JP7070220B2 - 2-クロロ-3,3-ジフルオロプロペンの製造方法、2-クロロ-1,1,2-トリフルオロプロパンの製造方法、2,3,3-トリフルオロプロペンの製造方法、1,2-ジクロロ-2,3,3-トリフルオロプロパンの製造方法、1-クロロ-2,3,3-トリフルオロプロペンの製造方法 - Google Patents
2-クロロ-3,3-ジフルオロプロペンの製造方法、2-クロロ-1,1,2-トリフルオロプロパンの製造方法、2,3,3-トリフルオロプロペンの製造方法、1,2-ジクロロ-2,3,3-トリフルオロプロパンの製造方法、1-クロロ-2,3,3-トリフルオロプロペンの製造方法 Download PDFInfo
- Publication number
- JP7070220B2 JP7070220B2 JP2018148484A JP2018148484A JP7070220B2 JP 7070220 B2 JP7070220 B2 JP 7070220B2 JP 2018148484 A JP2018148484 A JP 2018148484A JP 2018148484 A JP2018148484 A JP 2018148484A JP 7070220 B2 JP7070220 B2 JP 7070220B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- chloro
- trifluoropropane
- molar amount
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
なお、本明細書において、ハロゲン化炭化水素については、化合物名の後の括弧内にその化合物の略称を記すが、本明細書では必要に応じて化合物名に代えてその略称を用いる。また、略称として、ハイフン(-)より後ろの数字およびアルファベット小文字部分だけ(例えば、「HCFO-1233yd」においては「1233yd」)を用いる場合がある。
本発明者らは、1233ydの合成方法を検討したところ、合成中間体として、2-クロロ-3,3-ジフルオロプロペン(CHF2-CCl=CH2。1242xf)が有用であることを知見した。
本発明は、1242xfを効率よく製造し得る、1242xfの製造方法の提供を課題とする。
(2) 触媒の存在下にて反応を行う、(1)に記載の製造方法。
(3) 50℃以上の条件下にて反応を行う、(1)または(2)に記載の製造方法。
(4) (1)~(3)のいずれかに記載の製造方法にて製造された2-クロロ-3,3-ジフルオロプロペンとフッ化水素とを反応させて、2-クロロ-1,1,2-トリフルオロプロパンを得ることを特徴とする、2-クロロ-1,1,2-トリフルオロプロパンの製造方法。
(5) (4)に記載の製造方法にて製造された2-クロロ-1,1,2-トリフルオロプロパンを脱塩化水素反応させて2,3,3-トリフルオロプロペンを得ることを特徴とする、2,3,3-トリフルオロプロペンの製造方法。
(6) (5)に記載の製造方法にて製造された2,3,3-トリフルオロプロペンと塩素とを反応させて、1,2-ジクロロ-2,3,3-トリフルオロプロパンを得ることを特徴とする、1,2-ジクロロ-2,3,3-トリフルオロプロパンの製造方法。
(7) (6)に記載の製造方法にて製造された1,2-ジクロロ-2,3,3-トリフルオロプロパンを脱塩化水素反応させて1-クロロ-2,3,3-トリフルオロプロペンを得ることを特徴とする、1-クロロ-2,3,3-トリフルオロプロペンの製造方法。
「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
1233ydは二重結合上の置換基の位置により、幾何異性体であるZ体とE体が存在する。本明細書中では特に断らずに化合物名や化合物の略称を用いた場合には、Z体およびE体から選ばれる少なくとも1種を示し、より具体的には、Z体もしくはE体、または、Z体とE体の任意の割合の混合物を示す。化合物名や化合物の略称の後ろに(E)または(Z)を付した場合には、それぞれの化合物の(E)体または(Z)体を示す。例えば、1233yd(Z)はZ体を示し、1233yd(E)はE体を示す。
式(1) CHF2-CCl=CClX
Xは、水素原子または塩素原子を表す。
反応器の材質の具体例としては、ガラス、鉄、ニッケル、ステンレス鋼が挙げられる。
金属触媒としては、鉄、ルテニウム、オスミウムなどの8族元素、コバルト、ロジウム、イリジウムなどの9族元素、および、ニッケル、パラジウム、白金などの10族元素から選ばれる少なくとも1種の元素を含む触媒が好ましい。これらの元素は、1種のみで用いてもよく、2種以上を併用してもよい。
