JP3947752B2 - 高純度水素製造方法 - Google Patents

高純度水素製造方法 Download PDF

Info

Publication number
JP3947752B2
JP3947752B2 JP2005328979A JP2005328979A JP3947752B2 JP 3947752 B2 JP3947752 B2 JP 3947752B2 JP 2005328979 A JP2005328979 A JP 2005328979A JP 2005328979 A JP2005328979 A JP 2005328979A JP 3947752 B2 JP3947752 B2 JP 3947752B2
Authority
JP
Japan
Prior art keywords
adsorbent
gas
adsorption
psa
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005328979A
Other languages
English (en)
Other versions
JP2007015910A (ja
Inventor
昇 中尾
慶太 由良
岳史 山下
彰利 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005328979A priority Critical patent/JP3947752B2/ja
Priority to PCT/JP2006/308641 priority patent/WO2006132040A1/ja
Priority to US11/921,513 priority patent/US8372375B2/en
Publication of JP2007015910A publication Critical patent/JP2007015910A/ja
Application granted granted Critical
Publication of JP3947752B2 publication Critical patent/JP3947752B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、リン酸形や固体高分子形等のプロトン伝導形燃料電池等に用いられる高純度水素の製造方法に関し、詳しくは、燃料電池のエネルギ源(燃料)である水素を製造する際に副生する一酸化炭素や二酸化炭素、水や、未反応のメタンなどを除去し、高純度の水素を効率良く製造する方法に関する。
近年、地球温暖化防止対策ともあいまって、エネルギの原油依存体質からの脱却が世界的規模で重要課題となっており、環境保全に対する取組みが先行する欧州の先進国はもとより、米国や日本をはじめとするアジア諸国においても、水素ガスをエネルギ源とする燃料電池の実用化に向けての取組みが活発化している。
燃料電池の燃料として使用される水素ガスの製造方法についても多くの研究が進められているが、現時点で最も安価で実現性の高い製造方法は、原料として天然ガス、LPG、灯油、ガソリン、メタノール、ジメチルエーテルなどを使用し、これらを改質して水素ガスを製造する方法である。このような原料を改質して水素ガスを製造する方法、例えば天然ガスを改質して水素を製造するプロセスでは、通常水蒸気改質法が最もよく用いられている。天然ガスの主成分はメタン(CH)であり、水蒸気改質法において以下のような2段階の反応で水素が生成する。
(1)改質反応
CH+HO → CO+3H
(2)変成反応
CO+HO → CO+H
上記のような反応が理想的に進行すれば、生成物はHとCOのみであるが、実際にはメタンのコーキングによる炭素の生成防止の観点より、過剰の水蒸気を用いるために、改質反応、変性反応後のガス(以下、「改質ガス」と呼ぶ。)中には水素(H)と合わせて水蒸気(HO)や未反応メタン(CH)、一酸化炭素(CO)、および二酸化炭素(CO)が含まれることになる。通常、燃料電池自動車用の燃料水素としては5N(99.999容積%(以下、「容積%」を単に「%」と表す。))程度以上の水素純度が求められ、特にCOについては、固体高分子形燃料電池の電極用触媒に用いられる白金(Pt)の被毒劣化防止の観点から10ppm以下の濃度に下げる必要があり、燃料電池の耐久性を考えた場合、さらに0.2ppm以下程度まで濃度を低減する必要があるとされている。
従来から実施されている改質ガスからの水素の精製法としては、以下の2つの方法が代表的である。
(1)選択酸化触媒法
(2)水素PSA法
(1)の選択酸化触媒法は、主に定置形燃料電池(家庭用燃料電池を含む)に対して開発が進められている技術であり、改質ガスに空気または酸素を添加し触媒を用いて改質ガス中のCOガスを選択的に酸化しCOにして除去することでCOを除去し、燃料電池に対するCOの被毒を防止する技術である。常圧プロセスであること、比較的高い空塔速度(SV)で使用できることにより装置のコンパクト化が可能なことが本技術の特徴であるが、CO以外の不純物である、CO、HO、CHの除去を行う技術ではないため、自動車用向けの燃料電池に対して要求される高純度水素を精製する方式としては利用できない。
いっぽう、(2)の水素PSA法は、ゼオライトやカーボンモレキュラーシーブ、アルミナなどの複数の吸着剤を組み合わせ、圧力スイングを行いながら改質ガス中のCO、CH、HO、COを全て除去するプロセスである。自動車用の燃料電池に供給するための水素に対してはCO以外の不純物の除去も要求されるため、水素供給ステーションで化石燃料を改質して燃料水素を製造する場合には、通常この水素PSA法が採用されている。
水素PSA法により水素を精製する場合においては、高圧下で水素以外の不純物を吸着除去して製品水素を回収し、不純物であるCO、CH、HO、COを吸着したPSA用吸着剤は、圧力を高圧から常圧まで下げる操作および製品水素で洗浄する操作により吸着したCO、CH、HO、COを脱着させ、吸着剤を再生する。吸着剤を再生した吸着塔は再び昇圧し、改質ガスを流して製品水素の精製操作に供する。
水素PSA法に対する課題としては、従来水素PSA法では、水素中に最大1%程度含まれるCOの除去が難しく、多量の吸着剤が必要になるため、水素PSA設備のサイズ(吸着塔サイズ)が非常に大きくなるという問題や製品水素の回収率が十分ではないため、水素の精製コストが高くなるという問題があった。
