WO2019182128A1 - ショベル - Google Patents

ショベル Download PDF

Info

Publication number
WO2019182128A1
WO2019182128A1 PCT/JP2019/012147 JP2019012147W WO2019182128A1 WO 2019182128 A1 WO2019182128 A1 WO 2019182128A1 JP 2019012147 W JP2019012147 W JP 2019012147W WO 2019182128 A1 WO2019182128 A1 WO 2019182128A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
hydraulic
excavator
control
valve
Prior art date
Application number
PCT/JP2019/012147
Other languages
English (en)
French (fr)
Inventor
岡田 純一
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to EP19770666.6A priority Critical patent/EP3770339A4/en
Priority to CN201980020160.3A priority patent/CN111868338B/zh
Priority to KR1020207026324A priority patent/KR102638727B1/ko
Priority to JP2020507941A priority patent/JP7216074B2/ja
Publication of WO2019182128A1 publication Critical patent/WO2019182128A1/ja
Priority to US17/022,497 priority patent/US11454001B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/226Safety arrangements, e.g. hydraulic driven fans, preventing cavitation, leakage, overheating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • E02F9/268Diagnosing or detecting failure of vehicles with failure correction follow-up actions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/003Systems with load-holding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/005Fault detection or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/005Leakage; Spillage; Hose burst
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • F15B2211/30515Load holding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/355Pilot pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5159Pressure control characterised by the connections of the pressure control means in the circuit being connected to an output member and a return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/526Pressure control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6346Electronic controllers using input signals representing a state of input means, e.g. joystick position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/635Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements
    • F15B2211/6355Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements having valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/75Control of speed of the output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/76Control of force or torque of the output member
    • F15B2211/761Control of a negative load, i.e. of a load generating hydraulic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/863Control during or prevention of abnormal conditions the abnormal condition being a hydraulic or pneumatic failure
    • F15B2211/8636Circuit failure, e.g. valve or hose failure