8~10族元素の中では、パラジウム、白金、ルテニウム、ロジウムなどの白金族元素を含む触媒が好ましく、パラジウムを含む触媒(以下、単に「パラジウム触媒」とも記す。)がより好ましい。
パラジウム以外の他の金属の具体例としては、第8族元素(鉄、ルテニウム、オスミウムなど)、第9族元素(コバルト、ロジウム、イリジウムなど)、第10族元素(ニッケル、白金など)が挙げられる。
他の金属は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
他の金属の割合は、パラジウム100質量部に対して、0.01~50質量部が好ましい。
活性炭の具体例としては、植物原料(木材、木炭、果実殻、ヤシ殻など)から得られた活性炭、鉱物質原料(泥炭、亜炭、石炭など)から得られた活性炭が挙げられ、触媒耐久性の点から、植物原料から得られた活性炭が好ましく、ヤシ殻活性炭がより好ましい。
活性炭の形状の具体例としては、長さ2~10m程度の成形炭、4~50メッシュ程度の破砕炭、粒状炭が挙げられ、活性の点から、4~20メッシュの破砕炭、長さ2~5mmの成形炭が好ましい。
なお、副生物の抑制や触媒失活の抑制に有効である点から、反応においてN2などの不活性ガスを用いてもよい。
気相反応における反応温度は、反応活性および1242xfの選択率の点から、50℃以上が好ましく、100℃以上がより好ましく、150℃以上がさらに好ましく、400℃以下が好ましく、300℃以下がより好ましく、250℃以下がさらに好ましい。
気相反応における反応系の圧力は、0~0.2MPaであることが好ましい。
気相反応における反応時間は、反応収率および製造効率の点から、1~6000秒間が好ましく、10~1500秒間がより好ましい。なお、反応時間は、反応器内での原料の滞留時間を意味する。
液相反応における反応温度は、反応収率および1242xfの選択率の点から、20℃以上が好ましく、50℃以上がより好ましく、200℃以下が好ましく、150℃以下がより好ましい。
液相反応における反応時間は、反応収率および製造効率の点から、0.5~50時間が好ましく、1~10時間がより好ましい。なお、反応時間は、反応器内での原料の滞留時間を意味する。
液相反応は、必要に応じて、溶媒の存在下にて実施してもよい。溶媒としては、水素に不活性な化合物であればよく、例えば水等が挙げられる。
化合物1と水素との反応により、目的物である1242xfの他に3,3-ジフルオロプロペン(HFO-1252zf)、2-クロロ-1,1-ジフルオロプロパン(HCFC-262db)、1,1-ジフルオロプロパン(HFC-272fb)等が副生物として得られる。上記反応により得られた生成物を、後述の253bbの製造原料としてそのまま用いてもよく、蒸留等の公知の方法により精製された1242xfを後述の253bbの製造原料として用いてもよい。1242xfを精製後の残液には、通常未反応の化合物1が含まれているため、1242xfの製造原料として再利用することが好ましい。その際には、1242xf精製後の残液をそのまま用いてもよい。1242xf精製後の残液には、1252zf、262db、272fb、1242xf等が含まれる。
触媒の具体例としては、アンチモン、スズ、タリウム、鉄、チタン、タンタルなどの金属ハロゲン化物が挙げられる。より具体的には、SbCl5、SbCl3、SbF5、SnCl4、TiCl4、FeCl3が挙げられる。
液相反応の手順としては、フッ化水素および1242xfの一方と触媒との混合物が液体状態として存在する反応器内に、連続的または非連続的にフッ化水素および1242xfの他方を供給し、反応によって生成する253bbを反応器内から連続または非連続的に抜き出す手順が挙げられる。
液相反応における反応温度は、反応収率および253bbの選択率の点から、20~200℃が好ましく、30~150℃がより好ましい。
液相反応における反応時間は、反応収率および製造効率の点から、0.5~50時間が好ましく、1~10時間がより好ましい。
液相反応における反応系の圧力は、反応収率および装置コストの点から、0.1~3.0MPaが好ましく、0.2~2.0MPaがより好ましい。
液相反応は、必要に応じて、溶媒の存在下にて実施してもよい。
触媒の具体例としては、アルミナ、ジルコニア、チタニア、クロミアなどの金属酸化物触媒や、アンチモン、スズ、タリウム、鉄、チタン、タンタルなどの金属ハロゲン化物や、活性炭や金属酸化物などの単体にアンチモン、スズ、タリウム、鉄、チタン、タンタルなどの金属ハロゲン化物を担持した触媒が挙げられる。