このような課題に対し従来よりさまざまな技術開発がなされている。たとえば、特許文献1には、不純物を吸着した後の吸着塔の洗浄工程を洗浄対象となる塔内に導入した洗浄ガスの少なくとも一部が塔外に導出されるまで行う方法により、水素ガスの回収率が従来法の70%より最大76%まで向上させる方法が開示されている。
また、特許文献2には、洗浄ガスとして吸着工程を終了した吸着塔の塔内ガスを利用して、その洗浄ガス量を吸着剤の充填容積の2〜7倍とすることで水素ガス回収率が76%に改善する方法が、さらに特許文献3には、吸着剤としてSi/Al比が1〜1.5のフォージャサイト構造を有するリチウムイオン交換率が95%以上のゼオライトを単独で用いることで、水素PSA設備の小型化と水素回収率の74%までの向上方法が開示されている。
しかしながら、これらの方法はいずれも水素PSA法によりCOを含む水素中の不純物ガスを全て水素PSA法により精製する方法であり、吸着剤のCOガス吸着容量が十分ではないため、設備の大幅な小型化に対しては限界があった。また、水素回収率についても上記のようなさまざまな方法による改善策が検討されているものの未だ十分ではないのが現状である。
他に水素PSAのサイズのコンパクト化に寄与する技術として、水素PSAでCOを吸着除去するのではなく、事前に選択酸化触媒にてCOを酸化してCOに変換した後、水素PSAに通すことで水素中のCO、CH、HOを除去する方法も検討されている(非特許文献1参照)。この方法は水素PSA装置の小型化には効果的であるが、COを選択酸化する段階で過剰の酸素を導入するため、COと反応しない酸素は水素と反応し、水素を消費することになるため、システム全体として考えると水素の回収率の低下を招くという問題がある。
NEDO平成13年度報告書、新PSA方式による水素製造技術開発、2002年 特開2002−177726号公報(特許請求の範囲など) 特開2002−191923号公報(特許請求の範囲など) 特開2002−191924号公報(特許請求の範囲など)
そこで本発明の目的は、改質ガスから高い回収率で水素を回収し、かつ設備のコンパクト化、設備コストの低減に寄与する高純度水素製造方法を提供することにある。
請求項1に記載の発明は、改質用原料を改質して水素リッチな改質ガスを得る改質工程と、前記改質ガスをCO吸着剤を充填したCO吸着塔に通じてCOを吸着除去しCO除去ガスを得るCO除去工程と、前記CO除去ガスを圧縮機により圧縮して圧縮ガスとするガス圧縮工程と、前記圧縮ガスをPSA吸着塔に通じてCO以外の不要ガスを吸着除去して高純度水素を得る不要ガス除去工程と、を備えた高純度水素製造方法であって、前記CO除去工程が、COを吸着除去するCO吸着ステップと、前記CO吸着剤を再生するCO吸着剤再生ステップとを有し、前記不要ガス除去工程が、CO以外の不要ガスを吸着除去する不要ガス吸着ステップと、前記PSA吸着塔に充填されたPSA用吸着剤を再生するPSA用吸着剤再生ステップとを有し、前記PSA用吸着剤再生ステップにおいて、前記高純度水素の一部を前記PSA吸着塔に通じて前記PSA用吸着剤を再生するとともに、前記PSA用吸着剤再生ステップで前記PSA吸着塔から排出されたPSA吸着塔オフガスを、前記CO吸着剤再生ステップにおける再生用洗浄ガスとして用いることを特徴とする高純度水素製造方法である。
請求項2に記載の発明は、前記改質工程が、以下の(a)〜(e)のいずれかの工程である請求項1に記載の高純度水素製造方法である。
(a)改質用原料を水蒸気で改質して水素リッチな改質ガスを得る工程
(b)改質用原料を水蒸気で改質した後に変成させて水素リッチな改質ガスを得る工程
(c)炭化水素含有燃料を部分酸化により改質して水素リッチな改質ガスを得る工程
(d)炭化水素含有燃料を部分酸化により改質させると同時に水蒸気で改質して水素リッチな改質ガスを得る工程
(e)炭化水素含有燃料を水蒸気で改質した後にセラミックフィルタ等の粗製分離膜を流通させて水素濃度を高めて水素リッチな改質ガスを得る工程
請求項に記載の発明は、前記CO除去工程が、前記CO吸着剤を充填してなるCO吸着塔を複数備えたCO除去装置を用いて行うものであり、1つのCO吸着塔につき、前記CO吸着ステップと前記CO吸着剤再生ステップとを交互に行い、任意の時点において、少なくともいずれか1のCO吸着塔にて前記CO吸着ステップを行う請求項1または2に記載の高純度水素製造方法である。
請求項に記載の発明は、前記CO除去工程が、前記CO吸着剤を充填したCO吸着塔を3塔以上備えたCO除去装置を用いて行うものであり、下記の(1)および(2)の工程を繰り返すものである請求項に記載の高純度水素製造方法である。
(1)いずれか1塔のCO吸着塔にて前記CO吸着剤再生ステップを行いつつ、残りのCO吸着塔を直列に接続して前記CO吸着ステップを行う工程
(2)ついで前記直列に接続したCO吸着塔のうち最上流側のCO吸着塔を前記直列接続から分離するとともに、前記CO吸着剤再生ステップを終了したCO吸着塔を前記直列接続の最下流側に接続する工程
請求項に記載の発明は、前記CO吸着剤再生ステップで前記CO吸着塔から排出されたCO吸着塔オフガスを、前記改質工程における改質ガス製造のための燃料として用いる請求項1〜4のいずれか1項に記載の高純度水素製造方法である。
請求項に記載の発明は、前記CO吸着剤再生ステップにおいて前記CO吸着剤を再生するための熱量として、前記CO吸着剤再生ステップで前記CO吸着塔から排出されたCO吸着塔オフガスの燃焼カロリおよび/または前記改質ガスの顕熱を用いる1〜5のいずれか1項に記載の高純度水素製造方法である。
請求項に記載の発明は、前記CO除去ガス圧縮工程に代えて、または加えて、前記改質工程とCO除去工程との間に、前記改質ガスを圧縮機により圧縮する改質ガス圧縮工程を設けた請求項1〜のいずれか1項に記載の高純度水素製造方法である。
請求項に記載の発明は、前記CO吸着剤が、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/もしくはハロゲン化銅(II)を担持させた材料、またはこの材料を還元処理したものである請求項1〜のいずれか1項に記載の高純度水素製造方法である。
請求項に記載の発明は、前記PSA吸着塔に用いられる吸着剤が、アルミナ系吸着剤および/またはシリカ系吸着剤と、炭素系吸着剤とからなる請求項1〜のいずれか1項に記載の高純度水素製造方法である。
請求項10に記載の発明は、前記改質工程と前記CO除去工程との間に、前記改質ガス中の湿分を吸着式除湿装置により除去する湿分除去工程を設けた請求項1〜のいずれか1項に記載の高純度水素製造方法である。
