載の反応性ケイ素基含有重合体に関する。
(5).反応性ケイ素基が、ジメトキシメチルシリル基である(1)~(4)のいずれか1つに記載の反応性ケイ素基含有重合体に関する。
(6).反応性ケイ素基が、トリメトキシシリル基、および/または(メトキシメチル)ジメトキシシリル基である(1)~(4)のいずれか1つに記載の反応性ケイ素基含有重合体に関する。
(7).反応性ケイ素基含有重合体の主鎖骨格がポリオキシアルキレン系重合体である(1)~(6)のいずれかに記載の反応性ケイ素基含有重合体に関する。
(8).(1)~(7)のいずれか1つに記載の(A)反応性ケイ素基含有重合体を含有する硬化性組成物に関する。
(9).(A)反応性ケイ素基含有重合体と、
(B)硬化触媒と、
を含有する、(8)に記載の硬化性組成物に関する。
(10).(B)硬化触媒として、有機錫化合物、カルボン酸金属塩、アミン化合物、カルボン酸およびアルコキシ金属からなる群より選ばれる少なくとも一種を含む、(9)に記載の硬化性組成物に関する。
(11).(B)硬化触媒として、分子内に加水分解性ケイ素基とアミノ基とを有するシランカップリング剤を含み、(9)に記載の硬化性組成物に関する。
(12).(B)硬化触媒として、分子内に加水分解性ケイ素基とアミノ基とを有するシランカップリング剤以外の硬化触媒を含まない、(11)に記載の硬化性組成物に関する。
(13).(8)~(12)のいずれか1つに記載の硬化性組成物の硬化物に関する。
(14).(8)~(12)のいずれか1つに記載の硬化性組成物を、塗布、注型、または充填することと、
塗布、注型、または充填された硬化性組成物を硬化させることと、を含む、硬化物の製造方法に関する。
(15).(8)~(12)のいずれか1つに記載の硬化性組成物からなる、シーリング材、または接着剤に関する。
本発明によれば、モジュラスが低いにも関わらず、優れた引張り・引き裂き強度、および引張伸びを有する硬化物を与え、低活性の触媒添加の条件でも優れた速硬化性を示す反応性ケイ素基含有重合体、および該重合体を含有する硬化性組成物を提供することができる。
≪反応性ケイ素基含有重合体≫
反応性ケイ素基含有重合体は、一般式(1):
-Si(R1)3-a(X)a (1)
(式中、R1はそれぞれ独立に、炭素原子数1~20の炭化水素基であり、R1としての炭化水素基は、置換されていてもよく、且つヘテロ含有基を有してもよく、Xは水酸基または加水分解性基であり、aは1、2、または3である。)
で表される反応性ケイ素基を有する。また、反応性ケイ素基含有重合体において、反応性ケイ素基に隣接する原子が不飽和結合を有する。
反応性ケイ素基含有重合体において、反応性ケイ素基に隣接する原子が不飽和結合を有することによって、反応性ケイ素基の縮合反応性が顕著に高まる。このため、反応性ケイ素基についての上記の要件を満たす反応性ケイ素基含有重合体は、低活性の触媒添加の条件でも優れた速硬化性を示す。
反応性ケイ素基含有重合体は、一般式(1):
-Si(R1)3-a(X)a (1)
(式中、R1はそれぞれ独立に、炭素原子数1~20の炭化水素基であり、R1としての炭化水素基は、置換されていてもよく、且つヘテロ含有基を有してもよく、Xは水酸基または加水分解性基であり、aは1、2、または3である。)
で表される反応性ケイ素基を有する。また、反応性ケイ素基含有重合体において、反応性ケイ素基に隣接する原子が不飽和結合を有する。
反応性ケイ素基含有重合体において、反応性ケイ素基に隣接する原子が不飽和結合を有することによって、反応性ケイ素基の縮合反応性が顕著に高まる。このため、反応性ケイ素基についての上記の要件を満たす反応性ケイ素基含有重合体は、低活性の触媒添加の条件でも優れた速硬化性を示す。
<反応性ケイ素基>
反応性ケイ素基含有重合体における反応性ケイ素基は一般式(1):
-Si(R1)3-a(X)a (1)
(式中、R1はそれぞれ独立に、炭素原子数1~20の炭化水素基であり、R1としての炭化水素基は、置換されていてもよく、且つヘテロ含有基を有してもよく、Xは水酸基または加水分解性基であり、aは1、2、または3である。)
で表される。
反応性ケイ素基含有重合体における反応性ケイ素基は一般式(1):
-Si(R1)3-a(X)a (1)
(式中、R1はそれぞれ独立に、炭素原子数1~20の炭化水素基であり、R1としての炭化水素基は、置換されていてもよく、且つヘテロ含有基を有してもよく、Xは水酸基または加水分解性基であり、aは1、2、または3である。)
で表される。
R1は、炭素原子数1~20の炭化水素基である。R1としての炭化水素基の炭素原子数としては、1~12が好ましく、1~6がより好ましく、1~4が特に好ましい。
R1としての炭化水素基が置換基として有してもよいヘテロ含有基は、ヘテロ原子を含む基である。ここで、炭素原子および水素原子以外の原子をヘテロ原子とする。
ヘテロ原子の好適な例としては、N、O、S、P、Si、およびハロゲン原子が挙げられる。ヘテロ含有基について、炭素原子数とヘテロ原子数との合計は、1~10が好ましく、1~6がより好ましく、1~4がさらに好ましい。
ヘテロ含有基の好適な例としては、水酸基;メルカプト基;Cl、Br、I、およびFなどのハロゲン原子;ニトロ基;シアノ基;メトキシ基、エトキシ基、n-プロピルオキシ基、およびイソプロピルオキシ基などのアルコキシ基;メチルチオ基、エチルチオ基、n-プロピルチオ基、およびイソプロピルチオ基などのアルキルチオ基;アセチル基、プロピオニル基、およびブタノイル基などのアシル基;アセチルオキシ基、プロピオニルオキシ基、およびブタノイルオキシ基などのアシルオキシ基;アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、およびジエチルアミノ基などの置換または非置換のアミノ基;アミノカルボニル基、メチルアミノカルボニル基、エチルアミノカルボニル基、ジメチルアミノカルボニル基、およびジエチルアミノカルボニル基などの置換または非置換のアミノカルボニル基;シアノ基などが挙げられる。
ヘテロ含有基の好適な例としては、水酸基;メルカプト基;Cl、Br、I、およびFなどのハロゲン原子;ニトロ基;シアノ基;メトキシ基、エトキシ基、n-プロピルオキシ基、およびイソプロピルオキシ基などのアルコキシ基;メチルチオ基、エチルチオ基、n-プロピルチオ基、およびイソプロピルチオ基などのアルキルチオ基;アセチル基、プロピオニル基、およびブタノイル基などのアシル基;アセチルオキシ基、プロピオニルオキシ基、およびブタノイルオキシ基などのアシルオキシ基;アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、およびジエチルアミノ基などの置換または非置換のアミノ基;アミノカルボニル基、メチルアミノカルボニル基、エチルアミノカルボニル基、ジメチルアミノカルボニル基、およびジエチルアミノカルボニル基などの置換または非置換のアミノカルボニル基;シアノ基などが挙げられる。
R1がヘテロ含有基で置換された炭化水素基である場合、R1における炭素原子数とヘテロ原子数との合計は、2~30が好ましく、2~18がより好ましく、2~10がさらに好ましく、2~6が特に好ましい。
R1としての炭素原子数1~20の炭化水素基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチル-n-ヘキシル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-オクタデシル基、n-ノナデシル基、およびn-イコシル基などのアルキル基;ビニル基、2-プロペニル基、3-ブテニル基、および4-ペンテニル基などのアルケニル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、およびシクロオクチル基などのシクロアルキル基;フェニル基、ナフタレン-1-イル基、ナフタレン-2-イル基、o-フェニルフェニル基、m-フェニルフェニル基、およびp-フェニルフェニル基などのアリール基;ベンジル基、フェネチル基、ナフタレン-1-イルメチル基、およびナフタレン-2-イルメチル基などのアラルキル基が挙げられる。
これらの炭化水素基が、前述のヘテロ含有基で置換された基も、R1として好ましい。
これらの炭化水素基が、前述のヘテロ含有基で置換された基も、R1として好ましい。
R1の好適な例としては、例えば、水素原子;メチル基、およびエチル基などのアルキル基;クロロメチル基、およびメトキシメチル基などのヘテロ含有基を有するアルキル基;シクロヘキシル基などのシクロアルキル基;フェニル基などのアリール基;ベンジル基などのアラルキル基;などを挙げることができる。R1としては、水素原子、メチル基、メトキシメチル基、およびクロロメチル基が好ましく、メチル基、およびメトキシメチル基がより好ましく、メトキシメチル基がさらに好ましい。
Xとしては、例えば、水酸基、水素、ハロゲン、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、およびアルケニルオキシ基などが挙げられる。これらの中では、加水分解性が穏やかで取扱いやすいことからメトキシ基、およびエトキシ基などのアルコキシ基がより好ましく、メトキシ基、エトキシ基が特に好ましい。
aは1、2、または3である。aとしては、2または3が好ましい。
反応性ケイ素基としては、上記式(1)により表される基である限り特に限定されない。式(1)で表される反応性ケイ素基としては、下記一般式(1-1):
-Si(R10)3-b(OR11)b (1-1)
(式中、R10はそれぞれ独立に、炭素原子数1~6のアルキル基、炭素原子数1~6のハロアルキル基、炭素原子数2~6のアルコキシアルキル基、または-R12N(R13)2で表されるN,N-ジアルキルアミノアルキル基であり、R12はメチル基またはエチル基であり、R13はメチル基またはエチル基であり、R11は炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、または炭素原子数2~6のアシル基であり、bは2、または3である。)
で表される基が好ましい。
-Si(R10)3-b(OR11)b (1-1)
(式中、R10はそれぞれ独立に、炭素原子数1~6のアルキル基、炭素原子数1~6のハロアルキル基、炭素原子数2~6のアルコキシアルキル基、または-R12N(R13)2で表されるN,N-ジアルキルアミノアルキル基であり、R12はメチル基またはエチル基であり、R13はメチル基またはエチル基であり、R11は炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、または炭素原子数2~6のアシル基であり、bは2、または3である。)
で表される基が好ましい。
R10としての炭素原子数1~6のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、およびn-ヘキシル基などが挙げられる。これらの中では、メチル基、およびエチル基が好ましい。
R10としての炭素原子数1~6のハロアルキル基の具体例としては、クロロメチル基、ジクロロメチル基、トリクロロメチル基、ブロモメチル基、ジブロモメチル基、トリブロモメチル基、2-クロロエチル基、および2-ブロモエチル基などが挙げられる。これらの中では、クロロメチル基、およびブロモメチル基が好ましく、クロロメチル基がより好ましい。
R10としての炭素原子数2~6のアルコキシアルキル基の具体例としては、メトキシメチル基、2-メトキシエチル基、1-メトキシエチル基、エトキシメチル基、2-エトキシエチル基、n-プロピルオキシメチル基、および2-n-プロピルオキシエチル基などが挙げられる。これらの中では、メトキシメチル基、2-メトキシエチル基、およびエトキシメチル基が好ましく、メトキシメチル基がより好ましい。
R10としての、-R12N(R13)2で表されるN,N-ジアルキルアミノアルキル基の具体例としては、N,N-ジメチルアミノメチル基、N,N-ジエチルアミノメチル基、2-N,N-ジメチルアミノエチル基、および2-N,N-ジエチルアミノエチル基などが挙げられる。これらの中では、N,N-ジメチルアミノメチル基、およびN,N-ジエチルアミノメチル基が好ましく、N,N-ジエチルアミノメチル基がより好ましい。
R10としての炭素原子数1~6のハロアルキル基の具体例としては、クロロメチル基、ジクロロメチル基、トリクロロメチル基、ブロモメチル基、ジブロモメチル基、トリブロモメチル基、2-クロロエチル基、および2-ブロモエチル基などが挙げられる。これらの中では、クロロメチル基、およびブロモメチル基が好ましく、クロロメチル基がより好ましい。
R10としての炭素原子数2~6のアルコキシアルキル基の具体例としては、メトキシメチル基、2-メトキシエチル基、1-メトキシエチル基、エトキシメチル基、2-エトキシエチル基、n-プロピルオキシメチル基、および2-n-プロピルオキシエチル基などが挙げられる。これらの中では、メトキシメチル基、2-メトキシエチル基、およびエトキシメチル基が好ましく、メトキシメチル基がより好ましい。
R10としての、-R12N(R13)2で表されるN,N-ジアルキルアミノアルキル基の具体例としては、N,N-ジメチルアミノメチル基、N,N-ジエチルアミノメチル基、2-N,N-ジメチルアミノエチル基、および2-N,N-ジエチルアミノエチル基などが挙げられる。これらの中では、N,N-ジメチルアミノメチル基、およびN,N-ジエチルアミノメチル基が好ましく、N,N-ジエチルアミノメチル基がより好ましい。
R11としての炭素原子数1~6のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、およびn-ヘキシル基などが挙げられる。これらの中では、メチル基、およびエチル基が好ましい。
R11としての炭素原子数2~6のアルケニル基の具体例としては、ビニル基、2-プロペニル基、3-ブテニル基、および4-ペンテニル基などが挙げられる。これらの中では、ビニル基、および2-プロペニル基が好ましい。
R11としての炭素原子数2~6のアシル基の具体例としては、アセチル基、プロピオニル基、ブタノイル基、およびペンタノイル基が挙げられる。これらの中では、アセチル基がこのましい。
R11としての炭素原子数2~6のアルケニル基の具体例としては、ビニル基、2-プロペニル基、3-ブテニル基、および4-ペンテニル基などが挙げられる。これらの中では、ビニル基、および2-プロペニル基が好ましい。
R11としての炭素原子数2~6のアシル基の具体例としては、アセチル基、プロピオニル基、ブタノイル基、およびペンタノイル基が挙げられる。これらの中では、アセチル基がこのましい。
反応性ケイ素基の具体例としては、トリメトキシシリル基、トリエトキシシリル基、トリス(2-プロペニルオキシ)シリル基、トリアセトキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジメトキシエチルシリル基、(クロロメチル)ジメトキシシリル基、(クロロメチル)ジエトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基、および(N,N-ジエチルアミノメチル)ジエトキシシリル基などが挙げられるが、これらに限定されない。これらの中では、ジメトキシメチルシリル基、トリメトキシシリル基、トリエトキシシリル基、および(メトキシメチル)ジメトキシシリル基が良好な機械物性を有する硬化物が得られるため好ましい。活性の観点から、トリメトキシシリル基、(クロロメチル)ジメトキシシリル基、および(メトキシメチル)ジメトキシシリル基がより好ましく、トリメトキシシリル基、および(メトキシメチル)ジメトキシシリル基が特に好ましい。安定性の観点から、ジメトキシメチルシリル基、およびトリエトキシシリル基がより好ましく、ジメトキシメチルシリル基が特に好ましい。
1分子中に含まれる、反応性ケイ素基の数は、平均して0.5個以上が好ましく、1.0個以上がより好ましく、1.2個以上がさらに好ましい。上限は、4個以下が好ましく、3個以下がより好ましい。
また、所望する効果を得やすい点から、反応性ケイ素基含有重合体は、上記の反応性ケイ素基を、1つの末端に平均して0.8個より多く有するのが好ましい。これにより、末端に十分な反応性ケイ素基が導入されることになり、十分な架橋密度の硬化物が得られ、硬化物の強度が向上する。なお、反応性ケイ素基は1つの末端に平均して1.0個より多く有することも可能であるが、1.0個より多くすると柔軟性が低下するため好ましくない。そのため、反応性ケイ素基は、1つの末端に平均して0.8個より多く1.0個以下有することが好ましい。