気相反応の手順としては、ガス状態に加熱された原料である1242xfとフッ化水素とを反応器内に連続的に供給して、反応器に充填された上記触媒と、ガス状態の1242xfおよびフッ化水素とを接触させて、253bbを得る手順が挙げられる。
なお、副生物の抑制や触媒失活の抑制に有効である点から、反応においてN2などの不活性ガスを用いてもよい。
気相反応における反応温度は、反応活性および253bbの選択率の点から、50~700℃が好ましく、50~600℃がより好ましく、50~400℃がさらに好ましく、100~300℃が特に好ましい。
なお、気相反応の場合、原料である1242xfをプレヒートした後、反応に供してもよい。プレヒートの温度は、原料を効率的に気化する点から、80~400℃が好ましく、150~400℃がより好ましい。
気相反応における反応時間は、反応収率および製造効率の点から、1~6000秒間が好ましく、60~1500秒間がより好ましい。なお、気相反応の反応時間は、反応器内での原料の滞留時間を意味する。
塩基は、脱塩化水素反応が実行可能な塩基であればよく、例えば、金属水酸化物、金属酸化物、金属炭酸塩が挙げられる。
なお、塩基は、1種を単独で用いてもよく、2種以上を併用してもよい。
253bbと塩基との反応温度は、反応活性および1243yfの選択率の点から、0~100℃が好ましく、10~80℃がより好ましく、15~70℃がさらに好ましい。
253bbと塩基との反応時間は、バッチ式の場合には0.5~50時間が好ましく、1~20時間がより好ましい。連続式の場合には、0.5~6000秒間が好ましく、1~1500秒間がより好ましい。なお、連続式の場合の反応時間は、反応器内での原料の滞留時間を意味する。
253bbと塩基とを接触させる方法としては、溶媒に溶解した塩基(すなわち、塩基溶液)と253bb(好ましくは、液体状態の253bb)とを接触させる方法、および、固体状態(好ましくは、粉末状態)の塩基と253bb(好ましくは、気体状態の253bb)とを接触させる方法が挙げられ、反応時間、反応収率、および、1243yfの選択率の点から、前者の方法が好ましい。
塩基溶液中における塩基の濃度は、塩基溶液全質量に対して、10~50質量%が好ましい。塩基の濃度が10質量%以上であれば、十分な反応速度が得られやすく、2層分離により目的物を分離しやすい。塩基の濃度が50質量%以下であれば、塩基が十分に溶解されやすく、金属塩が析出しにくいため、工業的なプロセスにおいて有利である。塩基溶液中における塩基の濃度は、塩基溶液全質量に対して、20~40質量%がより好ましい。
相間移動触媒の具体例としては、第4級アンモニウム塩、第4級ホスホニウム塩、第4級アルソニウム塩、スルホニウム塩、クラウンエーテルが挙げられ、第4級アンモニウム塩、第4級ホスホニウム塩、第4級アルソニウム塩、スルホニウム塩が好ましく、第4級アンモニウム塩がより好ましい。
第4級アンモニウム塩としては、下式(i)で表される化合物が挙げられる。
R11~R14は、それぞれ同じ基であってもよいし、異なる基であってもよい。
第4級アンモニウム(R11R12R13R14N+):テトラメチルアンモニウム、テトラエチルアンモニウム、テトラ-n-プロピルアンモニウム、テトラ-n-ブチルアンモニウム、メチルトリ-n-オクチルアンモニウム。
Y1 -:フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン、水酸化物イオン。
R21~R24は、それぞれ同じ基であってもよいし、異なる基であってもよい。
式(iii)中のR31~R34で表される1価の炭化水素基の具体例は、式(ii)中のR21~R24で表される1価の炭化水素基の具体例と同じである。
式(iii)中のY3 -で表される陰イオンの具体例は、式(ii)中のY2 -で表される陰イオンの具体例と同じである。
式(iv)中のR41~R43で表される1価の炭化水素基の具体例は、式(ii)中のR21~R24で表される1価の炭化水素基の具体例と同じである。
式(iv)中のY4 -で表される陰イオンの具体例は、式(ii)中のY2 -で表される陰イオンの具体例と同じである。
上記した相間移動触媒のうち、工業的入手の容易さ、価格、扱いやすさ、反応性の点から、TBAC、TBAB、TOMACが好ましい。
水溶性有機溶媒の具体例としては、テトラエチレングリコールジメチルエーテル、スルホラン、t-ブタノールが挙げられる。
反応器の材質の具体例としては、ガラス、鉄、ニッケル、ステンレス鋼が挙げられる。
253bbと活性炭または金属触媒とを接触させる方法としては、活性炭または金属触媒と、気体状態の253bbとを接触させる方法が挙げられる。
