WO2019189012A1 - 粉末冶金用合金鋼粉および粉末冶金用鉄基混合粉末 - Google Patents

粉末冶金用合金鋼粉および粉末冶金用鉄基混合粉末 Download PDF

Info

Publication number
WO2019189012A1
WO2019189012A1 PCT/JP2019/012562 JP2019012562W WO2019189012A1 WO 2019189012 A1 WO2019189012 A1 WO 2019189012A1 JP 2019012562 W JP2019012562 W JP 2019012562W WO 2019189012 A1 WO2019189012 A1 WO 2019189012A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
alloy steel
metallurgy
powder metallurgy
steel powder
Prior art date
Application number
PCT/JP2019/012562
Other languages
English (en)
French (fr)
Inventor
拓也 高下
菜穂 那須
小林 聡雄
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020207030247A priority Critical patent/KR102383517B1/ko
Priority to EP19774877.5A priority patent/EP3778067A1/en
Priority to CN201980020238.1A priority patent/CN111886089B/zh
Priority to JP2019531832A priority patent/JP6930590B2/ja
Priority to US16/978,767 priority patent/US20210047713A1/en
Publication of WO2019189012A1 publication Critical patent/WO2019189012A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/108Mixtures obtained by warm mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F2003/023Lubricant mixed with the metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • B22F2009/0828Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/40Carbon, graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/054Particle size between 1 and 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid

Definitions

  • the present invention relates to an alloy steel powder for powder metallurgy, and more particularly to an alloy steel powder for powder metallurgy that is excellent in compressibility and can obtain a sintered part having high strength as-sintered. Moreover, this invention relates to the iron group mixed powder for powder metallurgy containing the said alloy steel powder for powder metallurgy.
  • Powder metallurgy technology is a technique that allows parts with complex shapes to be shaped in a shape very close to the product shape (so-called near net shape molding), and is used for manufacturing various parts including automobile parts.
  • Ni is widely used because it is a hardenability improving element, is difficult to strengthen by solid solution, and has good compressibility during molding.
  • Ni is difficult to oxidize, it is not necessary to give special consideration to the heat treatment atmosphere when producing alloy steel powder, and Ni is also used because it is an easy-to-handle element.
  • Patent Document 1 proposes an alloy steel powder to which Ni, Mo, and Mn are added as alloy elements for increasing the strength.
  • Patent Document 2 it is proposed to use alloy steel powder containing alloy elements such as Cr, Mo and Cu mixed with a reduced amount of C.
  • Patent Document 3 proposes a method in which alloy steel powder containing alloy elements such as Ni, Cr, Mo, and Mn is mixed with graphite powder.
  • Ni has the disadvantages of unstable supply and large price fluctuations. Therefore, the use of Ni is not suitable for cost reduction, and the need for alloy steel powder not containing Ni is increasing.
  • the sintered body is required to have excellent strength as it is without being subjected to heat treatment.
  • alloy steel powders that satisfy all the following requirements (1) to (4) are required.
  • (1) Do not contain expensive Ni.
  • (3) Do not contain elements that easily oxidize.
  • (4) The sintered body has excellent strength “as-sintered” (in a state where no further heat treatment is applied).
  • the alloy steel powders proposed in Patent Documents 1 and 3 do not satisfy the requirement (1) because they contain Ni. Further, the alloy steel powders proposed in Patent Documents 1 to 3 contain Cr and Mn, which are easily oxidized, and do not satisfy the requirement (3).
  • Patent Document 2 the compressibility of the mixed powder at the time of molding is improved by reducing the amount of C to a specific range.
  • the method in Patent Document 2 merely improves the compressibility of the mixed powder by reducing the amount of C (graphite powder or the like) mixed with the alloy steel powder, and the alloy steel powder itself. It is not possible to improve the compressibility. Therefore, this method cannot satisfy the requirement (2).
  • the present invention has been made in view of the above circumstances, and obtains a sintered part that does not contain expensive Ni, easily oxidizable Cr, or Mn, has excellent compressibility, and has high strength as it is sintered.
  • An object of the present invention is to provide an alloy steel powder for powder metallurgy.
  • Another object of the present invention is to provide an iron-based mixed powder for powder metallurgy containing the alloy steel powder for powder metallurgy.
  • the present invention has been made to solve the above problems, and the gist of the present invention is as follows.
  • An iron-based mixed powder for powder metallurgy Alloy steel powder for powder metallurgy according to 1 or 2 above, An iron-based mixed powder for powder metallurgy comprising 0.2 to 1.2% by mass of graphite powder with respect to the entire iron-based mixed powder for powder metallurgy.
  • the alloy steel powder for powder metallurgy according to the present invention does not contain Ni which is an expensive alloy element, it can be manufactured at low cost. Moreover, since the alloy steel powder for powder metallurgy according to the present invention does not contain an easily oxidizable alloy element such as Cr or Mn, the strength of the sintered body due to the oxidation of the alloy element does not decrease. Furthermore, in addition to the effect of improving the hardenability of Mo and Cu, the effect of improving the compressibility of the alloy steel powder by setting the average diameter of the precipitated Cu to 10 nm or more has a good strength without heat treatment after sintering. A knot can be produced.
  • alloy steel powder for powder metallurgy (hereinafter sometimes simply referred to as “alloy steel powder”) has the above component composition. Therefore, first, the reason for limiting the component composition of the alloy steel powder in the present invention as described above will be described. In addition, “%” regarding a component composition shall mean “mass%” unless there is particular notice.
  • the alloy steel powder for powder metallurgy according to one embodiment of the present invention contains Cu as an essential component.
  • Cu is a hardenability improving element and has an excellent property that it is less likely to be oxidized than elements such as Si, Cr, and Mn.
  • Cu is less expensive than Ni.
  • the Cu content is set to 1.0% or more, preferably 2.0% or more.
  • sintering is generally performed at about 1130 ° C., but at this time, as can be seen from the Fe—Cu phase diagram, Cu exceeding 8.0% is precipitated in the austenite phase. .
  • Cu precipitated during sintering does not function effectively as a hardenability-improving element, but rather remains as a soft phase in the structure, leading to a decrease in mechanical properties. Therefore, the Cu content is 8.0% or less, preferably 6.0% or less.
  • the alloy steel powder for powder metallurgy in one embodiment of the present invention contains Cu in the above range, and has a component composition consisting of the balance Fe and inevitable impurities.
  • the component composition may further contain Mo.
  • Mo like Cu, is an element that improves hardenability and has an excellent property that it is less likely to be oxidized than elements such as Si, Cr, and Mn. Mo has a characteristic that a sufficient effect of improving hardenability can be obtained with a small amount of addition compared to Ni.
  • the Mo content is set to 0.5% or more, preferably 1.0% or more.
  • the Mo content exceeds 2.0%, the compressibility of the alloy steel powder during pressing decreases due to high alloying, and the compact density decreases.
  • the Mo content is 2.0% or less, preferably 1.5% or less.
  • the alloy steel powder for powder metallurgy in the above embodiment may include Cu: 1.0 to 8.0% and Mo: 0.5 to 2.0%, and have a component composition consisting of the remainder Fe and inevitable impurities. .
  • the inevitable impurities are not particularly limited and may include any element.
  • Examples of the inevitable impurities may include one or more selected from the group consisting of C, S, O, N, Mn, and Cr.
  • the content of the element as an unavoidable impurity is not particularly limited, but it is preferably independently in the following range. By setting the content of these impurity elements in the following range, the compressibility of the alloy steel powder can be further improved.
  • Precipitated Cu Average diameter: 10 nm or more
  • the average diameter of Cu hereinafter, also referred to as “precipitated Cu”
  • Precipitated Cu has a characteristic that the crystal structure changes depending on the size.
  • the diameter is less than 10 nm
  • Cu precipitated in such a state has an extremely large precipitation strengthening ability due to the matching strain field generated between the parent phase and the precipitated Cu. Therefore, when the average diameter of precipitated Cu is less than 10 nm, the alloy steel powder is hard and extremely compressible.
  • the diameter is 10 nm or more, the crystal structure of the deposited Cu is not a BCC structure but an FCC (face-centered cubic) structure. As a result, the consistency with the parent phase is lost, and the matching strain field is also lost.
  • the alloy steel powder having an average diameter of precipitated Cu of 10 nm or more is soft despite containing Cu, and has compressibility equivalent to that of alloy steel powder not containing Cu. Therefore, the average diameter of precipitated Cu is 10 nm or more.
  • the upper limit of the average diameter is not particularly limited, but even if Cu is coarsened by heat treatment or the like, it is considered that the average diameter does not exceed 1 ⁇ m. Therefore, the average diameter can be 1 ⁇ m or less.
  • the average diameter of the precipitated Cu is determined by mapping the Cu distribution state by EDX (energy dispersive X-ray analysis) element mapping by STEM (scanning transmission electron microscope), and considering the Cu concentrated portion as a precipitate and analyzing the image. Can be measured. The measuring method is shown below.
  • a thin film sample for STEM observation is collected from alloy steel powder for powder metallurgy.
  • the sampling method is not particularly specified, but sampling using FIB (focused ion beam) is generally performed.
  • FIB focused ion beam
  • the material of the mesh to which the thin film sample is attached is other than Cu, for example, W, Mo, or Pt.
  • mapping by STEM-EDX is performed.
  • fine Cu precipitates are difficult to detect by mapping, it is necessary to use a highly sensitive EDX detector.
  • FAL Talos F200X As a STEM apparatus to which such a detector is attached, there is FAL Talos F200X.
  • the observation region may be adjusted as appropriate according to the size of the precipitated particles, but it is preferable that at least 50 particles are included in the visual field. For example, when most of the precipitated particles have a particle size of 10 nm or less, an appropriate analysis region is about 180 nm ⁇ 180 nm. It is preferable to perform such mapping at least two fields of view for each sample.
  • the obtained element map is binarized and the particle size of the deposited Cu is measured.
  • Software that can be used for image binarization includes Image J (open source).
  • image analysis the equivalent circle diameter d of the precipitated particles in the field of view is obtained and integrated in ascending order of area.
  • the equivalent circle diameter d at which the integrated area is 50% of all particles is obtained from each visual field, and the average value is used as the average diameter of the precipitated Cu.
  • the average diameter is a median diameter based on an area.
  • the average diameter satisfying the above conditions is to control the average cooling rate at the time of finish reduction in the production of alloy steel powder, or to perform heat treatment for further precipitation Cu coarsening after the finish reduction. Can be obtained at
  • the iron-based mixed powder for powder metallurgy in one embodiment of the present invention contains the alloy steel powder for powder metallurgy and the graphite powder as the alloy powder. Moreover, the mixed powder in other embodiment contains the said alloy steel powder for powder metallurgy, and graphite powder and Cu powder as alloy powder.
  • each component contained in the iron-based mixed powder for powder metallurgy will be described.
  • the amount of the alloy powder contained in the mixed powder is the ratio of the mass of the alloy powder to the total mass of the mixed powder (excluding the lubricant) (mass unless otherwise specified). %).
  • the addition amount of the alloy powder in the mixed powder is represented by the ratio (mass%) of the mass of the alloy powder to the total mass of the alloy steel powder and the alloy powder.
  • the iron-based mixed powder for powder metallurgy of the present invention contains the above-described component composition and alloy steel powder for powder metallurgy having an average diameter of precipitated Cu as essential components. Therefore, the mixed powder contains Fe derived from the alloy steel powder.
  • the term “iron group” means that the Fe content (% by mass) defined as the ratio of the mass of Fe contained in the mixed powder to the total mass of the mixed powder is 50% or more. Means that.
  • the Fe content is preferably 80% or more, preferably 85% or more, and preferably 90% or more. All of the Fe contained in the mixed powder may be derived from the alloy steel powder.
  • Graphite powder 0.2-1.2% C constituting the graphite powder dissolves in Fe during sintering and further improves the strength of the sintered body by strengthening the solid solution and improving the hardenability.