本願明細書において「末端」とは、重合体分子鎖における鎖末端およびその近傍構造を含む。より具体的には、重合体分子鎖を構成する結合原子のうち末端から20%より好ましくは10%にあたる個数の原子上に置換する基と定義してもよい。また、結合原子数で表現すると、末端部位とは、重合体分子鎖の末端から50原子、より好ましくは30原子までを末端部位と定義してもよい。
反応性ケイ素基を1つの末端に平均して0.8個より多く有する反応性ケイ素基含有重合体を得る方法としては、特に限定されない。このような方法としては、例えば、(1)メタリル基を末端に有する重合体とヒドロシランとのヒドロシリル化反応によって得る方法、(2)水酸基を末端に有する重合体とイソシアネートシランとの反応によって得る方法、(3)イソシアネート基を末端に有する重合体とアミノシランとの反応によって得る方法がある。しかし、(1)には硬化速度の低下と生産性とに課題があり、(2)、および(3)には、耐熱性と、製造上スズ化合物を使用するために完全な非錫系を求められる場合には用いることが出来ないなどの課題がある。
反応性ケイ素基含有重合体において、反応性ケイ素基に隣接する原子が不飽和結合を有する。反応性ケイ素に隣接する原子は特に限定はないが、炭素が好ましい。不飽和結合としては、特に限定はないが、炭素-炭素二重結合が好ましい。
反応性ケイ素基含有重合体の末端部位の構造は、以下の一般式(2)~(4)で表される少なくとも1種の構造であることが好ましい。
(式中、R4は2価の連結基であり、R4が有する2つの結合手は、それぞれ、連結基内の炭素原子、酸素原子、窒素原子、または硫黄原子に結合しており、R2、R3は、それぞれ独立に水素、炭素原子数1~20のアルキル基、炭素原子数6~20のアリール基、炭素原子数7~20のアラルキル基、またはシリル基のいずれかである。)
R1、X、aは、上記の記載と同様である。
R1、X、aは、上記の記載と同様である。
R4は2価の連結基である。R4が有する2つの結合手は、それぞれ、連結基内の炭素原子、酸素原子、窒素原子、または硫黄原子に結合している。
ここで、R4が有する2つの結合手は、それぞれ、連結基内の炭素原子、酸素原子、窒素原子、または硫黄原子に結合しているとは、R4が有する2つの結合手が、それぞれ、連結基内の炭素原子、酸素原子、窒素原子、または硫黄原子上に存在することを意味する。
2価の連結基の具体例としては、-(CH2)n-、-O-(CH2)n-、-S-(CH2)n-、-NR5-(CH2)n-、-O-C(=O)-NR5-(CH2)n-、および-NR5-C(=O)-NR5-(CH2)n-、などが挙げられる。これらの中では、-O-(CH2)n-、-O-C(=O)-NR5-(CH2)n-、および-NR5-C(=O)-NR5-(CH2)n-が好ましく、-O-CH2-が原料が入手しやすいためより好ましい。R5は、水素原子または炭素原子数1~10の炭化水素基である。R5としての炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、およびイソプロピル基などのアルキル基、フェニル基、およびナフチル基などのアリール基、ベンジル基などのアラルキル基が挙げられる。nとしては、0~10の整数が好ましく、0~5の整数がより好ましく、0~2の整数がさらに好ましく、0または1が特に好ましく、1が最も好ましい。
ここで、R4が有する2つの結合手は、それぞれ、連結基内の炭素原子、酸素原子、窒素原子、または硫黄原子に結合しているとは、R4が有する2つの結合手が、それぞれ、連結基内の炭素原子、酸素原子、窒素原子、または硫黄原子上に存在することを意味する。
2価の連結基の具体例としては、-(CH2)n-、-O-(CH2)n-、-S-(CH2)n-、-NR5-(CH2)n-、-O-C(=O)-NR5-(CH2)n-、および-NR5-C(=O)-NR5-(CH2)n-、などが挙げられる。これらの中では、-O-(CH2)n-、-O-C(=O)-NR5-(CH2)n-、および-NR5-C(=O)-NR5-(CH2)n-が好ましく、-O-CH2-が原料が入手しやすいためより好ましい。R5は、水素原子または炭素原子数1~10の炭化水素基である。R5としての炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、およびイソプロピル基などのアルキル基、フェニル基、およびナフチル基などのアリール基、ベンジル基などのアラルキル基が挙げられる。nとしては、0~10の整数が好ましく、0~5の整数がより好ましく、0~2の整数がさらに好ましく、0または1が特に好ましく、1が最も好ましい。
R2、およびR3は、それぞれ独立に、水素、炭素原子数1~20のアルキル基、炭素原子数6~20のアリール基、炭素原子数7~20のアラルキル基、およびシリル基のいずれかである。アルキル基の炭素原子数は、1~12が好ましく、1~6がより好ましく、1~4が特に好ましい。アリール基の炭素原子数は、6~12が好ましく、6~10がより好ましい。アラルキル基の炭素原子数は、7~12が好ましい。
R2、およびR3としては、具体的には、水素;メチル基、エチル基、およびシクロヘキシルなどのアルキル基;フェニル基、およびトリル基などのアリール基;ベンジル基、およびフェネチル基などのアラルキル基;トリメチルシリル基などのシリル基が挙げられる。これらの中では、水素、メチル基、およびトリメチルシリル基が好ましく、水素、およびメチル基がより好ましく、水素がさらに好ましい。
R2、およびR3としては、具体的には、水素;メチル基、エチル基、およびシクロヘキシルなどのアルキル基;フェニル基、およびトリル基などのアリール基;ベンジル基、およびフェネチル基などのアラルキル基;トリメチルシリル基などのシリル基が挙げられる。これらの中では、水素、メチル基、およびトリメチルシリル基が好ましく、水素、およびメチル基がより好ましく、水素がさらに好ましい。
上記一般式(5)~(7)において、R1、X、およびaは、上記の記載と同様である。
上記一般式(5-1)~(7-1)において、R10、R11、およびbは、上記の記載と同様である。
<主鎖構造>
反応性ケイ素基含有重合体の主鎖構造は、直鎖状であってもよいし、分岐鎖を有していてもよい。
反応性ケイ素基含有重合体の主鎖骨格には特に制限はない。反応性ケイ素基含有重合体としては、各種の主鎖骨格を持つ重合体を使用することができる。反応性ケイ素基含有重合体の主鎖骨格としては、例えば、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、およびポリオキシプロピレン-ポリオキシブチレン共重合体などのポリオキシアルキレン系重合体;エチレン-プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレンなどとの共重合体、ポリクロロプレン、ポリイソプレン、イソプレンあるいはブタジエンとアクリロニトリルおよび/またはスチレンなどとの共重合体、ポリブタジエン、イソプレンあるいはブタジエンとアクリロニトリルおよびスチレンなどとの共重合体、ならびにこれらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体などの飽和炭化水素系重合体;ポリエステル系重合体;エチル(メタ)アクリレート、ブチル(メタ)アクリレートなどの(メタ)アクリル酸エステル系モノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体、ならびに(メタ)アクリル酸系モノマー、酢酸ビニル、アクリロニトリル、およびスチレンなどのモノマーをラジカル重合して得られる重合体などのビニル系重合体;前述の重合体中でのビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ポリアミド系重合体;ポリカーボネート系重合体;ジアリルフタレート系重合体;などの有機重合体が挙げられる。上記各重合体はブロック状、グラフト状などに混在していてもよい。これらの中でも、飽和炭化水素系重合体、ポリオキシアルキレン系重合体、および(メタ)アクリル酸エステル系重合体が比較的ガラス転移温度が低いことと、得られる硬化物が耐寒性に優れることとから好ましく、ポリオキシアルキレン系重合体がより好ましい。
反応性ケイ素基含有重合体の主鎖構造は、直鎖状であってもよいし、分岐鎖を有していてもよい。
反応性ケイ素基含有重合体の主鎖骨格には特に制限はない。反応性ケイ素基含有重合体としては、各種の主鎖骨格を持つ重合体を使用することができる。反応性ケイ素基含有重合体の主鎖骨格としては、例えば、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、およびポリオキシプロピレン-ポリオキシブチレン共重合体などのポリオキシアルキレン系重合体;エチレン-プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレンなどとの共重合体、ポリクロロプレン、ポリイソプレン、イソプレンあるいはブタジエンとアクリロニトリルおよび/またはスチレンなどとの共重合体、ポリブタジエン、イソプレンあるいはブタジエンとアクリロニトリルおよびスチレンなどとの共重合体、ならびにこれらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体などの飽和炭化水素系重合体;ポリエステル系重合体;エチル(メタ)アクリレート、ブチル(メタ)アクリレートなどの(メタ)アクリル酸エステル系モノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体、ならびに(メタ)アクリル酸系モノマー、酢酸ビニル、アクリロニトリル、およびスチレンなどのモノマーをラジカル重合して得られる重合体などのビニル系重合体;前述の重合体中でのビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ポリアミド系重合体;ポリカーボネート系重合体;ジアリルフタレート系重合体;などの有機重合体が挙げられる。上記各重合体はブロック状、グラフト状などに混在していてもよい。これらの中でも、飽和炭化水素系重合体、ポリオキシアルキレン系重合体、および(メタ)アクリル酸エステル系重合体が比較的ガラス転移温度が低いことと、得られる硬化物が耐寒性に優れることとから好ましく、ポリオキシアルキレン系重合体がより好ましい。
反応性ケイ素基含有重合体は、上記した各種主鎖骨格のうち、いずれか1種の主鎖骨格を有する重合体でもよく、異なる主鎖骨格を有する重合体の混合物でもよい。また、混合物については、それぞれ別々に製造された重合体の混合物でもよいし、任意の混合組成になるように同時に製造された混合物でもよい。
反応性ケイ素基含有重合体の数平均分子量はGPCにおけるポリスチレン換算分子量として、3,000~100,000が好ましく、3,000~50,000がより好ましく、3,000~30,000が特に好ましい。数平均分子量が上記の範囲内であると、反応性ケイ素基の導入量が適度であることにより、製造コストを適度な範囲内に抑えつつ、扱いやすい粘度を有し作業性に優れる反応性ケイ素基含有重合体を得やすい。
反応性ケイ素基含有重合体の分子量としては、反応性ケイ素基導入前の重合体前駆体を、JIS K 1557の水酸基価の測定方法と、JIS K 0070に規定されたよう素価の測定方法の原理に基づいた滴定分析により、直接的に末端基濃度を測定し、重合体の構造(使用した重合開始剤によって定まる分岐度)を考慮して求めた末端基換算分子量で示すことも出来る。反応性ケイ素基含有重合体の末端基換算分子量は、重合体前駆体の一般的なGPC測定により求めた数平均分子量と上記末端基換算分子量の検量線を作成し、反応性ケイ素基含有重合体のGPCにより求めた数平均分子量を末端基換算分子量に換算して求めることも可能である。
反応性ケイ素基含有重合体の分子量分布(Mw/Mn)は特に限定されない。分子量分布は狭いことが好ましく、2.0未満が好ましく、1.6以下がより好ましく、1.5以下がさらに好ましく、1.4以下がさらにより好ましく、1.3以下が特に好ましく、1.2以下が最も好ましい。反応性ケイ素基含有重合体の分子量分布はGPC測定により得られる数平均分子量と重量平均分子量から求めることが出来る。
<反応性ケイ素基含有重合体の合成方法>
次に、反応性ケイ素基含有重合体の合成方法について説明する。
次に、反応性ケイ素基含有重合体の合成方法について説明する。
(ポリオキシアルキレン系重合体)
反応性ケイ素基含有重合体の主鎖として、ポリオキシアルキレン系重合体を用いる場合には、亜鉛ヘキサシアノコバルテートグライム錯体などの複合金属シアン化物錯体触媒を用いた、水酸基を有する開始剤にエポキシ化合物を重合させる方法によって水酸基末端ポリオキシアルキレン系重合体を得た後、(i)得られた水酸基末端ポリオキシアルキレン系重合体の水酸基に、炭素-炭素三重結合を導入した後、炭素-炭素三重結合にシラン化合物をヒドロシリル化反応により付加させる方法(ii)得られた水酸基末端ポリオキシアルキレン系重合体と、水酸基と反応する基、反応性ケイ素基、および炭素-炭素二重結合を有する化合物とを反応させる方法、および(iii)水酸基末端ポリオキシアルキレン系重合体と過剰のポリイソシアネート化合物を反応させて、末端にイソシアネート基を有する重合体とした後、イソシアネート基と反応する基、反応性ケイ素基、および炭素-炭素二重結合を有する化合物を反応させる方法、が好ましい。
これらの方法の中では、反応が簡便で、反応性ケイ素基の導入量の調整や、得られる反応性ケイ素基含有重合体の物性が安定であるため、(i)の方法がより好ましい。
これらの方法を用いることによって、炭素-炭素二重結合であるアリル基末端を有する重合体のヒドロシリル化では難しい、重合体末端へのシリル基の導入率が80%以上である反応性ケイ素基含有重合体が得られる。
反応性ケイ素基含有重合体の主鎖として、ポリオキシアルキレン系重合体を用いる場合には、亜鉛ヘキサシアノコバルテートグライム錯体などの複合金属シアン化物錯体触媒を用いた、水酸基を有する開始剤にエポキシ化合物を重合させる方法によって水酸基末端ポリオキシアルキレン系重合体を得た後、(i)得られた水酸基末端ポリオキシアルキレン系重合体の水酸基に、炭素-炭素三重結合を導入した後、炭素-炭素三重結合にシラン化合物をヒドロシリル化反応により付加させる方法(ii)得られた水酸基末端ポリオキシアルキレン系重合体と、水酸基と反応する基、反応性ケイ素基、および炭素-炭素二重結合を有する化合物とを反応させる方法、および(iii)水酸基末端ポリオキシアルキレン系重合体と過剰のポリイソシアネート化合物を反応させて、末端にイソシアネート基を有する重合体とした後、イソシアネート基と反応する基、反応性ケイ素基、および炭素-炭素二重結合を有する化合物を反応させる方法、が好ましい。
これらの方法の中では、反応が簡便で、反応性ケイ素基の導入量の調整や、得られる反応性ケイ素基含有重合体の物性が安定であるため、(i)の方法がより好ましい。
これらの方法を用いることによって、炭素-炭素二重結合であるアリル基末端を有する重合体のヒドロシリル化では難しい、重合体末端へのシリル基の導入率が80%以上である反応性ケイ素基含有重合体が得られる。
水酸基を有する開始剤としては、エチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、低分子量のポリプロピレングリコール、ポリオキシプロピレントリオール、アリルアルコール、ポリプロピレンモノアリルエーテル、およびポリプロピレンモノアルキルエーテルなどの水酸基を1個以上有する化合物が挙げられる。
エポキシ化合物としては、エチレンオキサイド、およびプロピレンオキサイドなどのアルキレンオキサイド類、メチルグリシジルエーテル、およびアリルグリシジルエーテルなどのグリシジルエーテル類などが挙げられる。これらの中でもプロピレンオキサイドが好ましい。
炭素-炭素三重結合を含む基としては、アルキニル基が挙げられる。また、アルキニル基と同時に、ビニル基、アリル基、メタリル基などその他の不飽和基を水酸基末端に導入してもよい。
(i)の水酸基末端に炭素-炭素三重結合を導入する方法としては、水酸基末端含有重合体に、アルカリ金属塩を作用させた後、炭素-炭素三重結合を有するハロゲン化炭化水素化合物を反応させる方法を用いるのが好ましい。アルカリ金属塩としては、水酸化ナトリウム、ナトリウムアルコキシド、水酸化カリウム、カリウムアルコキシド、水酸化リチウム、リチウムアルコキシド、水酸化セシウム、およびセシウムアルコキシドなどが挙げられる。取り扱いの容易さと溶解性から、水酸化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、水酸化カリウム、カリウムメトキシド、およびカリウムエトキシドが好ましく、ナトリウムメトキシド、およびカリウムメトキシドがより好ましい。入手性の点でナトリウムメトキシドが特に好ましい。アルカリ金属塩は溶剤に溶解した状態で使用してもよい。
