WO2018012511A1 - 1-クロロ-1,2-ジフルオロエチレンの製造方法 - Google Patents

1-クロロ-1,2-ジフルオロエチレンの製造方法 Download PDF

Info

Publication number
WO2018012511A1
WO2018012511A1 PCT/JP2017/025319 JP2017025319W WO2018012511A1 WO 2018012511 A1 WO2018012511 A1 WO 2018012511A1 JP 2017025319 W JP2017025319 W JP 2017025319W WO 2018012511 A1 WO2018012511 A1 WO 2018012511A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
chloro
represented
reaction
difluoroethylene
Prior art date
Application number
PCT/JP2017/025319
Other languages
English (en)
French (fr)
Inventor
大輔 加留部
訓司 大石
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to ES17827638T priority Critical patent/ES2959807T3/es
Priority to US16/314,915 priority patent/US10611710B2/en
Priority to EP17827638.2A priority patent/EP3483137B1/en
Priority to JP2018527617A priority patent/JP6763431B2/ja
Priority to CN201780042459.XA priority patent/CN109415282A/zh
Publication of WO2018012511A1 publication Critical patent/WO2018012511A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • C07C17/354Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction by hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing 1-chloro-1,2-difluoroethylene.
  • CFCl ⁇ CHF 1-Chloro-1,2-difluoroethylene
  • HCFO-1122a 1-Chloro-1,2-difluoroethylene
  • GWP global warming potential
  • a halogenated ethane represented by the formula: CFClX—CHFX (where each X represents Cl, Br, or I) is used as a raw material.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a method capable of producing 1-chloro-1,2-difluoroethylene efficiently at low cost. To do.
  • Item 1 A process for producing 1-chloro-1,2-difluoroethylene, comprising: Formula (1): CFClX 1 -CHFX 2 [In General Formula (1), X 1 and X 2 are different from each other and represent H, F, or Cl, and one of X 1 and X 2 is H. ] A process comprising the step of dehydrohalogenating chlorofluoroethane represented by the formula: Item 2. Item 2. The method according to Item 1, wherein the dehydrohalogenation step is performed in a gas phase. Item 3.
  • the chlorofluoroethane is 1-chloro-1,2,2-trifluoroethane, 1-chloro-1,1,2-trifluoroethane, 1,2-dichloro-1,2-difluoroethane, and 1,1 Item 3.
  • Item 4. Item 4. The method according to any one of Items 1 to 3, wherein the dehydrohalogenation step is performed in the presence of a catalyst.
  • Item 6. Item 6.
  • a process for producing 1-chloro-1,2-difluoroethylene comprising: By reducing chlorotrifluoroethylene and / or 1,1,2-trichloro-1,2,2-trifluoroethane, Formula (2): CFClX 3 —CHFX 4 [In General Formula (2), X 3 and X 4 are different from each other and represent H or F. ] And a step of dehydrofluorinating the chlorotrifluoroethane obtained by the above step.
  • 1-chloro-1,2-difluoroethylene can be produced efficiently at low cost.
  • the present invention includes a method for producing 1-chloro-1,2-difluoroethylene (CFCl ⁇ CHF; HCFO-1122a).
  • the method may be referred to as “first method of the present invention”.
  • 1-Chloro-1,2-difluoroethylene which is a product in the first method of the present invention, has geometric isomers of cis (Z) isomer and trans (E) isomer.
  • the cis isomer of 1-chloro-1,2-difluoroethylene is referred to as “cis-1-chloro-1,2-difluoroethylene”
  • the trans isomer of 1-chloro-1,2-difluoroethylene is referred to as “ Trans-1-chloro-1,2-difluoroethylene ”
  • Trans-1-chloro-1,2-difluoroethylene or a mixture of 1-chloro-1,2-difluoroethylene cis and trans isomers or cis and trans isomers are not distinguished. May simply be described as “1-chloro-1,2-difluoroethylene”.
  • the first method of the present invention comprises: Formula (1): CFClX 1 -CHFX 2 [In General Formula (1), X 1 and X 2 are different from each other and represent H, F, or Cl, and one of X 1 and X 2 is H. ]
  • the chlorofluoroethane represented by the general formula (1) may be simply referred to as “chlorofluoroethane”. Further, in the present specification, the above process may be referred to as a “dehydrohalogenation process”.
  • hydrogen halide is eliminated from the chlorofluoroethane represented by the general formula (1), and 1-chloro-1,2-difluoroethylene can be obtained.
  • hydrogen halide means hydrogen fluoride (HF) or hydrogen chloride (HCl).
  • the dehydrohalogenation step is preferably performed in the gas phase. Also, trans-1-chloro-1,2-difluoroethylene is produced with higher selectivity than cis-1-chloro-1,2-difluoroethylene by performing the dehydrohalogenation step in the gas phase.
  • X 1 and X 2 are different from each other and represent H, F, or Cl, and one of X 1 and X 2 is H.
  • X 1 and X 2 are different from each other and represent H, F, or Cl, and one of X 1 and X 2 is H.
  • X 1 is H
  • X 2 represents F or Cl
  • X 1 is F or Cl
  • X 2 represents H.
  • chlorofluoroethane represented by the general formula (1) examples include 1-chloro-1,2,2-trifluoroethane (HCFC-133) represented by the formula: CHFCl—CHF 2 and the formula: CF 1-chloro-1,1,2-trifluoroethane (HCFC-133b) represented by 2 Cl—CH 2 F, 1,2-dichloro-1,2-difluoroethane represented by the formula: CHFCl—CHFCl ( HCFC-132), 1,1-dichloro-1,2-difluoroethane (HCFC-132c) represented by the formula: CFCl 2 —CH 2 F, and the like.
  • HCFC-133 1-chloro-1,2,2-trifluoroethane
  • only one compound exemplified above as the chlorofluoroethane represented by the general formula (1) may be used as a raw material, or a mixture of two or more may be used.
  • the mixing ratio of each compound in the case of using a mixture of two or more types is not particularly limited, and can be set as appropriate.
  • dehydrohalogenation hydrogen fluoride is desorbed from the chlorofluoroethane represented by the general formula (1) in accordance with the raw material used, that is, the type of chlorofluoroethane represented by the general formula (1). It is roughly divided into a dehydrofluorination reaction and a dehydrochlorination reaction in which hydrogen chloride is eliminated from the chlorofluoroethane represented by the general formula (1).
  • dehydrohalogenation includes a dehydrofluorination reaction in which hydrogen fluoride is desorbed and a dehydrochlorination reaction in which hydrogen chloride is desorbed, depending on the raw material used. It means only one or both of the reaction and dehydrochlorination reaction.
  • 1-chloro-1,2,2-trifluoroethane, 1-chloro-1,1,2-trifluoroethane or the like when used as a raw material, it means a dehydrofluorination reaction.
  • dichloro-1,2-difluoroethane, 1,1-dichloro-1,2-difluoroethane, etc. are used, it means dehydrochlorination, and 1-chloro-1,2,2-trifluoroethane and 1-
  • a mixture of at least one of chloro-1,1,2-trifluoroethane and at least one of 1,2-dichloro-1,2-difluoroethane and 1,1-dichloro-1,2-difluoroethane is used. Means both dehydrofluorination and dehydrochlorination.
  • the dehydrohalogenation step can be performed in the presence or absence of a catalyst. It is preferable to perform the dehydrohalogenation step in the presence of a catalyst because the selectivity and yield of 1-chloro-1,2-difluoroethylene can be improved.
  • the catalyst to be used is not particularly limited, and a known catalyst having catalytic activity for the dehydrohalogenation reaction can be used.
  • a dehydrohalogenation catalyst can be used.
  • the dehydrohalogenation catalyst include a dehydrofluorination catalyst having catalytic activity for a dehydrofluorination reaction, and a dehydrochlorination reaction. Examples thereof include a dehydrochlorination catalyst having catalytic activity.
  • dehydrofluorination catalyst examples include transition metals, aluminum, halides of metals such as group 14 element metals and group 15 element metals, oxides, and fluorinated oxides. These dehydrofluorination catalysts are considered to have an effect of promoting the dehydrofluorination reaction because of their high affinity between the metal element and the desorbing fluorine atom.
  • transition metal examples include titanium, vanadium, chromium, manganese, iron, cobalt, nickel, niobium, molybdenum, tantalum, and zirconia.
  • group 14 element metal examples include tin and lead.
  • group 15 element metal examples include antimony and bismuth.
  • Examples of the halide include fluoride and chloride.
  • metal halide examples include, for example, titanium (IV) chloride, chromium (III) fluoride, chromium (III) chloride, iron (III) chloride, niobium chloride (V), and molybdenum chloride (V). Tantalum chloride (V), aluminum fluoride, tin chloride (IV), antimony fluoride (V), antimony chloride (V), antimony chloride (III) and the like.
  • metal oxide include chromium (III) oxide and aluminum oxide.
  • fluorinated metal oxide examples include fluorinated chromium oxide (III) and fluorinated aluminum oxide.
  • chromium (III) oxide aluminum oxide, fluorinated chromium oxide (III), and fluorinated aluminum oxide are particularly preferable.
  • chromium (III) oxide and the fluorinated chromium (III) oxide crystalline chromium oxide, amorphous chromium oxide, or the like can be used.
  • a dehydrofluorination catalyst may be used individually by 1 type, and may be used in combination of 2 or more type.
  • dehydrochlorination catalyst examples include metal halides such as alkali metals, alkaline earth metals, divalent transition metals and the like, oxides, fluorinated oxides, activated carbon, and the like.
  • Examples of the alkali metal include lithium, sodium, potassium, cesium and the like.
  • Examples of the alkaline earth metal include magnesium, calcium, strontium, barium and the like.
  • Examples of the divalent or lower valent transition metal include cobalt, nickel (II), copper (II), zinc (II), and silver.
  • Examples of the halide include fluoride and chloride.
  • metal halides include, for example, magnesium fluoride, magnesium chloride, nickel fluoride (II), nickel chloride (II), zinc fluoride (II), zinc chloride (II), copper fluoride. (II), copper chloride (II), etc. are mentioned.
  • metal oxide described above include magnesium oxide, nickel (II) oxide, zinc (II) oxide, copper (II) oxide, and the like.
  • fluorinated metal oxide include fluorinated zinc oxide (II), fluorinated magnesium oxide, and fluorinated nickel oxide (II).
  • magnesium fluoride zinc (II) oxide, nickel (II) oxide, and activated carbon are particularly preferable.
  • a dehydrochlorination catalyst may be used individually by 1 type, and may be used in combination of 2 or more type.
  • dehydrofluorination catalyst and dehydrochlorination catalyst can be used in combination.
  • chlorofluoroethane for example, 1-chloro-1,2,2-trifluoroethane, 1-chloro-1, 1,2-trifluoroethane, etc.
  • chlorofluoroethane for example, 1,1-dichloro-1,2-difluoroethane etc.
  • the above-described dehydrohalogenation catalyst can be used by being supported on a carrier.
  • the carrier is not particularly limited, and a known carrier that can be used for a dehydrohalogenation catalyst can be used.
  • the carrier include porous alumina silicate such as zeolite, aluminum oxide, silicon oxide, activated carbon, titanium oxide, zirconia oxide, zinc oxide, and aluminum fluoride.
  • One type of carrier may be used alone, or two or more types may be combined and used in combination.
  • Examples of combinations of dehydrohalogenation catalyst and carrier include chromium (III) oxide / aluminum oxide, chromium oxide (III) / aluminum fluoride, chromium (III) oxide / activated carbon Etc.
  • dehydrohalogenation catalyst / dehydrohalogenation catalyst / support examples include cobalt chloride (II), chromium (III) oxide / aluminum oxide, Examples thereof include nickel chloride (II) / chromium oxide (III) / aluminum oxide.
  • the dehydrohalogenation step is preferably performed in a reactor.
  • the reactor is not particularly limited.
  • a flow reactor such as an adiabatic reactor or a multi-tube reactor heated using a heat medium can be used.
  • the method for causing the catalyst to be present in the reactor is not particularly limited, and it is sufficient that the raw material be present so as to be in sufficient contact with the catalyst.
  • a method of filling a catalyst in the reactor can be mentioned.
  • the catalyst When using a catalyst in the dehydrohalogenation step, the catalyst is brought into contact with the chlorofluoroethane represented by the general formula (1).
  • the method for bringing the chlorofluoroethane represented by the general formula (1) into contact with the catalyst is not particularly limited.
  • the chlorofluoroethane represented by the general formula (1) is reacted in the gas phase.
  • the chlorofluoroethane represented by the general formula (1) and the catalyst can be brought into contact with each other.
