WO2019187811A1 - 精製ガスの製造装置および精製ガスの製造方法 - Google Patents

精製ガスの製造装置および精製ガスの製造方法 Download PDF

Info

Publication number
WO2019187811A1
WO2019187811A1 PCT/JP2019/006256 JP2019006256W WO2019187811A1 WO 2019187811 A1 WO2019187811 A1 WO 2019187811A1 JP 2019006256 W JP2019006256 W JP 2019006256W WO 2019187811 A1 WO2019187811 A1 WO 2019187811A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
region
oxygen
tower
raw material
Prior art date
Application number
PCT/JP2019/006256
Other languages
English (en)
French (fr)
Inventor
貴紀 貝川
明李 ▲高▼橋
Original Assignee
エア・ウォーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エア・ウォーター株式会社 filed Critical エア・ウォーター株式会社
Priority to CN201980006610.3A priority Critical patent/CN111491711A/zh
Publication of WO2019187811A1 publication Critical patent/WO2019187811A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof

Definitions

  • the present invention relates to a purified gas production apparatus and a purified gas production method.
  • Patent Document 1 in order to remove a combustible component contained in an inert gas such as a rare gas, the combustible component is removed by bringing the inert gas into contact with a metal catalyst in the presence of oxygen.
  • An impurity combustion method for incineration removal is disclosed.
  • Patent Document 2 discloses that oxygen is removed from an inert gas by bringing an inert gas containing oxygen and moisture as impurities into contact with a getter agent mainly composed of nickel or the like under heating conditions. It is disclosed that the purified gas is produced by removing the moisture remaining in the inert gas after adsorption at room temperature.
  • CAPEX CAPital Expense
  • OPEX OPEX
  • the raw material gas contains a combustible component as an impurity
  • impurities can be removed from the raw material gas, and a purified gas can be produced.
  • the combustible component is converted into carbon dioxide and moisture by contacting the combustible component with the metal catalyst in the presence of oxygen. Thereafter, oxygen remaining in the raw material gas is removed by a getter agent under heating conditions, and then carbon dioxide and moisture are adsorbed and removed at room temperature to produce a purified gas.
  • the method for producing purified gas disclosed in Patent Document 2 requires a step of cooling the raw material gas to room temperature between the step of removing oxygen in the raw material gas and the step of removing moisture from the raw material gas. Become. That is, it is necessary to provide a cooling means between the equipment for removing oxygen in the raw material gas and the equipment for removing moisture in the raw material gas. For continuous operation, two zeolite towers for removing moisture and two getter towers for removing oxygen are required, for a total of four towers. That is, there is room for improvement in reducing the number of devices (CAPEX reduction) and reducing maintenance costs by reducing the number of devices (OPEX reduction).
  • An object of the present invention is to provide a refined gas production apparatus and a refined gas production method in which the cost is reduced when the raw material gas contains at least a combustible component as an impurity.
  • the present invention provides a purified gas production apparatus and a purified gas production method described below.
  • a catalyst tower for subjecting at least a combustible component in a raw material gas to a catalytic reaction in the presence of oxygen, and a purification for obtaining a purified gas by removing at least moisture and oxygen in the raw material gas that has passed through the catalyst tower
  • the purification tower includes a first region and a second region, the first region is a region for adsorbing and removing at least moisture in the source gas, and the second region is the first region.
  • a purified gas production apparatus which is a region for removing at least oxygen in the raw material gas having passed through one region to obtain a purified gas.
  • connection path for connecting an oxygen supply source, the oxygen supply source, and the inlet of the catalyst tower, and a first passage for introducing oxygen gas from the oxygen supply source to the inlet of the catalyst tower.
  • the first region includes any one selected from the group consisting of zeolite, activated alumina, and silica gel, and the second region includes a getter agent.
  • the manufacturing apparatus as described.
  • a reactor a connection path for connecting the reactor and the catalyst tower, a second connection path for introducing the raw material gas from the reactor to the catalyst tower, and the reaction [1] to [1] to [3], a connection path for connecting a reactor to the purification tower, and a third connection path for returning the purified gas led out from the purification tower to the reactor.
  • the manufacturing apparatus according to any one of [9].
  • a method for producing a purified gas comprising: removing at least oxygen in the raw material gas, and deriving the raw material gas from which oxygen has been removed in the second region as a purified gas.
  • the first region includes any one selected from the group consisting of zeolite, activated alumina, and silica gel, and the second region includes a getter agent.
  • the method further includes introducing the gas derived from the reactor into the catalyst tower as the raw material gas, and introducing the purified gas derived from the purification tower into the reactor.
  • the production method according to any one of [19].
  • the raw material gas contains at least a combustible component as an impurity, it is possible to provide a purified gas manufacturing apparatus and a purified gas manufacturing method with reduced costs.
  • Purified gas refers to a gas in which the concentration of impurities contained in the raw material gas is reduced.
  • “Main component” indicates a component (gas) having the largest volume content among the components (gas) constituting the source gas.
  • Noble gas is a general term for helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), radon (Rn), and oganesone (Og). However, in this specification, any one of He, Ne, Ar, Kr, and Xe is shown.
  • Hydrocarbon refers to a compound composed of a carbon atom represented by C n H m (where n and m are positive integers) and a hydrogen atom.
  • “Getter agent” refers to a substance that acts to remove at least oxygen from a source gas.
  • FIG. 1 is a schematic view showing an example of the configuration of an apparatus for producing purified gas according to the present invention.
  • the refined gas production apparatus 100 removes at least moisture and oxygen from the catalyst tower 50 for subjecting at least a combustible component in the raw material gas to the catalytic reaction in the presence of oxygen, and the raw material gas passing through the catalytic tower 50, Purification towers (first purification tower 1 and second purification tower 2).
  • the purification tower (the first purification tower 1 and the second purification tower 2) includes a first region (1A, 2A) and a second region (1B, 2B).
  • the first region (1A, 2A) is a region for adsorbing and removing at least moisture in the source gas.
  • the second region (1B, 2B) is a region for removing purified gas from at least oxygen in the raw material gas that has passed through the first region.
  • the purification tower may be one tower or three or more towers. From the viewpoint of continuously operating the purification tower, it is desirable that the purification tower is two or more.
  • the manufacturing apparatus 100 includes the first purification tower 1 and the second purification tower 2
  • the first purification tower 1 is used for removing at least moisture and oxygen in the raw material gas
  • the second purification tower 1 is used.
  • the tower 2 can be regenerated with a regeneration gas described later. If the second purification tower 2 is regenerated, the second purification tower 2 can be used for removing impurities in the raw material gas, and the first purification tower 1 can be regenerated with a regeneration gas described later.
  • the source gas contains at least a combustible component as an impurity.
  • the source gas may contain, for example, nitrogen (N 2 ) or a rare gas as a main component.
  • the source gas may include both of the above gases.
  • the source gas may contain at least either nitrogen or a rare gas.
  • the combustible component can be hydrogen gas or hydrocarbon gas.
  • Hydrocarbons include, for example, methane (CH 4 ), ethane (C 2 H 6 ), ethylene (C 2 H 4 ), propane (C 3 H 8 ), butane (C 4 H 10 ), and acetylene (C 2 H 2).
  • Etc The source gas may contain a plurality of the above gases as impurities.
  • the source gas may contain at least either hydrogen or hydrocarbon.
  • the catalyst tower 50 is a tower for subjecting at least a combustible component in the raw material gas to a catalytic reaction in the presence of oxygen.
  • the catalyst tower 50 may be configured to perform a catalytic reaction at a temperature of 60 ° C. or higher and 350 ° C. or lower. That is, the catalyst tower 50 may be a catalyst tower for performing a catalytic reaction at a temperature of 60 ° C. or higher and 350 ° C. or lower. In order to adjust the catalyst reaction temperature of the catalyst tower 50, a temperature raising means 40 for heating the raw material gas may be disposed upstream of the catalyst tower 50.
  • the catalytic reaction When the catalytic reaction is performed at less than 60 ° C. in the catalyst tower 50, the catalytic reaction may be insufficient. When the catalytic reaction is performed in the catalyst tower 50 at a temperature exceeding 350 ° C., there is a possibility that there is room for improvement in the power consumption (that is, OPEX) of the temperature raising means 40.
  • a raw material gas heat exchanger 30 for indirect heat exchange between the raw material gas before being introduced into the catalytic tower 50 and the raw material gas that has passed through the catalytic tower 50 is provided. It may be provided.
  • the raw material gas before being introduced into the catalyst tower 50 can be heated by the raw material gas heat exchanger 30.
  • the raw material gas that has passed through the catalyst tower 50 can be cooled by the raw material gas heat exchanger 30.
  • the temperature of the raw material gas introduced into the temperature raising means 40 by the raw material gas heat exchanger 30 is increased, the temperature of the raw material gas that has passed through the raw material gas heat exchanger 30 is increased to, for example, a reaction temperature of 60 ° C. or higher and 350 ° C. or lower.
  • the electric power required for the temperature raising means 40 (for example, a heater) can be reduced. That is, reduction of OPEX is expected.
  • the temperature of the raw material gas passing through the catalyst tower 50 is lowered by the raw material gas heat exchanger 30, it is considered that the partial pressure of moisture in the raw material gas is lowered. Therefore, it becomes possible to reduce the capacity of the first region 1A included in the purification tower, which will be described later, and to reduce the amount of packing contained in the first region 1A. That is, reduction of OPEX and CAPEX is expected.
  • a cooling means (not shown) for cooling the raw material gas that has passed through the catalyst tower 50 may be provided without providing the raw material gas heat exchanger 30. Although it is considered that the electric power required for the temperature raising means 40 is larger than installing the raw material gas heat exchanger 30, it is expected that CAPEX will be reduced as compared to installing the raw material gas heat exchanger 30.
  • the raw material gas that has passed through the catalyst tower 50 may not be cooled without providing the raw material gas heat exchanger 30. In such a case, it is considered that the capacity of the purification tower, which will be described later, becomes larger than the case where the raw material gas that has passed through the catalyst tower 50 is cooled.