Definitions

  • the present invention relates to an excavator.
  • boom cylinder pressure the pressure of a boom cylinder
  • lifting an excavator see Patent Document 1, etc.
  • an object is to provide an excavator capable of achieving both boom fall prevention and automatic boom cylinder pressure control.
  • a lower traveling body An upper swing body that is rotatably mounted on the lower traveling body;
  • An attachment including a boom, an arm, and an end attachment mounted on the upper swing body;
  • a boom cylinder for driving the boom;
  • a first hydraulic mechanism that operates in accordance with an attachment operation;
  • a second hydraulic mechanism that is provided in an oil passage between a bottom oil chamber of the boom cylinder and the first hydraulic mechanism and is closed when the boom is not lowered;
  • a control device The control device releases the closed state of the second hydraulic mechanism according to the condition of the excavator, and the degree of release is adjusted so that the movement speed in the lowering direction of the boom is equal to or less than a predetermined reference.
  • Control An excavator is provided.
  • FIG. 1 is a side view showing an example (excavator 100) of an excavator according to the present embodiment.
  • An excavator 100 includes a lower traveling body 1, an upper revolving body 3 that is mounted on the lower traveling body 1 so as to be able to swivel via a turning mechanism 2, a boom 4, an arm 5, and a bucket 6 as attachments. And a cabin 10 on which the operator is boarded.
  • the lower traveling body 1 includes, for example, a pair of left and right crawlers, and each crawler is hydraulically driven by traveling hydraulic motors 1A and 1B (see FIG. 2), thereby causing the excavator 100 to travel.
  • the upper swing body 3 rotates with respect to the lower traveling body 1 by being driven by the swing hydraulic motor 21 (see FIG. 2).
  • the boom 4 is pivotally attached to the center of the front part of the upper swing body 3 so that the boom 4 can be raised and lowered.
  • An arm 5 is pivotally attached to the tip of the boom 4 and a bucket 6 is vertically attached to the tip of the arm 5. It is pivotally attached so that it can rotate.
  • the bucket 6 (an example of an end attachment) is attached to the tip of the arm 5 in a manner that can be replaced as appropriate according to the work content of the excavator 100. Therefore, the bucket 6 may be replaced with a different type of bucket, such as a large bucket, a slope bucket, or a bucket for example. Moreover, the bucket 6 may be replaced
  • the boom 4, the arm 5 and the bucket 6 are hydraulically driven by a boom cylinder 7, an arm cylinder 8 and a bucket cylinder 9 as hydraulic actuators, respectively.
  • the cabin 10 is a cockpit where an operator boardes, and is mounted on the left side of the front part of the upper swing body 3, for example.
  • FIG. 2 is a block diagram illustrating an example of the configuration of the excavator 100 according to the present embodiment.
  • the mechanical power system is indicated by a double line
  • the high-pressure hydraulic line is indicated by a thick solid line
  • the pilot line is indicated by a broken line
  • the electric drive / control system is indicated by a thin solid line.
  • the hydraulic drive system includes a traveling hydraulic motor 1A that hydraulically drives each of the driven elements such as the lower traveling body 1, the upper swing body 3, the boom 4, the arm 5, and the bucket 6. 1B, the turning hydraulic motor 21, the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9 are included.
  • a part or all of the traveling hydraulic motors 1A and 1B, the swing hydraulic motor 21, the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9 may be referred to as “hydraulic actuators” for convenience.
  • the hydraulic drive system of the excavator 100 includes the engine 11, the main pump 14, the control valve 17, and the hydraulic oil holding circuit 40.
  • the other hydraulic actuators except the boom cylinder 4 may be replaced with electric actuators.
  • the turning hydraulic motor 21 may be replaced with a turning electric motor that electrically drives the turning mechanism 2 (upper turning body 3).
  • the engine 11 is a driving force source of the excavator 100, and is mounted on the rear part of the upper swing body 3, for example.
  • the engine 11 is, for example, a diesel engine that uses light oil as fuel.
  • a main pump 14 and a pilot pump 15 are connected to the output shaft of the engine 11.
  • the main pump 14 is mounted, for example, at the rear part of the upper swing body 3 and supplies hydraulic oil to the control valve 17 through the high-pressure hydraulic line 16.
  • the main pump 14 is driven by the engine 11 as described above.
  • the main pump 14 is, for example, a variable displacement hydraulic pump. Under the control of the controller 30, the angle of the swash plate (tilt angle) is controlled by the regulator, thereby adjusting the stroke length of the piston and the discharge flow rate. (Discharge pressure) can be adjusted (controlled).
  • the main pump 14 may be driven by power from a power source other than the engine 11.
  • the main pump 14 may be driven by an electric motor instead of or in addition to the engine 11.
  • the excavator 100 may be mounted with another power source that supplies electric power to the electric motor instead of or in addition to the engine 11.
  • Other power sources include, for example, a battery that can be charged with electric power of an electric motor or electric power supplied from an external commercial power supply, a power storage device such as a capacitor, a fuel cell, and the like.
  • the control valve 17 (an example of a first hydraulic mechanism unit) is a hydraulic control device that is mounted, for example, in the center of the upper swing body 3 and controls the hydraulic drive system in accordance with an operation performed on the operation device 26 by the operator. is there. Specifically, the control valve 17 controls the supply and discharge of the hydraulic oil to and from the respective hydraulic actuators according to the operation on the operation device 26 by the operator.
  • the traveling hydraulic motors 1A and 1B, the boom cylinder 7, the arm cylinder 8, the bucket cylinder 9, the turning hydraulic motor 21 and the like are connected to the control valve 17 via a high pressure hydraulic line.
  • the control valve 17 is provided between the main pump 14 and each hydraulic actuator, and is a plurality of hydraulic control valves that control the flow rate and flow direction of hydraulic oil supplied from the main pump 14 to each hydraulic actuator, Includes directional control valve.
  • the control valve 17 includes a boom direction control valve 17A (see FIGS. 9 and 10) described later.
  • the excavator 100 may be remotely operated.
  • the control valve 17 controls the hydraulic drive system in accordance with a signal related to the operation of the hydraulic actuator (hereinafter referred to as “remote operation signal”) received from an external device through a communication device mounted on the excavator 100.
  • the remote operation signal defines the operation target hydraulic actuator and the content of the remote operation related to the operation target hydraulic actuator (for example, operation direction and operation amount).
  • the controller 30 sends a control command corresponding to the remote operation signal to a proportional valve (hereinafter referred to as “proportional valve for operation”) arranged in a hydraulic line (pilot line) connecting the pilot pump 15 and the control valve 17. ).
  • the proportional valve for operation can apply the pilot pressure corresponding to the control command, that is, the pilot pressure corresponding to the content of the remote operation specified by the remote operation signal to the control valve 17. Therefore, the control valve 17 can realize the operation of the hydraulic actuator according to the content of the remote operation specified by the remote operation signal.
  • the excavator 100 may operate (work) autonomously without depending on, for example, an operator's operation or remote operation.
  • the control valve 17 generates a drive command (hereinafter referred to as “autonomous drive command”) generated by an autonomous control device (for example, the controller 30 or the like) that realizes the autonomous operation of the shovel 100 to operate the hydraulic actuator of the shovel 100.
  • the hydraulic drive system is controlled accordingly.
  • the autonomous drive command defines the operation target hydraulic actuator and the operation details (for example, the operation direction and the operation amount) regarding the operation target hydraulic actuator.
  • the control valve 17 controls the hydraulic drive system according to the operation of the autonomous hydraulic actuator by the autonomous control device.
  • the autonomous control device outputs a control command corresponding to the drive command generated autonomously to the proportional valve for operation.
  • the operation proportional valve can cause the control valve 17 to apply a pilot pressure corresponding to the control command, that is, a pilot pressure corresponding to the operation content related to the hydraulic actuator specified by the drive command. Therefore, the control valve 17 can realize the operation of the hydraulic actuator according to the operation content defined by the drive command corresponding to the autonomous operation generated by the autonomous control device.
  • the hydraulic oil holding circuit 40 (an example of a second hydraulic mechanism unit) is provided in a high-pressure hydraulic line (an example of an oil passage) between the bottom side oil chamber of the boom cylinder 7 and the control valve 17.
  • the hydraulic oil holding circuit 40 basically allows hydraulic oil to flow into the bottom side oil chamber of the boom cylinder 7 when an operation in the lowering direction of the boom 4 (hereinafter, “boom lowering operation”) is not performed.
  • boost lowering operation an operation in the lowering direction of the boom 4
  • this function is referred to as a “hydraulic oil holding function”.
  • the hydraulic oil holding circuit 40 allows the hydraulic oil to flow out (discharge) from the bottom side oil chamber of the boom cylinder 7 to the control valve 17 when the boom lowering operation is performed.
  • the hydraulic oil holding circuit 40 switches whether the hydraulic oil flows out from the bottom side oil chamber of the boom cylinder 7 in conjunction with the operation state (operation content) related to the boom 4.
  • the high-pressure hydraulic line which connects between the hydraulic oil holding circuit 40 and the boom cylinder 7 is comprised by metal piping etc., for example. As a result, the occurrence of a burst or the like due to hydraulic oil leakage or hydraulic oil pressure increase in the high-pressure hydraulic line between the hydraulic oil holding circuit 40 and the boom cylinder 7 is suppressed.
  • the hydraulic oil holding circuit 40 can discharge the hydraulic oil in the bottom side oil chamber of the boom cylinder 7 under the control of the controller 30 even when the boom lowering operation is not performed. That is, the hydraulic oil holding circuit 40 is temporarily released from the hydraulic oil holding function under the control of the controller 30. In other words, under the control of the controller 30, the hydraulic oil holding circuit 40 is temporarily released from the linkage with the operation state (operation content) related to the boom 4, and discharges the hydraulic oil in the bottom side oil chamber of the boom cylinder 7. can do.
  • the operating system of the excavator 100 includes a pilot pump 15, an operating device 26, and a pressure sensor 29.
  • the pilot pump 15 is mounted, for example, at the rear part of the upper swing body 3 and supplies pilot pressure to the operating device 26 via the pilot line 25.
  • the pilot pump 15 is, for example, a fixed displacement hydraulic pump, and is driven by the engine 11 as described above.
  • the operating device 26 includes lever devices 26A and 26B and a pedal device 26C.
  • the operation device 26 is provided in the vicinity of the cockpit of the cabin 10, and an operator operates each driven element (the left and right crawlers of the lower traveling body 1, the upper swing body 3, the boom 4, the arm 5, the bucket 6, and the like). It is an operation means to perform.
  • the operating device 26 operates each hydraulic actuator (travel hydraulic motors 1A and 1B, boom cylinder 7, arm cylinder 8, bucket cylinder 9, and swing hydraulic motor 21 etc.) that drives each driven element. It is an operation means to perform.
  • the operating device 26 is a hydraulic pilot type. Specifically, the operating device 26 (the lever devices 26A and 26B and the pedal device 26C) is connected to the control valve 17 via the hydraulic line 27. Thereby, a pilot signal (pilot pressure) corresponding to the operation state of the lower traveling body 1, the upper swing body 3, the boom 4, the arm 5, the bucket 6 and the like in the operating device 26 is input to the control valve 17. . Therefore, the control valve 17 can drive each hydraulic actuator according to the operating state of the operating device 26.
  • the operating device 26 is connected to a pressure sensor 29 via a hydraulic line 28.
  • the operation device 26 may be an electric type.
  • the operation device 26 outputs an electrical signal (hereinafter referred to as “operation signal”) corresponding to an operation state (for example, operation contents such as an operation direction and an operation amount).
  • operation signal is taken into the controller 30 described later, and the controller 30 outputs a control command corresponding to the operation signal to the operation proportional valve.
  • the proportional valve can apply a pilot pressure corresponding to the operation command, that is, a pilot pressure corresponding to the operation content of the operation device 26. Therefore, the control valve 17 can realize the operation of the hydraulic actuator according to the operation content of the operation device 26.
  • the lever devices 26A and 26B are respectively arranged on the left side and the right side as viewed from the operator seated in the cockpit in the cabin 10, and the respective operation levers are based on the neutral state (the state where there is no operation input by the operator). It is configured to be tiltable in the front-back direction and the left-right direction. Accordingly, the upper swing body 3 with respect to each of the tilting of the operation lever in the front-rear direction and the tilting of the left-right direction in the lever device 26A, and the tilting of the operation lever in the front-rear direction and the tilting of the left-right direction in the lever device 26B. Any of (swing hydraulic motor 21), boom 4 (boom cylinder 7), arm 5 (arm cylinder 8), and bucket 6 (bucket cylinder 9) can be arbitrarily set as an operation target.
  • the pedal device 26C is disposed on the floor in front of the lower traveling body 1 (travel hydraulic motors 1A and 1B) as viewed from the operator seated in the cockpit in the cabin 10, and the operation pedal is It can be stepped on by an operator.
  • the operation device 26 may be omitted.
  • the pressure sensor 29 is connected to the operating device 26 via the hydraulic line 28 and corresponds to the pilot pressure on the secondary side of the operating device 26, that is, the operating state of each driven element in the operating device 26. Detect the pilot pressure.
  • the pressure sensor 29 is connected to the controller 30, and a pressure signal (pressure detection value) corresponding to the operation state of the lower traveling body 1, the upper swing body 3, the boom 4, the arm 5, the bucket 6 and the like in the operation device 26 is the controller. 30.
  • the controller 30 can grasp
  • the pressure sensor 29 may be omitted when the operation device 26 is an electric type, or when the operation device 26 is omitted on the assumption of remote operation or autonomous operation of the excavator 100.
  • the control system of the shovel 100 includes a controller 30, an unstable operation determination sensor 32, and a hydraulic oil holding circuit 40.
  • the controller 30 is a main control device that performs drive control of the excavator 100.
  • the function of the controller 30 may be realized by arbitrary hardware or a combination of hardware and software.
  • the controller 30 includes, for example, a processor such as a CPU (Central Processing Unit), a memory device such as a RAM (Random Access Memory), an auxiliary storage device such as a ROM (Read Only Memory), an interface device related to input / output, and the like. Consists of microcomputers.
  • the controller 30 is an unstable operation of the shovel 100 that is not intended by an operator who operates the operation device 26, an operator who performs remote operation, an autonomous control device or the like (hereinafter referred to as “operator” for convenience).
  • the presence or absence of “unstable operation”) is simply determined. That is, the controller 30 determines whether or not an unstable operation of the excavator 100 that is not desirable for an operator or the like has occurred.
  • the operation of the attachment of the excavator 100 specifically, a boom cylinder that drives the boom 4 as will be described later
  • the controller 30 corrects the attachment operation assumed when the unstable operation of the excavator 100 occurs.
  • the operation of the attachment includes an operation of the attachment according to an operation related to the attachment.
  • the operation of the attachment has nothing to do with the operation related to the attachment (for example, when the operation related to the attachment is not performed) (for example, the force acting from the bucket 6 or the force acting from the upper swing body 3) Operation based on Thereby, the unstable operation which generate
  • the unstable operation of the shovel 100 includes, for example, a lifting operation in which the rear portion of the shovel 100 is lifted due to excavation reaction force or the like (hereinafter referred to as “rear lifting operation” for convenience).
  • the unstable operation of the excavator 100 includes, for example, a vehicle body (lower traveling body 1) induced by a change in the moment of inertia during the aerial operation of the attachment of the excavator 100 (operation when the bucket 6 is not in contact with the ground). , Swiveling mechanism 2 and upper revolving body 3). Details of the unstable operation of the excavator 100 will be described later (see FIGS. 3 to 6).
  • the controller 30 includes, for example, a determination unit 301 and a control unit 302 as functional units realized by executing one or more programs installed in the auxiliary storage device on the CPU.
  • the unstable operation determination sensor 32 is used to determine whether or not the excavator 100 is unstable, and detects various states of the excavator 100 and various states around the excavator 100.
  • the unstable operation determination sensor 32 includes, for example, a posture angle of the boom 4 (hereinafter, “boom angle”), a posture angle of the arm 5 (hereinafter, “arm angle”), and a posture angle of the bucket 6 (hereinafter, “ An angle sensor that detects “bucket angle”) and the like may be included.
  • the unstable operation determination sensor 32 may include a pressure sensor that detects a hydraulic state in the hydraulic actuator, for example, a pressure in the rod-side oil chamber and the bottom-side oil chamber of the hydraulic cylinder.
  • the unstable motion determination sensor 32 may include a sensor that detects the operation states of the lower traveling body 1, the upper swing body 3, and the attachment.
  • the unstable motion determination sensor 32 includes an acceleration sensor, an angular acceleration sensor, a triaxial acceleration sensor, and a triaxial angular velocity sensor mounted on the lower traveling body 1, the upper swing body 3, or the attachment.
  • An axis sensor, IMU (Inertial Measurement Unit) can be included.
  • the unstable motion determination sensor 32 may include a distance sensor, an image sensor, and the like that detect a relative positional relationship with the topography and obstacles around the excavator 100.
  • the determination unit 301 determines whether or not an unstable operation of the shovel 100 has occurred based on sensor information regarding various states of the shovel 100 input from the pressure sensor 29 or the unstable operation determination sensor 32.
  • the determination unit 301 determines the occurrence of the rear lifting operation of the excavator 100 based on the output of a sensor that can output angle-related information related to the inclination of the vehicle body in the front-rear direction, that is, the inclination angle in the pitch direction.
  • the unstable motion determination sensor 32 includes a sensor capable of outputting angle-related information (for example, tilt angle, angular velocity, angular acceleration, etc.) regarding the tilt angle in the pitch direction of the vehicle body.
  • the unstable motion determination sensor 32 may include an inclination sensor (angle sensor), an angular velocity sensor, a six-axis sensor, an IMU, and the like mounted on the lower traveling body 1 and the upper swing body 3.
  • the determination unit 301 can determine that the lifting operation has occurred when the detected value of the inclination angle, angular velocity, or angular acceleration in the pitch direction of the excavator 100 exceeds a predetermined threshold value. This is because when the lifting operation occurs, the inclination angle, the angular velocity, and the angular acceleration of the excavator 100 in the pitch direction have a certain large value. Then, the determination unit 301 can determine whether the front lifting operation or the rear lifting operation is performed based on the tilt angle, the angular velocity, or the direction in which the angular acceleration is generated, that is, whether the tilt is backward or forward about the pitch axis. it can.
  • the determination unit 301 determines the occurrence of the rear lifting operation of the excavator 100 based on the output of a sensor that can output the relative position information between the excavator 100 and the surrounding terrain and obstacles.
  • the unstable operation determination sensor 32 includes a sensor that can output relative position information between the excavator 100 and the surrounding terrain, an obstacle, and the like.
  • the unstable operation determination sensor 32 includes a millimeter wave radar, a LIDAR (Light Detection and Ranging), a monocular camera, a stereo camera, and the like.
  • the determination unit 301 determines whether or not the rear lifting operation of the excavator 100 has occurred based on whether or not the position of a predetermined reference object in front of the excavator 100 has moved substantially upward. You can do it. This is because when the rear part of the excavator 100 is lifted, the front part of the excavator 100 approaches the ground, and as a result, a reference object such as the front ground viewed from the excavator 100 moves relatively upward.
  • the determination unit 301 may have an unstable operation in the shovel 100 based on sensor information regarding various states of the shovel 100 input from the pressure sensor 29 or the unstable operation determination sensor 32. It may be determined whether or not. Specifically, the determination unit 301 establishes a condition (hereinafter referred to as “unstable operation occurrence condition”) in which an unstable operation occurs in the shovel 100, which is defined in advance based on sensor information regarding various states of the shovel 100. It may be determined whether or not.
  • a condition hereinafter referred to as “unstable operation occurrence condition” in which an unstable operation occurs in the shovel 100, which is defined in advance based on sensor information regarding various states of the shovel 100. It may be determined whether or not.
  • the determination unit 301 calculates (estimates) the moment in the pitch direction acting on the vehicle body based on the output of a sensor capable of outputting information on the operation state and posture state of the attachment.
