WO2019187893A1 - 調湿素子、及びその使用方法 - Google Patents

調湿素子、及びその使用方法 Download PDF

Info

Publication number
WO2019187893A1
WO2019187893A1 PCT/JP2019/007237 JP2019007237W WO2019187893A1 WO 2019187893 A1 WO2019187893 A1 WO 2019187893A1 JP 2019007237 W JP2019007237 W JP 2019007237W WO 2019187893 A1 WO2019187893 A1 WO 2019187893A1
Authority
WO
WIPO (PCT)
Prior art keywords
dehumidification
channel
flow path
amount
humidity control
Prior art date
Application number
PCT/JP2019/007237
Other languages
English (en)
French (fr)
Inventor
健太郎 植田
沙織 桜井
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Priority to US16/982,294 priority Critical patent/US11872522B2/en
Priority to CA3091440A priority patent/CA3091440A1/en
Publication of WO2019187893A1 publication Critical patent/WO2019187893A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • B01J20/28045Honeycomb or cellular structures; Solid foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3425Regenerating or reactivating of sorbents or filter aids comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3458Regenerating or reactivating using a particular desorbing compound or mixture in the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/34Specific shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40086Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by using a purge gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air

Definitions

  • a plurality of flat plate members are stacked in a state of forming a first flow path through which the first fluid flows or a second flow path through which the second fluid flows between the flat plate members, In the stacking direction of the flat plate member, the first flow path and the second flow path are set, It is configured to be able to exchange heat via the flat plate member between the first flow path and the second flow path,
  • the humidity control element is configured as a dehumidification channel in which a moisture absorbing material that absorbs and desorbs moisture is held on either the inner surface of the first channel or the inner surface of the second channel.
  • the present invention relates to a method of using the element.
  • Patent Document 1 The inventors have proposed this type of humidity control element in Patent Document 1 and, for example, in Patent Documents 2 and 3, have proposed a technique using these humidity control elements.
  • the dehumidifying target fluid is caused to flow through the dehumidifying flow path, and the dehumidifying flow path (by A cooling fluid for cooling the hygroscopic material is flowed.
  • the moisture absorbing material absorbs moisture from the dehumidifying target fluid in a relatively high humidity state, and can be dehumidified.
  • the moisture absorbing material provided in the dehumidifying channel is in a hygroscopic state during the regeneration operation, so that a relatively high temperature and low humidity regeneration fluid is allowed to flow through the dehumidifying channel to release moisture from the moisture absorbing material.
  • the hygroscopic material can be regenerated. Therefore, this type of humidity control element repeats the dehumidifying regeneration operation at predetermined time intervals in its operation.
  • Patent Document 2 proposes a water-absorbing material composition and a method for producing a water-absorbing sheet when silica gel is used as a hygroscopic material.
  • Patent Document 3 proposes an air conditioning system having a new configuration. In this air conditioning system, an example in which a sodium polyacrylate hygroscopic material is used as the hygroscopic material is described (paragraph [0039]). ).
  • porous organometallic complex MOF Metal Organic Framework
  • MIL-101 Cr
  • MIL-101 chromium as a metal
  • FIG. 12 shows the water vapor adsorption amount of MIL-101 (Cr) and a polymer sorbent (specifically, sodium polyacrylate, which is simply described as “sorbent” in the figure). .
  • the horizontal axis in the figure is relative humidity.
  • MIL-101 (Cr) is a material having a high moisture absorption capacity with a relative humidity of 60% RH and a water vapor adsorption amount per sample dry weight exceeding 1.0 g / g, and its water vapor adsorption isotherm has a characteristic S-shape. In the range of 40% RH to 60% RH, the water vapor adsorption amount is rapidly increased to 1.0 g / g. Reach above.
  • sodium polyacrylate has a characteristic of drawing a gentle upward curve over a wide range, and the water vapor adsorption amount is not so high.
  • the thick broken lines indicate the temperature and relative humidity when these materials are used as a moisture absorbent.
  • processing air air to be dehumidified
  • 60% RH regeneration air
  • 50 ° C. 20% RH [30 ° C., 60% RH air is heated to 50 ° C. This case corresponds to the case where it works.
  • the main problem of the present invention is to obtain a humidity control element capable of maintaining a high humidity control capability as a humidity control element used with a dehumidifying regeneration operation, and to obtain a method for using the same.
  • the first characteristic configuration of the present invention is: A plurality of flat plate members are stacked in a state of forming a first flow path through which the first fluid flows or a second flow path through which the second fluid flows between the flat plate members, In the stacking direction of the flat plate member, the first flow path and the second flow path are set, It is configured to be able to exchange heat via the flat plate member between the first flow path and the second flow path,
  • the flat plate member is composed of any one material of resin, paper, glass, metal, and ceramics, or a composite material in which two or more materials selected from these are combined,
  • a porous organometallic complex MIL-101 (Cr) containing chromium as a metal is held as a moisture absorbing material for adsorbing and desorbing moisture on either the inner surface of the first channel or the inner surface of the second channel.
  • the dehumidifying channel is configured.
  • the porous organic metal complex MIL-101 (Cr) containing chromium as a metal as the moisture absorbing material is held in the first channel or the second channel, so that the moisture absorbing material is configured as the channel. It can be held on the surface of the material to exhibit its hygroscopic ability. That is, it is possible to regenerate the hygroscopic material by flowing high-temperature air after completion of dehumidification while dehumidifying by flowing, for example, high-humidity air as a dehumidifying target fluid through the flow path holding the hygroscopic material inside. .
  • the characteristic configuration of the method of using the humidity control element according to the present invention with such dehumidification regeneration is as follows: A dehumidifying operation in which a fluid to be dehumidified flows into the dehumidifying channel and flows out of the dehumidifying channel; In the dehumidification regeneration switching operation in which the regeneration fluid flows into the dehumidification channel and repeats the regeneration operation that flows out of the dehumidification channel, Regarding the dehumidification amount of the dehumidification channel and the switching time that is the switching interval of the dehumidification regeneration switching operation, About the change characteristics of the dehumidification amount that decreases with an increase in the switching time, The switching time is set to the switching time between the maximum value and the lower limit dehumidifying amount where the dehumidifying amount is reduced by 10% from the maximum value with respect to the maximum value of the dehumidifying amount.
  • this type of switching requires a channel switching operation by a channel switching mechanism (damper) provided on the upstream side or downstream side of the humidity control element, or both of them.
  • a channel switching mechanism damper
  • the switching time can be long. From this point of view, when considering the selection of the hygroscopic material, when MIL-101 (Cr) is used as the hygroscopic material, the dehumidification amount is related to the change characteristic of the dehumidification amount that decreases with an increase in switching time.
  • a switching time higher than the lower limit dehumidification amount where the dehumidification amount is reduced by 10% from the maximum value and the maximum value can be selected, but such a switching time range is extremely limited when sodium polyacrylate is used as the moisture absorbent, In practice, it is not practical.
  • the dehumidification amount of the dehumidification channel and the switching time that is the switching interval of the dehumidification regeneration switching operation about the change characteristics of the dehumidification amount that decreases with an increase in the switching time, With respect to the maximum value of the dehumidifying amount, a long switching time is ensured even if the switching time is set to the switching time between the maximum value and the lower limit dehumidifying amount where the dehumidifying amount is reduced by 10% from the maximum value.
  • high dehumidifying ability can be maintained well, which is preferable.
  • the second characteristic configuration of the present invention is: Regarding the dehumidification amount of the dehumidification channel in the dehumidification operation in which the dehumidification target fluid flows into the dehumidification channel and flows out of the dehumidification channel, and the element height, About the change characteristics of the dehumidification amount that increases and saturates as the element height increases, The element height is set to be between the maximum value of the dehumidification amount and the lower limit dehumidification amount in which the dehumidification amount is reduced by 10% from the maximum value.