  • the amount of graphite powder added is 0.2% or more, preferably 0.4% or more, more preferably 0.5% or more in order to obtain the above effect.
  • the added amount of graphite powder exceeds 1.2%, it becomes hypereutectoid, so that a lot of cementite is precipitated, and the strength of the sintered body is lowered. Therefore, when using graphite powder, the addition amount of graphite powder is 1.2% or less, preferably 1.0% or less, more preferably 0.8% or less.
  • the average particle diameter of the graphite powder is not particularly limited, but is preferably 0.5 ⁇ m or more, and more preferably 1 ⁇ m or more. Moreover, it is preferable to set it as 50 micrometers or less, and it is more preferable to set it as 20 micrometers or less.
  • Cu powder 0.5-4.0%
  • the iron-based mixed powder for powder metallurgy according to one embodiment of the present invention can further optionally contain Cu powder.
  • Cu powder has the effect of increasing the strength of the sintered body by improving hardenability. Further, the Cu powder melts at the time of sintering to form a liquid phase, and has an action of fixing the alloy steel powder particles to each other.
  • the amount of Cu powder added is preferably 0.5% or more, more preferably 0.7% or more, and 1.0% % Or more is more preferable.
  • the amount of Cu powder added is preferably 4.0% or less, more preferably 3.0% or less, and even more preferably 2.0% or less.
  • the average particle diameter of the Cu powder is not particularly limited, but is preferably 0.5 ⁇ m or more, and more preferably 1 ⁇ m or more. Moreover, it is preferable to set it as 50 micrometers or less, and it is more preferable to set it as 20 micrometers or less.
  • the iron-based mixed powder for powder metallurgy may be composed of the alloy steel powder and graphite powder. In another embodiment, the iron-based mixed powder for powder metallurgy may be composed of the alloy steel powder, graphite powder, and Cu powder.
  • the iron-based mixed powder for powder metallurgy may further optionally contain a lubricant.
  • a lubricant By adding a lubricant, it is possible to easily remove the molded body from the mold.
  • the lubricant is not particularly limited, and any lubricant can be used.
  • the lubricant for example, one or more selected from the group consisting of fatty acids, fatty acid amides, fatty acid bisamides, and metal soaps can be used. Among them, it is preferable to use a metal soap such as lithium stearate or zinc stearate, or an amide-based lubricant such as ethylene bis stearamide.
  • the amount of the lubricant added is not particularly limited, but from the viewpoint of further enhancing the effect of adding the lubricant, the amount of the lubricant may be 0.1 parts by mass or more with respect to a total of 100 parts by mass of the alloy steel powder and the alloy powder. Preferably, it is more preferably 0.2 parts by mass or more.
  • the additive amount of the lubricant is 1.2 parts by mass or less with respect to 100 parts by mass of the total of the alloy steel powder and the alloy powder, thereby reducing the ratio of non-metal in the entire mixed powder, The strength of can be further improved. Therefore, the addition amount of the lubricant is preferably 1.2% by mass or less with respect to 100 parts by mass in total of the alloy steel powder and the alloy powder.
  • the iron-based mixed powder for powder metallurgy may be composed of the alloy steel powder, graphite powder, and lubricant. In another embodiment, the iron-based mixed powder for powder metallurgy may be composed of the alloy steel powder, graphite powder, Cu powder, and lubricant.
  • the alloy steel powder for powder metallurgy according to the present invention is not particularly limited and can be produced by an arbitrary method, but is preferably produced by using an atomizing method.
  • the alloy steel powder for powder metallurgy of the present invention is preferably atomized powder. Therefore, the case where alloy steel powder is manufactured using the atomizing method will be described below.
  • molten steel having the above component composition is prepared, and the molten steel is made into raw powder (raw powder) by an atomizing method.
  • the atomizing method either a water atomizing method or a gas atomizing method can be used. From the viewpoint of productivity, it is preferable to use the water atomizing method.
  • the alloy steel powder for powder metallurgy of the present invention is preferably a water atomized powder.
  • finish reduction heat treatment
  • the atmosphere for performing the finish reduction is preferably a reducing atmosphere, and more preferably a hydrogen atmosphere.
  • the soaking temperature is preferably 800 ° C. to 1000 ° C. Below 800 ° C., the reduction of alloy steel powder is insufficient.
  • the soaking temperature is preferably set to 800 ° C. to 1000 ° C. from the viewpoint of cost reduction.
  • the cooling rate in the temperature lowering process in the finish reduction is 20 ° C./min or less, preferably 10 ° C./min or less. If the cooling rate is 20 ° C./min or less, the average diameter of precipitated Cu in the alloy steel powder after finish reduction can be 10 nm or more.
  • the alloy steel powder after the finish reduction can be subjected to a heat treatment (roughening heat treatment) for the purpose of further coarsening.
  • the soaking temperature in the coarse heat treatment needs to be kept below the transformation point because it is necessary to maintain the state in which Cu is precipitated. Since the transformation point changes somewhat depending on the component of the alloy steel powder, it is necessary to arbitrarily adjust the transformation point according to the component. For example, in the case of a simple Fe—Cu binary system or Fe—Cu—Mo ternary system, it is preferable that the soaking temperature is less than 900 ° C.
  • the alloy steel powder and mixed powder of the present invention are not particularly limited, and can be formed into a sintered body by any method. Hereinafter, an example of the manufacturing method of a sintered compact is demonstrated.
  • the applied pressure at that time is preferably 400 MPa to 1000 MPa.
  • the temperature during the pressure molding is preferably from room temperature (about 20 ° C.) to 160 ° C.
  • a lubricant can be further added to the powder mixture for powder metallurgy.
  • the final amount of the lubricant contained in the mixed powder for powder metallurgy after the addition of the lubricant is 0.1 to 1.2 with respect to 100 parts by mass in total of the alloy steel powder and the alloy powder. It is preferable to set it as a mass part.
  • the sintering temperature is preferably 1100 to 1300 ° C. If the sintering temperature is 1100 ° C. or lower, sintering does not proceed sufficiently. On the other hand, sintering proceeds sufficiently at 1300 ° C. or lower, and if the sintering temperature is higher than 1300 ° C., the manufacturing cost increases.
  • the sintering time is preferably 15 minutes to 50 minutes. If the sintering time is less than 15 minutes, the sintering is not sufficiently performed, resulting in insufficient sintering. On the other hand, the sintering proceeds sufficiently in 50 minutes or less, and if the sintering time is longer than 50 minutes, the cost increases remarkably. In the temperature lowering process after sintering, it is preferable to cool in a sintering furnace at a cooling rate of 20 ° C./min to 40 ° C./min. This is the normal cooling rate of a sintering furnace.
  • Example 1 In order to confirm the effect of improving compressibility due to the coarsening of the precipitated Cu diameter, the following experiment was conducted. First, prealloyed steel powder (raw powder) having the component composition shown in Tables 1 and 2 and containing precipitated Cu was prepared by a water atomization method. Subsequently, finish reduction was performed with respect to the obtained pre-alloy steel powder, and alloy steel powder for powder metallurgy was obtained. In the finish reduction, after soaking in a hydrogen atmosphere to 950 ° C., cooling was performed at various rates in order to change the average particle size of the precipitated Cu. However, the cooling rate was 20 ° C./min or less in all examples.
  • the average diameter of precipitated Cu in the obtained alloy steel powder for powder metallurgy was measured by the method described above. The measurement results are also shown in Tables 1 and 2.
  • EBS ethylene bisamide
  • the pass / fail judgment is based on the alloy steel powder to which Cu is not added as a reference, and when the density of the compact is more than -0.05 Mg / m 3 in the density of the molded body, it passes, and less than that is rejected. It was.
  • Table 1 no.
  • the density of A1 is No. in Table 2.
  • the density of B1 is a reference value.
  • Example 2 Alloy steel powder (pre-alloyed steel powder) containing Cu and Mo in the amounts shown in Table 3 and having the balance consisting of Fe and inevitable impurities was produced by the water atomization method. Subsequently, finish reduction was implemented with respect to the obtained alloy steel powder (water atomized powder), and alloy steel powder for powder metallurgy was obtained. In the finish reduction, the temperature was soaked at 950 ° C. in a hydrogen atmosphere, and then cooled at a rate of 10 ° C./min.
  • the average diameter of precipitated Cu in the obtained alloy steel powder for powder metallurgy was measured by the method described above. The measurement results are also shown in Table 3.
  • graphite powder as the alloy powder and ethylene bis stearamide (EBS) as the lubricant are added to the alloy steel powder after the finish reduction, and the mixture is heated and mixed at 140 ° C. with a rotary blade type heat mixer.
  • An iron-based mixed powder for powder metallurgy was obtained.
  • the amount of graphite powder added was 0.5% by mass, which is the ratio of the mass of graphite powder to the total mass of alloy steel powder and graphite powder.
  • the addition amount of EBS was 0.5 mass part with respect to a total of 100 mass parts of alloy steel powder and alloy powder.
  • the obtained iron-based mixed powder for powder metallurgy was molded at a molding pressure of 686 MPa to obtain a ring-shaped molded body having an outer diameter of 38 mm, an inner diameter of 25 mm, and a thickness of 10 mm, and a flat molded body defined in JIS Z 2550. It was.
  • As an index of the compressibility of the powder the size and weight of the obtained ring-shaped molded body were measured, and the density (molding density) was calculated. The measurement results are also shown in Table 3.
  • the molded body is sintered in an RX gas (propane-modified gas) atmosphere under conditions of 1130 ° C. ⁇ 20 minutes, and the outer diameter, inner diameter, height, and weight of the obtained sintered body are measured, The density (sintered density) was calculated. The measurement results are also shown in Table 3.
  • the sintered body obtained by sintering the flat plate-shaped body was used as a test piece, and the tensile strength of the sintered body was measured.
  • the measurement results are also shown in Table 3.
  • Example 3 An alloy steel powder, a mixed powder, a molded body, and a sintered body were produced under the same conditions as in Example 2 except that the cooling rate after finish reduction was changed, and the same evaluation as in Example 2 was performed. . Production conditions and evaluation results are shown in Table 4.
  • the average density of the precipitated Cu is increased to 10 nm or more, whereby the molding density is increased and the tensile strength is 800 MPa while being sintered.
  • a sintered body having the above was obtained.
  • Example 4 An alloy steel powder, a mixed powder, a molded body, and a sintered body are produced under the same conditions as in Example 2 except that the amount of Cu powder added to the mixed powder is changed, and the same evaluation as in Example 2 is performed. went. Production conditions and evaluation results are shown in Table 5.
  • the addition amount of the graphite powder shown in Table 5 is a ratio of the mass of the graphite powder to the total mass of the alloy steel powder and the alloy powder.
  • the addition amount of Cu powder shown in Table 5 is the ratio of the mass of Cu powder with respect to the total mass of alloy steel powder and alloy powder.
  • the average density of the precipitated Cu is 10 nm or more, so that the molding density increases and the tensile strength is 800 MPa as it is sintered.
  • a sintered body having the above was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