  • the determination unit 301 may have an unstable operation in the excavator 100.
  • the unstable motion determination sensor 32 includes a sensor capable of outputting information on the motion state and posture state of the attachment.
  • the unstable operation determination sensor 32 includes an elevation angle (boom angle) with respect to the reference plane of the boom 4 at a connection point between the upper swing body 3 and the boom 4, and a relative elevation angle (arm angle) of the arm 5 with respect to the boom 4. And an angle sensor (for example, a rotary encoder) for detecting a relative elevation angle (bucket angle) of the bucket 6 with respect to the arm 5.
  • the unstable operation determination sensor 32 includes a pressure sensor that detects the pressures in the rod-side oil chamber and the bottom-side oil chamber of the hydraulic cylinder (the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9).
  • the unstable motion determination sensor 32 includes an acceleration sensor, an angular velocity sensor, a six-axis sensor, an IMU, and the like mounted on the attachment.
  • the control unit 302 automatically controls (corrects) the operation of the attachment when the determination unit 301 determines that an unstable operation has occurred or that there is a possibility that an unstable operation has occurred. Suppresses unstable operation. Specifically, as will be described later, the control unit 302 automatically controls (corrects) the operation of the attachment by controlling (depressurizing) the pressure in the bottom side oil chamber of the boom cylinder 7. In this case, the control unit 302 cancels the hydraulic oil holding function of the hydraulic oil holding circuit 40. As a result, the control unit 302 can control the boom cylinder 7 even when the boom lowering operation is not performed through the operation device 26, the remote operation, or the autonomous control device (hereinafter, “operation device 26 etc.”).
  • the hydraulic oil can be discharged from the bottom side oil chamber, and the pressure can be controlled. That is, the control unit 302 cancels the hydraulic oil holding function of the hydraulic oil holding circuit 40 according to the status of the excavator 100 (specifically, depending on the presence or absence of unstable operation of the excavator 100). As a result, the control unit 302 controls the bottom of the boom cylinder 7 regardless of the operation state of the boom 4 through the operation device 26 or the like (specifically, regardless of the boom lowering operation through the operation device 26 or the like). The hydraulic oil can be discharged from the side oil chamber and the pressure can be controlled.
  • control unit 302 can achieve both a hydraulic oil retention function when the excavator 100 does not have an unstable operation and a function to suppress the unstable operation when the excavator 100 has an unstable operation.
  • this control mode is referred to as “bottom relief control” for convenience.
  • the control unit 302 is connected to the bottom oil chamber of the boom cylinder 7 when the hydraulic oil holding function of the hydraulic oil holding circuit 40 is canceled and the pressure of the bottom oil chamber of the boom cylinder 7 is controlled (adjusted). Even when a hose burst occurs in the oil path to be operated, the moving speed in the lowering direction of the boom 4 is not provided with the hydraulic oil holding circuit 40 described later (that is, the hydraulic oil holding of the hydraulic oil holding circuit 40). Control is performed so as to be relatively smaller than when the function is completely released, that is, below a predetermined reference.
  • the movement speed in the lowering direction of the boom 4 to be controlled may be, for example, the movement speed at each time point, or the average movement speed within a certain period, that is, the boom 4 within a predetermined time. It may be the amount of movement in the downward direction. Details of a specific correction method and operation of the control unit 302 will be described later (see FIGS. 9 to 11).
  • the unstable operation of the excavator 100 may occur in the excavator 100 besides the rear lifting operation and the vibration operation.
  • Examples of the unstable operation of the excavator 100 include a drag operation (sliding operation) in which the excavator 100 is dragged forward by an excavation reaction force or the excavator 100 is dragged backward by a reaction force from the ground in leveling work or the like. May also be included).
  • the unstable operation of the excavator 100 may include a lifting operation in which the front portion of the excavator 100 is lifted (hereinafter referred to as a “front lifting operation for convenience”) as opposed to the rear lifting operation.
  • the controller 30 may automatically control (correct) the operation of the attachment of the excavator 100 so as to suppress other types of unstable operations other than the rear lifting operation and the vibration operation. Further, the controller 30 uses a control method (correction method) described later without determining whether or not the excavator 100 is unstable, and the pressure in the bottom side oil chamber of the boom cylinder 7 is relatively low. By maintaining the above, the unstable operation of the excavator 100 may be suppressed. In other words, for example, the controller 30 continues the bottom relief control that maintains the relatively low pressure in the bottom oil chamber of the boom cylinder 7 while monitoring the pressure in the bottom oil chamber of the boom cylinder 7. Good.
  • FIG. 3 is a diagram illustrating a specific example of a work situation of the excavator 100 in which an unstable operation that is a target of bottom relief control may occur.
  • FIG. 3A is a diagram schematically illustrating the state of the earth removal work of the excavator 100 by the opening operation of the bucket 6 (hereinafter, “bucket opening operation”).
  • FIG. 3B schematically shows the state of the soil removal work of the excavator 100 by the lowering operation of the boom 4 (hereinafter “boom lowering operation”) and the opening operation of the arm 5 (hereinafter “arm opening operation”). It is.
  • the operator or the like may perform an operation such as intentionally vibrating the attachment, but suddenly, when the clay-like earth and sand is peeled off from the bucket 6 and discharged to the outside, There is also an influence by the operation state, and the rear lifting operation and the vibration operation of the excavator 100 are promoted.
  • FIG. 3C shows a situation in the second half of excavation work of the excavator 100 by the closing operation of the arm 5 and the bucket 6 (hereinafter, “arm closing operation” and “bucket closing operation”, respectively), specifically, the bucket It is a figure which shows typically the operation
  • FIG. 3D schematically shows the situation in the latter half of the excavation work by the raising operation of the boom 4 (hereinafter referred to as “boom raising operation”), specifically, the situation of the operation of lifting the earth and sand held in the bucket 6.
  • boost raising operation specifically, the situation of the operation of lifting the earth and sand held in the bucket 6.
  • FIG. 3E is a diagram schematically illustrating a state where the excavator 100 is suddenly stopped immediately above the ground after a rapid boom lowering operation at the start of excavation work.
  • FIG. 3F shows a situation in the latter half of excavation work of the excavator 100 by the boom raising operation, specifically, lifting the earth and sand held in the bucket 6 in a state where the bucket 6 is relatively far away from the vehicle body. It is a figure which shows a condition typically.
  • the rear lifting operation and the vibration operation of the excavator 100 may occur due to factors other than the work conditions shown in FIGS. 3A to 3F.
  • connection mode between the arm 5 and the end attachment (bucket 6) is realized by quick coupling
  • a phase difference may occur between the operation of the boom 4 and the arm 5 and the operation of the end attachment. There is sex.
  • a change in the moment of inertia occurs in the attachment, and in the same manner as described above, a moment in the pitching direction that causes the vehicle body to fall forward is applied to the excavator 100, and the rear lift operation and vibration are caused. Operation may occur.
  • FIG. 4 is a view for explaining the rear lifting operation of the excavator 100. Specifically, FIG. 4 is a diagram illustrating a working state of the excavator 100 in which the rear lifting operation occurs.
  • the excavator 100 is excavating the ground 60a.
  • a force F2 (moment) is generated so that the bucket 6 digs the slope 60b, and in other words, the boom 4 tilts the vehicle body forward so that the boom 4 holds the bucket 6 against the slope 60b.
  • a force F3 (moment) is generated.
  • a force F1 for pulling up the rod is generated in the boom cylinder 7, and the force F1 acts to tilt the vehicle body of the excavator 100 forward.
  • the moment to tilt the vehicle body due to the force F1 exceeds the force (moment) to hold the vehicle body based on gravity against the ground, the rear part of the vehicle body is lifted.
  • the boom 4 does not move even if force is applied to the boom 4. Is not displaced.
  • the pressure in the oil chamber on the contraction side (bottom side) of the boom cylinder 7 increases, the force F1 for lifting the boom cylinder 7 itself, that is, the force for tilting the vehicle body forward increases.
  • the same situation occurs, for example, in the deep excavation work (see FIG. 3F) in which the bucket 6 is positioned below the vehicle body (lower traveling body 1) in addition to the excavation work on the front slope shown in FIG. sell. Further, as described above, it may occur not only when the boom 4 itself is operated, but also when the arm 5 or the bucket 6 is operated.
  • FIGS. 5A and 5B are diagrams for explaining an example of the vibration operation of the excavator 100.
  • FIG. 5 (FIGS. 5A and 5B) is a diagram illustrating a situation in which a vibration operation occurs during the aerial operation of the excavator 100.
  • FIG. FIG. 6 is a diagram showing time waveforms of an angle in the pitch direction (pitch angle) and an angular velocity (pitch angular velocity) associated with the discharging operation of the shovel 100 in the situation shown in FIGS. 5A and 5B.
  • a discharge operation for discharging the load DP in the bucket 6 will be described as an example of the aerial operation.
  • the bucket 6 and the arm 5 are closed and the boom 4 is raised, and the bucket 6 accommodates a load DP such as earth and sand.
  • FIG. 7 is a diagram showing a dynamic model of the excavator 100 related to the rear lifting, and is a diagram showing a force acting on the excavator 100 when excavating the ground 130a.
  • the overturning fulcrum P1 in the rear lifting operation of the excavator 100 can be regarded as the forefront of the effective ground contact area 130b of the lower traveling body 1 in the direction in which the attachment extends (the direction of the upper revolving body 3). Therefore, the moment ⁇ 1 for tilting the vehicle body forward around the overturning fulcrum P1, that is, the moment ⁇ 1 for lifting the rear portion of the vehicle body, is the distance D4 between the extension line l2 of the boom cylinder 7 and the overturning fulcrum P1, Based on the force F1 that the boom cylinder 7 exerts on the upper swing body 3, it is expressed by the following equation (1).
  • control unit 302 can suppress the rear lifting operation of the excavator 100 by correcting the operation of the attachment so that the inequality (4) is satisfied as the control condition.
  • the force F1 is represented by a function f having the rod pressure PR and the bottom pressure PB of the boom cylinder 7 as arguments, as shown in the following equation (5).
  • the control unit 302 calculates (estimates) a force F1 exerted on the upper swing body 3 by the boom cylinder 7 based on the rod pressure PR and the bottom pressure PB. At this time, as described above, the control unit 302 determines the rod pressure PR and the bottom pressure PB based on the output signal of the pressure sensor that detects the rod pressure and the bottom pressure of the boom cylinder 7 that can be included in the unstable operation determination sensor 32. You may get.
  • the force F1 can be expressed by the following equation (6) using the pressure receiving area AR on the rod side of the boom cylinder 7 and the pressure receiving area AB on the bottom side.
  • the control unit 302 may calculate (estimate) the force F1 based on Expression (6).
  • control unit 302 acquires distances D2 and D4. Moreover, the control part 302 may acquire those ratio (D1 / D3 or D2 / D4).
  • the position of the vehicle body center of gravity P3 excluding the attachment is constant regardless of the turning angle ⁇ of the upper-part turning body 3, but the position of the overturning fulcrum P1 varies depending on the turning angle ⁇ . Therefore, for example, the control unit 302 calculates the overturning fulcrum P1 based on the turning angle ⁇ detected by the turning angle sensor or the like, and then, based on the relative positional relationship between the calculated overturning fulcrum P1 and the vehicle body center of gravity P3.
  • the distance D2 may be calculated. Further, the distance D2 can be changed according to the turning angle ⁇ of the upper turning body 3, but for simplicity, the distance D2 may be a constant. In this case, the controller 302 stores the controller 30 stored in advance. From internal memory.
  • the distance D4 can be calculated geometrically based on the position of the overturning fulcrum P1 and the angle of the boom cylinder 7 (for example, the angle ⁇ 1 formed by the boom cylinder 7 and the vertical shaft 130c).
  • the angle ⁇ 1 can be calculated geometrically from the expansion / contraction length of the boom cylinder 7, the dimensions of the excavator 100, the inclination of the vehicle body of the excavator 100, and the like.
  • the control unit 302 may calculate the angle ⁇ 1 by using an output of a sensor that detects a boom angle that can be included in the unstable motion determination sensor 32.
  • the angle ⁇ 1 may be acquired by using an output of a sensor that directly measures the angle ⁇ 1 that can be included in the unstable motion determination sensor 32.
  • the controller 302 controls the pressure of the boom cylinder 7, specifically, the bottom-side oil chamber that is excessive in pressure so that the inequality (4) is established. To control the pressure. That is, the control unit 302 adjusts the bottom pressure PB of the boom cylinder 7 so that the inequality (4) is established. More specifically, by adopting various configurations described later (see FIGS. 9 to 11), the control unit 302 adjusts the pressure of the boom cylinder 7 by appropriately outputting a control command to the control target. . As a result, the pressure in the bottom side oil chamber of the boom cylinder 7 that is excessively pressured is reduced, thereby acting as a cushion when the vehicle body is about to fall forward, and the rear lifting operation of the shovel 100 can be suppressed.
  • FIG. 8 is a diagram illustrating a specific example of operation waveforms related to the vibration operation of the excavator 100.
  • FIG. Specifically, FIGS. 8A to 8C are diagrams showing an example of an operation waveform diagram when the aerial operation is repeatedly performed in the excavator 100, another example, and still another example.
  • FIGS. 8A to 8C show different trials, and the pitching angular velocity (that is, vibration of the vehicle body), boom angular acceleration, arm angular acceleration, boom angle, and arm angle are shown in order from the top.
  • X indicates a point corresponding to the negative peak of the pitch angular velocity.
  • control unit 302 corrects the operation of the boom cylinder 7 as a control target. That is, the control unit 302 prevents the thrust of the boom cylinder 7 from exceeding the upper limit value based on the attachment state (that is, the limit thrust FMAX defined by the attachment state).
  • the thrust F of the boom cylinder 7 is based on the following pressure receiving area AR of the rod side oil chamber, rod pressure PR of the rod side oil chamber, pressure receiving area AB of the bottom side oil chamber, and bottom pressure PB of the bottom side oil chamber. It is represented by Formula (7).
  • the control unit 302 corrects the operation of the attachment, that is, the operation of the boom cylinder 7 so that Expression (10) is established. That is, the control unit 302 adjusts (decreases) the bottom pressure PB of the boom cylinder 7 so that the formula (10) is established. More specifically, by adopting various configurations to be described later (see FIGS. 9 to 11), the control unit 302 appropriately outputs a control command to the control target, thereby allowing the bottom pressure PB of the boom cylinder 7 to be controlled. Is adjusted (depressurized). Thereby, the vibration operation of the shovel 100 can be suppressed.
  • the control unit 302 acquires the limit thrust FMAX based on the detection signal from the unstable motion determination sensor 32. Specifically, the control unit 302 acquires the limited thrust FMAX by an operation that uses the detection state from the unstable state determination sensor 32 as an input, for example. Thereby, the control unit 302 can calculate the upper limit value PBMAX of the bottom pressure PB from the equation (10), and can adjust the bottom pressure PB of the boom cylinder 7 so as not to exceed the calculated upper limit value PBMAX.
  • the control unit 302 acquires a thrust capable of maintaining the posture of the boom 4 (holding thrust FMIN), and in a range higher than the holding thrust FMIN.
  • the limit thrust FMAX may be set.
  • control unit 302 collates the content of the detection signal corresponding to the attachment state with a map or table stored in advance in the internal memory or the like of the controller 30 and using the content of the detection signal as a parameter.
  • Limit thrust FMAX is set.
  • FIG. 9 is a diagram showing a first example of a configuration centering on a hydraulic circuit that supplies hydraulic oil to the boom cylinder 7 of the excavator 100 according to the present embodiment.
  • two boom cylinders 7 are shown in the figure, but the point that the control valve 17 and the hydraulic oil holding circuit 40 are interposed between the main pump 14 and the boom cylinder 7 is any boom cylinder.
  • FIGS. 10 and 11 below are examples of the hydraulic circuit that supplies hydraulic oil to the boom cylinder 7 of the excavator 100 according to the present embodiment.
  • two boom cylinders 7 are shown in the figure, but the point that the control valve 17 and the hydraulic oil holding circuit 40 are interposed between the main pump 14 and the boom cylinder 7 is any boom cylinder.
  • the excavator 100 discharges the hydraulic oil in the bottom side oil chamber of the boom cylinder 7 even when the hose of the high pressure hydraulic line is broken due to rupture or the like as described above.
  • a hydraulic oil holding circuit 40 is provided to hold the hydraulic oil so as not to be released.
  • the hydraulic oil holding circuit 40 is interposed in a high pressure hydraulic line (oil passage) that connects between the control valve 17 and the bottom side oil chamber of the boom cylinder 7.
  • the hydraulic oil holding circuit 40 mainly includes a holding valve 42 and a spool valve 44.
  • the holding valve 42 allows the hydraulic oil to flow from the control valve 17 to the bottom side oil chamber of the boom cylinder 7.
  • the holding valve 42 corresponds to the operation in the raising direction of the boom 4 with respect to the operating device 26, and the hydraulic oil supplied from the control valve 17 through the oil passage 901 is sent to the bottom of the boom cylinder 7 through the oil passage 903. Supply to the side oil chamber.
  • the holding valve 42 blocks outflow of hydraulic oil from the bottom oil chamber (oil passage 903) of the boom cylinder 7 to the oil passage 901 connected to the control valve 17.
  • the holding valve 42 is, for example, a poppet valve.
  • the holding valve 42 is connected to one end of an oil passage 902 branched from the oil passage 901, and the hydraulic oil in the bottom side oil chamber of the boom cylinder 7 is supplied to the downstream oil passage 901 through the spool valve 44 disposed in the oil passage 902. (Control valve 17) can be discharged.
  • the holding valve 42 holds the hydraulic oil in the bottom side oil chamber of the boom cylinder 7. It keeps so that it may not discharge
  • the holding valve 42 holds the hydraulic oil in the bottom side oil chamber of the boom cylinder 7 via the oil passage 902 when the spool valve 44 is in communication (the center or rightmost spool position in the figure). It can be discharged downstream of the circuit 40.
  • the spool valve 44 (an example of a first discharge valve) is provided in the oil passage 902, and the hydraulic oil in the bottom oil chamber of the boom cylinder 7 that is blocked by the holding valve 42 is downstream of the hydraulic oil holding circuit 40 (oil passage). 901) can be detoured and discharged.
  • the spool valve 44 has a first spool position (the spool position at the left end in the drawing) that makes the oil passage 902 non-communication, and a second spool position (the center spool position in the drawing) that narrows the oil passage 902 and makes it communicate. And a third spool position (the spool position at the right end in the figure) that allows the oil passage 902 to be fully open and communicated. At this time, in the second spool position, the degree of throttling of the spool valve 44 is varied according to the magnitude of the pilot pressure input to the pilot port.
  • the spool valve 44 When the pilot pressure is not input to the pilot port, the spool valve 44 is in the first spool position, and the hydraulic oil in the bottom oil chamber of the boom cylinder 7 is supplied to the hydraulic oil holding circuit 40 via the oil passage 902. It is not discharged downstream (oil path 901).
  • a pilot pressure is input to the pilot port of the spool valve 44, the spool is in either the second position or the third position depending on the magnitude of the pilot pressure. Specifically, in the spool valve 44, as the pilot pressure acting on the pilot port increases, the degree of throttling at the second position decreases and the spool approaches the third spool position from the second spool position. When the pilot pressure acting on the pilot port increases to some extent, the spool valve 44 is in the third spool position.
  • a pilot circuit for inputting pilot pressure to the spool valve 44 is provided.
  • the pilot circuit includes a pilot pump 15, a boom lowering remote control valve 26 ⁇ / b> Aa, an electromagnetic proportional valve 52, and a shuttle valve 54.
  • the boom lowering remote control valve 26Aa is connected to the pilot pump 15 through the pilot line 25A.
  • the boom lowering remote control valve 26Aa is included in the lever device 26A for operating the boom cylinder 7, and outputs a pilot pressure corresponding to the boom lowering operation using the primary pilot pressure supplied from the pilot pump 15 as a base pressure.
  • the electromagnetic proportional valve 52 branches off from the pilot line 25A between the pilot pump 15 and the boom lowering remote control valve, bypasses the boom lowering remote control valve 25Aa, and is connected to one port of the shuttle valve 54. Is provided.
  • the electromagnetic proportional valve 52 switches communication / non-communication of the oil passage 904 according to the presence / absence of a control current input from the controller 30.
  • the electromagnetic proportional valve 52 outputs the secondary side pilot pressure supplied from the pilot pump 15 as a source pressure to the shuttle valve 54 according to the magnitude of the control current input from the controller 30. Control the magnitude of the pilot pressure.
  • the proportional solenoid valve 52 increases the secondary pilot pressure output to the shuttle valve 54 as the magnitude of the control current input from the controller 30 increases.