具体的な手順としては、ガス状態の253bbを反応器内に連続的に供給して、反応器に充填された活性炭または金属触媒とガス状態の253bbとを接触させて、1243yfを得る手順が挙げられる。生成物を反応器内の気相から回収する場合は、冷却にて生成物を冷却する。必要に応じて、生成物を脱酸塔に通して、塩化水素を取り除く。
接触温度(反応温度)は、反応活性および1243yfの選択率の点から、200~700℃が好ましく、350~450℃がより好ましい。
なお、原料である253bbをプレヒートした後、反応に供してもよい。プレヒートの温度は、原料を効率的に気化する点から、80~400℃が好ましい。
接触時間(反応時間)は、反応率や転化率の点から、0.5~1000秒間が好ましく、1~100秒間がより好ましい。
光照射の際の光の具体例としては、可視光が挙げられる。可視光とは、短波長限界が360~400nm、長波長限界が760~830nmである光である。照射に用いる光の波長は、400~750nmが好ましく、420nm~730nmがより好ましい。
上記光を照射する光源の具体例としては、蛍光灯、白熱灯、LEDライトが挙げられる。蛍光灯や白熱灯から得られる光に含まれる波長400nm未満の光は、フィルタを用いて除いてもよい。
上記反応は、必要に応じて、溶媒の存在下にて実施してもよい。溶媒としては、例えば四塩化炭素、1,1,2-トリクロロ-1,2,2-トリフルオロエタン(R113)、CF3(CF2)nCF3(ただし、式中nは、3~6の整数を表す。)で表される炭素数5~8の直鎖パーフルオロアルキル化合物、ヘキサクロロアセトンなどのパーハロ化合物が挙げられる。
反応温度は、反応収率および243baの選択率の点から、-20~50℃が好ましく、-10~30℃がより好ましい。
反応時間は、反応収率および製造効率の点から、0.5~50時間が好ましく、1~10時間がより好ましい。
得られる1233ydが1233yd(Z)と1233yd(E)との混合物である場合、1233yd(E)の質量に対する、1233yd(Z)の質量の比(1233yd(Z)/1233yd(E))は、2以上が好ましく、5以上がより好ましく、10以上がさらに好ましく、15以上が特に好ましい。上記比の上限は、通常、100である。
1233yd(Z)は1233yd(E)よりも化学的安定性が高いため、1233yd(Z)の質量の比(1233yd(Z)/1233yd(E))が上記下限値以上であれば、各種用途(例えば、洗浄剤、冷媒、熱媒体、発泡剤、溶媒)において使用しやすい。
不純物の具体例としては、未反応の243ba、1233ydがさらに脱弗化水素して生成する1-クロロ-3,3-ジフルオロプロピン、243baが脱フッ化水素して生成する1,2-ジクロロ-3,3-ジフルオロプロペンが挙げられる。
生成物中における1,2-ジクロロ-3,3-ジフルオロプロペンの含有量は、精製効率の点から、生成物全質量に対して、10質量%以下が好ましく、5質量%以下がより好ましい。上記含有量の下限は、通常、0である。
1233ydと原料である243baとの沸点の差が40~50℃と大きいため、蒸留によって1233ydと243baとを容易に分離できる。一方で、特許文献1に記載の3-クロロ-1,1,2,2-テトラフルオロプロパン(CHF2CF2CH2Cl。HCFC-244ca)を原料として1233ydを得る方法においては、244caと1233ydとの沸点の差が極めて小さいため、生成物中に未反応の244caが残存する際に、両者の分離が困難である。
なお、未反応の243baは、再度原料として再利用できる。その際、生成物から1233ydを分離した後の粗液をそのまま使用してもよいし、粗液から未反応の243baを精製して用いてもよい。
蒸留操作の際の温度(例えば、蒸留釜の温度)としては、エネルギーコストの点から、80℃以下が好ましく、70℃以下がより好ましい。なお、蒸留操作の際の温度は、1233yd(E)の沸点である48℃以上が好ましい。
以下の各種化合物の製造において、得られた生成物の組成分析はガスクロマトグラフ(GC)を用いて行った。カラムはDB-1301(長さ60m×内径250μm×厚み1μm、アジレント・テクノロジー株式会社製)を用いた。
内径1/2インチ、長さ100cmのインコネル600製U字型反応管に、触媒として、ヤシ殻活性炭に対して0.5質量%のパラジウムを担持させた触媒(50mL)を充填し、窒素ガス(150NmL/min)を流しながら、200℃まで昇温した。反応管内を大気圧に維持しながら、反応管通過後の粗ガス中の水分が20ppm以下になるまで触媒を乾燥した。触媒の乾燥終了後、反応管を200℃に加熱し、ガス化させた1,2-ジクロロ-3,3-ジフルオロプロペン(CHF2-CCl=CHCl。1232xd)(62.0NmL/min)と、水素(62.0NmL/min)と、窒素(124.0NmL/min)とを供給し、大気圧下で反応させた。反応粗ガスは10質量%水酸化ナトリウム水溶液に流通した。3時間経過後、10質量%水酸化カリウム水溶液中に分離した有機層を回収し、ガスクロマトグラフを用いて、回収した有機層を分析した結果を表1に示す。