  • the chlorofluoroethane represented by the general formula (1) may be supplied to the reactor as it is, or when it is necessary to perform dilution for reasons such as controlling the reactivity, the raw material, catalyst It is also possible to supply the reactor with a gas inert to the reactor.
  • the inert gas include nitrogen, helium, argon, and the like.
  • the concentration of the inert gas is not particularly limited.
  • the gaseous component supplied to the reactor The concentration of the inert gas can be 10 to 99 mol% based on the total amount.
  • oxygen can be supplied to the reactor in order to maintain the catalytic activity for a long time.
  • the oxygen introduced into the reactor may be a single gas of oxygen or air containing oxygen.
  • the supply amount of oxygen can be, for example, about 0.1 to 50 mol%, preferably 1 to 20 mol%, based on the total amount of gas components supplied to the reactor.
  • anhydrous hydrogen fluoride can also be supplied to the reactor for the purpose of improving the catalytic activity of the dehydrohalogenation catalyst.
  • the supply amount of anhydrous hydrogen fluoride can be about 1 to 100 mol with respect to 1 mol of chlorofluoroethane represented by the general formula (1) supplied to the reactor.
  • the reaction temperature is not particularly limited as long as the reaction temperature at which 1-chloro-1,2-difluoroethylene can be generated from the chlorofluoroethane represented by the general formula (1) can occur.
  • the specific reaction temperature can be, for example, about 200 to 550 ° C., preferably about 250 to 450 ° C., more preferably about 300 to 450 ° C. By setting within this range, the conversion rate of the raw material can be maintained satisfactorily, and it is easy to suppress a reduction in catalyst activity due to impurities by-product and catalyst alteration.
  • the reaction temperature is preferably set to 300 ° C. or higher in order to increase the selectivity of the trans isomer. .
  • the reaction time in the dehydrohalogenation step is not particularly limited, if performed in the absence of catalyst, the total flow rate F 0 (0 ° C. of the gas supplied to the reactor, flow rate at 0.1 MPa: cc / Sec), the residence time represented by the ratio (V / F 0 ) of the volume V (cc) of the heated reactor to the reactor is preferably about 1 to 500 sec, more preferably 30 to 300 sec.
  • the ratio of the catalyst filling amount W (g) to the total flow rate F 0 of the gas supplied to the reactor (flow rate at 0 ° C. and 0.1 MPa: cc / sec).
  • the contact time represented by (W / F 0 ) is preferably about 1 to 500 g ⁇ sec / cc, and more preferably about 30 to 300 g ⁇ sec / cc.
  • the total flow rate of the gas supplied to the reactor means that when an inert gas, oxygen, anhydrous hydrogen fluoride, or the like is used for the flow rate of chlorofluoroethane represented by the general formula (1), This is the amount with the added flow rate.
  • the pressure in the dehydrohalogenation step is not particularly limited, and can be atmospheric pressure, pressurization up to 3 MPaG, or depressurization to ⁇ 0.1 MPaG, and in particular, atmospheric pressure or depressurization to ⁇ 0.1 MPaG. It is preferable to do.
  • the gas after the reaction includes the target product (1-chloro-1,2-difluoroethylene) generated by the dehydrohalogenation reaction, as well as halogenation.
  • the target product (1-chloro-1,2-difluoroethylene) generated by the dehydrohalogenation reaction, as well as halogenation.
  • hydrogen, a by-product, and a raw material compound are included.
  • the by-product varies depending on the raw material compound (compound represented by the general formula (1)) used in the dehydrohalogenation step, and for example, 1-chloro-1,2,2-trifluoroethane is used.
  • 1-chloro-1,1,2-trifluoroethane is used
  • the first method of the present invention can include a step of separating the hydrogen halide contained in the gas after the reaction, if necessary, after the dehydrohalogenation step.
  • the method for separating the hydrogen halide is not particularly limited, and a known method can be employed.
  • the hydrogen halide is hydrogen fluoride, for example, hydrogen fluoride and the organic compound containing the target product can be separated by distillation, liquid separation, or the like.
  • the hydrogen halide is hydrogen chloride
  • hydrogen chloride and the organic compound containing the target product can be separated by compressing the gas after the reaction and distilling under pressure.
  • hydrogen chloride and the organic compound containing the target product can also be separated by performing the dehydrochlorination step under pressure and distilling under pressure as it is.
  • hydrogen halide can be removed by washing with water, or washing and distillation can be appropriately combined.
  • the target product (1-chloro-1,2-difluoroethylene) contained in the gas after the reaction, a by-product, and the reaction A step of separating a raw material compound (a compound represented by the general formula (1)) that may be included depending on conditions may be included.
  • the method for separating the target product, the by-product and the raw material compound is not particularly limited, and a known method can be employed. For example, methods such as distillation, liquid separation, adsorption and the like can be mentioned.
  • the separated raw material compound can be subjected again to the dehydrohalogenation step (that is, it can be recycled).
  • a mixture of the cis- and trans-isomers of 1-chloro-1,2-difluoroethylene produced is trans-1-chloro-
  • a step of separating into 1,2-difluoroethylene and cis-1-chloro-1,2-difluoroethylene can be included.
  • the method for separating the cis form and the trans form is not particularly limited, and a known method can be employed. For example, a method similar to the method for separating the target product exemplified above from the by-product and the raw material compound can be employed. Any one of the separated cis- and trans-isomers can be used, and both the cis- and trans-isomers can be used for different purposes.
  • the present invention relates to chlorotrifluoroethylene (CFCl ⁇ CF 2 ; CTFE) and / or 1,1,2-trichloro-1,2,2-trifluoroethane (CFCl 2 —CF 2 Cl; CFC— 113) as a raw material, and a method for producing 1-chloro-1,2-difluoroethylene (CFCl ⁇ CHF; HCFO-1122a) is also included.
  • the method may be referred to as “the second method of the present invention”.
  • the second method of the present invention comprises reducing chlorotrifluoroethylene and / or 1,1,2-trichloro-1,2,2-trifluoroethane, Formula (2): CFClX 3 —CHFX 4 [In General Formula (2), X 3 and X 4 are different from each other and represent H or F. ]
  • generating chlorotrifluoroethane represented by these is included.
  • the chlorotrifluoroethane represented by the general formula (2) may be simply referred to as “chlorotrifluoroethane”.
  • the above process may be referred to as a “first process”.
  • the second method of the present invention includes a step of dehydrofluorinating the chlorotrifluoroethane obtained in the first step.
  • the said process may be described as a "2nd process.”
  • chlorotrifluoroethane represented by the general formula (2) is produced by reducing chlorotrifluoroethylene and / or 1,1,2-trichloro-1,2,2-trifluoroethane. Is done.
  • chlorotrifluoroethylene and / or 1,1,2-trichloro-1,2,2-trifluoroethane is used as a raw material compound.
  • the raw material compound only one kind of chlorotrifluoroethylene or 1,1,2-trichloro-1,2,2-trifluoroethane may be used, or a mixture of these two kinds may be used.
  • the mixing ratio of each compound when using a mixture of two types is not particularly limited, and can be set as appropriate.
  • chlorotrifluoroethane represented by the general formula (2) is specifically 1-chloro-1,2,2-trifluoroethane (HCFC-133) represented by the formula: CHFCl—CHF 2 ;
  • 1-chloro-1,1,2-trifluoroethane (HCFC-133b) represented by the formula: CF 2 Cl—CH 2 F is used.
  • reaction formula (1) when chlorotrifluoroethylene is used as a raw material compound and hydrogen is used as a reducing agent, a reduction reaction represented by the following reaction formula (1) proceeds.
  • the first step can be performed in a liquid phase or a gas phase, and is preferably performed in a gas phase.
  • a reducing agent As the reducing agent, known ones can be used, and examples thereof include hydrogen, sodium borohydride, hydrazine and the like.
  • a reduction catalyst In the first step, it is preferable to use a reduction catalyst.
  • the reduction catalyst is not particularly limited, and a known catalyst can be used.
  • any of noble metal catalysts such as platinum, palladium, rhodium and ruthenium, and metal catalysts such as nickel and zirconium can be used, and among them noble metal catalysts are preferable.
  • the reduction catalyst can be used by being supported on a carrier.
  • the carrier is not particularly limited, and a known carrier can be used.
  • the carrier include alumina, activated carbon, zeolite, and the like.
  • the method for supporting the reduction catalyst on the carrier is not particularly limited, and a known method can be adopted. For example, a conventional method for preparing a noble metal catalyst can be employed.
  • As the reduction catalyst supported on the carrier for example, an activated carbon-supported palladium catalyst is preferable.
  • the ratio of the raw material compound and the reducing agent in the first step can be appropriately determined according to the raw material to be used, the type of target product to be produced, and the like.
  • 1,1,2-trichloro-1,2,2-trifluoroethane is used as the starting compound and hydrogen is used as the reducing agent
  • 1-chloro-1,2,2-trifluoroethane and / or 1 In order to obtain -chloro-1,1,2-trifluoroethane, it is usual to use 1,1,2-trichloro-1,2,2, using a stoichiometric amount of 2 moles of hydrogen (H 2 ). The two chlorine atoms in 2-trifluoroethane are reduced and removed.
  • an amount smaller than the stoichiometric amount relative to the total number of moles of the raw material compound for example, less than 2 times moles of hydrogen may be used. For example, it is 1 to 2 mol.
  • a raw material compound, an intermediate obtained by reducing and removing only one chlorine for example, 2,2-dichloro-1,1,1-trifluoroethane (CHCl 2 -CF 3 ; HCFC-123)
  • CHCl 2 -CF 3 2,2-dichloro-1,1,1-trifluoroethane
  • the reaction temperature is not particularly limited as long as the reaction can generate the chlorotrifluoroethane represented by the general formula (2) from the raw material compound, and is appropriately set. be able to.
  • the temperature can usually be about 70 to 350 ° C., and preferably about 80 to 200 ° C.
  • chlorotrifluoroethylene is used as the raw material compound
  • the temperature is preferably lower than when 1,1,2-trichloro-1,2,2-trifluoroethane is used as the raw material compound.
  • the reaction time in the first step is not particularly limited.
  • the total amount of raw material gas F 0 supplied to the reaction system F 0 (flow rate at 0 ° C., 1 atm: cc / sec) the contact time represented by the ratio (W / F 0) of the filling amount W of the catalyst (g) to be a 0.1 ⁇ 30g ⁇ sec / cc approximately against, and 1 ⁇ 20g ⁇ sec / cc about It is preferable. If the contact time is too short, the raw material cannot be sufficiently converted, and if the contact time is too long, the reduction of the compound that has progressed excessively occurs, decomposition reaction into the C1 compound, and the like. It is preferable to be inside.
  • a solvent when the first step is performed in a liquid phase, a solvent can be used.
  • the solvent include water, alcohols such as ethanol and isopropyl alcohol, glymes such as acetic acid, ethyl acetate and diglyme, and pyridine.
  • the reaction temperature is preferably about 0 to 150 ° C.
  • the reaction pressure is preferably about normal pressure to 5 MPa.
  • the gas after the reaction includes the target product (chlorotrifluoroethane represented by the general formula (2)) generated by the reduction reaction, hydrogen chloride, Depending on the reaction conditions, the product may contain hydrogen, raw material compounds (chlorotrifluoroethylene and / or 1,1,2-trichloro-1,2,2-trifluoroethane), and the like.
  • the by-product varies depending on the raw material compound used in the first step.
  • CHCl 2 — 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) represented by CF 3 can be produced as a by-product.
  • chlorotrifluoroethylene has the formula: CHF 2 represented by -CH 2 F 1,1,2-trifluoroethane (HFC-143), etc. may be produced as a by-product.