高価なNiや酸化しやすいCr、Mnを含有せず、圧縮性に優れ、かつ、焼結ままで高い強度を有する焼結部品を得ることができる粉末冶金用合金鋼粉を提供する。 粉末冶金用合金鋼粉であって、Cu:1.0~8.0質量%を含み、残部Feおよび不可避不純物からなる成分組成を有し、前記粉末冶金用合金鋼粉を構成する粒子中に析出した状態で存在するCuの平均径が10nm以上である、粉末冶金用合金鋼粉。

Description

粉末冶金用合金鋼粉および粉末冶金用鉄基混合粉末
 本発明は、粉末冶金用合金鋼粉に関し、特に、圧縮性に優れ、焼結まま(as-sintered)で高い強度を有する焼結部品を得ることができる粉末冶金用合金鋼粉に関する。また、本発明は、前記粉末冶金用合金鋼粉を含有する粉末冶金用鉄基混合粉末に関する。
 粉末冶金技術は、複雑な形状の部品を、製品形状に極めて近い形状(いわゆるニアネットシェイプ成形)で造形できる手法であり、自動車部品を初めとする様々な部品の製造に利用されている。
 近年、自動車部品などの小型化、軽量化が求められており、そのために、粉末冶金によって製造される焼結体のさらなる高強度化が強く要求されている。また、世の中の低コスト化需要の高まりにより、粉末冶金の技術分野においても、低コストかつ高品質の粉末冶金用合金鋼粉のニーズが高まっている。
 多くの粉末冶金用合金鋼粉では、Niを初めとする様々な合金元素を添加することによって高強度化を図っている。中でもNiは、焼入れ性向上元素であり、かつ固溶強化しにくく、成形時の圧縮性が良いため、広く用いられている。また、Niは酸化しにくいため、合金鋼粉を製造する際の熱処理雰囲気に特別な配慮をする必要がなく、扱いやすい元素であることも、Niが利用されている一因である。
 例えば、特許文献1では、高強度化のために、合金元素としてNi、Mo、およびMnが添加された合金鋼粉が提案されている。
 また、特許文献2では、Cr、Mo、およびCuなどの合金元素を含有する合金鋼粉を、低減された量のCと混合して用いることが提案されている。
 特許文献3では、Ni、Cr、Mo、およびMnなどの合金元素を含有する合金鋼粉を、黒鉛粉などと混合して用いる方法が提案されている。
特表2010-529302号公報 特開2013-204112号公報 特表2013-508558号公報
 しかし、Niは高コストであることに加えて、供給が不安定で価格変動が大きいというデメリットがある。そのため、Niの使用は低コスト化に適さず、Niを含まない合金鋼粉のニーズが高まっている。
 そこで、Niに代えて他の合金元素を添加することにより焼入れ性を向上させる事が考えられる。しかし、Ni以外の合金元素を添加した場合、焼入れ性は向上するものの、該合金元素の固溶強化により合金鋼粉の成形時の圧縮性が低下し、結果として、焼結体の強度が上がらないというジレンマがあった。
 また、Ni以外の合金元素としてCrやMnを用いることが提案されている。しかし、CrおよびMnは酸化しやすいため、焼結中に酸化が起こり、焼結体の機械特性が低下する。そのため、酸化しやすいCr、Mnに代えて、酸化しにくい元素を使用することが求められている。
 さらに、粉末冶金では、高強度部品を製造する場合、粉末を成形、焼結した後、熱処理を行って強度を向上させることが一般的である。しかし、焼結後に熱処理を行うという2度の加熱処理は、製造コストの増加を招くため、前記プロセスでは低コスト化の需要を満たすことができない。したがって、さらなる低コスト化のためには、熱処理を行わずとも、焼結ままで焼結体が優れた強度を有することが求められる。
 以上の理由から、下記(1)~(4)の全ての要件を満たす合金鋼粉が求められている。
(1)高価なNiを含有しないこと。
(2)圧縮性に優れること。
(3)酸化しやすい元素を含有しないこと。
(4)焼結体が、「焼結まま」(さらなる熱処理を施さない状態)で優れた強度を有すること。
 上記特許文献1、3で提案されている合金鋼粉は、Niを含有するため、上記(1)の要求を満たさない。また、特許文献1~3で提案されている合金鋼粉は、酸化されやすい元素であるCr、Mnを含有しており、上記(3)の要求を満たさない。
 さらに、特許文献2では、C量を特定の範囲に低減することで成形時における混合粉の圧縮性を向上させている。しかし、特許文献2における方法は、あくまでも、合金鋼粉と混合されるC(黒鉛粉など)の量を低減することで、混合粉の圧縮性を向上させているにすぎず、合金鋼粉自体の圧縮性を向上させることはできない。したがって、この方法では、上記(2)の要求を満たすことができない。また、特許文献2の方法では、C量を低減することによる強度低下を補償するために、焼結後の焼入れにおける冷却速度を2℃/s以上とすることが必要とされている。このような冷却速度の制御を行うためには、製造設備の改造が必要であり、製造コストが増加する。
 また、特許文献3で提案されている方法では、焼結体の機械的特性を向上させるために、焼結後に浸炭、焼入れ、焼戻しなどの熱処理を行うことを必要としている。そのため、上記(4)の要件を満たさない。
 このように、上記(1)~(4)の要件をすべて満たす粉末冶金用合金鋼粉は、いまだ開発されていないのが実状であった。
 本発明は、上記実状に鑑みてなされたものであり、高価なNiや酸化しやすいCr、Mnを含有せず、圧縮性に優れ、かつ、焼結ままで高い強度を有する焼結部品を得ることができる粉末冶金用合金鋼粉を提供することを目的とする。また、本発明は、前記粉末冶金用合金鋼粉を含有する粉末冶金用鉄基混合粉末を提供することを目的とする。
 本発明は、上記課題を解決するためになされたものであり、その要旨構成は次のとおりである。
1.粉末冶金用合金鋼粉であって、
 Cu:1.0~8.0質量%を含み、残部Feおよび不可避不純物からなる成分組成を有し、
 前記粉末冶金用合金鋼粉を構成する粒子中に析出した状態で存在するCuの平均径が10nm以上である、粉末冶金用合金鋼粉。
2.前記成分組成が、Mo:0.5~2.0質量%をさらに含む、上記1に記載の粉末冶金用合金鋼粉。
3.粉末冶金用鉄基混合粉末であって、
  上記1または2に記載の粉末冶金用合金鋼粉と、
  前記粉末冶金用鉄基混合粉末全体に対して0.2~1.2質量%の黒鉛粉とを含有する、粉末冶金用鉄基混合粉末。
4.さらに、前記粉末冶金用鉄基混合粉末全体に対して0.5~4.0質量%のCu粉を含有する、上記3に記載の粉末冶金用鉄基混合粉末。
 本発明の粉末冶金用合金鋼粉は、高価な合金元素であるNiを含有しないため、安価に製造することができる。また、本発明の粉末冶金用合金鋼粉は、CrやMnなどの酸化しやすい合金元素を含有しないため、合金元素の酸化に起因する焼結体の強度低下が生じない。さらに、MoおよびCuの有する焼入れ性向上効果に加え、析出したCuの平均径を10nm以上とすることによる合金鋼粉の圧縮性向上効果により、焼結後の熱処理なしで優れた強度を有する焼結体を製造することができる。
[粉末冶金用合金鋼粉]
[成分組成]
 次に、本発明を実施する方法について具体的に説明する。本発明においては、粉末冶金用合金鋼粉(以下、単に「合金鋼粉」と言う場合がある)が上記成分組成を有することが重要である。そこで、まず本発明において合金鋼粉の成分組成を上記のように限定する理由を説明する。なお、成分組成に関する「%」は、特に断らない限り「質量%」を意味するものとする。
Cu:1.0~8.0%
 本発明の一実施形態における粉末冶金用合金鋼粉は、必須成分としてCuを含有する。Cuは焼入れ性向上元素であり、かつ、Si、Cr、Mnなどの元素よりも酸化されにくいという優れた性質を有している。また、Cuは、Niと比べて安価である。焼入れ性向上効果を十分に発揮させるためには、Cu含有量を1.0%以上、好ましくは2.0%以上とする。一方、焼結部品の製造においては、一般に1130℃程度で焼結が行われるが、その際、Fe-Cu系状態図より分かるように、8.0%を超えるCuはオーステナイト相中に析出する。焼結時に析出しているCuは焼入れ性向上元素として有効には機能せず、むしろ組織中に軟質相として残留し、機械的特性の低下を招く。そのため、Cu含有量は8.0%以下、好ましくは6.0%以下とする。
 本発明の一実施形態における粉末冶金用合金鋼粉は、Cuを上記範囲で含み、残部Feおよび不可避的不純物からなる成分組成を有する。
Mo:0.5~2.0%
 本発明の他の実施形態においては、上記成分組成は、さらにMoを含有することができる。Moは、Cuと同様、焼入れ性向上元素であり、かつ、Si、Cr、Mnなどの元素よりも酸化されにくいという優れた性質を有している。また、Moは、Niに比べて少量の添加で十分な焼入れ性向上効果が得られるという特性を有している。
 Moを添加する場合、焼入れ性向上効果を十分に発揮させるために、Mo含有量を0.5%以上、好ましくは1.0%以上とする。一方、Mo含有量が2.0%を超えると、高合金化によりプレス時における合金鋼粉の圧縮性が低下し、成形体密度が低下する。その結果、焼入れ性向上による強度上昇が、密度低下による強度低下に打ち消され、結果的に焼結体の強度が低下する。そのため、Mo含有量は2.0%以下、好ましくは1.5%以下とする。