1232xd転化率は、反応に使用した原料(1232xd)のモル量に対する、反応で消費された原料のモル量の割合(単位:%)を表す。
1242xf選択率は、反応で消費された原料のモル量に対する、生成物中の1242xfの生成量(モル量)の割合(単位:%)を表す。
1252xf選択率は、反応で消費された原料のモル量に対する、生成物中の1252xf(CHF2CH=CH2)の生成量(モル量)の割合(単位:%)を表す。
262db選択率は、反応で消費された原料のモル量に対する、生成物中の262db(CHF2CHClCH3)の生成量(モル量)の割合(単位:%)を表す。
272fb選択率は、反応で消費された原料のモル量に対する、生成物中の272fb(CHF2CH2CH3)の生成量(モル量)の割合(単位:%)を表す。
その他選択率は、反応で消費された原料のモル量に対する、生成物中の上記成分(1242xf、1252zf、262db、272fb)以外の他の成分の生成量(モル量)の割合(単位:%)を表す。
撹拌機を設置した内容積200mLのハステロイ製オートクレーブに例1で得られた1242xf(30.1g)と五塩化アンチモン(5.53g)を仕込み、液体窒素浴で冷却した。次いで、オートクレーブ内に減圧下でフッ化水素を67.9g導入した後、内温を50℃から60℃に保ち、内圧0.5MPaで5時間撹拌した。反応終了後、オートクレーブの内温を室温に戻してから、気相部出口のバルブを開放して、反応生成粗ガスを取り出し、これを10質量%水酸化カリウム水溶液中に流通させた。その後、10質量%水酸化カリウム水溶液中に分離した有機層を回収し、ガスクロマトグラフを用いて、回収した有機層を分析した結果を表2に示す。
SbCl5/1242xf[モル比]は、1242xfの使用量に対する、SbCl5の使用量のモル比を表す。
1242xf転化率は、反応に使用した原料(1242xf)のモル量に対する、反応で消費された原料のモル量の割合(単位:%)を表す。
253bb選択率は、反応で消費された原料のモル量に対する、生成物中の253bbの生成量(モル量)の割合(単位:%)を表す。
254cb選択率は、反応で消費された原料のモル量に対する、生成物中の254cb(CHF2CF2CH3)の生成量(モル量)の割合(単位:%)を表す。
252ab選択率は、反応で消費された原料のモル量に対する、生成物中の252ab(CHF2CCl2CH3)の生成量(モル量)の割合(単位:%)を表す。
251ab選択率は、反応で消費された原料のモル量に対する、生成物中の251ab(CHClFCCl2CH3)の生成量(モル量)の割合(単位:%)を表す。
250ab選択率は、反応で消費された原料のモル量に対する、生成物中の250ab(CHCl2CCl2CH3)の生成量(モル量)の割合(単位:%)を表す。
その他選択率は、反応で消費された原料のモル量に対する、生成物中の上記成分(253b、254cb、252ab、251ab、250ab)以外の他の成分の生成量(モル量)の割合(単位:%)を表す。
内径1/4インチ、長さ60cmのインコネル600製の気相反応容器に触媒として破砕状活性炭触媒(16mL)を充填し、窒素ガス(40NmL/min)を流しながら400℃まで昇温した。気相反応器内を大気圧に維持しながら、気相反応器通過後の粗ガス中の水分が20ppm以下になるまで触媒を乾燥した。触媒の乾燥終了後、反応器を400℃に加熱し、例2で得られた253bb(45.1mg/min)を80℃に維持した予備加熱器を経由して供給した。
上記気相反応器に供給された253bbは、気相反応器を通過(通過時間:1秒)しながら反応温度400℃の条件下、活性炭触媒に接触することで脱塩酸されて、1243yfとなり、この1243yfを含む反応生成粗ガスを上記気相反応器の取出口から回収した。ガスクロマトグラフを用いて、回収した反応生成粗ガスを分析した結果を表3に示す。
1243yf選択率は、反応で消費された原料のモル量に対する、生成物中の1243yfの生成量(モル量)の割合(単位:%)を表す。
その他選択率は、反応で消費された原料のモル量に対する、生成物中の上記成分(1243yf)以外の他の成分の生成量(モル量)の割合(単位:%)を表す。