請求項11に記載の発明は、前記吸着式除湿装置に用いられる湿分吸着剤がアルミナ系吸着剤および/またはシリカ系吸着剤であり、前記PSA用吸着剤が炭素系吸着剤である請求項10に記載の高純度水素製造方法である。
請求項12に記載の発明は、前記CO吸着ステップが0.5MPa(ゲージ圧)以上の高圧下で行われ、前記CO吸着剤再生ステップが−0.05MPa(ゲージ圧)以下の減圧下で行われる請求項7〜11のいずれか1項に記載の高純度水素製造方法である。
請求項13に記載の発明は、前記不要ガス吸着ステップが0.5MPa(ゲージ圧)以上の高圧下で行われ、前記PSA用吸着剤再生ステップが常圧下で行われる請求項12に記載の高純度水素製造方法である。
本発明によれば、CO吸着剤を充填したCO吸着塔とPSA吸着塔とを組み合わせることで、改質ガスから高い回収率で高純度の水素を回収できるようになり、その結果、製造装置を大幅にコンパクト化でき、低コストで高純度水素が得られるようになった。
以下、本発明の実施の形態について図1〜3のフロー図を参照しつつ詳細に説明する。
〔実施形態1〕
実施形態の一例を図1のフロー図に示す。同図において、符号1は改質用原料を改質して水素リッチな改質ガスを得る改質装置1、符号2は前記CO含有水素ガスからCOを吸着除去しCO除去ガスを得るCO吸着剤を充填したCO除去装置2、符号3は前記CO除去ガスを圧縮して圧縮ガスとする圧縮機3、符号4は前記圧縮ガスからCO以外の不要ガスを吸着除去し高純度水素を得るPSA装置4をそれぞれ示す。
(改質工程)
本発明の改質工程には、例えば通常用いられる水蒸気改質器と変成器との組合せからなる改質装置1を用いればよい。改質器にて天然ガス等の炭化水素を含有する改質用原料Aを水蒸気で改質してHおよびCOを主成分とするガスとした後、変成器にてこのガスにさらに水蒸気を添加して変成しHを主成分とする(水素リッチな)改質ガスBを生成する。この改質ガスB中には、Hの他、少量のCO、CH、HOなどとともに、0.5%程度のCOが残留している。なお、後工程のCO除去工程および不要ガス除去工程においては低温ほど吸着反応が促進されること、ならびに同じく後工程の圧縮工程で用いられる圧縮機を保護する必要があることから、改質装置1とCO除去装置2との間に高温の改質ガスBを冷却するための熱交換器(図示せず)を設けるのが望ましい。
(CO除去工程)
本発明のCO除去工程には、図2に示すように、CO吸着剤を充填したCO吸着塔3基(2a,2b,2c)からなるCO除去装置2を用いる。以下、CO吸着ステップとCO吸着剤再生ステップに分けて説明し、さらにそれらのステップの切り替え操作について説明を行う。
[CO吸着ステップ]:改質ガスBをCO吸着剤を充填したCO除去装置2を通過させ、改質ガスB中のCOを選択的に吸着除去する。CO吸着剤としては、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/もしくはハロゲン化銅(II)を担持させた材料、またはこの材料を還元処理したものが好適に用いられ、なかでもアルミナ担体に塩化銅(I)を担持した材料はCOに対する選択性が高く推奨される。このようなハロゲン化銅を担持させたCO吸着剤は、ゼオライトモレキュラーシーブス、カーボンモレキュラーシーブス、活性炭、または活性アルミナといった従来の吸着剤に比べ数倍〜数十倍の吸着容量を有するため、CO除去装置2を小型化しても5N程度の高純度水素Eを安定して高効率で製造でき、大幅に製造コストを低減できる。
[CO吸着剤再生ステップ]:CO吸着剤の吸着性能を維持するために、CO吸着ステップにおいてCO除去装置2の出口側からCOが漏れ出てくる前にCO吸着剤を再生する必要がある。CO吸着剤の再生は、吸着サイトに吸着したCOを脱離洗浄するため、COを実質的に含まないガスを流通させつつ行う。また、COの脱離反応は温度が高いほど促進されるため、CO吸着剤は40〜150℃に加熱した状態で再生(洗浄)を行うことが望ましい。このような条件を満足させるため、上記再生用洗浄ガスとして用いるCOを実質的に含まないガスとして、製品水素(高純度水素)Eの一部Fを用いてPSA装置4を再生洗浄した後のPSA吸着塔オフガスの一部Gを用い、これを上述の図示しない熱交換器で改質ガスBと熱交換し(すなわち、改質ガスBの顕熱を利用し)加熱して使用すればよい。
[CO吸着ステップとCO吸着剤再生ステップとの切り替え操作]:それぞれのCO吸着塔につき、上記CO吸着ステップとCO吸着剤再生ステップとを交互に切り替える必要があるが、連続的に高純度水素Eを製造するためには、3塔のうち少なくとも1塔は常にCO吸着ステップとしておく必要がある。なお、CO吸着ステップにあったCO吸着塔をCO吸着剤再生ステップに移行させ再生を十分に行うには、CO吸着剤をCO脱離反応が活発化する温度まで昇温させるのに長時間を要することから、3塔のうち2塔をCO吸着ステップとしておき、残りの1塔のみをCO吸着剤再生ステップとするのが推奨される。そして、図2(a)に示すように、CO吸着ステップにある2塔(2a、2b)を直列に接続し、改質ガスBを2塔に分配して通過させるのでなく、2塔を順次通過させてCOを吸着除去するようにする。そして、所定時間経過後、上流側のCO吸着塔2aがCOにより完全破過した後、この上流側のCO吸着塔2aを直列接続から切り離すとともに、吸着剤の再生が完了したCO吸着塔2cをCO吸着塔2bの下流側に接続する。そして、同図(b)に示すように、CO吸着塔2aの吸着剤を再生しつつ、CO吸着塔2b,2cからなる直列接続を用いてCOを吸着除去する。以下、同様の手順により、同図(c)さらには同図(a)の状態へと戻り、このような切り替え操作が繰り返される。このように、2塔を直列に接続し、その上流側から順次再生を行うことにより、下流側のCO吸着塔は常にCO吸着容量を残した状態にあるので、吸着塔出口からのCOの漏れ出しがなく、常にCOが十分に取り除かれた高純度水素Eが得られる。また、上流側のCO吸着塔はその吸着容量をほぼ使い切った状態まで使用できるため、それぞれの吸着塔に吸着剤を過剰に充填する必要がなく、吸着剤コストの低減および設備の小型化を実現できる。
(改質ガス圧縮工程)
本発明の改質ガス圧縮工程には、次工程のPSA吸着塔を用いた不要ガス除去工程にて圧力スイングにより改質ガスB中から不要ガスを吸着除去するため、CO除去ガスCを圧縮する圧縮機3を用いる。圧縮機3にてCO除去ガスCを圧縮して1.0MPa(ゲージ圧)程度に昇圧した圧縮ガスDとする。
(不要ガス除去工程)