  • the shuttle valve 54 has one input port connected to one end of the oil passage 904 and the other port connected to the secondary oil passage 905 of the boom lowering remote control valve 25Aa.
  • the shuttle valve 54 outputs the higher one of the two input ports to the pilot port of the spool valve 44.
  • the pilot pressure acts on the pilot port of the spool valve 44 from the shuttle valve 54, and the spool valve 44 is brought into a communication state.
  • the spool valve 44 discharges the hydraulic oil in the bottom side oil chamber of the boom cylinder 7 to the downstream (the oil path 901) of the hydraulic oil holding circuit 40 via the oil path 902 in response to the boom lowering operation on the lever device 26A.
  • the spool valve 44 is interlocked with the operation state of the lever device 26 ⁇ / b> A and discharges the hydraulic oil blocked by the holding valve 42 from the bottom side oil chamber of the boom cylinder 7 when the boom lowering operation is performed on the lever device 26 ⁇ / b> A.
  • the shuttle valve 54 is a pilot of the spool valve 44 from the electromagnetic proportional valve 52 via the shuttle valve 54 under the control of the controller 30 even when the boom lowering operation is not performed on the lever device 26A.
  • Pilot pressure can be applied to the port. Therefore, the controller 30 releases the hydraulic oil holding function of the hydraulic oil holding circuit 40 (spool valve 44) via the electromagnetic proportional valve 52, and communicates the oil passage 902 regardless of whether or not the boom lowering operation is performed in the lever device 26A. In this state, the hydraulic oil in the bottom oil chamber of the boom cylinder 7 can be discharged downstream (the oil passage 901) of the hydraulic oil holding circuit 40. That is, the controller 30 determines the operation state of the spool valve 44 and the lever device 26A according to the state of the excavator 100 (specifically, the occurrence of unstable operation or the possibility of occurrence of unstable operation).
  • the hydraulic oil holding function of the hydraulic oil holding circuit 40 is canceled, and the bottom of the boom cylinder 7 is independent of the operating state of the lever device 26A.
  • the hydraulic oil can be discharged from the side oil chamber.
  • electromagnetic relief valves 56 and 58 are provided inside the control valve 17.
  • the electromagnetic relief valve 56 branches from an oil passage between the rod side oil chamber of the boom cylinder 7 and the boom direction control valve 17A provided inside the control valve 17 and is provided in an oil passage 906 connected to the tank T. It is done. Thereby, the electromagnetic relief valve 56 can discharge the hydraulic oil in the rod side oil chamber of the boom cylinder 7 to the tank T in accordance with the control current input from the controller 30.
  • the electromagnetic relief valve 56 is not limited in the arrangement location as long as the hydraulic oil can be discharged from the oil passage between the rod side oil chamber of the boom cylinder 7 and the boom direction control valve 17A to the tank T.
  • It may be provided outside the control valve 17.
  • the electromagnetic relief valve 58 branches from an oil passage (an oil passage in the control valve 17 extending from the oil passage 901) between the hydraulic oil holding circuit 40 and the boom direction control valve 17A in the control valve 17. , Provided in an oil passage 907 connected to the tank T. Thereby, the electromagnetic relief valve 58 flows out from the bottom side oil chamber of the boom cylinder 7 via the hydraulic oil holding circuit 40 (the spool valve 44 and the oil passage 902) according to the control current input from the controller 30. The hydraulic oil to be discharged can be discharged to the tank T.
  • the electromagnetic relief valve 58 is not limited in the arrangement location as long as the hydraulic oil can be discharged to the tank T from the oil passage between the hydraulic oil holding circuit 40 and the boom direction control valve 17A. It may be provided outside the valve 17.
  • a boom operation speed measurement sensor 33 is provided.
  • the boom operation speed measurement sensor 33 outputs detection information related to the operation speed in the vertical direction of the boom 4 (hereinafter, “vertical operation speed”).
  • the boom operation speed measurement sensor 33 may directly output detection information corresponding to the vertical operation speed of the boom 4 or may output detection information necessary for calculating the vertical operation speed of the boom 4.
  • the boom operation speed measurement sensor 33 is, for example, a cylinder sensor that detects the position, speed, or acceleration of the piston (rod) of the boom cylinder 7, an angle sensor that detects the elevation angle (boom angle) of the boom 4, It may include at least one of sensors that detect acceleration and angular velocity (for example, acceleration sensor and angular velocity sensor, 6-axis sensor, IMU). Information detected by the boom operating speed measurement sensor 33 is taken into the controller 30.
  • the controller 30 determines whether or not an unstable operation of the excavator 100 has occurred, or an unstable operation has occurred. Determine the possibility.
  • the controller 30 determines that an unstable operation (rear lifting operation or vibration operation) has occurred or may have occurred
  • the controller 30 causes the electromagnetic proportional valve 52 and the electromagnetic relief valve 58 to By outputting the control current, the hydraulic oil holding function of the hydraulic oil holding circuit 40 is released, and bottom relief control is performed.
  • the controller 30 can cause the hydraulic oil in the bottom side oil chamber of the boom cylinder 7 to flow out through the hydraulic oil holding circuit 40 and be discharged from the electromagnetic relief valve 58 to the tank T regardless of whether or not the boom is lowered. it can. Therefore, the controller 30 can adjust (depressurize) excessive pressure in the bottom side oil chamber of the boom cylinder 7 and suppress the unstable operation of the excavator 100 as described above.
  • the controller 30 when the controller 30 outputs a control current to the electromagnetic proportional valve 52, the flow rate of the hydraulic oil passing through the spool valve 44 is the amount of movement in the lowering direction of the boom cylinder 7 within a predetermined time (that is, the average operating speed). ) Is less than or equal to a predetermined threshold. That is, the controller 30 outputs to the electromagnetic proportional valve 52 a control current in a range in which the amount of movement in the lowering direction of the boom cylinder 7 within a predetermined time is less than or equal to a predetermined threshold value. Release the hydraulic oil retention function restrictively. For example, the controller 30 sequentially acquires the moving speed in the lowering direction of the boom 4 based on the detection information of the boom operation speed measurement sensor 33.
  • the controller 30 determines a control current to be output to the electromagnetic proportional valve 52 using a known control method such as feedback control while monitoring the moving speed in the lowering direction of the boom 4 acquired sequentially.
  • a control method such as feedback control
  • the boom 4 is restricted by the flow rate of the spool valve 44 being limited. Can be prevented from falling.
  • the controller 30 restricts the flow rate of the spool valve 44 and discharges the hydraulic oil of the boom cylinder 7 that has flowed out via the hydraulic oil holding circuit 40 from the electromagnetic relief valve 58 to the tank T, so that at the time of the hose burst. Both prevention of the boom 4 from falling and suppression of the unstable operation of the excavator 100 can be achieved.
  • FIG. 10 is a diagram showing a second example of a configuration centering on a hydraulic circuit that supplies hydraulic oil to the boom cylinder 7 of the excavator 100 according to the present embodiment.
  • the description will focus on the parts different from the first example of FIG. 9, and a duplicate description will be omitted.
  • a hose burst determination sensor 34 is provided in place of the boom operation speed measurement sensor 33.
  • the hose burst determination sensor 34 outputs detection information for determining whether or not a hose burst has occurred in the high-pressure hydraulic line downstream of the hydraulic oil holding circuit 40.
  • the hose burst determination sensor 34 is upstream (the oil passage 903 on the boom cylinder 7 side) and downstream (the oil passage 901 on the control valve 17 side) of the hydraulic oil holding circuit 40 (holding valve 42).
  • Pressure sensors 34A1 and 34A2 (each of which is an example of a first pressure sensor and a second pressure sensor) that detect the hydraulic pressure of hydraulic fluid are included. Thereby, the hose burst determination sensor 34 can directly detect the presence or absence of the hose burst. Information detected by the hose burst determination sensor 34 is taken into the controller 30.
  • the hose burst determination sensor 34 may output detection information that can indirectly determine the presence or absence of a hose burst instead of directly detecting the presence or absence of a hose burst.
  • the hose burst determination sensor 34 may detect the operation of the excavator 100 related to the hose burst, that is, the operation of the excavator 100 that may change when a hose burst occurs.
  • the hose burst determination sensor 34 may include an inertial sensor (an acceleration sensor, an angular velocity sensor, a six-axis sensor, an IMU, or the like) that detects at least one of an acceleration and an angular velocity of the boom 4.
  • the hose burst determination sensor 34 may include a cylinder sensor that detects at least one of the piston position, the speed, and the acceleration of the boom cylinder 7. Further, the hose burst determination sensor 34 may include an angle sensor that detects the elevation angle (boom angle) of the boom 4. Further, the hose burst determination sensor 34 may include a plurality of these. Thereby, the controller 30 grasps the operation state of the boom 4 in the operation device 26 and the actual operation state of the boom 4, and the occurrence of the hose burst is determined from the presence or absence of the dropping operation of the boom 4 corresponding to the hose burst. Presence / absence can be determined.
  • the controller 30 determines whether or not the excavator 100 has an unstable operation or whether or not the unstable operation has occurred based on the detection information input from the unstable operation determination sensor 32. judge.
  • the controller 30 determines that an unstable operation (rear lifting operation or vibration operation) has occurred or may have occurred
  • the controller 30 causes the electromagnetic proportional valve 52 and the electromagnetic relief valve 58 to By outputting the control current, the hydraulic oil holding function of the hydraulic oil holding circuit 40 is released, and bottom relief control is performed.
  • the controller 30 outputs a control current for fully opening the oil passage 902 to the electromagnetic proportional valve 52 so that the spool of the spool valve 44 is in the third spool position, and the hydraulic oil holding circuit 40 holds the hydraulic oil. Release the function completely and perform bottom relief control. Thereby, the restriction
  • the controller 30 determines whether or not a hose burst has occurred based on the detection information of the hose burst determination sensor 34 during the bottom relief control. In this example, the controller 30 determines the presence or absence of occurrence of a hose burst based on the differential pressure between the detected values of the pressure sensors 34A1 and 34A2.
  • the controller 30 stops the bottom relief control by stopping the output of the control current to the electromagnetic proportional valve 52 and the electromagnetic relief valve 58, and the hydraulic oil of the hydraulic oil holding circuit 40 is stopped. Release of the holding function is stopped, that is, the hydraulic oil holding function is restored.
  • the controller 30 can achieve both the prevention of the boom 4 from dropping during the hose burst and the suppression of the unstable operation of the excavator 100.
  • the controller 30 may output to the electromagnetic proportional valve 52 a control current in such a manner that the oil passage 902 is slightly throttled by the spool valve 44, that is, a control current that causes the spool valve 44 to be in the second position.
  • a control current that causes the spool valve 44 to be in the second position.
  • the controller 30 performs the bottom relief control by releasing the hydraulic oil holding function of the hydraulic oil holding circuit 40 in a restrictive manner with a very low limit.
  • the controller 30 may be configured to limit the bottom relief control without stopping when it is determined that a hose burst has occurred. Specifically, when it is determined that the hose burst has occurred, the controller 30 moves the boom cylinder 7 in the downward direction within a predetermined time with respect to the electromagnetic proportional valve 52 as in the first example of FIG.
  • the bottom relief control may be continued while outputting a control current in a range where becomes less than a predetermined threshold.
  • the controller 30 may limit the release of the hydraulic oil holding function of the hydraulic oil holding circuit 40 when it is determined that a hose burst has occurred.
  • an electromagnetic switching valve that switches between communication / non-communication of the oil passage 904 may be provided. This is because in this example, unlike the first example of FIG. 9, it is not necessary to limit the pilot pressure acting on the pilot port of the spool valve 44.
  • FIG. 11 is a diagram showing a third example of a configuration centering on a hydraulic circuit that supplies hydraulic oil to the boom cylinder 7 of the excavator 100 according to the present embodiment.
  • the description will focus on the parts different from the first example of FIG. 9, and a duplicate description will be omitted.
  • the shuttle valve 54 and the electromagnetic proportional valve 52 are omitted, and the secondary pilot pressure of the boom lowering remote control valve 26Aa acts on the pilot port of the spool valve 44. That is, the spool valve 44 is interlocked with the operation state of the lever device 26A, and is in the second spool position or the third spool position only when the boom lowering operation is performed on the lever device 26A. To the communication state. Accordingly, when the boom lowering operation is not performed on the lever device 26A, the oil passage 902 is brought into a non-communication state, and the outflow of the hydraulic oil from the boom cylinder 7 is blocked.
  • electromagnetic relief valves 45 and 46 are provided outside the control valve 17.
  • the electromagnetic relief valve 45 branches from an oil passage between the rod side oil chamber of the boom cylinder 7 and the control valve 17 and is provided in an oil passage 1101 connected to the tank T. Thereby, the electromagnetic relief valve 45 can discharge the hydraulic oil in the rod side oil chamber of the boom cylinder 7 to the tank T in accordance with the control current input from the controller 30.
  • the electromagnetic relief valve 45 is not limited in its location as long as hydraulic oil can be discharged from the oil passage between the rod side oil chamber of the boom cylinder 7 and the boom direction control valve 17A to the tank T. That is, as in the example of FIG. 9, the electromagnetic relief valve 56 may be provided inside the control valve 17 instead of the electromagnetic relief valve 45.
  • the electromagnetic relief valve 46 (an example of a second discharge valve) branches from an oil passage 903 between the holding valve 42 in the hydraulic oil holding circuit 40 and the bottom side oil chamber of the boom cylinder 7 and is connected to the tank T.
  • the oil passage 1102 is provided. That is, the electromagnetic relief valve 46 relieves hydraulic oil to the tank T from the oil passage 903 upstream of the holding valve 42, that is, the boom cylinder 7 side, in accordance with the control current input from the controller 30. Therefore, the electromagnetic relief valve 46 does not depend on the operating state of the hydraulic oil holding circuit 40, specifically, whether the spool valve 44 (oil passage 902) is connected or not, and the bottom side oil chamber of the boom cylinder 7 is not connected. The hydraulic oil can be discharged to the tank T.
  • the hydraulic oil holding circuit 40 holds the hydraulic oil in the bottom oil chamber of the boom cylinder 7 to prevent the boom 4 from falling, and the bottom oil chamber of the boom cylinder 7 does not depend on whether or not the boom is lowered.
  • the hydraulic oil can be discharged to the tank T, and an excessive bottom pressure can be suppressed.
  • a hose burst determination sensor 34 including pressure sensors 34A1 and 34A2 is provided as in the second example of FIG.
  • the controller 30 determines whether or not the excavator 100 has an unstable operation or whether or not the unstable operation has occurred based on the detection information input from the unstable operation determination sensor 32. judge.
  • the controller 30 determines that an unstable operation (rear lifting operation or vibration operation) has occurred or may have occurred, it outputs a control current to the electromagnetic relief valve 46.
  • the hydraulic oil holding function of the hydraulic oil holding circuit 40 is released, and bottom relief control is performed. Accordingly, as in the case of the second example of FIG. 10, the restriction on the flow rate of the hydraulic oil flowing out from the boom cylinder 7 is relaxed, so that the controller 30 increases the excessive pressure in the bottom side oil chamber of the boom cylinder 7.
  • the unstable operation of the excavator 100 can be further suppressed.
  • the controller 30 determines whether or not a hose burst has occurred based on the detection information of the hose burst determination sensor 34 during the bottom relief control.
  • the controller 30 stops the bottom relief control by stopping the output of the control current to the electromagnetic relief valve 46, and releases the hydraulic oil holding function of the hydraulic oil holding circuit 40. Stop, that is, return the hydraulic oil retention function.
  • the controller 30 can achieve both the prevention of the boom 4 from dropping during the hose burst and the suppression of the unstable operation of the excavator 100.
  • FIG. 12 is a flowchart schematically showing an example of processing related to bottom relief control by the controller 30, and more specifically, processing related to bottom relief control corresponding to the configuration of the first example shown in FIG. 9 described above. is there.
  • the processing according to this flowchart is repeatedly executed at predetermined processing intervals, for example, when bottom relief control is not executed during operation from the start to the stop of the excavator 100. The same applies to the flowchart of FIG.
  • step S102 the determination unit 301 determines whether or not the excavator 100 has undergone an unstable operation that is a target of bottom relief control, specifically, a rear lifting operation or a vibration operation.
  • the determination unit 301 proceeds to step S104 when an unstable operation that is a target of bottom relief control occurs in the excavator 100, and ends the current process in other cases.
  • the determination unit 301 may determine whether or not there is a possibility that an unstable operation that is a target of bottom relief control is occurring in the excavator 100. The same applies to step S202 in FIG.
  • step S104 the control unit 302 outputs a control current to the electromagnetic proportional valve 52 and the electromagnetic relief valve 58, and starts bottom relief control.
  • the control unit 302 outputs a control current in a mode of limiting the opening degree of the spool valve 44 (throttling the oil passage 902) to the electromagnetic proportional valve 52.
  • step S106 the determination unit 301 determines whether or not the unstable operation that is the target of the bottom relief control of the excavator 100 is continued.
  • the determination unit 301 proceeds to step S108 when the unstable operation that is the target of the bottom relief control of the excavator 100 is not continued, and when it is continued, until it is determined that the unstable operation has not occurred. Repeat this step.
  • step S102 determines in step S102 whether or not there is a possibility that an unstable operation that is a target of bottom relief control has occurred in the excavator 100 as described above, Similarly, it is determined whether or not there is a possibility that an unstable operation has occurred in the excavator 100. The same applies to step S206 in FIG.
  • step S108 the control unit 302 stops the bottom relief control by stopping the output of the control current to the electromagnetic proportional valve 52 and the electromagnetic relief valve 58, and ends the current process.
  • FIG. 13 is a flowchart schematically showing another example of processing related to bottom relief control by the controller 30. Specifically, the second example and the third example shown in FIGS. This is processing related to bottom relief control corresponding to the configuration.
  • step S202 is the same as that in step S102 in FIG.
  • step S204 the control unit 302 outputs the control current to the electromagnetic proportional valve 52 and the electromagnetic relief valve 58 or the electromagnetic relief valve 46, thereby releasing (OFF) the hydraulic oil holding function of the hydraulic oil holding circuit 40.
  • bottom relief control is started. That is, the control unit 302 does not limit the flow rate of the hydraulic oil flowing out from the bottom side oil chamber of the boom cylinder 7, unlike the case of step S104 in FIG. Thereby, the adjustment range of the pressure of the bottom side oil chamber of the boom cylinder 7 in the bottom relief control can be widened, and the unstable operation of the excavator 100 can be more appropriately suppressed.
  • step S205 the determination unit 301 determines whether a hose burst has occurred. If the determination unit 301 determines that the hose burst has not occurred, the determination unit 301 proceeds to step S206. On the other hand, if the determination unit 301 determines that a hose burst has occurred, the determination unit 301 proceeds to step S208.
  • step S206 the determination unit 301 determines whether or not the unstable operation that is the target of the bottom relief control of the excavator 100 is continued.
  • the determining unit 301 proceeds to step S208 when the unstable operation that is the target of the bottom relief control of the excavator 100 is not continued, and returns to step S205 when the continued operation is continued, and repeats the processes of steps S205 and S206. .
  • step S208 the control unit 302 stops the bottom relief control by stopping the output of the control current to the electromagnetic proportional valve 52 and the electromagnetic relief valve 58 or the electromagnetic relief valve 46, and operates the hydraulic oil holding circuit 40.
  • the oil holding function is returned (ON), and the current process is terminated.
  • the controller 30 holds the hydraulic oil in the bottom side oil chamber of the boom cylinder 7 by the hydraulic oil holding circuit 40 even when a hose burst occurs during the bottom relief control (Yes in step S205).
  • the boom 4 can be prevented from falling.
  • the excavator 100 is configured to hydraulically drive all the various operating elements such as the lower traveling body 1, the upper swing body 3, the boom 4, the arm 5, and the bucket 6, but part thereof. May be configured to be electrically driven. That is, the configuration disclosed in the above-described embodiment may be applied to a hybrid excavator, an electric excavator, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