撹拌機、コンデンサーを設置した内容積200mLのハステロイ製オートクレーブに、例3で得られた253bb(29.7g)と、TBAC(0.891g)と、25%水酸化カリウム(KOH)水溶液(101.6g)とを仕込んだ後、反応温度を65℃から70℃に維持し、14時間撹拌したところで内圧は1.1MPaとなった。コンデンサーの上部から生成物を抜き出し、モレキュラーシーブ3Aを通すことで乾燥し、-78℃に冷却したSUS304製シリンダー中に捕集した有機物を、ガスクロマトグラフを用いて分析した結果を表4に示す。
KOH/253bb[モル比]は、253bbの使用量に対する、KOHの使用量のモル比を表す。
253bb転化率は、反応に使用した原料(253bb)のモル量に対する、反応で消費された原料のモル量の割合(単位:%)を表す。
1243yf選択率は、反応で消費された原料のモル量に対する、生成物中の1243yfの生成量(モル量)の割合(単位:%)を表す。
1242xf選択率は、反応で消費された原料のモル量に対する、生成物中の1242xfの生成量(モル量)の割合(単位:%)を表す。
その他選択率は、反応で消費された原料のモル量に対する、生成物中の上記成分(1243yf、1242xf)以外の他の成分の生成量(モル量)の割合(単位:%)を表す。
容積1Lのガラスフラスコを反応器に、溶媒としてCCl4(107g)を仕込み、0℃に冷却した。LEDランプ(三菱電機社製、電球型:LHT15D-G-E39、出力15W)からの可視光を照射しながら、1243yf(20.0g/min)と、塩素ガス(Cl2)(10.7g/min)を反応器内に供給した。5時間反応を継続し、1243yfの100g、塩素ガスの53.5gが供給されたことを確認した後、1243yfおよび塩素ガスの供給を停止した。
反応終了後、得られた反応液を20質量%の炭酸水素ナトリウム水溶液で中和し、次いで分液操作を行った。静置後、分離した下層から回収した243baを含む有機物を、ガスクロマトグラフを用いて分析した結果を表5に示す。
1243yf転化率は、反応に使用した原料(1243yf)のモル量に対する、反応で消費された原料のモル量の割合(単位:%)を表す。
243ba選択率は、反応で消費された原料のモル量に対する、生成物中の243baの生成量(モル量)の割合(単位:%)を表す。
その他選択率は、反応で消費された原料のモル量に対する、生成物中の上記成分(243ba)以外の他の成分の生成量(モル量)の割合(単位:%)を表す。
撹拌機、ジムロート冷却器を設置した0.5リットル四つ口フラスコに、原料として243ba(101.2g)と、TBAC(1.01g)とを入れ、フラスコを50℃に加熱した。反応温度を50℃に維持し、40質量%KOH水溶液(127.5g)を30分かけて滴下した。その後、1時間撹拌を続け、有機層を回収した。なお、反応時間は、上記滴下に要した時間と滴下後撹拌を行った時間の合計時間、すなわち1.5時間である。
回収した有機層を水洗した後、ガスクロマトグラフを用いて分析した結果を表6に示す。
KOH/243ba[モル比]は、243baの使用モル量に対する、KOHの使用モル量のモル比を表す。
243ba転化率は、反応に使用した原料(243ba)のモル量に対する、反応で消費された原料のモル量の割合(単位:%)を表す。
1233yd(Z)選択率は、反応で消費された原料のモル量に対する、生成物中の1233yd(Z)の生成量(モル量)の割合(単位:%)を表す。
1233yd(E)選択率は、反応で消費された原料のモル量に対する、生成物中の1233yd(E)の生成量(モル量)の割合(単位:%)を表す。
1-クロロ-3,3-ジフルオロプロピン選択率は、反応で消費された原料のモル量に対する、生成物中の1-クロロ-3,3-ジフルオロプロピンの生成量(モル量)の割合(単位:%)を表す。
その他選択率は、反応で消費された原料のモル量に対する、生成物中の上記成分(1233yd(Z)、1233yd(E)、1-クロロ-3,3-ジフルオロプロピン)以外の他の成分の生成量(モル量)の割合(単位:%)を表す。
Claims (6)
- 式(1)で表される化合物を水素還元反応させて2-クロロ-3,3-ジフルオロプロペンを製造し、製造された2-クロロ-3,3-ジフルオロプロペンとフッ化水素とを反応させて、2-クロロ-1,1,2-トリフルオロプロパンを得ることを特徴とする、2-クロロ-1,1,2-トリフルオロプロパンの製造方法。
式(1) CHF2-CCl=CClX
Xは、水素原子または塩素原子を表す。 - 触媒の存在下にて前記水素還元反応を行う、請求項1に記載の製造方法。
- 50℃以上の条件下にて前記水素還元反応を行う、請求項1または2に記載の製造方法。
- 請求項1~3のいずれか1項に記載の製造方法にて製造された2-クロロ-1,1,2-トリフルオロプロパンを脱塩化水素反応させて2,3,3-トリフルオロプロペンを得ることを特徴とする、2,3,3-トリフルオロプロペンの製造方法。
