WO2019189024A1 - 1-クロロ-2,3,3-トリフルオロプロペンの製造方法 - Google Patents

1-クロロ-2,3,3-トリフルオロプロペンの製造方法 Download PDF

Info

Publication number
WO2019189024A1
WO2019189024A1 PCT/JP2019/012585 JP2019012585W WO2019189024A1 WO 2019189024 A1 WO2019189024 A1 WO 2019189024A1 JP 2019012585 W JP2019012585 W JP 2019012585W WO 2019189024 A1 WO2019189024 A1 WO 2019189024A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
mass
production method
chloro
dichloro
Prior art date
Application number
PCT/JP2019/012585
Other languages
English (en)
French (fr)
Inventor
聡史 河口
岡本 秀一
厚史 藤森
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2020510823A priority Critical patent/JPWO2019189024A1/ja
Publication of WO2019189024A1 publication Critical patent/WO2019189024A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing 1-chloro-2,3,3-trifluoropropene.
  • GWP global warming potential
  • Patent Document 1 discloses a method of dehydrofluorinating 3-chloro-1,1,2,2-tetrafluoropropane.
  • An object of the present invention is to provide a method for producing 1233yd with a high conversion rate of raw materials and a small amount of impurities.
  • the base is composed of an alkali metal hydroxide, an alkaline earth metal hydroxide, an alkali metal oxide, an alkaline earth metal oxide, an alkali metal carbonate, and an alkaline earth metal carbonate
  • the production method according to (2) or (3) which is a selected base.
  • Any one of (2) to (4), wherein the amount of the base is 0.5 to 10 mol with respect to 1 mol of 1,2-dichloro-2,3,3-trifluoropropane.
  • a mixture of E bodies of The ratio of the mass of the Z form of the 1-chloro-2,3,3-trifluoropropene to the mass of the E form of the 1-chloro-2,3,3-trifluoropropene is 2 to 100.
  • the content of 1,2-dichloro-3,3-difluoropropene in the halogenated hydrocarbon produced by the dehydrochlorination reaction is 10% by mass or less, and any one of (1) to (14) The manufacturing method as described.
  • 1233yd has a Z isomer and an E isomer which are geometric isomers depending on the position of the substituent on the double bond.
  • a compound name or abbreviation of a compound when used without particular notice, at least one selected from Z-form and E-form is shown, and more specifically, Z-form or E-form, A mixture of an arbitrary ratio of Z-form and E-form is shown.
  • (E) or (Z) is added after the compound name or compound abbreviation, the (E) or (Z) form of each compound is shown.
  • 1233yd (Z) indicates a Z body
  • 1233yd (E) indicates an E body.
  • the process for producing 1233yd of the present invention is a process for obtaining 1233yd from 2,3-dichloro-1,1,2-trifluoropropane (CHF 2 -CCIFH-CH 2 Cl. HCFC-243ba) as a raw material (hereinafter represented by the formula (See (1)).
  • the conversion rate of the raw material 243ba is high and the amount of impurities generated is small.
  • the impurity means a halogenated hydrocarbon component other than the raw materials 243ba and 1233yd.
  • reaction time is short and the ratio (1233yd (Z) / 1233yd (E)) of 1233yd (Z) and 1233yd (E) in 1233yd produced
  • the boiling point of 243ba (about 90 to 100 ° C.) and the boiling point of 1233yd (the boiling point of 1233yd (Z): 54.degree. C. and boiling point of 1233yd (E): 47-48.degree. C.), the two can be easily separated by a separation operation such as distillation.
  • the product means a halogenated hydrocarbon produced by a dehydrochlorination reaction, such as 1233yd and 1-chloro-3,3-difluoropropyne as a by-product.
  • 243ba is used as a raw material.
  • 243ba can be synthesized by a predetermined method described later.
  • the 243ba dehydrochlorination reaction may be either a liquid phase reaction or a gas phase reaction. From the viewpoint of improving the conversion rate of 243ba and the selectivity of 1233yd, a liquid phase reaction is preferred. A gas phase reaction is preferable from the viewpoint of low waste after production and high productivity.
  • the dehydrochlorination reaction of 243ba in a liquid phase reaction means the dehydrochlorination reaction of 243ba in a liquid state. Further, the dehydrochlorination reaction of 243ba by a gas phase reaction means the dehydrochlorination reaction of 243ba in a gas state.
  • One preferred embodiment of the dehydrochlorination reaction in the production method of the present invention is an embodiment in which 243ba is reacted with a base.
  • the dehydrochlorination reaction by reacting with a base can be carried out by either a gas phase reaction or a liquid phase reaction.
  • the base may be any base that can perform a dehydrochlorination reaction, and examples thereof include metal hydroxides, metal oxides, and metal carbonates. Two or more bases may be used in combination.
  • metal hydroxides include alkali metal hydroxides and alkaline earth metal hydroxides.
  • alkali metal hydroxide include lithium hydroxide, sodium hydroxide, and potassium hydroxide.
  • alkaline earth metal hydroxide include magnesium hydroxide, calcium hydroxide, strontium hydroxide, and barium hydroxide.
  • metal oxides include alkali metal oxides and alkaline earth metal oxides.
  • alkali metal oxide include sodium oxide.
  • alkaline earth metal oxide is calcium oxide.
  • metal carbides include alkali metal carbonates and alkaline earth metal carbonates.
  • alkali metal carbonate include lithium, sodium, potassium, rubidium, or cesium carbonate.
  • alkaline earth metal carbonate include beryllium, magnesium, calcium, strontium, or barium carbonate.
  • the base is preferably a metal hydroxide, more preferably potassium hydroxide or sodium hydroxide, from the viewpoints of high solubility in water and easy handling and high reactivity.
  • the amount of base used is preferably 0.5 to 10 mol, more preferably 0.5 to 5.0 mol, and more preferably 0.8 to 1 mol of 243ba from the viewpoint of the reaction yield and the selectivity of 1233yd. More preferred is ⁇ 3.0 mol.
  • the reaction temperature of 243ba and the base is preferably 0 to 100 ° C., more preferably 10 to 60 ° C., and further preferably 15 to 50 ° C. from the viewpoint of the reaction activity and the selectivity of 1233yd.
  • the reaction time of 243ba and the base is preferably 0.5 to 50 hours, more preferably 1 to 10 hours, and further preferably 5 to 10 hours in the case of a batch system. In the case of a continuous type, 1 to 6000 seconds is preferable, and 60 to 1500 seconds is more preferable.
  • the reaction time in the case of a continuous type means the residence time of the raw material in a reactor.
  • a 243ba dehydrochlorination reaction occurs.
  • the base In order for the base to participate in the reaction, it is necessary to physically contact 243ba and the base.
  • a method of bringing 243ba into contact with a base a method of bringing a base dissolved in a solvent (that is, a base solution) into contact with 243ba (preferably in a liquid state 243ba), and a solid state (preferably in a powder state)
  • the base of 243ba preferably in a gaseous state of 243ba
  • the former method is preferred from the viewpoint of reaction time, reaction yield, and selectivity of 1233yd.
  • the solvent used for preparing the base solution may be any solvent that can dissolve a predetermined amount of base and does not contribute to the dechlorination hydrogen reaction, and water is preferable. That is, the base solution is preferably an aqueous base solution.
  • the concentration of the base in the base solution is preferably 10 to 50% by mass with respect to the total mass of the base solution. When the concentration of the base is 10% by mass or more, a sufficient reaction rate is easily obtained, and the target product is easily separated by two-layer separation. If the concentration of the base is 50% by mass or less, the base is easily dissolved and the metal salt is hardly precipitated, which is advantageous in an industrial process.
  • the concentration of the base in the base solution is more preferably 20 to 40% by mass with respect to the total mass of the base solution.
  • the dehydrochlorination reaction is preferably performed in the presence of a phase transfer catalyst in order to increase the reaction rate.
  • a phase transfer catalyst include quaternary ammonium salts, quaternary phosphonium salts, quaternary arsonium salts, sulfonium salts, crown ethers, quaternary ammonium salts, quaternary phosphonium salts, fourth compounds.
  • Quaternary arsonium salts and sulfonium salts are preferred, and quaternary ammonium salts are more preferred.
  • Examples of the quaternary ammonium salt include compounds represented by the following formula (i).
  • R 11 to R 14 each independently represent a monovalent hydrocarbon group or a monovalent hydrocarbon group to which a functional group inert to the reaction is bonded, and Y 1 — represents Represents an anion.
  • R 11 to R 14 may be the same group or different groups.
  • the monovalent hydrocarbon group examples include an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, and an aryl group, and an alkyl group and an aryl group are preferable.
  • the monovalent hydrocarbon group preferably has 4 to 100 carbon atoms, and more preferably 6 to 30 carbon atoms.
  • the functional group inert to the reaction in the monovalent hydrocarbon group bonded with the functional group inert to the reaction include a halogen atom, an alkoxycarbonyl group, an acyloxy group, a nitrile group, an acyl group, and a carboxyl group.
  • a halogen atom an alkoxycarbonyl group
  • an acyloxy group a nitrile group
  • an acyl group a carboxyl group.
  • Group and alkoxyl group are examples of the functional group inert to the reaction in the monovalent hydrocarbon group bonded with the functional group inert to the reaction.
  • quaternary ammonium (R 11 R 12 R 13 R 14 N + ) in the formula (i) include tetramethylammonium, tetraethylammonium, tetra-n-propylammonium, tetra-n-butylammonium, methyltri- n-octylammonium, cetyltrimethylammonium, benzyltrimethylammonium, benzyltriethylammonium, cetylbenzyldimethylammonium, cetylpyridinium, n-dodecylpyridinium, phenyltrimethylammonium, phenyltriethylammonium, N-benzylpicolinium, pentamethonium, hexametho Ni may be mentioned.
  • Y 1 - as are fluorine ion, chlorine ion, bromine ion, iodine ion, hydrogen sulfate ion and hydroxide ion
  • More preferred are ions and bromine ions.
  • the compound represented by the formula (i) is preferably a combination of the following quaternary ammonium (R 11 R 12 R 13 R 14 N + ) and the following Y 1 — from the viewpoint of versatility and reactivity.
  • Y 1 ⁇ Fluorine ion, chlorine ion, bromine ion, iodine ion, or hydroxide ion.
  • quaternary ammonium salt examples include tetra-n-butylammonium chloride (TBAC), tetra-n-butylammonium bromide (TBAB), and methyltri-n-octylammonium chloride (TOMAC).
  • TBAC tetra-n-butylammonium chloride
  • TBAB tetra-n-butylammonium bromide
  • TOMAC methyltri-n-octylammonium chloride
  • Examples of the quaternary phosphonium salt include compounds represented by the following formula (ii).
  • R 21 to R 24 each independently represents a monovalent hydrocarbon group, and Y 2 — represents an anion.
  • R 21 to R 24 may be the same group or different groups.
  • the monovalent hydrocarbon group examples include an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, and an aryl group, and an alkyl group and an aryl group are preferable.
  • quaternary phosphonium (R 21 R 22 R 23 R 24 P + ) in the above formula (ii) include tetraethylphosphonium, tetra-n-butylphosphonium, ethyltri-n-octylphosphonium, cetyltriethylphosphonium, cetyltriethyl. -N-butylphosphonium, n-butyltriphenylphosphonium, n-amyltriphenylphosphonium, methyltriphenylphosphonium, benzyltriphenylphosphonium, tetraphenylphosphonium.
  • Y 2 - Specific examples of chlorine ion, fluorine ion, bromine ion, iodine ion, sulfate ion, nitrate ion, phosphate ion, perchlorate ion, hydrogen sulfate ion, hydroxide ion, acetate ion, benzoate Ion, benzenesulfonic acid ion, p-toluenesulfonic acid ion, and fluorine ion, chlorine ion and bromine ion are preferable.
  • Examples of the quaternary arsonium salt include compounds represented by the following formula (iii).
  • R 31 to R 34 each independently represents a monovalent hydrocarbon group
  • Y 3 — represents an anion.
  • Specific examples of the monovalent hydrocarbon group represented by R 31 to R 34 in formula (iii) are specific examples of the monovalent hydrocarbon group represented by R 21 to R 24 in formula (ii). Is the same.
  • Specific examples of the anion represented by Y 3 ⁇ in formula (iii) are the same as the specific examples of the anion represented by Y 2 ⁇ in formula (ii).
  • quaternary arsonium salt examples include triphenylmethylarsonium fluoride, tetraphenylarsonium fluoride, triphenylmethylarsonium chloride, tetraphenylarsonium chloride, and tetraphenylarsonium bromide.
  • Examples of the sulfonium salt include a compound represented by the following formula (iv).
  • R 41 to R 43 each independently represents a monovalent hydrocarbon group
  • Y 4 — represents an anion.
  • Specific examples of the monovalent hydrocarbon group represented by R 41 to R 43 in formula (iv) are specific examples of the monovalent hydrocarbon group represented by R 21 to R 24 in formula (ii). Is the same.
  • Specific examples of the anion represented by Y 4 ⁇ in formula (iv) are the same as the specific examples of the anion represented by Y 2 ⁇ in formula (ii).
  • the sulfonium salt include di-n-butylmethylsulfonium iodide, tri-n-butylsulfonium tetrafluoroborate, dihexylmethylsulfonium iodide, dicyclohexylmethylsulfonium iodide, dodecylmethylethylsulfonium chloride, tris (diethylamino) Examples include sulfonium difluorotrimethyl silicate.
  • crown ether examples include 18-crown-6, dibenzo-18-crown-6, and dicyclohexyl-18-crown-6.
  • TBAC phase transfer catalyst
  • TBAB TBAB
  • TOMAC phase transfer catalyst
  • the amount of the phase transfer catalyst used is preferably 0.001 to 10 parts by weight, more preferably 0.05 to 5.0 parts by weight, and 0.01 to 1.0 parts by weight with respect to 100 parts by weight of 243ba. Further preferred.
  • a water-soluble organic solvent is present in the reaction system in place of the phase transfer catalyst, and the organic phase and the aqueous phase containing the base are phased. It may be solubilized, or a phase transfer catalyst and a water-soluble organic solvent may be used in combination.
  • the water-soluble organic solvent include tetraethylene glycol dimethyl ether, sulfolane, and t-butanol.
  • the above reaction may be carried out by a batch method, semi-continuous method or continuous flow method.
  • Specific examples of the material for the reactor include glass, iron, nickel, and stainless steel.
  • the reaction liquid may be left after the reaction to separate the organic phase and the aqueous phase.
  • 1233yd is contained in the organic phase, and a product containing 1233yd can be easily recovered by recovering the organic phase.
  • dehydrochlorination reaction in the production method of the present invention, an embodiment in which 243ba is dehydrochlorinated in the presence of an activated carbon catalyst or a metal catalyst can be mentioned.
  • the dehydrochlorination reaction in the presence of an activated carbon catalyst or a metal catalyst can be performed by a gas phase reaction.
  • the specific surface area of the activated carbon used as a catalyst from the viewpoint of improving the reaction conversion rate and the by-product suppression, preferably 10 ⁇ 3000m 2 / g, more preferably 20 ⁇ 2500m 2 / g, 50 ⁇ 2000m 2 / g Is more preferable.
  • the specific surface area of the activated carbon is measured by a method based on the BET method.