ブームの落下防止と、ブームシリンダ圧の自動制御とを両立させることが可能なショベルを提供する。そのため、本発明の一実施形態に係るショベル100は、ブームシリンダ7のボトム側油室とコントロールバルブ17との間の油路に設けられ、ブーム4の下げ操作が行われない場合に、閉じている作動油保持回路40と、コントローラ30とを備える。そして、コントローラ30は、当該ショベル100の状況に応じて、作動油保持回路40の閉じている状態を解除すると共に、その解除具合をブーム4の下げ方向の移動速度が所定基準以下になるように制御する。

Description

ショベル
 本発明は、ショベルに関する。
 例えば、ブームシリンダの圧力(以下、「ブームシリンダ圧」)を自動制御し、ショベルの浮き上がり等のオペレータ等が意図しない不安定な動作を抑制する技術が知られている(特許文献1等参照)。
特開2014-122510号公報
 しかしながら、例えば、ブームの落下防止のためにブームシリンダのボトム側油室の作動油が保持される構成が採用される場合、ブームシリンダのボトム側油室の圧力を適切に調整することができない可能性がある。
 そこで、上記課題に鑑み、ブームの落下防止と、ブームシリンダ圧の自動制御とを両立させることが可能なショベルを提供することを目的とする。
 上記目的を達成するため、本発明の一実施形態では、
 下部走行体と、
 前記下部走行体に旋回自在に搭載される上部旋回体と、
 前記上部旋回体に搭載されるブーム、アーム、及び、エンドアタッチメントを含むアタッチメントと、
 前記ブームを駆動するブームシリンダと、
 アタッチメントの操作に応じて動作する第1の油圧機構部と、
 前記ブームシリンダのボトム側油室と前記第1の油圧機構部との間の油路に設けられ、前記ブームの下げ操作が行われない場合に、閉じている第2の油圧機構部と、
 制御装置とを備え、
 前記制御装置は、ショベルの状況に応じて、前記第2の油圧機構部の閉じている状態を解除すると共に、その解除具合を、前記ブームの下げ方向の移動速度が所定基準以下になるように制御する、
 ショベルが提供される。
 上述の実施形態によれば、ブームの落下防止と、ブームシリンダ圧の自動制御とを両立させることが可能なショベルを提供することができる。
ショベルの一例を示す側面図である。 ショベルの構成の一例を示すブロック図である。 ボトムリリーフ制御の対象となるショベルの不安定動作(後部浮き上がり動作及び振動動作)が発生する状況の具体例を示す図である。 ボトムリリーフ制御の対象となるショベルの不安定動作(後部浮き上がり動作及び振動動作)が発生する状況の具体例を示す図である。 ボトムリリーフ制御の対象となるショベルの不安定動作(後部浮き上がり動作及び振動動作)が発生する状況の具体例を示す図である。 ボトムリリーフ制御の対象となるショベルの不安定動作(後部浮き上がり動作及び振動動作)が発生する状況の具体例を示す図である。 ボトムリリーフ制御の対象となるショベルの不安定動作(後部浮き上がり動作及び振動動作)が発生する状況の具体例を示す図である。 ボトムリリーフ制御の対象となるショベルの不安定動作(後部浮き上がり動作及び振動動作)が発生する状況の具体例を示す図である。 ショベルの後部浮き上がり動作を説明する図である。 ショベルの振動動作を説明する図である。 ショベルの振動動作を説明する図である。 ショベルの振動動作を説明する図である。 後部浮き上がり動作に関する力学的モデルの一例を示す図である。 ショベルの振動動作に関する動作波形図の具体例を示す図である。 ショベルの振動動作に関する動作波形図の具体例を示す図である。 ショベルの振動動作に関する動作波形図の具体例を示す図である。 ショベルのボトムリリーフ制御に関する油圧回路を中心とする構成の第1例を示す図である。 ショベルのボトムリリーフ制御に関する油圧回路を中心とする構成の第2例を示す図である。 ショベルのボトムリリーフ制御に関する油圧回路を中心とする構成の第3例を示す図である。 コントローラによるボトムリリーフ制御に関する処理の一例を概略的に示すフローチャートである。 コントローラによるボトムリリーフ制御に関する処理の他の例を概略的に示すフローチャートである。
 以下、図面を参照して発明を実施するための形態について説明する。
 [ショベルの概要]
 まず、図1を参照して、ショベル100の概要について説明する。
 図1は、本実施形態に係るショベルの一例(ショベル100)を示す側面図である。
 本実施形態に係るショベル100は、下部走行体1と、旋回機構2を介して旋回可能に下部走行体1に搭載される上部旋回体3と、アタッチメントとしてのブーム4、アーム5、及びバケット6と、オペレータが搭乗するキャビン10を備える。
 下部走行体1は、例えば、左右一対のクローラを含み、それぞれのクローラが走行油圧モータ1A,1B(図2参照)で油圧駆動されることにより、ショベル100を走行させる。
 上部旋回体3は、旋回油圧モータ21(図2参照)で駆動されることにより、下部走行体1に対して旋回する。
 ブーム4は、上部旋回体3の前部中央に俯仰可能に枢着され、ブーム4の先端には、アーム5が上下回動可能に枢着され、アーム5の先端には、バケット6が上下回動可能に枢着される。
 バケット6(エンドアタッチメントの一例)は、ショベル100の作業内容に応じて、適宜交換可能な態様で、アーム5の先端に取り付けられている。そのため、バケット6は、例えば、大型バケット、法面用バケット、浚渫用バケット等の異なる種類のバケットに交換されてもよい。また、バケット6は、例えば、攪拌機、ブレーカ等の異なる種類のエンドアタッチメントに交換されてもよい。
 ブーム4、アーム5、及び、バケット6は、それぞれ、油圧アクチュエータとしてのブームシリンダ7、アームシリンダ8、及び、バケットシリンダ9により油圧駆動される。
 キャビン10は、オペレータが搭乗する操縦室であり、例えば、上部旋回体3の前部左側に搭載される。
 [ショベルの基本構成]
 次に、図1に加えて、図2を参照して、本実施形態に係るショベル100の基本構成について説明する。
 図2は、本実施形態に係るショベル100の構成の一例を示すブロック図である。
 尚、図中、機械的動力系は二重線、高圧油圧ラインは太い実線、パイロットラインは破線、電気駆動・制御系は細い実線でそれぞれ示される。
  <ショベルの油圧駆動系>
 本実施形態に係る油圧駆動系は、上述の如く、下部走行体1、上部旋回体3、ブーム4、アーム5、及び、バケット6等の被駆動要素のそれぞれを油圧駆動する走行油圧モータ1A,1B、旋回油圧モータ21、ブームシリンダ7、アームシリンダ8、及び、バケットシリンダ9を含む。以下、走行油圧モータ1A,1B、旋回油圧モータ21、ブームシリンダ7、アームシリンダ8、及び、バケットシリンダ9の一部又は全部を便宜的に「油圧アクチュエータ」と称する場合がある。また、本実施形態に係るショベル100の油圧駆動系は、エンジン11と、メインポンプ14と、コントロールバルブ17と、作動油保持回路40を含む。
 尚、ブームシリンダ4を除く他の油圧アクチュエータは、電動アクチュエータに置換されてもよい。例えば、旋回油圧モータ21は、旋回機構2(上部旋回体3)を電気駆動する旋回用電動機に置換されてもよい。
 エンジン11は、ショベル100の駆動力源であり、例えば、上部旋回体3の後部に搭載される。エンジン11は、例えば、軽油を燃料とするディーゼルエンジンである。エンジン11の出力軸には、メインポンプ14及びパイロットポンプ15が接続される。
 メインポンプ14は、例えば、上部旋回体3の後部に搭載され、高圧油圧ライン16を通じてコントロールバルブ17に作動油を供給する。メインポンプ14は、上述の如く、エンジン11により駆動される。メインポンプ14は、例えば、可変容量式油圧ポンプであり、コントローラ30による制御の下、レギュレータに斜板の角度(傾転角)が制御されることにより、ピストンのストローク長を調整し、吐出流量(吐出圧)を調整(制御)することができる。
 尚、メインポンプ14は、エンジン11以外の動力源の動力で駆動されてもよい。例えば、メインポンプ14は、エンジン11に代えて、或いは、加えて、電動機で駆動される態様であってもよい。この場合、ショベル100には、エンジン11に代えて、或いは、加えて、電動機に電力を供給する他の動力源が搭載されてよい。他の動力源には、例えば、電動機の電力や外部の商用電源から供給される電力で充電可能なバッテリ、キャパシタ等の蓄電装置や、燃料電池等が含まれる。
 コントロールバルブ17(第1の油圧機構部の一例)は、例えば、上部旋回体3の中央部に搭載され、オペレータによる操作装置26対する操作に応じて、油圧駆動系の制御を行う油圧制御装置である。具体的には、コントロールバルブ17は、オペレータによる操作装置26に対する操作に応じて、それぞれの油圧アクチュエータに対する作動油の給排を制御する。走行油圧モータ1A,1B、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、旋回油圧モータ21等は、高圧油圧ラインを介してコントロールバルブ17に接続される。コントロールバルブ17は、メインポンプ14とそれぞれの油圧アクチュエータとの間に設けられ、メインポンプ14からそれぞれの油圧アクチュエータに供給される作動油の流量と流れる方向を制御する複数の油圧制御弁、即ち、方向制御弁を含む。例えば、コントロールバルブ17は、後述するブーム用方向制御弁17A(図9、図10参照)を含む。
 また、ショベル100は、遠隔操作されてもよい。この場合、コントロールバルブ17は、ショベル100に搭載される通信機器を通じて外部装置から受信される、油圧アクチュエータの操作に関する信号(以下、「遠隔操作信号」)に応じて、油圧駆動系の制御を行う。遠隔操作信号には、操作対象の油圧アクチュエータや、操作対象の油圧アクチュエータに関する遠隔操作の内容(例えば、操作方向及び操作量等)が規定される。例えば、コントローラ30は、遠隔操作信号に対応する制御指令を、パイロットポンプ15とコントロールバルブ17との間を接続する油圧ライン(パイロットライン)に配置される比例弁(以下、「操作用比例弁」)に出力する。これにより、操作用比例弁は、制御指令に対応するパイロット圧、つまり、遠隔操作信号に規定される遠隔操作の内容に応じたパイロット圧をコントロールバルブ17に作用させることができる。そのため、コントロールバルブ17は、遠隔操作信号で規定される遠隔操作の内容に応じた油圧アクチュエータの動作を実現することができる。
 また、ショベル100は、例えば、オペレータの操作や遠隔操作等に依らず、自律的に動作(作業)を行ってもよい。この場合、コントロールバルブ17は、ショベル100の自律動作を実現する自律制御装置(例えば、コントローラ30等)がショベル100の油圧アクチュエータを操作するために生成する駆動指令(以下、「自律駆動指令」)に応じて、油圧駆動系の制御を行う。自律駆動指令には、操作対象の油圧アクチュエータや、操作対象の油圧アクチュエータに関する操作内容(例えば、操作方向及び操作量等)が規定される。換言すれば、コントロールバルブ17は、自律制御装置による自律的な油圧アクチュエータの操作に応じて、油圧駆動系の制御を行う。例えば、自律制御装置は、自律的に生成する駆動指令に対応する制御指令を操作用比例弁に出力する。これにより、操作用比例弁は、制御指令に対応するパイロット圧、つまり、駆動指令で規定される油圧アクチュエータに関する操作内容に応じたパイロット圧をコントロールバルブ17に作用させることができる。そのため、コントロールバルブ17は、自律制御装置で生成される、自律動作に対応する駆動指令で規定される操作内容に応じた油圧アクチュエータの動作を実現することができる。
 作動油保持回路40(第2の油圧機構部の一例)は、ブームシリンダ7のボトム側油室とコントロールバルブ17との間の高圧油圧ライン(油路の一例)に設けられる。作動油保持回路40は、基本的に、ブーム4の下げ方向の操作(以下、「ブーム下げ操作」)が行われていない場合に、ブームシリンダ7のボトム側油室への作動油の流入を許容する一方、ブームシリンダ7のボトム側油室からの作動油の流出を遮断し、ボトム側油室の作動油を保持する。以下、当該機能を「作動油保持機能」と称する。このとき、「ブーム下げ操作が行われていない場合」には、操作装置26に対するブーム下げ操作が行われていない場合だけでなく、遠隔操作信号や自律駆動指令でブーム下げ操作に対応する操作内容が規定されていない場合が含まれる。以下、「ブーム上げ操作が行われている場合」についても同様である。これにより、ブームシリンダ7を上流と見たときの作動油保持回路40の下流の高圧油圧ラインで、ホースがバーストする等により作動油の漏れ(以下、便宜的に「ホースバースト」)が発生しても、ブーム4の落下(落下速度)を抑制することができる。また、作動油保持回路40は、ブーム下げ操作が行われている場合、ブームシリンダ7のボトム側油室からコントロールバルブ17への作動油の流出(排出)を許容する。つまり、作動油保持回路40は、ブーム4に関する操作状態(操作内容)と連動し、ブームシリンダ7のボトム側油室からの作動油の流出の可否を切り替える。また、作動油保持回路40とブームシリンダ7との間を接続する高圧油圧ラインは、例えば、金属配管等により構成される。これにより、作動油保持回路40とブームシリンダ7との間の高圧油圧ラインにおける作動油の漏れや作動油の圧力上昇によるバースト等の発生が抑制される。
 また、作動油保持回路40は、ブーム下げ操作が行われていない場合であっても、コントローラ30の制御下で、ブームシリンダ7のボトム側油室の作動油を排出することができる。つまり、作動油保持回路40は、コントローラ30の制御下で、その作動油保持機能が一時的に解除される。換言すれば、作動油保持回路40は、コントローラ30の制御下で、ブーム4に関する操作状態(操作内容)との連動が一時的に解除され、ブームシリンダ7のボトム側油室の作動油を排出することができる。
 作動油保持回路40の構成や動作の詳細は、後述する(図9~図11参照)。
  <ショベルの操作系>
 本実施形態に係るショベル100の操作系は、パイロットポンプ15と、操作装置26と、圧力センサ29を含む。
 パイロットポンプ15は、例えば、上部旋回体3の後部に搭載され、パイロットライン25を介して操作装置26にパイロット圧を供給する。パイロットポンプ15は、例えば、固定容量式油圧ポンプであり、上述の如く、エンジン11により駆動される。
 操作装置26は、レバー装置26A,26Bと、ペダル装置26Cを含む。操作装置26は、キャビン10の操縦席付近に設けられ、オペレータがそれぞれの被駆動要素(下部走行体1の左右のクローラ、上部旋回体3、ブーム4、アーム5、及びバケット6等)の操作を行う操作手段である。換言すれば、操作装置26は、それぞれの被駆動要素を駆動するそれぞれの油圧アクチュエータ(走行油圧モータ1A,1B、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、及び旋回油圧モータ21等)の操作を行う操作手段である。
 操作装置26は、油圧パイロット式である。具体的には、操作装置26(レバー装置26A,26B、及び、ペダル装置26C)は、油圧ライン27を介して、コントロールバルブ17に接続される。これにより、コントロールバルブ17には、操作装置26における下部走行体1、上部旋回体3、ブーム4、アーム5、及び、バケット6等の操作状態に応じたパイロット信号(パイロット圧)が入力される。そのため、コントロールバルブ17は、操作装置26の操作状態に応じて、各油圧アクチュエータを駆動することができる。また、操作装置26は、油圧ライン28を介して圧力センサ29に接続される。
 また、操作装置26は、電気式であってもよい。この場合、操作装置26は、操作状態(例えば、操作方向及び操作量等の操作内容)に応じた電気信号(以下、「操作信号」)を出力する。そして、操作信号は、後述のコントローラ30に取り込まれ、コントローラ30は、操作信号に対応する制御指令を操作用比例弁に出力する。これにより、比例弁は、操作指令に対応するパイロット圧、つまり、操作装置26の操作内容に応じたパイロット圧を作用させることができる。そのため、コントロールバルブ17は、操作装置26の操作内容に応じた油圧アクチュエータの動作を実現することができる。
 レバー装置26A,26Bは、それぞれ、キャビン10内の操縦席に着座したオペレータから見て、左側及び右側に配置され、それぞれの操作レバーが中立状態(オペレータによる操作入力が無い状態)を基準にして前後方向及び左右方向に傾倒可能に構成される。これにより、レバー装置26Aにおける操作レバーの前後方向の傾倒、及び左右方向の傾倒、並びに、レバー装置26Bにおける操作レバーの前後方向の傾倒、及び左右方向の傾倒のそれぞれに対して、上部旋回体3(旋回油圧モータ21)、ブーム4(ブームシリンダ7)、アーム5(アームシリンダ8)、及びバケット6(バケットシリンダ9)の何れかが操作対象として任意に設定されうる。
 また、ペダル装置26Cは、下部走行体1(走行油圧モータ1A,1B)を操作対象とし、キャビン10内の操縦席に着座したオペレータから見て、前方のフロアに配置され、その操作ペダルは、オペレータにより踏み込み可能に構成される。
 尚、ショベル100が遠隔操作される場合、或いは、ショベル100が自律的に作業を行う場合、操作装置26は、省略されてもよい。
 圧力センサ29は、上述の如く、油圧ライン28を介して操作装置26と接続され、操作装置26の二次側のパイロット圧、即ち、操作装置26におけるそれぞれの被駆動要素の操作状態に対応するパイロット圧を検出する。圧力センサ29は、コントローラ30に接続され、操作装置26における下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6等の操作状態に応じた圧力信号(圧力検出値)がコントローラ30に取り込まれる。これにより、コントローラ30は、ショベル100の下部走行体1、上部旋回体3、及び、アタッチメント(ブーム4、アーム5、及び、バケット6)の操作状態を把握することができる。
 尚、操作装置26が電気式の場合や、ショベル100の遠隔操作や自律動作を前提にして操作装置26が省略される場合等には、圧力センサ29は、省略されてよい。
 本例に係るショベル100の制御系は、コントローラ30と、不安定動作判定用センサ32と、作動油保持回路40を含む。
 コントローラ30は、ショベル100の駆動制御を行う主たる制御装置である。コントローラ30は、その機能が、任意のハードウェア、或いは、ハードウェア及びソフトウェアの組み合わせにより実現されてよい。コントローラ30は、例えば、CPU(Central Processing Unit)等のプロセッサと、RAM(Random Access Memory)等のメモリ装置と、ROM(Read Only Memory)等の補助記憶装置と、入出力に関するインタフェース装置等を含むマイクロコンピュータを中心に構成される。
 本実施形態では、コントローラ30は、操作装置26を操作するオペレータ、遠隔操作を行うオペレータ、自律制御装置等(以下、便宜的に「オペレータ等」)が意図しない当該ショベル100の不安定な動作(以下、単に、「不安定動作」)の有無を判定する。つまり、コントローラ30は、オペレータ等にとって好ましくないショベル100の不安定動作の発生の有無を判定する。そして、コントローラ30は、そのような不安定動作が発生したと判定すると、当該動作を抑制するように、ショベル100のアタッチメントの動作(具体的には、後述の如く、ブーム4を駆動するブームシリンダ7)を自動的に制御する。換言すれば、コントローラ30は、ショベル100の不安定動作の発生時に想定されるアタッチメントの動作を補正する。このとき、アタッチメントの動作には、アタッチメントに関する操作に応じたアタッチメントの動作が含まれる。また、アタッチメントの動作には、アタッチメントに関する操作と関係のない(例えば、アタッチメントに関する操作がされていない場合の)アタッチメントの動作(例えば、バケット6から作用する力や上部旋回体3から作用する力等に基づく動作)が含まれる。これにより、ショベル100に発生した不安定動作が抑制される。
 ショベル100の不安定動作には、例えば、掘削反力等により、ショベル100の後部が浮き上がる浮き上がり動作(以下、便宜的に「後部浮き上がり動作」)が含まれる。また、ショベル100の不安定動作には、例えば、ショベル100のアタッチメントの空中動作(バケット6が接地していない状態での動作)中の慣性モーメントの変化等により誘発される車体(下部走行体1、旋回機構2、及び、上部旋回体3等)の振動動作が含まれる。ショベル100の不安定動作の詳細については、後述する(図3~図6参照)。
 コントローラ30は、例えば、補助記憶装置にインストールされる一以上のプログラムをCPU上で実行することにより実現される機能部として、判定部301と、制御部302を含む。
 不安定動作判定用センサ32は、ショベル100の不安定動作の有無を判定するために用いられ、ショベル100の各種状態やショベル100の周辺の各種状態を検出する。不安定動作判定用センサ32には、例えば、ブーム4の姿勢角度(以下、「ブーム角度」)、アーム5の姿勢角度(以下、「アーム角度」)、及び、バケット6の姿勢角度(以下、「バケット角度」)等を検出する角度センサが含まれうる。また、不安定動作判定用センサ32には、油圧アクチュエータ内の油圧状態、例えば、油圧シリンダのロッド側油室及びボトム側油室の圧力を検出する圧力センサ等が含まれてよい。また、不安定動作判定用センサ32には、下部走行体1、上部旋回体3、及びアタッチメントのそれぞれの動作状態を検出するセンサが含まれてよい。例えば、不安定動作判定用センサ32には、下部走行体1、上部旋回体3、或いは、アタッチメントに搭載される加速度センサ、角加速度センサ、三軸の加速度センサ及び三軸の角速度センサを含む六軸センサ、IMU(Inertial Measurement Unit:慣性計測装置)等が含まれてよい。また、不安定動作判定用センサ32には、ショベル100の周辺の地形や障害物等との相対位置関係を検出する距離センサや画像センサ等が含まれてよい。
 判定部301は、圧力センサ29や不安定動作判定用センサ32から入力される、ショベル100の各種状態に関するセンサ情報に基づき、当該ショベル100の不安定動作の発生の有無を判定する。
 例えば、判定部301は、車体の前後方向の傾斜、即ち、ピッチ方向の傾斜角度に関する角度関連情報を出力可能なセンサの出力に基づき、ショベル100の後部浮き上がり動作の発生を判定する。この場合、不安定動作判定用センサ32は、車体のピッチ方向の傾斜角度に関する角度関連情報(例えば、傾斜角度、角速度、角加速度等)を出力可能なセンサを含む。例えば、不安定動作判定用センサ32には、下部走行体1や上部旋回体3に搭載される、傾斜センサ(角度センサ)、角速度センサ、六軸センサ、IMU等が含まれてよい。具体的には、判定部301は、ショベル100のピッチ方向の傾斜角度、角速度、或いは、角加速度の検出値が所定閾値以上になった場合、浮き上がり動作が発生したと判定することができる。浮き上がり動作が発生すると、ショベル100のピッチ方向の傾斜角度、角速度、及び角加速度は、ある程度大きな値になるからである。そして、判定部301は、その傾斜角度、角速度、或いは、角加速度の発生方向、即ち、ピッチ軸を中心として後方傾斜か前方傾斜かにより、前部浮き上がり動作か後部浮き上がり動作かを判定することができる。
 また、例えば、判定部301は、ショベル100と周囲の地形や障害物等との相対位置情報を出力可能なセンサの出力に基づき、ショベル100の後部浮き上がり動作の発生を判定する。この場合、不安定動作判定用センサ32は、ショベル100と周囲の地形や障害物等との相対位置情報を出力可能なセンサが含まれる。例えば、不安定動作判定用センサ32には、ミリ波レーダ、LIDAR(Light Detection and Ranging)、単眼カメラ、ステレオカメラ等が含まれる。具体的には、判定部301は、当該ショベル100から見た前方の所定の基準対象物の位置が略上方向に移動したか否かに基づき、ショベル100の後部浮き上がり動作の発生の有無を判定してよい。ショベル100の後部が浮き上がると、ショベル100の前部が地面に近づく態様になり、結果として、ショベル100から見た前方の地面等の基準対象物が相対的に上方向に移動するからである。
 また、判定部301は、圧力センサ29や不安定動作判定用センサ32から入力される、ショベル100の各種状態に関するセンサ情報に基づき、当該ショベル100に不安定動作が発生している可能性があるか否かを判定してもよい。具体的には、判定部301は、ショベル100の各種状態に関するセンサ情報に基づき、予め規定される、当該ショベル100に不安定動作が発生する条件(以下、「不安定動作発生条件」)が成立しているか否かを判定してもよい。
 例えば、判定部301は、アタッチメントの動作状態や姿勢状態に関する情報を出力可能なセンサの出力に基づき、車体に作用するピッチ方向のモーメントを算出(推定)する。判定部301は、算出(推定)したモーメントが、不安定動作の発生に要するピッチ方向のモーメントの下限として予め規定される閾値を超えている場合、ショベル100に不安定動作が発生している可能性があると判定する。この場合、不安定動作判定用センサ32は、アタッチメントの動作状態や姿勢状態に関する情報を出力可能なセンサを含む。例えば、不安定動作判定用センサ32は、上部旋回体3とブーム4との連結点におけるブーム4の基準面に対する俯仰角度(ブーム角度)、ブーム4に対するアーム5の相対的な俯仰角度(アーム角度)、及び、アーム5に対するバケット6の相対的な俯仰角度(バケット角度)を検出する角度センサ(例えば、ロータリエンコーダ)を含む。また、例えば、不安定動作判定用センサ32は、油圧シリンダ(ブームシリンダ7、アームシリンダ8、及び、バケットシリンダ9)のロッド側油室及びボトム側油室の圧力を検出する圧力センサ等を含む。また、例えば、不安定動作判定用センサ32は、アタッチメントに搭載される加速度センサ、角速度センサ、六軸センサ、IMU等を含む。
 制御部302は、判定部301により不安定動作が発生した、或いは、不安定動作が発生している可能性あると判定された場合に、アタッチメントの動作を自動で制御(補正)し、ショベル100の不安定動作を抑制させる。具体的には、制御部302は、後述の如く、ブームシリンダ7のボトム側油室の圧力を制御(減圧)することにより、アタッチメントの動作を自動で制御(補正)する。この場合、制御部302は、作動油保持回路40の作動油保持機能を解除する。これにより、制御部302は、操作装置26、遠隔操作、或いは、自律制御装置(以下、「操作装置26等」)を通じたブーム下げ操作が行われていない場合であっても、ブームシリンダ7のボトム側油室から作動油を排出させ、圧力を制御することができる。つまり、制御部302は、ショベル100の状況に応じて(具体的には、ショベル100の不安定動作の有無等に応じて)、作動油保持回路40の作動油保持機能を解除する。これにより、制御部302は、操作装置26等を通じたブーム4の操作状態とは無関係に(具体的には、操作装置26等を通じたブーム下げ操作の有無に依らず)、ブームシリンダ7のボトム側油室から作動油を排出させ、圧力を制御することができる。そのため、制御部302は、ショベル100の不安定動作が発生していない場合の作動油保持機能と、ショベル100の不安定動作が発生した場合の不安定動作の抑制機能とを両立させることができる。以下、当該制御態様を便宜的に「ボトムリリーフ制御」と称する。
 制御部302は、作動油保持回路40の作動油保持機能を解除し、ブームシリンダ7のボトム側油室の圧力を制御(調整)しているときに、ブームシリンダ7のボトム側油室と接続される油路でホースバーストが発生した場合であっても、ブーム4の下げ方向の移動速度が、後述する作動油保持回路40が設けられない場合(つまり、作動油保持回路40の作動油保持機能が完全に解除されている場合)よりも相対的に小さくなるように、つまり、所定基準以下になるように制御する。このとき、制御されるブーム4の下げ方向の移動速度は、例えば、各時点での移動速度であってもよいし、ある期間内での平均移動速度、つまり、所定時間内でのブーム4の下げ方向の移動量等であってもよい。制御部302の具体的な補正方法や動作の詳細については、後述する(図9~図11参照)。
 尚、後部浮き上がり動作や振動動作以外にも、ショベル100には他の種類の不安定動作が生じうる。ショベル100の不安定動作には、例えば、ショベル100が掘削反力等により前方に引き摺られたり、ショベル100が均し作業等における地面からの反力により後方に引き摺られたりする引き摺り動作(滑り動作とも称する)が含まれてよい。また、ショベル100の不安定動作には、後部浮き上がり動作とは反対に、ショベル100の前部が浮き上がる浮き上がり動作(以下、便宜的に「前部浮き上がり動作」)が含まれてよい。この場合、コントローラ30は、後部浮き上がり動作や振動動作以外の他の種類の不安定動作を抑制するように、ショベル100のアタッチメントの動作を自動で制御(補正)してもよい。また、コントローラ30は、ショベル100の不安定動作の発生の有無を判定することなく、後述する制御方法(補正方法)を用いて、ブームシリンダ7のボトム側油室の圧力が相対的に低い状態を維持させることにより、ショベル100の不安定動作を抑制してもよい。つまり、コントローラ30は、例えば、ブームシリンダ7のボトム側油室の圧力をモニタリングしながら、ブームシリンダ7のボトム側油室の圧力が相対的に低い状態を維持させるボトムリリーフ制御を継続してもよい。
 [ショベルの不安定動作]
 次に、図3~図5を参照して、ボトムリリーフ制御の対象となるショベル100の不安定動作について説明する。
  <ショベルの不安定動作の概要>
 図3(図3A~図3F)は、ボトムリリーフ制御の対象となる不安定動作が生じうるショベル100の作業状況の具体例を示す図である。
 例えば、図3Aは、バケット6の開き動作(以下、「バケット開き動作」)によるショベル100の排土作業の状況を模式的に示す図である。また、図3Bは、ブーム4の下げ動作(以下、「ブーム下げ動作」)及びアーム5の開き動作(以下、「アーム開き動作」)によるショベル100の排土作業の状況を模式的に示す図である。
 図3A、図3Bに示すように、バケット開き動作、或いは、ブーム下げ動作及びアーム開き動作が行われると、バケット6の土砂等が外部に排出されるため、ショベル100のアタッチメントの慣性モーメントに変化が生じる。その結果、当該慣性モーメントの変化が、車体に対して、前方に転倒させるようなピッチング方向のモーメントを作用させ、ショベル100に後部浮き上がり動作や振動動作が発生する可能性がある。特に、粘土質の土がバケット6に積載されている場合、土砂がなかなか外部に排出されない。そのため、オペレータ等は、アタッチメントを意図的に振動させる等の操作を行う場合があるが、その最中、急に、粘土質の土砂がバケット6から剥がれて、外部に排土されると、当該操作状態による影響もあり、ショベル100の後部浮き上がり動作や振動動作が助長される。
 また、例えば、図3Cは、アーム5及びバケット6の閉じ動作(以下、それぞれ、「アーム閉じ動作」及び「バケット閉じ動作」)によるショベル100の掘削作業の後半の状況、具体的には、バケット6に土砂等を抱え込む動作状況を模式的に示す図である。
 図3Cに示すように、アーム閉じ動作及びバケット閉じ動作により、土砂等をバケット6に抱え込もうとすると、地面や土砂からの反力がバケット6に作用する。その結果、当該反力が、アタッチメントを通じ、車体に対して、前方に転倒させるようなピッチング方向のモーメントを作用させ、ショベル100に後部浮き上がり動作や振動動作が発生する可能性がある。
 また、例えば、図3Dは、ブーム4の上げ動作(以下、「ブーム上げ動作」)による掘削作業の後半の状況、具体的には、バケット6に抱えた土砂等を持ち上げる動作の状況を模式的に示す図である。
 図3Dに示すように、バケット6を接地させた状態からブーム4が持ち上げられると、バケット6に積載された土砂等の負荷が追加的に作用し、ショベル100のアタッチメントの慣性モーメントに変化が生じる。その結果、当該慣性モーメントの変化が、車体に対して、前方に転倒させるようなピッチング方向のモーメントを作用させ、ショベル100に後部浮き上がり動作や振動動作が発生する可能性がある。
 また、例えば、図3Eは、掘削作業の開始に際して、ショベル100が急激なブーム下げ動作の後、地面の直上で急停止された状況を模式的に示す図である。
 図3Eに示すように、急激なブーム下げ動作の後、ブーム下げ動作が急停止されると、急停止による反力がアタッチメントから車体に対して作用する。その結果、アタッチメントからの反力が、車体に対して、前方に転倒させるようなピッチング方向のモーメントを作用させ、ショベル100に後部浮き上がり動作や振動動作が発生する可能性がある。
 また、例えば、図3Fは、ブーム上げ動作によるショベル100の掘削作業の後半の状況、具体的には、バケット6が車体から相対的に大きく離れた状態で、バケット6に抱えた土砂等を持ち上げる状況を模式的に示す図である。
 図3Fに示すように、バケット6が車体から離れた状態でブーム4が持ち上げられると、バケット6に積載された土砂等による慣性モーメントの変化が相対的に大きくなる。その結果、当該慣性モーメントの変化が、車体に対して、前方に転倒させるようなピッチング方向のモーメントを作用させ、ショベル100に後部浮き上がり動作や振動動作が発生する可能性がある。
 また、図3A~図3Fに示す作業状況以外の要因によっても、ショベル100の後部浮き上がり動作や振動動作が生じうる。
 例えば、アーム5と、エンドアタッチメント(バケット6)との接続態様が、クイックカップリングより実現されている場合、ブーム4及びアーム5の動作と、エンドアタッチメントの動作との間に位相差が生じる可能性がある。すると、位相遅れの態様によっては、アタッチメントに慣性モーメントの変化が生じ、上述と同様に、車体に対して、前方に転倒させるようなピッチング方向のモーメントを作用させ、ショベル100に後部浮き上がり動作や振動動作が発生する可能性がある。
  <後部浮き上がり動作の詳細>
 図4は、ショベル100の後部浮き上がり動作を説明する図である。具体的には、図4は、後部浮き上がり動作が発生するショベル100の作業状況を示す図である。
 図4に示すように、ショベル100は、地面60aの掘削作業を行っている。バケット6が斜面60bを掘り込むように力F2(モーメント)が発生しており、また、ブーム4がバケット6を斜面60bに抑え付けるように、換言すれば、ブーム4が車体を前傾させるように、力F3(モーメント)が発生している。このとき、ブームシリンダ7には、そのロッドを引き上げる力F1が発生し、力F1が、ショベル100の車体を前方に傾けるように作用する。そして、力F1に起因する車体を前傾させようとするモーメントが、重力に基づく車体を地面に抑え付けようとする力(モーメント)を上回ると、車体の後部が浮き上がってしまう。
 特に、バケット6が地面や土砂等の対象物に接触し、引っかかったり、或いは、めり込んだりしている場合、ブーム4に力が作用してもブーム4は動かないため、ブームシリンダ7のロッド位置は変位しない。そして、ブームシリンダ7の収縮側(ボトム側)の油室の圧力が大きくなると、ブームシリンダ7自体を持ち上げる力F1、即ち、車体を前方に傾けようとする力が大きくなる。
 同様の状況は、上述の如く、例えば、図4に示す前方斜面の掘削作業の他、バケット6が車体(下部走行体1)よりも下方に位置する深掘り作業(図3F参照)等で生じうる。また、上述の如く、ブーム4自体が操作された場合に限らず、アーム5やバケット6が操作された場合にも生じうる。
  <振動動作の詳細>
 図5、図6は、ショベル100の振動動作の一例を説明する図である。具体的には、図5(図5A、図5B)は、ショベル100の空中動作時に振動動作が発生する状況を説明する図である。また、図6は、図5A、図5Bに示す状況におけるショベル100の排出動作に伴うピッチ方向の角度(ピッチ角度)及び角速度(ピッチ角速度)の時間波形を示す図である。本例では、空中動作の一例として、バケット6内の積載物DPを排出する排出動作を説明する。
 図5Aに示すように、ショベル100は、バケット6及びアーム5が閉じられ、且つ、ブーム4が上がった状態となっており、バケット6には、土砂などの積載物DPが収容されている。
 図5Bに示すように、図5Aに示す状態からショベル100の排出動作が行われると、バケット6及びアーム5が大きく開かれ、ブーム4が下げられ、積載物DPがバケット6の外部に排出される。このとき、アタッチメントの慣性モーメントの変化が、ショベル100の車体を図中矢印Aに示すピッチ方向に振動させるように作用する。
 このとき、図6に示すように、空中動作、具体的には、排出動作に起因して、ショベル100を転倒させようとする転倒モーメントが発生し(図中の丸囲み部分参照)、ピッチ軸周りの振動が発生することが分かる。また、ショベル100に振動動作が発生すると、その振動動作に起因して、ショベル100に上述した前部浮き上がり動作や後部浮き上がり動作等が発生する場合もある。
 [ショベルの不安定動作の抑制方法]
 次に、図7、図8を参照して、上述したショベル100の不安定動作の抑制方法について説明する。
  <浮き上がり動作の抑制方法>
 図7は、後部浮き上がりに関連するショベル100の力学的なモデルを示す図であり、地面130aの掘削作業を行っている場合に、ショベル100に作用する力を示す図である。
 ショベル100の後部浮き上がり動作における転倒支点P1は、下部走行体1の有効接地領域130bのうち、アタッチメントが延在する方向(上部旋回体3の向き)における最先端とみなすことができる。よって、転倒支点P1まわりに車体を前方に傾けようとするモーメントτ1、即ち、車体後部を持ち上げようとするモーメントτ1は、ブームシリンダ7の延長線l2と、転倒支点P1の間の距離D4と、ブームシリンダ7が上部旋回体3に及ぼす力F1とに基づき、次の式(1)で表される。
  τ1=D4・F1   ・・・(1)
 一方、重力が転倒支点P1まわりに車体を地面に抑え付けようとするモーメントτ2は、ショベルの車体重心P3と、下部走行体1の前方の転倒支点P1の間の距離D2と、車体重量Mと、重力加速度gに基づき、次の式(2)で表される。
  τ2=D2・Mg   ・・・(2)
 車体の後方が浮き上がらずに安定する条件(安定条件)は、次の式(3)で表される。
  τ1<τ2   …(3)
 よって、式(3)に、式(1),(2)が代入されることにより、安定条件として、次の不等式(4)が得られる。
  D4・F1<D2・Mg   ・・・(4)
 つまり、制御部302は、制御条件として不等式(4)が成り立つように、アタッチメントの動作を補正すれば、ショベル100の後部浮き上がり動作を抑制できる。
 例えば、力F1は、次の式(5)に示すように、ブームシリンダ7のロッド圧PR及びボトム圧PBを引数とする関数fで表される。
  F1=f(PR,PB)   ・・・(5)
 制御部302は、ロッド圧PRおよびボトム圧PBに基づき、ブームシリンダ7が上部旋回体3に及ぼす力F1を計算(推定)する。このとき、上述の如く、制御部302は、不安定動作判定用センサ32に含まれうるブームシリンダ7のロッド圧及びボトム圧を検出する圧力センサの出力信号に基づき、ロッド圧PR及びボトム圧PBを取得してよい。
 一例として、力F1は、ブームシリンダ7のロッド側の受圧面積AR及びボトム側の受圧面積ABを用いて、次の式(6)で表されうる。
  F1=AB・PB-AR・PR   ・・・(6)
 制御部302は、式(6)に基づき、力F1を計算(推定)してよい。
 また、制御部302は、距離D2,D4を取得する。また、制御部302は、それらの比(D1/D3或いはD2/D4)を取得してもよい。
 アタッチメントを除く車体重心P3の位置は、上部旋回体3の旋回角度θに関わらず一定であるが、転倒支点P1の位置は、旋回角度θにより変化する。そのため、例えば、制御部302は、旋回角度センサ等により検出される旋回角度θに基づき、転倒支点P1を算出した上で、算出した転倒支点P1と、車体重心P3との相対位置関係に基づき、距離D2を算出してよい。また、距離D2は、上部旋回体3の旋回角度θに応じて変化しうるが、簡単のため、距離D2を定数とされてもよく、この場合、制御部302は、予め格納されるコントローラ30の内部メモリから取得する。
 距離D4は、転倒支点P1の位置と、ブームシリンダ7の角度(例えば、ブームシリンダ7と鉛直軸130cのなす角度η1)とに基づき、幾何学的に計算されうる。
 角度η1は、ブームシリンダ7の伸縮長、ショベル100に固有の寸法諸元、及び、ショベル100の車体の傾き等から幾何学的に計算されうる。例えば、制御部302は、不安定動作判定用センサ32に含まれうるブーム角度を検出するセンサの出力を利用し、角度η1を算出してよい。また、角度η1は、不安定動作判定用センサ32に含まれうる角度η1を直接的に測定するセンサの出力を利用することにより取得されてもよい。
 制御部302は、算出等により取得された力F1と、距離D2,D4とに基づき、不等式(4)が成り立つように、ブームシリンダ7の圧力、具体的には、圧力過剰なボトム側油室の圧力を制御する。つまり、制御部302は、不等式(4)が成り立つように、ブームシリンダ7のボトム圧PBを調節する。より具体的には、後述する各種構成(図9~図11参照)を採用することにより、制御部302は、適宜、制御指令を制御対象に出力することで、ブームシリンダ7の圧力を調整する。これにより、圧力過剰なブームシリンダ7のボトム側油室の圧力が減圧されることで、車体が前方に転倒しようとする際のクッションとして作用し、ショベル100の後部浮き上がり動作が抑制されうる。
  <振動動作の抑制方法>
 図8(図8A~8C)は、ショベル100の振動動作に関連する動作波形の具体例を示す図である。具体的には、図8A~8Cは、それぞれ、ショベル100において、空中動作が繰り返し行われた場合の動作波形図の一例、他の例、及び、更に他の例を示す図である。図8A~8Cは、それぞれ、異なる試行を示しており、上から順に、ピッチング角速度(即ち、車体の振動)、ブーム角加速度、アーム角加速度、ブーム角度、及び、アーム角度が示される。
 尚、図中、X印は、ピッチ角速度の負のピークに対応するポイントを示している。
 図8A~8Cに示すように、ブーム角の変化が止まるときに、振動動作が誘発されることが分かる。換言すれば、ブーム角加速度が、振動動作の発生に及ぼす影響が最も大きいと言え、裏を返せば、ブーム角速度を制御することが振動動作の抑制に有効であることを示している。このことは、バケット角に関する慣性モーメント(イナーシャ)にはバケット6の質量のみが影響を与え、アーム角に関する慣性モーメントには、バケット6とアーム5の質量が影響を与えるのに対して、ブーム角に関する慣性モーメントには、ブーム4のみでなく、アーム5及びバケット6の全質量が影響を与えることからも直感的に理解されうる。
 そこで、制御部302は、ブームシリンダ7を制御対象として、その動作を補正することが好ましい。即ち、制御部302は、ブームシリンダ7の推力がアタッチメントの状態に基づく上限値(即ち、アタッチメントの状態により規定される制限推力FMAX)を超えないようにする。
 ブームシリンダ7の推力Fは、ロッド側油室の受圧面積AR、ロッド側油室のロッド圧PR、ボトム側油室の受圧面積AB、及び、ボトム側油室のボトム圧PBに基づき、以下の式(7)で表される。
  F=AB・PB-AR・PR   ・・・(7)
 よって、ブームシリンダ7の推力Fは、制限推力FMAXより小さい必要があるため、以下の式(8)が成立する必要がある。
  FMAX>AB・PB-AR・PR   ・・・(8)
 よって、式(8)から以下の式(9)が得られる。
  PB<(FMAX+AR・PR)/AB   ・・・(9)
 式(9)の右辺が、制限推力FMAXに対応するボトム圧PBの上限値PBMAXに相当し、次の式(10)が得られる。
  PBMAX=(FMAX+AR・PR)/AB   ・・・(10)
 制御部302は、式(10)が成立するように、アタッチメントの動作、即ち、ブームシリンダ7の動作を補正する。即ち、制御部302は、式(10)が成立するように、ブームシリンダ7のボトム圧PBを調節(減圧)する。より具体的には、後述する各種構成(図9~図11参照)が採用されることにより、制御部302は、適宜、制御指令を制御対象に出力することで、ブームシリンダ7のボトム圧PBを調整(減圧)する。これにより、ショベル100の振動動作を抑制できる。
 制御部302は、不安定動作判定用センサ32からの検出信号に基づき、制限推力FMAXを取得する。具体的には、制御部302は、アタッチメントの状態、即ち、不安定動作判定用センサ32からの検出信号を入力とする演算等により制限推力FMAXを取得する。これにより、制御部302は、式(10)からボトム圧PBの上限値PBMAXを算出し、算出した上限値PBMAXを超えないように、ブームシリンダ7のボトム圧PBを調整することができる。
 このとき、制限推力FMAXを小さくしすぎると、ブーム4が下がってくるため、制御部302は、ブーム4の姿勢を保持可能な推力(保持推力FMIN)を取得し、保持推力FMINより高い範囲で、制限推力FMAXを設定するとよい。
 例えば、制御部302は、アタッチメントの状態に対応する検出信号の内容と、コントローラ30の内部メモリ等に予め格納される、検出信号の内容をパラメートとするマップやテーブル等とを照合することにより、制限推力FMAXを設定する。
 [ボトムリリーフ制御に関する油圧回路の構成]
 次に、図9~図11を参照して、不安定動作を抑制するためのショベル100の構成、具体的には、ショベル100のボトムリリーフ制御に関する油圧回路を中心とする構成について説明する。
 まず、図9は、本実施形態に係るショベル100のブームシリンダ7に作動油を供給する油圧回路を中心とする構成の第1例を示す図である。本例では、図中において、二つのブームシリンダ7が示されるが、メインポンプ14とブームシリンダ7との間にコントロールバルブ17と作動油保持回路40が介設される点は、何れのブームシリンダ7についても同様である。そのため、一方のブームシリンダ7(図中の右側のブームシリンダ7)についての油圧回路を中心に説明する。以下、図10、図11についても同様である。
 図9に示すように、本例に係るショベル100には、上述の如く、高圧油圧ラインのホースが破裂等により破損した場合であっても、ブームシリンダ7のボトム側油室の作動油が排出されないように保持する作動油保持回路40が設けられる。
 作動油保持回路40は、コントロールバルブ17とブームシリンダ7のボトム側油室との間を接続する高圧油圧ライン(油路)に介設される。作動油保持回路40は、主に、保持弁42と、スプール弁44とを含む。
 保持弁42は、コントロールバルブ17からブームシリンダ7のボトム側油室への作動油の流入を許容する。具体的には、保持弁42は、操作装置26に対するブーム4の上げ方向の操作に対応して、油路901を通じてコントロールバルブ17から供給される作動油を、油路903を通じてブームシリンダ7のボトム側油室に供給する。一方、保持弁42は、ブームシリンダ7のボトム側油室(油路903)からコントロールバルブ17に接続される油路901への作動油の流出を遮断する。保持弁42は、例えば、ポペット弁である。
 また、保持弁42は、油路901から分岐する油路902の一端に接続され、油路902に配置されるスプール弁44を通じてブームシリンダ7のボトム側油室の作動油を下流の油路901(コントロールバルブ17)に排出することができる。具体的には、保持弁42は、油路902に設けられるスプール弁44が非連通状態(図中の左端のスプール位置)の場合、ブームシリンダ7のボトム側油室の作動油が作動油保持回路40の下流側(油路901)に排出されないように保持する。一方、保持弁42は、スプール弁44が連通状態(図中の中央或いは右端のスプール位置)の場合、油路902を経由して、ブームシリンダ7のボトム側油室の作動油を作動油保持回路40の下流側に排出することができる。
 スプール弁44(第1の排出弁の一例)は、油路902に設けられ、保持弁42により遮断されるブームシリンダ7のボトム側油室の作動油を作動油保持回路40の下流(油路901)に迂回して排出させることができる。スプール弁44は、油路902を非連通にする第1のスプール位置(図中の左端のスプール位置)、油路902を絞って連通にする第2のスプール位置(図中の中央のスプール位置)、及び、油路902を全開で連通にする第3のスプール位置(図中の右端のスプール位置)を有する。このとき、第2のスプール位置において、スプール弁44は、パイロットポートに入力されるパイロット圧の大きさに応じて、その絞り度合いが可変される。
 スプール弁44は、パイロットポートにパイロット圧が入力されない場合、スプールが第1のスプール位置にあり、ブームシリンダ7のボトム側油室の作動油は、油路902を経由した作動油保持回路40の下流(油路901)に排出されない。一方、スプール弁44は、そのパイロットポートにパイロット圧が入力される場合、そのパイロット圧の大きさに応じて、スプールが第2の位置或いは第3の位置の何れかにある。具体的には、スプール弁44は、パイロットポートに作用するパイロット圧が大きくなるほど、第2の位置における絞り度合いが小さくなると共に、スプールが第2のスプール位置から第3のスプール位置に近づく。そして、スプール弁44は、パイロットポートに作用するパイロット圧がある程度大きくなると、スプールが第3のスプール位置になる。
 また、本例では、スプール弁44にパイロット圧を入力するパイロット回路が設けられる。当該パイロット回路は、パイロットポンプ15とブーム下げ用リモコン弁26Aaと、電磁比例弁52と、シャトル弁54とを含む。