- 請求項4に記載の製造方法にて製造された2,3,3-トリフルオロプロペンと塩素とを反応させて、1,2-ジクロロ-2,3,3-トリフルオロプロパンを得ることを特徴とする、1,2-ジクロロ-2,3,3-トリフルオロプロパンの製造方法。
- 請求項5に記載の製造方法にて製造された1,2-ジクロロ-2,3,3-トリフルオロプロパンを脱塩化水素反応させて1-クロロ-2,3,3-トリフルオロプロペンを得ることを特徴とする、1-クロロ-2,3,3-トリフルオロプロペンの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018148484A JP7070220B2 (ja) | 2018-08-07 | 2018-08-07 | 2-クロロ-3,3-ジフルオロプロペンの製造方法、2-クロロ-1,1,2-トリフルオロプロパンの製造方法、2,3,3-トリフルオロプロペンの製造方法、1,2-ジクロロ-2,3,3-トリフルオロプロパンの製造方法、1-クロロ-2,3,3-トリフルオロプロペンの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018148484A JP7070220B2 (ja) | 2018-08-07 | 2018-08-07 | 2-クロロ-3,3-ジフルオロプロペンの製造方法、2-クロロ-1,1,2-トリフルオロプロパンの製造方法、2,3,3-トリフルオロプロペンの製造方法、1,2-ジクロロ-2,3,3-トリフルオロプロパンの製造方法、1-クロロ-2,3,3-トリフルオロプロペンの製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020023450A JP2020023450A (ja) | 2020-02-13 |
JP7070220B2 true JP7070220B2 (ja) | 2022-05-18 |
Family
ID=69618250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018148484A Active JP7070220B2 (ja) | 2018-08-07 | 2018-08-07 | 2-クロロ-3,3-ジフルオロプロペンの製造方法、2-クロロ-1,1,2-トリフルオロプロパンの製造方法、2,3,3-トリフルオロプロペンの製造方法、1,2-ジクロロ-2,3,3-トリフルオロプロパンの製造方法、1-クロロ-2,3,3-トリフルオロプロペンの製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7070220B2 (ja) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016160233A (ja) | 2015-03-03 | 2016-09-05 | 旭硝子株式会社 | クロロトリフルオロプロペンの製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2526661B2 (ja) * | 1989-04-27 | 1996-08-21 | ダイキン工業株式会社 | フルオロアルキルビニル化合物の製造法 |
JP5581858B2 (ja) * | 2009-07-21 | 2014-09-03 | セントラル硝子株式会社 | 2−クロロ−3,3,3−トリフルオロプロペンの製造方法 |
-
2018
- 2018-08-07 JP JP2018148484A patent/JP7070220B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016160233A (ja) | 2015-03-03 | 2016-09-05 | 旭硝子株式会社 | クロロトリフルオロプロペンの製造方法 |
Non-Patent Citations (1)
Title |
---|
Journal of the American Chemical Society,1951年,Vol. 73 ,pp. 5591-5593 |
Also Published As
Publication number | Publication date |
---|---|
JP2020023450A (ja) | 2020-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6860057B2 (ja) | 1−クロロ−2,3,3−トリフルオロプロペンの製造方法 | |