  • the second method of the present invention can include a step of separating hydrogen chloride contained in the gas after the reaction, if necessary, after the first step.
  • the method for separating hydrogen chloride is not particularly limited, and a known method can be employed.
  • hydrogen chloride and an organic compound containing the target product can be separated by compressing the gas after the reaction and distilling under pressure.
  • hydrogen chloride and the organic compound containing the target product can also be separated by performing the first step under pressure and distilling under pressure as it is.
  • hydrogen chloride can be removed by washing with water, or washing and distillation can be combined as appropriate.
  • 1-chloro-1,2-difluoroethylene can be obtained by dehydrofluorinating the chlorotrifluoroethane represented by the general formula (2) obtained in the first step. it can.
  • the second step is preferably performed in a gas phase.
  • only one of the above-mentioned compounds can be used as the chlorotrifluoroethane represented by the general formula (2), or two can be used in combination.
  • the mixing ratio of each compound when using a mixture of two types is not particularly limited, and can be set as appropriate.
  • the second step corresponds to the dehydrohalogenation step in the first invention of the present invention described above. More specifically, in the chlorofluoroethane represented by the general formula (1) that is a raw material in the first invention of the present invention described above, a compound in which X 1 in the general formula (1) is H and X 2 is F, And the compound in which X 1 in the general formula (1) is F and X 2 is H corresponds to the chlorotrifluoroethane represented by the general formula (2).
  • the second step can be performed in the presence or absence of a catalyst. It is preferable to perform the second step in the presence of a catalyst because the selectivity and yield of 1-chloro-1,2-difluoroethylene can be improved.
  • the catalyst used is not particularly limited, and a known catalyst having catalytic activity for the dehydrofluorination reaction can be used.
  • An example of such a catalyst is a dehydrofluorination catalyst.
  • dehydrofluorination catalyst examples include transition metals, aluminum, halides of metals such as group 14 element metals and group 15 element metals, oxides, and fluorinated oxides. These dehydrofluorination catalysts are considered to have an effect of promoting the dehydrofluorination reaction because of their high affinity between the metal element and the desorbing fluorine atom.
  • transition metal examples include titanium, vanadium, chromium, manganese, iron, cobalt, nickel, niobium, molybdenum, tantalum, and zirconia.
  • group 14 element metal examples include tin and lead.
  • group 15 element metal examples include arsenic, antimony, and bismuth.
  • Examples of the halide include fluoride and chloride.
  • metal halide examples include, for example, titanium (IV) chloride, chromium (III) fluoride, chromium (III) chloride, iron (III) chloride, niobium chloride (V), and molybdenum chloride (V). Tantalum chloride (V), aluminum fluoride, tin chloride (IV), antimony fluoride (V), antimony chloride (V), antimony chloride (III) and the like.
  • metal oxide include chromium (III) oxide and aluminum oxide.
  • fluorinated metal oxide examples include fluorinated chromium oxide (III) and fluorinated aluminum oxide.
  • chromium (III) oxide aluminum oxide, fluorinated chromium oxide (III), and fluorinated aluminum oxide are particularly preferable.
  • chromium (III) oxide and the fluorinated chromium (III) oxide crystalline chromium oxide, amorphous chromium oxide, or the like can be used.
  • a dehydrofluorination catalyst may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the dehydrofluorination catalyst can also be used by being supported on a carrier.
  • the carrier is not particularly limited, and a known carrier that can be used for a dehydrofluorination catalyst can be used.
  • the carrier include porous alumina silicate such as zeolite, aluminum oxide, silicon oxide, activated carbon, titanium oxide, zirconia oxide, zinc oxide, and aluminum fluoride.
  • One type of carrier may be used alone, or two or more types may be combined and used in combination.
  • Examples of combinations of dehydrofluorination catalyst and support include chromium oxide (III) / aluminum oxide, chromium oxide (III) / aluminum fluoride, chromium oxide (III) / activated carbon Etc.
  • Examples of combinations of two types of dehydrofluorination catalyst and support include cobalt chloride (II), chromium oxide (III) / aluminum oxide, Examples thereof include nickel chloride (II) / chromium oxide (III) / aluminum oxide.
  • the second step is preferably performed in a reactor.
  • the reactor is not particularly limited.
  • a flow reactor such as an adiabatic reactor or a multi-tube reactor heated using a heat medium can be used.
  • the method for causing the catalyst to be present in the reactor is not particularly limited, and it may be present so that the raw material can be sufficiently brought into contact with the catalyst.
  • a method of filling a catalyst in the reactor can be mentioned.
  • the catalyst is brought into contact with the chlorotrifluoroethane represented by the general formula (2).
  • the method for bringing the chlorotrifluoroethane represented by the general formula (2) into contact with the catalyst is not particularly limited.
  • the chlorotrifluoroethane represented by the general formula (2) is used.
  • the chlorotrifluoroethane represented by the general formula (2) can be brought into contact with the catalyst.
  • the chlorotrifluoroethane represented by the general formula (2) may be supplied to the reactor as it is, or when it is necessary to perform dilution for reasons such as controlling the reactivity, It can also be supplied to the reactor together with a gas inert to the catalyst or the like.
  • the inert gas include nitrogen, helium, argon, and the like.
  • the concentration of the inert gas is not particularly limited.
  • the gaseous component supplied to the reactor Based on the total amount of the above, the concentration of the inert gas can be 10 to 99 mol%.
  • oxygen can be supplied to the reactor in order to maintain the catalytic activity for a long time.
  • the oxygen introduced into the reactor may be a single gas of oxygen or air containing oxygen.
  • the supply amount of oxygen can be, for example, about 0.1 to 50 mol%, preferably 1 to 20 mol%, based on the total amount of gas components supplied to the reactor.
  • anhydrous hydrogen fluoride can be supplied to the reactor for the purpose of improving the catalytic activity of the dehydrofluorination catalyst.
  • the supply amount of anhydrous hydrogen fluoride can be about 1 to 100 mol with respect to 1 mol of chlorofluoroethane represented by the general formula (1) supplied to the reactor.
  • the reaction temperature is not particularly limited as long as the reaction at which 1-chloro-1,2-difluoroethylene can be generated from chlorotrifluoroethane represented by the general formula (2) can occur.
  • the specific reaction temperature can be, for example, about 200 to 550 ° C., preferably about 250 to 450 ° C., more preferably about 300 to 450 ° C. By setting within this range, the conversion rate of the raw material can be maintained satisfactorily, and it is easy to suppress a reduction in catalyst activity due to impurities by-product and catalyst alteration.
  • the reaction temperature is preferably set to 300 ° C. or higher in order to increase the selectivity of the trans isomer. .
  • the reaction time in the second step is not particularly limited.
  • the total flow rate F 0 of the gas supplied to the reactor flow rate at 0 ° C. and 0.1 MPa: cc / sec
  • the residence time represented by the ratio (V / F 0 ) of the volume (V / cc) of the heated reactor to) is preferably about 1 to 500 sec, more preferably 30 to 300 sec.
  • the ratio of the catalyst filling amount W (g) to the total flow rate F 0 of the gas supplied to the reactor (flow rate at 0 ° C. and 0.1 MPa: cc / sec).
  • the contact time represented by (W / F 0 ) is preferably about 1 to 500 g ⁇ sec / cc, and more preferably about 30 to 300 g ⁇ sec / cc.
  • the total flow rate of the gas supplied to the reactor means that when an inert gas, oxygen, anhydrous hydrogen fluoride, or the like is used for the flow rate of chlorotrifluoroethane represented by the general formula (2). It is the quantity which added the flow volume of.
  • the pressure in the second step is not particularly limited, and can be atmospheric pressure, pressurization up to 3 MPaG, or depressurization to -0.1 MPaG, and in particular, atmospheric pressure or depressurization to -0.1 MPaG. Is preferred.
  • the gas after the reaction includes, in addition to the target product (1-chloro-1,2-difluoroethylene) generated by the dehydrofluorination reaction, hydrogen fluoride, By-products and further, depending on the reaction conditions, a raw material compound (compound represented by the general formula (2)) is included.
  • the by-product varies depending on the raw material compound (compound represented by the general formula (2)) used in the second step, and for example, when 1-chloro-1,2,2-trifluoroethane is used.
  • the second method of the present invention can include a step of separating hydrogen fluoride contained in the gas after the reaction, if necessary, after the second step.
  • the method for separating hydrogen fluoride is not particularly limited, and a known method can be adopted.
  • hydrogen fluoride and an organic compound containing the target product can be separated by distillation, liquid separation, or the like.
  • hydrogen fluoride can be removed by washing with water, or washing and distillation can be appropriately combined.
  • the process can isolate
  • the method for separating the target product, the by-product and the raw material compound is not particularly limited, and a known method can be employed. For example, methods such as distillation, liquid separation, adsorption and the like can be mentioned.
  • the separated raw material compound can be subjected again to the dehydrofluorination step (that is, can be recycled).
  • a mixture of the cis- and trans-isomers of 1-chloro-1,2-difluoroethylene produced is trans-1-chloro-
  • a step of separating into 1,2-difluoroethylene and cis-1-chloro-1,2-difluoroethylene can be included.
  • the method for separating the cis form and the trans form is not particularly limited, and a known method can be employed. For example, a method similar to the method for separating the target product exemplified above from the by-product and the raw material compound can be employed. Any one of the separated cis- and trans-isomers can be used, and both the cis- and trans-isomers can be used for different purposes.
  • the first step and the second step can be performed continuously by a gas phase reaction.
  • the heat energy used in the first step can be saved in the second step to save the heat energy used.
  • Example 1 A tubular Hastelloy reactor having an inner diameter of 15 mm and a length of 1 m was charged with 20.0 g of an activated carbon-supported palladium catalyst (supported amount of 0.5% by mass). The reactor is maintained at atmospheric pressure (0.1 MPa) and 150 ° C., hydrogen gas is flowed at 60 cc / min (0 ° C., flow rate at 0.1 MPa, the same applies hereinafter), chlorotrifluoroethylene (CTFE) gas is flowed. A flow rate of 60 cc / min and nitrogen gas were supplied to the reactor at a flow rate of 480 cc / min and maintained for 2 hours.
  • CFE chlorotrifluoroethylene
  • Example 2 A tubular Hastelloy reactor having an inner diameter of 15 mm and a length of 1 m was charged with 20.0 g of a ⁇ -alumina catalyst (a specific surface area of 400 m 2 / g) which is aluminum oxide. The reactor was maintained at atmospheric pressure (0.1 MPa) and 350 ° C., CHF 2 CHFCl gas was supplied to the reactor at a flow rate of 4 cc / min, and nitrogen gas was supplied to the reactor at a flow rate of 20 cc / min for 2 hours. .
  • a ⁇ -alumina catalyst a specific surface area of 400 m 2 / g which is aluminum oxide.
  • CHF 2 CHFCl gas was supplied to the reactor at a flow rate of 4 cc / min
  • nitrogen gas was supplied to the reactor at a flow rate of 20 cc / min for 2 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本発明は、低コストでかつ効率良く1-クロロ-1,2-ジフルオロエチレンを製造することができる方法を提供する。 本発明は、具体的には、1-クロロ-1,2-ジフルオロエチレンの製造方法であって、一般式(1):CFClX-CHFX[一般式(1)中、X及びXは互いに異なってH、F、又はClを示し、X及びXのいずれか一方がHである。]で表されるクロロフルオロエタンを脱ハロゲン化水素する工程を含む方法を提供する。