(i)の方法で用いる炭素-炭素三重結合を有するハロゲン化炭化水素化合物としては、塩化プロパルギル、1-クロロ-2-ブチン、4-クロロ-1-ブチン、1-クロロ-2-オクチン、1-クロロ-2-ペンチン、1,4-ジクロロ-2-ブチン、5-クロロ-1-ペンチン、6-クロロ-1-ヘキシン、臭化プロパルギル、1-ブロモ-2-ブチン、4-ブロモ-1-ブチン、1-ブロモ-2-オクチン、1-ブロモ-2-ペンチン、1,4-ジブロモ-2-ブチン、5-ブロモ-1-ペンチン、6-ブロモ-1-ヘキシン、ヨウ化プロパルギル、1-ヨード-2-ブチン、4-ヨード-1-ブチン、1-ヨード-2-オクチン、1-ヨード-2-ペンチン、1,4-ジヨード-2-ブチン、5-ヨード-1-ペンチン、および6-ヨード-1-ヘキシンなどが挙げられる。これらの中では、塩化プロパルギル、臭化プロパルギル、およびヨウ化プロパルギルがより好ましい。また、炭素-炭素三重結合を有するハロゲン化炭化水素化合物と同時に、塩化ビニル、塩化アリル、塩化メタリル、臭化ビニル、臭化アリル、臭化メタリル、ヨウ化ビニル、ヨウ化アリル、およびヨウ化メタリルなどの炭素-炭素三重結合を有するハロゲン化炭化水素化合物以外の不飽和結合を有するハロゲン化炭化水素化合物を使用してもよい。
(i)の方法で用いるヒドロシラン化合物としては、トリクロロシラン、ジクロロメチルシラン、クロロジメチルシラン、およびジクロロフェニルシランなどのハロゲン化シラン類;トリメトキシシラン、トリエトキシシラン、ジメトキシメチルシラン、ジエトキシメチルシラン、ジメトキシフェニルシラン、エチルジメトキシシラン、メトキシジメチルシラン、エトキシジメチルシラン、(クロロメチル)ジメトキシシラン、(クロロメチル)ジエトキシシラン、(メトキシメチル)ジメトキシシラン、(メトキシメチル)ジエトキシシラン、(N,N-ジエチルアミノメチル)ジメトキシシラン、および(N,N-ジエチルアミノメチル)ジエトキシシランなどのアルコキシシラン類;ジアセトキシメチルシラン、およびジアセトキシフェニルシランなどのアシロキシシラン類;ビス(ジメチルケトキシメート)メチルシラン、およびビス(シクロヘキシルケトキシメート)メチルシランなどのケトキシメートシラン類;トリイソプロペニロキシシランなどのイソプロペニロキシシラン類(脱アセトン型)などが挙げられる。
((メタ)アクリル酸エステル系重合体)
反応性ケイ素基含有重合体の主鎖として、(メタ)アクリル酸エステル系重合体を用いる場合には、反応性ケイ素基含有重合体の製造方法としては、(I)重合性不飽和基と反応性官能基を有する化合物(例えば、アクリル酸、アクリル酸2-ヒドロキシエチル)を、(メタ)アクリル構造を有するモノマーとともに共重合して重合体を得た後、得られた重合体中のいずれかの位置(好ましくは分子鎖末端)に炭素-炭素三重結合を導入し、次いで、ヒドロシリル化反応により炭素-炭素三重結合に反応性ケイ素基を与えるシラン化合物を付加させる方法、(II)原子移動ラジカル重合などのリビングラジカル重合法によって(メタ)アクリル構造を有するモノマーを重合して重合体を得た後、得られた重合体中のいずれかの位置(好ましくは分子鎖末端)に炭素-炭素三重結合を導入し、次いで、ヒドロシリル化反応により炭素-炭素三重結合に反応性ケイ素基を与えるシラン化合物を付加させる方法などが挙げられる。
反応性ケイ素基含有重合体の主鎖として、(メタ)アクリル酸エステル系重合体を用いる場合には、反応性ケイ素基含有重合体の製造方法としては、(I)重合性不飽和基と反応性官能基を有する化合物(例えば、アクリル酸、アクリル酸2-ヒドロキシエチル)を、(メタ)アクリル構造を有するモノマーとともに共重合して重合体を得た後、得られた重合体中のいずれかの位置(好ましくは分子鎖末端)に炭素-炭素三重結合を導入し、次いで、ヒドロシリル化反応により炭素-炭素三重結合に反応性ケイ素基を与えるシラン化合物を付加させる方法、(II)原子移動ラジカル重合などのリビングラジカル重合法によって(メタ)アクリル構造を有するモノマーを重合して重合体を得た後、得られた重合体中のいずれかの位置(好ましくは分子鎖末端)に炭素-炭素三重結合を導入し、次いで、ヒドロシリル化反応により炭素-炭素三重結合に反応性ケイ素基を与えるシラン化合物を付加させる方法などが挙げられる。
(飽和炭化水素系重合体)
反応性ケイ素基含有重合体の主鎖として、飽和炭化水素系重合体を用いる場合には、反応性ケイ素基含有重合体の製造方法としては、エチレン、プロピレン、1-ブテン、およびイソブチレンなどのような炭素原子数2~6のオレフィン系化合物を主モノマーとして重合させて重合体を得た後、得られた重合体のいずれかの位置(好ましくは分子鎖末端)に炭素-炭素三重結合を導入し、次いで、ヒドロシリル化反応により炭素-炭素三重結合に反応性ケイ素基を与えるシラン化合物を付加させる方法などが挙げられる。
反応性ケイ素基含有重合体の主鎖として、飽和炭化水素系重合体を用いる場合には、反応性ケイ素基含有重合体の製造方法としては、エチレン、プロピレン、1-ブテン、およびイソブチレンなどのような炭素原子数2~6のオレフィン系化合物を主モノマーとして重合させて重合体を得た後、得られた重合体のいずれかの位置(好ましくは分子鎖末端)に炭素-炭素三重結合を導入し、次いで、ヒドロシリル化反応により炭素-炭素三重結合に反応性ケイ素基を与えるシラン化合物を付加させる方法などが挙げられる。
≪硬化性組成物≫
以上説明した(A)反応性ケイ素基含有重合体(以下、(A)成分とも記す。)を、必要に応じて、種々の添加剤と混合することによって硬化性組成物が得られる。
硬化性組成物は、典型的には、(A)反応性ケイ素基含有重合体と、(B)硬化触媒(以下、(B)成分とも記す。)とを組み合わせて含む。
(B)硬化触媒以外の添加剤としては、充填剤、接着性付与剤、可塑剤、タレ防止剤、酸化防止剤、光安定剤、紫外線吸収剤、物性調整剤、エポキシ基を含有する化合物、光硬化性物質、酸素硬化性物質、および反応性ケイ素基含有重合体以外のその他の樹脂などが挙げられる。
以上説明した(A)反応性ケイ素基含有重合体(以下、(A)成分とも記す。)を、必要に応じて、種々の添加剤と混合することによって硬化性組成物が得られる。
硬化性組成物は、典型的には、(A)反応性ケイ素基含有重合体と、(B)硬化触媒(以下、(B)成分とも記す。)とを組み合わせて含む。
(B)硬化触媒以外の添加剤としては、充填剤、接着性付与剤、可塑剤、タレ防止剤、酸化防止剤、光安定剤、紫外線吸収剤、物性調整剤、エポキシ基を含有する化合物、光硬化性物質、酸素硬化性物質、および反応性ケイ素基含有重合体以外のその他の樹脂などが挙げられる。
また、硬化性組成物または硬化物の諸物性の調整を目的として、硬化性組成物には、必要に応じて上記以外の他の添加剤が添加されてもよい。このような他の添加剤の例としては、例えば、粘着付与樹脂、溶剤、希釈剤、エポキシ樹脂、表面性改良剤、発泡剤、硬化性調整剤、難燃剤、シリケート、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、防かび剤などが挙げられる。
以下、代表的な添加剤について、それぞれ説明する。
<(B)硬化触媒>
硬化性組成物には、反応性ケイ素基含有重合体の反応性ケイ素基を加水分解・縮合させる反応を促進し、重合体を鎖延長または架橋させる目的で、シラノール縮合触媒として作用する(B)硬化触媒を使用してもよい。
硬化性組成物には、反応性ケイ素基含有重合体の反応性ケイ素基を加水分解・縮合させる反応を促進し、重合体を鎖延長または架橋させる目的で、シラノール縮合触媒として作用する(B)硬化触媒を使用してもよい。
(B)硬化触媒としては、例えば有機錫化合物、カルボン酸金属塩、アミン化合物、カルボン酸、およびアルコキシ金属などが挙げられる。
有機錫化合物の具体例としては、ジブチル錫ジラウレート、ジブチル錫ジオクタノエート、ジブチル錫ビス(ブチルマレエート)、ジブチル錫ジアセテート、ジブチル錫オキサイド、ジブチル錫ビス(アセチルアセトナート)、ジオクチル錫ビス(アセチルアセトナート)、ジブチル錫オキサイドとシリケート化合物との反応物、ジオクチル錫オキサイドとシリケート化合物との反応物、およびジブチル錫オキサイドとフタル酸エステルとの反応物などが挙げられる。
カルボン酸金属塩の具体例としては、カルボン酸錫、カルボン酸ビスマス、カルボン酸チタン、カルボン酸ジルコニウム、およびカルボン酸鉄などが挙げられる。また、カルボン酸金属塩としては下記のカルボン酸と各種金属を組み合わせた塩を用いることができる。
アミン化合物の具体例としては、オクチルアミン、2-エチルヘキシルアミン、ラウリルアミン、およびステアリルアミンなどのアミン類;ピリジン、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)、および1,5-ジアザビシクロ[4,3,0]ノネン-5(DBN)などの含窒素複素環式化合物;グアニジン、フェニルグアニジン、およびジフェニルグアニジンなどのグアニジン類;ブチルビグアニド、1-o-トリルビグアニド、および1-フェニルビグアニドなどのビグアニド類;アミノ基含有シランカップリング剤;ケチミン化合物などが挙げられる。
カルボン酸の具体例としては、酢酸、プロピオン酸、酪酸、2-エチルヘキサン酸、ラウリン酸、ステアリン酸、オレイン酸、リノール酸、ネオデカン酸、およびバーサチック酸などが挙げられる。
アルコキシ金属の具体例としては、テトラブチルチタネート、チタンテトラキス(アセチルアセトナート)、およびジイソプロポキシチタンビス(エチルアセトセテート)などのチタン化合物類や、アルミニウムトリス(アセチルアセトナート)、およびジイソプロポキシアルミニウムエチルアセトアセテートなどのアルミニウム化合物類や、ジルコニウムテトラキス(アセチルアセトナート)などのジルコニウム化合物類が挙げられる。
その他の(B)硬化触媒として、フッ素アニオン含有化合物、光酸発生剤、および光塩基発生剤も使用できる。
(B)硬化触媒は、異なる2種類以上の触媒を併用して使用してもよい。
上記の(A)反応性ケイ素基含有重合体に含まれる反応性ケイ素基は活性が高い。このため、硬化性組成物について、(B)硬化触媒の量を減らしたり、活性の低い触媒を(B)硬化触媒として使用したり、またアミノ基含有シランカップリング剤であるアミノシランを(B)硬化触媒として使用することも出来る。アミノシランは通常接着性付与剤として添加されることが多い。このため、アミノシランを(B)硬化触媒として利用する場合には通常使われる硬化触媒を使用しない硬化性組成物が作製できる。そのため、他の硬化触媒を添加しないほうが好ましい。特に、反応性ケイ素基が、トリメトキシシリル基、メトキシメチルジメトキシシリル基である場合にアミノシランのみを(B)硬化触媒として使用しても優れた硬化性を示す。
(B)硬化触媒の典型的な使用量としては、(A)反応性ケイ素基含有重合体100重量部に対して、0.001~20重量部が好ましく、0.01~15重量部がより好ましく、0.01~10重量部が特に好ましい。
(B)硬化触媒の使用量としては、有機錫化合物、カルボン酸金属塩、アミン化合物、カルボン酸、アルコキシ金属、および無機酸などを(B)硬化触媒として使用する場合は、(A)反応性ケイ素基含有重合体100重量部に対して、0.001~10重量部が好ましく、0.001~5重量部がより好ましく、0.001~1重量部がさらに好ましく、0.001~0.5重量部が特に好ましい。
アミノ基含有シランカップリング剤であるアミノシランを(B)硬化触媒として使用する場合は、(B)硬化触媒の使用量は、反応性ケイ素基含有重合体100重量部に対して、0.001~10重量部が好ましく、0.001~5重量部が特に好ましい。
これらの(B)硬化触媒の配合量が、上記の範囲内であることにより、作業を容易行なえるような硬化速度を保ちつつ、十分に速い速度で硬化を進行させることができ、また、硬化性組成物の貯蔵安定性が良好である。
(B)硬化触媒の使用量としては、有機錫化合物、カルボン酸金属塩、アミン化合物、カルボン酸、アルコキシ金属、および無機酸などを(B)硬化触媒として使用する場合は、(A)反応性ケイ素基含有重合体100重量部に対して、0.001~10重量部が好ましく、0.001~5重量部がより好ましく、0.001~1重量部がさらに好ましく、0.001~0.5重量部が特に好ましい。
アミノ基含有シランカップリング剤であるアミノシランを(B)硬化触媒として使用する場合は、(B)硬化触媒の使用量は、反応性ケイ素基含有重合体100重量部に対して、0.001~10重量部が好ましく、0.001~5重量部が特に好ましい。
これらの(B)硬化触媒の配合量が、上記の範囲内であることにより、作業を容易行なえるような硬化速度を保ちつつ、十分に速い速度で硬化を進行させることができ、また、硬化性組成物の貯蔵安定性が良好である。
一般的に、反応性ケイ素基としてトリアルコキシシリル基を有する反応性ケイ素基含有重合体は、有機錫化合物を(B)硬化触媒として用いた場合には良好な硬化性を示すが、カルボン酸金属塩、アミン化合物、カルボン酸、アルコキシ金属、および無機酸などを(B)硬化触媒として使用した場合硬化性が悪化する場合がある。
また、一般的に、反応性ケイ素基としてメトキシメチルジメトキシシリル基を有する反応性ケイ素基含有重合体は、アミン化合物を(B)硬化触媒として用いた場合には良好な硬化性を示すが、アミン化合物の量を減らすと硬化性が悪化する。
また、有機錫化合物、カルボン酸、アルコキシ金属、および無機酸などを(B)硬化触媒として用いた場合には硬化性が悪化する場合がある。
また、有機錫化合物、カルボン酸、アルコキシ金属、および無機酸などを(B)硬化触媒として用いた場合には硬化性が悪化する場合がある。
しかしながら、一般式(1)で表される反応性ケイ素基を有し、反応性ケイ素基に隣接する原子が不飽和結合を有する(A)反応性ケイ素基含有重合体、特に一般式(2)~(4)で表される構造を有する上記の(A)反応性ケイ素基含有重合体では、いずれの反応性ケイ素基と(B)硬化触媒との組み合わせでも活性が高く良好な硬化性を示す。
<充填剤>
硬化性組成物には、種々の充填剤を配合することができる。充填剤としては、重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、クレー、タルク、酸化チタン、ヒュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、無水ケイ酸、含水ケイ酸、カーボンブラック、酸化第二鉄、アルミニウム微粉末、酸化亜鉛、活性亜鉛華、PVC粉末、PMMA粉末、ガラス繊維およびフィラメントなどが挙げられる。
硬化性組成物には、種々の充填剤を配合することができる。充填剤としては、重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、クレー、タルク、酸化チタン、ヒュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、無水ケイ酸、含水ケイ酸、カーボンブラック、酸化第二鉄、アルミニウム微粉末、酸化亜鉛、活性亜鉛華、PVC粉末、PMMA粉末、ガラス繊維およびフィラメントなどが挙げられる。
充填剤の使用量は、反応性ケイ素基含有重合体100重量部に対して、1~300重量部が好ましく、10~250重量部が特に好ましい。
硬化性組成物を用いて形成される硬化物の軽量化(低比重化)の目的で、有機バルーン、および無機バルーンなどのバルーン(中空充填剤)を添加してもよい。バルーンは、球状体充填剤で内部が中空のものである。バルーンの材料としては、ガラス、シラス、およびシリカなどの無機系の材料、ならびに、フェノール樹脂、尿素樹脂、ポリスチレン、およびサランなどの有機系の材料が挙げられる。
バルーンの使用量は、反応性ケイ素基含有重合体100重量部に対して、0.1~100重量部が好ましく、特に1~20重量部が好ましい。
<接着性付与剤>
硬化性組成物には、接着性付与剤を添加することができる。接着性付与剤としては、シランカップリング剤、シランカップリング剤の反応物を添加することができる。
硬化性組成物には、接着性付与剤を添加することができる。接着性付与剤としては、シランカップリング剤、シランカップリング剤の反応物を添加することができる。