 上記実施形態における粉末冶金用合金鋼粉は、Cu:1.0~8.0%およびMo:0.5~2.0%を含み、残部Feおよび不可避不純物からなる成分組成を有することができる。
 前記不可避的不純物としては、特に限定されず、任意の元素が含まれうる。前記不可避的不純物としては、例えば、C、S、O、N、Mn、Crからなる群より選択される1または2以上を含有することができる。不可避的不純物としての前記元素の含有量は特に限定されないが、それぞれ独立に以下の範囲であることが好ましい。これらの不純物元素の含有量を以下の範囲とすることにより、合金鋼粉の圧縮性をさらに向上させることができる。
C:0.02%以下
O:0.3%以下、より好ましくは0.25%以下
N:0.004%以下
S:0.03%以下
Mn:0.5%以下
Cr:0.2%以下
[析出Cu]
平均径:10nm以上
 本発明においては、粉末冶金用合金鋼粉を構成する粒子中に析出した状態で存在するCu(以下、「析出Cu」ともいう)の平均径が10nm以上であることが重要である。以下、その理由について説明する。
 析出Cuは、大きさによって結晶構造が変化するという特性を持つ。径が10nm未満の場合、析出Cuは母相に対して整合析出しており、主としてBCC(body-centered cubic)構造をとることが知られている。この様な状態で析出しているCuは、母相と析出Cuの間に生じる整合ひずみ場によって、極めて大きい析出強化能をもつ。したがって、析出Cuの平均径が10nm未満である場合、合金鋼粉は硬質で、極めて圧縮性が悪い。一方、径が10nm以上の場合、析出Cuの結晶構造はBCC構造ではなくFCC(face-centered cubic)構造をとる。その結果、母相との整合性は失われ、整合ひずみ場も消失する。また、FCC構造を有する析出Cuは極めて軟質な為、析出強化の効果も小さい。したがって、析出Cuの平均径が10nm以上である合金鋼粉は、Cuを含有しているにもかかわらず軟質であり、Cuを含有していない合金鋼粉と同等の圧縮性を有する。そのため、析出Cuの平均径を10nm以上とする。
 一方、前記平均径の上限は特に限定されないが、熱処理などによってCuを粗大化させたとしても、平均径が1μmを超えることは無いと考えられる。したがって、前記平均径は1μm以下とすることができる。
 なお、析出Cuの平均径は、STEM(走査透過型電子顕微鏡)によるEDX(エネルギー分散型X線分析)元素マッピングによってCuの分布状態をマップ化し、Cu濃化部を析出物とみなして画像解析を行うことによって測定することができる。測定方法を以下に示す。
 まずは、粉末冶金用合金鋼粉からSTEM観察用の薄膜試料を採取する。採取方法に特に指定は無いが、FIB(収束イオンビーム)を用いたサンプリングを行うのが一般的である。また、採取した薄膜試料に対してCuのマッピングを行う為、薄膜試料を取り付けるメッシュの材質はCu以外、例えば、W、Mo、またはPtとすることが好ましい。
 次に、STEM-EDXによるマッピングを行う。特に微細なCu析出物はマッピングによる検出が困難であるため、高感度のEDX検出器を用いる必要がある。そのような検出器が取り付けられているSTEM装置としては、FEI製のTalos F200X等がある。観察領域は析出粒子サイズに応じて適宜調整すればよいが、少なくとも視野中に50個以上の粒子が含まれることが好ましい。例えば、ほとんどの析出粒子の粒径が10nm以下である場合、適切な解析領域は180nm×180nm程度である。この様なマッピングを少なくとも各試料で2視野以上実施することが好ましい。
 次に、得られた元素マップを2値化して析出Cuの粒径を測定する。画像の2値化に使用できるソフトウェアとしては、Image J(オープンソース)などがある。画像解析により、視野中の析出粒子の円相当径dを求め、面積の小さい順に積算していく。積算面積が全粒子の50%となる円相当径dを各視野で求め、その平均値を析出Cuの平均径として用いる。言い換えると、前記平均径は、面積基準におけるメジアン径である。
 なお、上記条件を満たす平均径は、後述するように、合金鋼粉の製造において、仕上還元時の平均冷却速度を制御することや、仕上還元後にさらに析出Cu粗大化のための熱処理を行うことで得ることができる。
[粉末冶金用鉄基混合粉末]
 本発明の一実施形態における粉末冶金用鉄基混合粉末(以下、単に「混合粉末」という場合がある)は、上記粉末冶金用合金鋼粉と、合金用粉末としての黒鉛粉とを含有する。また、他の実施形態における混合粉末は、上記粉末冶金用合金鋼粉と、合金用粉末としての黒鉛粉およびCu粉とを含有する。以下、粉末冶金用鉄基混合粉末に含まれる各成分について説明する。なお、以下の説明において、混合粉末に含まれる合金用粉末の添加量は、特に断らない限り、該混合粉末全体の質量(ただし、潤滑剤を除く)に対する当該合金用粉末の質量の割合(質量%)で表す。言い換えると、混合粉末における合金用粉末の添加量は、合金鋼粉と合金用粉末の合計質量に対する当該合金用粉末の質量の割合(質量%)で表す。
[粉末冶金用合金鋼粉]
 本発明の粉末冶金用鉄基混合粉末は、上述した成分組成および析出Cuの平均径を有する粉末冶金用合金鋼粉を必須成分として含む。したがって、前記混合粉末は、前記合金鋼粉に由来するFeを含有している。なお、ここで「鉄基」との文言は、前記混合粉末全体の質量に対する、該混合粉末に含まれるFeの質量の割合として定義されるFe含有率(質量%)が、50%以上であることを意味する。なお、前記Fe含有率は80%以上とすることが好ましく、85%以上とすることが好ましく、90%以上とすることが好ましい。前記混合粉末に含まれるFeは、すべて前記合金鋼粉に由来するものであってもよい。
[黒鉛粉]
黒鉛粉:0.2~1.2%
 黒鉛粉を構成するCは、焼結時にFeに固溶し、固溶強化、焼入れ性向上により、焼結体の強度をさらに向上させる。合金用粉末として黒鉛粉を使用する場合、前記効果を得るために、黒鉛粉の添加量を0.2%以上、好ましくは0.4%以上、より好ましくは0.5%以上とする。一方、黒鉛粉の添加量が1.2%を超えると過共析になるため、セメンタイトが多く析出し、かえって焼結体の強度が低下する。そのため、黒鉛粉を使用する場合、黒鉛粉の添加量を1.2%以下、好ましくは1.0%以下、より好ましくは0.8%以下とする。
 前記黒鉛粉の平均粒径は特に限定されないが、0.5μm以上とすることが好ましく、1μm以上とすることがより好ましい。また、50μm以下とすることが好ましく、20μm以下とすることがより好ましい。
[Cu粉]
Cu粉:0.5~4.0%
 本発明の一実施形態における粉末冶金用鉄基混合粉末は、さらに任意にCu粉を含有することができる。Cu粉は、焼入れ性向上により、焼結体の強度を高める効果を有する。また、Cu粉は、焼結時に溶融して液相となり、合金鋼粉の粒子を互いに固着させる作用も有している。合金用粉末としてCu粉を使用する場合、前記効果を得るために、Cu粉の添加量を0.5%以上とすることが好ましく、0.7%以上とすることがより好ましく、1.0%以上とすることがさらに好ましい。一方、Cu粉の添加量が4.0%を超えると、Cuの膨張による焼結密度低下により焼結体の引張強度が低下する。したがって、Cu粉を使用する場合、Cu粉の添加量は4.0%以下とすることが好ましく、3.0%以下とすることがより好ましく、2.0%以下とすることがさらに好ましい。
 前記Cu粉の平均粒径は特に限定されないが、0.5μm以上とすることが好ましく、1μm以上とすることがより好ましい。また、50μm以下とすることが好ましく、20μm以下とすることがより好ましい。
 本発明の一実施形態においては、上記粉末冶金用鉄基混合粉末は、上記合金鋼粉と黒鉛粉とからなるものであってもよい。また、他の実施形態においては、上記粉末冶金用鉄基混合粉末は、上記合金鋼粉と黒鉛粉とCu粉とからなるものであってもよい。
[潤滑剤]
 本発明の一実施形態においては、上記粉末冶金用鉄基混合粉末は、さらに任意に潤滑剤を含有することができる。潤滑剤を添加することにより、成形体の金型からの抜出を容易にすることができる。
 前記潤滑剤としては、特に限定されることなく任意のものを用いることができる。前記潤滑剤としては、例えば、脂肪酸、脂肪酸アミド、脂肪酸ビスアミド、および金属石鹸からなる群より選択される1または2以上を用いることができる。中でも、ステアリン酸リチウム、ステアリン酸亜鉛などの金属石鹸、またはエチレンビスステアリン酸アミドなどのアミド系潤滑剤を用いることが好ましい。
 前記潤滑剤の添加量は特に限定されないが、潤滑剤の添加効果をより高めるという観点からは、合金鋼粉と合金用粉末の合計100質量部に対して0.1質量部以上とすることが好ましく、0.2質量部以上とすることがより好ましい。一方、潤滑剤の添加量を合金鋼粉と合金用粉末の合計100質量部に対して1.2質量部以下とすることにより、混合粉末全体に占める非金属の割合を低減し、焼結体の強度をさらに向上させることができる。そのため、潤滑剤の添加量は合金鋼粉と合金用粉末の合計100質量部に対して1.2%質量部以下とすることが好ましい。