 ブーム下げ用リモコン弁26Aaは、パイロットライン25Aを通じて、パイロットポンプ15と接続される。ブーム下げ用リモコン弁26Aaは、ブームシリンダ7を操作するレバー装置26Aに含まれ、パイロットポンプ15から供給される一次側のパイロット圧を元圧として、ブーム下げ操作に対応するパイロット圧を出力する。
 電磁比例弁52は、パイロットポンプ15とブーム下げ用リモコン弁との間のパイロットライン25Aから分岐し、ブーム下げ用リモコン弁25Aaをバイパスしてシャトル弁54の一方のポートに接続される油路904に設けられる。電磁比例弁52は、コントローラ30から入力される制御電流の有無に応じて、油路904の連通/非連通を切り替える。また、電磁比例弁52は、コントローラ30から入力される制御電流の大きさに応じて、パイロットポンプ15から供給される一次側のパイロット圧を元圧として、シャトル弁54に出力する二次側のパイロット圧の大きさを制御する。例えば、電磁比例弁52は、コントローラ30から入力される制御電流の大きさが大きくなるほど、シャトル弁54に出力する二次側のパイロット圧を大きくする。
 シャトル弁54は、一方の入力ポートに油路904の一端が接続され、他方のポートには、ブーム下げ用リモコン弁25Aaの二次側の油路905が接続される。シャトル弁54は、二つの入力ポートのうちのパイロット圧が高い方をスプール弁44のパイロットポートに出力する。これにより、少なくともレバー装置26Aに対してブーム下げ操作がされている場合、シャトル弁54からスプール弁44のパイロットポートにパイロット圧が作用し、スプール弁44が連通状態になる。そのため、スプール弁44は、レバー装置26Aに対するブーム下げ操作に対応して、ブームシリンダ7のボトム側油室の作動油を油路902経由で作動油保持回路40の下流(油路901)に排出することができる。つまり、スプール弁44は、レバー装置26Aの操作状態と連動し、レバー装置26Aに対するブーム下げ操作が行われる場合に、保持弁42により遮断された作動油をブームシリンダ7のボトム側油室から排出する。また、シャトル弁54は、レバー装置26Aに対してブーム下げ操作がされていない場合であっても、コントローラ30による制御の下、電磁比例弁52からシャトル弁54を経由してスプール弁44のパイロットポートにパイロット圧を作用させることができる。そのため、コントローラ30は、電磁比例弁52を介して作動油保持回路40(スプール弁44)の作動油保持機能を解除し、レバー装置26Aにおけるブーム下げ操作の有無に依らず、油路902を連通状態にして、ブームシリンダ7のボトム側油室の作動油を作動油保持回路40の下流(油路901)に排出させることができる。つまり、コントローラ30は、ショベル100の状況(具体的には、不安定動作の発生或いは不安定動作が発生している可能性の有無)に応じて、スプール弁44とレバー装置26Aとの操作状態の連動を一時的に遮断する態様で、スプール弁44を制御することにより、作動油保持回路40の作動油保持機能を解除し、レバー装置26Aの操作状態とは無関係に、ブームシリンダ7のボトム側油室から作動油を排出させることができる。
 また、本例では、コントロールバルブ17の内部に、電磁リリーフ弁56,58が設けられる。
 電磁リリーフ弁56は、ブームシリンダ7のロッド側油室と、コントロールバルブ17内部に設けられるブーム用方向制御弁17Aとの間の油路から分岐し、タンクTに接続される油路906に設けられる。これにより、電磁リリーフ弁56は、コントローラ30から入力される制御電流に応じて、ブームシリンダ7のロッド側油室の作動油をタンクTに排出することができる。
 電磁リリーフ弁56は、ブームシリンダ7のロッド側油室とブーム用方向制御弁17Aとの間の油路から作動油をタンクTに排出できる態様であれば、配置場所に制限はなく、例えば、コントロールバルブ17の外部に設けられてもよい。
 電磁リリーフ弁58は、作動油保持回路40と、コントロールバルブ17内のブーム用方向制御弁17Aとの間の油路(油路901から延設されるコントロールバルブ17内の油路)から分岐し、タンクTに接続される油路907に設けられる。これにより、電磁リリーフ弁58は、コントローラ30から入力される制御電流に応じて、作動油保持回路40(スプール弁44及び油路902)を経由して、ブームシリンダ7のボトム側油室から流出する作動油をタンクTに排出することができる。
 尚、電磁リリーフ弁58は、作動油保持回路40とブーム用方向制御弁17Aとの間の油路から作動油をタンクTに排出できる態様であれば、配置場所に制限はなく、例えば、コントロールバルブ17の外部に設けられてもよい。
 また、本例では、ブーム動作速度計測センサ33が設けられる。
 ブーム動作速度計測センサ33は、ブーム4の上下方向の動作速度(以下、「上下動作速度」)に関する検出情報を出力する。ブーム動作速度計測センサ33は、直接的に、ブーム4の上下動作速度に対応する検出情報を出力してもよいし、ブーム4の上下動作速度の演算に必要な検出情報を出力してもよい。ブーム動作速度計測センサ33は、例えば、ブームシリンダ7のピストン(ロッド)の位置、速度、或いは、加速度を検出するシリンダセンサ、ブーム4の俯仰角(ブーム角度)を検出する角度センサ、ブーム4の加速度及び角速度を検出するセンサ(例えば、加速度センサ及び角速度センサ、6軸センサ、IMU)等の少なくとも一つを含みうる。ブーム動作速度計測センサ33の検出情報は、コントローラ30に取り込まれる。
 コントローラ30(判定部301)は、上述の如く、不安定動作判定用センサ32から入力される検出情報に基づき、ショベル100の不安定動作の発生の有無、或いは、不安定動作が発生している可能性の有無を判定する。そして、コントローラ30(制御部302)は、不安定動作(後部浮き上がり動作或いは振動動作)が発生した、或いは、発生している可能性があると判定すると、電磁比例弁52及び電磁リリーフ弁58に制御電流を出力することにより、作動油保持回路40の作動油保持機能を解除し、ボトムリリーフ制御を行う。これにより、コントローラ30は、ブーム下げ操作の有無に依らず、作動油保持回路40経由でブームシリンダ7のボトム側油室の作動油を流出させ、電磁リリーフ弁58からタンクTに排出させることができる。そのため、コントローラ30は、ブームシリンダ7のボトム側油室の過剰な圧力を調整(減圧)し、上述の如く、ショベル100の不安定動作を抑制することができる。
 また、コントローラ30は、電磁比例弁52に制御電流を出力する場合、スプール弁44を通過する作動油の流量が、所定時間内でのブームシリンダ7の下げ方向の移動量(つまり、平均動作速度)が所定閾値以下になるように制限する。つまり、コントローラ30は、電磁比例弁52に対して、所定時間内でのブームシリンダ7の下げ方向の移動量が所定閾値以下になる範囲の制御電流を出力することにより、作動油保持回路40の作動油保持機能を制限的に解除する。例えば、コントローラ30は、ブーム動作速度計測センサ33の検出情報に基づき、逐次、ブーム4の下げ方向の移動速度を取得する。そして、コントローラ30は、逐次取得するブーム4の下げ方向の移動速度をモニタリングしながら、フィードバック制御等の既知の制御手法を用いて、電磁比例弁52に出力する制御電流を決定する。これにより、例えば、コントローラ30によるボトムリリーフ制御中に、作動油保持回路40よりも下流の高圧油圧ラインでホースバーストが発生したとしても、スプール弁44の流量が制限されていることにより、ブーム4の落下を抑制することができる。具体的には、上述したボトムリリーフ制御の対象となる図3のショベル100の作業状況のうちのブーム4の落下が発生しうる状況、つまり、レバー装置26Aがブーム4の操作に関して中立状態の状況(図3A,図3C)、或いは、ブーム下げ操作が行われている状況(図3B,図3E)において、ブーム4の落下を抑制することができる。つまり、コントローラ30は、スプール弁44の流量を制限しつつ、作動油保持回路40経由で流出させたブームシリンダ7の作動油を電磁リリーフ弁58からタンクTに排出させることにより、ホースバースト時のブーム4の落下防止とショベル100の不安定動作の抑制とを両立させることができる。
 続いて、図10は、本実施形態に係るショベル100のブームシリンダ7に作動油を供給する油圧回路を中心とする構成の第2例を示す図である。以下、図9の第1例と異なる部分を中心に説明し、重複した説明を省略する。
 本例では、ブーム動作速度計測センサ33の代わりに、ホースバースト判定用センサ34が設けられる。
 ホースバースト判定用センサ34は、作動油保持回路40よりも下流の高圧油圧ラインにおけるホースバーストの発生の有無を判定するための検出情報を出力する。本例では、ホースバースト判定用センサ34は、作動油保持回路40(保持弁42)よりも上流(ブームシリンダ7側の油路903)、及び、下流(コントロールバルブ17側の油路901)の作動油の油圧を検出する圧力センサ34A1,34A2(それぞれが第1の圧力センサ及び第2の圧力センサの一例)を含む。これにより、ホースバースト判定用センサ34は、直接的に、ホースバーストの有無を検出することができる。ホースバースト判定用センサ34の検出情報は、コントローラ30に取り込まれる。
 尚、ホースバースト判定用センサ34は、直接的に、ホースバーストの有無を検出する代わりに、間接的に、ホースバーストの有無を判定可能な検出情報を出力してもよい。例えば、ホースバースト判定用センサ34は、ホースバーストに関するショベル100の動作、つまり、ホースバーストが発生した場合に、変化が生じ得るショベル100の動作を検出してよい。具体的には、ホースバースト判定用センサ34は、ブーム4の加速度及び角速度の少なくとも一方を検出する慣性センサ(加速度センサ、角速度センサ、6軸センサ、IMU等)を含んでよい。また、ホースバースト判定用センサ34は、ブームシリンダ7のピストン位置、速度、及び、加速度の少なくとも一つを検出するシリンダセンサを含んでもよい。また、ホースバースト判定用センサ34は、ブーム4の俯仰角度(ブーム角度)を検出する角度センサを含んでもよい。更に、ホースバースト判定用センサ34は、これらの複数を含んでもよい。これにより、コントローラ30は、操作装置26におけるブーム4の操作状態と、ブーム4の実際の動作状態とを把握し、ホースバーストに対応するブーム4の落下動作の有無等から、ホースバーストの発生の有無を判定することができる。
 コントローラ30は、上述の如く、不安定動作判定用センサ32から入力される検出情報に基づき、ショベル100の不安定動作の発生の有無、或いは、不安定動作が発生している可能性の有無を判定する。そして、コントローラ30(制御部302)は、不安定動作(後部浮き上がり動作或いは振動動作)が発生した、或いは、発生している可能性があると判定すると、電磁比例弁52及び電磁リリーフ弁58に制御電流を出力することにより、作動油保持回路40の作動油保持機能を解除し、ボトムリリーフ制御を行う。このとき、コントローラ30は、スプール弁44のスプールが第3のスプール位置になる、つまり、油路902を全開にする制御電流を電磁比例弁52に出力し、作動油保持回路40の作動油保持機能を完全に解除し、ボトムリリーフ制御を行う。これにより、油路902によるブームシリンダ7から流出する作動油の流量の制限が緩和され、電磁リリーフ弁58によるブームシリンダ7のボトム側油室の圧力の調整幅を広げることができる。そのため、コントローラ30は、ブームシリンダ7のボトム側油室の過剰な圧力をより適切に調整(減圧)し、ショベル100の不安定動作を更に抑制することができる。
 また、コントローラ30は、ボトムリリーフ制御中に、ホースバースト判定用センサ34の検出情報に基づき、ホースバーストの発生の有無を判定する。本例では、コントローラ30は、圧力センサ34A1,34A2のそれぞれの検出値の差圧に基づき、ホースバーストの発生の有無を判定する。そして、コントローラ30は、ホースバーストが発生したと判定すると、電磁比例弁52及び電磁リリーフ弁58に対する制御電流の出力を停止することにより、ボトムリリーフ制御を停止し、作動油保持回路40の作動油保持機能の解除を停止する、つまり、作動油保持機能を復帰させる。これにより、コントローラ30は、ホースバースト時のブーム4の落下防止とショベル100の不安定動作の抑制とを両立させることができる。
 尚、コントローラ30は、スプール弁44によって油路902を若干絞らせる態様の制御電流、つまり、スプール弁44が第2の位置になるような制御電流を電磁比例弁52に出力してもよい。これにより、ホースバーストが発生した場合に、圧力センサ34A1,34A2の間の検出値に差圧が生じやすくなり、コントローラ30は、より適切に、ホースバーストの発生の有無を判定することができる。このとき、スプール弁44の第2のスプール位置における絞り度合いは、ホースバースト時に圧力センサ34A1,34A2の間に差圧が適度に生じる程度の非常に弱い態様である。つまり、油路902を通過する作動油の流量は、図9の第1例とは異なり、ほとんど制限されない。つまり、コントローラ30は、作動油保持回路40の作動油保持機能を非常に低い制限度で制限的に解除し、ボトムリリーフ制御を行う。また、コントローラ30は、ホースバーストが発生したと判定した場合に、ボトムリリーフ制御を停止させず、制限する態様であってもよい。具体的には、コントローラ30は、ホースバーストが発生したと判定した場合、図9の第1例と同様、電磁比例弁52に対して、所定時間内でのブームシリンダ7の下げ方向の移動量が所定閾値以下になる範囲の制御電流を出力しながら、ボトムリリーフ制御を継続してもよい。つまり、コントローラ30は、ホースバーストが発生したと判定した場合に、作動油保持回路40の作動油保持機能の解除を停止せず、制限してもよい。また、本例では、電磁比例弁52の代わりに、油路904の連通/非連通を切り替える電磁切換弁が設けられてもよい。本例では、図9の第1例と異なり、スプール弁44のパイロットポートに作用するパイロット圧を制限する必要がないからである。
 続いて、図11は、本実施形態に係るショベル100のブームシリンダ7に作動油を供給する油圧回路を中心とする構成の第3例を示す図である。以下、図9の第1例と異なる部分を中心に説明し、重複した説明を省略する。
 本例では、シャトル弁54及び電磁比例弁52が省略され、ブーム下げ用リモコン弁26Aaの二次側のパイロット圧がスプール弁44のパイロットポートに作用する。つまり、スプール弁44は、レバー装置26Aの操作状態と連動し、レバー装置26Aに対してブーム下げ操作が行われた場合のみ、第2のスプール位置或いは第3のスプール位置になり、油路902を連通状態にする。これにより、レバー装置26Aに対してブーム下げ操作が行われていない場合、油路902が非連通状態にされ、ブームシリンダ7の作動油の流出が遮断される。
 また、本例では、コントロールバルブ17内の電磁リリーフ弁56,58の代わりに、コントロールバルブ17の外部に、電磁リリーフ弁45,46が設けられる。
 電磁リリーフ弁45は、ブームシリンダ7のロッド側油室とコントロールバルブ17との間の油路から分岐し、タンクTに接続される油路1101に設けられる。これにより、電磁リリーフ弁45は、コントローラ30から入力される制御電流に応じて、ブームシリンダ7のロッド側油室の作動油をタンクTに排出することができる。
 尚、電磁リリーフ弁45は、ブームシリンダ7のロッド側油室とブーム用方向制御弁17Aとの間の油路から作動油をタンクTに排出できる態様であれば、配置場所に制限はない。つまり、図9の一例と同様、電磁リリーフ弁45の代わりに、コントロールバルブ17の内部に電磁リリーフ弁56が設けられてもよい。
 電磁リリーフ弁46(第2の排出弁の一例)は、作動油保持回路40の内部の保持弁42とブームシリンダ7のボトム側油室との間の油路903から分岐し、タンクTに接続される油路1102に設けられる。つまり、電磁リリーフ弁46は、コントローラ30から入力される制御電流に応じて、保持弁42よりも上流側、即ち、ブームシリンダ7側の油路903から作動油をタンクTにリリーフする。よって、電磁リリーフ弁46は、作動油保持回路40の作動状態、具体的には、スプール弁44(油路902)の連通/非連通の状態に依らず、ブームシリンダ7のボトム側油室の作動油をタンクTに排出させることができる。つまり、作動油保持回路40によるブームシリンダ7のボトム側油室の作動油の保持機能によりブーム4の落下を防止しつつ、ブーム下げ操作の有無に依らず、ブームシリンダ7のボトム側油室の作動油をタンクTに排出させ、過剰なボトム圧を抑制することができる。
 また、本例では、図10の第2例と同様、圧力センサ34A1,34A2を含むホースバースト判定用センサ34が設けられる。
 コントローラ30は、上述の如く、不安定動作判定用センサ32から入力される検出情報に基づき、ショベル100の不安定動作の発生の有無、或いは、不安定動作が発生している可能性の有無を判定する。そして、コントローラ30(制御部302)は、不安定動作(後部浮き上がり動作或いは振動動作)が発生した、或いは、発生している可能性があると判定すると、電磁リリーフ弁46に制御電流を出力することにより、作動油保持回路40の作動油保持機能を解除し、ボトムリリーフ制御を行う。これにより、図10の第2例の場合と同様、ブームシリンダ7から流出する作動油の流量の制限が緩和されるため、コントローラ30は、ブームシリンダ7のボトム側油室の過剰な圧力をより適切に調整(減圧)し、ショベル100の不安定動作を更に抑制することができる。
 また、コントローラ30は、図10の第2例の場合と同様、ボトムリリーフ制御中に、ホースバースト判定用センサ34の検出情報に基づき、ホースバーストの発生の有無を判定する。そして、コントローラ30は、ホースバーストが発生したと判定すると、電磁リリーフ弁46に対する制御電流の出力を停止することにより、ボトムリリーフ制御を停止し、作動油保持回路40の作動油保持機能の解除を停止する、つまり、作動油保持機能を復帰させる。これにより、コントローラ30は、ホースバースト時のブーム4の落下防止とショベル100の不安定動作の抑制とを両立させることができる。
 [ボトムリリーフ制御に関する処理フロー]
 次に、図12、図13を参照して、コントローラ30によるボトムリリーフ制御に関する処理フローについて説明する。
 まず、図12は、コントローラ30によるボトムリリーフ制御に関する処理の一例を概略的に示すフローチャートであり、具体的には、上述した図9に示す第1例の構成に対応するボトムリリーフ制御に関する処理である。本フローチャートによる処理は、例えば、ショベル100の起動から停止までの運転中において、ボトムリリーフ制御が実行されていない場合に、所定の処理間隔ごとに、繰り返し実行される。以下、図13のフローチャートについても同様である。
 ステップS102にて、判定部301は、ショベル100にボトムリリーフ制御の対象となる不安定動作、具体的には、後部浮き上がり動作或いは振動動作が発生したか否かを判定する。判定部301は、ショベル100にボトムリリーフ制御の対象となる不安定動作が発生した場合、ステップS104に進み、それ以外の場合、今回の処理を終了する。
 尚、本ステップにて、判定部301は、上述の如く、ショベル100にボトムリリーフ制御の対象となる不安定動作が発生している可能性があるか否かを判定してもよい。後述する図13のステップS202についても同様である。
 ステップS104にて、制御部302は、電磁比例弁52及び電磁リリーフ弁58に制御電流を出力し、ボトムリリーフ制御を開始する。このとき、制御部302は、上述の如く、スプール弁44の開度を制限する(油路902を絞る)態様の制御電流を電磁比例弁52に出力する。これにより、上述の如く、ボトムリリーフ制御中に、ホースバーストが発生しても、ブームシリンダ7のボトム側油室から流出する作動油の流量を制限することができるため、ブーム4の下げ方向の動作速度を相対的に低く抑制し、ブーム4の落下を防止することができる。
 ステップS106にて、判定部301は、ショベル100のボトムリリーフ制御の対象となる不安定動作が継続しているか否かを判定する。判定部301は、ショベル100のボトムリリーフ制御の対象となる不安定動作が継続していない場合、ステップS108に進み、継続している場合、不安定動作が発生していないと判定されるまで、本ステップの処理を繰り返す。
 尚、判定部301は、ステップS102にて、上述の如く、ショベル100にボトムリリーフ制御の対象となる不安定動作が発生している可能性があるか否かを判定する場合、本ステップでも、同様に、ショベル100に不安定動作が発生している可能性があるか否かを判定する。後述する図13のステップS206についても同様である。
 ステップS108にて、制御部302は、電磁比例弁52及び電磁リリーフ弁58に対する制御電流の出力を停止することにより、ボトムリリーフ制御を停止し、今回の処理を終了する。
 続いて、図13は、コントローラ30によるボトムリリーフ制御に関する処理の他の例を概略的に示すフローチャートであり、具体的には、上述した図10、図11に示す第2例、第3例の構成に対応するボトムリリーフ制御に関する処理である。
 ステップS202の処理は、図12のステップS102と同じであるため、説明を省略する。
 ステップS204にて、制御部302は、電磁比例弁52及び電磁リリーフ弁58或いは電磁リリーフ弁46に制御電流を出力することにより、作動油保持回路40の作動油保持機能を解除(OFF)すると共に、ボトムリリーフ制御を開始する。つまり、制御部302は、図12のステップS104の場合と異なり、ブームシリンダ7のボトム側油室から流出する作動油の流量を制限しない。これにより、ボトムリリーフ制御におけるブームシリンダ7のボトム側油室の圧力の調整幅を広げることができ、より適切に、ショベル100の不安定動作を抑制することができる。
 ステップS205にて、判定部301は、ホースバーストが発生したか否かを判定する。判定部301は、ホースバーストが発生していないと判定した場合、ステップS206に進む。一方、判定部301は、ホースバーストが発生したと判定した場合、ステップS208に進む。
 ステップS206にて、判定部301は、ショベル100のボトムリリーフ制御の対象となる不安定動作が継続しているか否かを判定する。判定部301は、ショベル100のボトムリリーフ制御の対象となる不安定動作が継続していない場合、ステップS208に進み、継続している場合、ステップS205に戻って、ステップS205,S206の処理を繰り返す。
 ステップS208にて、制御部302は、電磁比例弁52及び電磁リリーフ弁58或いは電磁リリーフ弁46に対する制御電流の出力を停止することにより、ボトムリリーフ制御を停止する共に、作動油保持回路40の作動油保持機能を復帰(ON)させ、今回の処理を終了する。これにより、コントローラ30は、ボトムリリーフ制御時に、ホースバーストが発生した場合(ステップS205のYesの場合)であっても、作動油保持回路40によりブームシリンダ7のボトム側油室の作動油を保持させることができ、ブーム4の落下防止を図ることができる。
 以上、本発明を実施するための形態について詳述したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 例えば、上述した実施形態では、ショベル100は、下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6等の各種動作要素を全て油圧駆動する構成であったが、その一部が電気駆動される構成であってもよい。つまり、上述した実施形態で開示される構成等は、ハイブリッドショベルや電動ショベル等に適用されてもよい。
 尚、本願は、2018年3月22日に出願した日本国特許出願2018-054806号に基づく優先権を主張するものであり、これらの日本国特許出願の全内容を本願に参照により援用する。
 1 下部走行体
 3 上部旋回体
 4 ブーム
 5 アーム
 6 バケット(エンドアタッチメント)
 7 ブームシリンダ
 8 アームシリンダ
 9 バケットシリンダ
 17 コントロールバルブ(第1の油圧機構部)
 21 旋回油圧モータ
 26 操作装置
 26A,26B レバー装置
 26C ペダル装置
 29 圧力センサ
 30 コントローラ(制御装置)
 32 不安定動作判定用センサ
 33 ブーム動作速度計測センサ
 34 ホースバースト判定用センサ(検出部)
 34A1 圧力センサ(第1の圧力センサ)
 34A2 圧力センサ(第2の圧力センサ)
 36 電磁比例弁
 40 作動油保持回路(第2の油圧機構部)
 42 保持弁
 44 スプール弁(第1の排出弁)
 45 電磁リリーフ弁
 46 電磁リリーフ弁(第2の排出弁)
 52 電磁比例弁
 54 シャトル弁
 56,58 電磁リリーフ弁
 60 電磁比例弁
 62 電磁リリーフ弁
 301 判定部
 302 制御部