  • activated carbon examples include activated carbon prepared from charcoal, coal, coconut shells, and the like. More specifically, there are formed coal having a length of about 2 to 5 mm, crushed coal having a length of about 4 to 50 mesh, granular coal, and powdered coal.
  • the amount of water in the activated carbon is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 1% by mass or less, when the total amount of activated carbon and moisture is 100% by mass.
  • metal catalysts include zero-valent iron, zero-valent cobalt, zero-valent nickel, zero-valent palladium, chromium oxide (chromia), aluminum oxide (alumina), zinc oxide, tin oxide, magnesium oxide, and oxidation.
  • metal catalysts include zero-valent iron, zero-valent cobalt, zero-valent nickel, zero-valent palladium, chromium oxide (chromia), aluminum oxide (alumina), zinc oxide, tin oxide, magnesium oxide, and oxidation.
  • examples thereof include lanthanum, nickel oxide, aluminum fluoride oxide, chromium fluoride oxide, magnesium fluoride oxide, lanthanum oxide fluoride, alkali metal halide, and alkaline earth metal halide.
  • activated carbon or alkaline earth metal fluoride as the catalyst, and more preferably activated carbon, BaF 2 , SrF 2 or CaF 2 .
  • a 243ba dehydrochlorination reaction occurs.
  • the method for bringing 243ba into contact with the catalyst include a method in which the catalyst is brought into contact with a gas state 243ba.
  • a specific procedure there is a procedure in which 1243yd is obtained by continuously supplying 243ba in the gas state into the reactor and bringing the catalyst charged in the reactor into contact with 243ba in the gas state.
  • the product is recovered from the gas phase in the reactor, the product is cooled by cooling. If necessary, the product is passed through a deoxidation tower to remove hydrogen chloride.
  • reaction temperature is preferably 200 to 700 ° C, more preferably 350 to 450 ° C.
  • contact time is preferably 1 to 1000 seconds, more preferably 5 to 100 seconds, from the viewpoint of reaction rate and conversion rate.
  • 1233yd is obtained as a product.
  • 1233yd obtained may be 1233yd (Z) alone, 1233yd (E) alone, or a mixture of 1233yd (Z) and 1233yd (E).
  • the ratio of the mass of 1233yd (Z) to the mass of 1233yd (E) (1233yd (Z) / 1233yd (E)) is 2
  • the above is preferable, 5 or more is more preferable, 10 or more is further preferable, and 15 or more is particularly preferable.
  • the upper limit of the ratio is usually 100.
  • 1233yd (Z) has higher chemical stability than 1233yd (E)
  • mass ratio of 1233yd (Z) (1233yd (Z) / 1233yd (E)) is greater than or equal to the above lower limit value
  • various applications For example, it is easy to use in a cleaning agent, a refrigerant, a heat medium, a foaming agent, a solvent, and the like.
  • the product obtained by the production method of the present invention may contain unreacted 243ba and impurities in addition to the target 1233yd.
  • the impurity include 1-chloro-3,3-difluoropropyne produced by dehydrofluorination 1233yd and 1,2-dichloro-3,3-difluoro produced by dehydrofluorination 243ba Propene is mentioned.
  • the content of 1,2-dichloro-3,3-difluoropropene in the product is preferably 10% by mass or less and more preferably 5% by mass or less with respect to the total mass of the product from the viewpoint of purification efficiency.
  • the lower limit of the content is usually 0.
  • a process of separating 1233yd from the obtained product may be performed. More specifically, the obtained product may be distilled to carry out a process for obtaining a fraction mainly comprising 1233yd.
  • “1233yd is the main component” means that the mass of 1233yd is the largest in the fraction, and the content of 1233yd is preferably 90% by mass or more, and 95% by mass with respect to the total mass of the fraction. % Is more preferable, and 97% by mass is even more preferable.
  • the difference in boiling point between the target 1233yd and the raw material 243ba is as large as 40 to 50 ° C., 1233yd and 243ba can be easily separated by distillation.
  • a distillation apparatus such as a packed tower or a plate tower can be used.
  • multistage distillation is preferable.
  • the number of theoretical plates is preferably 30 or more.
  • the temperature during the distillation operation (for example, the temperature of the distillation kettle) is preferably 80 ° C. or less, more preferably 70 ° C. or less from the viewpoint of energy cost.
  • the temperature during the distillation operation is preferably 48 ° C. or higher, which is the boiling point of 1233yd (E).
  • the 1230xd fluorination reaction may be either a liquid phase reaction or a gas phase reaction.
  • To fluorinate 1230xd by liquid phase reaction means to fluorinate 1230xd in a liquid state.
  • fluorinating 1230xd by gas phase reaction means fluorinating 1230xd in a gas state.
  • the raw material 1230xd can be synthesized by a known method described in US Pat.
  • the above reaction may be performed in the presence of a catalyst, if necessary.
  • the catalyst include metal halides such as antimony, tin, thallium, iron, titanium, and tantalum. More specifically, SbCl 5 , SbCl 3 , SbF 5 , SnCl 4 , TiCl 4 , FeCl 3 may be mentioned.
  • 1230xd as a raw material is continuously or discontinuously supplied into a reactor in which a mixture of a catalyst and hydrogen fluoride exists in a liquid state, and 243ba generated by the reaction and a byproduct are supplied. And hydrogen chloride to be extracted from the reactor continuously or discontinuously.
  • the reaction temperature in the liquid phase reaction is preferably 20 to 200 ° C, more preferably 50 to 150 ° C.
  • the above reaction may be performed in the presence of a catalyst, if necessary.
  • a catalyst include metal oxide catalysts such as alumina, zirconia, titania and chromia, metal halides such as antimony, tin, thallium, iron, titanium and tantalum, and simple substances such as activated carbon and metal oxide.
  • Catalysts supporting metal halides such as tin, thallium, iron, titanium, and tantalum.
  • reaction temperature in the gas phase reaction is preferably 50 to 700 ° C, more preferably 50 to 600 ° C, further preferably 50 to 400 ° C, and particularly preferably 100 to 300 ° C.
  • the raw material 1230xd may be preheated and then subjected to the reaction.
  • the preheating temperature is preferably 80 to 400 ° C, more preferably 150 to 400 ° C.
  • the reaction temperature is adjusted in a suitable range according to the catalyst used. For example, when a chromium-based oxide catalyst such as Cr 2 O 3 is used, the reaction temperature is preferably 200 to 600 ° C., 250 More preferably, the reaction temperature is preferably 80 to 300 ° C., more preferably 100 to 250 ° C., when an iron-based catalyst in which FeCl 3 is supported on activated carbon is used.
  • 243ba when manufacturing 243ba from said 1230xd, you may carry out by a multistep reaction. For example, you may implement by the multistep reaction which combined the liquid phase reaction and the gas phase reaction.
  • the target 243ba may be synthesized by adding HF to 1232xd (see the following formula (3-1) and formula (3-2)).
  • the reaction conditions and the kind of catalyst in each process can be selected suitably.
  • the multistage reaction not only improves the selectivity of the target product, but also can select the optimum reaction conditions and catalyst for each process and suppress corrosion of the equipment.
  • Examples of a method for producing 1230xd used as a raw material for the above reaction include a method in which 1,1,2,3,3-tetrachloropropane (CHCl 2 CHClCHCl 2 .240da) is dehydrochlorinated to obtain 1230xd. (See Equation (4) below).
  • Examples of the method for dehydrochlorinating 240 da include a method of reacting with a base and a method of contacting with an activated carbon catalyst or a metal catalyst in the same manner as the method of obtaining 1233yd from 243ba.
  • the 240 da dehydrochlorination reaction may be either a liquid phase reaction or a gas phase reaction, and a liquid phase reaction is preferred because it is more industrially advantageous.
  • the dehydrochlorination reaction of 240da in a liquid phase reaction means the dehydrochlorination reaction of 240da in a liquid state.
  • the dehydrochlorination reaction of 240 da by a gas phase reaction means the dehydrochlorination reaction of 240 da in a gaseous state.
  • Specific procedures and conditions for the method of reacting with a base to dehydrochlorinate 240da include the procedures and conditions for reacting with the above-described base to cause dehydrochlorination of 243ba.
  • specific procedures and conditions for the dehydrochlorination reaction of 240da in the presence of an activated carbon catalyst or a metal catalyst include the procedures and conditions for the dehydrochlorination reaction of 243ba in the presence of the above-described catalyst. Is mentioned.
  • the 1230xd manufacturing method may be manufactured by a manufacturing method other than the above.
  • the 240da fluorination reaction may be either a liquid phase reaction or a gas phase reaction.
  • To fluorinate 240da by a liquid phase reaction means to fluorinate 240da in a liquid state.
  • fluorinating 240da by a gas phase reaction means fluorinating 240da in a gas state.
  • Examples of the catalyst, reaction conditions, and procedure used in the liquid phase reaction using 240 da include the catalyst, reaction conditions, and procedure used in the liquid phase reaction using 1230xd described above.
  • Examples of the catalyst, reaction conditions, and procedures used in the gas phase reaction using 240 da include the catalysts, reaction conditions, and procedures used in the gas phase reaction using 1230xd described above.
  • Examples of a method for producing 240da used as a raw material for the above reaction include a method of obtaining 240da by reacting chloroform and 1,2-dichloroethylene (see formula (6) below).
  • the amount ratio of chloroform to 1,2-dichloroethylene is preferably 0.5 to 1.5, more preferably 0.7 to 1.2.
  • the reaction temperature is preferably 30 to 90 ° C., more preferably 40 to 70 ° C., from the viewpoint that the reaction proceeds more efficiently.
  • 1,2-dichloroethylene may be a cis isomer, a trans isomer, or a mixture thereof.
  • the reaction may be either a liquid phase reaction or a gas phase reaction.
  • Example 1 A 0.5-liter four-necked flask equipped with a stirrer and a Dimroth condenser was charged with 101.2 g of 243ba and 1.01 g of tetra-n-butylammonium chloride (TBAC) as raw materials, and the flask was heated to 50 ° C. did. The reaction temperature was maintained at 50 ° C., and 127.5 g of 40 mass% potassium hydroxide (KOH) aqueous solution was dropped into the flask over 30 minutes. Thereafter, the reaction solution in the flask was stirred for 1 hour, and then the organic phase was recovered. The reaction time in this example is the total time of the time required for the dropping and the time for stirring after the dropping, that is, 1.5 hours. Table 1 shows the results of analysis using a gas chromatograph after washing the recovered organic phase.
  • TBAC tetra-n-butylammonium chloride
  • Comparative Example 1 In the reaction apparatus of Example 1, the reaction was carried out in the same procedure as in Example 1, except that the reactor was changed to a 3 liter four-necked flask, the raw material was changed to 244ca, and the reaction conditions were changed to the conditions shown in Table 1. Went. The results of analysis using the gas chromatograph of the organic phase obtained in Comparative Example 1 are shown in Table 1 together with the reaction conditions.
  • Example 2 An insertion tube (material: SUS316, diameter: 3 mm) is introduced into the center of a vertical fixed bed reactor (material: SUS316, inner diameter 22.0 mm x height 200 mm), and a K-type thermocouple is inserted therein. The temperature was measured. 83.0 mL (43.0 g) of activated carbon (specific surface area 1400 m 2 / g) was charged in the center of the reactor, and this was used as a catalyst layer. While supplying nitrogen gas into the reactor at 300 mL / min, the catalyst layer was heated to 100 ° C. by an electric furnace and dried. A raw material preheating mixing line heated to 130 ° C.
  • Nitrogen was adjusted to a gas flow rate of 49.0 mL / min using a mass flow controller and supplied to the raw material preheating mixing line.
  • the raw material 243ba was supplied to a raw material preheating mixing line heated to 130 ° C. using a plunger pump. At this time, the liquid amount of the plunger pump was adjusted so that the gas flow rate of 243ba vaporized was 49.0 mL / min.
  • the temperature (reaction temperature) of the catalyst layer was 350 ° C., and the time (contact time) for vaporized 243ba to pass through the catalyst layer was 20 seconds. The product was continuously removed from the bottom of the reactor.
  • a part of the product taken out from the lower part of the reactor was collected and subjected to composition analysis by gas chromatography.
  • the product taken out from the lower part of the reactor is referred to as outlet gas.
  • the raw materials were introduced into the reactor under the conditions shown in Table 2 and reacted continuously for 3 hours.
  • a part of the outlet gas was sampled immediately before the completion of the reaction, and composition analysis was performed by gas chromatography. The results are shown in Table 2.
  • Example 2 In Example 2, the reaction was performed in the same procedure as in Example 2 except that the raw material was changed to 244ca and the reaction conditions were changed to the conditions shown in Table 2. A part of the outlet gas obtained in Comparative Example 2 was collected and analyzed using a gas chromatograph, together with the reaction conditions, shown in Table 2.
  • each component in the product (1233yd (Z), 1233yd (E), relative to the total mass of the product obtained by the reaction) This represents the mass ratio (unit:%) of the raw material (243ba or 244ca), 1-chloro-3,3-difluoropropyne, and other impurities.
  • the raw material conversion rate represents the ratio (unit:%) of the molar amount of the raw material consumed in the reaction to the molar amount of the raw material (243ba or 244ca) used in the reaction.
  • Each selectivity represents the amount of each component (1233yd (Z), 1233yd (E), 1-chloro-3,3-difluoropropyne) produced in the product (mole) relative to the molar amount of the raw material consumed in the reaction. Amount (unit:%).
  • the 1233yd (E, Z) yield is the ratio (unit:%) of the total molar amount of 1233yd (Z) and 1233yd (E) obtained by the reaction to the molar amount of the raw material (243ba or 244ca) used in the reaction. Represents.
  • 1233yd (Z) / 1233yd (E) [Production ratio] represents the ratio (unit:%) of the mass of 1233yd (Z) obtained by the reaction to the mass of 1233yd (E) obtained by the reaction.
  • Example 3 The reaction was performed in the same procedure as in Example 1 except that the reaction conditions were changed to the conditions shown in Table 1. The results of analysis using the gas chromatograph of the organic phase obtained in Example 3 are shown in Table 1 together with the reaction conditions.
  • the conversion rate of the raw material was high and the amount of impurities produced was small.
  • 1233yd (Z) and 1233yd (E) were obtained in a shorter reaction time, and the production ratio of 1233yd (Z) was high.
  • the product obtained by the production method of the present invention did not contain 1,2-dichloro-3,3-difluoropropene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