 本発明の一実施形態においては、上記粉末冶金用鉄基混合粉末は、上記合金鋼粉、黒鉛粉、および潤滑剤からなるものであってもよい。また、他の実施形態においては、上記粉末冶金用鉄基混合粉末は、上記合金鋼粉、黒鉛粉、Cu粉、および潤滑剤からなるものであってもよい。
[合金鋼粉の製造方法]
 次に、本発明の一実施形態における粉末冶金用合金鋼粉の製造方法について説明する。
 本発明の粉末冶金用合金鋼粉は、特に限定されず任意の方法で製造することができるが、アトマイズ法を用いて製造することが好ましい。言い換えると、本発明の粉末冶金用合金鋼粉は、アトマイズ粉であることが好ましい。そこで、以下、アトマイズ法を用いて合金鋼粉を製造する場合について説明する。
[アトマイズ]
 まず、上記成分組成を有する溶鋼を調製し、前記溶鋼をアトマイズ法により原料粉(生粉)とする。前記アトマイズ法としては、水アトマイズ法およびガスアトマイズ法のいずれも用いることができるが、生産性の観点からは水アトマイズ法を用いることが好ましい。言い換えると、本発明の粉末冶金用合金鋼粉は、水アトマイズ粉であることが好ましい。
[乾燥・分級]
 アトマイズ法で製造された生粉は多量に水分を含んでいるため、濾布等による脱水を行った後、乾燥させる。その後、粗粒や異物の除去を目的とした分級を行う。分級する際の篩の目開きは180μm(80メッシュ)程度とし、篩を通過した生粉を次工程に用いる。
[仕上還元]
 その後、仕上還元(熱処理)を実施する。前記仕上還元により、合金鋼粉の脱炭、脱酸、脱窒が行われる。前記仕上還元を行う際の雰囲気は、還元性雰囲気とすることが好ましく、水素雰囲気で行うことがより好ましい。前記熱処理においては、昇温した後、均熱帯において所定の均熱温度に保持し、その後、降温することが好ましい。前記均熱温度は、800℃~1000℃とすることが好ましい。800℃以下では合金鋼粉の還元が不十分となる。また、1000℃以上では焼結が過度に進行するため、仕上還元後に実施される解砕が困難となる。また、合金鋼粉の脱炭、脱酸、脱窒は1000℃以下で十分可能であるため、低コスト化の観点からも、均熱温度を800℃~1000℃とすることが好ましい。
 また、前記仕上還元における降温過程における冷却速度は、20℃/min以下、好ましくは10℃/min以下とする。前記冷却速度が20℃/min以下であれば、仕上還元後の合金鋼粉における析出Cuの平均径を10nm以上とすることができる。
[粉砕・分級]
 仕上還元後の合金鋼粉は、粒子同士が焼結されて固まった状態となっている。そのため、所望の粒度とするために、粉砕し、さらに、篩いにより180μm以下に分級することが好ましい。
 上記の仕上還元工程での析出Cuの粗大化が不十分な場合は、仕上還元後の合金鋼粉に対して、さら粗大化を目的とした熱処理(粗大化熱処理)を実施することもできる。前記粗大加熱処理における均熱温度は、Cuが析出した状態を維持する必要がある為、変態点以下の温度としなければならない。前記変態点は合金鋼粉の成分によって多少変化するため、成分に応じて任意に調整する必要がある。例えば単純なFe-Cuの2元系、Fe-Cu-Moの3元系であれば、前記均熱温度を900℃未満とすることが好ましい。
[混合粉末の製造方法]
 さらに、粉末冶金用鉄基混合粉末を製造する際には、上記の手順で得た合金鋼粉に、必要に応じて黒鉛粉、Cu粉、および潤滑剤などを添加、混合する。
[焼結体の製造方法]
 本発明の合金鋼粉および混合粉末は、特に限定されず、任意の方法で焼結体とすることができる。以下、焼結体の製造方法の一例について説明する。
 まず、金型に粉末を充填し、加圧成形する。その際の加圧力は400MPa~1000MPaとすることが好ましい。前記加圧力が400MPa以下であると、成形体の密度が低くなり、焼結体の強度が低下する。前記加圧力が1000MPa以上であると、金型への負担が増え、金型寿命が短くなり、経済的な利点がなくなる。前記加圧成形時の温度は、常温(約20℃)~160℃とすることが好ましい。上記加圧成形に先立って、粉末冶金用混合粉末にさらに潤滑剤を添加することもできる。その場合、潤滑剤を添加した後の粉末冶金用混合粉末に含まれる最終的な潤滑剤の量を、合金鋼粉と合金用粉末の合計100質量部に対して、0.1~1.2質量部とすることが好ましい。
 次いで、得られた成形体を焼結する。焼結温度は1100~1300℃とすることが好ましい。前記焼結温度が1100℃以下であると、焼結が十分に進行しない。一方、焼結は1300℃以下で十分進行し、また、焼結温度を1300℃より高くすると製造コストが増加する。焼結時間は、15分~50分が好ましい。焼結時間が15分未満では焼結が十分に行われず、焼結不足となる。一方、焼結は50分以下で十分進行することに加え、焼結時間が50分より長いとコストの増加が顕著となる。焼結後の降温過程では、焼結炉中で、20℃/min~40℃/minの冷却速度で冷却することが好ましい。これは通常の焼結炉の冷却速度である。
 次に、実施例に基づいて本発明をさらに具体的に説明する。以下の実施例は、本発明の好適な一例を示すものであり、本発明は、該実施例によって何ら限定されるものではない。
(実施例1)
 析出Cu径の粗大化による圧縮性向上効果を確認するために、次の実験を行った。まず、表1および2に示す成分組成を有し、析出Cuを含有する予合金鋼粉(生粉)を、水アトマイズ法により作成した。次いで、得られた予合金鋼粉に対して仕上還元を施し、粉末冶金用合金鋼粉を得た。前記仕上還元においては、水素雰囲気で950℃に均熱したのち、析出Cuの平均粒径を変化させるために様々な速度で冷却した。ただし、冷却速度はいずれの例においても20℃/min以下とした。
 得られた粉末冶金用合金鋼粉における析出Cuの平均径を、上述した方法で測定した。測定結果を表1、2に併記する。
 次いで、得られた合金鋼粉に対して、潤滑剤としてのエチレンビスアミド(EBS)を、該合金鋼粉100質量部に対し0.5質量部混合した後に、成形圧686MPaで圧縮して成形体とした。得られた成形体の密度を測定することで圧縮性を評価した。測定結果を表1、2に併記する。
 合否判定は、Cuを添加していない合金鋼粉を基準として、成形体の密度で基準値との差が-0.05Mg/m以上であったものを合格、それ未満のものを不合格とした。表1ではNo.A1の密度が、表2ではNo.B1の密度が、それぞれ基準値となる。表1、2に示した結果から分かるように、本発明の条件を満たす合金鋼粉は、全て合格基準を満たしており、Cuを添加しているにも関わらず、Cuを添加していない合金鋼粉に匹敵する圧縮性を有していた。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
(実施例2)
 表3に示す量でCuおよびMoを含有し、残部がFeおよび不可避的不純物からなる成分組成を有する合金鋼粉(予合金鋼粉)を、水アトマイズ法により製造した。次いで、得られた合金鋼粉(水アトマイズ粉)に対し、仕上還元を実施し、粉末冶金用合金鋼粉を得た。前記仕上還元においては、水素雰囲気で、950℃に均熱したのち、10℃/minの速度で冷却した。
 得られた粉末冶金用合金鋼粉における析出Cuの平均径を、上述した方法で測定した。測定結果を表3に併記する。
 次いで、仕上還元後の合金鋼粉に、合金用粉末としての黒鉛粉および潤滑剤としてのエチレンビスステアリン酸アミド(EBS)を添加し、回転羽式の加熱混合器により140℃で加熱混合して、粉末冶金用鉄基混合粉末を得た。黒鉛粉の添加量は、合金鋼粉と黒鉛粉の合計質量に対する黒鉛粉の質量の割合で、0.5質量%とした。また、EBSの添加量は、合金鋼粉と合金用粉末の合計100質量部に対し、0.5質量部とした。
 得られた粉末冶金用鉄基混合粉末を、成形圧:686MPaで成形し、外形38mm、内径25mm、厚さ10mmのリング状成形体と、JIS Z 2550に規定される平板状成形体とを得た。粉末の圧縮性の指標として、得られたリング状成形体の寸法と重量を測定し、密度(成形密度)を算出した。測定結果を表3に併記する。
 次いで、前記成形体を、RXガス(プロパン変性ガス)雰囲気中で、1130℃×20分の条件で焼結し、得られた焼結体の外径、内径、高さおよび重量を測定し、密度(焼結密度)を算出した。測定結果を表3に併記する。
 さらに、前記平板状成形体を焼結して得た焼結体を試験片として用い、焼結体の引張強さを測定した。測定結果を表3に併記する。
 ここで、引張強さが800MPa以上のものを合格、それ未満のものを不合格とした。表3に示した結果から分かるように、本発明の条件を満たす発明例においては、析出Cuの平均径を10nm以上とすることにより、成形密度が増加し、焼結ままで引張強さが800MPa以上である焼結体が得られた。
Figure JPOXMLDOC01-appb-T000003
 