Description

1-クロロ-1,2-ジフルオロエチレンの製造方法
 本発明は、1-クロロ-1,2-ジフルオロエチレンの製造方法に関する。
 1-クロロ-1,2-ジフルオロエチレン(CFCl=CHF;HCFO-1122a)は、地球温暖化係数(GWP)の低い冷媒として有望視されている(特許文献1参照)。
 1-クロロ-1,2-ジフルオロエチレンの製造方法としては、例えば、式:CFClX-CHFX(式中、各XはCl、Br、又はIを示す。)で表されるハロゲン化エタンを原料として亜鉛等の触媒の存在下において脱ハロゲン反応を行う方法、1,2-ジクロロ-ジフルオロエチレン(CFCl=CFCl)をシラン化合物を用いて還元する方法などが知られている(特許文献2及び非特許文献1~3参照)。しかしながら、当該方法では触媒として亜鉛を用いるため、反応により処理が煩雑な不溶性の廃棄物が当量発生する、バッチで反応させる必要があり高コストである等の問題が指摘されている。さらに、原料として用いられるハロゲン化エタン、例えば、1,1,2-トリクロロ-1,2-ジフルオロエタン(CFCl-CHFCl)は、トリクロロエチレン(CCl=CHCl)のF付加反応により製造されるが、当該反応では、F、CoF等の取り扱いに注意を要する物質を用いる必要があるなどの問題がある。
 また、1,2-ジクロロ-1,2-ジフルオロエタン(CHFCl-CHFCl;HCFC-132)を液相で脱塩化水素反応を行うことにより1-クロロ-1,2-ジフルオロエチレンを得る方法なども知られている(特許文献3及び非特許文献4参照)。しかしながら、当該方法では脱塩化水素反応を行うための反応剤が当量必要であり、また、反応に再利用できない塩化物が当量発生するなどの問題がある。
 以上のような従来技術の問題点に鑑みて、低コストでかつ効率良く1-クロロ-1,2-ジフルオロエチレンを製造することができる方法が切望されている。
特開2014-141538号公報 米国特許第2716109号明細書 特開2015-120670号公報
Journal of the American Chemical Society,1936,vol.58,p.403 Journal of the Chemical Society,1961,p.2204 Journal of Organic Chemistry,1970,vol.35,p.678 Zhurnal Organicheskoi Khimii,18(5),938-945,1982
 本発明は、上記した従来技術の問題点に鑑みてなされたものであり、低コストでかつ効率良く1-クロロ-1,2-ジフルオロエチレンを製造することができる方法を提供することを目的とする。
 本発明者らは、上記した目的を達成すべく鋭意研究を重ねた結果、一般式(1):CFClX-CHFX[一般式(1)中、X及びXは互いに異なってH、F、又はClを示し、X及びXのいずれか一方がHである。]で表されるクロロフルオロエタンを脱ハロゲン化水素することによって、低コストでかつ効率良く1-クロロ-1,2-ジフルオロエチレンを製造することができることを見出した。本発明者らは当該知見に基づいてさらなる研究を重ねることにより本発明を完成させるに至った。
 即ち、本発明は、代表的には、以下の項に記載の発明を包含する。
項1.
1-クロロ-1,2-ジフルオロエチレンの製造方法であって、
一般式(1):CFClX-CHFX
[一般式(1)中、X及びXは互いに異なってH、F、又はClを示し、X及びXのいずれか一方がHである。]
で表されるクロロフルオロエタンを脱ハロゲン化水素する工程
を含む、方法。
項2.
前記脱ハロゲン化水素工程が気相で行われる、上記項1に記載の方法。
項3.
前記クロロフルオロエタンが、1-クロロ-1,2,2-トリフルオロエタン、1-クロロ-1,1,2-トリフルオロエタン、1,2-ジクロロ-1,2-ジフルオロエタン、及び1,1-ジクロロ-1,2-ジフルオロエタンからなる群から選択される少なくとも1種である、上記項1又は2に記載の方法。
項4.
前記脱ハロゲン化水素工程が触媒の存在下で行われる、上記項1~3のいずれかに記載の方法。
項5.
前記脱ハロゲン化水素工程が触媒の非存在下で行われる、上記項1~3のいずれかに記載の方法。
項6.
前記脱ハロゲン化水素工程が200~550℃の温度で行われる、上記項1~5のいずれかに記載の方法。
項7.
前記クロロフルオロエタンが、1-クロロ-1,2,2-トリフルオロエタン及び/又は1-クロロ-1,1,2-トリフルオロエタンであり、かつ
前記脱ハロゲン化水素工程が、脱フッ化水素工程である、
上記項1~6のいずれかに記載の方法。
項8.
1-クロロ-1,2-ジフルオロエチレンの製造方法であって、
クロロトリフルオロエチレン及び/又は1,1,2-トリクロロ-1,2,2-トリフルオロエタンを還元することにより、
一般式(2):CFClX-CHFX
[一般式(2)中、X及びXは互いに異なってH又はFを示す。]
で表されるクロロトリフルオロエタンを生成する工程、及び
前記工程により得られたクロロトリフルオロエタンを脱フッ化水素する工程
を含む、方法。
 本発明によれば、低コストでかつ効率良く1-クロロ-1,2-ジフルオロエチレンを製造することができる。
 以下、本発明について詳細に説明する。
 第1の発明
 本発明は、1-クロロ-1,2-ジフルオロエチレン(CFCl=CHF;HCFO-1122a)を製造する方法を包含する。なお、本明細書において、当該方法を「本発明の第1方法」と記載する場合がある。
 本発明の第1方法における生成物である1-クロロ-1,2-ジフルオロエチレンには、シス(Z)体及びトランス(E)体の幾何異性体が存在する。本明細書において、1-クロロ-1,2-ジフルオロエチレンのシス体を「シス-1-クロロ-1,2-ジフルオロエチレン」と、1-クロロ-1,2-ジフルオロエチレンのトランス体を「トランス-1-クロロ-1,2-ジフルオロエチレン」と記載する場合があり、また、1-クロロ-1,2-ジフルオロエチレンのシス体及びトランス体の混合物又はシス体及びトランス体を区別しない場合には単に「1-クロロ-1,2-ジフルオロエチレン」と記載する場合がある。
 本発明の第1方法は、
一般式(1):CFClX-CHFX
[一般式(1)中、X及びXは互いに異なってH、F、又はClを示し、X及びXのいずれか一方がHである。]
で表されるクロロフルオロエタンを脱ハロゲン化水素する工程を含む。なお、本明細書において、一般式(1)で表されるクロロフルオロエタンを単に「クロロフルオロエタン」と記載する場合がある。また、本明細書において上記の工程を「脱ハロゲン化水素工程」と記載する場合がある。
 当該脱ハロゲン化水素工程により、一般式(1)で表されるクロロフルオロエタンからハロゲン化水素が脱離し、1-クロロ-1,2-ジフルオロエチレンを得ることができる。なお、本明細書において「ハロゲン化水素」とは、フッ化水素(HF)又は塩化水素(HCl)を意味する。
 脱ハロゲン化水素工程は、気相で行うことが好ましい。また、脱ハロゲン化水素工程を気相で行うことにより、トランス-1-クロロ-1,2-ジフルオロエチレンがシス-1-クロロ-1,2-ジフルオロエチレンに比べて選択率良く生成されるという利点がある。
 上記一般式(1)において、X及びXは互いに異なってH、F、又はClを示し、X及びXのいずれか一方がHである。例えば、XがHである場合にはXはF又はClを示し、XがF又はClである場合にはXはHを示す。
 上記一般式(1)で表されるクロロフルオロエタンとしては、例えば、式:CHFCl-CHFで表される1-クロロ-1,2,2-トリフルオロエタン(HCFC-133)、式:CFCl-CHFで表される1-クロロ-1,1,2-トリフルオロエタン(HCFC-133b)、式:CHFCl-CHFClで表される1,2-ジクロロ-1,2-ジフルオロエタン(HCFC-132)、式:CFCl-CHFで表される1,1-ジクロロ-1,2-ジフルオロエタン(HCFC-132c)などが挙げられる。
 脱ハロゲン化水素工程においては、原料として、一般式(1)で表されるクロロフルオロエタンとして上記で例示した化合物1種のみを用いてもよいし、2種以上を混合して用いてもよい。2種以上を混合して用いる場合の各化合物の混合割合は特に限定的ではなく、適宜設定することができる。
 脱ハロゲン化水素工程は、用いる原料、即ち、一般式(1)で表されるクロロフルオロエタンの種類に応じて、一般式(1)で表されるクロロフルオロエタンからフッ化水素が脱離する脱フッ化水素反応と、一般式(1)で表されるクロロフルオロエタンから塩化水素が脱離する脱塩化水素反応とに大別される。本明細書において、「脱ハロゲン化水素」とは、フッ化水素が脱離する脱フッ化水素反応と塩化水素が脱離する脱塩化水素反応とを含み、用いる原料に応じて脱フッ化水素反応及び脱塩化水素反応のいずれか一方のみ、あるいはその両方を意味する。例えば、原料として、1-クロロ-1,2,2-トリフルオロエタン、1-クロロ-1,1,2-トリフルオロエタン等を用いる場合には脱フッ化水素反応を意味し、1,2-ジクロロ-1,2-ジフルオロエタン、1,1-ジクロロ-1,2-ジフルオロエタン等を用いる場合には脱塩化水素反応を意味し、1-クロロ-1,2,2-トリフルオロエタン及び1-クロロ-1,1,2-トリフルオロエタンの少なくとも1種と1,2-ジクロロ-1,2-ジフルオロエタン及び1,1-ジクロロ-1,2-ジフルオロエタンの少なくとも1種とを混合して用いる場合には脱フッ化水素反応及び脱塩化水素反応の両方を意味する。
 脱ハロゲン化水素工程は、触媒の存在下又は非存在下で行うことができる。脱ハロゲン化水素工程を触媒の存在下で行う場合には、1-クロロ-1,2-ジフルオロエチレンの選択率及び収率を向上させることができるため、好ましい。
 脱ハロゲン化水素工程を触媒の存在下で行う場合、用いる触媒としては特に限定的ではなく、脱ハロゲン化水素反応に対して触媒活性を有する公知の触媒を用いることができる。このような触媒としては脱ハロゲン化水素触媒を用いることができ、脱ハロゲン化水素触媒としては、例えば、脱フッ化水素反応に対して触媒活性を有する脱フッ化水素触媒、脱塩化水素反応に対して触媒活性を有する脱塩化水素触媒などが挙げられる。
 脱フッ化水素触媒としては、例えば、遷移金属、アルミニウム、14族元素金属、15族元素金属等の金属のハロゲン化物、酸化物、フッ素化された酸化物などが挙げられる。これらの脱フッ化水素触媒は、金属元素と脱離するフッ素原子との親和性が高いことから、脱フッ化水素反応を促進させる効果を有するものと考えられる。
 遷移金属としては、例えば、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、ニオブ、モリブデン、タンタル、ジルコニア等が挙げられる。14族元素金属としては、例えば、スズ、鉛等が挙げられる。15族元素金属としては、例えば、アンチモン、ビスマス等が挙げられる。また、ハロゲン化物としては、例えば、フッ化物、塩化物等が挙げられる。
 上記した金属のハロゲン化物の具体例としては、例えば、塩化チタン(IV)、フッ化クロム(III)、塩化クロム(III)、塩化鉄(III)、塩化ニオブ(V)、塩化モリブデン(V)、塩化タンタル(V)、フッ化アルミニウム、塩化スズ(IV)、フッ化アンチモン(V)、塩化アンチモン(V)、塩化アンチモン(III)等が挙げられる。上記した金属の酸化物の具体例としては、例えば、酸化クロム(III)、酸化アルミニウム等が挙げられる。上記したフッ素化された金属酸化物としては、フッ素化された酸化クロム(III)、フッ素化された酸化アルミニウム等が挙げられる。
 上記で例示した脱フッ化水素触媒の中でも、特に、酸化クロム(III)、酸化アルミニウム、フッ素化された酸化クロム(III)、及びフッ素化された酸化アルミニウムが好ましい。酸化クロム(III)及びフッ素化された酸化クロム(III)は、結晶質酸化クロム、アモルファス酸化クロム等を用いることができる。
 脱フッ化水素触媒は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 脱塩化水素触媒としては、例えば、アルカリ金属、アルカリ土類金属、2価以下の遷移金属等の金属のハロゲン化物、酸化物、フッ素化された酸化物、活性炭などが挙げられる。
 アルカリ金属としては、例えば、リチウム、ナトリウム、カリウム、セシウムなどが挙げられる。アルカリ土類金属としては、例えば、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。2価以下の遷移金属としては、例えば、コバルト、ニッケル(II)、銅(II)、亜鉛(II)、銀等が挙げられる。また、ハロゲン化物としては、例えば、フッ化物、塩化物等が挙げられる。
 上記した金属のハロゲン化物の具体例としては、例えば、フッ化マグネシウム、塩化マグネシウム、フッ化ニッケル(II)、塩化ニッケル(II)、フッ化亜鉛(II)、塩化亜鉛(II)、フッ化銅(II)、塩化銅(II)等が挙げられる。上述した金属の酸化物の具体例としては、例えば、酸化マグネシウム、酸化ニッケル(II)、酸化亜鉛(II)、酸化銅(II)等が挙げられる。上記したフッ素化された金属酸化物としては、例えば、フッ素化された酸化亜鉛(II)、フッ素化された酸化マグネシウム、フッ素化された酸化ニッケル(II)等が挙げられる。
 上記で例示した脱塩化水素触媒の中でも、特に、フッ化マグネシウム、酸化亜鉛(II)、酸化ニッケル(II)、及び活性炭が好ましい。
 脱塩化水素触媒は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 上記した脱フッ化水素触媒及び脱塩化水素触媒は、組み合わせて用いることもできる。特に、原料として、脱フッ化水素反応により1-クロロ-1,2-ジフルオロエチレンを生成するクロロフルオロエタン(例えば、1-クロロ-1,2,2-トリフルオロエタン、1-クロロ-1,1,2-トリフルオロエタン等)と、脱塩化水素反応により1-クロロ-1,2-ジフルオロエチレンを生成するクロロフルオロエタン(例えば、1,1-ジクロロ-1,2-ジフルオロエタン等)とを組み合わせて用いる場合には、脱フッ化水素触媒及び脱塩化水素触媒を組み合わせて用いることが好ましい。
 上記した脱ハロゲン化水素触媒は、担体に担持して使用することもできる。担体としては特に限定的ではなく、脱ハロゲン化水素触媒に使用できる公知の担体を用いることができる。担体としては、例えば、ゼオライト等の多孔質アルミナシリケート、酸化アルミニウム、酸化ケイ素、活性炭、酸化チタン、酸化ジルコニア、酸化亜鉛、フッ化アルミニウム等が挙げられる。担体は、1種単独で用いてもよいし、2種以上を組み合わせて複合化して用いてもよい。脱ハロゲン化水素触媒と担体との組合せ(脱ハロゲン化水素触媒/担体)の例としては、酸化クロム(III)/酸化アルミニウム、酸化クロム(III)/フッ化アルミニウム、酸化クロム(III)/活性炭などが挙げられる。また、2種の脱ハロゲン化水素触媒と担体との組合せ(脱ハロゲン化水素触媒・脱ハロゲン化水素触媒/担体)の例としては、塩化コバルト(II)・酸化クロム(III)/酸化アルミニウム、塩化ニッケル(II)・酸化クロム(III)/酸化アルミニウムなどが挙げられる。