  • the humidity control element according to the present invention does not greatly reduce the dehumidification amount even when the switching time is relatively long.
  • the element height can be reduced by about 60 to 80% when MIL-101 (Cr) is used as the hygroscopic material, compared with the case where sodium polyacrylate is used as the hygroscopic material.
  • the dehumidification amount change characteristic that increases and saturates as the element height increases and the dehumidification amount is determined from the maximum value and the maximum value with respect to the maximum value of the dehumidification amount. It can be accommodated between the lower limit dehumidification amount reduced by 10% (see FIGS. 5 and 10). Therefore, a desired dehumidifying ability can be maintained in a form in which the height of the humidity control element is lowered.
  • the third characteristic configuration of the present invention is: Dehumidification amount of the dehumidification flow channel in the dehumidification operation in which the dehumidification target fluid flows into the dehumidification flow channel and flows out of the dehumidification flow channel, and the flow channel depth which is the flow channel length of the dehumidification flow channel ,
  • the depth of the dehumidification channel is set in the depth of the channel between the maximum value and the lower limit dehumidification amount where the dehumidification amount is reduced by 10% from the maximum value with respect to the maximum value of the dehumidification amount. In the point.
  • the humidity control element according to the present invention does not greatly reduce the dehumidification amount even when the switching time is relatively long.
  • the dehumidifying ability can be maintained in a range where the element depth is shorter than in the case of using sodium polyacrylate as the hygroscopic material. Therefore, about the change characteristics of the dehumidification amount that increases and saturates as the element depth increases, With respect to the maximum value of the dehumidification amount, the maximum value and the lower limit dehumidification amount in which the dehumidification amount is reduced by 10% from the maximum value are contained (see FIGS. 6 and 11). Therefore, a desired dehumidifying ability can be maintained with the depth of the humidity control element lowered.
  • the fourth characteristic configuration of the present invention is:
  • the first flow path is configured as the dehumidification flow path
  • the second flow path is configured as a temperature adjustment flow path for adjusting the temperature of the first flow path
  • the flow direction of the second flow path is a point opposite or perpendicular to the flow direction of the first flow path.
  • the temperature of MIL-101 as a dehumidifying target fluid that is a fluid flowing through the dehumidifying flow channel and a moisture absorbing material can be adjusted to a temperature that can exhibit a good hygroscopic capacity, and the ability can be sufficiently exhibited. it can. Further, by setting the flow direction to the opposite direction or the orthogonal direction, it is possible to construct the humidity control element with a relatively simple shape, and furthermore, it is possible to satisfactorily realize the heat exchange required between both flow paths.
  • Detailed cross-sectional view of the humidity control element shown in FIG. Explanatory drawing of the dehumidification reproduction switching operation
  • the figure which shows the relationship between the switching time of the humidity control element which concerns on 1st Embodiment, and dehumidification amount The figure which shows the relationship between the element height of the humidity control element which concerns on 1st Embodiment, and dehumidification amount
  • a humidity control element E according to the present invention will be described with reference to the drawings.
  • the difference between both is a difference of the formation direction of the 1st flow path 20a which comprises the humidity control element E, and the 2nd flow path 20b.
  • the relationship in the formation direction of the flow channel 20 is parallel as can be seen from FIG. 1, and in the second embodiment, it is orthogonal as can be seen from FIG. Therefore, in the following description, the structure of the humidity control element E will be mainly described mainly in the first embodiment.
  • the several flat plate member 1 is laminated
  • the plurality of laminated flat plate members 1 are substantially rectangular flat plate members formed long in the flow direction of the fluid, and the flow direction of the fluid (DL shown in FIG. 1) is interposed between a pair of adjacent flat plate members 1.
  • the long flow path 20 is formed in the direction).
  • the side wall board 2 which connects the outer-periphery edge parts of a pair of flat plate member 1 which adjoins in the lamination direction (DH direction shown in FIG.
  • the “element depth” is the flow path length L in the DL direction of the flow path 20
  • the “element height” is the surface through which the air of the element flows in or out. Is the element height H in the DH direction.
  • the plurality of flat plate members 1 have the first flow channel 20a through which the first fluid flows between the flat plate members 1 or the second flow channel 20b through which the second fluid flows.
  • the first flow paths 20 a and the second flow paths 20 b are alternately arranged, and between the first flow path 20 a and the second flow path 20 b.
  • the heat exchange is configured through the flat plate member 1.
  • corrugated plate members 5 are arranged between the flat plate members 1. That is, the first corrugated member 5a is disposed in the first flow path 20a, and the second corrugated member 5b is disposed in the second flow path 20b.
  • the apex portion of the corrugated mountain and the bottom portion of the corrugated valley forming the first corrugated member 5a and the second corrugated member 5b are in contact with the two upper and lower flat plate members 1, respectively. Or it is bonded. That is, the first corrugated plate member 5a and the second corrugated plate member 5b function as spacers for keeping the distance between the two upper and lower flat plate members 1 constant, and the first flow path 20a and the second flow path 20b. Prevent deformation. Further, heat is transferred inside the first flow path 20a and the second flow path 20b via the first corrugated member 5a and the second corrugated member 5b.
  • the humidity control element E When the humidity control element E is used for dehumidification, in the dehumidifying operation, as shown in FIG. 3A, the first fluid (processed air TA described later) and the second fluid (cooling air CA) are flat. It distribute
  • a hygroscopic material that adsorbs and desorbs moisture contained in the first fluid flowing through the first flow path 20 a on the first surface 1 a facing the first flow path 20 a of the plurality of flat plate members 1. 6 is held. Further, the hygroscopic material 6 is also held on the surface of the first corrugated member 5a provided in the first flow path 20a, that is, on the upper surface side and the lower surface side of the first corrugated member 5a.
  • the hygroscopic material 6 is not held on the second surface 1b facing the second flow path 20b of the plurality of flat plate members 1.
  • the second flow path 20b is provided with the second corrugated plate member 5b, but the hygroscopic material 6 is not held on the upper surface side and the lower surface side of the second corrugated plate member 5b.
  • the second corrugated plate member 5b fulfills the function of maintaining the shape and heat transfer in the humidity control element E.
  • a porous organometallic complex MIL-101 (Cr) containing Cr as a metal is used as the hygroscopic material 6.
  • a mixed liquid in which MIL-101 (Cr) is mixed with a polyacrylic polymer which is an acrylic polymer material serving as a binder is used as the inner surface of the first flow path 20a (the first described above). It is applied to the first surface 1a of the flow path 20a and the surface of the first corrugated plate member 5a, and is dried and held on the inner surface of the first flow path 20a.
  • the mixed liquid to be applied contains a urethane-based polymer material as a thickener slightly.
  • MIL-101 (Cr) as the hygroscopic material 6, acrylic polymer material as the binder, and urethane polymer material as the thickener is MIL-101 (100% by mass of the total solid content).
  • Cr may be 58% by mass to 80% by mass
  • urethane polymer material may be 1% by mass to 2% by mass
  • the remainder may be acrylic polymer material.
  • the flat plate member 1, the corrugated plate member 5, and the side wall plate 2 are preferably resin materials having polarities close to the binder or the hygroscopic material 6 and having heat resistance. This is because, when the hygroscopic material 6 is held on the flat plate member 1 and the corrugated plate member 5 (first corrugated plate member 5a) by using a binder, the adhesion of these three members is improved.
  • the inventors have found that polyethylene terephthalate (PET) is most preferable as such a material.
  • this use example is merely an example in which a porous organometallic complex MIL-101 (Cr) containing Cr as a metal is used as the hygroscopic material 6, and a binder may be used as described above.
  • MIL-101 (Cr) may be held at a predetermined location of the humidity control element E. That is, the holding method of MIL-101 (Cr) in the humidity control element E is arbitrary.
  • resin, metal, paper, glass, and ceramics can be employed as a constituent material of the flat plate member 1.
  • a fluid to be dehumidified for example, high-humidity treated air TA
  • a flow path through which the fluid flows is referred to as a “dehumidifying flow path”.
  • the dehumidifying flow path becomes a flow path (first flow path 20a) on the side where the moisture absorbent material 6 is held.
  • a fluid for cooling the dehumidifying channel (specifically, a fluid to be dehumidified flowing through the channel and a hygroscopic material 6 that absorbs moisture from the fluid) (for example, a relatively low-temperature cooling air CA) is referred to as a “cooling fluid”.
  • the flow path through which this fluid flows is referred to as a “temperature adjustment flow path”.
  • This flow path is the second flow path 20b, and the temperature adjustment is specifically cooling.
  • the regeneration fluid (for example, the relatively high-temperature regeneration air RA) flows through the dehumidification flow path 20a at a timing different from that during the dehumidification operation.
  • FIG. 3 (a) shows the fluid flowing through each flow path during the dehumidifying operation.
  • the processing air TA which is the fluid to be dehumidified
  • the cooling fluid is transferred to the temperature adjusting flow path (second flow path 20b).
  • the cooling air CA that is In the illustrated example, the relationship between the flow directions of both fluids is counterflow. In this way, the hygroscopic material 6 absorbs moisture from the fluid to be dehumidified.
  • FIG. 3B shows a fluid flowing through each flow path during the regeneration operation.
  • This operation is an operation performed after the above dehumidifying operation.
  • the fluid is air
  • the regeneration air RA that is the regeneration fluid is caused to flow through the dehumidification passage (first passage 20a).
  • the temperature adjusting channel (second channel 20b) No particular action is taken with respect to the temperature adjusting channel (second channel 20b).
  • the humidity control element E switches the dehumidifying operation and the regenerating operation at predetermined time intervals (described as “switching every t seconds” in FIG. 3).
  • FIG. 7 shows the entire configuration of the humidity control element E of this embodiment
  • FIG. 8 shows the dehumidification regeneration switching operation. This corresponds to FIG. 1 and FIG. 3 of the first embodiment.
  • the first flow path 20a and the second flow path 20b are formed in orthogonal directions. Therefore, the side wall 2 is formed separately from the side wall plate 2a for the first flow path 20a and the side wall 2b for the second flow path 20b.
  • the selection switching of the fluid and the flow path when executing the dehumidification regeneration switching operation is the same as in the second embodiment.
  • FIG. 8 (a) shows the fluid flowing through each flow path during the dehumidifying operation.
  • the processing air TA which is the fluid to be dehumidified
  • the cooling fluid is transferred to the temperature adjusting flow path (second flow path 20b).
  • the cooling air CA that is In the illustrated example, the relationship between the flow directions of both fluids is counterflow. In this way, the hygroscopic material 6 absorbs moisture from the fluid to be dehumidified.
  • FIG. 8B shows the fluid flowing through each flow path during the regeneration operation.
  • This operation is an operation performed after the above dehumidifying operation.
  • the regeneration air RA that is the regeneration fluid is caused to flow through the dehumidification passage (first passage 20a).
  • the temperature adjusting channel in this example, the second channel 20b.
  • moisture is released from the hygroscopic material 6 to the regenerating fluid, and the hygroscopic material 6 is regenerated to be in a hygroscopic state.
  • the dehumidifying operation and the regenerating operation are repeated at a predetermined time interval (described as “switch every t seconds” in FIG. 8).
  • this humidity control element E is based on dehumidification regeneration switching accompanied by a dehumidification operation and a subsequent regeneration operation as its operation form. Therefore, when examining the structure of the humidity control element E of the present invention and the method of using the same, it is necessary to determine at what time interval this switching operation is performed.
  • the amount of dehumidification obtained by the entire humidity control element E was calculated by calculating the movement while integrating the meshes. However, in this numerical calculation, for the sake of simplicity, the calculation was performed assuming that the corrugated plate member 5 is not present. That is, the hygroscopic material is held only on the first surface 1a, and only the flat plate member 1 contributes to heat transfer.
  • the dehumidifying operation is performed by circulating the processing air TA and the cooling air CA as counterflows, and then the regenerating operation is performed with the regenerating air RA. The result of the case.
  • FIG. 4 shows the relationship between the switching time and the dehumidification amount.
  • the shorter the switching time the larger the dehumidification amount, and MIL-101 is always larger.
  • MIL-101 the dehumidification amount is difficult to decrease even when the switching time is long, but in the polymer sorbent, it decreases rapidly. It can be inferred that due to the cooling effect, the area where the humidity at which MIL-101 works effectively increases. Furthermore, it can be seen from this tendency that the conventionally proposed polymer sorbents require a short switching time. For example, when a switching time of 120 seconds is selected, the polymer sorbent cannot sufficiently exhibit its ability.
  • FIG. 5 shows the relationship between the element height and the dehumidification amount when the switching time is 60 to 300 seconds. Looking at each switching time, it can be seen that the element height can be reduced by about 60 to 80% by adopting MIL-101 when the same dehumidifying amount is obtained between the moisture absorbent materials 6 to be examined. Thus, the effect of downsizing is great because the temperature of the processing air TA is kept low by the presence of the cooling air CA, and the area where the MIL-101 effectively works is relatively increased. The inventor is considering.
  • FIG. 6 shows the relationship between the element depth L and the dehumidification amount when the switching time is 120 seconds.
  • MIL-101 can be used to reduce the size by about 70 to 80%.
  • the reason why the dehumidification amount decreases when the element depth L is large is considered to be due to the fact that the element is dehumidified upstream in the depth direction and slightly humidified downstream. It is not preferable to make the element depth longer than necessary. However, in this case as well, the degree of decrease is lower with MIL-101.
  • the dehumidifying operation is performed by circulating the processing air TA and the cooling air CA as orthogonal flows, and then the regenerating operation is performed with the regenerating air RA. The result of the case.
  • FIG. 9 shows the relationship between the switching time and the dehumidification amount.
  • the shorter the switching time the larger the dehumidification amount, and MIL-101 is always larger.
  • MIL-101 the dehumidification amount is difficult to drop even if the switching time is long. It can be inferred that due to the cooling effect, the area where the humidity at which MIL-101 works effectively increases.
  • FIG. 10 shows the relationship between the element height and the dehumidification amount when the switching time is 60 to 300 seconds. Looking at each switching time, it can be seen that the element height can be reduced by about 60 to 80% by adopting MIL-101 when the same dehumidifying amount is obtained among the moisture absorbent materials to be examined. Thus, the effect of miniaturization is large because the temperature of the processing air TA is kept low due to the presence of the cooling air CA, so that the area where the humidity that the MIL-101 works effectively is relatively increased. The inventor considers. In comparison with the first embodiment, a large amount of dehumidification was obtained overall.
  • FIG. 11 shows the relationship between the element depth L and the dehumidification amount when the switching time is 60 seconds.
  • MIL-101 can be used to reduce the size by about 20 to 60%. It should be noted that the degree of decrease in the dehumidification amount is small where the element depth L is large compared to the case of the first embodiment.
  • a high dehumidifying ability can be secured by setting the switching time at the switching time.
  • the lower limit at which the dehumidification amount is reduced by 10% from the maximum value and the maximum value with respect to the maximum value of the dehumidification amount By setting the element height of the dehumidifying channel to the element height that is between the dehumidifying amount, a high dehumidifying ability can be ensured.
  • the depth of the flow path for dehumidification is set in the depth of the flow path between the lower limit dehumidification amount reduced by 10%, and high dehumidification ability can be ensured.
  • the embodiment is shown in which the humidity control element is formed in a square shape in a top view.
  • the outer shape is arbitrary for reasons such as the configuration of the air conditioning system, for example.
  • the structure and direction of fluid inflow and outflow locations can be arbitrarily selected.
  • the second flow path is provided along the outer wall of the humidity control element.
  • the first flow path may be formed along the outer wall.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Central Air Conditioning (AREA)

Abstract

吸湿材としてMIL-101(Cr)を採用して調湿素子を構成する場合に、その吸湿機能を高い状態に維持できる調湿素子を得るとともに、その使用方法を得る。 複数の平板部材同士の間の夫々に第1流路又は第2流路を形成する状態で積層され、第1流路と第2流路との間で平板部材を介して熱交換可能に構成され、前記平板部材を、樹脂、紙、ガラス、金属及び、セラミックスの何れか1つの材料により構成し、第1流路の内面及び第2流路の内面の何れか一方に、クロムを金属とする多孔性有機金属錯体MIL-101(Cr)を保持し、除湿動作と再生動作との切替時間を比較的長く採る。

Description

調湿素子、及びその使用方法
 本発明は、複数の平板部材が、当該平板部材同士の間の夫々に第1流体が通流する第1流路又は第2流体が通流する第2流路を形成する状態で積層され、
 前記平板部材の積層方向に、前記第1流路と前記第2流路とが設定され、
 前記第1流路と前記第2流路との間で前記平板部材を介して熱交換可能に構成され、
 前記第1流路の内面及び前記第2流路の内面の何れか一方に、水分を吸脱着する吸湿材が保持される除湿用流路として構成してある調湿素子に関するとともに、この調湿素子の使用方法に関する。
 発明者等は、特許文献1においてこの種の調湿素子を提案するとともに、例えば、特許文献2、3において、これら調湿素子を使用する技術を提案している。
 この種の空調システムの一機能には除湿があり、特許文献1に記載の調湿素子では、吸湿材が配置された流路が除湿用流路とされる。一方、吸湿材を配置しない流路は、除湿用流路の温度を調整する温度調整用流路として使用される。
 簡単に、これら流路の除湿再生動作時の動作を説明すると、除湿動作時には、除湿対象流体を除湿用流路に流し、対とされる温度調整用流路に除湿用流路(引いては吸湿材)を冷却するための冷却用流体を流す。この動作形態で、比較的高湿状態にある除湿対象流体から吸湿材が吸湿して、除湿を行うことができる。一方、再生動作時には、除湿用流路に備えられる吸湿材は吸湿状態にあるため、この除湿用流路に、比較的高温・低湿度の再生用流体を流すことで、吸湿材から水分を放出させて、吸湿材を再生することができる。従って、この種の調湿素子は、その動作において、除湿再生動作を所定の時間間隔で繰り返す。
 除湿用流路に備えられる吸湿材としては、従来、シリカゲル、ゼオライト、塩化カルシウム、高分子収着材等が使用されてきた。特許文献2において、発明者らはシリカゲルを吸湿材として使用する場合の吸水材料組成物および吸水性シートの製造方法を提案した。一方、特許文献3は、新たな構成の空調システムを提案するものであるが、この空調システムでは、吸湿材としてポリアクリル酸ナトリウム系吸湿材を使用する例について説明している(段落〔0039〕)。
 近年、多孔性有機金属錯体MOF(Metal Organic Framework)が高い吸着容量を持つ材料として注目を集めている。中でも、クロムを金属とする多孔性有機金属錯体(以下:MIL-101(Cr)或いは単にMIL-101と記載する)は、高い吸着容量と、高い水劣化耐性を有する材料である(非特許文献1)。
 図12に、MIL-101(Cr)と高分子収着剤(具体的にはポリアクリル酸ナトリウムで、同図には単に「収着剤」と記載している)の水蒸気吸着量を示した。同図の横軸は相対湿度である。
 MIL-101(Cr)は、相対湿度60%RHで試料乾燥重量当たり水蒸気吸着量が1.0g/gを越える高い吸湿能を持つ材料であり、その水蒸気吸着等温線は特徴的なS字状を示し、40%RH付近までは低い水蒸気吸着量(0.2g/g程度)であるものの、40%RH以上60%RH以下の範囲で急激に水蒸気吸着量を増加させ、1.0g/g以上へ達する。一方、ポリアクリル酸ナトリウムは広い範囲で緩やかな右肩上がりの曲線を描く特徴を有し、水蒸気吸着量もそう高くない。
 同図において、太破線で、これら材料を吸湿材として働かせる場合の温度、相対湿度を示した。例えば処理空気(除湿対象の空気)30℃、60%RH、再生空気(吸着した水蒸気を再生させるための空気)50℃、20%RH〔30℃、60%RHの空気を50℃まで加温するケースを想定〕で働かせる場合に対応する。
特開2017-15369号公報 特開2013-193043号公報 特開2017-150755号公報
T.Zhao,S.K.Henninger et al.,Dalton Trans.,2015,44,16791
 しかしながら、クロムを金属とする多孔性有機金属錯体MIL-101(Cr)を、吸湿材として使用し、除湿再生動作を行う空調システムに適応する試みは何らなされていない。この場合、除湿再生動作において、どのような切替時間でこれを実行するのが好ましく、さらには、好適な切替時間に対応して、調湿素子のディメンジョン(具体的には、素子の空気が流入または流出する面の高さに相当する距離(以下、「素子高さ」と呼ぶ)、流路の流路長(以下、「素子奥行」と呼ぶ))を、どのように設定すべきかは不明であった。
 本発明の主たる課題は、除湿再生動作を伴って使用される調湿素子として、その調湿能力を高く維持できる調湿素子を得るとともに、その使用方法を得ることにある。
 本発明の第1特徴構成は、
 複数の平板部材が、当該平板部材同士の間の夫々に第1流体が通流する第1流路又は第2流体が通流する第2流路を形成する状態で積層され、
 前記平板部材の積層方向に、前記第1流路と前記第2流路とが設定され、
 前記第1流路と前記第2流路との間で前記平板部材を介して熱交換可能に構成され、
 前記平板部材が、樹脂、紙、ガラス、金属及び、セラミックスの何れか1つの材料、またはこれらから選ばれる2種以上の材料が組み合わされた複合材料により構成され、
 前記第1流路の内面及び前記第2流路の内面の何れか一方に、水分を吸脱着する吸湿材として、クロムを金属とする多孔性有機金属錯体MIL-101(Cr)が保持される除湿用流路として構成してある点にある。
 本特徴構成によれば、吸湿材としてクロムを金属とする多孔性有機金属錯体MIL-101(Cr)を第1流路もしくは第2流路に保持させることで、この吸湿材を流路を構成する材料の表面に保持して、その吸湿能を発揮させることができる。
 即ち、この吸湿材を内部に保持した流路に除湿対象流体である例えば高湿の空気を流して除湿を行いながら、除湿の完了後に高温の空気を流して吸湿材の再生を行うことができる。
 このような除湿再生を伴う本発明に係る調湿素子の使用方法の特徴構成は、
 前記除湿用流路に除湿対象流体が流入し、当該除湿用流路から流出する除湿動作と、
 前記除湿用流路に再生用流体が流入し、当該除湿用流路から流出する再生動作とを繰り返す除湿再生切替動作において、
 当該除湿用流路の除湿量と、当該除湿再生切替動作の切替間隔である切替時間とに関し、
 前記切替時間の増加に伴って減少する除湿量の変化特性について、
 前記除湿量の極大値に対して、当該極大値と極大値から除湿量が10%低下した下限除湿量との間となる前記切替時間に、当該切替時間を設定する点にある。
 後に、本発明に関して、発明者等が行った検討の結果を説明するが、MIL-101(Cr)を吸湿材とすると、ポリアクリル酸ナトリウムを吸湿材とする場合に対して、除湿再生切替動作における切替時間を長くしても(例えば、60秒から120秒の時間としても)、前者の場合はその除湿量がほとんど低下しない。一方、後者の場合は大きく低下する(図4、図9参照)。
 一方、この種の切替には、調湿素子の上流側もしくは下流側、或いはそれらの両方に備えられる流路切替機構(ダンパー)による流路の切替操作が必要となるが、この種の流路切替機構の動作及びその寿命を考慮すると、切替時間が長く採れることが好ましい。
 このような観点から、吸湿材の選択を考えた場合、MIL-101(Cr)を吸湿材とする場合は、切替時間の増加に伴って減少する除湿量の変化特性について、その除湿量が当該極大値と極大値から除湿量が10%低下した下限除湿量より高い切替時間を選択可能であるが、ポリアクリル酸ナトリウムを吸湿材とする場合、このような切替時間範囲は極端に制限され、事実上、実用的とはならない。
 結果、本発明に係る調湿素子では、当該除湿用流路の除湿量と、当該除湿再生切替動作の切替間隔である切替時間とに関し、
 前記切替時間の増加に伴って減少する除湿量の変化特性について、
 前記除湿量の極大値に対して、当該極大値と極大値から除湿量が10%低下した下限除湿量との間となる前記切替時間に、当該切替時間を設定しても長い切替時間を確保しながら、高い除湿能を良好に維持でき、好ましいのである。
 本発明の第2特徴構成は、
 前記除湿用流路に除湿対象流体が流入し、当該除湿用流路から流出する除湿動作における当該除湿用流路の除湿量と、前記素子高さとに関し、
 前記素子高さの増加に伴って増加して飽和する除湿量の変化特性について、
 前記除湿量の極大値に対して、当該極大値と極大値から除湿量が10%低下した下限除湿量との間となるように前記素子高さが設定されている点にある。
 上記のように、本発明に係る調湿素子は、比較的長く切替時間を採ってもその除湿量が大きく低下することはないが、このような使用形態にあって、その素子高さと除湿量との関係は、MIL-101(Cr)を吸湿材とする場合はポリアクリル酸ナトリウムを吸湿材とする場合に比較して、6~8割程度、素子高さを小さくできるとともに、このように素子高さを選択しても、前記素子高さの増加に伴って増加して飽和する除湿量の変化特性について、前記除湿量の極大値に対して、当該極大値と極大値から除湿量が10%低下した下限除湿量との間に収めることができる(図5、図10参照)。よって、調湿素子の高さを低くした形態で、所望の除湿能を維持できる。
 本発明の第3特徴構成は、
 前記除湿用流路に除湿対象流体が流入し、当該除湿用流路から流出する除湿動作における当該除湿用流路の除湿量と、当該除湿用流路の流路長である流路奥行とに関し、
 前記流路奥行の増加に伴って増加して飽和する除湿量の変化特性について、
 前記除湿量の極大値に対して、当該極大値と極大値から除湿量が10%低下した下限除湿量との間となる前記流路奥行に、前記除湿用流路の奥行が設定されている点にある。
 上記のように、本発明に係る調湿素子は、比較的長く切替時間を採ってもその除湿量が大きく低下することはないが、このような使用形態にあって、その素子奥行と除湿量との関係は、MIL-101(Cr)を吸湿材とする場合はポリアクリル酸ナトリウムを吸湿材とする場合に比較して、素子奥行が短い範囲で、その除湿能を維持できる。
 そこで、素子奥行の増加に伴って増加して飽和する除湿量の変化特性について、
 前記除湿量の極大値に対して、当該極大値と極大値から除湿量が10%低下した下限除湿量との間に収める(図6、図11参照)。よって、調湿素子の奥行を低下した状態で、所望の除湿能を維持できる。
 本発明の第4特徴構成は、
 前記第1流路が前記除湿用流路として、前記第2流路が、前記第1流路の温度を調整する温度調整用流路として構成され、
 前記第2流路の流れ方向が、前記第1流路の流れ方向に対して、対向方向又は直交方向とされる点ある。
 本特徴構成により、除湿用流路を流れる流体である除湿対象流体及び吸湿材としてのMIL-101の温度を、良好な吸湿能を発揮できる温度に調整して、その能力を十分発揮させることができる。
 また、流れ方向を対向方向或いは直交方向とすることにより、比較的簡単な形状で調湿素子を構築でき、さらに両流路間で必要となる熱交換を良好に実現できる。
第1実施形態に係る調湿素子の構造を示す図 図1に示す調湿素子の断面詳細図 第1実施形態に係る調湿素子の除湿再生切替動作の説明図 第1実施形態に係る調湿素子の切替時間と除湿量の関係を示す図 第1実施形態に係る調湿素子の素子高さと除湿量の関係を示す図 第1実施形態に係る調湿素子の素子奥行と除湿量の関係を示す図 第2実施形態に係る調湿素子の構造を示す図 第2実施形態に係る調湿素子の除湿再生切替動作の説明図 第2実施形態に係る調湿素子の切替時間と除湿量の関係を示す図 第2実施形態に係る調湿素子の素子高さと除湿量の関係を示す図 第2実施形態に係る調湿素子の素子奥行と除湿量の関係を示す図 MIL-101(Cr)と高分子収着剤の水蒸気吸着量を示す図
 本発明に係る調湿素子Eの実施形態を図面に基づいて説明する。
 実施形態として、第1実施形態及び第2実施形態について説明するが、両者間の差は、調湿素子Eを成す第1流路20aと第2流路20bとの形成方向の差である。第1実施形態では図1からも判明するように流路20の形成方向関係は並行とされ、第2実施形態では図7からも判明するように直交とされている。そこで、以下の説明では、第1実施形態を主に、調湿素子Eの構造について主に説明する。
 第1実施形態
 図1及び図2に示すように、調湿素子Eは、複数の平板部材1が、平板部材1同士の間に流体が通流する流路20を形成する状態で積層されている。
 積層された複数の平板部材1は、流体の通流方向に長く形成された概略方形の平板材とされ、隣接する一対の平板部材1の間に、流体の通流方向(図1に示すDL方向)に長い流路20を形成する。また、積層方向(図1に示すDH方向)において隣接する一対の平板部材1の外周縁部同士を接続する側壁板2が設けられ、上下面が平板部材1により構成され、側面が側壁板2により構成された複数の流路20が形成されている。
 これまでの説明で、「素子奥行」としたのは、この流路20のDL方向での流路長Lであり、「素子高さ」としたのは、素子の空気が流入または流出する面のDH方向の素子高さHである。
 つまり、調湿素子Eは、複数の平板部材1が、平板部材1同士の間の夫々に第1流体が通流する第1流路20a又は第2流体が通流する第2流路20bを形成する状態で積層され、平板部材1の積層方向DHにおいて、第1流路20aと第2流路20bが交互に配設されており、第1流路20aと第2流路20bとの間で平板部材1を介して熱交換可能に構成されている。
 各流路20の形状維持であるが、平板部材1間には波板部材5をそれぞれ配置している。即ち、第1流路20aには第1波板部材5aが、第2流路20bには第2波板部材5bが配設されている。
 これら第1波板部材5a及び第2波板部材5bを形成している波形の山の頂点部分及び波形の谷の底部分は、上下2枚の平板部材1のそれぞれに対して接触している或いは接着されている。つまり、第1波板部材5a及び第2波板部材5bは上下2枚の平板部材1の間の間隔を一定に保つためのスペーサとして機能し、第1流路20a及び第2流路20bの変形等を防止する。また、第1波板部材5a及び第2波板部材5bを介して、第1流路20a及び第2流路20bの内部で熱を伝達する。
 この調湿素子Eを除湿に使用するときは、その除湿動作において、図3(a)に示すように、第1流体(後述する処理空気TA)と第2流体(冷却空気CA)とが平板部材1を介して対向流を成す状態で流通され、第1流路20aと第2流路20bとの間で熱交換する。その再生動作においては、図3(b)に示すように、第1流体(後述する再生空気RA)のみが流される。
 図2に示すように、複数の平板部材1の第1流路20aに面する第1面1aには、第1流路20aを通流する第1流体に含まれる水分を吸脱着する吸湿材6が保持されている。さらに、第1流路20aに設けられた第1波板部材5aの表面、つまり、第1波板部材5aの上面側及び下面側にも吸湿材6が保持されている。この構成を採用することで、波板状の第1波板部材5aの表面積が大きいので、第1波板部材5aの表面が保持可能な吸湿材6の量を増加させることができる。
 一方、複数の平板部材1の第2流路20bに面する第2面1bには、吸湿材6が保持されていない。この第2流路20bには、第2波板部材5bが設けられているが、この第2波板部材5bの上面側及び下面側に関しても吸湿材6は保持されていない。結果、この第2波板部材5bは調湿素子Eにおいて、その形状保持と伝熱の機能を果たす。
 本発明において、吸湿材6として、Crを金属とする多孔性有機金属錯体MIL-101(Cr)を使用する。使用に際しては、例えば、MIL-101(Cr)を、バインダーとして働くアクリル系高分子材料であるポリアクリル系ポリマーとを混合した混合液を、第1流路20aの内面(これまで説明した第1流路20aの第1面1a及び第1波板部材5aの表面)に塗布するとともに、乾燥処理して、第1流路20aの内面に保持する。ここで、塗布の対象とする混合液には、わずかに増粘剤としてウレタン系高分子材料を含ませておくことが好ましい。
 吸湿材6してのMIL-101(Cr)、バインダーとしてのアクリル系高分子材料、増粘剤としてのウレタン系高分子材料の割合は、これら固形分全体を100質量%として、MIL-101(Cr)を58質量%~80質量%とし、ウレタン系高分子材料を1質量%~2質量%とし、残部をアクリル系高分子材料とすることができる。
 平板部材1及び波板部材5及び側壁板2は、極性が上記バインダー又は吸湿材6に近く、耐熱性を有する樹脂材料であることが好ましい。吸湿材6を平板部材1及び波板部材5(第1波板部材5a)に対してバインダーを用いて保持させる場合に、それら三者の接着性が良好になるからである。例えば、そのような材料として、ポリエチレンテレフタレート(PET)が最も好ましいことを、発明者等は見出した。
 ただし、この使用例はあくまでも、吸湿材6として、Crを金属とする多孔性有機金属錯体MIL-101(Cr)を使用する場合の一例に過ぎず、上記のようにバインダーを使用してもよいし、MIL-101(Cr)を、調湿素子Eの所定箇所に保持してもよい。即ち、MIL-101(Cr)の調湿素子E内での保持方法は任意である。
 一方、平板部材1の構成材料としては、樹脂、金属、紙、ガラス、及びセラミックスを採用できる。
 以上が、本発明に係る調湿素子の概略構造の説明であるが、図3を参考にして、本発明に係る調湿素子を使用して除湿動作、再生動作を行う場合の切替動作に関して説明する。
 本明細書では、除湿の対象とする流体(例えば、高湿の処理空気TA)を「除湿用流体」と呼び、この流体が流れる流路を「除湿用流路」と呼ぶ。除湿用流路は、吸湿材6が保持されている側の流路(第1流路20a)となる。この除湿用流路(具体的には、この流路を流れる除湿対象流体及びその流体から吸湿する吸湿材6)を冷却する流体(例えば、比較的低温の冷却空気CA)を「冷却用流体」と呼び、この流体が流れる流路を「温度調整用流路」と呼ぶ。この流路は第2流路20bであり、温度調整は具体的には冷却となる。
 さらに、再生動作において、除湿用流路20aを流れる流体であって、吸湿状態にある吸湿材6から水分を放出させ、吸湿材6を再生(吸湿可能な状態の再生)する流体を「再生用流体」と呼ぶ。再生用流体(例えば、比較的高温の再生空気RA)は、その機能上、当然に除湿用流路20aを、除湿動作時とは異なったタイミングで流通される。
 図3(a)に、除湿動作時の各流路に流す流体を示した。流体が空気である場合、この除湿動作時には、除湿用流路(第1流路20a)に除湿対象流体である処理空気TAを、温度調整用流路(第2流路20b)に冷却用流体である冷却空気CAを流す。図示する例では、両流体の流れ方向の関係は対向流としている。このようにして、除湿対象流体から吸湿材6が湿度を吸湿する。
 図3(b)に、再生動作時の各流路に流す流体を示した。この動作は、上記の除湿動作を終えた後、行う動作である。流体が空気である場合、この再生動作時には、除湿用流路(第1流路20a)に再生用流体である再生空気RAを流す。温度調整用流路(第2流路20b)に関しては特に何もしない。このようにして、吸湿材6から水分を再生流体側に放出させて、吸湿材6は吸湿可能な状態に再生される。
 本発明に係る調湿素子Eは、除湿動作、再生動作を所定の時間間隔で切替る(図3には「t秒おきに切替」と記載)。
 第2実施形態
 この実施形態の調湿素子Eの全体構成を図7に、その除湿再生切替動作を図8に示した。第1実施形態の図1及び図3に対応させたものである。
 図7からも判明するように、第1流路20aと第2流路20bの形成方向は直交とされている。従って、側壁2は、第1流路20aに対する側壁板2aと、第2流路20bに対する側壁2bと個別に形成される。除湿再生切替動作を実行する場合の流体及び流路の選択切替は、この第2実施形態でも同様である。
 図8(a)に、除湿動作時の各流路に流す流体を示した。流体が空気である場合、この除湿動作時には、除湿用流路(第1流路20a)に除湿対象流体である処理空気TAを、温度調整用流路(第2流路20b)に冷却用流体である冷却空気CAを流す。図示する例では、両流体の流れ方向の関係は対向流としている。このようにして、除湿対象流体から吸湿材6が湿度を吸湿する。
 図8(b)に、再生動作時の各流路に流す流体を示した。この動作は、上記の除湿動作を終えた後、行う動作である。流体が空気である場合、この再生動作時には、除湿用流路(第1流路20a)に再生用流体である再生空気RAを流す。温度調整用流路(この例では、第2流路20b)に関しては特に何もしない。このようにして、吸湿材6から水分を再生流体側に放出させて、吸湿材6は吸湿可能な状態に再生される。
 除湿動作、再生動作を所定の時間間隔で繰り返す(図8には「t秒おきに切替」と記載)。
 これまで説明してきたように、この調湿素子Eは、その動作形態として、除湿動作とその後の再生動作とを伴った除湿再生切替を、その基本とする。
 従って、本発明の調湿素子Eの構造及びその使用方法を検討する場合、この切替動作をどのような時間間隔で行うかが必要となる。
 検討に際しては、以下の条件の下、吸湿材6として、本発明で採用するクロムを金属とする多孔性有機金属錯体MIL-101(Cr)と高分子収着剤(ポリアクリル酸ナトリウム)を比較検討した。
 <検討手法>
 検討は、下記試算共通条件の下、各吸湿材6の物性を下記表1に示すものとして数値計算によった。この数値計算においては、調湿素子E全体を一方向20分割以上のメッシュに切り分け、各メッシュ(処理空気TA/再生空気RAが通流する除湿用流路20a、冷却空気CAが通流する温度調整用流路20b、およびそれを区分する波板部材5〔波板部材5の処理空気TA/再生空気RA側には吸湿材6を所定量担持〕で構成される)毎の水蒸気移動および熱移動の計算をメッシュ間の統合を図りながら行うことで、調湿素子E全体で得られる除湿量を計算した。ただしこの数値計算では、簡単のため、波板部材5の無い状態を仮定して計算を行った。即ち、吸湿材が保持されるのは、第1面1aのみとなり、また、伝熱に寄与するのは平板部材1のみとなる。
<試算共通条件>
 以下の条件記載において、「基本」は特に記載のない限り、この条件に従ったことを意味する。
 調湿素子基本寸法   :幅W×奥行L×高さH=200×200×200mm
 積層ピッチ      :2.5mm
 吸湿材塗布厚み    :0.020mm
 波板部材厚さ     :0.050mm
 波板部材密度     :2.688g/cm
 波板部材比熱     :0.905kJ/(kg・K)
 波板部材熱伝導率   :237W/(m・K)
 基本処理空気風量   :40m/h
 基本冷却空気風量   :80m/h
 基本再生空気風量   :40m/h
 処理空気温湿度    :30℃、16.0 g/kg (60% RH)
 冷却空気温度     :30℃
 再生空気温湿度    :50℃、10.5 g/kg
(夏季屋内空気27℃、47% RHの加温を想定)
 空気プラントル数   :0.71
 空気動粘性係数    :1.58×10-5/s
 空気拡散係数     :2.19×10-5/s
<吸湿材条件>
 検討対象とした吸湿材6である、クロムを金属とする多孔性有機金属錯体MIL-101(Cr)及び高分子収着剤であるポリアクリル酸ナトリウムの物性は、以下の表1に示す数値とし、数値計算用の水蒸気吸着等温線には、図12に示した水蒸気吸着等温線のX軸、Y軸を逆転することによって得られるグラフを5次式でフィッティングして使用した。
Figure JPOXMLDOC01-appb-T000001
 検討結果
 第1実施形態の検討結果を、図4、図5、図6に示し、対応する第2実施形態の検討結果を図9、図10、図11に示した。これらの図面及び図12で、調湿素子Eに備える吸湿材6は、Crを金属とする多孔性有機金属錯体MIL-101(Cr)を「MIL-101」と(以下の図面に基づく説明において同じ)、高分子収着剤(ポリアクリル酸ナトリウム)を単に「収着剤」と記載している。
 第1実施形態
 図1に示す調湿素子Eにおいて、図3に示すように、処理空気TAと冷却空気CAとを対向流として流通させ除湿動作を行った後、再生空気RAにより再生動作を行うケースの結果である。
 切替時間
 図4に、切替時間と除湿量の関係を示した。いずれの吸湿材6も切替時間が短いほど除湿量が大きく、常にMIL-101のほうが大きい。MIL-101では、切替時間が長くても除湿量が落ちにくいのに比べ、高分子収着剤では、急速に低下する。冷却効果により、MIL-101が有効にはたらく湿度となっている領域が増えているためと推察できる。さらに、このような傾向から、従来提案されてきた高分子収着剤では、切替時間を短く採る必要があり、例えば120秒といった切替時間の選択をした場合、十分能力を発揮できないことが判る。
 素子高さ
 図5に、切替時間を60~300秒とした場合の素子高さと除湿量の関係を示した。
 各切替時間毎に見てみると、検討対象とした吸湿材6間で同じ除湿量を得る場合、MIL-101を採用することにより6~8割程度、素子高さを小さくできることが分かる。このように小型化の効果が大きいのは、冷却空気CAの存在により処理空気TAの温度が低く保たれ、MIL-101が有効にはたらく湿度となっている領域が相対的に増えているためと発明者は考察している。
 図6に、切替時間を120秒とした場合の素子奥行Lと除湿量の関係を示した。素子奥行L=200mm以下の領域では、検討対象とした吸湿材6間で同じ除湿量を得る場合、MIL-101を採用することにより7~8割程度の小型化が可能である。なお、素子奥行Lが大きいところで除湿量が減少するのは、奥行方向上流では除湿され、下流でやや加湿されてしまっていることが影響していると考えられる。素子奥行を必要以上に長くすることは好ましくない。ただし、この場合も、MIL-101のほうが低下の度合いは低い。
 第2実施形態
 図7に示す調湿素子Eにおいて、図8に示すように、処理空気TAと冷却空気CAとを直交流として流通させ除湿動作を行った後、再生空気RAにより再生動作を行うケースの結果である。
 切替時間
 図9に、切替時間と除湿量の関係を示した。いずれの吸湿材も切替時間が短いほど除湿量が大きく、常にMIL-101のほうが大きい。MIL-101では、切替時間が長くても除湿量が落ちにくい。冷却効果により、MIL-101が有効にはたらく湿度となっている領域が増えているためと推察できる。
 素子高さ
 図10に、切替時間を60~300秒とした場合の素子高さと除湿量の関係を示した。
 各切替時間毎に見てみると、検討対象とした吸湿材間で同じ除湿量を得る場合、MIL-101を採用することにより6~8割程度、素子高さを小さくできることが分かる。このように小型化の効果が大きいのは、冷却空気CAの存在により処理空気TAの温度が低く保たれるため、MIL-101が有効にはたらく湿度となっている領域が相対的に増えていると発明者は考察している。
 第1実施形態との比較では、全体的に大きな除湿量を得られた。
 図11に、切替時間を60秒とした場合の素子奥行Lと除湿量の関係を示した。素子奥行L=200mm以下の領域では、検討対象とした吸湿材間で同じ除湿量を得る場合、MIL-101を採用することにより2~6割程度の小型化が可能である。なお、素子奥行Lが大きいところで除湿量の減少の度合いは、第1実施形態の場合と比較して小さい。
 切替時間に関して、切替時間の増加に伴って減少する除湿量の変化特性について、除湿量の極大値に対して、当該極大値と極大値から除湿量が10%低下した下限除湿量との間となる切替時間に、当該切替時間を設定して高い除湿能を確保できる。
 素子高さに関して、この素子高さの増加に伴って増加して飽和する除湿量の変化特性について、除湿量の極大値に対して、当該極大値と極大値から除湿量が10%低下した下限除湿量との間となる前記素子高さに、前記除湿用流路の素子高さを設定して高い除湿能を確保できる。
 また、素子奥行に関して、この素子奥行である流路奥行の増加に伴って増加して飽和する除湿量の変化特性について、除湿量の極大値に対して、当該極大値と極大値から除湿量が10%低下した下限除湿量との間となる流路奥行に、除湿用流路の奥行が設定して高い除湿能を確保できる。
〔別実施形態〕
(1)上記の実施形態では、平板部材1の構成材料としては、簡単に、樹脂、金属、紙、ガラス、及びセラミックスを挙げて説明したが、樹脂としては、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエチレンナフタレート、アクリルを採用できる。一方、金属としては、アルミニウム、銅も好ましい。
 さらに、これら材料を単独で使用するのではなく、これらから選ばれる2種以上の材料が組み合わされた複合材料としてもよい。この場合、異なった材料(例えば樹脂と金属)の層を重ねて、吸湿材の保持を樹脂側で行い、伝熱性能を金属側で確保するようにもできる。
(2)上記の実施形態では、調湿素子が、その上面視で方形に形成されている実施形態を示したが、例えば空調システムの構成等の理由から外形形状は任意である。
 さらに、流体の流入、流出箇所の構造、方向は任意に選択できる。
(3)上記の実施形態では、第2流路が調湿素子の外壁に沿って設けられている例を示したが、外壁に沿って第1流路が形成されていてもよい。
1   平板部材
1a  第1面
1b  第2面
5   波板部材
6   吸湿材
20  流体流路
20a 第1流路(除湿用流路)
20b 第2流路(温度調整用流路)
E   調湿素子
CA  冷却空気(温度調整用流体)
RA  再生空気(再生用流体)
TA  処理空気(除湿対象流体)

 

Claims (5)

  1.  複数の平板部材が、当該平板部材同士の間の夫々に第1流体が通流する第1流路又は第2流体が通流する第2流路を形成する状態で積層され、
     前記平板部材の積層方向に、前記第1流路と前記第2流路とが設定され、
     前記第1流路と前記第2流路との間で前記平板部材を介して熱交換可能に構成され、
     前記平板部材が、樹脂、紙、ガラス、金属及び、セラミックスの何れか1つの材料、またはこれらから選ばれる2種以上の材料が組み合わされた複合材料により構成され、
     前記第1流路の内面及び前記第2流路の内面の何れか一方に、水分を吸脱着する吸湿材として、クロムを金属とする多孔性有機金属錯体MIL-101(Cr)が保持される除湿用流路として構成してある調湿素子。
  2.  前記除湿用流路に除湿対象流体が流入し、当該除湿用流路から流出する除湿動作における当該除湿用流路の除湿量と、前記積層方向における素子高さとに関し、
     前記素子高さの増加に伴って増加して飽和する除湿量の変化特性について、
     前記除湿量の極大値に対して、当該極大値と極大値から除湿量が10%低下した下限除湿量との間となるように、前記素子高さが設定されている請求項1記載の調湿素子。
  3.  前記除湿用流路に除湿対象流体が流入し、当該除湿用流路から流出する除湿動作における当該除湿用流路の除湿量と、当該除湿用流路の流路長である流路奥行とに関し、
     前記流路奥行の増加に伴って増加して飽和する除湿量の変化特性について、
     前記除湿量の極大値に対して、当該極大値と極大値から除湿量が10%低下した下限除湿量との間となる前記流路奥行に、前記除湿用流路の奥行が設定されている請求項1又は2記載の調湿素子。
  4.  前記第1流路が前記除湿用流路として、前記第2流路が、前記第1流路の温度を調整する温度調整用流路として構成され、
     前記第2流路の流れ方向が、前記第1流路の流れ方向に対して、対向方向又は直交方向とされる請求項1~3の何れか一項記載の調湿素子。
  5.  前記除湿用流路に除湿対象流体が流入し、当該除湿用流路から流出する除湿動作と、
     前記除湿用流路に再生用流体が流入し、当該除湿用流路から流出する再生動作とを繰り返す除湿再生切替動作において、
     当該除湿用流路の除湿量と、当該除湿再生切替動作の切替間隔である切替時間とに関し、
     前記切替時間の増加に伴って減少する除湿量の変化特性について、
     前記除湿量の極大値に対して、当該極大値と極大値から除湿量が10%低下した下限除湿量との間となる前記切替時間に、当該切替時間を設定する請求項1~4の何れか一項記載の調湿素子の使用方法。

     
PCT/JP2019/007237 2018-03-29 2019-02-26 調湿素子、及びその使用方法 WO2019187893A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/982,294 US11872522B2 (en) 2018-03-29 2019-02-26 Humidity control element and method for using the same
CA3091440A CA3091440A1 (en) 2018-03-29 2019-02-26 Humidity control element and method for using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018064015A JP7170410B2 (ja) 2018-03-29 2018-03-29 調湿素子
JP2018-064015 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019187893A1 true WO2019187893A1 (ja) 2019-10-03

Family

ID=68061240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007237 WO2019187893A1 (ja) 2018-03-29 2019-02-26 調湿素子、及びその使用方法

Country Status (4)

Country Link
US (1) US11872522B2 (ja)
JP (1) JP7170410B2 (ja)
CA (1) CA3091440A1 (ja)
WO (1) WO2019187893A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190888A1 (ja) * 2021-03-10 2022-09-15 ダイキン工業株式会社 吸着システム
JP7425355B2 (ja) 2021-12-13 2024-01-31 ダイキン工業株式会社 調湿装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115490869B (zh) * 2021-06-18 2023-10-10 陕西师范大学 一种环炉辅助的纸芯片上金属有机框架材料快速合成方法
JP2023044404A (ja) * 2021-09-17 2023-03-30 ダイキン工業株式会社 吸着素子、調湿装置および大気造水機

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062424A (ja) * 2001-06-13 2003-03-04 Daikin Ind Ltd 除湿素子及び該除湿素子に用いられる吸着用素子
JP2005095883A (ja) * 2003-09-04 2005-04-14 Mitsubishi Chemicals Corp 吸着ヒートポンプ又はデシカント空調装置用吸着材
JP2005134097A (ja) * 2003-10-31 2005-05-26 Toomikku:Kk 除湿装置における吸湿素子体の高周波又はマイクロ波による再生装置およびその再生方法
JP2010512991A (ja) * 2006-12-13 2010-04-30 コリア リサーチ インスティテュート オブ ケミカル テクノロジー 多孔性有・無機混成体及びこれを含有する吸着剤
JP2011075179A (ja) * 2009-09-30 2011-04-14 Daikin Industries Ltd 空調システム
JP2015529258A (ja) * 2012-08-15 2015-10-05 アーケマ・インコーポレイテッド 金属−有機構造体を使用した吸着系
US20160084541A1 (en) * 2014-09-18 2016-03-24 MOF Application Services Uses of mof in an adsorption cooling/heating system
JP2017015369A (ja) * 2015-07-06 2017-01-19 大阪瓦斯株式会社 熱交換素子及び調湿素子
JP2017508121A (ja) * 2014-01-10 2017-03-23 ブライ・エアー・アジア・ピーヴイティー・リミテッド ハイブリッド吸着装置熱交換デバイスおよび製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101158456B1 (ko) * 2009-11-19 2012-06-19 한국화학연구원 결정성의 다공성 유무기 혼성체 및 그의 제조 방법
JP5974570B2 (ja) 2012-03-21 2016-08-23 栗田工業株式会社 加圧浮上汚泥の脱水処理方法及び装置
JP6594227B2 (ja) 2016-02-25 2019-10-23 大阪瓦斯株式会社 空調システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062424A (ja) * 2001-06-13 2003-03-04 Daikin Ind Ltd 除湿素子及び該除湿素子に用いられる吸着用素子
JP2005095883A (ja) * 2003-09-04 2005-04-14 Mitsubishi Chemicals Corp 吸着ヒートポンプ又はデシカント空調装置用吸着材
JP2005134097A (ja) * 2003-10-31 2005-05-26 Toomikku:Kk 除湿装置における吸湿素子体の高周波又はマイクロ波による再生装置およびその再生方法
JP2010512991A (ja) * 2006-12-13 2010-04-30 コリア リサーチ インスティテュート オブ ケミカル テクノロジー 多孔性有・無機混成体及びこれを含有する吸着剤
JP2011075179A (ja) * 2009-09-30 2011-04-14 Daikin Industries Ltd 空調システム
JP2015529258A (ja) * 2012-08-15 2015-10-05 アーケマ・インコーポレイテッド 金属−有機構造体を使用した吸着系
JP2017508121A (ja) * 2014-01-10 2017-03-23 ブライ・エアー・アジア・ピーヴイティー・リミテッド ハイブリッド吸着装置熱交換デバイスおよび製造方法
US20160084541A1 (en) * 2014-09-18 2016-03-24 MOF Application Services Uses of mof in an adsorption cooling/heating system
JP2017015369A (ja) * 2015-07-06 2017-01-19 大阪瓦斯株式会社 熱交換素子及び調湿素子

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190888A1 (ja) * 2021-03-10 2022-09-15 ダイキン工業株式会社 吸着システム
JP2022138199A (ja) * 2021-03-10 2022-09-26 ダイキン工業株式会社 吸着システム
JP7372554B2 (ja) 2021-03-10 2023-11-01 ダイキン工業株式会社 調湿装置
JP7425355B2 (ja) 2021-12-13 2024-01-31 ダイキン工業株式会社 調湿装置

Also Published As

Publication number Publication date
CA3091440A1 (en) 2019-10-03
US11872522B2 (en) 2024-01-16
JP7170410B2 (ja) 2022-11-14
JP2019171316A (ja) 2019-10-10
US20210023502A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
WO2019187893A1 (ja) 調湿素子、及びその使用方法
JP2019504271A (ja) 建物内の換気システムとしての熱回収吸着体
JP2008528263A (ja) 湿気及び/又は熱交換装置
JP3767611B2 (ja) 吸着熱交換器
WO2005098340A1 (ja) 熱交換器
JP2007271247A (ja) デシカント換気システム
MX2012004401A (es) Matriz en forma de panal que comprende desecante macroporosa, proceso y uso del mismo.
JP3711834B2 (ja) 調湿システム
JP2005127683A (ja) 蒸気吸脱着機能を有する伝熱材料を用いた熱交換器
JP6815067B2 (ja) 調湿素子及び調湿装置
JP5601795B2 (ja) 空気調和方法及び空気調和装置
JP2014035110A (ja) 吸着熱交換器
JP2017015369A (ja) 熱交換素子及び調湿素子
JP2018169054A (ja) 空調システム
JP2001259417A (ja) 空調装置用吸着材,吸湿素子および除湿方法
JP6443964B2 (ja) 調湿ユニット
JP3742932B2 (ja) 熱交換器
JP4120688B2 (ja) 吸着熱交換器の製造方法及び製造装置
JP3835223B2 (ja) 冷却吸着素子
JP2004321885A (ja) 調湿用素子
JP6352915B2 (ja) 吸放湿性膜を備えたデバイス及び吸放湿性膜を備えたデバイスを備えた水蒸気分離器及び熱交換器
JP2003117333A (ja) 冷却吸着素子
JP6790312B1 (ja) 除湿素子、除湿装置及び除湿素子の製造方法
JP2001215097A (ja) 有害ガス除去機能を付加した熱交換エレメント
JP2006349342A (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3091440

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777501

Country of ref document: EP

Kind code of ref document: A1