 
(実施例3)
 仕上還元後の冷却速度を変化させた点以外は実施例2と同様の条件で、合金鋼粉、混合粉末、成形体、および焼結体を製造し、実施例2と同様の評価を行った。製造条件及び評価結果を表4に示す。
 表4に示した結果から分かるように、本発明の条件を満たす発明例においては、析出Cuの平均径を10nm以上とすることにより、成形密度が増加し、焼結ままで引張強さが800MPa以上である焼結体が得られた。
Figure JPOXMLDOC01-appb-T000004
 
 
(実施例4)
 混合粉におけるCu粉の添加量を変化させた点以外は実施例2と同様の条件で、合金鋼粉、混合粉末、成形体、および焼結体を製造し、実施例2と同様の評価を行った。製造条件及び評価結果を表5に示す。なお、表5に示した黒鉛粉の添加量は、合金鋼粉と合金用粉末の合計質量に対する黒鉛粉の質量の割合である。また、表5に示したCu粉の添加量は、合金鋼粉と合金用粉末の合計質量に対するCu粉の質量の割合である。
 表5に示した結果から分かるように、本発明の条件を満たす発明例においては、析出Cuの平均径を10nm以上とすることにより、成形密度が増加し、焼結ままで引張強さが800MPa以上である焼結体が得られた。
Figure JPOXMLDOC01-appb-T000005

Claims (4)

  1.  粉末冶金用合金鋼粉であって、
     Cu:1.0~8.0質量%を含み、残部Feおよび不可避不純物からなる成分組成を有し、
     前記粉末冶金用合金鋼粉を構成する粒子中に析出した状態で存在するCuの平均径が10nm以上である、粉末冶金用合金鋼粉。
  2.  前記成分組成が、Mo:0.5~2.0質量%をさらに含む、請求項1に記載の粉末冶金用合金鋼粉。
  3.  粉末冶金用鉄基混合粉末であって、
      請求項1または2に記載の粉末冶金用合金鋼粉と、
      前記粉末冶金用鉄基混合粉末全体に対して0.2~1.2質量%の黒鉛粉とを含有する、粉末冶金用鉄基混合粉末。
  4.  さらに、前記粉末冶金用鉄基混合粉末全体に対して0.5~4.0質量%のCu粉を含有する、請求項3に記載の粉末冶金用鉄基混合粉末。
     