原料の転化率が高く、かつ、不純物の生成量が少ない、1233ydの製造方法を提供。 1,2-ジクロロ-2,3,3-トリフルオロプロパンを脱塩化水素反応させて1-クロロ-2,3,3-トリフルオロプロペンを得ることを特徴とする1-クロロ-2,3,3-トリフルオロプロペンの製造方法。

Description

1-クロロ-2,3,3-トリフルオロプロペンの製造方法
 本発明は、1-クロロ-2,3,3-トリフルオロプロペンの製造方法に関する。
 1-クロロ-2,3,3-トリフルオロプロペン(CHCl=CF-CHF。HCFO-1233yd。以下、1233ydとも記す。)は、3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパンや1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパンに代わる、地球温暖化係数(GWP)の小さい化合物であり、各種用途(例えば、洗浄剤、冷媒、熱媒体、発泡剤、溶剤等)に適用可能である。
 なお、本明細書において、ハロゲン化炭化水素については、化合物名の後の括弧内にその化合物の略称を記すが、本明細書では必要に応じて化合物名に代えてその略称を用いる。また、略称として、ハイフン(-)より後ろの数字およびアルファベット小文字部分だけ(例えば、「HCFO-1233yd」においては「1233yd」)を用いる場合がある。
 1233ydの製造例としては、特許文献1において、3-クロロ-1,1,2,2-テトラフルオロプロパンを脱フッ化水素反応させる方法が開示されている。
国際公開第2016/136744号
 一方で、特許文献1に記載の方法では、1233ydが得られるものの、1-クロロ-3,3-ジフルオロプロピンなどの不純物の生成量が多いという問題があった。
 本発明は、原料の転化率が高く、かつ、不純物の生成量が少ない、1233ydの製造方法の提供を課題とする。
 本発明者らは、上記課題を達成すべく鋭意検討した結果、以下の構成により上記課題を解決できるのを見出した。
(1) 1,2-ジクロロ-2,3,3-トリフルオロプロパンを脱塩化水素反応させて1-クロロ-2,3,3-トリフルオロプロペンを得ることを特徴とする1-クロロ-2,3,3-トリフルオロプロペンの製造方法。
(2) 前記1,2-ジクロロ-2,3,3-トリフルオロプロパンを塩基と反応させる、(1)に記載の製造方法。
(3) 前記1,2-ジクロロ-2,3,3-トリフルオロプロパンを液相で塩基と接触させる、(2)に記載の製造方法。
(4) 前記塩基が、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属酸化物、アルカリ土類金属酸化物、アルカリ金属炭酸塩、および、アルカリ土類金属炭酸塩からなる群より選ばれる塩基である、(2)または(3)に記載の製造方法。
(5) 前記塩基の量が、1,2-ジクロロ-2,3,3-トリフルオロプロパンの1モルに対して、0.5~10モルである、(2)~(4)のいずれかに記載の製造方法。
(6) 前記1,2-ジクロロ-2,3,3-トリフルオロプロパンを、塩基溶液と接触させる、(2)~(5)のいずれかに記載の製造方法。
(7) 前記塩基溶液が塩基水溶液である、(6)に記載の製造方法。
(8) 相間移動触媒の存在下に前記脱塩化水素反応を行う、(2)~(7)のいずれかに記載の製造方法。
(9) 前記相間移動触媒が第4級アンモニウム塩である、(8)に記載の製造方法。
(10) 前記相間移動触媒の使用量が、1,2-ジクロロ-2,3,3-トリフルオロプロパンの100質量部に対して、0.001~10質量部である、(8)または(9)に記載の製造方法。
(11) 前記脱塩化水素反応の反応温度が0~100℃である、(2)~(10)のいずれかに記載の製造方法。
(12) 前記1,2-ジクロロ-2,3,3-トリフルオロプロパンを活性炭触媒または金属触媒の存在下に脱塩化水素反応させる、(1)に記載の製造方法。
(13) 前記1,2-ジクロロ-2,3,3-トリフルオロプロパンを、気相で前記触媒と接触させる、(12)に記載の製造方法。
(14) 得られる1-クロロ-2,3,3-トリフルオロプロペンが、1-クロロ-2,3,3-トリフルオロプロペンのZ体と1-クロロ-2,3,3-トリフルオロプロペンのE体の混合物であり、
 前記1-クロロ-2,3,3-トリフルオロプロペンのE体の質量に対する、前記1-クロロ-2,3,3-トリフルオロプロペンのZ体の質量の比が、2~100である、(1)~(13)のいずれかに記載の製造方法。
(15) 脱塩化水素反応により生成したハロゲン化炭化水素中の1,2-ジクロロ-3,3-ジフルオロプロペンの含有量が10質量%以下である、(1)~(14)のいずれかに記載の製造方法。
 本発明によれば、原料の転化率が高く、かつ、不純物の生成量が少ない、1233ydの製造方法を提供できる。
 本発明における用語の意味は以下の通りである。
 1233ydは二重結合上の置換基の位置により、幾何異性体であるZ体とE体が存在する。本明細書中では特に断らずに化合物名や化合物の略称を用いた場合には、Z体およびE体から選ばれる少なくとも1種を示し、より具体的には、Z体もしくはE体、または、Z体とE体の任意の割合の混合物を示す。化合物名や化合物の略称の後ろに(E)または(Z)を付した場合には、それぞれの化合物の(E)体または(Z)体を示す。例えば、1233yd(Z)はZ体を示し、1233yd(E)はE体を示す。
 本発明の1233ydの製造方法は、2,3-ジクロロ-1,1,2-トリフルオロプロパン(CHF-CClFH-CHCl。HCFC-243ba)を原料として1233ydを得る方法である(以下式(1)参照)。
Figure JPOXMLDOC01-appb-C000001
 本発明の製造方法においては、原料である243baの転化率が高く、かつ、不純物の生成量が少ない。なお、ここで不純物とは、原料である243baおよび1233yd以外のハロゲン化炭化水素成分を意味する。
 また、本発明の製造方法においては、反応時間が短く、かつ、生成した1233ydにおける1233yd(Z)と1233yd(E)との比率(1233yd(Z)/1233yd(E))が高い。
 さらに、本発明の製造方法においては、原料である243baが生成物中に残存した場合であっても、243baの沸点(約90~100℃)と、1233ydの沸点(1233yd(Z)の沸点:54℃、1233yd(E)の沸点:47~48℃)の差が大きいため、蒸留などの分離操作によって、両者を容易に分離できる。
 なお、生成物とは、脱塩化水素反応により生成したハロゲン化炭化水素を意味し、1233ydや副生した1-クロロ-3,3-ジフルオロプロピン等をいう。
 本発明の製造方法において、243baを原料とする。243baは、例えば、後述の所定の方法により合成できる。
 本発明の製造方法における、243baの脱塩化水素反応は、液相反応および気相反応のいずれでもよい。243baの転化率および1233ydの選択率を向上させる点からは、液相反応が好ましい。製造後の廃棄物が少ない、生産性が高い等の点からは、気相反応が好ましい。243baを液相反応で脱塩化水素反応させるとは、液体状態の243baを脱塩化水素反応させることをいう。また、243baを気相反応で脱塩化水素反応させるとは、気体状態の243baを脱塩化水素反応させることをいう。
 本発明の製造方法における脱塩化水素反応の好適態様の1つとしては、243baを塩基と反応させる態様が挙げられる。塩基と反応させることによる脱塩化水素反応は、気相反応、液相反応のいずれでも行うことができる。
 塩基は、脱塩化水素反応が実行可能な塩基であればよく、例えば、金属水酸化物、金属酸化物、金属炭酸塩が挙げられる。
 なお、塩基は、2種以上を併用してもよい。
 金属水酸化物の具体例としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物が挙げられる。アルカリ金属水酸化物の具体例としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムが挙げられる。アルカリ土類金属水酸化物の具体例としては、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムが挙げられる。
 金属酸化物の具体例としては、アルカリ金属酸化物、アルカリ土類金属酸化物が挙げられる。アルカリ金属酸化物の具体例としては、酸化ナトリウムが挙げられる。アルカリ土類金属酸化物の具体例としては、酸化カルシウムが挙げられる。
 金属炭化塩の具体例としては、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩が挙げられる。アルカリ金属炭酸塩の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、または、セシウムの炭酸塩が挙げられる。アルカリ土類金属炭酸塩の具体例としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、または、バリウムの炭酸塩が挙げられる。
 塩基としては、水に対する溶解度が大きく取扱いが容易であり、かつ、反応性が高い点から、金属水酸化物が好ましく、水酸化カリウムおよび水酸化ナトリウムがより好ましい。
 塩基の使用量は、反応収率および1233ydの選択率の点から、243baの1モルに対して、0.5~10モルが好ましく、0.5~5.0モルがより好ましく、0.8~3.0モルがさらに好ましい。
 243baと塩基との反応温度は、反応活性および1233ydの選択率の点から、0~100℃が好ましく、10~60℃がより好ましく、15~50℃がさらに好ましい。
 243baと塩基との反応時間は、バッチ式の場合には0.5~50時間が好ましく、1~10時間がより好ましく、5~10時間がさらに好ましい。連続式の場合には、1~6000秒間が好ましく、60~1500秒間がより好ましい。なお、連続式の場合の反応時間は、反応器内での原料の滞留時間を意味する。
 上記塩基を用いると、243baの脱塩化水素反応が起こる。塩基が反応に関与するためには、243baと塩基とを物理的に接触させる必要がある。
 243baと塩基とを接触させる方法としては、溶媒に溶解した塩基(すなわち、塩基溶液)と243ba(好ましくは、液体状態の243ba)とを接触させる方法、および、固体状態(好ましくは、粉末状態)の塩基と243ba(好ましくは、気体状態の243ba)とを接触させる方法が挙げられ、反応時間、反応収率、および、1233ydの選択率の点から、前者の方法が好ましい。
 塩基溶液を調製するために用いる溶媒としては、所定量の塩基を溶解でき、かつ、脱塩素水素反応に寄与しない溶媒であればよく、水が好ましい。つまり、塩基溶液としては、塩基水溶液が好ましい。