シランカップリング剤の具体例としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-β-アミノエチル-γ-アミノプロピルトリメトキシシラン、N-β-アミノエチル-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、および(2-アミノエチル)アミノメチルトリメトキシシランなどのアミノ基含有シラン類;γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、α-イソシアネートメチルトリメトキシシラン、およびα-イソシアネートメチルジメトキシメチルシランなどのイソシアネート基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、およびγ-メルカプトプロピルメチルジメトキシシランなどのメルカプト基含有シラン類;γ-グリシドキシプロピルトリメトキシシラン、およびβ-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ基含有シラン類、が挙げられる。
上記接着性付与剤は1種類のみで使用してもよいし、2種類以上混合使用してもよい。また、各種シランカップリング剤の反応物も接着性付与剤として使用できる。
上記接着性付与剤は1種類のみで使用してもよいし、2種類以上混合使用してもよい。また、各種シランカップリング剤の反応物も接着性付与剤として使用できる。
シランカップリング剤の使用量は、反応性ケイ素基含有重合体100重量部に対して、0.1~20重量部が好ましく、0.5~10重量部が特に好ましい。
一般式(1)で表される反応性ケイ素基を有し、反応性ケイ素基に隣接する原子が不飽和結合を有する(A)反応性ケイ素基含有重合体、特に一般式(2)~(4)で表される構造を有する上記の(A)反応性ケイ素基含有重合体を含む硬化性組成物では、上記シランカップリング剤中のアミノ基含有シラン類(アミノシラン)を硬化触媒としても用いることができる。この場合、アミノシランは、硬化触媒と接着性付与剤の両方を兼ね備えた添加剤となる。
<可塑剤>
硬化性組成物には、可塑剤を添加することができる。可塑剤の具体例としては、ジブチルフタレート、ジイソノニルフタレート(DINP)、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ジイソデシルフタレート(DIDP)、およびブチルベンジルフタレートなどのフタル酸エステル化合物;ビス(2-エチルヘキシル)-1,4-ベンゼンジカルボキシレートなどのテレフタル酸エステル化合物;1,2-シクロヘキサンジカルボン酸ジイソノニルエステルなどの非フタル酸エステル化合物;アジピン酸ジオクチル、セバシン酸ジオクチル、セバシン酸ジブチル、コハク酸ジイソデシル、およびアセチルクエン酸トリブチルなどの脂肪族多価カルボン酸エステル化合物;オレイン酸ブチル、およびアセチルリシノール酸メチルなどの不飽和脂肪酸エステル化合物;アルキルスルホン酸フェニルエステル;リン酸エステル化合物;トリメリット酸エステル化合物;塩素化パラフィン;アルキルジフェニル、および部分水添ターフェニルなどの炭化水素系油;プロセスオイル;エポキシ化大豆油、およびエポキシステアリン酸ベンジルなどのエポキシ可塑剤などを挙げることができる。
硬化性組成物には、可塑剤を添加することができる。可塑剤の具体例としては、ジブチルフタレート、ジイソノニルフタレート(DINP)、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ジイソデシルフタレート(DIDP)、およびブチルベンジルフタレートなどのフタル酸エステル化合物;ビス(2-エチルヘキシル)-1,4-ベンゼンジカルボキシレートなどのテレフタル酸エステル化合物;1,2-シクロヘキサンジカルボン酸ジイソノニルエステルなどの非フタル酸エステル化合物;アジピン酸ジオクチル、セバシン酸ジオクチル、セバシン酸ジブチル、コハク酸ジイソデシル、およびアセチルクエン酸トリブチルなどの脂肪族多価カルボン酸エステル化合物;オレイン酸ブチル、およびアセチルリシノール酸メチルなどの不飽和脂肪酸エステル化合物;アルキルスルホン酸フェニルエステル;リン酸エステル化合物;トリメリット酸エステル化合物;塩素化パラフィン;アルキルジフェニル、および部分水添ターフェニルなどの炭化水素系油;プロセスオイル;エポキシ化大豆油、およびエポキシステアリン酸ベンジルなどのエポキシ可塑剤などを挙げることができる。
また、高分子可塑剤を使用することができる。高分子可塑剤の具体例としては、ビニル系重合体;ポリエステル系可塑剤;数平均分子量500以上のポリエチレングリコール、ポリプロピレングリコールなどのポリエーテルポリオール、これらポリエーテルポリオールのヒドロキシ基をエステル基、エーテル基などに変換した誘導体などのポリエーテル類;ポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン-アクリロニトリル、およびポリクロロプレンなどが挙げられる。
可塑剤の使用量は、反応性ケイ素基含有重合体100重量部に対して、5~150重量部が好ましく、10~120重量部がより好ましく、20~100重量部が特に好ましい。上記の範囲内で可塑剤を使用すると、可塑剤としての所望する効果を得つつ、機械強度に優れる硬化物を形成できる硬化性組成物を得やすい。可塑剤は、単独で使用してもよく、2種以上を併用してもよい。
<タレ防止剤>
硬化性組成物には、タレを防止し、作業性を良くするためにタレ防止剤を、必要に応じて添加してもよい。タレ防止剤としては特に限定されない。タレ防止剤としては、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、およびステアリン酸バリウムなどの金属石鹸類などが挙げられる。これらタレ防止剤は単独で用いてもよく、2種以上併用してもよい。
硬化性組成物には、タレを防止し、作業性を良くするためにタレ防止剤を、必要に応じて添加してもよい。タレ防止剤としては特に限定されない。タレ防止剤としては、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、およびステアリン酸バリウムなどの金属石鹸類などが挙げられる。これらタレ防止剤は単独で用いてもよく、2種以上併用してもよい。
タレ防止剤の使用量は、反応性ケイ素基含有重合体100重量部に対して、0.1~20重量部が好ましい。
<酸化防止剤>
硬化性組成物には、酸化防止剤(老化防止剤)を使用することができる。酸化防止剤を使用すると硬化物の耐候性を高めることができる。酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、およびポリフェノール系が例示できる。酸化防止剤の具体例は、例えば、特開平4-283259号公報や特開平9-194731号公報に記載されている。
硬化性組成物には、酸化防止剤(老化防止剤)を使用することができる。酸化防止剤を使用すると硬化物の耐候性を高めることができる。酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、およびポリフェノール系が例示できる。酸化防止剤の具体例は、例えば、特開平4-283259号公報や特開平9-194731号公報に記載されている。
酸化防止剤の使用量は、反応性ケイ素基含有重合体100重量部に対して、0.1~10重量部が好ましく、0.2~5重量部が特に好ましい。
<光安定剤>
硬化性組成物には、光安定剤を使用することができる。光安定剤を使用すると硬化物の光酸化劣化を防止できる。光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、およびベンゾエート系化合物などが例示できる。光安定剤として、特にヒンダードアミン系が好ましい。
硬化性組成物には、光安定剤を使用することができる。光安定剤を使用すると硬化物の光酸化劣化を防止できる。光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、およびベンゾエート系化合物などが例示できる。光安定剤として、特にヒンダードアミン系が好ましい。
光安定剤の使用量は、反応性ケイ素基含有重合体100重量部に対して、0.1~10重量部が好ましく、0.2~5重量部が特に好ましい。
<紫外線吸収剤>
硬化性組成物には、紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリチレート系、置換トリル系、および金属キレート系化合物などを例示できる。紫外線吸収剤としては、特にベンゾトリアゾール系が好ましい。ベンゾトリアゾール系の紫外線吸収剤の好適な具体例としては、市販名チヌビンP、チヌビン213、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン329、およびチヌビン571(以上、BASF製)が挙げられる。
硬化性組成物には、紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリチレート系、置換トリル系、および金属キレート系化合物などを例示できる。紫外線吸収剤としては、特にベンゾトリアゾール系が好ましい。ベンゾトリアゾール系の紫外線吸収剤の好適な具体例としては、市販名チヌビンP、チヌビン213、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン329、およびチヌビン571(以上、BASF製)が挙げられる。
紫外線吸収剤の使用量は、反応性ケイ素基含有重合体100重量部に対して、0.1~10重量部が好ましく、0.2~5重量部が特に好ましい。
<物性調整剤>
硬化性組成物には、必要に応じて生成する硬化物の引張特性を調整する物性調整剤を添加してもよい。物性調整剤としては特に限定されない。物性調整剤としては、例えば、フェノキシトリメチルシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、およびn-プロピルトリメトキシシランなどのアルキルアルコキシシラン類;ジフェニルジメトキシシラン、およびフェニルトリメトキシシランなどのアリールアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、およびγ-グリシドキシプロピルメチルジイソプロペノキシシランなどのアルキルイソプロペノキシシラン;トリス(トリメチルシリル)ボレート、およびトリス(トリエチルシリル)ボレートなどのトリアルキルシリルボレート類;シリコーンワニス類;ポリシロキサン類などが挙げられる。物性調整剤を用いることにより、硬化性組成物の硬化物の硬度を上げたり、逆に硬度を下げ、破断伸びを出したりし得る。物性調整剤は単独で用いてもよく、2種以上併用してもよい。
硬化性組成物には、必要に応じて生成する硬化物の引張特性を調整する物性調整剤を添加してもよい。物性調整剤としては特に限定されない。物性調整剤としては、例えば、フェノキシトリメチルシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、およびn-プロピルトリメトキシシランなどのアルキルアルコキシシラン類;ジフェニルジメトキシシラン、およびフェニルトリメトキシシランなどのアリールアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、およびγ-グリシドキシプロピルメチルジイソプロペノキシシランなどのアルキルイソプロペノキシシラン;トリス(トリメチルシリル)ボレート、およびトリス(トリエチルシリル)ボレートなどのトリアルキルシリルボレート類;シリコーンワニス類;ポリシロキサン類などが挙げられる。物性調整剤を用いることにより、硬化性組成物の硬化物の硬度を上げたり、逆に硬度を下げ、破断伸びを出したりし得る。物性調整剤は単独で用いてもよく、2種以上併用してもよい。
特に、加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物は硬化物の表面のべたつきを悪化させずに硬化物のモジュラスを低下させる作用を有する。特にトリメチルシラノールを生成する化合物が好ましい。加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物としては、ヘキサノール、オクタノール、フェノール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、およびソルビトールなどのアルコールの誘導体であって加水分解によりシランモノオールを生成するシリコン化合物を挙げることができる。
物性調整剤の使用量は、反応性ケイ素基含有重合体100重量部に対して、0.1~10重量部が好ましく、0.5~5重量部が特に好ましい。
<エポキシ基を含有する化合物>
硬化性組成物においてはエポキシ基を含有する化合物を使用できる。エポキシ基を含有する化合物を使用すると硬化物の復元性を高めることができる。エポキシ基を含有する化合物としてはエポキシ化不飽和油脂類、エポキシ化不飽和脂肪酸エステル類、脂環族エポキシ化合物類、およびエピクロルヒドリン誘導体に示す化合物およびそれらの混合物などが例示できる。具体的には、エポキシ化大豆油、エポキシ化あまに油、ビス(2-エチルヘキシル)-4,5-エポキシシクロヘキサン-1,2-ジカルボキシレート(E-PS)、エポキシオクチルステアレート、およびエポキシブチルステアレートなどが挙げられる。
硬化性組成物においてはエポキシ基を含有する化合物を使用できる。エポキシ基を含有する化合物を使用すると硬化物の復元性を高めることができる。エポキシ基を含有する化合物としてはエポキシ化不飽和油脂類、エポキシ化不飽和脂肪酸エステル類、脂環族エポキシ化合物類、およびエピクロルヒドリン誘導体に示す化合物およびそれらの混合物などが例示できる。具体的には、エポキシ化大豆油、エポキシ化あまに油、ビス(2-エチルヘキシル)-4,5-エポキシシクロヘキサン-1,2-ジカルボキシレート(E-PS)、エポキシオクチルステアレート、およびエポキシブチルステアレートなどが挙げられる。
エポキシ化合物の使用量は、反応性ケイ素基含有重合体100重量部に対して、0.5~50重量部が好ましい。
<光硬化性物質>
硬化性組成物には光硬化性物質を使用できる。光硬化性物質を使用すると硬化物表面に光硬化性物質の皮膜が形成され、硬化物のべたつきや硬化物の耐候性を改善できる。この種の物質としては、有機単量体、オリゴマー、樹脂あるいはそれらを含む組成物など多くの物質が知られている。代表的な物質としては、アクリル系またはメタクリル系不飽和基を1ないし数個有するモノマー、オリゴマーあるいはそれらの混合物である不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂などが使用できる。
硬化性組成物には光硬化性物質を使用できる。光硬化性物質を使用すると硬化物表面に光硬化性物質の皮膜が形成され、硬化物のべたつきや硬化物の耐候性を改善できる。この種の物質としては、有機単量体、オリゴマー、樹脂あるいはそれらを含む組成物など多くの物質が知られている。代表的な物質としては、アクリル系またはメタクリル系不飽和基を1ないし数個有するモノマー、オリゴマーあるいはそれらの混合物である不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂などが使用できる。
光硬化性物質の使用量は、反応性ケイ素基含有重合体100重量部に対して、0.1~20重量部が好ましく、0.5~10重量部がより好ましい。上記の範囲内で光硬化性物質を用いると、耐候性に優れ、柔軟であってヒビ割れが生じにくい硬化物を形成できる硬化性組成物を得やすい。
<酸素硬化性物質>
硬化性組成物には酸素硬化性物質を使用することができる。酸素硬化性物質には空気中の酸素と反応し得る不飽和化合物を例示できる。酸素硬化性物質は、空気中の酸素と反応して硬化物の表面付近に硬化皮膜を形成し表面のべたつきや硬化物表面へのゴミやホコリの付着を防止するなどの作用を奏する。
硬化性組成物には酸素硬化性物質を使用することができる。酸素硬化性物質には空気中の酸素と反応し得る不飽和化合物を例示できる。酸素硬化性物質は、空気中の酸素と反応して硬化物の表面付近に硬化皮膜を形成し表面のべたつきや硬化物表面へのゴミやホコリの付着を防止するなどの作用を奏する。
酸素硬化性物質の具体例には、キリ油、およびアマニ油などで代表される乾性油や、該化合物を変性して得られる各種アルキッド樹脂;アクリル系重合体、エポキシ系樹脂、およびシリコン樹脂などの樹脂の乾性油による変性物;ブタジエン、クロロプレン、イソプレン、および1,3-ペンタジエンなどのジエン系化合物を重合または共重合させて得られる1,2-ポリブタジエン、1,4-ポリブタジエン、およびC5~C8ジエンの重合体などの液状重合体などが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。
酸素硬化性物質の使用量は、反応性ケイ素基含有重合体100重量部に対して0.1~20重量部が好ましく、0.5~10重量部がより好ましい。酸素硬化性物質の使用量が上記の範囲内であると、十分な汚染性の改善効果を得やすく、且つ硬化物の引張り特性などを損ないにくい。特開平3-160053号公報に記載されているように、酸素硬化性物質は光硬化性物質と併用されるのが好ましい。