  • "catalyst" The catalyst contained in the catalyst tower 50 should not be restricted in particular. A substance capable of subjecting at least a combustible component in the raw material gas to a catalytic reaction in the presence of oxygen can be used as a catalyst.
  • the catalyst contained in the catalyst tower 50 may be, for example, a palladium catalyst or a platinum catalyst. That is, the catalyst tower 50 may include a palladium catalyst or a platinum catalyst.
  • the source gas contains oxygen exceeding 1.5 times the chemical equivalent necessary for the catalytic reaction, the amount of oxygen is excessive, and there is a possibility that oxygen cannot be completely removed in the second region 1B described later. Therefore, it may be necessary to increase the capacity of the second region 1B (that is, CAPEX and OPEX may increase).
  • the purified gas production apparatus 100 is a connection path for connecting an oxygen supply source (not shown) to the oxygen supply source and the inlet of the catalyst tower 50, and oxygen is supplied from the oxygen supply source to the inlet of the catalyst tower 50. It is desirable to further include a first connection path L1 for introducing gas. By supplying oxygen via the first connection path L1, the raw material gas introduced into the catalyst tower 50 contains 1.1 to 1.5 times the oxygen equivalent to the chemical equivalent required for the catalytic reaction. obtain. Note that if the source gas contains sufficient oxygen in advance, the valve V101 may be closed and the supply of oxygen may be cut off.
  • the first purification tower 1 includes a first region 1A and a second region 1B.
  • the first region 1A is a region for adsorbing at least moisture in the source gas.
  • the raw material gas includes hydrocarbons
  • carbon dioxide can be included as impurities in the raw material gas in addition to moisture by the catalytic reaction in the catalyst tower 50.
  • the first region 1A is desirably a region for further adsorbing and removing carbon dioxide in the raw material gas.
  • the first region 1A may include any one selected from the group consisting of zeolite, activated alumina, and silica gel as a filler. It is considered that at least moisture in the raw material gas is more adsorbed when the first region 1A includes any one selected from the group consisting of zeolite, activated alumina, and silica gel as a packing. Zeolite, activated alumina, and silica gel are also considered to adsorb carbon dioxide in addition to moisture. Thereby, it is thought that the water
  • Second area >> The second region 1B is a region for obtaining purified gas by removing at least oxygen in the raw material gas that has passed through the first region 1A.
  • the second region 1B desirably includes a getter agent as a filler. It is considered that oxygen in the raw material gas having passed through the first region 1A is further removed by the second region 1B containing a getter agent as a filler. That is, the first region may include any one selected from the group consisting of zeolite, activated alumina, and silica gel, and the second region 1B may include a getter agent.
  • GETTER agent should not be restricted in particular.
  • a substance capable of removing at least oxygen from the source gas can be used as a getter agent.
  • the getter agent may be one in which a metal such as copper is supported on a carrier such as silica, alumina, zeolite, activated carbon or the like. That is, the getter agent may contain copper. Since copper is inexpensive and readily available, it is expected that the running cost (ie, OPEX) of the purified gas production apparatus 100 can be reduced. When a getter agent contains copper, it is thought that oxygen is removed by reaction of following formula (1).
  • the source gas may be a gas introduced from a reactor (not shown).
  • the purified gas may be a gas led out to a reactor (not shown). That is, the purified gas production apparatus 100 according to the present invention is a connection path for connecting the reactor and the catalyst tower 50, and is a second connection path for introducing the raw material gas from the reactor to the catalyst tower 50 ( (Not shown). In addition, it is a connection path for connecting a reactor (not shown) and a purification tower (first purification tower 1, second purification tower 2), which is a purification tower (first purification tower 1, second purification tower).
  • the purified gas production apparatus 100 preferably includes a regeneration gas supply path L2 for regenerating the first region 1A and the second region 1B.
  • the regeneration gas preferably includes heated nitrogen and hydrogen.
  • the first region 1A can be regenerated by the heated nitrogen.
  • the second region 1B can be regenerated by hydrogen.
  • the purified gas production apparatus 100 preferably includes a heater 60 for heating nitrogen.
  • the method for producing purified gas according to the present invention includes introducing a raw material gas into a catalyst tower (raw material gas introduction step 1).
  • the catalyst tower At least a combustible component in the raw material gas is subjected to a catalytic reaction in the presence of oxygen (catalytic reaction step).
  • the raw material gas that has passed through the catalyst tower is introduced into a purification tower that includes the first region and the second region (raw material gas introduction step 2).
  • first region at least water in the source gas is adsorbed and removed (moisture adsorption removal step).
  • second region at least oxygen in the source gas from which moisture has been removed by adsorption in the first region is removed (oxygen removal step).
  • the source gas from which oxygen has been removed in the second region is derived as a purified gas (purified gas deriving step).
  • Raw material gas introduction process 1 This step is a step of introducing the raw material gas into the catalyst tower 50.
  • the source gas is not particularly limited as long as it contains at least a combustible component.
  • the source gas may contain, for example, nitrogen and a rare gas as main components. That is, the source gas may contain at least either nitrogen or a rare gas.
  • the combustible component may include hydrogen or hydrocarbons. That is, the combustible component may contain at least either hydrogen or hydrocarbon.
  • the source gas may be a gas derived from a reactor (not shown).
  • the source gas may be heated by the heat exchanger 30 or may not be heated.
  • the source gas may be introduced into the catalyst tower 50 after being boosted to a predetermined pressure by a booster (not shown).
  • the raw material gas may be introduced into the catalyst tower 50 after being decompressed to a predetermined pressure by a decompression valve (not shown).
  • the source gas may be introduced into the catalyst tower 50 after being mixed with the oxygen gas introduced from the oxygen supply source (not shown) to the inlet of the catalyst tower 50 via the first connection path L1. That is, the raw material gas introduction step 1 may further include introducing oxygen gas from the oxygen supply source (not shown) to the inlet of the catalyst tower 50 (oxygen supply step).
  • the raw material gas can contain 1.1 to 1.5 times the oxygen equivalent to the chemical equivalent required in the catalytic reaction step described later.
  • the oxygen supply step can be omitted by closing the valve V101.
  • Catalytic reaction process This step is a step in which at least a combustible component in the raw material gas introduced into the catalyst tower 50 by the raw material gas introduction step 1 is subjected to a catalytic reaction in the presence of oxygen. Referring to FIG. 1, in this step, for example, the temperature of the raw material gas is raised to a predetermined temperature by the temperature raising means 40 and then introduced into the catalyst tower 11, and at least combustible contained in the raw material gas after the first adsorption step.
  • the operation can be carried out by catalyzing the components.
  • the catalyst that can be used in the catalytic reaction step may be a palladium-based catalyst or a platinum-based catalyst as described above.
  • the temperature of the catalytic reaction in the catalyst tower 50 may be 60 ° C. or higher and 350 ° C. or lower as described above.
  • ⁇ Raw material gas introduction process 2 This step is a step of introducing the raw material gas that has passed through the catalyst tower 50 into the purification tower 1 including the first region 1A and the second region 1B.
  • the raw material gas that has passed through the catalyst tower 50 may be introduced into the purification tower 1 after being cooled by the raw material gas heat exchanger 30.
  • the raw material gas that has passed through the catalyst tower 50 may be introduced into the purification tower 1 after being cooled by a cooling means (not shown).
  • the raw material gas that has passed through the catalyst tower 50 may be introduced into the purification tower 1 without being cooled.
  • ⁇ Moisture adsorption removal process This step is a step of adsorbing and removing at least moisture in the source gas introduced in the source gas introduction step 2 in the first region 1A. Moisture in the source gas can be removed by adsorption, for example, with a filler contained in the first region 1A.
  • the raw material gas contains hydrocarbons, carbon dioxide can be contained as impurities in the raw material gas in addition to moisture by the catalytic reaction in the catalytic reaction step.
  • the first region 1A further includes adsorption removal of carbon dioxide in the source gas.
  • the filler that can be included in one region 1A may be any one selected from the group consisting of zeolite, activated alumina, and silica gel as described above.
  • the moisture adsorption removal step may be performed, for example, at an adsorption pressure of 0.1 MaG or more and 0.9 MPaG or less.
  • the moisture adsorption removal step may be performed at an adsorption temperature of 10 ° C. or higher and 40 ° C. or lower.
  • the adsorption temperature may be performed at a temperature depending on the temperature of the source gas introduced into the purification tower 1. From the viewpoint of lowering the partial pressure of moisture in the raw material gas, it is desirable that the moisture adsorption removal step be performed at an adsorption temperature of 10 ° C.
  • This step is a step of removing at least oxygen in the source gas from which moisture has been adsorbed and removed in the first region 1A in the second region 1B.
  • Oxygen in the source gas can be removed, for example, by a getter agent contained in the second region 1B.
  • the getter agent that can be used may be one in which a metal such as copper is supported on a carrier such as silica, alumina, zeolite, or activated carbon as described above, and the metal may be copper.
  • a purified gas is produced by removing at least oxygen in the raw material gas from which moisture has been adsorbed and removed.
  • the oxygen removal step may be performed, for example, at an adsorption pressure of 0.1 MaG or more and 0.9 MPaG or less, for example, an adsorption temperature of 10 ° C. or more and 40 ° C. or less. That is, the moisture adsorption removal step and the oxygen removal step can be performed under the same pressure and temperature conditions. Since no pressure adjustment or temperature adjustment is required when shifting from the moisture adsorption removal process to the oxygen removal process, a reduction in the number of equipment (that is, a reduction in OPEX) is expected.
  • ⁇ Purified gas derivation process This step is a step of deriving the purified gas produced by the oxygen removal step.
  • the purified gas may be pressurized to a predetermined pressure by a booster (not shown) according to the required working pressure.
  • the purified gas may be depressurized to a predetermined pressure by a pressure reducing valve (not shown) according to the required working pressure.
  • the purified gas may be introduced into the reactor, for example.