 塩基溶液中における塩基の濃度は、塩基溶液全質量に対して、10~50質量%が好ましい。塩基の濃度が10質量%以上であれば、十分な反応速度が得られやすく、2層分離により目的物を分離しやすい。塩基の濃度が50質量%以下であれば、塩基が十分に溶解されやすく、金属塩が析出しにくいため、工業的なプロセスにおいて有利である。塩基溶液中における塩基の濃度は、塩基溶液全質量に対して、20~40質量%がより好ましい。
 脱塩化水素反応は、反応速度を上げるために、相間移動触媒の存在下で行うのが好ましい。
 相間移動触媒の具体例としては、第4級アンモニウム塩、第4級ホスホニウム塩、第4級アルソニウム塩、スルホニウム塩、クラウンエーテルが挙げられ、第4級アンモニウム塩、第4級ホスホニウム塩、第4級アルソニウム塩およびスルホニウム塩が好ましく、第4級アンモニウム塩がより好ましい。
 第4級アンモニウム塩としては、下式(i)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 式(i)中、R11~R14は、それぞれ独立して、1価の炭化水素基、または、反応に不活性な官能基が結合した1価の炭化水素基を表し、Y は、陰イオンを表す。
 R11~R14は、それぞれ同じ基であってもよいし、異なる基であってもよい。
 上記1価の炭化水素基の具体例としては、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アリール基が挙げられ、アルキル基およびアリール基が好ましい。上記1価の炭化水素基の炭素数は、4~100が好ましく、6~30がより好ましい。
 上記反応に不活性な官能基が結合した1価の炭化水素基中の上記反応に不活性な官能基の具体例としては、ハロゲン原子、アルコキシカルボニル基、アシルオキシ基、ニトリル基、アシル基、カルボキシル基、アルコキシル基が挙げられる。
 式(i)における第4級アンモニウム(R11121314)の具体例としては、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラ-n-プロピルアンモニウム、テトラ-n-ブチルアンモニウム、メチルトリ-n-オクチルアンモニウム、セチルトリメチルアンモニウム、ベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、セチルベンジルジメチルアンモニウム、セチルピリジニウム、n-ドデシルピリジニウム、フェニルトリメチルアンモニウム、フェニルトリエチルアンモニウム、N-ベンジルピコリニウム、ペンタメトニウム、ヘキサメトニウムが挙げられる。
 Y の具体例としては、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン、硫酸イオン、硝酸イオン、リン酸イオン、過塩素酸イオン、硫酸水素イオン、水酸化物イオン、酢酸イオン、安息香酸イオン、ベンゼンスルホン酸イオン、p-トルエンスルホン酸イオンが挙げられる。Y としては、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン、硫酸水素イオンおよび水酸化物イオンが好ましく、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオンおよび水酸化物イオンがより好ましく、塩素イオンおよび臭素イオンがさらに好ましい。
 式(i)で表される化合物としては、汎用性および反応性の点から、下記第4級アンモニウム(R11121314)と、下記Y との組合せが好ましい。
 第4級アンモニウム(R11121314):テトラメチルアンモニウム、テトラエチルアンモニウム、テトラ-n-プロピルアンモニウム、テトラ-n-ブチルアンモニウム、または、メチルトリ-n-オクチルアンモニウム。
 Y :フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン、または、水酸化物イオン。
 第4級アンモニウム塩の具体例としては、テトラ-n-ブチルアンモニウムクロリド(TBAC)、テトラ-n-ブチルアンモニウムブロミド(TBAB)、メチルトリ-n-オクチルアンモニウムクロリド(TOMAC)が挙げられる。
 第4級ホスホニウム塩としては、下式(ii)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 式(ii)中、R21~R24は、それぞれ独立して、1価の炭化水素基を表し、Y は、陰イオンを表す。
 R21~R24は、それぞれ同じ基であってもよいし、異なる基であってもよい。
 上記1価の炭化水素基の具体例としては、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アリール基が挙げられ、アルキル基およびアリール基が好ましい。
 上記式(ii)における第4級ホスホニウム(R21222324)の具体例としては、テトラエチルホスホニウム、テトラ-n-ブチルホスホニウム、エチルトリ-n-オクチルホスホニウム、セチルトリエチルホスホニウム、セチルトリ-n-ブチルホスホニウム、n-ブチルトリフェニルホスホニウム、n-アミルトリフェニルホスホニウム、メチルトリフェニルホスホニウム、ベンジルトリフェニルホスホニウム、テトラフェニルホスホニウムが挙げられる。
 Y の具体例としては、塩素イオン、フッ素イオン、臭素イオン、ヨウ素イオン、硫酸イオン、硝酸イオン、リン酸イオン、過塩素酸イオン、硫酸水素イオン、水酸化物イオン、酢酸イオン、安息香酸イオン、ベンゼンスルホン酸イオン、p-トルエンスルホン酸イオンが挙げられ、フッ素イオン、塩素イオンおよび臭素イオンが好ましい。
 第4級アルソニウム塩としては、下式(iii)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 式(iii)中、R31~R34は、それぞれ独立して、1価の炭化水素基を表し、Y は、陰イオンを表す。
 式(iii)中のR31~R34で表される1価の炭化水素基の具体例は、式(ii)中のR21~R24で表される1価の炭化水素基の具体例と同じである。
 式(iii)中のY で表される陰イオンの具体例は、式(ii)中のY で表される陰イオンの具体例と同じである。
 第4級アルソニウム塩の具体例としては、トリフェニルメチルアルソニウムフロライド、テトラフェニルアルソニウムフロライド、トリフェニルメチルアルソニウムクロライド、テトラフェニルアルソニウムクロライド、テトラフェニルアルソニウムブロマイドが挙げられる。
 スルホニウム塩としては、下式(iv)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 式(iv)中、R41~R43は、それぞれ独立して、1価の炭化水素基を表し、Y は、陰イオンを表す。
 式(iv)中のR41~R43で表される1価の炭化水素基の具体例は、式(ii)中のR21~R24で表される1価の炭化水素基の具体例と同じである。
 式(iv)中のY で表される陰イオンの具体例は、式(ii)中のY で表される陰イオンの具体例と同じである。
 スルホニウム塩の具体例としては、ジ-n-ブチルメチルスルホニウムアイオダイド、トリ-n-ブチルスルホニウムテトラフルオロボレート、ジヘキシルメチルスルホニウムアイオダイド、ジシクロヘキシルメチルスルホニウムアイオダイド、ドデシルメチルエチルスルホニウムクロライド、トリス(ジエチルアミノ)スルホニウムジフルオロトリメチルシリケートが挙げられる。
 クラウンエーテルの具体例としては、18-クラウン-6、ジベンゾ-18-クラウン-6、ジシクロヘキシル-18-クラウン-6が挙げられる。
 上記した相間移動触媒のうち、工業的入手の容易さ、価格、扱いやすさ、反応性の点から、TBAC、TBAB、TOMACが好ましい。
 相間移動触媒の使用量は、243baの100質量部に対して、0.001~10質量部が好ましく、0.05~5.0質量部がより好ましく、0.01~1.0質量部がさらに好ましい。
 また、反応系が、水相と有機相とに分離する場合は、相間移動触媒の代わりに、水溶性有機溶媒を反応系中に存在させて、有機相と、塩基を含む水相とを相溶化させてもよく、相間移動触媒と水溶性有機溶媒とを併用してもよい。
 水溶性有機溶媒の具体例としては、テトラエチレングリコールジメチルエーテル、スルホラン、t-ブタノールが挙げられる。
 上記反応は、バッチ式で行ってもよいし、半連続式、連続流通式で行ってもよい。
 反応器の材質の具体例としては、ガラス、鉄、ニッケル、ステンレス鋼が挙げられる。
 塩基と243baを脱塩化水素反応させる態様を液相反応で実施した場合は、反応終了後に反応液を放置して、有機相と水相とに分離させてもよい。通常、有機相に1233ydが含まれており、有機相の回収により、1233ydを含む生成物を容易に回収できる。
 本発明の製造方法における脱塩化水素反応の他の好適態様の1つとしては、活性炭触媒または金属触媒の存在下にて243baを脱塩化水素反応させる態様が挙げられる。活性炭触媒または金属触媒の存在下での脱塩化水素反応は、気相反応で行うことができる。
 触媒として使用される活性炭の比表面積は、反応変換率の向上および副生物の抑制の点から、10~3000m/gが好ましく、20~2500m/gがより好ましく、50~2000m/gがさらに好ましい。活性炭の比表面積は、BET法に準拠した方法で測定される。
 活性炭の具体例としては、木炭、石炭、ヤシ殻などから調製された活性炭が挙げられる。より具体的には、長さ2~5mm程度の成形炭、4~50メッシュ程度の破砕炭、粒状炭、粉末炭が挙げられる。
 活性炭は、反応に用いる前に充分に乾燥させるのが好ましい。活性炭中の水分量は、活性炭と水分との総量を100質量%とした場合に、10質量%以下が好ましく、5質量%以下がより好ましく、1質量%以下がさらに好ましい。
 金属触媒の具体例としては、0価の鉄、0価のコバルト、0価のニッケル、0価のパラジウム、酸化クロム(クロミア)、酸化アルミニウム(アルミナ)、酸化亜鉛、酸化スズ、酸化マグネシウム、酸化ランタン、酸化ニッケル、フッ化酸化アルミニウム、フッ化酸化クロム、フッ化酸化マグネシウム、酸化フッ化ランタン、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物が挙げられる。
 本実施態様においては、触媒として活性炭またはアルカリ土類金属フッ化物を用いるのが好ましく、活性炭、BaF2、SrF2またはCaF2を用いるのがより好ましい。
 上記触媒を用いると、243baの脱塩化水素反応が起こる。活性炭触媒または金属触媒が反応に関与するためには、243baと上記触媒とを物理的に接触させる必要がある。
 243baと上記触媒とを接触させる方法としては、上記触媒と、気体状態の243baとを接触させる方法が挙げられる。
 具体的な手順としては、ガス状態の243baを反応器内に連続的に供給して、反応器に充填された上記触媒とガス状態の243baとを接触させて、1233ydを得る手順が挙げられる。生成物を反応器内の気相から回収する場合は、冷却にて生成物を冷却する。必要に応じて、生成物を脱酸塔に通して、塩化水素を取り除く。
 なお、副生物の抑制や触媒失活の抑制に有効である点から、反応においてNなどの不活性ガスを用いてもよい。