≪硬化性組成物の調製≫
以上説明した硬化性組成物は、すべての配合成分を予め配合密封保存し、施工後空気中の湿気により硬化する1成分型として調製することが可能である。また、硬化剤としての別途(B)硬化触媒、充填材、可塑剤、および水などの成分を配合しておき、該配合材と重合体組成物を使用前に混合する2成分型として調製することもできる。作業性の点からは、1成分型が好ましい。
以上説明した硬化性組成物は、すべての配合成分を予め配合密封保存し、施工後空気中の湿気により硬化する1成分型として調製することが可能である。また、硬化剤としての別途(B)硬化触媒、充填材、可塑剤、および水などの成分を配合しておき、該配合材と重合体組成物を使用前に混合する2成分型として調製することもできる。作業性の点からは、1成分型が好ましい。
硬化性組成物が1成分型の場合、すべての配合成分が予め配合されるため、水分を含有する配合成分は予め脱水乾燥してから使用されるか、また配合混練中に減圧などにより脱水されるのが好ましい。また、脱水乾燥法に加えて、n-プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、およびγ-グリシドキシプロピルトリメトキシシランなどの水と反応し得るケイ素化合物を脱水剤として添加することにより、さらに貯蔵安定性は向上する。
脱水剤、特にビニルトリメトキシシランなどの水と反応し得るケイ素化合物の使用量は反応性ケイ素基含有重合体100重量部に対して、0.1~20重量部が好ましく、0.5~10重量部がより好ましい。
≪硬化物の製造方法≫
以上説明した硬化性組成物は、硬化に先だって、塗布、注型、または充填などの方法によって、所望する形状に整えられる。
塗布、注型、または充填され、形状を整えられた硬化性組成物は、例えば、常温、常湿のような所望する環境下において硬化される。
以上説明した、一般式(1)で表される反応性ケイ素基を有し、反応性ケイ素基に隣接する原子が不飽和結合を有する(A)反応性ケイ素基含有重合体、特に一般式(2)~(4)で表される構造を有する(A)反応性ケイ素基含有重合体を含む硬化性組成物は、従来知られる反応性ケイ素基含有重合体を含む硬化性組成物よりも、顕著に短時間で硬化可能である。
以上説明した硬化性組成物は、硬化に先だって、塗布、注型、または充填などの方法によって、所望する形状に整えられる。
塗布、注型、または充填され、形状を整えられた硬化性組成物は、例えば、常温、常湿のような所望する環境下において硬化される。
以上説明した、一般式(1)で表される反応性ケイ素基を有し、反応性ケイ素基に隣接する原子が不飽和結合を有する(A)反応性ケイ素基含有重合体、特に一般式(2)~(4)で表される構造を有する(A)反応性ケイ素基含有重合体を含む硬化性組成物は、従来知られる反応性ケイ素基含有重合体を含む硬化性組成物よりも、顕著に短時間で硬化可能である。
≪用途≫
以上説明した硬化性組成物は、粘着剤、建造物・船舶・自動車・道路などにおけるシーリング施工用のシーリング材、型取剤、接着剤、塗料、および吹付剤などに使用できる。また、以上説明した硬化性組成物の硬化物は、防水材、塗膜防水材、防振材、制振材、防音材、および発泡材料などとして好適に使用される。硬化性組成物を硬化して得られる硬化物が柔軟性および接着性に優れることから、硬化性組成物は、上記の用途の中でも、シーリング材または接着剤として用いられることがより好ましい。
以上説明した硬化性組成物は、粘着剤、建造物・船舶・自動車・道路などにおけるシーリング施工用のシーリング材、型取剤、接着剤、塗料、および吹付剤などに使用できる。また、以上説明した硬化性組成物の硬化物は、防水材、塗膜防水材、防振材、制振材、防音材、および発泡材料などとして好適に使用される。硬化性組成物を硬化して得られる硬化物が柔軟性および接着性に優れることから、硬化性組成物は、上記の用途の中でも、シーリング材または接着剤として用いられることがより好ましい。
以下に、実施例を挙げて本発明を具体的に説明する。本実施例は本発明をなんら限定しない。
実施例中の数平均分子量は以下の条件で測定したGPC分子量である。
送液システム:東ソー製HLC-8120GPC
カラム:東ソー製TSK-GEL Hタイプ
溶媒:THF
分子量:ポリスチレン換算
測定温度:40℃
送液システム:東ソー製HLC-8120GPC
カラム:東ソー製TSK-GEL Hタイプ
溶媒:THF
分子量:ポリスチレン換算
測定温度:40℃
実施例中の末端基換算分子量は、水酸基価をJIS K 1557の測定方法により、ヨウ素価をJIS K 0070の測定方法により求め、有機重合体の構造(使用した重合開始剤によって定まる分岐度)を考慮して求めた分子量である。
実施例に示す重合体(Q)の末端1個あたりへの炭素-炭素不飽和結合の平均導入数は以下の計算式により算出した。
(平均導入数)=[重合体(Q)のヨウ素価-前駆重合体(P)のヨウ素価]/[前駆重合体(P)の水酸基価]。
(平均導入数)=[重合体(Q)のヨウ素価-前駆重合体(P)のヨウ素価]/[前駆重合体(P)の水酸基価]。
実施例に示す重合体(A)、(B)の末端1個あたりへのシリル基の平均導入数はNMR測定により算出した。
(合成例1)
数平均分子量が約2,000のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、両末端に水酸基を有する数平均分子量27,900(末端基換算分子量17,700)、分子量分布Mw/Mn=1.21のポリオキシプロピレン(P-I)を得た。得られた水酸基末端ポリオキシプロピレン(P-I)の水酸基に対して1.05モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-I)の水酸基に対して、さらに1.16モル当量の臭化プロパルギルを添加して末端の水酸基をプロパルギル基に変換した。未反応の臭化プロパルギルを減圧脱揮により除去した。得られた未精製のプロパルギル基末端ポリオキシプロピレンをn-ヘキサンと、水を混合撹拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端部位にプロパルギル基を有するポリオキシプロピレン(Q-I)を得た。この重合体(Q-I)500gに対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)150μL、およびジメトキシメチルシラン7.5gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端にジメトキシメチルシリル基を有する数平均分子量28,500のポリオキシプロピレン(A-I)を得た。重合体(A-I)はジメトキシメチルシリル基を1つの末端に平均1.0個、1分子中に平均2.0個有することが分かった。
数平均分子量が約2,000のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、両末端に水酸基を有する数平均分子量27,900(末端基換算分子量17,700)、分子量分布Mw/Mn=1.21のポリオキシプロピレン(P-I)を得た。得られた水酸基末端ポリオキシプロピレン(P-I)の水酸基に対して1.05モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-I)の水酸基に対して、さらに1.16モル当量の臭化プロパルギルを添加して末端の水酸基をプロパルギル基に変換した。未反応の臭化プロパルギルを減圧脱揮により除去した。得られた未精製のプロパルギル基末端ポリオキシプロピレンをn-ヘキサンと、水を混合撹拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端部位にプロパルギル基を有するポリオキシプロピレン(Q-I)を得た。この重合体(Q-I)500gに対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)150μL、およびジメトキシメチルシラン7.5gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端にジメトキシメチルシリル基を有する数平均分子量28,500のポリオキシプロピレン(A-I)を得た。重合体(A-I)はジメトキシメチルシリル基を1つの末端に平均1.0個、1分子中に平均2.0個有することが分かった。
(合成例2)
合成例1により得られた水酸基末端ポリオキシプロピレン(P-I)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-II)の水酸基に対して、さらに1.5モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。以降は合成例1と同様の精製操作を行った。以上により、末端部位にアリル基を有するポリオキシプロピレン(Q-II)を得た。この重合体(Q-II)500gに対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)150μL、およびジメトキシメチルシラン4.8gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端にジメトキシメチルシリル基を有する数平均分子量28,500のポリオキシプロピレン(B-II)を得た。重合体(B-II)はジメトキシメチルシリル基を1つの末端に平均0.8個、1分子中に平均1.6個有することが分かった。
合成例1により得られた水酸基末端ポリオキシプロピレン(P-I)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-II)の水酸基に対して、さらに1.5モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。以降は合成例1と同様の精製操作を行った。以上により、末端部位にアリル基を有するポリオキシプロピレン(Q-II)を得た。この重合体(Q-II)500gに対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)150μL、およびジメトキシメチルシラン4.8gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端にジメトキシメチルシリル基を有する数平均分子量28,500のポリオキシプロピレン(B-II)を得た。重合体(B-II)はジメトキシメチルシリル基を1つの末端に平均0.8個、1分子中に平均1.6個有することが分かった。
(合成例3)
合成例1により得られた水酸基末端ポリオキシプロピレン(P-I)の水酸基に対して1.0モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-I)の水酸基に対して、1.0モル当量のアリルグリシジルエーテルを添加して130℃で2時間反応を行った。その後、0.28モル当量のナトリウムメトキシドのメタノール溶液を添加してメタノールを除去し、さらに1.79モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。以降は合成例1と同様の精製操作を行った。以上により、炭素-炭素不飽和結合を2個以上有する末端構造を有するポリオキシプロピレン(Q-III)を得た。重合体(Q-III)では、1つの末端部位に炭素-炭素不飽和結合が平均2.0個導入されていることが分かった。
得られた1つの末端部位に炭素-炭素不飽和結合を平均2.0個有するポリオキシプロピレン(Q-III)500gに対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)150μL、およびジメトキシメチルシラン9.6gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、2個以上のジメトキシメチルシリル基を有する末端構造を有する数平均分子量約28,500のポリオキシプロピレン(B-II)を得た。重合体(B-II)はジメトキシメチルシリル基を1つの末端に平均1.7個、一分子中に平均3.4個有することが分かった。
合成例1により得られた水酸基末端ポリオキシプロピレン(P-I)の水酸基に対して1.0モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-I)の水酸基に対して、1.0モル当量のアリルグリシジルエーテルを添加して130℃で2時間反応を行った。その後、0.28モル当量のナトリウムメトキシドのメタノール溶液を添加してメタノールを除去し、さらに1.79モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。以降は合成例1と同様の精製操作を行った。以上により、炭素-炭素不飽和結合を2個以上有する末端構造を有するポリオキシプロピレン(Q-III)を得た。重合体(Q-III)では、1つの末端部位に炭素-炭素不飽和結合が平均2.0個導入されていることが分かった。
得られた1つの末端部位に炭素-炭素不飽和結合を平均2.0個有するポリオキシプロピレン(Q-III)500gに対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)150μL、およびジメトキシメチルシラン9.6gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、2個以上のジメトキシメチルシリル基を有する末端構造を有する数平均分子量約28,500のポリオキシプロピレン(B-II)を得た。重合体(B-II)はジメトキシメチルシリル基を1つの末端に平均1.7個、一分子中に平均3.4個有することが分かった。
(実施例1、および比較例1~2)
表1に記載の重合体(A-I)、(B-I)、または(B-II)100重量部に対して、DINP((株)ジェイプラス製:ジイソノニルフタレート)55重量部、白艶華CCR(白石カルシウム(株)製:沈降炭酸カルシウム)120重量部、タイペークR820((株)石原産業製:酸化チタン)20重量部、ディスパロン6500(楠本化学(株)製:脂肪酸アマイドワックス)2重量部、チヌビン770(BASF製:ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート)1重量部、チヌビン326(BASF製:2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール)1重量部、を混合して、3本ロールを用いて均一に分散させ120℃で2時間減圧脱水を行った。その後、50℃以下に冷却後、A-171(Momentive製:ビニルトリメトキシシラン)2重量部、A-1120(Momentive製:N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン)3重量部、U-220H(日東化成(株)製:ジブチル錫ビスアセチルアセトナート)2重量部添加し混合した後、実質的に水分の存在しない状態で防湿性のあるカートリッジに密封した。
表1に記載の重合体(A-I)、(B-I)、または(B-II)100重量部に対して、DINP((株)ジェイプラス製:ジイソノニルフタレート)55重量部、白艶華CCR(白石カルシウム(株)製:沈降炭酸カルシウム)120重量部、タイペークR820((株)石原産業製:酸化チタン)20重量部、ディスパロン6500(楠本化学(株)製:脂肪酸アマイドワックス)2重量部、チヌビン770(BASF製:ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート)1重量部、チヌビン326(BASF製:2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール)1重量部、を混合して、3本ロールを用いて均一に分散させ120℃で2時間減圧脱水を行った。その後、50℃以下に冷却後、A-171(Momentive製:ビニルトリメトキシシラン)2重量部、A-1120(Momentive製:N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン)3重量部、U-220H(日東化成(株)製:ジブチル錫ビスアセチルアセトナート)2重量部添加し混合した後、実質的に水分の存在しない状態で防湿性のあるカートリッジに密封した。
(ダンベル引張り物性)
得られた組成物を型枠に充填し、23℃50%RHで3日間、さらに50℃で4日間養生させて厚さ約3mmのシート状硬化物を作製した。シート状硬化物を3号ダンベル型に打ち抜き、23℃50%RHで引っ張り強度試験を行い100%伸張時のモジュラス、破断時の強度および伸びを測定した。測定は(株)島津製オートグラフ(AGS-J)を用い200mm/minの引張り速度で行った。結果を表1に示す。
得られた組成物を型枠に充填し、23℃50%RHで3日間、さらに50℃で4日間養生させて厚さ約3mmのシート状硬化物を作製した。シート状硬化物を3号ダンベル型に打ち抜き、23℃50%RHで引っ張り強度試験を行い100%伸張時のモジュラス、破断時の強度および伸びを測定した。測定は(株)島津製オートグラフ(AGS-J)を用い200mm/minの引張り速度で行った。結果を表1に示す。
(引き裂き強度)
得られた組成物を型枠に充填し、23℃50%RHで3日間、さらに50℃で4日間養生させて厚さ約3mmのシート状硬化物を作製した。シート状硬化物を引裂き試験用ダンベル型(JIS A型)に打ち抜き、23℃50%RHで引裂き試験を行った。測定は(株)島津製オートグラフ(AGS-J)を用い200mm/minの引張り速度で行った。結果を表1に示す。
得られた組成物を型枠に充填し、23℃50%RHで3日間、さらに50℃で4日間養生させて厚さ約3mmのシート状硬化物を作製した。シート状硬化物を引裂き試験用ダンベル型(JIS A型)に打ち抜き、23℃50%RHで引裂き試験を行った。測定は(株)島津製オートグラフ(AGS-J)を用い200mm/minの引張り速度で行った。結果を表1に示す。
末端基の構造が前述の所定の要件を満たす反応性ケイ素基含有重合体(A-I)を含む実施例1の硬化性組成物は、ケイ素基に隣接する原子が不飽和結合を有さず、1つの末端に平均して0.8個より多く有さない反応性ケイ素基含有重合体(B-I)を含む硬化性組成物に対して、硬化物の強度(TB)において優れる。
また、反応性ケイ素基含有重合体(A-I)を含む実施例1の硬化性組成物は、ケイ素基に隣接する原子が不飽和結合を有さず、1つの末端に平均して1.0個より多く有する反応性ケイ素基含有重合体(B-II)を含む硬化性組成物に対しては、硬化物の柔軟性(低モジュラス、高伸び)と、強度(TB)とにおいて優れる。
また、反応性ケイ素基含有重合体(A-I)を含む実施例1の硬化性組成物は、ケイ素基に隣接する原子が不飽和結合を有さず、1つの末端に平均して1.0個より多く有する反応性ケイ素基含有重合体(B-II)を含む硬化性組成物に対しては、硬化物の柔軟性(低モジュラス、高伸び)と、強度(TB)とにおいて優れる。
(合成例4)
合成例1で得られた重合体(Q-I)500gに対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)150μL、およびメトキシメチルジメトキシシラン10.34gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のメトキシメチルジメトキシシランを減圧下留去する事により、末端にメトキシメチルジメトキシシリル基を有する数平均分子量28,500のポリオキシプロピレン(A-1)を得た。重合体(A-1)はメトキシメチルジメトキシシリル基を1分子中に平均2.0個有することが分かった。
合成例1で得られた重合体(Q-I)500gに対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)150μL、およびメトキシメチルジメトキシシラン10.34gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のメトキシメチルジメトキシシランを減圧下留去する事により、末端にメトキシメチルジメトキシシリル基を有する数平均分子量28,500のポリオキシプロピレン(A-1)を得た。重合体(A-1)はメトキシメチルジメトキシシリル基を1分子中に平均2.0個有することが分かった。
(合成例5)
数平均分子量が約3,000のポリオキシプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、末端に水酸基を有する数平均分子量24,600(末端基換算分子量17,400)、分子量分布Mw/Mn=1.31のポリオキシプロピレン(P-1)を得た。得られた水酸基末端ポリオキシプロピレン(P-1)の水酸基に対して1.05モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-1)の水酸基に対して、さらに1.16モル当量の臭化プロパルギルを添加して末端の水酸基をプロパルギル基に変換した。未反応の臭化プロパルギルを減圧脱揮により除去した。得られた未精製のプロパルギル基末端ポリオキシプロピレンをn-ヘキサンと、水を混合撹拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端部位にプロパルギル基を有するポリオキシプロピレン(Q-1)を得た。この重合体(Q-1)500gに対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)150μL、およびメトキシメチルジメトキシシラン11.49gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のメトキシメチルジメトキシシランを減圧下留去する事により、末端にメトキシメチルジメトキシシリル基を有する数平均分子量26,200のポリオキシプロピレン(A-2)を得た。重合体(A-2)はメトキシメチルジメトキシシリル基を1分子中に平均3.0個有することが分かった。
数平均分子量が約3,000のポリオキシプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、末端に水酸基を有する数平均分子量24,600(末端基換算分子量17,400)、分子量分布Mw/Mn=1.31のポリオキシプロピレン(P-1)を得た。得られた水酸基末端ポリオキシプロピレン(P-1)の水酸基に対して1.05モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-1)の水酸基に対して、さらに1.16モル当量の臭化プロパルギルを添加して末端の水酸基をプロパルギル基に変換した。未反応の臭化プロパルギルを減圧脱揮により除去した。得られた未精製のプロパルギル基末端ポリオキシプロピレンをn-ヘキサンと、水を混合撹拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端部位にプロパルギル基を有するポリオキシプロピレン(Q-1)を得た。この重合体(Q-1)500gに対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)150μL、およびメトキシメチルジメトキシシラン11.49gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のメトキシメチルジメトキシシランを減圧下留去する事により、末端にメトキシメチルジメトキシシリル基を有する数平均分子量26,200のポリオキシプロピレン(A-2)を得た。重合体(A-2)はメトキシメチルジメトキシシリル基を1分子中に平均3.0個有することが分かった。
(合成例6)
合成例1で得られた重合体(Q-I)500gに対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)150μL、およびトリメトキシシラン8.37gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のトリメトキシシランを減圧下留去する事により、末端にトリメトキシシリル基を有する数平均分子量28,500のポリオキシプロピレン(A-3)を得た。重合体(A-3)はトリメトキシシリル基を1分子中に平均2.0個有することが分かった。
合成例1で得られた重合体(Q-I)500gに対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)150μL、およびトリメトキシシラン8.37gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のトリメトキシシランを減圧下留去する事により、末端にトリメトキシシリル基を有する数平均分子量28,500のポリオキシプロピレン(A-3)を得た。重合体(A-3)はトリメトキシシリル基を1分子中に平均2.0個有することが分かった。
(合成例7)
合成例1で得られた水酸基末端ポリオキシプロピレン(P-I)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-I)の水酸基に対して、さらに1.5モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のアリル基末端ポリオキシプロピレンをn-ヘキサンと、水を混合撹拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端部位にアリル基を有するポリオキシプロピレン重合体(Q-2)を得た。この重合体(Q-2)500gに対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)150μL、およびメトキシメチルジメトキシシラン6.5gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のメトキシメチルジメトキシシランを減圧下留去する事により、末端にメトキシメチルジメトキシシリル基を有する数平均分子量約28,200のポリオキシプロピレン(E-1)を得た。重合体(E-1)はメトキシメチルジメトキシシリル基を1分子中に平均1.6個有することが分かった。
合成例1で得られた水酸基末端ポリオキシプロピレン(P-I)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-I)の水酸基に対して、さらに1.5モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のアリル基末端ポリオキシプロピレンをn-ヘキサンと、水を混合撹拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端部位にアリル基を有するポリオキシプロピレン重合体(Q-2)を得た。この重合体(Q-2)500gに対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)150μL、およびメトキシメチルジメトキシシラン6.5gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のメトキシメチルジメトキシシランを減圧下留去する事により、末端にメトキシメチルジメトキシシリル基を有する数平均分子量約28,200のポリオキシプロピレン(E-1)を得た。重合体(E-1)はメトキシメチルジメトキシシリル基を1分子中に平均1.6個有することが分かった。
(合成例8)
合成例7で得られた重合体(Q-2)500gに対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)150μL、およびトリメトキシシラン5.5gを添加し、ヒドロシリル化反応を実施した。その混合溶液を90℃で2時間反応させた後、未反応のトリメトキシシランを減圧下留去することにより、末端にトリメトキシシリル基を有する数平均分子量28,500のポリオキシプロピレン(E-2)を得た。重合体(E-2)はトリメトキシシリル基を1分子中に平均1.6個有することが分かった。
合成例7で得られた重合体(Q-2)500gに対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)150μL、およびトリメトキシシラン5.5gを添加し、ヒドロシリル化反応を実施した。その混合溶液を90℃で2時間反応させた後、未反応のトリメトキシシランを減圧下留去することにより、末端にトリメトキシシリル基を有する数平均分子量28,500のポリオキシプロピレン(E-2)を得た。重合体(E-2)はトリメトキシシリル基を1分子中に平均1.6個有することが分かった。
(合成例9)
合成例5で得られた重合体(Q-2)500gに対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)150μL、ジメトキシメチルシラン4.8gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端にジメトキシメチルシリル基を有する数平均分子量28,500のポリオキシプロピレン(E-3)を得た。重合体(E-3)はジメトキシメチルシリル基を1分子中に平均1.6個有することが分かった。
合成例5で得られた重合体(Q-2)500gに対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)150μL、ジメトキシメチルシラン4.8gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端にジメトキシメチルシリル基を有する数平均分子量28,500のポリオキシプロピレン(E-3)を得た。重合体(E-3)はジメトキシメチルシリル基を1分子中に平均1.6個有することが分かった。
(実施例2~16、比較例3~10)
合成例1~7に記載の重合体、および市販品を用い、表2~4に示す処方に従い硬化性を調べた。ミニカップに計り取った重合体に縮合触媒を添加し混練撹拌し、23℃50%の恒温恒湿条件下に静置し、この時間を硬化開始時間とした。はじめの20分は1分毎、以降は10分毎に混合物の表面をスパチュラで触り、スパチュラに混合物が付着しなくなるまでに掛かった時間を皮張り時間として測定を行った。結果を表2~4に示す。
合成例1~7に記載の重合体、および市販品を用い、表2~4に示す処方に従い硬化性を調べた。ミニカップに計り取った重合体に縮合触媒を添加し混練撹拌し、23℃50%の恒温恒湿条件下に静置し、この時間を硬化開始時間とした。はじめの20分は1分毎、以降は10分毎に混合物の表面をスパチュラで触り、スパチュラに混合物が付着しなくなるまでに掛かった時間を皮張り時間として測定を行った。結果を表2~4に示す。
実施例2~16および比較例3~10において下記の縮合触媒を用いた。
DBU:1,8-ジアザビシクロ[5,4,0]ウンデセン-7(東京化成工業(株)製)
PhGu:1-フェニルグアニジンの45%N-n-ブチルベンゼンスルホンアミド溶液(日本カーバイド(株)製)
VA/DEAPA:バーサチック酸/3-ジエチルアミノプロピルアミン=2.5/0.5
U-810:ネオスタンU-810(日東化成(株)製)
A-1120:N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン(Momentive製)
DBU:1,8-ジアザビシクロ[5,4,0]ウンデセン-7(東京化成工業(株)製)
PhGu:1-フェニルグアニジンの45%N-n-ブチルベンゼンスルホンアミド溶液(日本カーバイド(株)製)
VA/DEAPA:バーサチック酸/3-ジエチルアミノプロピルアミン=2.5/0.5
U-810:ネオスタンU-810(日東化成(株)製)
A-1120:N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン(Momentive製)
比較例10において、水酸基末端ポリエーテルと、(ジメトキシメチルシリル)メチルイソシアネートとの反応物である以下の重合体を用いた。
STP-E30:GENIPSIL STP-E30(Wacker製)
STP-E30:GENIPSIL STP-E30(Wacker製)
表2~4から明らかなように、一般式(1)で表される反応性ケイ素基を有し、反応性ケイ素基に隣接する原子が不飽和結合を有する反応性ケイ素基含有重合体(A-1)、(A-2)、または(A-3)を含む硬化性組成物は、一般式(1)で表される反応性ケイ素基を有し、反応性ケイ素基に隣接する原子が不飽和結合を有する反応性ケイ素基含有重合体に該当しない有機重合体(E-1)、または(E-2)や、市販の有機重合体STP-E10を含む硬化性組成物と比べ、いずれの縮合触媒においても速硬化性を示した。また、アミノシランのような非常に活性の低い縮合触媒を使用した場合、比較の有機重合体(E-1)、または(E-2)では活性が不十分で未硬化であったが、有機重合体(A-1)、または(A-2)を含む硬化性組成物は良好な硬化性を示した。さらに有機重合体(A-1)、または(A-2)を含む硬化性組成物は、市販の有機重合体STP-E10を含む硬化性組成物に比べても速硬化性を示した。
(実施例17、18、比較例11)