  • ⁇ Regeneration method of purification tower> The first purification tower 1 and the second purification tower 2 can be regenerated with a regeneration gas. Hereinafter, a method for regenerating the second purification tower 2 will be described.
  • the regeneration method of the second purification tower 2 desirably includes a depressurization step, a heating step, a heating regeneration step, a cooling step, a purge step, a pressure reduction step, and a both-column operation step.
  • the valves operated in the regeneration of the second purification tower 2 are V21 to V25, V60, and V61.
  • V11 and V15 are open (OPEN), and V12 to V14 are closed (CLOSE).
  • This step is a step of releasing the gas in the second purification tower 2 to the vent and depressurizing the pressure in the second purification tower 2 to near atmospheric pressure by opening V24 and closing other valves. is there.
  • the depressurization step may be performed until the pressure in the second purification column 2 reaches substantially atmospheric pressure.
  • This step is a step performed after the depressurization step. In this step, V23, V24, and V60 are opened, the other valves are closed, the nitrogen gas heated by the heater 60 is circulated through the second purification tower 2, and the second purification tower 2 is heated. is there.
  • the temperature of the nitrogen gas at the outlet of the heater 60 may be, for example, 120 ° C. or higher and 220 ° C. or lower.
  • the heating process may be performed until the temperature of the first region 2A and the second region 2B reaches about 120 ° C. to 220 ° C.
  • Heating regeneration process This step is a step performed after the heating step. In this step, V23, V24, V60, and V61 are opened, the other valves are closed, and nitrogen gas and hydrogen gas (that is, regeneration gas) heated by the heater 60 are circulated to the second purification tower 2. And regenerating the first region 2A and the second region 2B.
  • the temperature of the first region 2A and the second region 2B during this step is maintained at about 120 ° C. to 220 ° C. It is considered that the first region 2A is regenerated by the nitrogen gas heated by the heater 60. It is considered that the second region 2B is regenerated by the hydrogen gas introduced through V61.
  • the heating regeneration process may be performed from 0.5 hours to 3 hours after the regeneration gas is introduced into the second purification column 2. The time required for the heating regeneration step can be appropriately adjusted depending on the capacity of the second purification tower 2 and the temperature of the regeneration gas. ⁇ Cooling process ⁇ This step is a step performed after the heating regeneration step.
  • V23, V24, and V60 are opened, other valves are closed, nitrogen gas at room temperature is circulated through the second purification tower 2, and the second purification tower 2 is cooled.
  • the cooling process may be performed until the temperatures of the first region 2A and the second region 2B reach room temperature.
  • ⁇ Purge process >> This step is a step performed after the cooling step.
  • V22 and V24 are opened, other valves are closed, purified gas is introduced from the first purification column 1 to the second purification column 2, and the second purification column 2 is purged with the purified gas. It is.
  • the purge process may be performed until 5 to 20 minutes have elapsed since the start of purging of the second purification column 2 using the purified gas.
  • This step is a step performed after the purge step.
  • V22 is opened, the other valves are closed, purified gas is introduced from the first purification column 1 to the second purification column 2, and the pressure of the second purification column 2 is increased.
  • the return pressure process may be performed until the pressure of the second purification tower 2 reaches the operating pressure of the second purification tower 2.
  • the operating pressure of the second purification tower 2 may be, for example, 0.1 MaG or more and 0.9 MPaG or less.
  • This step is a step performed after the decompression step.
  • V21 and V25 are opened, the other valves are closed, and purified gas is produced by the first purification column 1 and the second purification column 2.
  • This step may be performed, for example, for 5 minutes to 20 minutes.
  • the purified gas can be produced using the second purification tower 2.
  • the first purification tower 1 can be regenerated by the above-described depressurization process, heating process, heating regeneration process, cooling process, purge process, pressure recovery process, and both tower operation process.
  • the purified gas production apparatus 100 includes two purification towers, so that one tower is used for removing impurities in the raw material gas (that is, production of the purified gas), and the other purification tower is regenerated during that time. can do. That is, it is possible to continuously produce purified gas.
  • Table 1 below shows the positions of V21 to V25, V60, and V61 in each step.
  • Example 1 Manufacture of purified gas> Example 1 1.
  • Source gas introduction process 1 An apparatus having the configuration shown in FIG. 1 was prepared. The following gas containing helium as a main component was introduced as a source gas from the reactor.
  • Source gas flow rate 300 NL / min, Hydrogen concentration in source gas: 180 vol. ppm, Methane concentration in source gas: 120 vol. ppm, Oxygen concentration in source gas: 10 vol. ppm, Dew point of source gas: -20 ° C.
  • Source gas pressure 0.2 MPaG. (Oxygen supply process) From the oxygen supply source, oxygen gas was supplied to the raw material gas at the inlet of the catalyst tower 50 via the first connection path L1 (oxygen supply step). The amount of oxygen supplied from the oxygen supply source is 130 Ncc / min. As a result, the oxygen concentration in the source gas is 430 vol. ppm.
  • the raw material gas that passed through the oxygen supply step was introduced into the heat exchanger 30.
  • the raw material gas that passed through the oxygen supply step was heated by indirect heat exchange with the raw material gas that passed through the catalyst tower 50 in the heat exchanger 30.
  • the raw material gas that has passed through the oxygen supply step derived from the heat exchanger 30 was further heated by the heating means 40.
  • the raw material gas that passed through the oxygen supply step was then introduced into the catalyst tower 50.
  • Catalytic reaction step In the catalytic tower 50, combustible components (that is, hydrogen and methane) in the raw material gas were subjected to a catalytic reaction in the presence of oxygen.
  • the catalyst used in the catalyst tower 50 contains palladium and aluminum oxide as solid components.
  • the mass ratio of palladium to aluminum oxide in the catalyst was about 0.5: about 99.5.
  • the catalytic reaction was carried out at a catalytic reaction temperature of 300 ° C. in the presence of oxygen. Thereby, the combustible component was converted into moisture and carbon dioxide.
  • Source gas introduction process 2 The raw material gas that passed through the catalyst tower 50 was introduced into the raw material gas heat exchanger 30. The raw material gas that passed through the catalyst tower 50 was cooled to 20 ° C. by indirect heat exchange with the raw material gas that passed through the oxygen supply step in the heat exchanger 30. The raw material gas lowered to 20 ° C. was then introduced into the first purification tower 1. 4).
  • the source gas derived from the catalyst tower 50 was introduced into the first purification tower 1 to produce a purified gas.
  • the production conditions for the purified gas are as follows.
  • Source gas flow rate 300 NL / min, Oxygen concentration in source gas: 100 vol. ppm, Carbon dioxide concentration in source gas: 120 vol. ppm, Dew point of source gas: -15 ° C Hydrogen concentration in source gas: 1 vol. ppm or less, Methane concentration in source gas: 1 vol. ppm or less, Purification tower adsorption pressure (raw material gas pressure): 0.2 MPaG, Purification tower adsorption temperature (raw material gas temperature): 20 ° C.
  • the raw material gas that passed through the catalyst tower 50 was introduced into the first purification tower 1.
  • moisture and carbon dioxide in the raw material gas were adsorbed and removed by zeolite (moisture adsorption removal step).
  • Oxygen contained in the source gas passed through the first region 1A was removed by the getter agent in the second region 1B (oxygen removal step). Thereby, purified gas was produced.
  • the purified gas was introduced into the reactor (purified gas deriving step).
  • Example 2 The amount of oxygen supplied from the oxygen supply source is 100 Ncc / min, and the oxygen concentration in the source gas is 360 vol. A purified gas was produced in the same manner as in Example 1 except that the content was ppm.
  • Example 3 The amount of oxygen supplied from the oxygen supply source was 150 Ncc / min, and the oxygen concentration in the source gas was 495 vol.
  • a purified gas was produced in the same manner as in Example 1 except that the content was ppm.
  • Examples 4 to 9 As shown in Table 2 below, the main component of the raw material gas has been changed, the combustible component in the raw material gas has been changed, the catalytic reaction temperature has been changed, and the first region 1A is replaced with zeolite. A purified gas was produced in the same manner as in Example 1 except that activated alumina or silica gel was used.
  • Comparative Example 1 Production of purified gas was attempted in the same manner as in Example 1 except that oxygen gas was not supplied from the oxygen supply source to the raw material gas.
  • Comparative Example 2 >> The amount of oxygen supplied from the oxygen supply source is 90 Ncc / min, and the oxygen concentration in the source gas is 300 vol. An attempt was made to produce purified gas in the same manner as in Example 1 except that the content was ppm.
  • Comparative Example 3 >> The amount of oxygen supplied from the oxygen supply source is 200 Ncc / min, and the oxygen concentration in the source gas is 670 vol. An attempt was made to produce purified gas in the same manner as in Example 1 except that the content was ppm.
  • A The hydrogen concentration, hydrocarbon concentration, oxygen concentration, and carbon dioxide concentration in the purified gas were 2 vol. If it is ppm or less and the dew point is -76 ° C or less, B: Any of hydrogen concentration, hydrocarbon concentration, oxygen concentration, and carbon dioxide concentration in the purified gas is 2 vol. If it is higher than ppm or the dew point is higher than -76 ° C.
  • the oxygen concentration of the raw material gas introduced into the catalyst tower is 360 vol. ppm or more 495 vol. It can be understood that it is preferable to be not more than ppm. Needless to say, the value can be appropriately changed according to the amount of combustible components in the raw material gas, the amount of getter agent contained in the purification tower, and the like.
  • the hydrocarbon concentration in the gas derived from the first purification tower 1 is 2 vol. It was higher than ppm, and purified gas could not be obtained.
  • the oxygen concentration in the raw material gas introduced into the catalyst tower is 360 vol. Since it was less than ppm, it is considered that the catalytic reaction in the catalyst tower did not proceed sufficiently.
  • Comparative Example 3 shows that the oxygen concentration in the gas derived from the first purification tower 1 is 2 vol. It was higher than ppm, and purified gas could not be obtained.
  • the oxygen concentration in the raw material gas introduced into the catalyst tower is 495 vol. It was considered that the oxygen concentration in the raw material gas stream introduced into the purification tower was excessive because it exceeded ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Materials Engineering (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Catalysts (AREA)