 脱ハロゲン化水素工程は、反応器中で行うことが好ましい。反応器としては特に限定的ではなく、例えば、断熱反応器、熱媒体を用いて加熱した多管型反応器等の流通型反応器を用いることができる。また、反応器としては、脱ハロゲン化水素工程により発生するフッ化水素又は塩化水素の有する腐食作用に抵抗性を有する材料によって構成されているものを用いることが好ましい。
 また、脱ハロゲン化水素工程において触媒を用いる場合、触媒を反応器内に存在させる方法としては特に限定的ではなく、原料が触媒と十分に接触し得るように存在させればよい。例えば、反応器内に触媒を充填する方法などが挙げられる。
 脱ハロゲン化水素工程において触媒を用いる場合、上記一般式(1)で表されるクロロフルオロエタンと、触媒とを接触させる。上記一般式(1)で表されるクロロフルオロエタンと、触媒とを接触させる方法としては特に限定的ではなく、例えば、気相において、上記一般式(1)で表されるクロロフルオロエタンを反応器に供給することによって上記一般式(1)で表されるクロロフルオロエタンと触媒とを接触させることができる。
 上記一般式(1)で表されるクロロフルオロエタンは、そのまま反応器に供給してもよいし、反応性を制御する等の理由により希釈を行うことが必要である場合には、原料、触媒等に対して不活性なガスと共に反応器に供給することもできる。当該不活性ガスとしては、例えば、窒素、ヘリウム、アルゴン等が挙げられる。
 上記一般式(1)で表されるクロロフルオロエタンと不活性ガスとを共に反応器に供給する場合、不活性ガスの濃度は特に限定的ではなく、例えば、反応器に供給される気体成分の合計量を基準として、不活性ガスの濃度が10~99モル%とすることができる。
 また、脱ハロゲン化水素工程において触媒を用いる場合、長時間触媒活性を維持するために、反応器に酸素を供給することもできる。反応器に導入する酸素としては、酸素単体のガスであってもよいし、酸素を含む空気であってもよい。酸素の供給量は、反応器に供給される気体成分の合計量を基準として、例えば、0.1~50モル%程度、好ましくは、1~20モル%とすることができる。
 さらに、脱ハロゲン化水素工程において触媒を用いる場合、脱ハロゲン化水素触媒の触媒活性を向上させること等を目的として、反応器に無水フッ化水素を供給することもできる。無水フッ化水素の供給量は、反応器に供給される一般式(1)で表されるクロロフルオロエタン1モルに対して、1~100モル程度とすることができる。
 脱ハロゲン化水素工程において、反応温度は上記一般式(1)で表されるクロロフルオロエタンから1-クロロ-1,2-ジフルオロエチレンが生成する反応が起こり得る温度であれば特に限定的ではない。具体的な反応温度としては、例えば200~550℃程度、好ましくは250~450℃程度、より好ましくは300~450℃程度とすることができる。かかる範囲内に設定することにより、原料の転化率を良好に維持するとともに、不純物の副生、触媒の変質による触媒活性の低下等を抑制し易い。なお、反応温度が高い方がトランス-1-クロロ-1,2-ジフルオロエチレンが生成する傾向にあるため、トランス体の選択率を上げたい場合には反応温度を300℃以上とすることが好ましい。
 脱ハロゲン化水素工程における反応時間は特に限定的ではなく、触媒の非存在下で行う場合には、反応器に供給されるガスの全流量F(0℃、0.1MPaでの流量:cc/sec)に対する加熱された反応器の体積V(cc)の比率(V/F)で表される滞留時間を1~500sec程度とすることが好ましく、30~300secとすることがより好ましい。また、触媒の存在下で行う場合には、反応器に供給されるガスの全流量F(0℃、0.1MPaでの流量:cc/sec)に対する触媒の充填量W(g)の比率(W/F)で表される接触時間を1~500g・sec/cc程度とすることが好ましく、30~300g・sec/cc程度とすることがより好ましい。なお、反応器に供給されるガスの全流量とは、上記一般式(1)で表されるクロロフルオロエタンの流量に、不活性ガス、酸素、無水フッ化水素等を用いる場合にはこれらの流量を加えた量である。
 脱ハロゲン化水素工程における圧力としては特に限定的ではなく、大気圧、3MPaGまでの加圧、-0.1MPaGまでの減圧とすることができ、中でも大気圧、又は-0.1MPaGまでの減圧とすることが好ましい。
 脱ハロゲン化水素工程を、例えば、気相で行った場合、反応後のガスには、脱ハロゲン化水素反応により生成した目的物(1-クロロ-1,2-ジフルオロエチレン)の他、ハロゲン化水素、副生成物、さらには、反応条件によっては原料化合物(一般式(1)で表される化合物)が含まれている。なお、副生成物は、脱ハロゲン化水素工程に供する原料化合物(一般式(1)で表される化合物)に応じて異なり、例えば、1-クロロ-1,2,2-トリフルオロエタンを用いた場合には、式:CHCl=CFで表されるクロロ-2,2-ジフルオロエチレン(HCFO-1122)、式:CHF=CFで表されるトリフルオロエチレン(HFO-1123)が副生成物として生成され、1-クロロ-1,1,2-トリフルオロエタンを用いた場合には、式:CHF=CFで表されるトリフルオロエチレン(HFO-1123)が副生成物として生成され、1,2-ジクロロ-1,2-ジフルオロエタンを用いた場合には、式:CFCl=CHClで表される1,2-ジクロロ-1-フルオロエチレン(HCFO-1121)が副生成物として生成され、1,1-ジクロロ-1,2-ジフルオロエタンを用いた場合には、CCl=CHFで表される1,1-ジクロロ-2-フルオロエチレン(HCFO-1121a)が副生成物として生成される。
 本発明の第1方法は、脱ハロゲン化水素工程の後、必要に応じて、反応後のガスに含まれるハロゲン化水素を分離する工程を含むことができる。ハロゲン化水素を分離する方法としては特に限定的ではなく、公知の方法を採用することができる。ハロゲン化水素がフッ化水素である場合には、例えば、蒸留、分液等によって、フッ化水素と目的物を含む有機化合物とを分離することができる。ハロゲン化水素が塩化水素である場合には、例えば、反応後のガスを圧縮して加圧下で蒸留することによって、塩化水素と目的物を含む有機化合物とを分離することができる。また、脱塩化水素工程を加圧下で行い、そのまま加圧下で蒸留することによっても塩化水素と目的物を含む有機化合物とを分離することができる。さらに、例えば、ハロゲン化水素を水洗により除去することもできるし、水洗と蒸留とを適宜組み合わせることもできる。
 本発明の第1方法は、脱ハロゲン化水素工程の後、必要に応じて、反応後のガスに含まれる目的物(1-クロロ-1,2-ジフルオロエチレン)と、副生成物、及び反応条件によって含まれ得る原料化合物(一般式(1)で表される化合物)とを分離する工程を含むことができる。目的物と、副生成物及び原料化合物とを分離する方法としては特に限定的ではなく、公知の方法を採用することができる。例えば、蒸留、分液、吸着などの方法が挙げられる。また、目的物と、副生成物、及び場合によっては含まれ得る原料化合物との沸点が近く、蒸留による分離が困難である場合には、目的物又は副生成物と共沸し得る任意の成分を添加して当該成分との共沸により蒸留して分離することも可能である。なお、分離した原料化合物は、再び脱ハロゲン化水素工程に供することができる(即ち、リサイクルすることができる)。
 また、本発明の第1方法は、脱ハロゲン化水素工程の後、必要に応じて、生成した1-クロロ-1,2-ジフルオロエチレンのシス体及びトランス体の混合物をトランス-1-クロロ-1,2-ジフルオロエチレンとシス-1-クロロ-1,2-ジフルオロエチレンとに分離する工程を含むことができる。シス体とトランス体とを分離する方法としては特に限定的ではなく、公知の方法を採用することができる。例えば、上記で例示した目的物と、副生成物及び原料化合物とを分離する方法と同様の方法を採用することができる。分離されたシス体及びトランス体は、いずれか一方を使用することもできるし、シス体及びトランス体の両方をそれぞれ別の用途に使用することもできる。
 なお、上記した、反応後のガスに含まれるハロゲン化水素を分離する工程、目的物と副生成物及び原料化合物とを分離する工程、並びにシス体とトランス体とを分離する工程のうち2工程以上を含む場合、各工程の順序は特に限定されず、任意の順序で行うことができる。
 第2の発明
 本発明は、クロロトリフルオロエチレン(CFCl=CF;CTFE)及び/又は1,1,2-トリクロロ-1,2,2-トリフルオロエタン(CFCl-CFCl;CFC-113)を原料として、1-クロロ-1,2-ジフルオロエチレン(CFCl=CHF;HCFO-1122a)を製造する方法をも包含する。なお、本明細書において、当該方法を「本発明の第2方法」と記載する場合がある。
 本発明の第2方法は、クロロトリフルオロエチレン及び/又は1,1,2-トリクロロ-1,2,2-トリフルオロエタンを還元することにより、
一般式(2):CFClX-CHFX
[一般式(2)中、X及びXは互いに異なってH又はFを示す。]
で表されるクロロトリフルオロエタンを生成する工程を含む。なお、本明細書において、一般式(2)で表されるクロロトリフルオロエタンを単に「クロロトリフルオロエタン」と記載する場合がある。また、本明細書において上記の工程を「第1工程」と記載する場合がある。
 さらに、本発明の第2方法は、前記第1工程により得られたクロロトリフルオロエタンを脱フッ化水素する工程を含む。なお、本明細書において、当該工程を「第2工程」と記載する場合がある。
 第1工程では、クロロトリフルオロエチレン及び/又は1,1,2-トリクロロ-1,2,2-トリフルオロエタンを還元することにより、一般式(2)で表されるクロロトリフルオロエタンが生成される。
 第1工程では、原料化合物として、クロロトリフルオロエチレン及び/又は1,1,2-トリクロロ-1,2,2-トリフルオロエタンを用いる。原料化合物として、クロロトリフルオロエチレン又は1,1,2-トリクロロ-1,2,2-トリフルオロエタンの1種のみを用いてもよいし、これら2種を混合して用いてもよい。2種を混合して用いる場合の各化合物の混合割合は特に限定的ではなく、適宜設定することができる。
 上記一般式(2)で表されるクロロトリフルオロエタンは、具体的には、式:CHFCl-CHFで表される1-クロロ-1,2,2-トリフルオロエタン(HCFC-133)、又は式:CFCl-CHFで表される1-クロロ-1,1,2-トリフルオロエタン(HCFC-133b)である。
 例えば、第1工程において、クロロトリフルオロエチレンを原料化合物として用い、還元剤として水素を用いた場合には、下記の反応式(1)で示される還元反応が進行する。
 CF2=CFCl + H(水素化触媒) → CHF2-CHFCl(1)
 また、第1工程において、1,1,2-トリクロロ-1,2,2-トリフルオロエタンを用い、還元剤として水素を用いた場合には、下記の反応式(2)で示される還元反応が進行する。
 CF2ClCFCl2 + H2 (水素化触媒) → CHF2-CFCl2 + CF2Cl-CH2F + HCl(2)
 第1工程は、液相又は気相で行うことができ、中でも気相で行うことが好ましい。
 第1工程では、還元剤を用いることが好ましい。還元剤としては、公知のものを用いることができ、例えば、水素、水素化ホウ素ナトリウム、ヒドラジンなどが挙げられる。また、第1工程においては、還元触媒を用いることが好ましい。還元触媒としては特に限定的ではなく公知の触媒を用いることができる。例えば、白金、パラジウム、ロジウム、ルテニウムなどの貴金属触媒、及びニッケル、ジルコニウムなどの金属触媒のいずれも使用可能であり、中でも貴金属触媒が好ましい。また、安定した触媒活性を発揮させること等を目的として、予め還元触媒に水素で還元処理を施しておくことが好ましい。
 また、還元触媒は、担体に担持して使用することもできる。担体としては特に限定的ではなく、公知の担体を用いることができる。担体としては、例えば、アルミナ、活性炭、ゼオライト等が挙げられる。還元触媒を担体に担持させる方法は特に限定的ではなく公知の方法を採用することができる。例えば、従来の貴金属触媒の調製法を採用することができる。担体に担持した還元触媒としては、例えば、活性炭担持パラジウム触媒が好ましいものとして挙げられる。
 第1工程における原料化合物と還元剤との割合は使用する原料及び生成される目的物の種類等に応じて適宜決定することができる。例えば、原料化合物として1,1,2-トリクロロ-1,2,2-トリフルオロエタンを用い、還元剤として水素を用いる場合、1-クロロ-1,2,2-トリフルオロエタン及び/又は1-クロロ-1,1,2-トリフルオロエタンを得るためには、通常、化学量論量として2倍モルの水素(H)を使用して1,1,2-トリクロロ-1,2,2-トリフルオロエタンにおける2つの塩素原子を還元除去する。完全に反応を完結させるためには、原料化合物の全モル数に対して化学量論量より多い量、例えば、5倍モルを超える過剰の水素を使用することが必要であるが、化学量論量より多すぎる水素を用いる場合、必要以上の塩素原子又はフッ素原子が還元除去された副生成物が増加するため好ましくない。よって、2倍モル以上5倍モル以下の範囲で水素の使用量を設定することが好ましい。
 一方、原料化合物の全モル数に対して化学量論量より少ない量、例えば、2倍モル未満の水素を使用してもよい。例えば、1倍モル以上2倍モル未満である。この場合、原料化合物、塩素が1つだけ還元除去された中間物(例えば、2,2-ジクロロ-1,1,1-トリフルオロエタン(CHCl-CF;HCFC-123))などが残存するが、これらは常法に従って回収して第1工程に供給することができる。
 また、原料化合物としてクロロトリフルオロエチレンを用い、還元剤として水素を用いる場合、1-クロロ-1,2,2-トリフルオロエタンを得るためには、通常、化学量論量として1モルの水素を使用する。完全に反応を完結させるために、若干過剰量、例えば、1倍超~2倍モルの水素を使用することが好ましい。なお、反応熱の発生を制御するため、水素の使用量を化学量論量以下にすることもできる。この場合、残存した原料化合物は回収して第1工程に供給することができる。
 第1工程を気相で行う場合、反応温度は、原料化合物から一般式(2)で表されるクロロトリフルオロエタンが生成する反応が起こり得る温度であれば特に限定的ではなく、適宜設定することができる。例えば、第1工程を気相で行う場合、通常70~350℃程度とすることができ、80~200℃程度とすることが好ましい。また、原料化合物としてクロロトリフルオロエチレンを用いる場合には、原料化合物として1,1,2-トリクロロ-1,2,2-トリフルオロエタンを用いる場合よりも、低い温度とすることが好ましい。
 第1工程における反応時間は特に限定的ではなく、例えば、第1工程を気相で行う場合、反応系に供給される原料ガスの全量F(0℃、1atmでの流量:cc/sec)に対する触媒の充填量W(g)の比率(W/F)で表される接触時間を0.1~30g・sec/cc程度とすることができ、1~20g・sec/cc程度とすることが好ましい。接触時間が短すぎると原料を十分に転化させることができず、また、接触時間が長すぎると還元が進み過ぎた化合物の副生、C1化合物への分解反応等が起こるため、上記した数値範囲内とすることが好ましい。
 また、第1工程を液相で行う場合、溶媒を用いることができる。溶媒としては、水、エタノール、イソプロピルアルコール等のアルコール類、酢酸、酢酸エチル、ジグライム等のグライム類、ピリジン等が挙げられる。また、無溶媒で行うこともできる。第1工程を液相反応により行う場合の反応温度は、0~150℃程度とすることが好ましく、また、反応圧力は常圧~5MPa程度とすることが好ましい。