 接触温度(反応温度)は、200~700℃が好ましく、350~450℃がより好ましい。
 接触時間(反応時間)は、反応率や転化率の点から、1~1000秒間が好ましく、5~100秒間がより好ましい。
 本発明の製造方法において、1233ydが生成物として得られる。得られる1233ydは、上述したように、1233yd(Z)単独であってもよく、1233yd(E)単独であってもよく、1233yd(Z)と1233yd(E)との混合物であってよい。
 得られる1233ydが1233yd(Z)と1233yd(E)との混合物である場合、1233yd(E)の質量に対する、1233yd(Z)の質量の比(1233yd(Z)/1233yd(E))は、2以上が好ましく、5以上がより好ましく、10以上がさらに好ましく、15以上が特に好ましい。上記比の上限は、通常、100である。
 1233yd(Z)は1233yd(E)よりも化学的安定性が高いため、1233yd(Z)の質量の比(1233yd(Z)/1233yd(E))が上記下限値以上であれば、各種用途(例えば、洗浄剤、冷媒、熱媒体、発泡剤、溶剤等)において使用しやすい。
 本発明の製造方法にて得られた生成物中には、目的物である1233yd以外に、未反応の243baと不純物が含まれ得る。
 不純物の具体例としては、1233ydが脱弗化水素して生成する1-クロロ-3,3-ジフルオロプロピン、243baが脱弗化水素して生成する1,2-ジクロロ-3,3-ジフルオロプロペンが挙げられる。
 生成物中における1,2-ジクロロ-3,3-ジフルオロプロペンの含有量は、精製効率の点から、生成物全質量に対して、10質量%以下が好ましく、5質量%以下がより好ましい。上記含有量の下限は、通常、0である。
 生成物に不純物が含まれる場合、得られた生成物から、1233ydを分離する処理を実施してもよい。より具体的には、得られた生成物を蒸留して、1233ydを主成分とする留分を得る処理を実施してもよい。なお、ここで「1233ydを主成分」とは、留分中で1233ydの質量が最も多いことを意味し、留分全質量に対して1233ydの含有量が、90質量%以上が好ましく、95質量%がより好ましく、97質量%がさらに好ましい。
 上述したように、目的物である1233ydと原料である243baとの沸点の差が40~50℃と大きいため、蒸留によって1233ydと243baとを容易に分離できる。一方で、特許文献1に記載の3-クロロ-1,1,2,2-テトラフルオロプロパン(CHFCFCHCl。HCFC-244ca)を原料として1233ydを得る方法においては、244caと1233ydとの沸点の差が極めて小さいため、生成物中に未反応の244caが残存する際に、両者の分離が困難である。
 なお、未反応の243baは、再度原料として再利用できる。その際、生成物から1233ydを分離した後の粗液をそのまま使用してもよいし、粗液から未反応の243baを精製して用いてもよい。
 蒸留操作では、充填塔または棚段塔などの蒸留装置できる。なお、複数の不純物から目的化合物である1233ydを効率よく精製、回収するために、例えば、多段蒸留が好ましい。多段蒸留を用いる場合は、その理論段数は30段以上が好ましい。
 蒸留操作の際の温度(例えば、蒸留釜の温度)としては、エネルギーコストの点から、80℃以下が好ましく、70℃以下がより好ましい。なお、蒸留操作の際の温度は、1233yd(E)の沸点である48℃以上が好ましい。
 本発明の製造方法で原料として用いられる243baの製造方法としては、例えば、フッ化水素を用いて、1,2,3,3-テトラフルオロプロペン(CHClCCl=CHCl。1230xd)をフッ素化する方法が挙げられる(以下式(2)参照)
Figure JPOXMLDOC01-appb-C000006
 上記1230xdのフッ素化反応は、液相反応および気相反応のいずれでもよい。1230xdを液相反応でフッ素化反応させるとは、液体状態の1230xdをフッ素化させることをいう。また、1230xdを気相反応でフッ素化させるとは、気体状態の1230xdをフッ素化させることをいう。
 原料である1230xdは、US5811605などに記載の公知の方法または後述する方法により合成できる。
 液相反応の際には、必要に応じて、触媒存在下にて上記反応を実施してもよい。
 触媒の具体例としては、アンチモン、スズ、タリウム、鉄、チタン、タンタルなどの金属ハロゲン化物が挙げられる。より具体的には、SbCl、SbCl、SbF、SnCl、TiCl、FeClが挙げられる。
 液相反応の手順としては、触媒とフッ化水素との混合物が液体状態として存在する反応器内に、連続的または非連続的に原料である1230xdを供給し、反応によって生成する243baと副生する塩化水素とを反応器内から連続または非連続的に抜き出す手順が挙げられる。
 液相反応における反応温度は、20~200℃が好ましく、50~150℃がより好ましい。
 気相反応の際にも、必要に応じて、触媒存在下にて上記反応を実施してもよい。
 触媒の具体例としては、アルミナ、ジルコニア、チタニア、クロミアなどの金属酸化物触媒や、アンチモン、スズ、タリウム、鉄、チタン、タンタルなどの金属ハロゲン化物や、活性炭や金属酸化物などの単体にアンチモン、スズ、タリウム、鉄、チタン、タンタルなどの金属ハロゲン化物を担持した触媒が挙げられる。
 気相反応の手順としては、ガス状態に加熱された原料である1230xdとフッ化水素とを反応器内に連続的に供給して、反応器に充填された上記触媒と、ガス状態の1230xdおよびフッ化水素とを接触させて、243baを得る手順が挙げられる。
 なお、副生物の抑制や触媒失活の抑制に有効である点から、反応においてNなどの不活性ガスを用いてもよい。
 気相反応における反応温度は、50~700℃が好ましく、50~600℃がより好ましく、50~400℃がさらに好ましく、100~300℃が特に好ましい。
 なお、気相反応の場合、原料である1230xdをプレヒートした後、反応に供してもよい。プレヒートの温度は、80~400℃が好ましく、150~400℃がより好ましい。
 なお、上記反応温度は使用される触媒に応じて好適な範囲が調整され、例えば、Crのようなクロムベースの酸化物触媒を用いる場合、反応温度は200~600℃が好ましく、250~500℃がより好ましく、FeClを活性炭に担持させた鉄ベースの触媒を用いる場合、反応温度は80~300℃が好ましく、100~250℃がより好ましい。
 なお、上記1230xdから243baを製造する際には、多段階反応で行ってもよい。例えば、液相反応と気相反応とを組み合わせた多段階反応で実施してもよい。
 また、1段目の反応で1230xdから一部フッ素化が進んだ1,2-ジクロロ-3,3-ジフルオロプロペン(CHFCCl=CHCl。HCFO-1232xd)を合成し、2段目の反応で1232xdへのHF付加により目的物である243baを合成してもよい(以下式(3-1)および式(3-2)参照)。
Figure JPOXMLDOC01-appb-C000007
 なお、多段階反応を行う際には、各工程における反応条件や触媒の種類は適宜選定できる。
 また、多段階反応では目的物の選択率を向上させるだけでなく、それぞれの工程に最適な反応条件や触媒を選定して、設備の腐食を抑制できる。
 上記反応の原料として用いられる1230xdの製造方法としては、例えば、1,1,2,3,3-テトラクロロプロパン(CHClCHClCHCl。240da)を脱塩化水素反応させて1230xdを得る方法が挙げられる(以下式(4)参照)。
Figure JPOXMLDOC01-appb-C000008
 原料である240daは、US5811605などに記載の公知の方法または後述する方法により合成できる。
 240daを脱塩化水素反応させる方法としては、上記243baから1233ydを得る方法と同様に、塩基と反応させる方法、および、活性炭触媒または金属触媒と接触させる方法が挙げられる。
 240daの脱塩化水素反応は、液相反応および気相反応のいずれでもよく、より工業的に実施が有利である点から、液相反応が好ましい。240daを液相反応で脱塩化水素反応させるとは、液体状態の240daを脱塩化水素反応させることをいう。また、240daを気相反応で脱塩化水素反応させるとは、気体状態の240daを脱塩化水素反応させることをいう。
 塩基と反応させて240daを脱塩化水素反応させる方法の具体的な手順および条件としては、上述した塩基と反応させて243baを脱塩化水素反応させる際の手順および条件が挙げられる。
 また、活性炭触媒または金属触媒の存在下にて240daを脱塩化水素反応させる方法の具体的な手順および条件としては、上述した触媒の存在下にて243baを脱塩化水素反応させる際の手順および条件が挙げられる。
 なお、1230xdの製造方法は、上記以外の他の製造方法で製造されてもよい。
 また、243baの他の製造方法としては、例えば、フッ化水素を用いて、240daをフッ素化する方法が挙げられる(以下式(5)参照)。
Figure JPOXMLDOC01-appb-C000009
 上記240daのフッ素化反応は、液相反応および気相反応のいずれでもよい。240daを液相反応でフッ素化反応させるとは、液体状態の240daをフッ素化させることをいう。また、240daを気相反応でフッ素化させるとは、気体状態の240daをフッ素化させることをいう。
 なお、240daを用いた液相反応で用いられる触媒、反応条件、および、手順としては、上述した1230xdを用いた液相反応で用いられる触媒、反応条件、および、手順が挙げられる。
 また、240daを用いた気相反応で用いられる触媒、反応条件、および、手順としては、上述した1230xdを用いた気相反応で用いられる触媒、反応条件、および、手順が挙げられる。
 上記反応の原料として用いられる240daの製造方法としては、例えば、クロロホルムと1,2-ジクロロエチレンとを反応させて240daを得る方法が挙げられる(以下式(6)参照)。
Figure JPOXMLDOC01-appb-C000010
 上記反応は必要に応じて、触媒の存在下にて実施してもよい。
 触媒の具体例としては、AlCl、ZrCl、HfCl、TiClが挙げられる。
 クロロホルムと1,2-ジクロロエチレンとの使用量比(クロロホルムの質量/1,2-ジクロロエチレン)は、0.5~1.5が好ましく、0.7~1.2がより好ましい。
 反応温度は、反応がより効率的に進行する点から、30~90℃が好ましく、40~70℃がより好ましい。
 なお、1,2-ジクロロエチレンは、シス体、トランス体、または、これらの混合物であってもよい。
 上記反応は、液相反応および気相反応のいずれでもよい。
 なお、式(6)で表される反応、式(4)で表される反応、式(2)で表される反応、および、式(1)で表される反応をこの順で実施すると、クロロホルムから1233ydが得られる。
 また、式(6)で表される反応、式(4)で表される反応、式(3-1)で表される反応、式(3-2)で表される反応、および、式(1)で表される反応をこの順で実施すると、クロロホルムから1233ydが得られる。
 また、上述した式(6)で表される反応、式(5)で表される反応、および、式(1)で表される反応をこの順で実施すると、クロロホルムから1233ydが得られる。
 上記手順においては、クロロホルムという安価な原料を用いて1233ydが得られる。
 以下に、実施例および比較例により本発明をより詳細に説明するが、本発明はこれらに限定されない。
(ガスクロマトグラフの条件)
 以下の各種化合物の製造において、得られた生成物の組成分析はガスクロマトグラフ(GC)を用いて行った。カラムはDB-1301(長さ60m×内径250μm×厚み1μm、アジレント・テクノロジー株式会社製)を用いた。
(243baの製造例)
 2Lのハステロイ製オートクレーブに無水塩化アルミニウム14.0g(0.105mol)を加えて減圧脱気した後、クロロホルム(CHCl3)1.60kg(13.4mol)を加えた。オートクレーブを40℃に加温した後、反応温度を40~45℃に保ちながら1,2-ジクロロエチレンを1.00kg(10.3mol)加えた後さらに28時間撹拌を続け反応液を濾別し、反応粗液を蒸留精製することにより240daを1.95kg得た(収率87.6%)。
 撹拌機、ジムロート冷却器を設置した5L四つ口フラスコに、上記で得られた240da(1.95kg、9.05mol)に48質量%NaOH水溶液(2.55kg)と相間移動触媒としてテトラブチルアンモニウムブロミド(TBAB)(19.5g)とを加えて、撹拌しながら50℃で2.5時間反応させた。得られた溶液を1時間静置して2相に分離させた後、下層を回収した。回収した下層のガスクロマトグラフィーによる分析で、99.9%の反応が進行したことが分かった。回収した下層を蒸留により精製し、1230xdを1.43kg得た。
 攪拌機、リービッヒ冷却器を設置した2L四つ口フラスコに、上記で得られた1230xd(1.23kg、6.77mol)と三フッ化アンチモン(0.995kg、6.77mol)とを加えて、撹拌しながら反応温度を130℃に維持し、留出する粗1232xdを0.645kg回収した。回収した粗1232xdを蒸留精製することにより1232xdを0.342kg得た。
 内容積500mLのオートクレーブに、上記で得られた1232xd(200g、1.36mol)と五塩化アンチモン20.3gを仕込み、液体窒素浴で冷却した。次いで、オートクレーブ内に減圧下でフッ化水素(218g、10.9mol)導入した後、内温を80℃から90℃に保ち、副生する塩化水素を適時開放し内圧を0.95MPaに保ちながら5時間撹拌した。反応終了後、オートクレーブの内温を室温に戻してから、オートクレーブ気相部出口のバルブを開放して、反応生成粗ガスを取り出し、これを10%水酸化カリウム水溶液中に流通させた後、反応粗ガスとしてシリンダーに回収した。回収した反応粗ガスは180gであった。
 上記の手順で得られた生成物を蒸留精製することにより、243baを80.8g得た。
(実施例1)
 撹拌機、ジムロート冷却器を設置した0.5リットル四つ口フラスコに、原料として243baの101.2g、テトラ-n-ブチルアンモニウムクロリド(TBAC)の1.01gを入れ、フラスコを50℃に加熱した。反応温度を50℃に維持し、40質量%水酸化カリウム(KOH)水溶液の127.5gを30分かけてフラスコ内に滴下した。その後、フラスコ内の反応液を1時間撹拌し、その後、有機相を回収した。なお、本例における反応時間は、上記滴下に要した時間と滴下後撹拌を行った時間の合計時間、すなわち1.5時間である。
 回収した有機相を水洗した後、ガスクロマトグラフを用いて分析した結果を表1に示す。
(比較例1)
 実施例1の反応装置のうち、反応器を3リットル四つ口フラスコに変え、原料を244caに変え、反応条件を表1に示す条件に変更した以外は、実施例1と同様の手順で反応を行った。比較例1で得られた有機相のガスクロマトグラフを用いて分析した結果を反応の条件とともに表1に示す。
(実施例2)
 垂直固定床反応器(材質:SUS316、内径22.0mm×高さ200mm)の中心に差込管(材質:SUS316、直径:3mm)を導入し、その中にK型熱電対を挿入し、内温を測定した。反応器の中央部に活性炭(比表面積1400m/g)の83.0mL(43.0g)を充填し、ここを触媒層とした。反応器内に窒素ガスを300mL/minで供給しながら、触媒層を電気炉によって100℃に加熱し、乾燥させた。ガスフィードラインおよび原料供給ラインを接続した130℃に加熱された原料予熱混合ラインを反応器の上部に接続した。
 窒素は、マスフローコントローラを用いてガス流量49.0mL/minに調整し、原料予熱混合ラインに供給した。原料である243baは、プランジャーポンプを用いて130℃に加熱された原料予熱混合ラインに供給した。このとき気化した243baのガス流量が49.0mL/minとなるようプランジャーポンプの液量を調整した。なお、触媒層の温度(反応温度)は350℃であり、気化した243baが触媒層を通過する時間(接触時間)は、20秒間であった。生成物は、反応器の下部から連続的に取り出した。反応器の下部から取り出された生成物の一部を採取し、ガスクロマトグラフによる組成分析を行った。以下、反応器の下部から取り出された生成物を出口ガスという。
 表2に示す条件にて原料を反応器に導入し、連続で3時間反応させた。反応終了直前に出口ガスの一部を採取し、ガスクロマトグラフによる組成分析を行った。結果を表2に示す。
(比較例2)
 実施例2のうち、原料を244caに変え、反応条件を表2に示す条件に変更した以外は実施例2と同様の手順で反応を行った。比較例2で得られた出口ガスの一部を採取し、ガスクロマトグラフを用いて分析した結果を反応の条件とともに表2に示す。
 以下の表1および表2に記載する生成物組成[質量%]欄においては、反応で得られた生成物の全質量に対する、生成物中の各成分(1233yd(Z)、1233yd(E)、原料(243baまたは244ca)、1-クロロ-3,3-ジフルオロプロピン、その他不純物)の質量の割合(単位:%)を表す。
 原料転化率は、反応に使用した原料(243baまたは244ca)のモル量に対する、反応で消費された原料のモル量の割合(単位:%)を表す。
 各選択率は、反応で消費された原料のモル量に対する、生成物中の各成分(1233yd(Z)、1233yd(E)、1-クロロ-3,3-ジフルオロプロピン)の生成量(モル量)の割合(単位:%)を表す。
 1233yd(E,Z)収率は、反応に使用した原料(243baまたは244ca)のモル量に対する、反応で得られた1233yd(Z)および1233yd(E)の合計モル量の割合(単位:%)を表す。
 1233yd(Z)/1233yd(E)[生成比率]は、反応で得られた1233yd(E)の質量に対する、反応で得られた1233yd(Z)の質量の割合(単位:%)を表す。
(実施例3)
 反応条件を表1に示す条件に変更した以外は、実施例1と同様の手順で反応を行った。実施例3で得られた有機相のガスクロマトグラフを用いて分析した結果を反応条件とともに表1に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表1および2に示すように、本発明の製造方法によれば、原料の転化率が高く、かつ、不純物の生成量が少なかった。また、本発明の製造方法においては、より短い反応時間で1233yd(Z)および1233yd(E)が得られ、さらに、1233yd(Z)の生成比率が高かった。なお、本発明の製造方法により得られた生成物中には、1,2-ジクロロ-3,3-ジフルオロプロペンは含まれていなかった。
 実施例1の操作で得られた1233yd(Z)92.29質量%、1233yd(E)5.66質量%、243ba2.02質量%、1-クロロ-3,3-ジフルオロプロピン0.02質量%、その他不純物0.01質量%を含む生成物84.0gを蒸留釜に仕込み、精留塔(カラム長60cm、充填剤ヘリパックNo.1)を使って、蒸留を行った。コンデンサーには-10℃の冷媒を循環させ、約1時間全還流を行った。
 塔頂部の温度、および、釜内部の残量を考慮しながら、蒸留釜を50~60℃まで加温した。全還流実施後、還流比60:1~30:1の間で留分の抜き出しを行った。抜き出し開始後、約1.5時間後には、99.0質量%以上の1233yd(Z)を含む留分が得られるようになり、その結果、99.4質量%の1233yd(Z)を含む留分が58.3g得られた。留分を分析した結果、1233yd(E)、243ba、および、1-クロロ-3,3-ジフルオロプロピンがそれぞれ、0.4質量%、0.08質量%、0.003質量%含まれていた。
 比較例1の操作で得られた1233yd(Z)89.43質量%、1233yd(E)8.37質量%、244ca2.05質量%、1-クロロ-3,3-ジフルオロプロピン0.14質量%、その他不純物0.01質量%を含む生成物819.1gを蒸留釜に仕込み、精留塔(カラム長60cm、充填剤ヘリパックNo.1)を使って、蒸留を行った。コンデンサーには-10℃の冷媒を循環させ、約1時間全還流を行った。
 塔頂部の温度、および、釜内部の残量を考慮しながら、蒸留釜を50~60℃まで加温した。全還流実施後、還流比240:1~60:1の間で留分の抜き出しを行った。抜き出し開始後、約3.5時間後には、96.0質量%以上の1233yd(Z)を含む留分が得られるようになり、その結果、96.7質量%の1233yd(Z)を含む留分が557.1g得られた。留分を分析した結果、1233yd(E)、244ca、および、1-クロロ-3,3-ジフルオロプロピンがそれぞれ、0.8質量%、2.4質量%、0.01質量%含まれていた。
 実施例3の操作で得られた1233yd(Z)94.20質量%、1233yd(E)5.66質量%、243ba0.09質量%、1-クロロ-3,3-ジフルオロプロピン0.03質量%、その他不純物0.01質量%を含む生成物87.4gを蒸留釜に仕込み、精留塔(カラム長60cm、充填剤ヘリパックNo.1)を使って、蒸留を行った。コンデンサーには-10℃の冷媒を循環させ、約1時間全還流を行った。
 塔頂部の温度、および、釜内部の残量を考慮しながら、蒸留釜を50~60℃まで加温した。全還流実施後、還流比60:1~30:1の間で留分の抜き出しを行った。抜き出し開始後、約1.5時間後には、99.0質量%以上の1233yd(Z)を含む留分が得られるようになり、その結果、99.6質量%の1233yd(Z)を含む留分が70.8g得られた。留分を分析した結果、1233yd(E)、243ba、および、1-クロロ-3,3-ジフルオロプロピンがそれぞれ、0.3質量%、0.03質量%、0.002質量%含まれていた。
 なお、2018年03月30日に出願された日本特許出願2018-067233号の明細書、特許請求の範囲および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (15)

  1.  1,2-ジクロロ-2,3,3-トリフルオロプロパンを脱塩化水素反応させて1-クロロ-2,3,3-トリフルオロプロペンを得ることを特徴とする1-クロロ-2,3,3-トリフルオロプロペンの製造方法。
  2.  前記1,2-ジクロロ-2,3,3-トリフルオロプロパンを塩基と反応させる、請求項1に記載の製造方法。
  3.  前記1,2-ジクロロ-2,3,3-トリフルオロプロパンを液相で塩基と接触させる、請求項2に記載の製造方法。
  4.  前記塩基が、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属酸化物、アルカリ土類金属酸化物、アルカリ金属炭酸塩、および、アルカリ土類金属炭酸塩からなる群より選ばれる塩基である、請求項2または3に記載の製造方法。
  5.  前記塩基の量が、1,2-ジクロロ-2,3,3-トリフルオロプロパンの1モルに対して、0.5~10モルである、請求項2~4のいずれか1項に記載の製造方法。
  6.  前記1,2-ジクロロ-2,3,3-トリフルオロプロパンを、塩基溶液と接触させる、請求項2~5のいずれか1項に記載の製造方法。
  7.  前記塩基溶液が塩基水溶液である、請求項6に記載の製造方法。
  8.  相間移動触媒の存在下に前記脱塩化水素反応を行う、請求項2~7のいずれか1項に記載の製造方法。
  9.  前記相間移動触媒が第4級アンモニウム塩である、請求項8に記載の製造方法。
  10.  前記相間移動触媒の使用量が、1,2-ジクロロ-2,3,3-トリフルオロプロパンの100質量部に対して、0.001~10質量部である、請求項8または9に記載の製造方法。
  11.  前記脱塩化水素反応の反応温度が0~100℃である、請求項2~10のいずれか1項に記載の製造方法。
  12.  前記1,2-ジクロロ-2,3,3-トリフルオロプロパンを活性炭触媒または金属触媒の存在下に脱塩化水素反応させる、請求項1に記載の製造方法。
  13.  前記1,2-ジクロロ-2,3,3-トリフルオロプロパンを、気相で前記触媒と接触させる、請求項12に記載の製造方法。
  14.  得られる1-クロロ-2,3,3-トリフルオロプロペンが、1-クロロ-2,3,3-トリフルオロプロペンのZ体と1-クロロ-2,3,3-トリフルオロプロペンのE体の混合物であり、
     前記1-クロロ-2,3,3-トリフルオロプロペンのE体の質量に対する、前記1-クロロ-2,3,3-トリフルオロプロペンのZ体の質量の比が、2~100である、請求項1~13のいずれか1項に記載の製造方法。
  15.  脱塩化水素反応により生成したハロゲン化炭化水素中の1,2-ジクロロ-3,3-ジフルオロプロペンの含有量が10質量%以下である、請求項1~14のいずれか1項に記載の製造方法。
PCT/JP2019/012585 2018-03-30 2019-03-25 1-クロロ-2,3,3-トリフルオロプロペンの製造方法 WO2019189024A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020510823A JPWO2019189024A1 (ja) 2018-03-30 2019-03-25 1−クロロ−2,3,3−トリフルオロプロペンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018067233 2018-03-30
JP2018-067233 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189024A1 true WO2019189024A1 (ja) 2019-10-03