本発明の不要ガス除去工程には、CO以外の不要ガス、すなわちCO、CH、HOを吸着する吸着剤が充填された複数のPSA吸着塔からなるPSA装置4を用いる。これらの不要ガスを吸着する吸着剤(以下、「PSA用吸着剤」ともいう。)としては、活性アルミナなどのアルミナ系吸着剤および/またはシリカゲルなどのシリカ系吸着剤と、カーボンモレキュラーシーブなどの炭素系吸着剤とを組み合わせたものが好適である。アルミナ系吸着剤および/またはシリカ系吸着剤が圧縮改質ガスC中のHOを吸着除去し、炭素系吸着剤がCOおよびCHを吸着除去する役割を受け持つ。このように本発明においては、CO除去装置2ですでにCOが除去されているためPSA装置4でCOを吸着除去する必要がないので、上述した従来の水素PSA法に比べ吸着塔サイズを大幅に小さくできる。以下、不要ガス吸着ステップとPSA用吸着剤再生ステップに分けて説明する。
[不要ガス吸着ステップ]:1MPa(ゲージ圧)程度に圧縮された圧縮ガスDを、複数あるPSA吸着塔のうち1つのPSA吸着塔を通過させ、COガス以外の不要ガスCO、CH、HOを選択的に吸着除去することにより、製品水素(高純度水素)Eが得られる。
[PSA用吸着剤再生ステップ]:残りのPSA吸着塔においては、上記吸着操作により吸着能力が低下した吸着剤を再生するため、PSA吸着塔内を高圧から常圧まで減圧した後、再生用洗浄ガスFを流通させる。再生用洗浄ガスFとしては、従来法と同様、製品水素Eの一部Fを用いればよい。このように、複数のPSA吸着塔2a,2b,2cにつき、不要ガス吸着ステップとPSA用吸着剤再生ステップとからなるサイクルをサイクリックに継続することにより、吸着剤の吸着能力を長期に維持しつつ連続的に製品水素(高純度水素)Eを得ることができる。
(オフガスの有効利用)
[PSA吸着塔オフガスの有効利用]:PSA吸着塔オフガスは、製品水素Eの主成分であるHに、PSA用吸着剤の再生により脱着されたCO、CH、HOなどの不要ガスを含む。しかしながらこのオフガスはCOを含まないので、上記CO吸着剤再生ステップで述べたように、その一部GはCO吸着剤の再生用洗浄ガスとして用いることができる。ここで、CO吸着剤の再生用洗浄ガス(すなわち、COを実質的に含まないガス)としては、精製後の製品水素を用いることも考えられるが、製品水素を再生用洗浄ガスとして用いるとシステム全体としての水素回収率の低下を招くため好ましくない。これに対し、本実施形態ではPSA吸着塔オフガスの一部Gを用いることで水素回収率の低下を抑制することができる。また、PSA吸着塔オフガスのうち上記CO吸着剤の再生用洗浄ガスとして用いる以外の残部Hは、上記のとおりHおよびCHを含むので、それらの成分の燃焼カロリを有効利用するため、バッファタンク5に一時的に貯蔵して、上記改質工程における改質ガスB製造のための燃料Kおよび/または上記CO吸着剤再生ステップにおけるCO吸着剤の再生のための加熱用燃料Lとして用いるのが推奨される。
[CO吸着塔オフガスの有効利用]:上記CO吸着剤再生ステップにてCO吸着剤を再生した後のガスであるCO吸着塔オフガスJは、上記PSA吸着塔オフガスGの成分に、さらにCO吸着剤の再生により脱着したCOを含むため、PSAオフガスの残部Hとともにバッファタンク5に一時的に貯蔵して、上記と同様、改質用燃料Kおよび/またはCO吸着剤の再生のための加熱用燃料Lとして用いることができる。
(実施形態1の変形例)
上記実施形態では、CO除去装置2とPSA装置4との間に圧縮機3(CO除去ガス圧縮工程)を設ける例を示したが、これに代えて、改質装置1とCO除去装置2との間(すなわち、上記改質工程と上記CO除去工程との間)に圧縮機(改質ガス圧縮工程)を設け、改質ガスBをこの圧縮機で例えば1.0MPa程度に圧縮してからCO除去装置2に導入してもよい。圧縮により改質ガスB中のCO分圧が上昇して単位吸着剤当たりのCOガス吸着容量が増加し、CO吸着剤量を低減できるため、CO吸着塔がコンパクト化し設備コストを低減できる。なお、CO除去装置2から放出されたCO除去ガスCは減圧されることなく高圧のままPSA装置4に導入されるため、圧縮機3を省略しても問題はない。
また、改質装置1とCO除去装置2との間(すなわち、上記改質工程と上記CO除去工程との間)に、改質ガスB中のHOを除去する吸着式の除湿装置を設けてもよい。吸着剤としてはアルミナ系もしくはシリカ系の吸着剤を用いることができ、さらにはこれらを併用して用いることもできる。これによりPSA装置4でHOを除去する必要がなくなりPSA吸着塔をさらに小型化できることに加え、圧縮機3の前段で除湿することにより圧縮機2での水分凝縮が防止でき、さらにはPSA吸着塔オフガス中にHOが混入しないためその燃焼カロリが増加し、燃料としての利用に好都合である。なお、上記変形例のように、圧縮機を改質装置1とCO除去装置2との間に設ける場合は、上記水分凝縮防止効果を発揮させるため、この圧縮機より上流側に除湿装置を設けるのがよい。
また、上記実施形態では、CO除去工程として3塔のCO吸着塔を順次切り替えて用いる例を示したが、2塔または4塔以上のCO吸着塔を順次切り替えて用いてもよい。なお、2塔の吸着塔を切り替えて用いる場合は、吸着操作に用いている1つの吸着塔がCOにより破過する前に(すなわち、COが漏れ出す前に)吸着操作を停止し、もう1つの再生ずみの吸着塔に切り替える必要があるため、CO吸着剤の吸着容量を全て用いることができない。これに対し、上記実施形態1〜3で説明した3塔の吸着塔を切り替えて用いる場合は、上述したようにCO吸着剤の吸着容量をほぼ全て用いることができ、吸着剤使用量が大幅に低減できるため、3塔切り替えのほうがより推奨される。ちなみに、常圧+2塔切り替えのシステムに比べ、高圧+3塔切り替えのシステムを採用することにより、吸着剤使用量を1/5程度まで低減することが可能である。
また、長期間連続して高純度水素を製造する必要がない場合は、必ずしも複数のCO吸着塔を切り替えて用いる必要はなく、単一のCO吸着塔を用い、定期検査時などに吸着剤の再生ないし取替えを行うようにしてもよい。
また、上記実施形態では、PSA吸着塔オフガスの残部HとCO吸着塔オフガスGとを一緒に1つのバッファタンク5に貯蔵して用いる例を示したが、2つのバッファタンクに別々に貯蔵し別個に用いるようにしてもよい。
また、上記実施形態では、CO吸着剤の再生用洗浄ガスとしてPSA吸着塔オフガスの一部をCO吸着塔に直接導入し、残部をバッファタンクに貯蔵する例を示したが、PSA吸着塔オフガスを、CO吸着塔オフガスとは別個のバッファタンクにいったん全量貯蔵した後、そこから一部をCO吸着塔に供給するようにしてもよい。