Claims (11)

  1.  下部走行体と、
     前記下部走行体に旋回自在に搭載される上部旋回体と、
     前記上部旋回体に搭載されるブーム、アーム、及び、エンドアタッチメントを含むアタッチメントと、
     前記ブームを駆動するブームシリンダと、
     アタッチメントの操作に応じて動作する第1の油圧機構部と、
     前記ブームシリンダのボトム側油室と前記第1の油圧機構部との間の油路に設けられ、前記ブームの下げ操作が行われない場合に、閉じている第2の油圧機構部と、
     制御装置とを備え、
     前記制御装置は、ショベルの状況に応じて、前記第2の油圧機構部の閉じている状態を解除すると共に、その解除具合を、前記ブームの下げ方向の移動速度が所定基準以下になるように制御する、
     ショベル。
  2.  前記移動速度は、前記ブームの下げ方向の平均移動速度を含む、
     請求項1に記載のショベル。
  3.  前記移動速度は、所定時間内における前記ブームの下げ方向の移動量を含む、
     請求項1に記載のショベル。
  4.  前記第2の油圧機構部は、前記ボトム側油室への作動油の流入を許容する一方、前記ボトム側油室からの作動油の流出を遮断し、前記ボトム側油室の作動油を保持する保持弁と、前記ブームの操作状態に連動して、前記ボトム側油室から作動油を排出させることが可能な第1の排出弁とを含む、
     請求項1に記載のショベル。
  5.  前記制御装置は、当該ショベルの状況に応じて、前記ブームの操作状態と前記第1の排出弁との連動を一時的に解除し、前記第1の排出弁を制御することにより、前記第2の油圧機構部の閉じている状態を解除する、
     請求項4に記載のショベル。
  6.  前記第2の油圧機構部は、前記ボトム側油室の作動油を排出させることが可能な第2の排出弁を更に含み、
     前記制御装置は、当該ショベルの状況に応じて、前記第2の排出弁を制御することにより、前記第2の油圧機構部の閉じている状態を解除する、
     請求項4に記載のショベル。
  7.  前記第2の油圧機構部から見て前記ボトム側油室と反対の下流の油路での作動油の漏れに関する情報を検出する検出部を更に備え、
     前記制御装置は、前記第2の油圧機構部の閉じている状態の解除時に、前記検出部の検出情報に基づき、前記第2の油圧機構部の前記下流の油路での作動油の漏れが発生したか否かを判定し、作動油の漏れが発生したと判定した場合に、前記移動速度が前記所定基準以下になるように、前記第2の油圧機構部の解除具合を制御する、
     請求項1に記載のショベル。
  8.  前記検出部は、前記第2の油圧機構部の前記下流の油路での作動油の漏れの有無を検出する、
     請求項7に記載のショベル。
  9.  前記検出部は、前記ボトム側油室と前記第2の油圧機構部との間の油路の油圧を検出する第1の圧力センサと、前記第2の油圧機構部の下流の油路の圧力を検出する第2の圧力センサとを含む、
     請求項8に記載のショベル。
  10.  前記検出部は、前記第2の油圧機構部の前記下流の油路での作動油の漏れに関する当該ショベルの動作を検出する、
     請求項7に記載のショベル。
  11.  前記検出部は、前記ブームの加速度及び角加速度の少なくとも一方を検出する慣性センサ、前記ブームシリンダのピストン位置、速度、及び、加速度の少なくとも一つを検出するシリンダセンサ、並びに、前記ブームの前記上部旋回体に対する俯仰角度を検出する角度センサのうちの少なくとも一つを含む、
     請求項10に記載のショベル。
PCT/JP2019/012147 2018-03-22 2019-03-22 ショベル WO2019182128A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19770666.6A EP3770339A4 (en) 2018-03-22 2019-03-22 EXCAVATOR
CN201980020160.3A CN111868338B (zh) 2018-03-22 2019-03-22 挖土机
KR1020207026324A KR102638727B1 (ko) 2018-03-22 2019-03-22 쇼벨
JP2020507941A JP7216074B2 (ja) 2018-03-22 2019-03-22 ショベル
US17/022,497 US11454001B2 (en) 2018-03-22 2020-09-16 Excavator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-054806 2018-03-22
JP2018054806 2018-03-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/022,497 Continuation US11454001B2 (en) 2018-03-22 2020-09-16 Excavator

Publications (1)

Publication Number Publication Date
WO2019182128A1 true WO2019182128A1 (ja) 2019-09-26

Family

ID=67987783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012147 WO2019182128A1 (ja) 2018-03-22 2019-03-22 ショベル

Country Status (6)

Country Link
US (1) US11454001B2 (ja)
EP (1) EP3770339A4 (ja)
JP (1) JP7216074B2 (ja)
KR (1) KR102638727B1 (ja)
CN (1) CN111868338B (ja)
WO (1) WO2019182128A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021064777A1 (ja) * 2019-09-30 2021-04-08
US20210214919A1 (en) * 2018-10-03 2021-07-15 Sumitomo Heavy Industries, Ltd. Shovel
CN115387416A (zh) * 2021-07-30 2022-11-25 长江生态环保集团有限公司 一种采用冲刷探挖设备进行基坑探挖的施工方法
WO2023017719A1 (ja) * 2021-08-10 2023-02-16 Kyb株式会社 流体圧制御装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7206985B2 (ja) * 2019-02-08 2023-01-18 コベルコ建機株式会社 損害推定装置及び機械学習装置
IT201900002599A1 (it) * 2019-02-22 2020-08-22 Bosch Gmbh Robert Sistema valvola di ritegno a controllo elettronico
CN111761574B (zh) * 2020-05-28 2022-08-02 中联重科股份有限公司 判断臂架可进行的操作的安全性的方法和装置及工程机械
DE102022114096A1 (de) * 2022-06-03 2023-12-14 Winz Baggerarbeiten Gmbh Mobile hydraulische Baumaschine mit Notstopventilen und Verfahren zur Steuerung einer mobilen hydraulischen Baumaschine
EP4311887A1 (en) * 2022-07-25 2024-01-31 CNH Industrial Italia S.p.A. Method and control system of an arm of a work vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040713A (ja) * 1999-08-03 2001-02-13 Shin Caterpillar Mitsubishi Ltd クレーン機能付建設機械
JP2008032187A (ja) * 2006-07-31 2008-02-14 Shin Caterpillar Mitsubishi Ltd 作業機械の油量制御方法
JP2009256891A (ja) * 2008-04-14 2009-11-05 Caterpillar Japan Ltd クレーン機能付油圧ショベル
JP2010053969A (ja) * 2008-08-28 2010-03-11 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械
JP2011236562A (ja) * 2010-05-06 2011-11-24 Caterpillar Sarl 作業機械のフロント制御装置
JP2014122510A (ja) 2012-12-21 2014-07-03 Sumitomo (Shi) Construction Machinery Co Ltd ショベル及びショベル制御方法
JP2018003285A (ja) * 2016-06-27 2018-01-11 日立建機株式会社 作業機械
JP2018054806A (ja) 2016-09-28 2018-04-05 ヤマハ株式会社 アプリケーションプログラム、音楽処理装置、ソフトウェア動作補助方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133503U (ja) * 1988-03-03 1989-09-12
JP3919399B2 (ja) * 1998-11-25 2007-05-23 カヤバ工業株式会社 油圧制御回路
WO2001029430A1 (fr) * 1999-10-20 2001-04-26 Hitachi Construction Machinery Co., Ltd. Appareil de vanne de commande a rupture de conduit
JP3627972B2 (ja) * 2000-03-17 2005-03-09 新キャタピラー三菱株式会社 作業機械におけるブームシリンダ制御回路
JP3727828B2 (ja) * 2000-05-19 2005-12-21 日立建機株式会社 配管破断制御弁装置
JP2002179387A (ja) * 2000-10-03 2002-06-26 Komatsu Ltd 作業用車両の速度制御装置とその速度制御方法
JP3915622B2 (ja) * 2002-07-30 2007-05-16 コベルコ建機株式会社 油圧アクチュエータ回路の負荷保持装置
KR20140010414A (ko) * 2011-04-19 2014-01-24 볼보 컨스트럭션 이큅먼트 에이비 건설기계의 붐 제어용 유압회로
JP5822233B2 (ja) * 2012-03-27 2015-11-24 Kyb株式会社 流体圧制御装置
JP2017201072A (ja) * 2014-09-17 2017-11-09 住友重機械工業株式会社 ショベル
JP6606426B2 (ja) * 2015-12-24 2019-11-13 Kyb株式会社 バルブ装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040713A (ja) * 1999-08-03 2001-02-13 Shin Caterpillar Mitsubishi Ltd クレーン機能付建設機械
JP2008032187A (ja) * 2006-07-31 2008-02-14 Shin Caterpillar Mitsubishi Ltd 作業機械の油量制御方法
JP2009256891A (ja) * 2008-04-14 2009-11-05 Caterpillar Japan Ltd クレーン機能付油圧ショベル
JP2010053969A (ja) * 2008-08-28 2010-03-11 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械
JP2011236562A (ja) * 2010-05-06 2011-11-24 Caterpillar Sarl 作業機械のフロント制御装置
JP2014122510A (ja) 2012-12-21 2014-07-03 Sumitomo (Shi) Construction Machinery Co Ltd ショベル及びショベル制御方法
JP2018003285A (ja) * 2016-06-27 2018-01-11 日立建機株式会社 作業機械
JP2018054806A (ja) 2016-09-28 2018-04-05 ヤマハ株式会社 アプリケーションプログラム、音楽処理装置、ソフトウェア動作補助方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210214919A1 (en) * 2018-10-03 2021-07-15 Sumitomo Heavy Industries, Ltd. Shovel
US11987957B2 (en) * 2018-10-03 2024-05-21 Sumitomo Heavy Industries, Ltd. Shovel
JPWO2021064777A1 (ja) * 2019-09-30 2021-04-08
WO2021064777A1 (ja) * 2019-09-30 2021-04-08 日立建機株式会社 動作識別装置
JP7234398B2 (ja) 2019-09-30 2023-03-07 日立建機株式会社 動作識別装置
CN115387416A (zh) * 2021-07-30 2022-11-25 长江生态环保集团有限公司 一种采用冲刷探挖设备进行基坑探挖的施工方法
CN115387416B (zh) * 2021-07-30 2023-08-15 长江生态环保集团有限公司 一种采用冲刷探挖设备进行基坑探挖的施工方法
WO2023017719A1 (ja) * 2021-08-10 2023-02-16 Kyb株式会社 流体圧制御装置

Also Published As

Publication number Publication date
JPWO2019182128A1 (ja) 2021-03-11
CN111868338B (zh) 2022-07-26
JP7216074B2 (ja) 2023-01-31
US11454001B2 (en) 2022-09-27
KR102638727B1 (ko) 2024-02-19
KR20200131243A (ko) 2020-11-23
EP3770339A1 (en) 2021-01-27
EP3770339A4 (en) 2021-05-26
US20200407945A1 (en) 2020-12-31
CN111868338A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2019182128A1 (ja) ショベル
JP5969379B2 (ja) ショベル及びショベル制御方法
US11655611B2 (en) Shovel
JP5969380B2 (ja) ショベル及びショベル制御方法
EP2072691B1 (en) Shock absorption device and control method thereof for small swing radius excavator
CN111201351B (zh) 挖土机
US10590623B2 (en) Construction machine
WO2020071314A1 (ja) ショベル
JP6942532B2 (ja) ショベル
JP2022051893A (ja) ショベル
WO2018164238A1 (ja) ショベル
JP7474021B2 (ja) ショベル
JP7318041B2 (ja) ショベル
JP6585012B2 (ja) ショベル
JP6585013B2 (ja) ショベル
JP6900251B2 (ja) ショベル
JP6991056B2 (ja) ショベル
JP2019173560A (ja) ショベル
JP7514077B2 (ja) ショベル
JP2018168573A (ja) 作業機械
JP2024043388A (ja) ショベル
JP2024043296A (ja) 作業機械の制御装置及びこれを備えた作業機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507941

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019770666

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019770666

Country of ref document: EP

Effective date: 20201022