Family

ID=68060028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012585 WO2019189024A1 (ja) 2018-03-30 2019-03-25 1-クロロ-2,3,3-トリフルオロプロペンの製造方法

Country Status (2)

Country Link
JP (1) JPWO2019189024A1 (ja)
WO (1) WO2019189024A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112029596A (zh) * 2020-10-20 2020-12-04 淄博雷玛国际贸易有限公司 一种反式-1,2-二氯乙烯抑制闪点的方法及应用
CN112125776A (zh) * 2020-10-20 2020-12-25 淄博雷玛国际贸易有限公司 一种1-氯-2,3,3-三氟丙烯的制备方法
US11339106B2 (en) * 2018-02-16 2022-05-24 Central Glass Company, Limited Method for producing 1,2-dichloro-3,3-difluoro-1-propene and solvent composition
CN115023490A (zh) * 2020-01-31 2022-09-06 Agc株式会社 溶剂组合物、清洗方法、带涂膜物品的制造方法
WO2022255397A1 (ja) * 2021-06-04 2022-12-08 Agc株式会社 1-クロロ-2,3,3-トリフルオロプロペンの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017001990A (ja) * 2015-06-11 2017-01-05 旭硝子株式会社 1,2−ジクロロ−3,3,3−トリフルオロプロペンの製造方法
JP2017014160A (ja) * 2015-07-02 2017-01-19 旭硝子株式会社 1,2−ジクロロ−3,3,3−トリフルオロプロペンの製造方法
WO2017018412A1 (ja) * 2015-07-27 2017-02-02 旭硝子株式会社 1-クロロ-2,3,3-トリフルオロプロペンの製造方法
WO2017110851A1 (ja) * 2015-12-25 2017-06-29 旭硝子株式会社 1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6274363B2 (ja) * 2015-07-27 2018-02-07 旭硝子株式会社 溶剤組成物、洗浄方法、塗膜の形成方法、熱移動媒体および熱サイクルシステム
WO2017122801A1 (ja) * 2016-01-15 2017-07-20 旭硝子株式会社 溶剤組成物、洗浄方法、塗膜の形成方法、熱移動媒体および熱サイクルシステム
JP7024708B2 (ja) * 2016-04-15 2022-02-24 Agc株式会社 抽出溶媒組成物、抽出方法、および検査方法
JP7070419B2 (ja) * 2016-09-12 2022-05-18 Agc株式会社 1-クロロ-2,3,3-トリフルオロプロペンの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017001990A (ja) * 2015-06-11 2017-01-05 旭硝子株式会社 1,2−ジクロロ−3,3,3−トリフルオロプロペンの製造方法
JP2017014160A (ja) * 2015-07-02 2017-01-19 旭硝子株式会社 1,2−ジクロロ−3,3,3−トリフルオロプロペンの製造方法
WO2017018412A1 (ja) * 2015-07-27 2017-02-02 旭硝子株式会社 1-クロロ-2,3,3-トリフルオロプロペンの製造方法
WO2017110851A1 (ja) * 2015-12-25 2017-06-29 旭硝子株式会社 1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11339106B2 (en) * 2018-02-16 2022-05-24 Central Glass Company, Limited Method for producing 1,2-dichloro-3,3-difluoro-1-propene and solvent composition
US11667594B2 (en) 2018-02-16 2023-06-06 Central Glass Company, Limited Method for producing 1,2-dichloro-3,3-difluoro-1-propene and solvent composition
CN115023490A (zh) * 2020-01-31 2022-09-06 Agc株式会社 溶剂组合物、清洗方法、带涂膜物品的制造方法
EP4098733A4 (en) * 2020-01-31 2024-02-28 Agc Inc SOLVENT COMPOSITION, CLEANING METHOD AND METHOD FOR PRODUCING AN ARTICLE HAVING A COATING FILM
CN112029596A (zh) * 2020-10-20 2020-12-04 淄博雷玛国际贸易有限公司 一种反式-1,2-二氯乙烯抑制闪点的方法及应用
CN112125776A (zh) * 2020-10-20 2020-12-25 淄博雷玛国际贸易有限公司 一种1-氯-2,3,3-三氟丙烯的制备方法
CN112125776B (zh) * 2020-10-20 2021-06-29 淄博雷玛国际贸易有限公司 一种1-氯-2,3,3-三氟丙烯的制备方法
WO2022083017A1 (zh) * 2020-10-20 2022-04-28 淄博雷玛国际贸易有限公司 一种 1- 氯 -2 , 3 , 3- 三氟丙烯的制备方法
WO2022083018A1 (zh) * 2020-10-20 2022-04-28 淄博雷玛国际贸易有限公司 一种反式 -1 , 2- 二氯乙烯抑制闪点的方法及应用
US11649418B2 (en) 2020-10-20 2023-05-16 Zibo Rhema International Inc. Method for inhibiting flash point of trans-1,2-dichloroethylene (T-1,2-DCE) and use of T-1,2-DCE
WO2022255397A1 (ja) * 2021-06-04 2022-12-08 Agc株式会社 1-クロロ-2,3,3-トリフルオロプロペンの製造方法

Also Published As

Publication number Publication date
JPWO2019189024A1 (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
JP6860057B2 (ja) 1−クロロ−2,3,3−トリフルオロプロペンの製造方法
JP6574284B2 (ja) HFC−245faからHFO trans−1234zeを生産するための方法
WO2019189024A1 (ja) 1-クロロ-2,3,3-トリフルオロプロペンの製造方法
JP5576586B2 (ja) 統合hfcトランス−1234ze製造方法
JP4864879B2 (ja) 1,3,3,3−テトラフルオロプロペンの合成方法
JP5582036B2 (ja) 1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンおよび2,3,3,3−テトラフルオロプロペンの製造方法
CN101665403B (zh) 生产2-氯-1,1,1,2-四氟丙烷(HCFC-244bb)的改进方法
US9567274B2 (en) Process for the manufacture of 2-chloro-1,1,1,2-tetrafluoropropane by liquid phase fluorination of 2-chloro-3,3,3-trifluoropropene
EP2773606B1 (en) Process for producing 2,3,3,3-tetrafluoropropene
JP6245259B2 (ja) (e)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法
WO2019203318A1 (ja) フルオロオレフィンの製造方法
JP2017001990A (ja) 1,2−ジクロロ−3,3,3−トリフルオロプロペンの製造方法
JP5805812B2 (ja) 統合hfcトランス−1234ze製造方法
JP7151257B2 (ja) 2-クロロ-3,3-ジフルオロプロペンの製造方法、2-クロロ-1,1,2-トリフルオロプロパンの製造方法、2,3,3-トリフルオロプロペンの製造方法、1,2-ジクロロ-2,3,3-トリフルオロプロパンの製造方法、1-クロロ-2,3,3-トリフルオロプロペンの製造方法
KR20160122745A (ko) 하이드로클로로플루오로올레핀의 제조 방법
JPWO2019124219A1 (ja) 1−クロロ−2,3,3,4,4,5,5−ヘプタフルオロペンテンの製造方法
US10364201B2 (en) Process for the manufacture of fluorinated olefins
WO2019203319A1 (ja) フルオロオレフィンの製造方法
JP7070220B2 (ja) 2-クロロ-3,3-ジフルオロプロペンの製造方法、2-クロロ-1,1,2-トリフルオロプロパンの製造方法、2,3,3-トリフルオロプロペンの製造方法、1,2-ジクロロ-2,3,3-トリフルオロプロパンの製造方法、1-クロロ-2,3,3-トリフルオロプロペンの製造方法
WO2016111227A1 (ja) (e)-1-クロロ-3,3,3-トリフルオロプロペンの製造方法
JP2016079101A (ja) 1,1−ジクロロ−3,3,3−トリフルオロプロペンの製造方法
JP2015224236A (ja) (e)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法
JP2016104789A (ja) 2−クロロ−3,3,3−トリフルオロプロペンの液相フッ素化で2−クロロ−1,1,1,2−テトラフルオロプロペンを製造する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777153

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510823

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19777153

Country of ref document: EP

Kind code of ref document: A1