Abstract

原料ガス中の少なくとも可燃成分を酸素存在下で触媒反応に供するための触媒塔と、触媒塔を経た原料ガス中の少なくとも水分および酸素を除去し、精製ガスを得るための精製塔を備え、精製塔は第1領域および第2領域を含み、第1領域は原料ガス中の少なくとも水分を吸着除去する領域であり、第2領域は第1領域を経た原料ガス中の少なくとも酸素を除去し、精製ガスを得る領域である精製ガスの製造装置ならびに、精製ガスの製造方法が提供される。

Description

精製ガスの製造装置および精製ガスの製造方法
 本発明は、精製ガスの製造装置および精製ガスの製造方法に関する。
 特公平03-7603(特許文献1)は、希ガス等の不活性ガスに含まれる可燃成分を除去するために、酸素存在下で不活性ガスと金属触媒とを接触させることにより、可燃成分を焼却除去する不純物燃焼方法を開示している。
 特開平7-31877号公報(特許文献2)は、不純物として酸素および水分を含む不活性ガスを、ニッケル等を主成分とするゲッター剤と加熱条件下において接触させることにより不活性ガスから酸素を除去し、その後不活性ガスに残存する水分を常温において吸着除去し、精製ガスを製造することを開示している。
特公平03-7603号公報 特開平7-31877号公報
 近年、CAPEX(CAPital EXpence)やOPEX(OPeration EXpence)が削減された精製ガスの製造装置および精製ガスの製造方法が求められている。CAPEXの削減は、たとえば機器点数の削減であり得る。OPEXの削減は、たとえば精製ガス製造装置に使用される消耗品の量(たとえば吸着剤の量)の削減や機器点数の削減に伴うメンテナンス費用の削減であり得る。
 原料ガスが不純物として可燃成分を含む場合、たとえば特許文献1と特許文献2に開示される方法を組み合わせることにより、原料ガスから不純物を除去し、精製ガスを製造し得る。具体的には、酸素存在下で可燃成分と金属触媒とを接触させることにより、可燃成分を二酸化炭素と水分に転化させる。その後、原料ガスに残存する酸素を加熱条件下においてゲッター剤により除去し、次いで二酸化炭素および水分を常温において吸着除去することにより、精製ガスを製造し得る。
 しかしながら、特許文献1に開示される不純物燃焼方法においては、可燃成分を焼却除去するための酸素が過剰となり得る。係る場合、酸素を除去するためのゲッター剤が過剰に必要となると考えられ、CAPEXが増加すると考えられる。ゲッター剤は定期的に交換されることを要する。過剰な量のゲッター剤を交換する必要があるため、酸素量が適切な場合と比して、OPEXも増加するおそれがある。また、特許文献1に開示される不純物燃焼方法においては、可燃成分を焼却除去するための酸素が不足する可能性もある。係る場合、可燃成分が除去しきれないものと考えられる。そのため、精製ガス中の可燃成分を除去する設備を新たに設ける必要があり得る。すなわち、CAPEXおよびOPEXが増加するおそれがある。
 また、特許文献2において開示される精製ガスの製造方法は、原料ガス中の酸素を除去する工程と原料ガスから水分を除去する工程との間に、原料ガスを常温まで冷却する工程が必要となる。すなわち、原料ガス中の酸素を除去するための設備と原料ガス中の水分を除去するための設備との間に、冷却手段を設ける必要がある。また、連続運転のためには、水分を除去するためのゼオライト塔および酸素を除去するためのゲッター塔がそれぞれ2塔、合計4つの塔が必要である。すなわち、機器点数の削減(CAPEXの削減)および機器点数を削減することによるメンテナンス費の削減(OPEXの削減)において改善の余地がある。
 本発明の目的は、原料ガスが不純物として少なくとも可燃成分を含む際に、コストが削減された精製ガスの製造装置および精製ガスの製造方法を提供することにある。
 本発明は、以下に示す精製ガスの製造装置および精製ガスの製造方法を提供する。
 [1] 原料ガス中の少なくとも可燃成分を酸素存在下で触媒反応に供するための触媒塔と、前記触媒塔を経た前記原料ガス中の少なくとも水分および酸素を除去し、精製ガスを得るための精製塔を備え、前記精製塔は、第1領域および第2領域を含み、前記第1領域は、前記原料ガス中の少なくとも水分を吸着除去するための領域であり、前記第2領域は、前記第1領域を経た前記原料ガス中の少なくとも酸素を除去し、精製ガスを得るための領域である、精製ガスの製造装置。
 [2] 前記第1領域は、前記原料ガス中の二酸化炭素を更に吸着除去するための領域である、[1]に記載の製造装置。
 [3] 前記触媒塔は、60℃以上350℃以下の温度で触媒反応を行うための触媒塔である、[1]または[2]に記載の製造装置。
 [4] 前記触媒塔は、パラジウム系触媒を含む、[1]~[3]のいずれかに記載の製造装置。
 [5] 酸素供給源と、前記酸素供給源と前記触媒塔の入口とを接続するための接続路であって、前記酸素供給源から前記触媒塔の入口へ酸素ガスを導入するための第1接続路と、を更に備える、[1]~[4]のいずれかに記載の製造装置。
 [6] 前記第1領域は、ゼオライト、活性アルミナ、およびシリカゲルからなる群より選択されるいずれかを含み、前記第2領域は、ゲッター剤を含む、[1]~[5]のいずれかに記載の製造装置。
 [7] 前記ゲッター剤は、銅を含む、[6]に記載の製造装置。
 [8] 前記原料ガスは、少なくとも窒素または希ガスのいずれかを含む、[1]~[7]のいずれかに記載の製造装置。
 [9] 前記可燃成分は、少なくとも水素または炭化水素のいずれかを含む、[1]~[8]のいずれかに記載の製造装置。
 [10] 反応器と、前記反応器と前記触媒塔とを接続するための接続路であって、前記反応器から前記触媒塔へ前記原料ガスを導入するための第2接続路と、前記反応器と前記精製塔とを接続するための接続路であって、前記精製塔から導出される前記精製ガスを前記反応器へ戻すための第3接続路と、を更に備える、[1]~[9]のいずれかに記載の製造装置。
 [11] 原料ガスを、触媒塔に導入すること、前記触媒塔内で、前記原料ガス中の少なくとも可燃成分を酸素存在下で触媒反応に供すること、前記触媒塔を経た前記原料ガスを、第1領域および第2領域を含む精製塔に導入すること、前記第1領域において、前記原料ガス中の少なくとも水分を吸着除去すること、前記第2領域において、前記第1領域にて水分が吸着除去された前記原料ガス中の少なくとも酸素を除去すること、前記第2領域にて酸素が除去された前記原料ガスを、精製ガスとして導出すること、を含む、精製ガスの製造方法。
 [12] 前記第1領域において、前記原料ガス中の二酸化炭素を吸着除去することを含む、[11]に記載の製造方法。
 [13] 前記触媒反応は、60℃以上350℃以下の温度で行われる、[11]または[12]に記載の製造方法。
 [14] 前記触媒塔は、パラジウム系触媒を含む、[11]~[13]のいずれかに記載の製造方法。
 [15] 酸素供給源から前記触媒塔の入口へと酸素ガスを導入することを更に含む、[11]~[14]のいずれかに記載の製造方法。
 [16] 前記第1領域は、ゼオライト、活性アルミナ、およびシリカゲルからなる群より選択されるいずれかを含み、前記第2領域は、ゲッター剤を含む、[11]~[15]のいずれかに記載の製造方法。
 [17] 前記ゲッター剤は、銅を含む、[16]に記載の製造方法。
 [18] 前記原料ガスは、少なくとも窒素または希ガスのいずれかを含む、[11]~[17]のいずれかに記載の製造方法。
 [19] 前記可燃成分は、少なくとも水素または炭化水素のいずれかを含む、[11]~[18]のいずれかに記載の製造方法。
 [20] 反応器から導出されたガスを、前記原料ガスとして前記触媒塔に導入すること、および、前記精製塔から導出された前記精製ガスを、前記反応器に導入すること、を更に含む、[11]~[19]のいずれかに記載の製造方法。
 本発明によれば、原料ガスが不純物として少なくとも可燃成分を含む際に、コストが削減された精製ガスの製造装置および精製ガスの製造方法を提供することができる。
本発明に係る、精製ガスを製造するための装置構成の一例を示す概略図である。
 以下、実施の形態を示しながら、本発明について詳細に説明する。ただし以下の説明は請求の範囲を限定するものではない。
<用語の定義>
 本明細書において、下記の用語の意味は下記の通りである。
 (1)「精製ガス」とは、原料ガス中に含まれる不純物の濃度が低減されたガスを示す。
 (2)「酸素存在下」とは、原料ガス中に酸素が0vol.ppmを超えて含まれている状態を示す。
 (3)「主成分」とは、原料ガスを構成する成分(ガス)のうち、最も体積含有量が多い成分(ガス)を示す。
 (4)「希ガス」とは、通常、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)、キセノン(Xe)、ラドン(Rn)、およびオガネソン(Og)の総称であるが、本明細書においては、He、Ne、Ar、Kr、Xeのいずれかを示す。
 (5)「炭化水素」とは、C(但し、nおよびmは正の整数である)で表される炭素原子と水素原子とで構成される化合物を示す。
 (6)「ゲッター剤」とは、原料ガスから少なくとも酸素を除去する作用をなす物質を示す。
 (7)「コストが削減された」とは、少なくともCAPEXおよびOPEXのいずれかが削減される場合を示す。
<精製ガスの製造装置>
 図1は、本発明に係る精製ガスを製造するための装置構成の一例を示す概略図である。精製ガスの製造装置100は、原料ガス中の少なくとも可燃成分を酸素存在下で触媒反応に供するための触媒塔50と、触媒塔50を経た原料ガス中の少なくとも水分および酸素を除去し、精製ガスを得るための精製塔(第1精製塔1,第2精製塔2)を備える。精製塔(第1精製塔1,第2精製塔2)は、第1領域(1A,2A)および第2領域(1B,2B)を含む。第1領域(1A,2A)は、原料ガス中の少なくとも水分を吸着除去するための領域である。第2領域(1B,2B)は、第1領域を経た原料ガス中の少なくとも酸素を除去し、精製ガスを得るための領域である。以下、精製ガスの製造装置100に含まれる各機器について詳細に説明する。
 なお、図1においては精製塔が2塔の例が示されているが、精製塔は1塔であってもよいし、3塔以上であってもよい。精製塔を連続運転する観点からは、精製塔は2塔以上であることが望ましい。たとえば図1に示すように製造装置100が第1精製塔1と第2精製塔2とを含む場合、第1精製塔1を原料ガス中の少なくとも水分および酸素の除去に使用し、第2精製塔2を後述する再生ガスにて再生することができる。第2精製塔2が再生されれば、第2精製塔2を原料ガス中の不純物の除去に使用し、第1精製塔1を後述する再生ガスにて再生することができる。すなわち、精製ガスの製造を連続して行うことができる。以下の説明では、精製塔としては第1精製塔1が説明される。
<原料ガス>
 原料ガスは、不純物として少なくとも可燃成分を含む。原料ガスは、主成分として、たとえば窒素(N)や希ガスを含んでもよい。原料ガスは、上記のガスを両方含んでもよい。原料ガスは、少なくとも窒素または希ガスのいずれかを含んでもよい。
 可燃成分は、水素ガスや炭化水素ガスであり得る。炭化水素は、たとえばメタン(CH)、エタン(C)、エチレン(C)、プロパン(C)、ブタン(C10)、およびアセチレン(C)等であり得る。原料ガスは、不純物として上記のガスを複数含んでもよい。原料ガスは、少なくとも水素または炭化水素のいずれかを含んでもよい。
<触媒塔>
 触媒塔50は、原料ガス中の少なくとも可燃成分を酸素存在下で触媒反応に供するための塔である。たとえば可燃成分が水素である場合、水素は酸素存在下における触媒反応により酸化されて水へと転化される。たとえば可燃成分が炭化水素である場合、炭化水素は酸素存在下における触媒反応により酸化されて二酸化炭素と水へと転化される。
《触媒反応温度》
 触媒塔50は、60℃以上350℃以下の温度で触媒反応を行うように構成されてもよい。すなわち触媒塔50は、60℃以上350℃以下の温度で触媒反応を行うための触媒塔であってもよい。触媒塔50の触媒反応温度を調整するために、触媒塔50の上流に原料ガスを加熱するための昇温手段40を配置してもよい。
 触媒塔50において触媒反応が60℃未満で行われた場合、触媒反応が不十分となる可能性がある。触媒塔50において触媒反応が350℃を超える温度で行われた場合、昇温手段40の電力消費量(すなわち、OPEX)に改善の余地が生じるおそれがある。
 触媒塔50を経た原料ガスの熱エネルギーを回収するために、触媒塔50に導入される前の原料ガスと触媒塔50を経た原料ガスとを間接熱交換させるための原料ガス熱交換器30を設けてもよい。原料ガス熱交換器30により、触媒塔50に導入される前の原料ガスは昇温され得る。原料ガス熱交換器30により、触媒塔50を経た原料ガスは降温され得る。
 原料ガス熱交換器30により昇温手段40に導入される原料ガスの温度が高くなれば、原料ガス熱交換器30を経た原料ガスをたとえば60℃以上350℃以下の反応温度まで昇温するための昇温手段40(たとえば、ヒータ)が要する電力を削減することができる。すなわち、OPEXの削減が期待される。
 原料ガス熱交換器30により触媒塔50を経た原料ガスの温度が低くなれば、原料ガス中の水分の分圧が下がると考えられる。そのため、後述する精製塔に含まれる第1領域1Aの容量の削減や第1領域1Aに含まれる充填物の量を減少させることが可能となる。すなわち、OPEXおよびCAPEXの削減が期待される。
 原料ガス熱交換器30を設けずに、触媒塔50を経た原料ガスを冷却する冷却手段(図示せず)を設けてもよい。原料ガス熱交換器30を設置することと比して昇温手段40が要する電力は大きくなると考えられるが、原料ガス熱交換器30を設置することと比してCAPEXの削減が期待される。
 原料ガス熱交換器30を設けずに、触媒塔50を経た原料ガスを冷却しなくてもよい。係る場合、触媒塔50を経た原料ガスが冷却される場合と比して後述する精製塔の容量が大きくなると考えられる。
《触媒》
 触媒塔50に含まれる触媒は特に制限されるべきではない。原料ガス中の少なくとも可燃成分を酸素存在下で触媒反応に供し得る物質は、触媒として用い得る。触媒塔50に含まれる触媒は、たとえばパラジウム系触媒や白金系触媒であってもよい。すなわち、触媒塔50は、パラジウム系触媒や白金系触媒を含んでもよい。
《第1接続路》
 触媒塔50の触媒反応において可燃成分をより効率的に触媒反応に供するためには、触媒反応に必要な化学当量の1.1倍以上1.5倍以下の酸素が原料ガスに含まれていることが望ましい。原料ガスが触媒反応に必要な化学当量の1.1倍未満の酸素を含む場合、触媒反応が十分進行せず、可燃成分が残存する可能性がある。そのため、精製ガス中の可燃成分を除去する設備を新たに設ける必要があり得る(すなわち、CAPEXおよびOPEXが増加し得る)。原料ガスが触媒反応に必要な化学当量の1.5倍を超える酸素を含む場合、酸素の量が過剰であり、後述する第2領域1Bにおいて酸素が除去しきれないおそれがある。そのため、第2領域1Bの容量を増加させる必要が生じるおそれがある(すなわち、CAPEXおよびOPEXが増加し得る)。
 精製ガスの製造装置100は、酸素供給源(図示せず)と、酸素供給源と触媒塔50の入口とを接続するための接続路であって、酸素供給源から触媒塔50の入口へ酸素ガスを導入するための第1接続路L1を更に備えることが望ましい。第1接続路L1を介して酸素が供給されることにより、触媒塔50に導入される原料ガスが、触媒反応に必要な化学当量の1.1倍以上1.5倍以下の酸素を含有し得る。なお、原料ガスに予め十分な酸素が含まれている場合には、バルブV101を閉とし、酸素の供給を断てばよい。
<精製塔>
 第1精製塔1は、第1領域1Aおよび第2領域1Bを含む。原料ガス中の少なくとも水分は、第1領域1Aにおいて吸着除去される。第2領域1Bにおいて、第1領域1Aを経た原料ガス中の少なくとも酸素が除去される。
《第1領域》
 第1領域1Aは、原料ガス中の少なくとも水分を吸着するための領域である。原料ガスが炭化水素を含む場合、触媒塔50における触媒反応により水分に加えて二酸化炭素が不純物として原料ガスに含まれ得る。そのため、第1領域1Aは、原料ガス中の二酸化炭素を更に吸着除去するための領域であることが望ましい。
 第1領域1Aは、充填物としてゼオライト、活性アルミナ、およびシリカゲルからなる群より選択されるいずれかを含んでもよい。第1領域1Aが充填物としてゼオライト、活性アルミナ、およびシリカゲルからなる群より選択されるいずれかを含むことにより、原料ガス中の少なくとも水分がより吸着されるものと考えられる。また、ゼオライト、活性アルミナ、およびシリカゲルは水分に加えて、二酸化炭素も吸着すると考えられる。これにより、原料ガス中の水分および二酸化炭素量が低減されると考えられる。
《第2領域》
 第2領域1Bは、第1領域1Aを経た原料ガス中の少なくとも酸素を除去し、精製ガスを得るための領域である。第2領域1Bは、充填剤としてゲッター剤を含むことが望ましい。第2領域1Bが充填剤としてゲッター剤を含むことにより、第1領域1Aを経た原料ガス中の酸素がより除去されるものと考えられる。すなわち、第1領域は、ゼオライト、活性アルミナ、およびシリカゲルからなる群より選択されるいずれかを含み、第2領域1Bは、ゲッター剤を含んでもよい。
 ゲッター剤は特に制限されるべきではない。原料ガスから少なくとも酸素を除去する作用を有し得る物質は、ゲッター剤として用い得る。ゲッター剤は、シリカ、アルミナ、ゼオライト、活性炭等の担体に銅等の金属が担持されたものであり得る。すなわち、ゲッター剤は銅を含んでもよい。銅は安価で入手しやすいため、精製ガスの製造装置100のランニングコスト(すなわち、OPEX)が低減され得ると期待される。ゲッター剤が銅を含む場合、下記式(1)の反応により酸素が除去されると考えられる。
  [式1]
 2Cu+O → 2CuO ・・・(1)
 ゲッター剤が銅を含む場合、たとえば150℃程度の加熱条件下で水素とゲッター剤とを反応させることにより、下記式(2)の反応により銅が還元される。すなわち、ゲッター剤を再生することができる。再生されたゲッター剤は、再度原料ガスから少なくとも酸素を除去するために用い得る。
  [式2]
 CuO+H → Cu+HO ・・・(2)
《その他の構成1》
 原料ガスは、反応器(図示せず)より導入されるガスであってもよい。また、精製ガスは、反応器(図示せず)に導出されるガスであってもよい。すなわち本発明に係る精製ガスの製造装置100は、反応器と触媒塔50とを接続するための接続路であって、反応器から触媒塔50へ原料ガスを導入するための第2接続路(図示せず)を有してもよい。また、反応器(図示せず)と精製塔(第1精製塔1,第2精製塔2)とを接続するための接続路であって、精製塔(第1精製塔1,第2精製塔2)から導出される精製ガスを反応器(図示せず)へ戻すための第3接続路(図示せず)を更に有してもよい。
《その他の構成2》
 本発明に係る精製ガスの製造装置100は、第1領域1Aおよび第2領域1Bを再生するための再生ガス供給路L2を含むことが望ましい。再生ガスは、加熱された窒素、および水素を含むことが望ましい。加熱された窒素により、第1領域1Aが再生され得る。水素により、第2領域1Bが再生され得る。精製ガスの製造装置100は、窒素を加熱するためのヒータ60を備えることが望ましい。
<精製ガスの製造方法>
 本発明に係る精製ガスの製造方法は、原料ガスを触媒塔に導入すること(原料ガス導入工程1)を含む。触媒塔内で、原料ガス中の少なくとも可燃成分が酸素存在下で触媒反応に供される(触媒反応工程)。触媒塔を経た原料ガスは、第1領域および第2領域を含む精製塔に導入される(原料ガス導入工程2)。第1領域において、原料ガス中の少なくとも水分が吸着除去される(水分吸着除去工程)。第2領域において、第1領域にて水分が吸着除去された原料ガス中の少なくとも酸素が除去される(酸素除去工程)。第2領域にて酸素が除去された原料ガスは、精製ガスとして導出される(精製ガス導出工程)。以下、図1を参照して、第1精製塔1が使用されていると仮定し、精製ガスの製造方法の各工程について詳細に説明する。
《原料ガス導入工程1》
 本工程は、原料ガスを触媒塔50に導入するに導入する工程である。原料ガスは、少なくとも可燃成分を含む限り、特に限定されない。原料ガスは、主成分として、たとえば窒素および希ガス等を含んでもよい。すなわち原料ガスは、少なくとも窒素または希ガスのいずれかを含んでもよい。可燃成分は、水素や炭化水素を含んでもよい。すなわち可燃成分は、少なくとも水素または炭化水素のいずれかを含んでもよい。
 原料ガスは、反応器(図示せず)から導出されるガスであってもよい。原料ガスは、熱交換器30により昇温されてもよいし、昇温されなくてもよい。原料ガスは、昇圧機(図示せず)により所定の圧力まで昇圧されてから触媒塔50に導入されてもよい。原料ガスは、減圧弁(図示せず)により所定の圧力まで減圧されてから触媒塔50に導入されてもよい。
(酸素供給工程)
 原料ガスは、酸素供給源(図示せず)から触媒塔50の入口へと第1接続路L1を介して導入された酸素ガスと混合された後、触媒塔50に導入されてもよい。すなわち、原料ガス導入工程1は、酸素供給源(図示せず)から触媒塔50の入口へと酸素ガスを導入すること(酸素供給工程)を更に含んでもよい。酸素供給工程により、原料ガスは後述する触媒反応工程において必要な化学当量の1.1倍以上1.5倍以下の酸素を含有し得る。原料ガスに含まれる酸素量に応じて、酸素供給工程は、バルブV101を閉とすることにより省略され得る。
《触媒反応工程》
 本工程は、原料ガス導入工程1により触媒塔50に導入された原料ガス中の少なくとも可燃成分を酸素存在下で触媒反応に供する工程である。図1を参照して、本工程は、たとえば原料ガスを昇温手段40にて所定の温度まで昇温した後触媒塔11に導入し、第1吸着工程後の原料ガス中に含まれる少なくとも可燃成分を触媒反応させる操作により実施することができる。触媒反応工程において用い得る触媒は、上述の通りパラジウム系触媒や白金系触媒であってもよい。触媒塔50における触媒反応の温度は、上述通り60℃以上350℃以下の温度であってもよい。
《原料ガス導入工程2》
 本工程は、触媒塔50を経た原料ガスを、第1領域1Aおよび第2領域1Bを含む精製塔1に導入する工程である。触媒塔50を経た原料ガスは、原料ガス熱交換器30により降温された後に精製塔1に導入されてもよい。触媒塔50を経た原料ガスは、冷却手段(図示せず)により降温された後に精製塔1に導入されてもよい。触媒塔50を経た原料ガスは、冷却されることなく精製塔1に導入されてもよい。
《水分吸着除去工程》
 本工程は、第1領域1Aにおいて原料ガス導入工程2により導入された原料ガス中の少なくとも水分を吸着除去する工程である。原料ガス中の水分は、たとえば第1領域1Aに含まれる充填物により吸着除去され得る。原料ガスが炭化水素を含む場合、触媒反応工程における触媒反応により水分に加えて二酸化炭素が不純物として原料ガスに含まれ得る。そのため、第1領域1Aにおいて、原料ガス中の二酸化炭素を更に吸着除去することを含むことが望ましい。1領域1Aに含まれ得る充填物は、上述の通りゼオライト、活性アルミナ、およびシリカゲルからなる群より選択されるいずれかであってもよい。
 水分吸着除去工程は、たとえば0.1MaG以上0.9MPaG以下の吸着圧力で行われてもよい。たとえば原料ガス導入工程2において原料ガスが降温されている場合、水分吸着除去工程は10℃以上40℃以下の吸着温度で行われてもよい。原料ガス導入工程2において原料ガスが降温されていない場合、吸着温度は精製塔1に導入される原料ガスの温度に依存した温度で行われてもよい。原料ガス中の水分の分圧を下げる観点からは、水分吸着除去工程は10℃以上40℃以下の吸着温度で行われることが望ましい。
《酸素除去工程》
 本工程は、第1領域1Aにて水分が吸着除去された原料ガス中の少なくとも酸素を第2領域1Bにおいて除去する工程である。原料ガス中の酸素は、たとえば第2領域1Bに含まれるゲッター剤により除去され得る。用い得るゲッター剤は、上述の通りシリカ、アルミナ、ゼオライト、活性炭等の担体に銅等の金属が担持されたものであり得、該金属は銅であり得る。水分が吸着除去された原料ガス中の少なくとも酸素が除去されることにより精製ガスが製造される。
 酸素除去工程は、たとえば0.1MaG以上0.9MPaG以下の吸着圧力で行われてもよく、たとえば10℃以上40℃以下の吸着温度で行われてもよい。すなわち、水分吸着除去工程と酸素除去工程とは、同一の圧力および温度条件で行い得る。水分吸着除去工程から酸素除去工程に移行する際に圧力調整や温度調整を要しないため、機器点数の削減(すなわち、OPEXの削減)が期待される。
《精製ガス導出工程》
 本工程は、酸素除去工程により製造された精製ガスを導出する工程である。精製ガスは、要求される使用圧力に応じて昇圧機(図示せず)により所定の圧力まで昇圧されてもよい。精製ガスは、要求される使用圧力に応じて減圧弁(図示せず)により所定の圧力まで減圧されてもよい。精製ガスは、たとえば反応器に導入されてもよい。
<精製塔の再生方法>
 第1精製塔1および第2精製塔2は、再生ガスにより再生し得る。以下、第2精製塔2の再生方法について説明する。第2精製塔2の再生方法は、脱圧工程、加熱工程、加熱再生工程、冷却工程、パージ工程、復圧工程、および両塔運転工程を含むことが望ましい。以下、各工程について説明する。なお、第2精製塔2の再生で操作するバルブはV21~V25、V60、およびV61である。第1精製塔1のバルブは、V11およびV15が開(OPEN)とされ、V12~V14が閉(CLOSE)とされている。
《脱圧工程》
 本工程は、V24を開とし、その他のバルブを閉とすることにより、第2精製塔2内のガスをベントに放出し、第2精製塔2内の圧力を大気圧近くまで脱圧する工程である。第2精製塔2が大気圧近くまで脱圧されることにより、第1領域2Aに吸着された水分の脱着が容易になることに加え、後述の工程において再生ガスを第2精製塔2に導入する際に、再生ガスの昇圧手段を省略し得る。たとえば、第2精製塔2内の圧力が略大気圧に達するまでを脱圧工程としてもよい。
《加熱工程》
 本工程は、脱圧工程の後に行われる工程である。本工程においては、V23、V24、およびV60を開とし、その他のバルブを閉とし、ヒータ60により加熱された窒素ガスを第2精製塔2に流通させ、第2精製塔2を加熱する工程である。ヒータ60出口の窒素ガスの温度は、たとえば120℃以上220℃以下であってもよい。たとえば、第1領域2Aおよび第2領域2Bの温度が約120℃~220℃に達するまでを加熱工程としてもよい。
《加熱再生工程》
 本工程は、加熱工程の後に行われる工程である。本工程においては、V23、V24、V60、およびV61を開とし、その他のバルブを閉とし、ヒータ60により加熱された窒素ガス、および水素ガス(すなわち、再生ガス)を第2精製塔2に流通させ、第1領域2Aおよび第2領域2Bを再生する工程である。本工程中の第1領域2Aおよび第2領域2Bの温度は、約120℃~220℃に保たれることが望ましい。ヒータ60により加熱された窒素ガスにより、第1領域2Aが再生されると考えられる。V61を介して導入された水素ガスにより、第2領域2Bが再生されると考えられる。たとえば、再生ガスを第2精製塔2に導入してから0.5時間~3時間が経過するまでを加熱再生工程としてもよい。加熱再生工程に要する時間は、第2精製塔2の容量や再生ガスの温度により適宜調整され得る。
《冷却工程》
 本工程は、加熱再生工程の後に行われる工程である。本工程においては、V23、V24、およびV60を開とし、その他のバルブを閉とし、常温の窒素ガスを第2精製塔2に流通させ、第2精製塔2を冷却する工程である。たとえば、第1領域2Aおよび第2領域2Bの温度が常温に達するまでを冷却工程としてもよい。
《パージ工程》
 本工程は、冷却工程の後に行われる工程である。本工程においては、V22およびV24を開とし、その他のバルブを閉とし、精製ガスを第1精製塔1から第2精製塔2に導入し、第2精製塔2を精製ガスにてパージする工程である。たとえば、精製ガスによる第2精製塔2のパージを開始してから5分~20分が経過するまでをパージ工程としてもよい。パージ工程に要する時間は、第2精製塔2の容量により適宜調整され得る。
《復圧工程》
 本工程は、パージ工程の後に行われる工程である。本工程においては、V22を開とし、その他のバルブを閉とし、精製ガスを第1精製塔1から第2精製塔2に導入し、第2精製塔2を昇圧する工程である。たとえば、第2精製塔2の圧力が第2精製塔2の運転圧力に達するまでを復圧工程としてもよい。第2精製塔2の運転圧力は、たとえば0.1MaG以上0.9MPaG以下であってもよい。
《両塔運転工程》
 本工程は、復圧工程の後に行われる工程である。本工程においては、V21およびV25を開とし、その他のバルブを閉とし、第1精製塔1および第2精製塔2により精製ガスを製造する工程である。本工程は、たとえば5分~20分行われてもよい。両塔運転工程を経た後、第2精製塔2を用いた精製ガスの製造が行い得る。第1精製塔1は、前述の脱圧工程、加熱工程、加熱再生工程、冷却工程、パージ工程、復圧工程、および両塔運転工程により再生され得る。
 以上の通り、精製ガスの製造装置100が2つの精製塔を備えることにより、1塔を原料ガス中の不純物の除去(すなわち、精製ガスの製造)に使用し、その間に他の精製塔を再生することができる。すなわち、精製ガスの製造を連続して行うことができる。以下の表1には、各工程における、V21~V25、V60、およびV61のポジションが示されている。
Figure JPOXMLDOC01-appb-T000001
 以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。
<精製ガスの製造>
《実施例1》
1.原料ガスの導入工程1
 図1に記載の構成を有する装置が準備された。以下に示すヘリウムを主成分とするガスが、反応器より原料ガスとして導入された。
 原料ガス流量:300NL/min、
 原料ガス中の水素濃度:180vol.ppm、
 原料ガス中のメタン濃度:120vol.ppm、
 原料ガス中の酸素濃度:10vol.ppm、
 原料ガスの露点:-20℃。
 原料ガス圧力:0.2MPaG。
(酸素供給工程)
 酸素供給源から、第1接続路L1を介して触媒塔50の入口において、酸素ガスが原料ガスに供給された(酸素供給工程)。酸素供給源から供給された酸素量は、130Ncc/minである。これにより、原料ガス中の酸素濃度は430vol.ppmとなった。
 酸素供給工程を経た原料ガスが、熱交換器30に導入された。酸素供給工程を経た原料ガスは、熱交換器30において触媒塔50を経た原料ガスと間接熱交換させることにより昇温された。熱交換器30から導出された酸素供給工程を経た原料ガスは、昇温手段40により更に昇温された。酸素供給工程を経た原料ガスは、その後触媒塔50に導入された。
2.触媒反応工程
 触媒塔50内で、原料ガス中の可燃成分(すなわち、水素およびメタン)が酸素存在下で触媒反応に供された。触媒塔50に用いられた触媒は、固形成分としてパラジウムおよび酸化アルミニウムを含んでいる。触媒中のパラジウムと酸化アルミニウムとの質量比は、約0.5:約99.5であった。触媒反応は、酸素存在下で触媒反応温度300℃にて行われた。これにより、可燃成分が水分および二酸化炭素に転化された。
3.原料ガス導入工程2
 触媒塔50を経た原料ガスが、原料ガス熱交換器30に導入された。触媒塔50を経た原料ガスは、熱交換器30において酸素供給工程を経た原料ガスと間接熱交換させることにより20℃まで降温された。20℃まで降温された原料ガスは、その後第1精製塔1に導入された。
4.精製ガスの製造(水分吸着除去工程、酸素除去工程、および精製ガス導出工程)
 触媒塔50から導出された原料ガスが第1精製塔1に導入され、精製ガスが製造された。精製ガスの製造条件は以下の通りである。
 原料ガス流量:300NL/min、
 原料ガス中の酸素濃度:100vol.ppm、
 原料ガス中の二酸化炭素濃度:120vol.ppm、
 原料ガスの露点:-15℃、
 原料ガス中の水素濃度:1vol.ppm以下、
 原料ガス中のメタン濃度:1vol.ppm以下、
 精製塔吸着圧力(原料ガス圧力):0.2MPaG、
 精製塔吸着温度(原料ガス温度):20℃、
 ゲッター剤:[酸化亜鉛:酸化アルミニウム:酸化銅=約45:約12:約43(質量比)]、
 ゼオライト:商品名「F-9」(東ソー(株)より入手)。
 触媒塔50を経た原料ガスが、第1精製塔1に導入された。第1精製塔1内の第1領域1Aにおいて、原料ガス中の水分および二酸化炭素がゼオライトにより吸着除去された(水分吸着除去工程)。第1領域1Aを経た原料ガスに含まれる酸素が、第2領域1Bにおいてゲッター剤により除去された(酸素除去工程)。これにより、精製ガスが製造された。精製ガスは、上記反応器に導入された(精製ガス導出工程)。
《実施例2》
 酸素供給源から供給される酸素量を、100Ncc/minとし、原料ガス中の酸素濃度を360vol.ppmとしたことを除いては、実施例1と同様に精製ガスが製造された。
《実施例3》
 酸素供給源から供給される酸素量を、150Ncc/minとし、原料ガス中の酸素濃度を495vol.ppmとしたことを除いては、実施例1と同様に精製ガスが製造された。
《実施例4~実施例9》
 下記表2に示されるように、原料ガスの主成分が変更されたこと、原料ガス中の可燃成分が変更されたこと、触媒反応温度が変更されたこと、および第1領域1Aにおいてゼオライトに代えて活性アルミナまたはシリカゲルが用いられたことを除いては、実施例1と同様に精製ガスが製造された。
《比較例1》
 酸素供給源から原料ガスに酸素ガスが供給されなかったことを除いては、実施例1と同様に精製ガスの製造を試みた。
《比較例2》
 酸素供給源から供給される酸素量を、90Ncc/minとし、原料ガス中の酸素濃度を300vol.ppmとしたことを除いては、実施例1と同様に精製ガスの製造を試みた。
《比較例3》
 酸素供給源から供給される酸素量を、200Ncc/minとし、原料ガス中の酸素濃度を670vol.ppmとしたことを除いては、実施例1と同様に精製ガスの製造を試みた。
<評価>
 各実施例および各比較例において第1精製塔1から導出されたガスに含まれる可燃成分、酸素、水分、および二酸化炭素量が、ガスクロマトグラフィー(商品名:「GC2014ATF」((株)島津製作所より入手)により測定された。
(評価基準)
 下記表2における評価基準は以下の通りである。
 A:精製ガス中の水素濃度、炭化水素濃度、酸素濃度、および二酸化炭素濃度がそれぞれ2vol.ppm以下であり、かつ、露点が-76℃以下である場合、
 B:精製ガス中の水素濃度、炭化水素濃度、酸素濃度、および二酸化炭素濃度のいずれかが2vol.ppmよりも高いか、または、露点が-76℃よりも高い場合。
Figure JPOXMLDOC01-appb-T000002
<結果>
 上記表2に示されるように、実施例は精製ガス中の可燃成分、酸素、水分、および二酸化炭素量が抑制されていた。そのため、精製ガス中の可燃成分を除去する設備を新たに設けることを要しない。本発明においては、1つの精製塔内に第1領域と第2領域とが含まれている。そのため、少なくとも2塔の精製塔があれば、連続運転を行い得る。また、1領域と第2領域との間に冷却手段を設けることを要しなかった。すなわち、原料ガスが不純物として少なくとも可燃成分を含む際に、コストが削減された精製ガスの製造装置および精製ガスの製造方法が提供されることが示された。
 本実施例においては、精製ガスを得るためには触媒塔に導入される原料ガスの酸素濃度が360vol.ppm以上495vol.ppm以下であることが好ましいことが理解できる。なお、当該値は原料ガス中の可燃成分の量や、精製塔に含まれるゲッター剤の量等に応じて適宜に変更し得ることは言うまでもない。
 比較例1および比較例2は、第1精製塔1から導出されたガス中の炭化水素濃度が2vol.ppmよりも高く、精製ガスを得られなかった。触媒塔に導入された原料ガス中の酸素濃度が360vol.ppm未満であったため、触媒塔における触媒反応が十分に進行しなかったと考えられる。
 比較例3は、第1精製塔1から導出されたガス中の酸素濃度が2vol.ppmよりも高く、精製ガスを得られなかった。触媒塔に導入された原料ガス中の酸素濃度が495vol.ppmを超えていたため、精製塔に導入された原料ガス流の酸素濃度が過剰であったものと考えられる。
 今回開示された実施例および実施形態はすべての点で例示であって制限的なものではない。請求の範囲の記載によって確定される技術的範囲は、請求の範囲と均等の意味および範囲内でのすべての変更を含む。
 1 第1精製塔、2 第2精製塔、30 原料ガス熱交換器、40 昇温手段、50 触媒塔、60 ヒータ、1A,2A 第1領域、1B,2B 第2領域、V11,V12,V13,V14,V15,V21,V22,V23,V24,V25,V60,V61,V101 バルブ L1 第1接続路、L2 再生ガス供給路。

Claims (20)

  1.  原料ガス中の少なくとも可燃成分を酸素存在下で触媒反応に供するための触媒塔と、
     前記触媒塔を経た前記原料ガス中の少なくとも水分および酸素を除去し、精製ガスを得るための精製塔を備え、
     前記精製塔は、第1領域および第2領域を含み、
     前記第1領域は、前記原料ガス中の少なくとも水分を吸着除去するための領域であり、
     前記第2領域は、前記第1領域を経た前記原料ガス中の少なくとも酸素を除去し、精製ガスを得るための領域である、
     精製ガスの製造装置。
  2.  前記第1領域は、前記原料ガス中の二酸化炭素を更に吸着除去するための領域である、請求項1に記載の製造装置。
  3.  前記触媒塔は、60℃以上350℃以下の温度で触媒反応を行うための触媒塔である、請求項1または請求項2に記載の製造装置。
  4.  前記触媒塔は、パラジウム系触媒を含む、請求項1~請求項3のいずれか1項に記載の製造装置。
  5.  酸素供給源と、
     前記酸素供給源と前記触媒塔の入口とを接続するための接続路であって、前記酸素供給源から前記触媒塔の入口へ酸素ガスを導入するための第1接続路と、を更に備える、
     請求項1~請求項4のいずれか1項に記載の製造装置。
  6.  前記第1領域は、ゼオライト、活性アルミナ、およびシリカゲルからなる群より選択されるいずれかを含み、
     前記第2領域は、ゲッター剤を含む、
     請求項1~請求項5のいずれか1項に記載の製造装置。
  7.  前記ゲッター剤は、銅を含む、請求項6に記載の製造装置。
  8.  前記原料ガスは、少なくとも窒素または希ガスのいずれかを含む、請求項1~請求項7のいずれか1項に記載の製造装置。
  9.  前記可燃成分は、少なくとも水素または炭化水素のいずれかを含む、請求項1~請求項8のいずれか1項に記載の製造装置。
  10.  反応器と、
     前記反応器と前記触媒塔とを接続するための接続路であって、前記反応器から前記触媒塔へ前記原料ガスを導入するための第2接続路と、
     前記反応器と前記精製塔とを接続するための接続路であって、前記精製塔から導出される前記精製ガスを前記反応器へ戻すための第3接続路と、を更に備える、
     請求項1~請求項9のいずれか1項に記載の製造装置。
  11.  原料ガスを、触媒塔に導入すること、
     前記触媒塔内で、前記原料ガス中の少なくとも可燃成分を酸素存在下で触媒反応に供すること、
     前記触媒塔を経た前記原料ガスを、第1領域および第2領域を含む精製塔に導入すること、
     前記第1領域において、前記原料ガス中の少なくとも水分を吸着除去すること、
     前記第2領域において、前記第1領域にて水分が吸着除去された前記原料ガス中の少なくとも酸素を除去すること、
     前記第2領域にて酸素が除去された前記原料ガスを、精製ガスとして導出すること、を含む、
     精製ガスの製造方法。
  12.  前記第1領域において、前記原料ガス中の二酸化炭素を吸着除去することを含む、請求項11に記載の製造方法。
  13.  前記触媒反応は、60℃以上350℃以下の温度で行われる、請求項11または請求項12に記載の製造方法。
  14.  前記触媒塔は、パラジウム系触媒を含む、請求項11~請求項13のいずれか1項に記載の製造方法。
  15.  酸素供給源から前記触媒塔の入口へと酸素ガスを導入することを更に含む、
     請求項11~請求項14のいずれか1項に記載の製造方法。
  16.  前記第1領域は、ゼオライト、活性アルミナ、およびシリカゲルからなる群より選択されるいずれかを含み、
     前記第2領域は、ゲッター剤を含む、
     請求項11~請求項15のいずれか1項に記載の製造方法。
  17.  前記ゲッター剤は、銅を含む、請求項16に記載の製造方法。
  18.  前記原料ガスは、少なくとも窒素または希ガスのいずれかを含む、請求項11~請求項17のいずれか1項に記載の製造方法。
  19.  前記可燃成分は、少なくとも水素または炭化水素のいずれかを含む、請求項11~請求項18のいずれか1項に記載の製造方法。
  20.  反応器から導出されたガスを、前記原料ガスとして前記触媒塔に導入すること、および、
     前記精製塔から導出された前記精製ガスを、前記反応器に導入すること、
     を更に含む、請求項11~請求項19のいずれか1項に記載の製造方法。
PCT/JP2019/006256 2018-03-29 2019-02-20 精製ガスの製造装置および精製ガスの製造方法 WO2019187811A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980006610.3A CN111491711A (zh) 2018-03-29 2019-02-20 提纯气体的制造装置以及提纯气体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-064813 2018-03-29
JP2018064813A JP6695375B2 (ja) 2018-03-29 2018-03-29 精製ガスの製造装置および精製ガスの製造方法

Publications (1)

Publication Number Publication Date
WO2019187811A1 true WO2019187811A1 (ja) 2019-10-03

Family

ID=68059857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006256 WO2019187811A1 (ja) 2018-03-29 2019-02-20 精製ガスの製造装置および精製ガスの製造方法

Country Status (3)

Country Link
JP (1) JP6695375B2 (ja)
CN (1) CN111491711A (ja)
WO (1) WO2019187811A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7330225B2 (ja) * 2021-04-21 2023-08-21 大陽日酸株式会社 ガス精製装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107910A (ja) * 1982-12-10 1984-06-22 Toshiba Corp アルゴンガスの精製方法
JPH054809A (ja) * 1990-09-14 1993-01-14 Japan Pionics Co Ltd 希ガスの精製方法
JPH0578108A (ja) * 1991-02-25 1993-03-30 Union Carbide Ind Gases Technol Corp アルゴン精製方法及び装置
JPH0731877A (ja) * 1993-05-11 1995-02-03 Japan Pionics Co Ltd 不活性ガスの精製方法および装置
JPH08252431A (ja) * 1995-01-20 1996-10-01 Sinco Eng Spa 有機化合物から生じる不純物を含む不活性ガスの精製方法
JP2000233909A (ja) * 1999-02-10 2000-08-29 Kyodo Oxygen Co Ltd 単結晶製造炉からの排ガスアルゴンの精製方法
JP2006111506A (ja) * 2004-10-18 2006-04-27 Taiyo Nippon Sanso Corp 不純物含有アルゴンガスの精製方法および精製装置
JP2012051753A (ja) * 2010-08-31 2012-03-15 Taiyo Nippon Sanso Corp ガスの精製方法およびガス精製装置
JP2012229151A (ja) * 2011-04-12 2012-11-22 Sumitomo Seika Chem Co Ltd アルゴンガスの精製方法および精製装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2856049B1 (fr) * 2003-06-11 2006-08-18 Air Liquide Purification d'un melange h2/co par catalyse des impuretes
CN102730653A (zh) * 2011-04-12 2012-10-17 住友精化株式会社 氩气的纯化方法及纯化装置
CN205360966U (zh) * 2016-01-22 2016-07-06 池州森大轻工制品有限公司 一种气体纯化器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107910A (ja) * 1982-12-10 1984-06-22 Toshiba Corp アルゴンガスの精製方法
JPH054809A (ja) * 1990-09-14 1993-01-14 Japan Pionics Co Ltd 希ガスの精製方法
JPH0578108A (ja) * 1991-02-25 1993-03-30 Union Carbide Ind Gases Technol Corp アルゴン精製方法及び装置
JPH0731877A (ja) * 1993-05-11 1995-02-03 Japan Pionics Co Ltd 不活性ガスの精製方法および装置
JPH08252431A (ja) * 1995-01-20 1996-10-01 Sinco Eng Spa 有機化合物から生じる不純物を含む不活性ガスの精製方法
JP2000233909A (ja) * 1999-02-10 2000-08-29 Kyodo Oxygen Co Ltd 単結晶製造炉からの排ガスアルゴンの精製方法
JP2006111506A (ja) * 2004-10-18 2006-04-27 Taiyo Nippon Sanso Corp 不純物含有アルゴンガスの精製方法および精製装置
JP2012051753A (ja) * 2010-08-31 2012-03-15 Taiyo Nippon Sanso Corp ガスの精製方法およびガス精製装置
JP2012229151A (ja) * 2011-04-12 2012-11-22 Sumitomo Seika Chem Co Ltd アルゴンガスの精製方法および精製装置

Also Published As

Publication number Publication date
CN111491711A (zh) 2020-08-04
JP2019172532A (ja) 2019-10-10
JP6695375B2 (ja) 2020-05-20

Similar Documents

Publication Publication Date Title
KR960002190B1 (ko) 불활성 기체의 정제 방법
KR0172121B1 (ko) 개스의 저온 정제법
US7892328B2 (en) PSA apparatus for producing high-purity hydrogen gas
JP5566815B2 (ja) ガスの精製方法およびガス精製装置
KR20070028264A (ko) 기체 정제 방법
JP6523134B2 (ja) 水素ガス製造方法及び水素ガス製造装置
JPH0313161B2 (ja)
JP5896467B2 (ja) アルゴンガスの精製方法および精製装置
JP4814024B2 (ja) 高純度水素ガス製造用psa装置
JP3947752B2 (ja) 高純度水素製造方法
WO2019187811A1 (ja) 精製ガスの製造装置および精製ガスの製造方法
JP2017226562A (ja) 水素ガス製造方法及び水素ガス製造装置
EP1934136B1 (fr) Procede de production d'un flux gazeux enrichi en hydrogene a partir de flux gazeux hydrogenes comprenant des hydrocarbures
KR100856912B1 (ko) 정제질소 공급장치
WO2019187810A1 (ja) 精製ガスの製造装置および精製ガスの製造方法
JP5745434B2 (ja) アルゴンガスの精製方法および精製装置
KR101018388B1 (ko) 원료공기 정제장치 및 촉매 재활성화방법
JP6619687B2 (ja) 水素ガス製造方法及び水素ガス製造装置
JP2004344694A (ja) 空気液化分離装置における原料空気の精製方法
JPH0243684B2 (ja)
JP4004435B2 (ja) 圧力変動吸着装置による高純度ガスの製造方法
KR101823154B1 (ko) 아르곤 가스의 정제 방법 및 정제 장치
JP7117962B2 (ja) 一酸化炭素ガスの製造装置および一酸化炭素ガスの製造方法
KR101106193B1 (ko) 공기분리장치용 산화촉매의 재활성화장치 및 그 재활성화방법
JP2017218363A (ja) 水素ガス製造方法及び水素ガス製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775398

Country of ref document: EP

Kind code of ref document: A1