 第1工程を、例えば、気相で行った場合、反応後のガスには、還元反応により生成した目的物(一般式(2)で表されるクロロトリフルオロエタン)の他、塩化水素、副生成物、さらには、反応条件によっては水素、原料化合物(クロロトリフルオロエチレン及び/又は1,1,2-トリクロロ-1,2,2-トリフルオロエタン)などが含まれている。なお、副生成物は、第1工程に供する原料化合物に応じて異なり、例えば、1,1,2-トリクロロ-1,2,2-トリフルオロエタンを用いた場合には、式:CHCl-CFで表される2,2-ジクロロ-1,1,1-トリフルオロエタン(HCFC-123)等が副生成物として生成され得る。また、クロロトリフルオロエチレンを用いた場合には、式:CHF-CHFで表される1,1,2-トリフルオロエタン(HFC-143)等が副生成物として生成され得る。
 本発明の第2方法は、第1工程の後、必要に応じて、反応後のガスに含まれる塩化水素を分離する工程を含むことができる。塩化水素を分離する方法としては特に限定的ではなく、公知の方法を採用することができる。例えば、反応後のガスを圧縮して加圧下で蒸留することによって、塩化水素と目的物を含む有機化合物とを分離することができる。また、第1工程を加圧下で行い、そのまま加圧下で蒸留することによっても塩化水素と目的物を含む有機化合物とを分離することができる。さらに、例えば、塩化化水素を水洗により除去することもできるし、水洗と蒸留とを適宜組み合わせることもできる。
 第2工程では、上記した第1工程により得られた一般式(2)で表されるクロロトリフルオロエタンを脱フッ化水素することにより、1-クロロ-1,2-ジフルオロエチレンを得ることができる。なお、第2工程は、気相で行うことが好ましい。
 第2工程では、一般式(2)で表されるクロロトリフルオロエタンとして上記した化合物のうち1種のみを用いることもできるし、2種を混合して用いることもできる。2種を混合して用いる場合の各化合物の混合割合は特に限定的ではなく、適宜設定することができる。
 なお、第2工程は、上記した本発明の第1発明における脱ハロゲン化水素工程に相当する。より詳細には、上記した本発明の第1発明における原料である一般式(1)で表されるクロロフルオロエタンにおいて、一般式(1)におけるXがH、XがFである化合物、及び一般式(1)におけるXがF、XがHである化合物が一般式(2)で表されるクロロトリフルオロエタンに相当する。
 第2工程は、触媒の存在下又は非存在下で行うことができる。第2工程を触媒の存在下で行う場合には、1-クロロ-1,2-ジフルオロエチレンの選択率及び収率を向上させることができるため、好ましい。
 第2工程を触媒の存在下で行う場合、用いる触媒としては特に限定的ではなく、脱フッ化水素反応に対して触媒活性を有する公知の触媒を用いることができる。このような触媒としては脱フッ化水素触媒が挙げられる。
 脱フッ化水素触媒としては、例えば、遷移金属、アルミニウム、14族元素金属、15族元素金属等の金属のハロゲン化物、酸化物、フッ素化された酸化物などが挙げられる。これらの脱フッ化水素触媒は、金属元素と脱離するフッ素原子との親和性が高いことから、脱フッ化水素反応を促進させる効果を有するものと考えられる。
 遷移金属としては、例えば、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、ニオブ、モリブデン、タンタル、ジルコニア等が挙げられる。14族元素金属としては、例えば、スズ、鉛等が挙げられる。15族元素金属としては、例えば、ヒ素、アンチモン、ビスマス等が挙げられる。また、ハロゲン化物としては、例えば、フッ化物、塩化物等が挙げられる。
 上記した金属のハロゲン化物の具体例としては、例えば、塩化チタン(IV)、フッ化クロム(III)、塩化クロム(III)、塩化鉄(III)、塩化ニオブ(V)、塩化モリブデン(V)、塩化タンタル(V)、フッ化アルミニウム、塩化スズ(IV)、フッ化アンチモン(V)、塩化アンチモン(V)、塩化アンチモン(III)等が挙げられる。上記した金属の酸化物の具体例としては、例えば、酸化クロム(III)、酸化アルミニウム等が挙げられる。上記したフッ素化された金属酸化物としては、フッ素化された酸化クロム(III)、フッ素化された酸化アルミニウム等が挙げられる。
 上記で例示した脱フッ化水素触媒の中でも、特に、酸化クロム(III)、酸化アルミニウム、フッ素化された酸化クロム(III)、及びフッ素化された酸化アルミニウムが好ましい。酸化クロム(III)及びフッ素化された酸化クロム(III)は、結晶質酸化クロム、アモルファス酸化クロム等を用いることができる。
 脱フッ化水素触媒は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 脱フッ化水素触媒は、担体に担持して使用することもできる。担体としては特に限定的ではなく、脱フッ化水素触媒に使用できる公知の担体を用いることができる。担体としては、例えば、ゼオライト等の多孔質アルミナシリケート、酸化アルミニウム、酸化ケイ素、活性炭、酸化チタン、酸化ジルコニア、酸化亜鉛、フッ化アルミニウム等が挙げられる。担体は、1種単独で用いてもよいし、2種以上を組み合わせて複合化して用いてもよい。脱フッ化水素触媒と担体との組合せ(脱フッ化水素触媒/担体)の例としては、酸化クロム(III)/酸化アルミニウム、酸化クロム(III)/フッ化アルミニウム、酸化クロム(III)/活性炭等が挙げられる。また、2種の脱フッ化水素触媒と担体との組合せ(脱フッ化水素触媒・脱フッ化水素触媒/担体)の例としては、塩化コバルト(II)・酸化クロム(III)/酸化アルミニウム、塩化ニッケル(II)・酸化クロム(III)/酸化アルミニウムなどが挙げられる。
 第2工程は、反応器中で行うことが好ましい。反応器としては特に限定的ではなく、例えば、断熱反応器、熱媒体を用いて加熱した多管型反応器等の流通型反応器を用いることができる。また、反応器としては、脱フッ化水素反応により発生するフッ化水素の有する腐食作用に抵抗性を有する材料によって構成されているものを用いることが好ましい。
 また、第2工程において触媒を用いる場合、触媒を反応器内に存在させる方法としては特に限定的ではなく、原料が触媒と十分に接触し得るように存在させればよい。例えば、反応器内に触媒を充填する方法などが挙げられる。
 第2工程において触媒を用いる場合、上記一般式(2)で表されるクロロトリフルオロエタンと、触媒とを接触させる。上記一般式(2)で表されるクロロトリフルオロエタンと、触媒とを接触させる方法としては特に限定的ではなく、例えば、気相において、上記一般式(2)で表されるクロロトリフルオロエタンを反応器に供給することによって上記一般式(2)で表されるクロロトリフルオロエタンと触媒とを接触させることができる。
 上記一般式(2)で表されるクロロトリフルオロエタンは、そのまま反応器に供給してもよいし、反応性を制御する等の理由により希釈を行うことが必要である場合には、原料、触媒等に対して不活性なガスと共に反応器に供給することもできる。当該不活性ガスとしては、例えば、窒素、ヘリウム、アルゴン等が挙げられる。
 上記一般式(2)で表されるクロロトリフルオロエタンと不活性ガスとを共に反応器に供給する場合、不活性ガスの濃度は特に限定的ではなく、例えば、反応器に供給される気体成分の合計量を基準として、不活性ガスの濃度が10~99モル%とすることができる。
 また、第2工程において触媒を用いる場合、長時間触媒活性を維持するために、反応器に酸素を供給することもできる。反応器に導入する酸素としては、酸素単体のガスであってもよいし、酸素を含む空気であってもよい。酸素の供給量は、反応器に供給される気体成分の合計量を基準として、例えば、0.1~50モル%程度、好ましくは、1~20モル%とすることができる。
 さらに、第2工程において触媒を用いる場合、脱フッ化水素触媒の触媒活性を向上させること等を目的として、反応器に無水フッ化水素を供給することもできる。無水フッ化水素の供給量は、反応器に供給される一般式(1)で表されるクロロフルオロエタン1モルに対して、1~100モル程度とすることができる。
 第2工程において、反応温度は上記一般式(2)で表されるクロロトリフルオエロエタンから1-クロロ-1,2-ジフルオロエチレンが生成する反応が起こり得る温度であれば特に限定的ではない。具体的な反応温度としては、例えば200~550℃程度、好ましくは250~450℃程度、より好ましくは300~450℃程度とすることができる。かかる範囲内に設定することにより、原料の転化率を良好に維持するとともに、不純物の副生、触媒の変質による触媒活性の低下等を抑制し易い。なお、反応温度が高い方がトランス-1-クロロ-1,2-ジフルオロエチレンが生成する傾向にあるため、トランス体の選択率を上げたい場合には反応温度を300℃以上とすることが好ましい。
 第2工程における反応時間は特に限定的ではなく、触媒の非存在下で行う場合には、反応器に供給されるガスの全流量F(0℃、0.1MPaでの流量:cc/sec)に対する加熱された反応器の体積V(cc)の比率(V/F)で表される滞留時間を1~500sec程度とすることが好ましく、30~300secとすることがより好ましい。また、触媒の存在下で行う場合には、反応器に供給されるガスの全流量F(0℃、0.1MPaでの流量:cc/sec)に対する触媒の充填量W(g)の比率(W/F)で表される接触時間を1~500g・sec/cc程度とすることが好ましく、30~300g・sec/cc程度とすることがより好ましい。なお、反応器に供給されるガスの全流量とは、上記一般式(2)で表されるクロロトリフルオロエタンの流量に、不活性ガス、酸素、無水フッ化水素等を用いる場合にはこれらの流量を加えた量である。
 第2工程における圧力としては特に限定的ではなく、大気圧、3MPaGまでの加圧、-0.1MPaGまでの減圧とすることができ、中でも大気圧、又は-0.1MPaGまでの減圧とすることが好ましい。
 第2工程を、例えば、気相で行った場合、反応後のガスには、脱フッ化水素反応により生成した目的物(1-クロロ-1,2-ジフルオロエチレン)の他、フッ化水素、副生成物、さらには、反応条件によっては原料化合物(一般式(2)で表される化合物)が含まれている。なお、副生成物は、第2工程に供する原料化合物(一般式(2)で表される化合物)に応じて異なり、例えば、1-クロロ-1,2,2-トリフルオロエタンを用いた場合には、式:CHCl=CFで表されるクロロ-2,2-ジフルオロエチレン(HCFO-1122)、及び式:CHF=CFで表されるトリフルオロエチレン(HFO-1123)が副生成物として生成され、1-クロロ-1,1,2-トリフルオロエタンを用いた場合には、式:CHF=CFで表されるトリフルオロエチレン(HFO-1123)が副生成物として生成される。
 本発明の第2方法は、第2工程の後、必要に応じて、反応後のガスに含まれるフッ化水素を分離する工程を含むことができる。フッ化水素を分離する方法としては特に限定的ではなく、公知の方法を採用することができる。例えば、蒸留、分液等によって、フッ化水素と目的物を含む有機化合物とを分離することができる。さらに、例えば、フッ化水素を水洗により除去することもできるし、水洗と蒸留とを適宜組み合わせることもできる。
 本発明の第2方法は、第2工程の後、必要に応じて、反応後のガスに含まれる目的物(1-クロロ-1,2-ジフルオロエチレン)と、副生成物、及び反応条件によって含まれ得る原料化合物(一般式(2)で表される化合物)とを分離する工程を含むことができる。目的物と、副生成物及び原料化合物とを分離する方法としては特に限定的ではなく、公知の方法を採用することができる。例えば、蒸留、分液、吸着などの方法が挙げられる。また、目的物と、副生成物、及び場合によっては含まれ得る原料化合物との沸点が近く、蒸留による分離が困難である場合には、目的物又は副生成物と共沸し得る任意の成分を添加して当該成分との共沸により蒸留して分離することも可能である。なお、分離した原料化合物は、再び脱フッ化水素工程に供することができる(即ち、リサイクルすることができる)。
 また、本発明の第2方法は、脱フッ化水素工程の後、必要に応じて、生成した1-クロロ-1,2-ジフルオロエチレンのシス体及びトランス体の混合物をトランス-1-クロロ-1,2-ジフルオロエチレンとシス-1-クロロ-1,2-ジフルオロエチレンとに分離する工程を含むことができる。シス体とトランス体とを分離する方法としては特に限定的ではなく、公知の方法を採用することができる。例えば、上記で例示した目的物と、副生成物及び原料化合物とを分離する方法と同様の方法を採用することができる。分離されたシス体及びトランス体は、いずれか一方を使用することもできるし、シス体及びトランス体の両方をそれぞれ別の用途に使用することもできる。
 なお、上記した、反応後のガスに含まれるフッ化水素を分離する工程、目的物と副生成物及び原料化合物とを分離する工程、並びにシス体とトランス体とを分離する工程のうち2工程以上を含む場合、各工程の順序は特に限定されず、任意の順序で行うことができる。
 また、第1工程と第2工程とは気相反応で連続して行うことができる。例えば、第1工程の生成物を貯蔵しておく設備などが不要になる点、第1工程で使用した熱エネルギーを第2工程で利用することで、使用する熱エネルギーを節約できる点など、様々な利点がある。
 以下に実施例を示して本発明を具体的に説明する。但し、本発明は実施例の内容に限定されない。
 実施例1
 活性炭担持パラジウム触媒20.0g(担持量0.5質量%)を、内径15mm、長さ1mの管状ハステロイ製反応器に充填した。この反応器を大気圧(0.1MPa)及び150℃に維持し、水素ガスを60cc/min(0℃、0.1MPaでの流量、以下同じ)の流速、クロロトリフルオロエチレン(CTFE)ガスを60cc/minの流速、及び窒素ガスを480cc/minの流速で該反応器に供給して2時間維持した。反応器出口ガスをガスクロマトグラフ(GC)で分析したところ、CTFE転化率64%、CHFCHFCl:62%、CHFCHF:25%、CHFCHF:5%、その他:8%の選択率でCHFCHFClが得られた。
 実施例2
 酸化アルミニウムであるγ-アルミナ触媒20.0g(比表面積400m/g)を、内径15mm、長さ1mの管状ハステロイ製反応器に充填した。この反応器を大気圧(0.1MPa)及び350℃に維持し、CHFCHFClガスを4cc/minの流速、及び窒素ガスを20cc/minの流速で該反応器に供給して2時間維持した。反応器出口ガスをGCで分析したところ、CHFCHFCl転化率82%、CHF=CFCl:80%、CHF=CHF:11%、その他:9%の選択率でCHF=CFClが得られた。
 実施例3
 フッ化マグネシウム触媒20.0g(比表面積15m/g)を、内径15mm、長さ1mの管状ハステロイ製反応器に充填した。この反応器を大気圧(0.1MPa)及び450℃に維持し、CHFClCHFClガスを4cc/minの流速、及び窒素ガスを20cc/minの流速で該反応器に供給して2時間維持した。反応器出口ガスをGCで分析したところ、CHFClCHFCl転化率56%、CHF=CFCl:82%、CHF=CHF:12%、その他:6%の選択率でCHF=CFClが得られた。