また、上記実施形態では、上記オフガス(PSA吸着塔オフガスの残部HおよびCO吸着塔オフガスG)をバッファタンク5に貯蔵し、このバッファタンク5から各装置に分配する例を示したが、このバッファタンク5を省略して、オフガスを各装置に直接導入するようにしてもよい。ただしこの場合、オフガス量と各装置への導入ガス量との間に過不足が生じやすく、ガス量バランスを保つのが困難であるので、バッファタンク5を設けるのがより望ましい。
また、上記実施形態では、改質工程として改質器+変成器の組合せを例示したが、変成器に代えてセラミックフィルタ等の粗製分離膜を用いてもよい。すなわち、上記実施形態では、改質工程として改質用原料を水蒸気で改質した後に変成して水素リッチな改質ガスを得る工程を例示したが、水蒸気で改質した後にセラミックフィルタ等の粗製分離膜を流通させて水素濃度を高めて水素リッチな改質ガスを得る工程も当然に適用できる。
さらには、CO吸着剤のCO吸着性能によっては、変成器を省略して改質器のみのプロセスも成立しうる。すなわち、改質工程として、水蒸気で改質しただけで改質ガスを得る工程も適用可能であり、さらには水蒸気改質に代えて部分酸化を用いて改質ガスを得る工程、あるいは部分酸化により改質させると同時に水蒸気で改質して改質ガスを得る工程も適用しうるものである。
〔実施形態2〕
上記実施形態1では、CO吸着剤を加熱した状態(すなわち、温度スイング)で再生する例を示したが、PSA用吸着剤と同様、圧力スイングにより再生してもよい。例えば、前記CO吸着ステップを0.5MPa(ゲージ圧)以上の高圧下で行い、前記CO吸着剤再生ステップを−0.05MPa(ゲージ圧)以下の減圧下で行うことができる。以下、図3に示すCO除去装置2のフロー図を参照しつつ、詳細に説明する。
CO除去装置2は、3つのCO吸着塔2a,2b,2cを有し、各吸着塔2a〜2cには吸着剤として例えばアルミナに塩化銅(I)を担持したCO吸着剤が充填されている。ライン101は改質ガスBの導入ラインである。ライン101と各CO吸着塔2a〜2cとはそれぞれ弁A1、弁B1、弁C1を介して接続されている。なお、CO除去装置2において圧力スイングを適用するため、上記実施形態1ではCO除去装置2の下流側に設けた圧縮機3を、CO除去装置2の上流側、すなわち、改質装置1とCO除去装置2との間に設けて、改質ガスBをライン101に導入する前に高圧化しておく必要がある。
ライン102はCO吸着塔内を減圧するために用いるラインで、均圧(後述の均圧ステップ参照)の終了したCO吸着塔の圧力をさらに常圧付近まで減圧する(後述の第1減圧ステップ参照)ために使用される。ライン102は弁A2、弁B2、弁C2を介して吸着塔4a〜4cとそれぞれ接続されている。
ライン103は常圧付近までの減圧(第1減圧ステップ)が終了したCO吸着塔をさらに大気圧以下(−0.05MPa(ゲージ圧)以下)の負圧まで減圧(後述の第2減圧ステップ参照)するラインであり、真空ポンプ7と吸着塔4a〜4cとがそれぞれ弁A3、弁B3、弁C3を介して接続されている。ライン102およびライン103の真空ポンプの排気ガスはバッファタンク8に一時的に貯蔵される。バッファタンク8に貯蔵されたガスはカロリーガスとして、例えば改質ガスBを製造する際の改質器の燃料などとして有効利用することが可能である。
ライン104はCO吸着塔にて改質ガスBよりCOガスを除去して得たCO除去ガスCの回収ラインであり、CO吸着塔2a〜2cとはそれぞれ弁A5、弁B5、弁C5を介して接続されており、回収したCO除去ガスCはバッファタンク9に一時的に貯蔵される。
ライン105はCOガスのCO吸着ステップが終了し、負圧までの減圧(後述の第2減圧ステップ参照)後にCO吸着塔を洗浄して再生するためのラインである。CO吸着塔2a〜2cとバッファタンク9とは弁D1および弁A6、弁B6、弁C6を介して接続されており、CO吸着剤の再生用洗浄ガスとしては回収したCO除去ガスCの一部を使用することが可能である。CO吸着剤の再生用洗浄ガスとしてはPSA吸着塔オフガスの一部Gを利用することも可能であり、その場合CO除去ガスCを使用する必要はないため、高純度水素(製品水素)Eの回収率をさらに高めることが可能である。
ライン106は均圧(均圧ステップ)を行うためのラインであり、CO吸着ステップの終了したCO吸着塔とCO吸着剤再生ステップの終了したCO吸着塔との間でガスの均圧を行うために用いられる。具体的には弁A4、弁B4、弁C4のうち、均圧を行う2つの塔に接続された弁2個を開放し、他の弁を閉じることにより2つのCO吸着塔の均圧が可能となる。
次に、CO除去工程におけるCO吸着除去およびCO吸着剤の再生の操作手順を具体的に説明する。なお、以下においてはCO吸着塔2aの操作手順のみについて説明するが、運転は表1のタイムテーブルに示すように、CO吸着塔2a,2b,2cの3塔を用いてサイクリックに行う。
1)[CO吸着ステップ]:上記圧縮機で圧縮された高圧の改質ガスBを吸着塔2aに導入し、COガスをCO吸着剤により除去し、CO除去ガスCを回収する(弁A2,A3,A4,A6:閉、弁A1,A5:開)。
2)[均圧ステップ]:上記CO吸着操作(CO吸着ステップ)を終了し、CO吸着塔2aのガスの一部を再生操作(CO吸着剤再生ステップ)の終了した吸着塔2cに移送する。ここで、例えば、CO吸着塔2aを0.9MPa(ゲージ圧)でCO吸着操作を行った場合、CO吸着塔2cのCO吸着剤は減圧下で再生するため、本ステップでCO吸着塔2a,2cの内圧はいずれも約0.5MPa(ゲージ圧)となる(弁A1,A2,A3,A5,A6,弁C1,C2,C3,C5,C6:閉、弁A4,弁C4:開)。
3)[第1減圧ステップ]:均圧操作(減圧ステップ)の終了した吸着塔2aの内圧を常圧付近まで減圧する(弁A1,A3,A4,A5,A6:閉、弁A2:開)。
4)[第2減圧ステップ]:常圧付近の圧力まで減圧したCO吸着塔2aをさらに真空ポンプ7を用いて負圧まで減圧する(弁A1,A2,A4,A5,A6:閉、弁A3:開)。
5)[CO吸着剤再生ステップ]:減圧した状態で洗浄ガスを流し、CO吸着剤を再生する(弁A1,A2,A4,A5:閉、弁A3,A6、弁D1:開)。
6)[均圧ステップ]:CO吸着剤の再生が終了したCO吸着塔2aにCO吸着ステップの終了したCO吸着塔2b内のガスの一部移送する(弁A1,A2,A3,A5,A6,弁B1,B2,B3,B5,B6:閉、弁A4,弁B4:開)。
7)[昇圧ステップ]:吸着塔2a内にバッファタンク9よりCO除去ガスCを導入し、CO吸着塔2a内の圧力をCO吸着を行う圧力まで昇圧する(弁A1,A2,A3,A4,A6:閉、弁A5:開)。