表5に記載の種類の重合体100重量部に対して、DINP((株)ジェイプラス製:ジイソノニルフタレート)55重量部、白艶華CCR(白石カルシウム(株)製:沈降炭酸カルシウム)120重量部、タイペークR820((株)石原産業製:酸化チタン)20重量部、ディスパロン6500(楠本化学(株)製:脂肪酸アマイドワックス)2重量部、チヌビン770(BASF製:ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート)1重量部、およびチヌビン326(BASF製:2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール)1重量部を混合して、3本ロールを用いて均一に分散させ120℃で2時間減圧脱水を行った。その後、50℃以下に冷却後、A-171(Momentive製:ビニルトリメトキシシラン)2重量部、A-1120(Momentive製:N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン)3重量部、DBU(1,8-ジアザビシクロ[5,4,0]ウンデセン-7)0.3重量部添加し混合した後、実質的に水分の存在しない状態で防湿性のあるカートリッジに密封した。
表5に記載の種類の重合体100重量部に対して、DINP((株)ジェイプラス製:ジイソノニルフタレート)55重量部、白艶華CCR(白石カルシウム(株)製:沈降炭酸カルシウム)120重量部、タイペークR820((株)石原産業製:酸化チタン)20重量部、ディスパロン6500(楠本化学(株)製:脂肪酸アマイドワックス)2重量部、チヌビン770(BASF製:ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート)1重量部、およびチヌビン326(BASF製:2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール)1重量部を混合して、3本ロールを用いて均一に分散させ120℃で2時間減圧脱水を行った。その後、50℃以下に冷却後、A-171(Momentive製:ビニルトリメトキシシラン)2重量部、A-1120(Momentive製:N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン)3重量部、DBU(1,8-ジアザビシクロ[5,4,0]ウンデセン-7)0.3重量部添加し混合した後、実質的に水分の存在しない状態で防湿性のあるカートリッジに密封した。
(実施例19、20、比較例12)
表5に記載の種類の重合体100重量部に対して、DINP((株)ジェイプラス製:ジイソノニルフタレート)55重量部、白艶華CCR(白石カルシウム(株)製:沈降炭酸カルシウム)120重量部、タイペークR820((株)石原産業製:酸化チタン)20重量部、ディスパロン6500(楠本化学(株)製:脂肪酸アマイドワックス)2重量部、チヌビン770(BASF製:ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート)1重量部、およびチヌビン326(BASF製:2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール)1重量部を混合して、3本ロールを用いて均一に分散させ120℃で2時間減圧脱水を行った。その後、50℃以下に冷却後、A-1120(Momentive製:N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン)3重量部添加し混合した後、実質的に水分の存在しない状態で防湿性のあるカートリッジに密封した。
表5に記載の種類の重合体100重量部に対して、DINP((株)ジェイプラス製:ジイソノニルフタレート)55重量部、白艶華CCR(白石カルシウム(株)製:沈降炭酸カルシウム)120重量部、タイペークR820((株)石原産業製:酸化チタン)20重量部、ディスパロン6500(楠本化学(株)製:脂肪酸アマイドワックス)2重量部、チヌビン770(BASF製:ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート)1重量部、およびチヌビン326(BASF製:2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール)1重量部を混合して、3本ロールを用いて均一に分散させ120℃で2時間減圧脱水を行った。その後、50℃以下に冷却後、A-1120(Momentive製:N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン)3重量部添加し混合した後、実質的に水分の存在しない状態で防湿性のあるカートリッジに密封した。
(皮張り時間)
得られた組成物を厚さ約5mmの型枠にスパチュラを用いて充填し、表面を平面状に整えた時間を硬化開始時間とし、表面をスパチュラで触り、スパチュラに評価用組成物が付着しなくなった時間を皮張り時間として硬化時間の測定を行った。結果を表5に示す。
得られた組成物を厚さ約5mmの型枠にスパチュラを用いて充填し、表面を平面状に整えた時間を硬化開始時間とし、表面をスパチュラで触り、スパチュラに評価用組成物が付着しなくなった時間を皮張り時間として硬化時間の測定を行った。結果を表5に示す。
(ダンベル引張り物性)
実施例1と同様にして、ダンベル引張物性の測定を行った。結果を表5に示す。
実施例1と同様にして、ダンベル引張物性の測定を行った。結果を表5に示す。
表5から明らかなように、DBUのような非錫縮合触媒を少量用いた場合、または使用しない場合においても、有機重合体(A-1)、または(A-3)を含む硬化性組成物は、有機重合体(E-1)を含む硬化性組成物と比べ、良好な硬化性を示した。
(実施例21、比較例13)
表6に記載の種類の重合体100重量部に対して、DINP((株)ジェイプラス製:ジイソノニルフタレート)55重量部、白艶華CCR(白石カルシウム(株)製:沈降炭酸カルシウム)120重量部、タイペークR820((株)石原産業製:酸化チタン)20重量部、ディスパロン6500(楠本化学(株)製:脂肪酸アマイドワックス)2重量部、チヌビン770(BASF製:ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート)1重量部、およびチヌビン326(BASF製:2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール)1重量部を混合して、3本ロールを用いて均一に分散させ120℃で2時間減圧脱水を行った。その後、50℃以下に冷却後、A-171(Momentive製:ビニルトリメトキシシラン)2重量部、A-1120(Momentive製:N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン)3重量部、U-220H(ジブチル錫ジアセチルアセトネート)2重量部添加し混合した後、実質的に水分の存在しない状態で防湿性のあるカートリッジに密封した。
表6に記載の種類の重合体100重量部に対して、DINP((株)ジェイプラス製:ジイソノニルフタレート)55重量部、白艶華CCR(白石カルシウム(株)製:沈降炭酸カルシウム)120重量部、タイペークR820((株)石原産業製:酸化チタン)20重量部、ディスパロン6500(楠本化学(株)製:脂肪酸アマイドワックス)2重量部、チヌビン770(BASF製:ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート)1重量部、およびチヌビン326(BASF製:2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール)1重量部を混合して、3本ロールを用いて均一に分散させ120℃で2時間減圧脱水を行った。その後、50℃以下に冷却後、A-171(Momentive製:ビニルトリメトキシシラン)2重量部、A-1120(Momentive製:N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン)3重量部、U-220H(ジブチル錫ジアセチルアセトネート)2重量部添加し混合した後、実質的に水分の存在しない状態で防湿性のあるカートリッジに密封した。
(実施例22、比較例14)
表6に記載の種類の重合体100重量部に対して、DINP((株)ジェイプラス製:ジイソノニルフタレート)55重量部、白艶華CCR(白石カルシウム(株)製:沈降炭酸カルシウム)120重量部、タイペークR820((株)石原産業製:酸化チタン)20重量部、ディスパロン6500(楠本化学(株)製:脂肪酸アマイドワックス)2重量部、チヌビン770(BASF製:ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート)1重量部、およびチヌビン326(BASF製:2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール)1重量部を混合して、3本ロールを用いて均一に分散させ120℃で2時間減圧脱水を行った。その後、50℃以下に冷却後、A-171(Momentive製:ビニルトリメトキシシラン)2重量部、A-1120(Momentive製:N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン)3重量部、DBU(1,8-ジアザビシクロ[5,4,0]ウンデセン-7)1重量部添加し混合した後、実質的に水分の存在しない状態で防湿性のあるカートリッジに密封した。
表6に記載の種類の重合体100重量部に対して、DINP((株)ジェイプラス製:ジイソノニルフタレート)55重量部、白艶華CCR(白石カルシウム(株)製:沈降炭酸カルシウム)120重量部、タイペークR820((株)石原産業製:酸化チタン)20重量部、ディスパロン6500(楠本化学(株)製:脂肪酸アマイドワックス)2重量部、チヌビン770(BASF製:ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート)1重量部、およびチヌビン326(BASF製:2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール)1重量部を混合して、3本ロールを用いて均一に分散させ120℃で2時間減圧脱水を行った。その後、50℃以下に冷却後、A-171(Momentive製:ビニルトリメトキシシラン)2重量部、A-1120(Momentive製:N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン)3重量部、DBU(1,8-ジアザビシクロ[5,4,0]ウンデセン-7)1重量部添加し混合した後、実質的に水分の存在しない状態で防湿性のあるカートリッジに密封した。
(皮張り時間)
実施例17と同様にして、皮張り時間の測定を行った。結果を表6に示す。
実施例17と同様にして、皮張り時間の測定を行った。結果を表6に示す。
表6から明らかなように、U-220Hのような錫触媒、DBUのような非錫縮合触媒添加条件下において、有機重合体(A-4)を含む硬化性組成物は、有機重合体(E-3)を含む硬化性組成物と比べ、良好な硬化性を示す。
Claims (15)
- 一般式(1):
-Si(R1)3-a(X)a (1)
(式中、R1はそれぞれ独立に、炭素原子数1~20の炭化水素基であり、R1としての前記炭化水素基は、置換されていてもよく、且つ、ヘテロ含有基を有してもよく、Xは水酸基または加水分解性基であり、aは1、2、または3である。)
で表される反応性ケイ素基を有し、
前記反応性ケイ素基に隣接する原子が不飽和結合を有する、反応性ケイ素基含有重合体。 - 前記一般式(1)で表される前記反応性ケイ素基を、1つの末端に平均して0.8個より多く有する、請求項1~3のいずれか1項に記載の反応性ケイ素基含有重合体。
- 反応性ケイ素基が、ジメトキシメチルシリル基である、請求項1~4のいずれか1項に記載の反応性ケイ素基含有重合体。
- 反応性ケイ素基が、トリメトキシシリル基、および/または(メトキシメチル)ジメトキシシリル基である請求項1~4のいずれか1項に記載の反応性ケイ素基含有重合体。
- 反応性ケイ素基含有重合体の主鎖骨格がポリオキシアルキレン系重合体である請求項1から6のいずれか1項に記載の反応性ケイ素基含有重合体。
- 請求項1~7のいずれか1項に記載の(A)反応性ケイ素基含有重合体を含有する硬化性組成物。
- 前記(A)反応性ケイ素基含有重合体と、
(B)硬化触媒と、
を含有する、請求項8に記載の硬化性組成物。 - 前記(B)硬化触媒として、有機錫化合物、カルボン酸金属塩、アミン化合物、カルボン酸およびアルコキシ金属からなる群より選ばれる少なくとも一種を含む、請求項9に記載の硬化性組成物。
- 前記(B)硬化触媒として、分子内に加水分解性ケイ素基とアミノ基とを有するシランカップリング剤を含む、請求項9に記載の硬化性組成物。
- 前記(B)硬化触媒として、分子内に加水分解性ケイ素基とアミノ基とを有するシランカップリング剤以外の硬化触媒を含まない、請求項11に記載の硬化性組成物。
- 請求項8~12のいずれか1項に記載の硬化性組成物の硬化物。
- 請求項8~12のいずれか1項に記載の硬化性組成物を、塗布、注型、または充填することと、
塗布、注型、または充填された前記硬化性組成物を硬化させることと、を含む、硬化物の製造方法。 - 請求項8~12のいずれか1項に記載の硬化性組成物からなるシーリング材、または接着剤。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980023131.2A CN111918900B (zh) | 2018-03-30 | 2019-03-27 | 含反应性硅基的聚合物、及固化性组合物 |
EP19774984.9A EP3778706B1 (en) | 2018-03-30 | 2019-03-27 | Reactive silicon group-containing polymer and curable composition |
JP2020509274A JP7249998B2 (ja) | 2018-03-30 | 2019-03-27 | 反応性ケイ素基含有重合体、および硬化性組成物 |
US17/035,364 US11859037B2 (en) | 2018-03-30 | 2020-09-28 | Reactive silicon group-containing polymer and curable composition |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-069712 | 2018-03-30 | ||
JP2018070425 | 2018-03-30 | ||
JP2018069712 | 2018-03-30 | ||
JP2018-070425 | 2018-03-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/035,364 Continuation US11859037B2 (en) | 2018-03-30 | 2020-09-28 | Reactive silicon group-containing polymer and curable composition |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019189491A1 true WO2019189491A1 (ja) | 2019-10-03 |
Family
ID=68062091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/013405 WO2019189491A1 (ja) | 2018-03-30 | 2019-03-27 | 反応性ケイ素基含有重合体、および硬化性組成物 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11859037B2 (ja) |
EP (1) | EP3778706B1 (ja) |
JP (1) | JP7249998B2 (ja) |
CN (1) | CN111918900B (ja) |
WO (1) | WO2019189491A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020171153A1 (ja) * | 2019-02-20 | 2020-08-27 | 株式会社カネカ | 加水分解性シリル基を有する有機重合体の製造方法 |