Claims (8)

  1.  1-クロロ-1,2-ジフルオロエチレンの製造方法であって、
     一般式(1):CFClX-CHFX
    [一般式(1)中、X及びXは互いに異なってH、F、又はClを示し、X及びXのいずれか一方がHである。]
    で表されるクロロフルオロエタンを脱ハロゲン化水素する工程
    を含む、方法。
  2.  前記脱ハロゲン化水素工程が気相で行われる、請求項1に記載の方法。
  3.  前記クロロフルオロエタンが、1-クロロ-1,2,2-トリフルオロエタン、1-クロロ-1,1,2-トリフルオロエタン、1,2-ジクロロ-1,2-ジフルオロエタン、及び1,1-ジクロロ-1,2-ジフルオロエタンからなる群から選択される少なくとも1種である、請求項1又は2に記載の方法。
  4.  前記脱ハロゲン化水素工程が触媒の存在下で行われる、請求項1~3のいずれかに記載の方法。
  5.  前記脱ハロゲン化水素工程が触媒の非存在下で行われる、請求項1~3のいずれかに記載の方法。
  6.  前記脱ハロゲン化水素工程が200~550℃の温度で行われる、請求項1~5のいずれかに記載の方法。
  7.  前記クロロフルオロエタンが、1-クロロ-1,2,2-トリフルオロエタン及び/又は1-クロロ-1,1,2-トリフルオロエタンであり、かつ
     前記脱ハロゲン化水素工程が、脱フッ化水素工程である、
    請求項1~6のいずれかに記載の方法。
  8.  1-クロロ-1,2-ジフルオロエチレンの製造方法であって、
     クロロトリフルオロエチレン及び/又は1,1,2-トリクロロ-1,2,2-トリフルオロエタンを還元することにより、
     一般式(2):CFClX-CHFX
    [一般式(2)中、X及びXは互いに異なってH又はFを示す。]
    で表されるクロロトリフルオロエタンを生成する工程、及び
     前記工程により得られたクロロトリフルオロエタンを脱フッ化水素する工程
    を含む、方法。
PCT/JP2017/025319 2016-07-11 2017-07-11 1-クロロ-1,2-ジフルオロエチレンの製造方法 WO2018012511A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES17827638T ES2959807T3 (es) 2016-07-11 2017-07-11 Método para producir 1-cloro-1,2-difluoroetileno
US16/314,915 US10611710B2 (en) 2016-07-11 2017-07-11 Method for producing 1-chloro-1,2-difluoroethylene
EP17827638.2A EP3483137B1 (en) 2016-07-11 2017-07-11 Method for producing 1-chloro-1,2-difluoroethylene
JP2018527617A JP6763431B2 (ja) 2016-07-11 2017-07-11 1−クロロ−1,2−ジフルオロエチレンの製造方法
CN201780042459.XA CN109415282A (zh) 2016-07-11 2017-07-11 1-氯-1,2-二氟乙烯的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016136600 2016-07-11
JP2016-136600 2016-07-11