8)上記1)から7)の操作ステップを繰り返し、CO吸着除去およびCO吸着剤の再生を繰り返す。
Figure 0003947752
本実施形態によれば、CO除去装置2は、常圧よりさらに減圧した負圧下でCO吸着剤を再生するとともに、高圧下で改質ガスBからCOガスを吸着除去するプロセスであり、改質ガスBからのCO除去をコンパクトな装置で実現することができ、かつCO収率(つまり、CO除去効率)も高くすることが可能である。
一方、PSA装置4は、常圧と高圧の圧力スイングでCO以外の不要ガスの精製を行うようにするのが推奨される。PSA装置4も減圧下で吸着剤の再生を行うことはもちろん可能であり、この場合は常圧下での再生と比べて不要ガスの収率(つまり、不要ガスの除去効率)の改善が期待できるものの、CO除去装置2と比較し吸着塔容積が大きいため、真空ポンプを用いて減圧にするための動力が過大になる。したがって、CO除去のためのCO除去装置2とCO以外の不要ガス除去のためのPSA装置4とに分けて別の装置として設け、それぞれの装置において減圧再生、常圧再生を行うことで、ガスの精製処理に掛かるランニングコストを抑制でき、全体として経済性が高く、コンパクトな処理プロセスが構築できる。
(実施形態2の変形例)
上記実施形態2では、CO除去装置2は、3塔のCO吸着塔で構成する例を示したが、上記実施形態1と同様、2塔または4塔以上のCO吸着塔で構成してもよい。ただし、2塔で構成する場合は、実施形態2で説明したような2塔を用いての均圧操作ができず、高圧化したガスの圧力エネルギを有効に回収できないので、3塔以上で構成するのが推奨される。
なお、長期間連続して高純度水素を製造する必要がない場合は、上記実施形態1と同様、単一のCO吸着塔で構成してもよい。
また、上記実施形態2では、CO除去装置2の上流側のみに圧縮機を設ける例を示したが、これに加えてCO除去装置2とPSA装置4との間にも圧縮器を設けて、PSA装置4をCO除去装置2より高い圧力で吸着操作ができるようにしてもよい。
本発明の効果を確認するため、図4に示す実験装置を用いて水素精製実験(高純度水素製造実験)を行った。同図に示すように、本実験装置は2塔のCO吸着塔からなるCO除去装置と4塔のPSA吸着塔からなるPSA装置とで構成され、各吸着塔の前後に設けたバルブの操作によりガス流路の切り替えおよび昇圧・減圧操作ができるように構成されている。そして、市販のボンベガスを混合して模擬的な改質ガスを調製し、7気圧(絶対圧(以下、同じ);1気圧=0.101325MPa)の圧力で本実験装置に導入し、水素精製実験を行った。
まずCO除去装置では、2塔のCO吸着塔のうち、一方の吸着塔に上記7気圧の改質ガスを流通させてCO除去を行い、他方の吸着塔には後述のPSA吸着塔を再生した後のオフガス(PSA吸着塔オフガス)を流通させて吸着剤の洗浄再生を行った。
そしてPSA装置では、いずれかのPSA吸着塔に上記CO除去装置でCOを吸着除去した後の7気圧のガス(CO除去ガス)を流通させてHO、CH、COを除去し、これらの不要ガス成分が破過する前に別の吸着塔に切り替える運転を行った。上記CO除去ガス流通後の吸着塔は4気圧まで減圧し、減圧の過程で放出されたガスは洗浄再生の終了した別の吸着塔に導入した。4気圧まで減圧した吸着塔はさらに1気圧まで減圧し、減圧後の吸着塔を回収した製品水素で洗浄し、吸着成分を除去した。洗浄後の吸着塔には別の吸着塔を減圧させる過程で放出されたガスを導入して4気圧まで昇圧し、さらに水素ガスを充填し7気圧まで昇圧後、改質ガスに切り替え再び水素ガスの精製に供した。以上のようなサイクルを4塔の吸着塔を用いてサイクリックに行い、改質ガスからのCO含有水素ガスの回収を行った。
以下の各条件で水素精製実験を行い、改質ガス中のH量に対する回収された製品水素中のH量の割合(水素回収率)を調査した。
(比較例)
PSA装置のみで水素精製を行う従来法を模擬するため、以下の条件にて水素精製実験を実施した。
・改質ガス組成
:71%、CH:1%、CO:14%、CO:9%、HO:5%
・CO吸着塔:ガスをバイパスさせ、PSAのみで水素を精製
・PSA用吸着剤:アルミナ、カーボンモレキュラーシーブス、ゼオライト5A
(本発明例1)
CO除去装置+PSA装置で水素精製を行う本発明の実施形態を模擬するため、以下の条件にて水素精製実験を実施した。
・改質ガス組成
:71%、CH:1%、CO:14%、CO:9%、HO:5%
・CO吸着剤:塩化銅(I)担持アルミナ
・PSA用吸着剤:アルミナ、カーボンモレキュラーシーブス
(本発明例2)
除湿装置+PSA装置+CO除去装置で水素精製を行う本発明の実施形態を模擬するため、以下の条件にて水素精製実験を実施した。
・改質ガス組成
:74%、CH:1%、CO:15%、CO:10%、HO:0%
・CO吸着剤:塩化銅(I)担持アルミナ
・PSA用吸着剤:カーボンモレキュラーシーブス
(実験結果)
実験結果を表2に示す。CO除去装置を用いずにPSA装置のみで水素精製を行った比較例では水素回収率は69%であった。
これに対し、PSA装置の後段にCO除去装置を設置した場合に相当する本発明例1では水素回収率は81%と顕著に上昇した。また、PSA装置における精製の負荷が減少したことにより、比較例に比べてPSA装置に用いる全吸着剤の体積は51%にまで減少した。
さらに、PSA装置の前段に除湿装置を設置した場合に相当する本発明例2では水素回収率はさらに上昇し、84%という非常に高い回収率が得られた。また、PSA装置に用いる全吸着剤量もアルミナを用いる必要がなくなったため、比較例に比べ42%にまで低減した。
上記の結果から、改質ガスの精製において、PSA装置の前段にCO吸着塔からなるCO除去装置を設置することで顕著に水素回収率を向上させられるばかりでなく、PSA装置の大幅な小型化が実現できることが確認された。
Figure 0003947752
実施形態に係る高純度水素製造プロセスを示すフロー図である。 実施形態における、CO除去装置の切り替え操作を説明するフロー図である。 実施形態2に係るCO除去装置の概略を示すフロー図である。 実施例に用いた水素精製実験装置の概略を示すフロー図である。
符号の説明
1…改質装置
2…CO除去装置
2a,2b,2c…CO吸着塔
3…圧縮機
4…PSA装置
5,8,9…バッファタンク
7・・・真空ポンプ
A…改質用原料
B…改質ガス
C…CO除去ガス
D…圧縮ガス
E…高純度水素(製品水素)
F…高純度水素の一部(再生用洗浄ガス)
H…PSA吸着塔オフガスの残部
J…CO吸着塔オフガス
G…PSA吸着塔オフガスの一部(再生用洗浄ガス)
K…改質器用燃料
L…加熱用燃料

Claims (13)

  1. 改質用原料を改質して水素リッチな改質ガスを得る改質工程と、前記改質ガスをCO吸着剤を充填したCO吸着塔に通じてCOを吸着除去しCO除去ガスを得るCO除去工程と、前記CO除去ガスを圧縮機により圧縮して圧縮ガスとするガス圧縮工程と、前記圧縮ガスをPSA吸着塔に通じてCO以外の不要ガスを吸着除去して高純度水素を得る不要ガス除去工程と、を備えた高純度水素製造方法であって、
    前記CO除去工程が、COを吸着除去するCO吸着ステップと、前記CO吸着剤を再生するCO吸着剤再生ステップとを有し、
    前記不要ガス除去工程が、CO以外の不要ガスを吸着除去する不要ガス吸着ステップと、前記PSA吸着塔に充填されたPSA用吸着剤を再生するPSA用吸着剤再生ステップとを有し、
    前記PSA用吸着剤再生ステップにおいて、前記高純度水素の一部を前記PSA吸着塔に通じて前記PSA用吸着剤を再生するとともに、
    前記PSA用吸着剤再生ステップで前記PSA吸着塔から排出されたPSA吸着塔オフガスを、前記CO吸着剤再生ステップにおける再生用洗浄ガスとして用いることを特徴とする高純度水素製造方法。
  2. 前記改質工程が、以下の(a)〜(e)のいずれかの工程である請求項1に記載の高純度水素製造方法。
    (a)改質用原料を水蒸気で改質して水素リッチな改質ガスを得る工程
    (b)改質用原料を水蒸気で改質した後に変成させて水素リッチな改質ガスを得る工程
    (c)炭化水素含有燃料を部分酸化により改質して水素リッチな改質ガスを得る工程
    (d)炭化水素含有燃料を部分酸化により改質させると同時に水蒸気で改質して水素リッチな改質ガスを得る工程
    (e)炭化水素含有燃料を水蒸気で改質した後にセラミックフィルタ等の粗製分離膜を流通させて水素濃度を高めて水素リッチな改質ガスを得る工程
  3. 前記CO除去工程が、前記CO吸着剤を充填してなるCO吸着塔を複数備えたCO除去装置を用いて行うものであり、
    1つのCO吸着塔につき、前記CO吸着ステップと前記CO吸着剤再生ステップとを交互に行い、
    任意の時点において、少なくともいずれか1のCO吸着塔にて前記CO吸着ステップを行う請求項1または2に記載の高純度水素製造方法。
  4. 前記CO除去工程が、前記CO吸着剤を充填したCO吸着塔を3塔以上備えたCO除去装置を用いて行うものであり、下記の(1)および(2)の工程を繰り返すものである請求項に記載の高純度水素製造方法。
    (1)いずれか1塔のCO吸着塔にて前記CO吸着剤再生ステップを行いつつ、残りのCO吸着塔を直列に接続して前記CO吸着ステップを行う工程
    (2)ついで前記直列に接続したCO吸着塔のうち最上流側のCO吸着塔を前記直列接続から分離するとともに、前記CO吸着剤再生ステップを終了したCO吸着塔を前記直列接続の最下流側に接続する工程
  5. 前記CO吸着剤再生ステップで前記CO吸着塔から排出されたCO吸着塔オフガスを、前記改質工程における改質ガス製造のための燃料として用いる請求項1〜4のいずれか1項に記載の高純度水素製造方法。
  6. 前記CO吸着剤再生ステップにおいて前記CO吸着剤を再生するための熱量として、前記CO吸着剤再生ステップで前記CO吸着塔から排出されたCO吸着塔オフガスの燃焼カロリおよび/または前記改質ガスの顕熱を用いる請求項1〜5のいずれか1項に記載の高純度水素製造方法。
  7. 前記CO除去ガス圧縮工程に代えて、または加えて、前記改質工程とCO除去工程との間に、前記改質ガスを圧縮機により圧縮する改質ガス圧縮工程を設けた請求項1〜のいずれか1項に記載の高純度水素製造方法。
  8. 前記CO吸着剤が、シリカ、アルミナ、活性炭、グラファイトおよびポリスチレン系樹脂よりなる群から選択される1種以上の担体に、ハロゲン化銅(I)および/もしくはハロゲン化銅(II)を担持させた材料、またはこの材料を還元処理したものである請求項1〜のいずれか1項に記載の高純度水素製造方法。
  9. 前記PSA吸着塔に用いられる吸着剤が、アルミナ系吸着剤および/またはシリカ系吸着剤と、炭素系吸着剤とからなる請求項1〜のいずれか1項に記載の高純度水素製造方法。
  10. 前記改質工程と前記CO除去工程との間に、前記改質ガス中の湿分を吸着式除湿装置により除去する湿分除去工程を設けた請求項1〜のいずれか1項に記載の高純度水素製造方法。
  11. 前記吸着式除湿装置に用いられる湿分吸着剤がアルミナ系吸着剤および/またはシリカ系吸着剤であり、前記PSA用吸着剤が炭素系吸着剤である請求項10に記載の高純度水素製造方法。
  12. 前記CO吸着ステップが0.5MPa(ゲージ圧)以上の高圧下で行われ、前記CO吸着剤再生ステップが−0.05MPa(ゲージ圧)以下の減圧下で行われる請求項7〜11のいずれか1項に記載の高純度水素製造方法。
  13. 前記不要ガス吸着ステップが0.5MPa(ゲージ圧)以上の高圧下で行われ、前記PSA用吸着剤再生ステップが常圧下で行われる請求項12に記載の高純度水素製造方法。
JP2005328979A 2005-06-07 2005-11-14 高純度水素製造方法 Active JP3947752B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005328979A JP3947752B2 (ja) 2005-06-07 2005-11-14 高純度水素製造方法
PCT/JP2006/308641 WO2006132040A1 (ja) 2005-06-07 2006-04-25 高純度水素製造方法
US11/921,513 US8372375B2 (en) 2005-06-07 2006-04-25 Method of producing high-purity hydrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005167206 2005-06-07
JP2005328979A JP3947752B2 (ja) 2005-06-07 2005-11-14 高純度水素製造方法

Publications (2)

Publication Number Publication Date
JP2007015910A JP2007015910A (ja) 2007-01-25
JP3947752B2 true JP3947752B2 (ja) 2007-07-25

Family

ID=37753397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005328979A Active JP3947752B2 (ja) 2005-06-07 2005-11-14 高純度水素製造方法

Country Status (1)

Country Link
JP (1) JP3947752B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5690165B2 (ja) * 2011-02-24 2015-03-25 株式会社神戸製鋼所 Psa方式高純度水素製造方法
JP6068148B2 (ja) * 2013-01-15 2017-01-25 株式会社神戸製鋼所 水素製造装置の起動方法及び水素製造装置
CN109641746B (zh) 2016-08-23 2022-11-18 日本蓝色能源株式会社 从生物质热分解气体中回收氢气的方法
JP6814061B2 (ja) * 2017-02-03 2021-01-13 東京瓦斯株式会社 水素製造装置
JP2018162195A (ja) * 2017-03-27 2018-10-18 東京瓦斯株式会社 水素製造装置
JP7004599B2 (ja) * 2018-03-29 2022-01-21 大阪瓦斯株式会社 水素製造装置
CN113120861B (zh) * 2019-12-30 2022-12-02 有研工程技术研究院有限公司 一种密闭环境用氢氧燃料电池氢气尾气回收装置

Also Published As

Publication number Publication date
JP2007015910A (ja) 2007-01-25

Similar Documents

Publication Publication Date Title
JP5314408B2 (ja) 高純度水素ガス製造用psa装置
TWI521056B (zh) Methane recovery method and methane recovery unit
US6770390B2 (en) Carbon monoxide/water removal from fuel cell feed gas
JP3947752B2 (ja) 高純度水素製造方法
JP3985006B2 (ja) 高純度水素製造方法
JP6523134B2 (ja) 水素ガス製造方法及び水素ガス製造装置
JP5743215B2 (ja) ヘリウムガスの精製方法および精製装置
JP5280824B2 (ja) 高純度水素製造装置
JP2006342014A (ja) 高純度水素製造方法
US8372375B2 (en) Method of producing high-purity hydrogen
JP2011167629A (ja) 水素ガスの分離方法、および水素ガス分離装置
JP4814024B2 (ja) 高純度水素ガス製造用psa装置
JP5690165B2 (ja) Psa方式高純度水素製造方法
JP5748272B2 (ja) ヘリウムガスの精製方法および精製装置
JP2004256328A (ja) 水素ガスの精製装置及び精製方法
JP5745434B2 (ja) アルゴンガスの精製方法および精製装置
JP5357465B2 (ja) 高純度水素製造方法
JP2005256899A (ja) 水素貯蔵及び/又は導出装置
JP6619687B2 (ja) 水素ガス製造方法及び水素ガス製造装置
JP6640660B2 (ja) 水素ガス製造方法及び水素ガス製造装置
JP5270215B2 (ja) 燃料電池システム
JP2010241657A (ja) 高純度水素製造方法
JP2012082080A (ja) アルゴン精製方法、およびアルゴン精製装置
JP2017218363A (ja) 水素ガス製造方法及び水素ガス製造装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7