WO2020171154A1 (ja) * | 2019-02-20 | 2020-08-27 | 株式会社カネカ | 炭素-炭素三重結合を有する有機重合体の製造方法 |
WO2021162048A1 (ja) * | 2020-02-13 | 2021-08-19 | 株式会社カネカ | 硬化性組成物及びその硬化物 |
WO2022014430A1 (ja) * | 2020-07-13 | 2022-01-20 | 日東化成株式会社 | 湿気硬化型組成物 |
WO2022181545A1 (ja) * | 2021-02-24 | 2022-09-01 | 株式会社カネカ | 加水分解性シリル基を有する重合体の製造方法、並びに、重合体、硬化性組成物、及び硬化物 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5273998A (en) | 1975-12-16 | 1977-06-21 | Kanegafuchi Chem Ind Co Ltd | Room temperature curing compositions |
JPS606747A (ja) | 1984-05-09 | 1985-01-14 | Kanegafuchi Chem Ind Co Ltd | 室温硬化性組成物 |
JPH03160053A (ja) | 1989-11-16 | 1991-07-10 | Kanegafuchi Chem Ind Co Ltd | 室温硬化性組成物 |
JPH04283259A (ja) | 1991-03-11 | 1992-10-08 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
JPH09194731A (ja) | 1996-01-23 | 1997-07-29 | Asahi Glass Co Ltd | 硬化性組成物 |
JP2000344784A (ja) * | 1999-04-23 | 2000-12-12 | Dow Corning Ltd | シラシクロブタン化合物、その製造法及びそれから生成される重合体 |
JP2000344785A (ja) * | 1999-04-23 | 2000-12-12 | Dow Corning Ltd | シラシクロブテン化合物、その製造法及びそれから生成される重合体 |
JP2005519180A (ja) * | 2002-03-08 | 2005-06-30 | コミツサリア タ レネルジー アトミーク | ポリ(エチニレンフェニレンエチニレンシリレン)組成物 |
JP2005213473A (ja) * | 2004-02-02 | 2005-08-11 | Denki Kagaku Kogyo Kk | 有機ケイ素重合体 |
JP2005535779A (ja) | 2002-08-14 | 2005-11-24 | コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | 制御可能な硬化速度を有するアルコキシシラン末端ポリマーをベースとするポリマー材料 |
JP2007091935A (ja) * | 2005-09-29 | 2007-04-12 | Fujifilm Corp | ポリマー、膜形成用組成物、絶縁膜およびその製造方法 |
WO2007040143A1 (ja) | 2005-09-30 | 2007-04-12 | Kaneka Corporation | トリメトキシシリル基末端を有する有機重合体の製造方法 |
WO2012036109A1 (ja) | 2010-09-14 | 2012-03-22 | 株式会社カネカ | 硬化性組成物 |
WO2013180203A1 (ja) | 2012-05-31 | 2013-12-05 | 株式会社カネカ | 複数の反応性ケイ素基を有する末端構造を有する重合体、およびその製造方法および利用 |
JP2014505743A (ja) | 2010-11-30 | 2014-03-06 | ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン | 2成分型硬化性組成物 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4983320A (en) | 1989-05-18 | 1991-01-08 | Akzo N.V. | Dialkyl dicarbonates as blowing agents for polymers |
DE4006247A1 (de) | 1990-02-28 | 1991-08-29 | Bayer Ag | Verfahren zur herstellung von offenzelligen polyurethan-weichschaumstoffen |
JP2000095942A (ja) | 1998-09-18 | 2000-04-04 | Sunstar Eng Inc | 熱硬化型変性ポリマー系組成物 |
JP2001354830A (ja) | 2000-06-15 | 2001-12-25 | Kanegafuchi Chem Ind Co Ltd | 耐火性シーリング材組成物 |
US20030083394A1 (en) | 2001-06-07 | 2003-05-01 | Clatty Jan L. | Polyurethane foams having improved heat sag and a process for their production |
US7091259B2 (en) * | 2002-07-03 | 2006-08-15 | 3M Innovative Properties Company | Dental fillers, pastes, and compositions prepared therefrom |
CA2631759C (en) * | 2005-12-02 | 2014-02-25 | Momentive Performance Materials Japan Llc. | Room temperature curable silicon group-containing polymer composition |
JP6475615B2 (ja) * | 2013-05-30 | 2019-02-27 | 株式会社カネカ | 硬化性組成物およびその硬化物 |
CN106795366B (zh) * | 2014-07-02 | 2019-05-07 | 株式会社钟化 | 固化性组合物及其固化物 |
US20170226305A1 (en) | 2014-08-06 | 2017-08-10 | Kaneka Corporation | Modified silicone resin foamed body |
JP6767106B2 (ja) * | 2014-12-08 | 2020-10-14 | ダウ シリコーンズ コーポレーション | ポリフルオロポリエーテル含有化合物 |
JP6669778B2 (ja) | 2016-01-08 | 2020-03-18 | 株式会社カネカ | 変成シリコーン樹脂発泡体 |
-
2019
- 2019-03-27 JP JP2020509274A patent/JP7249998B2/ja active Active
- 2019-03-27 WO PCT/JP2019/013405 patent/WO2019189491A1/ja active Application Filing
- 2019-03-27 EP EP19774984.9A patent/EP3778706B1/en active Active
- 2019-03-27 CN CN201980023131.2A patent/CN111918900B/zh active Active
-
2020
- 2020-09-28 US US17/035,364 patent/US11859037B2/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5273998A (en) | 1975-12-16 | 1977-06-21 | Kanegafuchi Chem Ind Co Ltd | Room temperature curing compositions |
JPS606747A (ja) | 1984-05-09 | 1985-01-14 | Kanegafuchi Chem Ind Co Ltd | 室温硬化性組成物 |
JPH03160053A (ja) | 1989-11-16 | 1991-07-10 | Kanegafuchi Chem Ind Co Ltd | 室温硬化性組成物 |
JPH04283259A (ja) | 1991-03-11 | 1992-10-08 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
JPH09194731A (ja) | 1996-01-23 | 1997-07-29 | Asahi Glass Co Ltd | 硬化性組成物 |
JP2000344785A (ja) * | 1999-04-23 | 2000-12-12 | Dow Corning Ltd | シラシクロブテン化合物、その製造法及びそれから生成される重合体 |
JP2000344784A (ja) * | 1999-04-23 | 2000-12-12 | Dow Corning Ltd | シラシクロブタン化合物、その製造法及びそれから生成される重合体 |
JP2005519180A (ja) * | 2002-03-08 | 2005-06-30 | コミツサリア タ レネルジー アトミーク | ポリ(エチニレンフェニレンエチニレンシリレン)組成物 |
JP2005535779A (ja) | 2002-08-14 | 2005-11-24 | コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | 制御可能な硬化速度を有するアルコキシシラン末端ポリマーをベースとするポリマー材料 |
JP2005213473A (ja) * | 2004-02-02 | 2005-08-11 | Denki Kagaku Kogyo Kk | 有機ケイ素重合体 |
JP2007091935A (ja) * | 2005-09-29 | 2007-04-12 | Fujifilm Corp | ポリマー、膜形成用組成物、絶縁膜およびその製造方法 |
WO2007040143A1 (ja) | 2005-09-30 | 2007-04-12 | Kaneka Corporation | トリメトキシシリル基末端を有する有機重合体の製造方法 |
WO2012036109A1 (ja) | 2010-09-14 | 2012-03-22 | 株式会社カネカ | 硬化性組成物 |
JP2014505743A (ja) | 2010-11-30 | 2014-03-06 | ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン | 2成分型硬化性組成物 |
WO2013180203A1 (ja) | 2012-05-31 | 2013-12-05 | 株式会社カネカ | 複数の反応性ケイ素基を有する末端構造を有する重合体、およびその製造方法および利用 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3778706A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020171153A1 (ja) * | 2019-02-20 | 2020-08-27 | 株式会社カネカ | 加水分解性シリル基を有する有機重合体の製造方法 |
WO2020171154A1 (ja) * | 2019-02-20 | 2020-08-27 | 株式会社カネカ | 炭素-炭素三重結合を有する有機重合体の製造方法 |
WO2021162048A1 (ja) * | 2020-02-13 | 2021-08-19 | 株式会社カネカ | 硬化性組成物及びその硬化物 |
EP4105262A4 (en) * | 2020-02-13 | 2024-03-06 | Kaneka Corporation | CURDABLE COMPOSITION AND HARDENED PRODUCT THEREOF |
WO2022014430A1 (ja) * | 2020-07-13 | 2022-01-20 | 日東化成株式会社 | 湿気硬化型組成物 |
WO2022181545A1 (ja) * | 2021-02-24 | 2022-09-01 | 株式会社カネカ | 加水分解性シリル基を有する重合体の製造方法、並びに、重合体、硬化性組成物、及び硬化物 |
Also Published As
Publication number | Publication date |
---|---|
US11859037B2 (en) | 2024-01-02 |
JPWO2019189491A1 (ja) | 2021-04-08 |
EP3778706B1 (en) | 2024-08-28 |
US20210009742A1 (en) | 2021-01-14 |
CN111918900B (zh) | 2023-04-11 |
EP3778706A1 (en) | 2021-02-17 |
JP7249998B2 (ja) | 2023-03-31 |
EP3778706A4 (en) | 2022-01-05 |
CN111918900A (zh) | 2020-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7249998B2 (ja) | 反応性ケイ素基含有重合体、および硬化性組成物 | |
JP2015105324A (ja) | 硬化性組成物 | |
JP7285247B2 (ja) | 反応性ケイ素基含有重合体、および硬化性組成物 | |
JP2019182885A (ja) | 硬化性組成物 | |
JP2019156998A (ja) | 硬化性組成物 | |
JP2024009271A (ja) | ポリオキシアルキレン系重合体及び硬化性組成物 | |
WO2018199270A1 (ja) | 硬化性組成物 | |
US20230027947A1 (en) | Mixture of polyoxyalkylene polymers and curable composition | |
WO2022181545A1 (ja) | 加水分解性シリル基を有する重合体の製造方法、並びに、重合体、硬化性組成物、及び硬化物 | |
WO2021162048A1 (ja) | 硬化性組成物及びその硬化物 | |
JP2021055017A (ja) | 硬化性組成物 | |
JP2021055013A (ja) | 反応性ケイ素基含有重合体及び硬化性組成物 | |
JP7469875B2 (ja) | 硬化性組成物及びその硬化物 | |
JP2021055015A (ja) | 硬化性組成物 | |
WO2023171425A1 (ja) | ポリオキシアルキレン系重合体の混合物および硬化性組成物 | |
JP2021055016A (ja) | 硬化性組成物 | |
JP2021055010A (ja) | 硬化性組成物 | |
JP2021055018A (ja) | 硬化性組成物 | |
JP2021055011A (ja) | 硬化性組成物 | |
WO2021162049A1 (ja) | 加熱硬化性組成物及びその硬化物 | |
WO2024190202A1 (ja) | 硬化性組成物 | |
WO2022024997A1 (ja) | 有機重合体、硬化性組成物、及び硬化物 | |
JP2022135365A (ja) | 有機重合体の製造方法、並びに、有機重合体、硬化性組成物、及び硬化物 | |
WO2022202132A1 (ja) | シラン架橋性ポリマー含有組成物 | |
JP2022143083A (ja) | 有機重合体の製造方法、並びに、有機重合体、硬化性組成物、及び硬化物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19774984 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020509274 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019774984 Country of ref document: EP |