Publications (1)

Publication Number Publication Date
WO2018012511A1 true WO2018012511A1 (ja) 2018-01-18

Family

ID=60952094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025319 WO2018012511A1 (ja) 2016-07-11 2017-07-11 1-クロロ-1,2-ジフルオロエチレンの製造方法

Country Status (6)

Country Link
US (1) US10611710B2 (ja)
EP (1) EP3483137B1 (ja)
JP (2) JP6763431B2 (ja)
CN (1) CN109415282A (ja)
ES (1) ES2959807T3 (ja)
WO (1) WO2018012511A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018127403A (ja) * 2017-02-06 2018-08-16 学校法人 関西大学 1−クロロ−2,2−ジフルオロエチレンの製造方法
WO2019026515A1 (ja) * 2017-07-31 2019-02-07 ダイキン工業株式会社 1,2-ジクロロ-1,2-ジフルオロエタン(HCFC-132)の製造方法、1-クロロ-1,2-ジフルオロエチレン(HCFO-1122a)の製造方法、及びHCFC-132の分離方法
JP2020125271A (ja) * 2019-02-06 2020-08-20 学校法人 関西大学 1−クロロ−2,2−ジフルオロエチレンの製造方法
JP2020125272A (ja) * 2019-02-06 2020-08-20 学校法人 関西大学 1−クロロ−2,2−ジフルオロエチレンの製造方法
CN113166005A (zh) * 2018-11-20 2021-07-23 大金工业株式会社 1,2-二氟乙烯的制造方法
EP3901123A4 (en) * 2018-12-19 2022-10-05 Daikin Industries, Ltd. METHOD FOR THE PRODUCTION OF FLUORO-ETHANE AND METHOD FOR THE PRODUCTION OF A FLUORO-OLEFIN
EP3901124A4 (en) * 2018-12-19 2022-10-05 Daikin Industries, Ltd. PROCESS FOR PRODUCTION OF FLUOROETHANE AND PROCESS FOR PRODUCTION OF FLUOROOLEFIN
US11560345B2 (en) 2019-01-25 2023-01-24 Daikin Industries, Ltd. Fluoroethane production method and fluoroolefin production method
WO2023171273A1 (ja) * 2022-03-09 2023-09-14 株式会社クレハ ハロゲン化アルケンの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156934A (ja) * 1987-09-22 1989-06-20 Daikin Ind Ltd ハロゲン化アルカンの製造方法
JPH04288028A (ja) * 1990-11-06 1992-10-13 Elf Atochem Sa フルオロエチレン及びクロロフルオロエチレンの製造
JPH05501878A (ja) * 1989-10-10 1993-04-08 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー ハロカーボンの水素化分解
JPH08104656A (ja) * 1994-10-06 1996-04-23 Showa Denko Kk 燐酸塩触媒を用いる反応方法
WO2014178352A1 (ja) * 2013-04-30 2014-11-06 旭硝子株式会社 トリフルオロエチレンを含む組成物
JP2015120670A (ja) * 2013-12-24 2015-07-02 旭硝子株式会社 1−クロロ−1,2−ジフルオロエチレンの製造方法
WO2015125877A1 (ja) * 2014-02-20 2015-08-27 旭硝子株式会社 トリフルオロエチレンを含む流体の精製方法、およびトリフルオロエチレンの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2716109A (en) 1951-10-04 1955-08-23 Dow Chemical Co Polymeric 1-chloro-1, 2-difluoroethylene
US3557228A (en) * 1969-01-17 1971-01-19 Vulcan Materials Co Dehydrohalogenation of halogenated organic compounds in dimethyl sulfoxide solvent
US5180860A (en) * 1990-06-28 1993-01-19 E. I. Du Pont De Nemours And Company Dehydrohalogenation process
JP2014141538A (ja) 2011-05-19 2014-08-07 Asahi Glass Co Ltd 作動媒体および熱サイクルシステム
GB2528690B (en) * 2014-07-28 2017-03-01 Mexichem Amanco Holding Sa Process for preparing a (hydro)(chloro)fluoroalkene
EP3230240B1 (en) * 2014-12-11 2018-06-13 Arkema France Process for the preparation of 1-chloro-2,2-difluoroethane

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156934A (ja) * 1987-09-22 1989-06-20 Daikin Ind Ltd ハロゲン化アルカンの製造方法
JPH05501878A (ja) * 1989-10-10 1993-04-08 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー ハロカーボンの水素化分解
JPH04288028A (ja) * 1990-11-06 1992-10-13 Elf Atochem Sa フルオロエチレン及びクロロフルオロエチレンの製造
JPH08104656A (ja) * 1994-10-06 1996-04-23 Showa Denko Kk 燐酸塩触媒を用いる反応方法
WO2014178352A1 (ja) * 2013-04-30 2014-11-06 旭硝子株式会社 トリフルオロエチレンを含む組成物
JP2015120670A (ja) * 2013-12-24 2015-07-02 旭硝子株式会社 1−クロロ−1,2−ジフルオロエチレンの製造方法
WO2015125877A1 (ja) * 2014-02-20 2015-08-27 旭硝子株式会社 トリフルオロエチレンを含む流体の精製方法、およびトリフルオロエチレンの製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018127403A (ja) * 2017-02-06 2018-08-16 学校法人 関西大学 1−クロロ−2,2−ジフルオロエチレンの製造方法
WO2019026515A1 (ja) * 2017-07-31 2019-02-07 ダイキン工業株式会社 1,2-ジクロロ-1,2-ジフルオロエタン(HCFC-132)の製造方法、1-クロロ-1,2-ジフルオロエチレン(HCFO-1122a)の製造方法、及びHCFC-132の分離方法
CN113166005B (zh) * 2018-11-20 2023-12-12 大金工业株式会社 1,2-二氟乙烯的制造方法
CN113166005A (zh) * 2018-11-20 2021-07-23 大金工业株式会社 1,2-二氟乙烯的制造方法
US11691935B2 (en) 2018-12-19 2023-07-04 Daikin Industries, Ltd. Production method for fluoro-ethane and production method for fluoro-olefin
EP3901123A4 (en) * 2018-12-19 2022-10-05 Daikin Industries, Ltd. METHOD FOR THE PRODUCTION OF FLUORO-ETHANE AND METHOD FOR THE PRODUCTION OF A FLUORO-OLEFIN
EP3901124A4 (en) * 2018-12-19 2022-10-05 Daikin Industries, Ltd. PROCESS FOR PRODUCTION OF FLUOROETHANE AND PROCESS FOR PRODUCTION OF FLUOROOLEFIN
US11560345B2 (en) 2019-01-25 2023-01-24 Daikin Industries, Ltd. Fluoroethane production method and fluoroolefin production method
JP2020125272A (ja) * 2019-02-06 2020-08-20 学校法人 関西大学 1−クロロ−2,2−ジフルオロエチレンの製造方法
JP7252771B2 (ja) 2019-02-06 2023-04-05 学校法人 関西大学 1-クロロ-2,2-ジフルオロエチレンの製造方法
JP7219625B2 (ja) 2019-02-06 2023-02-08 学校法人 関西大学 1-クロロ-2,2-ジフルオロエチレンの製造方法
JP2020125271A (ja) * 2019-02-06 2020-08-20 学校法人 関西大学 1−クロロ−2,2−ジフルオロエチレンの製造方法
WO2023171273A1 (ja) * 2022-03-09 2023-09-14 株式会社クレハ ハロゲン化アルケンの製造方法

Also Published As

Publication number Publication date
JPWO2018012511A1 (ja) 2019-01-17
US10611710B2 (en) 2020-04-07
CN109415282A (zh) 2019-03-01
EP3483137A1 (en) 2019-05-15
JP6763431B2 (ja) 2020-09-30
US20190169101A1 (en) 2019-06-06
EP3483137B1 (en) 2023-08-23
EP3483137A4 (en) 2020-01-08
JP2019206600A (ja) 2019-12-05
ES2959807T3 (es) 2024-02-28

Similar Documents

Publication Publication Date Title
JP6763431B2 (ja) 1−クロロ−1,2−ジフルオロエチレンの製造方法
US10329227B2 (en) Process for the preparation of 2,3,3,3-tetrafluoropropene
JP6088618B2 (ja) ヘキサフルオロ−2−ブテンの製造方法
KR101388042B1 (ko) 통합된 HFC 트랜스-1234ze 제조 공정
JP5705962B2 (ja) ヘキサフルオロ−2−ブテンの製造方法
JP6965397B2 (ja) クロロトリフルオロエチレンの製造方法
KR20170012587A (ko) 1,1,3,3-테트라플루오로프로펜의 이성질체화
JPWO2016031778A1 (ja) ハイドロフルオロオレフィンの製造方法
JP5817591B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
JP5805812B2 (ja) 統合hfcトランス−1234ze製造方法
JP2017014160A (ja) 1,2−ジクロロ−3,3,3−トリフルオロプロペンの製造方法
WO2018079726A1 (ja) テトラフルオロプロペンの製造方法
JP6015543B2 (ja) (e)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法
US20050020863A1 (en) Method of making fluorinated propanes
WO2015166847A1 (ja) トランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法
JP2016079100A (ja) 1,1,1−トリクロロ−3,3,3−トリフルオロプロパンの製造方法
JP2016510818A (ja) フッ素化オレフィンの製造プロセス
WO2016111227A1 (ja) (e)-1-クロロ-3,3,3-トリフルオロプロペンの製造方法
WO2022014488A1 (ja) 1-クロロ-2,3,3-トリフルオロプロペンの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018527617

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017827638

Country of ref document: EP

Effective date: 20190211