     
PCT/JP2019/012562 2018-03-26 2019-03-25 粉末冶金用合金鋼粉および粉末冶金用鉄基混合粉末 WO2019189012A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207030247A KR102383517B1 (ko) 2018-03-26 2019-03-25 분말 야금용 합금 강분 및 분말 야금용 철기 혼합 분말
EP19774877.5A EP3778067A1 (en) 2018-03-26 2019-03-25 Powder metallurgy alloy steel powder and powder metallurgy iron-based powder mixture
CN201980020238.1A CN111886089B (zh) 2018-03-26 2019-03-25 粉末冶金用合金钢粉及粉末冶金用铁基混合粉末
JP2019531832A JP6930590B2 (ja) 2018-03-26 2019-03-25 粉末冶金用合金鋼粉および粉末冶金用鉄基混合粉末
US16/978,767 US20210047713A1 (en) 2018-03-26 2019-03-25 Alloyed steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-058700 2018-03-26
JP2018058700 2018-03-26

Publications (1)

Publication Number Publication Date
WO2019189012A1 true WO2019189012A1 (ja) 2019-10-03

Family

ID=68060050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012562 WO2019189012A1 (ja) 2018-03-26 2019-03-25 粉末冶金用合金鋼粉および粉末冶金用鉄基混合粉末

Country Status (6)

Country Link
US (1) US20210047713A1 (ja)
EP (1) EP3778067A1 (ja)
JP (1) JP6930590B2 (ja)
KR (1) KR102383517B1 (ja)
CN (1) CN111886089B (ja)
WO (1) WO2019189012A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100613A1 (ja) * 2019-11-18 2021-05-27 Jfeスチール株式会社 粉末冶金用合金鋼粉、粉末冶金用鉄基混合粉及び焼結体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235403A (ja) * 1987-03-23 1988-09-30 Sumitomo Metal Ind Ltd 粉末冶金用合金粉末
JPH04259351A (ja) * 1991-02-14 1992-09-14 Nissan Motor Co Ltd 耐摩耗性鉄基焼結合金の製造方法
JP2010529302A (ja) 2007-06-14 2010-08-26 ホガナス アクチボラグ (パブル) 鉄系粉末及びその組成物
JP2013508558A (ja) 2009-10-26 2013-03-07 ホガナス アクチボラゲット 鉄基粉末組成物
JP2013204112A (ja) 2012-03-29 2013-10-07 Sumitomo Electric Sintered Alloy Ltd 鉄系焼結合金及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3897618A (en) * 1972-03-27 1975-08-05 Int Nickel Co Powder metallurgy forging
GB1402660A (en) * 1973-08-17 1975-08-13 Toyo Kohan Co Ltd Alloy steels
US3899368A (en) * 1973-12-13 1975-08-12 Republic Steel Corp Low alloy, high strength, age hardenable steel
JPS5935601A (ja) * 1982-08-19 1984-02-27 Kawasaki Steel Corp 紛末冶金用高圧縮性アトマイズ鋼紛の製造方法
JPH06256802A (ja) * 1993-03-02 1994-09-13 Kawasaki Steel Corp 粉末冶金用鉄鋼粉および液体ジェットによる溶融金属のアトマイズ法
US5620651A (en) * 1994-12-29 1997-04-15 Philip Morris Incorporated Iron aluminide useful as electrical resistance heating elements
JP3694383B2 (ja) * 1997-02-24 2005-09-14 新日本製鐵株式会社 一様伸びに優れた高強度鋼
JP4069506B2 (ja) * 1998-02-19 2008-04-02 Jfeスチール株式会社 高強度焼結部品用合金鋼粉および混合粉
EP1097770B1 (en) * 1999-04-16 2006-08-16 Hitachi, Ltd. Powder metallurgy process
JP5297630B2 (ja) * 2007-02-26 2013-09-25 新日鐵住金ステンレス株式会社 耐熱性に優れたフェライト系ステンレス鋼板
JP6227903B2 (ja) * 2013-06-07 2017-11-08 Jfeスチール株式会社 粉末冶金用合金鋼粉および鉄基焼結体の製造方法
JP6222189B2 (ja) * 2014-12-05 2017-11-01 Jfeスチール株式会社 粉末冶金用合金鋼粉および焼結体
JP6459611B2 (ja) * 2015-02-23 2019-01-30 新日鐵住金株式会社 伸びフランジ性に優れる析出強化型複合組織冷延鋼板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235403A (ja) * 1987-03-23 1988-09-30 Sumitomo Metal Ind Ltd 粉末冶金用合金粉末
JPH04259351A (ja) * 1991-02-14 1992-09-14 Nissan Motor Co Ltd 耐摩耗性鉄基焼結合金の製造方法
JP2010529302A (ja) 2007-06-14 2010-08-26 ホガナス アクチボラグ (パブル) 鉄系粉末及びその組成物
JP2013508558A (ja) 2009-10-26 2013-03-07 ホガナス アクチボラゲット 鉄基粉末組成物
JP2013204112A (ja) 2012-03-29 2013-10-07 Sumitomo Electric Sintered Alloy Ltd 鉄系焼結合金及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3778067A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100613A1 (ja) * 2019-11-18 2021-05-27 Jfeスチール株式会社 粉末冶金用合金鋼粉、粉末冶金用鉄基混合粉及び焼結体
JPWO2021100613A1 (ja) * 2019-11-18 2021-12-02 Jfeスチール株式会社 粉末冶金用合金鋼粉、粉末冶金用鉄基混合粉及び焼結体
JP7147963B2 (ja) 2019-11-18 2022-10-05 Jfeスチール株式会社 粉末冶金用合金鋼粉、粉末冶金用鉄基混合粉及び焼結体
EP4063041A4 (en) * 2019-11-18 2023-01-18 JFE Steel Corporation ALLOY STEEL POWDER FOR POWDER METALLURGY, MIXED IRON POWDER FOR POWDER METALLURGY, AND SINTERED BODY

Also Published As

Publication number Publication date
EP3778067A4 (en) 2021-02-17
KR20200128158A (ko) 2020-11-11
US20210047713A1 (en) 2021-02-18
KR102383517B1 (ko) 2022-04-08
JP6930590B2 (ja) 2021-09-01
JPWO2019189012A1 (ja) 2020-04-30
EP3778067A1 (en) 2021-02-17
CN111886089A (zh) 2020-11-03
CN111886089B (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
JP6394768B2 (ja) 粉末冶金用合金鋼粉および焼結体
CA2182389C (en) High density sintered alloy
JP6227871B2 (ja) 焼結硬化鋼製部品を製造するための母合金、および焼結硬化部品を製造するためのプロセス
JP5535576B2 (ja) 鉄基焼結合金およびその製造方法並びに鉄基焼結合金部材
WO2014196123A1 (ja) 粉末冶金用合金鋼粉および鉄基焼結体の製造方法
JP5929967B2 (ja) 粉末冶金用合金鋼粉
JP5999285B1 (ja) 粉末冶金用鉄基合金粉末および焼結鍛造部材
WO2016088333A1 (ja) 粉末冶金用合金鋼粉および焼結体
JP4201830B2 (ja) クロム、モリブデンおよびマンガンを含む鉄基粉末、および、焼結体の製造方法
JP6930590B2 (ja) 粉末冶金用合金鋼粉および粉末冶金用鉄基混合粉末
EP3722022B1 (en) A pre-alloyed water atomized steel powder
CN111432958B (zh) 部分扩散合金钢粉
JP6645631B1 (ja) 粉末冶金用合金鋼粉および粉末冶金用鉄基混合粉末
JP2003055747A (ja) 焼結工具鋼及びその製造方法
JPH10501299A (ja) Mo,P,Cを含有する鉄ベース粉末
JP7147963B2 (ja) 粉末冶金用合金鋼粉、粉末冶金用鉄基混合粉及び焼結体
JP5923023B2 (ja) 粉末冶金用混合粉末、および焼結材料の製造方法
JP2020132902A (ja) 焼結部材用予合金鋼粉、焼結部材用粉末、および焼結部材
JP2021001381A (ja) 焼結部材用合金鋼粉、焼結部材用鉄基混合粉末、および焼結部材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019531832

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207030247

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019774877

Country of ref document: EP

Effective date: 20201026