JP6527575B2 (ja) | 高純度e−1−クロロ−3,3,3−トリフルオロプロペン及びその製造方法 | |
JP5582036B2 (ja) | 1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンおよび2,3,3,3−テトラフルオロプロペンの製造方法 | |
JP5926488B2 (ja) | フッ素化されたオレフィンを生成するための方法 | |
JP7081596B2 (ja) | 2-クロロ-1,1,1,2-テトラフルオロプロパンおよび/または3-クロロ-1,1,1,2-テトラフルオロプロパンの製造方法、ならびに2,3,3,3-テトラフルオロプロペンの製造方法 | |
JP2018009018A (ja) | フッ化有機化合物の製造方法 | |
KR20090101128A (ko) | 2,3,3,3-테트라플루오로프로펜의 통합된 제조방법 | |
KR20080018847A (ko) | 통합된 HFC 트랜스-1234ze 제조 공정 | |
WO2010035748A1 (ja) | 1,3,3,3-テトラフルオロプロペンの製造方法 | |
JPWO2019189024A1 (ja) | 1−クロロ−2,3,3−トリフルオロプロペンの製造方法 | |
JP2019206600A (ja) | 1−クロロ−1,2−ジフルオロエチレンの製造方法 | |
JP5515555B2 (ja) | 1,3,3,3−テトラフルオロプロペンの製造方法 | |
WO2014175403A1 (ja) | (e)-1-クロロ-3,3,3-トリフルオロプロペンの製造方法 | |
JP2015120670A (ja) | 1−クロロ−1,2−ジフルオロエチレンの製造方法 | |
US8604257B2 (en) | Process for the preparation of fluorinated cis-alkene | |
JP2017001990A (ja) | 1,2−ジクロロ−3,3,3−トリフルオロプロペンの製造方法 | |
JP7151257B2 (ja) | 2-クロロ-3,3-ジフルオロプロペンの製造方法、2-クロロ-1,1,2-トリフルオロプロパンの製造方法、2,3,3-トリフルオロプロペンの製造方法、1,2-ジクロロ-2,3,3-トリフルオロプロパンの製造方法、1-クロロ-2,3,3-トリフルオロプロペンの製造方法 | |
JP7070220B2 (ja) | 2-クロロ-3,3-ジフルオロプロペンの製造方法、2-クロロ-1,1,2-トリフルオロプロパンの製造方法、2,3,3-トリフルオロプロペンの製造方法、1,2-ジクロロ-2,3,3-トリフルオロプロパンの製造方法、1-クロロ-2,3,3-トリフルオロプロペンの製造方法 | |
JPWO2019124219A1 (ja) | 1−クロロ−2,3,3,4,4,5,5−ヘプタフルオロペンテンの製造方法 | |
JP5990990B2 (ja) | シス−1,3,3,3−テトラフルオロプロペンの製造方法 | |
JP2019151629A (ja) | 化合物の製造方法 | |
JP2016079101A (ja) | 1,1−ジクロロ−3,3,3−トリフルオロプロペンの製造方法 | |
WO2022163745A1 (ja) | 3-クロロ-1,1,2,2-テトラフルオロプロパンの製造方法および1-クロロ-2,3,3-トリフルオロプロペンの製造方法 | |
JP2020023454A (ja) | 1−クロロ−2,3,3−トリフルオロプロペンの製造方法 | |
JPWO2020008865A1 (ja) | 1,2−ジクロロ−3,3,3−トリフルオロプロペンの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210209 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20210830 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211207 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220301 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220418 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7070220 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |