WO2019181888A1 - 異方性色素膜形成用組成物、異方性色素膜、および光学素子 - Google Patents

異方性色素膜形成用組成物、異方性色素膜、および光学素子 Download PDF

Info

Publication number
WO2019181888A1
WO2019181888A1 PCT/JP2019/011270 JP2019011270W WO2019181888A1 WO 2019181888 A1 WO2019181888 A1 WO 2019181888A1 JP 2019011270 W JP2019011270 W JP 2019011270W WO 2019181888 A1 WO2019181888 A1 WO 2019181888A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
anisotropic dye
dye film
liquid crystal
Prior art date
Application number
PCT/JP2019/011270
Other languages
English (en)
French (fr)
Inventor
輝恒 大澤
理恵子 藤田
政昭 西村
秋山 誠治
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019047473A external-priority patent/JP7272021B2/ja
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN201980016045.9A priority Critical patent/CN111788505B/zh
Priority to KR1020207024854A priority patent/KR102710150B1/ko
Publication of WO2019181888A1 publication Critical patent/WO2019181888A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K19/2014Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups containing additionally a linking group other than -COO- or -OCO-, e.g. -CH2-CH2-, -CH=CH-, -C=C-; containing at least one additional carbon atom in the chain containing -COO- or -OCO- groups, e.g. -(CH2)m-COO-(CH2)n-
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B35/00Disazo and polyazo dyes of the type A<-D->B prepared by diazotising and coupling
    • C09B35/02Disazo dyes
    • C09B35/037Disazo dyes characterised by two coupling components of different types
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/08Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of polarising materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to an anisotropic dye film formed by applying a liquid crystal composition, in particular, a polarizing film provided in a display element of a light control element, a liquid crystal element (LCD), and an organic electroluminescence element (OLED).
  • a liquid crystal composition in particular, a polarizing film provided in a display element of a light control element, a liquid crystal element (LCD), and an organic electroluminescence element (OLED).
  • the present invention relates to an anisotropic dye film-forming composition and an anisotropic dye film that exhibit high dichroism, and an optical element.
  • a linearly polarizing film and a circularly polarizing film are used to control optical rotation and birefringence in display.
  • a circularly polarizing film is used for preventing reflection of external light in a bright place.
  • a polarizing film containing a polarizing film iodine-PVA polarizing film obtained by staining polyvinyl alcohol (PVA) with low-concentration iodine is known (Patent Document 1).
  • PVA polyvinyl alcohol
  • Patent Document 2 an anisotropic dye film formed by applying a liquid crystal composition containing a dye functions as a polarizing film.
  • iodine-PVA polarizing plates with such a low concentration alleviate the problem of iodine sublimation or alteration due to the use environment, and the stretching of PVA. There is a problem that warpage occurs due to.
  • the composition of the anisotropic dye film forming After heating above the isotropic phase appearance temperature, cooling is performed again so that a liquid crystal phase is obtained. Alternatively, cooling is performed after heating to a temperature at which a liquid crystal phase with high fluidity (for example, a nematic phase) appears. From this, the composition for forming an anisotropic dye film having a high isotropic phase appearance temperature requires a higher temperature in the above alignment process, the stability of the dye and the liquid crystal compound, the ease of handling the process, This is disadvantageous in terms of energy consumption.
  • liquid crystal compound has a polymerizable group
  • unintended thermal polymerization can occur due to heating at a high temperature in the above-described realignment process.
  • the freedom degree of selection of the base material which can be used will fall.
  • the core of the liquid crystal compound molecules contained in the composition for forming an anisotropic dye film is used. It is conceivable to increase the ratio of the major axis to the minor axis. However, when the core of the liquid crystal compound molecule is enlarged, the melting point of the liquid crystal compound (phase transition point between solid and liquid) and the isotropic phase appearance temperature (phase transition point between liquid crystal and liquid) tend to increase.
  • the core of the liquid crystal compound molecule can be reduced, while the core of the liquid crystal compound molecule can be reduced by reducing the core of the liquid crystal compound molecule.
  • the ratio of the axes becomes small, and as a result, the dichroism of the anisotropic dye film formed from the composition for forming an anisotropic dye film is lowered.
  • the isotropic phase appearance temperature of the anisotropic dye film-forming composition is maintained while maintaining high dichroism of the anisotropic dye film formed from the anisotropic dye film-forming composition. Lowering is desired.
  • An embodiment (first embodiment) of the present invention provides an anisotropic dye film-forming composition capable of realizing a low isotropic phase appearance temperature while maintaining excellent optical performance, particularly a sufficient dichroic ratio.
  • an aspect (first aspect) of the present invention is to provide an anisotropic dye film that can maintain excellent optical performance, particularly a sufficient dichroic ratio, and can be formed at a lower temperature.
  • an aspect (first aspect) of the present invention is an optical element including an anisotropic dye film that can maintain excellent optical performance, particularly a sufficient dichroic ratio, and can be formed at a lower temperature. The purpose is to provide.
  • the liquid crystal compound molecules contained in the anisotropic dye film forming composition it is conceivable to increase the ratio of the major axis to the minor axis of the core to align the liquid crystal molecules in a uniaxial direction.
  • the core of the liquid crystal compound molecule is enlarged, the core is composed of an aromatic ring such as a benzene ring or an alicyclic ring such as a cyclohexane ring. In contrast, the molecules tend to be tilted and oriented.
  • the present inventors have found that the above-mentioned problems can be solved by using a liquid crystal compound having a specific structure in an anisotropic dye film-forming composition containing a dye and a liquid crystal compound. That is, the first aspect of the present invention is summarized as follows.
  • An anisotropic dye film-forming composition containing a dye and a liquid crystal compound is a composition for anisotropic dye film formation containing the liquid crystal compound which has a partial structure represented by Formula (1).
  • -Cy-X2-C ⁇ CX- (1) (Where Cy represents a hydrocarbon ring group or a heterocyclic group; —X— represents —C ( ⁇ O) O—, —OC ( ⁇ O) —, —C ( ⁇ S) O—, —OC ( ⁇ S) —, —C ( ⁇ O) S—, —SC.
  • —X— is —C ( ⁇ O) O—, —OC ( ⁇ O) —, —CH 2 CH 2 —, —CH 2 O—, or —OCH 2 —.
  • composition for forming an anisotropic dye film according to any one of [1] to [3], wherein the liquid crystal compound is a liquid crystal compound represented by the formula (2).
  • Cy is a hydrocarbon ring group
  • -X2- is a single bond
  • One of A1 and A3 is a partial structure represented by the formula (1), The composition for forming an anisotropic dye film according to any one of [4] to [9], wherein the other is a cyclohexane-1,4-diyl group.
  • the gist of the second aspect of the present invention is as follows.
  • composition for forming an anisotropic dye film according to ⁇ 1> wherein the liquid crystal compound is a liquid crystal compound represented by the formula (B2).
  • ⁇ 3> -Z1- is —C ( ⁇ O) O—, —OC ( ⁇ O) —, —CH 2 CH 2 —, —CH 2 O—, or —OCH 2 —, or The composition for forming an anisotropic dye film according to ⁇ 2>.
  • ⁇ 4> The composition for forming an anisotropic dye film according to any one of ⁇ 1> to ⁇ 3>, wherein E1 or E2 is a hydrocarbon ring group.
  • ⁇ 5> The composition for forming an anisotropic dye film according to ⁇ 4>, wherein the hydrocarbon ring group is a phenylene group or a cyclohexanediyl group.
  • E3 is a phenylene group, a cyclohexanediyl group or a single bond.
  • ⁇ 8> -Z2- is a single bond, —C ( ⁇ O) O—, —OC ( ⁇ O) —, —CH 2 CH 2 —, —CH 2 O—, or —OCH 2 —,
  • ⁇ 9> An anisotropic dye film formed using the anisotropic dye film-forming composition according to any one of ⁇ 1> to ⁇ 8>.
  • ⁇ 10> An optical element comprising the anisotropic dye film according to ⁇ 9>.
  • the composition for forming an anisotropic dye film of the first aspect of the present invention can realize a low isotropic phase appearance temperature while maintaining excellent optical performance, particularly a sufficient dichroic ratio. Since the anisotropic dye film of the first aspect of the present invention is formed using the composition for forming an anisotropic dye film of the present invention, it can maintain excellent optical performance, particularly a sufficient dichroic ratio, It can be formed at a lower temperature. Since the optical element of the first aspect of the present invention includes the anisotropic dye film of the present invention, it can maintain excellent optical performance, particularly a sufficient dichroic ratio, and can be formed at a lower temperature. An isotropic dye film may be included.
  • the composition for forming an anisotropic dye film according to the second aspect of the present invention can realize excellent optical performance, particularly a sufficient dichroic ratio. Since the anisotropic dye film of the second aspect of the present invention is formed using the composition for forming an anisotropic dye film of the present invention, it can realize excellent optical performance, particularly a sufficient dichroic ratio. Since the optical element of the second aspect of the present invention includes the anisotropic dye film of the present invention, excellent optical performance, particularly a sufficient dichroic ratio can be realized.
  • the anisotropic dye film referred to in the present invention is an electromagnetic property in any two directions selected from a total of three directions in the three-dimensional coordinate system of the thickness direction of the anisotropic dye film and any two orthogonal in-plane directions.
  • This is a dye film having anisotropy.
  • the electromagnetic property include optical properties such as absorption and refraction, and electrical properties such as resistance and capacitance.
  • films having optical anisotropy such as absorption and refraction include polarizing films such as linearly polarizing films and circularly polarizing films, retardation films, and conductive anisotropic dye films.
  • the anisotropic dye film of the present invention is preferably used as a polarizing film or a conductive anisotropic dye film, and more preferably used as a polarizing film.
  • the composition for forming an anisotropic dye film of the present invention contains a dye and a liquid crystal compound.
  • the composition for forming an anisotropic dye film of the present invention may be a solution, a liquid crystal, or a dispersed state as long as it does not cause phase separation.
  • the forming composition is preferably a solution from the viewpoint of easy application to a substrate.
  • the solid component obtained by removing the solvent from the composition for forming an anisotropic dye film is preferably in a liquid crystal phase at an arbitrary temperature from the viewpoint of orientation on the substrate as described later.
  • the state of the liquid crystal phase is specifically described on pages 1 to 16 of “Fundamentals and applications of liquid crystals” (Shinichi Matsumoto, Ryo Tsunoda; 1991).
  • it is a liquid crystal state exhibiting both liquid and crystal properties or an intermediate property, and means a nematic phase, a smectic phase, a cholesteric phase, or a discotic phase.
  • a dye is a substance or compound that absorbs at least part of the wavelength in the visible light region (380 nm to 780 nm).
  • the dye that can be used in the present invention include dichroic dyes.
  • the dichroic dye refers to a dye having a property that the absorbance in the major axis direction of a molecule is different from the absorbance in the minor axis direction.
  • dye which has liquid crystallinity may be sufficient, and it does not need to have liquid crystallinity.
  • having liquid crystallinity means expressing a liquid crystal phase at an arbitrary temperature.
  • Examples of the dye contained in the composition for forming an anisotropic dye film of the present invention include azo dyes, quinone dyes (including naphthoquinone dyes and anthraquinone dyes), stilbene dyes, cyanine dyes, and phthalocyanines. And dyes, indigo dyes, condensed polycyclic dyes (including perylene dyes, oxazine dyes, acridine dyes, etc.). Among these dyes, azo dyes are preferred because they have a large molecular long-short axis ratio and can take a high molecular arrangement in the anisotropic dye film.
  • An azo dye refers to a dye having at least one azo group (—N ⁇ N—), and the number of azo groups in one molecule indicates the solubility in a solvent, compatibility with a liquid crystal compound, color tone, and the like. And from a viewpoint of manufacturability, 1 or more is preferable, 2 or more is more preferable, 6 or less is preferable, 4 or less is more preferable, and 3 or less is more preferable.
  • Examples of the azo dye include a compound represented by the formula (A).
  • D1, D2 and D3 each independently represent a phenylene group which may have a substituent, a naphthylene group which may have a substituent, or a divalent heterocyclic ring which may have a substituent.
  • D1, D2 and D3 each independently represent a phenylene group which may have a substituent, a naphthylene group which may have a substituent, or a divalent heterocyclic ring which may have a substituent.
  • the substitution position of the phenylene group is preferably a 1,4-phenylene group because of high molecular linearity.
  • the substitution position of the naphthylene group is preferably a 1,4-naphthylene group or a 2,6-naphthylene group because of high molecular linearity.
  • bivalent heterocyclic group carbon number which forms a ring becomes like this. Preferably it is 3-14, More preferably, it is 10 or less.
  • a monocyclic or bicyclic heterocyclic group is particularly preferable.
  • the atoms other than carbon constituting the divalent heterocyclic group include at least one selected from a nitrogen atom, a sulfur atom and an oxygen atom.
  • the heterocyclic group has a plurality of atoms constituting a ring other than carbon, these may be the same or different.
  • pyridinediyl group quinolinediyl group, isoquinolinediyl group, thiazolediyl group, benzothiazolediyl group, thienothiazolediyl group, thienothiophenediyl group, benzimidazolidinone diyl group, benzofurandiyl group, phthalimidodiyl group, Examples thereof include an oxazole diyl group and a benzoxazole diyl group.
  • the substituent that the phenylene group, naphthylene group, and divalent heterocyclic group in D1, D2, and D3 optionally have, an alkyl group having 1 to 4 carbon atoms; 1 carbon atom such as a methoxy group, an ethoxy group, and a butoxy group 1 to 4 alkoxy groups; fluorinated alkyl groups having 1 to 4 carbon atoms such as trifluoromethyl groups; cyano groups; nitro groups; hydroxyl groups; halogen atoms; substituted or unsubstituted amino groups such as amino groups, diethylamino groups, and pyrrolidino groups
  • Group (substituted amino group is an amino group having one or two alkyl groups having 1 to 4 carbon atoms, or two substituted alkyl groups bonded to each other to form an alkanediyl group having 2 to 8 carbon atoms.
  • An unsubstituted amino group is —NH 2.
  • the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, and a butyl group.
  • Examples of the alkanediyl group having 2 to 8 carbon atoms include ethylene group, propane-1,3-diyl group, butane-1,3-diyl group, butane-1,4-diyl group, and pentane. -1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group and the like.
  • P represents an integer from 0 to 4. From the viewpoint of solubility in a solvent, compatibility with a liquid crystal compound, color tone, and ease of production, 1 or more is preferable, 4 or less is preferable, and 3 or less is more preferable.
  • R11 and R12 represent the same or different monovalent organic groups.
  • the monovalent organic group in R11 and R12 include a hydrogen atom, an optionally branched alkyl group having 1 to 20 carbon atoms; an alicyclic alkyl group having 1 to 20 carbon atoms; a methoxy group, and an ethoxy group And an optionally substituted alkoxy group having 1 to 20 carbon atoms such as a butoxy group; a fluorinated alkyl group having 1 to 20 carbon atoms such as a trifluoromethyl group; a cyano group; A nitro group; a hydroxyl group; a halogen atom; a substituted or unsubstituted amino group such as an amino group, a diethylamino group, and a pyrrolidino group (the substituted amino group refers to an alkyl group having 1 to 20 carbon atoms which may have a branch; Or an amino group in which two substituted alkyl groups are bonded to each
  • alkyl group having 1 to 20 carbon atoms and a methyl group, ethyl group and butyl group.
  • Alkanediyl group having 2 to 20 carbon atoms an ethylene group, propane-1,3 , 3-diyl group, butane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group , Octane-1,8-diyl group, etc.); carboxy group; alkyloxycarbonyl group having 1 to 20 carbon atoms which may have a branch such as butoxycarbonyl group; branch such as ethenyl group An alkenyl group having 1 to 20 carbon atoms; an alkylphenylalkenyl group such as 2- (4-butylphenyl) ethenyl group;
  • R11 and R12 include a hydrogen atom, a chain group, an aliphatic organic group (the “aliphatic organic group” includes a chain group and a cyclic group), a part of carbon being nitrogen and / or oxygen.
  • Substituted aliphatic organic groups (“aliphatic organic groups in which part of the carbon is replaced by nitrogen and / or oxygen” include chain-like and cyclic ones, And the like.
  • a hydrogen atom or a chain group is preferable, and in another embodiment, the group is replaced by a hydroxyl group, an oxo group ( ⁇ O), an amino group, an imino group, or the like.
  • Examples of the chain group include the above-mentioned alkyl group having 1 to 20 carbon atoms which may have a branch; an alkoxy group having 1 to 20 carbon atoms which may have a branch; A preferred fluorinated alkyl group having 1 to 20 carbon atoms; a substituted or unsubstituted amino group (a substituted amino group is an amino group having one or two optionally substituted alkyl groups having 1 to 20 carbon atoms) An unsubstituted amino group is —NH 2 ); a carboxy group; an optionally substituted alkyloxycarbonyl group having 1 to 20 carbon atoms; a carbamoyl group; Preferred alkylcarbamoyl group having 1 to 20 carbon atoms; sulfamoyl group; optionally branched alkylsulfamoyl group having 1 to 20 carbon atoms; optionally having 1 to 20 carbon atoms acylamino group Even if it has a branch Preferred examples include an
  • Examples of the aliphatic organic group include the aforementioned alkyl group having 1 to 20 carbon atoms which may have a branch, and an alicyclic alkyl group having 1 to 20 carbon atoms.
  • Examples of the aliphatic organic group in which a part of carbon is replaced with nitrogen and / or oxygen include the above-described branched alkoxy group having 1 to 20 carbon atoms; substituted or unsubstituted amino group (substituted amino group)
  • the group is an amino group having 1 or 2 alkyl groups having 1 to 20 carbon atoms which may have a branch, or an alkanediyl group having 2 to 20 carbon atoms by bonding two substituted alkyl groups to each other.
  • the unsubstituted amino group is —NH 2.
  • the alkyl group having 1 to 20 carbon atoms includes a methyl group, an ethyl group, a butyl group, and the like.
  • Examples of the alkanediyl group of 2 to 20 include ethylene group, propane-1,3-diyl group, butane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, Hexane-1 , 6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group, etc.); carboxy group; alkyloxycarbonyl having 1 to 20 carbon atoms which may have a branch A carbamoyl group; an optionally branched alkylcarbamoyl group having 1 to 20 carbon atoms; an optionally substituted acylamino group having 1 to 20 carbon atoms;
  • R11 and R12 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms such as a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, or the like because of high molecular linearity; It is preferably substituted with an alkoxy group having 1 to 10 carbon atoms such as pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, diethylamino group, pyrrolidino group and piperidinyl group.
  • a chain organic group having a polymerizable group of R1 and R2 in the liquid crystal compound of the first embodiment which will be described later
  • a chain organic group having a polymerizable group of T1 and T2 in the liquid crystal compound of the second embodiment Preferred in the group are also preferred.
  • the dye contained in the composition for forming an anisotropic dye film of the present invention is not particularly limited, and a known dye can also be used.
  • Known dyes include, for example, the dyes described in the above-mentioned Patent Document 1, Japanese Patent No. 5987622, Japanese Patent Application Publication No. 2017-0253317, and Japanese Patent Application Publication No. 2014-095899. Dichroic dye, dichroic dye).
  • the molecular weight of the dye contained in the composition for forming an anisotropic dye film of the present invention is preferably 300 or more, more preferably 350 or more, further preferably 380 or more, preferably 1500 or less, more preferably 1200 or less, 1000 or less is more preferable.
  • the molecular weight of the dye contained in the composition for forming an anisotropic dye film of the present invention is preferably 300 to 1500, more preferably 350 to 1200, and further preferably 380 to 1000.
  • the content of the dye (dichroic dye) in the composition for forming an anisotropic dye film is, for example, 0.01 with respect to the solid content (100 parts by mass) of the composition for forming an anisotropic dye film More than mass part is preferable, 0.05 mass part or more is more preferable, 30 mass part or less is preferable, and 10 mass part or less is more preferable.
  • the content of the dye (dichroic dye) in the composition for forming an anisotropic dye film is, for example, relative to the solid content (100 parts by mass) of the composition for forming an anisotropic dye film And 0.01 to 30 parts by mass, preferably 0.05 to 10 parts by mass.
  • the anisotropic dye of the present invention can be obtained without disturbing the orientation of the liquid crystal compound contained in the anisotropic dye film-forming composition of the present invention.
  • the compound contained in the film forming composition tends to be polymerized.
  • dye) occupies is more than the said lower limit, it exists in the tendency for sufficient light absorption to be obtained and sufficient polarization performance to be obtained.
  • dye) occupies is below the said upper limit, it exists in the tendency for inhibition of the orientation of a liquid crystal molecule to be suppressed easily.
  • the dye (dichroic dye) may be used alone or in combination of two or more depending on the purpose.
  • a liquid crystal compound refers to a substance exhibiting a liquid crystal state, and specifically described in pages 1 to 28 of “Liquid Crystal Handbook” (Maruzen Co., Ltd., issued on October 30, 2000). Thus, it refers to a compound that does not transfer directly from a crystal to a liquid, but becomes a liquid through an intermediate state that exhibits both properties of the crystal and liquid.
  • the liquid crystal compound of the first aspect contained in the composition for forming an anisotropic dye film of the first aspect of the present invention includes a liquid crystal compound having a partial structure represented by the following formula (1).
  • Cy represents a hydrocarbon ring group or a heterocyclic group
  • —X— represents —C ( ⁇ O) O—, —OC ( ⁇ O) —, —C ( ⁇ S) O—, —OC ( ⁇ S) —, —C ( ⁇ O) S—, —SC.
  • the hydrocarbon ring group in Cy includes an aromatic hydrocarbon ring group and a non-aromatic hydrocarbon ring group.
  • the aromatic hydrocarbon ring group includes an unlinked aromatic hydrocarbon ring group and a linked aromatic hydrocarbon ring group.
  • the unlinked aromatic hydrocarbon ring group is a divalent group of a monocyclic or condensed aromatic hydrocarbon ring, and preferably has 6 to 20 carbon atoms.
  • Examples of the aromatic hydrocarbon ring include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, acenaphthene ring, fluoranthene ring, and fluorene ring. .
  • the linked aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed aromatic hydrocarbon rings are bonded by a single bond and a bond is formed on an atom constituting the ring.
  • the number of carbon atoms in a single ring or condensed ring is preferably 6-20.
  • a first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms and a second monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms bonded by a single bond 1 monocyclic or condensed aromatic hydrocarbon ring having a first bond on an atom constituting a ring of a monocyclic or condensed aromatic hydrocarbon ring, and a second monocyclic or condensed aromatic having 6 to 20 carbon atoms It is a divalent group having a second bond on the atom constituting the ring of the aromatic hydrocarbon ring.
  • the linked aromatic hydrocarbon ring group include a biphenyl-4,4′-diyl group.
  • aromatic hydrocarbon ring group a non-linked aromatic hydrocarbon ring group is preferable.
  • aromatic hydrocarbon ring group a divalent group of a benzene ring and a divalent group of a naphthalene ring are preferable, and a divalent group (phenylene group) of a benzene ring is more preferable.
  • phenylene group a 1,4-phenylene group is preferable.
  • Non-aromatic hydrocarbon ring groups include unlinked non-aromatic hydrocarbon ring groups and linked non-aromatic hydrocarbon ring groups.
  • the unlinked non-aromatic hydrocarbon ring group is a divalent group of a monocyclic or condensed non-aromatic hydrocarbon ring, and preferably has 3 to 20 carbon atoms.
  • Non-aromatic hydrocarbon rings include cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclohexene ring, norbornane ring, bornane ring, adamantane ring, tetrahydronaphthalene ring, bicyclo [2 2.2] octane ring and the like.
  • the non-linked non-aromatic hydrocarbon ring group includes an alicyclic hydrocarbon ring group having no unsaturated bond as an interatomic bond constituting the ring of the non-aromatic hydrocarbon ring, and a ring of the non-aromatic hydrocarbon ring. And an unsaturated non-aromatic hydrocarbon ring group having an unsaturated bond as an interatomic bond constituting the above.
  • an alicyclic hydrocarbon ring group is preferable.
  • the linked non-aromatic hydrocarbon ring group is a divalent group in which a single ring or a plurality of condensed non-aromatic hydrocarbon rings are bonded by a single bond, and a bond is formed on an atom constituting the ring;
  • One or more rings selected from the group consisting of an aromatic hydrocarbon ring, a condensed aromatic hydrocarbon ring, a monocyclic non-aromatic hydrocarbon ring, and a condensed non-aromatic hydrocarbon ring;
  • the condensed non-aromatic hydrocarbon ring is a divalent group having a bond on the atom constituting the ring, bonded with a single bond.
  • the number of carbon atoms in a single ring or condensed ring is preferably 3-20.
  • a divalent group having a second bond on the atom constituting the ring of the condensed non-aromatic hydrocarbon ring such as a monocyclic or condensed aromatic hydrocarbon ring having 3 to 20 carbon atoms and carbon number 3 to 20 monocyclic or condensed non-aromatic hydrocarbon rings are bonded by a single bond, and the first ring is formed on the atoms constituting the ring of 3 to 20 carbon monocyclic or condensed aromatic hydrocarbon rings.
  • the linked non-aromatic hydrocarbon ring group include a bis (cyclohexane) -4,4′-diyl group and a 1-cyclohexylbenzene-4,4′-diyl group.
  • the non-aromatic hydrocarbon ring group a non-linked non-aromatic hydrocarbon ring group is preferable.
  • a divalent group of cyclohexane (cyclohexanediyl group) is preferable.
  • the cyclohexanediyl group is preferably a cyclohexane-1,4-diyl group.
  • the heterocyclic group in Cy includes an aromatic heterocyclic group and a non-aromatic heterocyclic group.
  • the aromatic heterocyclic group includes an unlinked aromatic heterocyclic group and a linked aromatic heterocyclic group.
  • the unlinked aromatic heterocyclic group is a monovalent or condensed aromatic heterocyclic divalent group, and preferably has 4 to 20 carbon atoms.
  • the aromatic heterocycle includes furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole.
  • the linked aromatic heterocyclic group is a divalent group in which a single ring or a plurality of condensed aromatic heterocyclic rings are bonded by a single bond and a bond is formed on an atom constituting the ring.
  • the number of carbon atoms in a single ring or condensed ring is preferably 4-20.
  • a first monocyclic ring having 4 to 20 carbon atoms or a condensed aromatic heterocyclic ring and a second monocyclic ring having 4 to 20 carbon atoms or a condensed aromatic heterocyclic ring are bonded by a single bond.
  • a monocyclic or condensed aromatic heterocycle having a first bond on the atoms constituting the monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms and the second monocyclic or condensed aromatic ring having 4 to 20 carbon atoms A divalent group having a second bond on the atom constituting the ring.
  • Non-aromatic heterocyclic groups include unlinked non-aromatic heterocyclic groups and linked non-aromatic heterocyclic groups.
  • the unlinked non-aromatic heterocyclic group is a monovalent or condensed non-aromatic heterocyclic divalent group, and preferably has 4 to 20 carbon atoms.
  • the linked non-aromatic heterocyclic group is a divalent group in which a plurality of monocyclic or condensed non-aromatic heterocyclic rings are bonded by a single bond and a bond is formed on an atom constituting the ring.
  • the number of carbon atoms in a single ring or condensed ring is preferably 4-20.
  • a first monocyclic ring having 4 to 20 carbon atoms or a condensed non-aromatic heterocyclic ring and a second monocyclic ring having 4 to 20 carbon atoms or a condensed non-aromatic heterocyclic ring are bonded by a single bond.
  • the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group and non-aromatic heterocyclic group in Cy are RA, —OH, —O—RA, —O—C ( ⁇ O, respectively).
  • —RA —NH 2 , —NH—RA, —N (RB) —RA, —C ( ⁇ O) —RA, —C ( ⁇ O) —O—RA, —C ( ⁇ O) —NH 2 , —C ( ⁇ O) —NH—RA, —C ( ⁇ O) —N (RB) —RA, —SH, —S—RA, trifluoromethyl group, sulfamoyl group, carboxy group, sulfo group, cyano group , A nitro group, and one or more groups selected from the group consisting of halogen may be substituted.
  • RA and RB each independently represent a linear or branched alkyl group having 1 to 6 carbon atoms.
  • the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group, and non-aromatic heterocyclic group in Cy have a high molecular structure linearity, and have a partial structure represented by the formula (1).
  • each independently is preferably unsubstituted or substituted by a methyl group, a methoxy group, a fluorine atom, a chlorine atom, a bromine atom, More preferably, it is unsubstituted.
  • aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group, and non-aromatic heterocyclic group may be the same or different, and the aromatic hydrocarbon ring group, All of the non-aromatic hydrocarbon ring group, the aromatic heterocyclic group and the non-aromatic heterocyclic group may be substituted, all may be unsubstituted, partly substituted and partly It may be unsubstituted.
  • Cy is preferably a hydrocarbon ring group, more preferably a phenylene group or a cyclohexanediyl group. Further, since the linearity of the molecular structure of the liquid crystal compound can be increased, Cy is more preferably a 1,4-phenylene group or a cyclohexane-1,4-diyl group, and particularly preferably a 1,4-phenylene group. .
  • —X— is —C ( ⁇ O) O— or —OC ( ⁇ O) —
  • —X— is —CH 2 CH 2 —, —CH 2 O— Or —OCH 2 —.
  • -Cy- and -C ⁇ C- Are preferably connected.
  • a single bond is more preferable because of its high linearity.
  • liquid crystal compound having a partial structure represented by the above formula (1) contained in the composition for forming an anisotropic dye film of the present invention examples include a liquid crystal compound represented by the following formula (2).
  • R1 and R2 each independently represents a chain organic group;
  • A1 and A3 each independently represent a partial structure represented by the formula (1), a divalent organic group, or a single bond;
  • A2 represents a partial structure represented by the formula (1) or a divalent organic group;
  • One of A1 and A3 is a partial structure or a divalent organic group represented by the formula (1); At least one of A1, A2, and
  • Formula (2) is R1-Cy-X2-C ⁇ C—X—Y1-A2-Y2-A3-R2 (2A) May be, R1-X-C ⁇ C-X2-Cy-Y1-A2-Y2-A3-R2 (2B) It may be.
  • the formula (2) is R1-A1-Y1-Cy-X2-C ⁇ C—X2-Y2-A3-R2 (2C) May be, R1-A1-Y1-XC ⁇ C-X2-Cy-Y2-A3-R2 (2D) It may be.
  • the formula (2) is R1-A1-Y1-A2-Y2-Cy-X2-C ⁇ CXR2 (2E) May be, R1-A1-Y1-A2-Y2-XC ⁇ C-X2-Cy-R2 (2F) It may be.
  • A1, A2, and A3 are each independently a partial structure or a divalent organic group represented by the formula (1); in addition, A1 and A3 are single bonds. However, A1 and A3 are not both single bonds; at least one of A1, A2, and A3 represents the partial structure represented by the formula (1).
  • the chain organic group in R1 and R2 does not include a cyclic structure such as the aforementioned aromatic hydrocarbon ring, non-aromatic hydrocarbon ring, aromatic heterocycle, non-aromatic heterocycle (however, the chain in R1 and R2)
  • the organic group has a cyclic polymerizable group, which will be described later, such as an oxirane ring, an oxetane ring or a vinylbenzene ring
  • the portion excluding the polymerizable group does not contain the above cyclic structure.
  • Such a chain organic group is preferably-(alkyl group) or -O- (alkyl group). In one embodiment, such a chain organic group is-(alkyl group), and in another embodiment, such a chain organic group is -O- (alkyl group).
  • alkyl group in these chain organic groups examples include linear or branched alkyl groups having 1 to 25 carbon atoms, and the carbon-carbon bond of the alkyl group is partially unsaturated bond.
  • One or more methylene groups contained in the alkyl group may be an etheric oxygen atom, a thioetheric sulfur atom, an aminic nitrogen atom (—NH—, —N (RA) —: RA represents a linear or branched alkyl group having 1 to 6 carbon atoms.), Carbonyl group, ester bond, amide bond, —CHF—, —CF 2 —, —CHCl—, —CCl 2 — The structure may be replaced by (displace).
  • a part of carbon of the alkyl group may be an unsaturated bond because of high molecular linearity, and one or more of the alkyl groups contained in the alkyl group It is preferably a linear alkyl group having 1 to 25 carbon atoms, which may have a structure in which the methylene group is replaced by the above-described group.
  • the main chain in the chain organic group (means the longest chain part in the chain organic group, and when the chain organic group is substituted with a polymerizable group described later, the most in the part excluding the polymerizable group
  • the number of atoms of the long chain portion is preferably 3 to 25, more preferably 5 to 20, and still more preferably 6 to 20.
  • alkyl groups may be substituted with 1 to 3 polymerizable groups.
  • the polymerizable group is a group having a partial structure that can be polymerized by light, heat, and / or radiation, and is a functional group or atomic group necessary for ensuring the function of polymerization.
  • the polymerizable group is preferably a photopolymerizable group from the viewpoint of producing an anisotropic dye film.
  • Examples of the polymerizable group include acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy group, acryloylamino group, methacryloylamino group, vinyl group, vinyloxy group, ethynyl group, ethynyloxy group, 1,3- Examples include butadienyl group, 1,3-butadienyloxy group, oxiranyl group, oxetanyl group, glycidyl group, glycidyloxy group, styryl group, styryloxy group, and the like.
  • Acrylyl group, methacryloyl group, acryloyloxy group, methacryloyl group Oxy group, acryloylamino group, methacryloylamino group, oxiranyl group, glycidyl group, glycidyloxy group are preferable, acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy group, acryloyl Amino group, methacryloyloxy group, a glycidyl group, and more preferably glycidyloxy group, acryloyloxy group, methacryloyloxy group, more preferably glycidyloxy group.
  • these alkyl groups are substituted with a polymerizable group, it is preferable that one polymerizable group is substituted, and it is more preferable that one polymerizable group is substituted at the terminal of the alkyl group.
  • chain organic group examples include — (CH 2 ) n —CH 3 , — (CH 2 ) n —CH 2 —polymerizable group, —O— (CH 2 ) n —CH 3 , —O— (CH 2 ).
  • n— CH 2 —polymerizable group — (O) n1 — (CH 2 CH 2 O) n2 — (CH 2 ) n3 —CH 3 , — (O) n1 — (CH 2 CH 2 O) n2 — (CH 2 ) n3 -polymerizable group, — (O) n1 — (CH 2 ) n2 — (CH 2 CH 2 O) n3 —CH 3 , — (O) n1 — (CH 2 ) n2 — (CH 2 CH 2 O N3 -Polymerizable group is preferred.
  • n is an integer of 1 to 24, preferably an integer of 2 to 24, more preferably an integer of 4 to 19, and further preferably an integer of 5 to 19.
  • N1, n2, and n3 in these formulas each independently represent an integer, the main chain in the chain organic group (meaning the longest chain portion in the chain organic group, the chain organic group is polymerized)
  • the number of atoms is preferably 3 to 25, more preferably 5 to 20, and still more preferably. Is appropriately adjusted to be 6-20.
  • R1 and R2 are each independently preferably-(alkyl group) optionally substituted with a polymerizable group, or -O- (alkyl group) optionally substituted with a polymerizable group. More preferably, — (alkyl group) substituted with a polymerizable group and —O— (alkyl group) where the alkyl group is substituted with a polymerizable group.
  • R1 or R2 When X and R1 or X and R2 are bonded as in Formula (2B) and Formula (2E); for example, when A3 is a single bond in Formula (2B) or A1 in Formula (2E)
  • R1 or R2 When R1 or R2 is bonded to Y1 or Y2, as in the case where is a single bond; R1 or R2 bonded to X or Y1 or Y2 may be substituted with a polymerizable group It is preferably-(alkyl group), more preferably-(alkyl group) substituted with a polymerizable group.
  • R1 or R2 which is not bonded to X or Y1 or Y2 is preferably —O— (alkyl group) which may be substituted with a polymerizable group, and is substituted with a polymerizable group. -O- (alkyl group) is more preferable.
  • the divalent organic group in A1, A2, and A3 is preferably a group represented by the following formula (3).
  • Q1 represents a hydrocarbon ring group or a heterocyclic group.
  • the hydrocarbon ring group in Q1 includes an aromatic hydrocarbon ring group and a non-aromatic hydrocarbon ring group.
  • the aromatic hydrocarbon ring group includes an unlinked aromatic hydrocarbon ring group and a linked aromatic hydrocarbon ring group.
  • the unlinked aromatic hydrocarbon ring group is a divalent group of a monocyclic or condensed aromatic hydrocarbon ring, and preferably has 6 to 20 carbon atoms.
  • Examples of the aromatic hydrocarbon ring include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, acenaphthene ring, fluoranthene ring, and fluorene ring. .
  • the linked aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed aromatic hydrocarbon rings are bonded by a single bond and a bond is formed on an atom constituting the ring.
  • the number of carbon atoms in a single ring or condensed ring is preferably 6-20.
  • a first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms and a second monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms bonded by a single bond 1 monocyclic or condensed aromatic hydrocarbon ring having a first bond on an atom constituting a ring of a monocyclic or condensed aromatic hydrocarbon ring, and a second monocyclic or condensed aromatic having 6 to 20 carbon atoms It is a divalent group having a second bond on the atom constituting the ring of the aromatic hydrocarbon ring.
  • the linked aromatic hydrocarbon ring group include a biphenyl-4,4′-diyl group.
  • aromatic hydrocarbon ring group a non-linked aromatic hydrocarbon ring group is preferable.
  • aromatic hydrocarbon ring group a divalent group of a benzene ring and a divalent group of a naphthalene ring are preferable, and a divalent group (phenylene group) of a benzene ring is more preferable.
  • phenylene group a 1,4-phenylene group is preferable.
  • Non-aromatic hydrocarbon ring groups include unlinked non-aromatic hydrocarbon ring groups and linked non-aromatic hydrocarbon ring groups.
  • the unlinked non-aromatic hydrocarbon ring group is a divalent group of a monocyclic or condensed non-aromatic hydrocarbon ring, and preferably has 3 to 20 carbon atoms.
  • Non-aromatic hydrocarbon rings include cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclohexene ring, norbornane ring, bornane ring, adamantane ring, tetrahydronaphthalene ring, bicyclo [2 2.2] octane ring and the like.
  • the non-linked non-aromatic hydrocarbon ring group includes an alicyclic hydrocarbon ring group having no unsaturated bond as an interatomic bond constituting the ring of the non-aromatic hydrocarbon ring, and a ring of the non-aromatic hydrocarbon ring. And an unsaturated non-aromatic hydrocarbon ring group having an unsaturated bond as an interatomic bond constituting the above.
  • an alicyclic hydrocarbon ring group is preferable.
  • the linked non-aromatic hydrocarbon ring group is a divalent group in which a single ring or a plurality of condensed non-aromatic hydrocarbon rings are bonded by a single bond, and a bond is formed on an atom constituting the ring;
  • One or more rings selected from the group consisting of an aromatic hydrocarbon ring, a condensed aromatic hydrocarbon ring, a monocyclic non-aromatic hydrocarbon ring, and a condensed non-aromatic hydrocarbon ring;
  • the condensed non-aromatic hydrocarbon ring is a divalent group having a bond on the atom constituting the ring, bonded with a single bond.
  • the number of carbon atoms in a single ring or condensed ring is preferably 3-20.
  • a divalent group having a second bond on the atom constituting the ring of the condensed non-aromatic hydrocarbon ring such as a monocyclic or condensed aromatic hydrocarbon ring having 3 to 20 carbon atoms and carbon number 3 to 20 monocyclic or condensed non-aromatic hydrocarbon rings are bonded by a single bond, and the first ring is formed on the atoms constituting the ring of 3 to 20 carbon monocyclic or condensed aromatic hydrocarbon rings.
  • the linked non-aromatic hydrocarbon ring group include a bis (cyclohexane) -4,4′-diyl group and a 1-cyclohexylbenzene-4,4′-diyl group.
  • the non-aromatic hydrocarbon ring group a non-linked non-aromatic hydrocarbon ring group is preferable.
  • a divalent group of cyclohexane (cyclohexanediyl group) is preferable.
  • the cyclohexanediyl group is preferably a cyclohexane-1,4-diyl group.
  • the heterocyclic group in Q1 includes an aromatic heterocyclic group and a non-aromatic heterocyclic group.
  • the aromatic heterocyclic group includes an unlinked aromatic heterocyclic group and a linked aromatic heterocyclic group.
  • the unlinked aromatic heterocyclic group is a monovalent or condensed aromatic heterocyclic divalent group, and preferably has 4 to 20 carbon atoms.
  • the aromatic heterocycle includes furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole.
  • the linked aromatic heterocyclic group is a divalent group in which a single ring or a plurality of condensed aromatic heterocyclic rings are bonded by a single bond and a bond is formed on an atom constituting the ring.
  • the number of carbon atoms in a single ring or condensed ring is preferably 4-20.
  • a first monocyclic ring having 4 to 20 carbon atoms or a condensed aromatic heterocyclic ring and a second monocyclic ring having 4 to 20 carbon atoms or a condensed aromatic heterocyclic ring are bonded by a single bond.
  • a monocyclic or condensed aromatic heterocycle having a first bond on the atoms constituting the monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms and the second monocyclic or condensed aromatic ring having 4 to 20 carbon atoms A divalent group having a second bond on the atom constituting the ring.
  • Non-aromatic heterocyclic groups include unlinked non-aromatic heterocyclic groups and linked non-aromatic heterocyclic groups.
  • the unlinked non-aromatic heterocyclic group is a monovalent or condensed non-aromatic heterocyclic divalent group, and preferably has 4 to 20 carbon atoms.
  • the linked non-aromatic heterocyclic group is a divalent group in which a plurality of monocyclic or condensed non-aromatic heterocyclic rings are bonded by a single bond and a bond is formed on an atom constituting the ring.
  • the number of carbon atoms in a single ring or condensed ring is preferably 4-20.
  • a first monocyclic ring having 4 to 20 carbon atoms or a condensed non-aromatic heterocyclic ring and a second monocyclic ring having 4 to 20 carbon atoms or a condensed non-aromatic heterocyclic ring are bonded by a single bond.
  • the aromatic hydrocarbon ring group, the non-aromatic hydrocarbon ring group, the aromatic heterocyclic group, and the non-aromatic heterocyclic group in Q1 are RA, —OH, —O—RA, —O—C ( ⁇ O, respectively).
  • —RA —NH 2 , —NH—RA, —N (RB) —RA, —C ( ⁇ O) —RA, —C ( ⁇ O) —O—RA, —C ( ⁇ O) —NH 2 , —C ( ⁇ O) —NH—RA, —C ( ⁇ O) —N (RB) —RA, —SH, —S—RA, trifluoromethyl group, sulfamoyl group, carboxy group, sulfo group, cyano group , A nitro group, and one or more groups selected from the group consisting of halogen may be substituted.
  • RA and RB each independently represent a linear or branched alkyl group having 1 to 6 carbon atoms.
  • the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group, and non-aromatic heterocyclic group in Q1 have a high molecular structure linearity, and have a partial structure represented by the formula (1).
  • each independently is preferably unsubstituted or substituted by a methyl group, a methoxy group, a fluorine atom, a chlorine atom, a bromine atom, More preferably, it is unsubstituted.
  • the substituents that the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group, and non-aromatic heterocyclic group have may be the same or different, and the aromatic hydrocarbon ring group, All of the non-aromatic hydrocarbon ring group, the aromatic heterocyclic group and the non-aromatic heterocyclic group may be substituted, all may be unsubstituted, partly substituted and partly It may be unsubstituted.
  • the divalent organic groups in A1, A2, and A3 may have the same or different substituents, and all of the divalent organic groups in A1, A2, and A3 may be substituted. It may be unsubstituted, partly substituted and partly unsubstituted.
  • Q1 is preferably a hydrocarbon ring group, more preferably a phenylene group or a cyclohexanediyl group. Further, Q1 is more preferably a 1,4-phenylene group or a cyclohexane-1,4-diyl group because the linearity of the molecular structure of the liquid crystal compound can be increased.
  • Q1 is preferably a hydrocarbon ring group, that is, the divalent organic group is preferably a hydrocarbon ring group.
  • a phenylene group or a cyclohexanediyl group is more preferable, and since the linearity of the molecular structure of the liquid crystal compound can be increased, a 1,4-phenylene group, a cyclohexane-1,4-diyl group Is more preferable.
  • one of A1, A2, and A3 is a partial structure represented by formula (1), and the other two are each independently a divalent organic group.
  • Cy in the partial structure represented by the formula (1) is preferably a hydrocarbon ring group, and the divalent organic group is particularly preferably a hydrocarbon ring group.
  • the hydrocarbon ring group is preferably a 1,4-phenylene group or a cyclohexane-1,4-diyl group.
  • One of A1 and A3 is preferably a cyclohexane-1,4-diyl group.
  • one of A1 and A3 is a partial structure represented by the formula (1), and the other one and A2 are divalent organic groups.
  • one of A1 and A3 that is a divalent organic group is preferably a cyclohexane-1,4-diyl group, and A2 is particularly preferably a 1,4-phenylene group.
  • a single bond, —C ( ⁇ O) O—, —OC ( ⁇ O) —, —CH 2 CH 2 —, —CH 2 O—, and —OCH 2 — are more preferable.
  • Y1 bonded to X or Y2 bonded to X Is preferably a single bond; the other of —X— and —Y 1 — and —Y 2 — is preferably —C ( ⁇ O) O— or —OC ( ⁇ O) —.
  • —X— is —CH 2 CH 2 —, —CH 2 O—, or —OCH 2 — is preferred; both —Y1- and —Y2- are preferably —C ( ⁇ O) O— or —OC ( ⁇ O) —.
  • the liquid crystal compound of the first aspect contained in the composition for forming an anisotropic dye film of the first aspect of the present invention preferably comprises a liquid crystal compound having a partial structure represented by the formula (1).
  • the liquid crystal compound of the first aspect contained in the composition for forming an anisotropic dye film of the first aspect of the present invention is a liquid crystal compound having a partial structure represented by the formula (1). It may be a seed, or two or more kinds may be used in combination.
  • liquid crystal compounds other than the liquid crystal compound having the partial structure represented by the formula (1) may be used in combination.
  • the liquid crystal compound of the second aspect contained in the composition for forming an anisotropic dye film of the second aspect of the present invention includes a liquid crystal compound having a partial structure represented by the following formula (B1).
  • CyH represents a substituted or unsubstituted non-aromatic hydrocarbon ring group
  • E1 and E2 each independently represent a hydrocarbon ring group or a heterocyclic group
  • the non-aromatic hydrocarbon ring group in CyH includes an unlinked non-aromatic hydrocarbon ring group and a linked non-aromatic hydrocarbon ring group, and the anisotropic dye film forming composition according to the first aspect of the present invention It is synonymous with the non-aromatic hydrocarbon ring group in Cy in Formula (1) based on the liquid crystal compound of the 1st aspect.
  • the substituent permitted in the non-aromatic hydrocarbon ring group in CyH is also represented by the formula (1) related to the liquid crystal compound of the first aspect of the anisotropic dye film-forming composition of the first aspect of the present invention.
  • Cy is the same as the permissible substituent in the non-aromatic hydrocarbon ring group.
  • non-aromatic hydrocarbon ring group in CyH a divalent group of cyclohexane (cyclohexanediyl group) is preferable.
  • the cyclohexanediyl group is preferably a substituted or unsubstituted cyclohexane-1,4-diyl group because the linearity of the molecular structure of the liquid crystal compound can be increased.
  • the substituted or unsubstituted non-aromatic hydrocarbon ring group in CyH has a high linearity of the molecular structure, and the liquid crystal compound having a partial structure represented by the formula (B1) easily associates with the liquid crystal state.
  • the hydrocarbon ring group and the heterocyclic group in E1 and E2 are each independently represented by the formula (1) according to the liquid crystal compound of the first aspect of the anisotropic dye film-forming composition of the first aspect of the present invention. It is synonymous with the hydrocarbon ring group and heterocyclic group in Cy in the inside.
  • the substituents allowed in the hydrocarbon ring group and the heterocyclic group in E1 and E2 are also each independently the liquid crystal of the first aspect of the composition for forming an anisotropic dye film of the first aspect of the present invention. This is the same as the substituents allowed for the hydrocarbon ring group and the heterocyclic group in Cy in formula (1) related to the compound.
  • preferred embodiments of the hydrocarbon ring group and the heterocyclic group in E1 and E2 are also independently related to the liquid crystal compound of the first embodiment of the composition for forming an anisotropic dye film of the first embodiment of the present invention.
  • Cy is the same as the preferred embodiment of the hydrocarbon ring group and heterocyclic group.
  • —Z1— is represented by —C ⁇ C— or —C ( ⁇ O) O—, which has a small ⁇ bondability, —OC ( ⁇ O) —, —C ( ⁇ S) O—, —OC ( ⁇ S) —, —C ( ⁇ O) S—, —SC ( ⁇ O) —, —CH 2 CH 2 —, — CH 2 O—, —OCH 2 —, —CH 2 S—, —SCH 2 — are preferred, —C ( ⁇ O) O—, —OC ( ⁇ O) —, —CH 2 CH 2 —, —CH 2 O— and —OCH 2 — are more preferred.
  • —Z1- is —C ( ⁇ O) O— or —OC ( ⁇ O) —, and in another embodiment, —Z1- is —CH 2 CH 2 —, —CH 2 O— Or —OCH 2 —.
  • liquid crystal compound having a partial structure represented by the above formula (B1) contained in the composition for forming an anisotropic dye film of the present invention examples include a liquid crystal compound represented by the following formula (B2).
  • the chain organic groups in T1 and T2 each independently represent R1 in the formula (2) and the liquid crystal compound of the first aspect of the anisotropic dye film-forming composition of the first aspect of the present invention. It is synonymous with the chain organic group in R2.
  • T1 and T2 are preferably each independently-(alkyl group) optionally substituted with a polymerizable group, or -O- (alkyl group) where the alkyl group may be substituted with a polymerizable group. More preferably, — (alkyl group) substituted with a polymerizable group and —O— (alkyl group) where the alkyl group is substituted with a polymerizable group.
  • T1 is preferably —O— (alkyl group) in which the alkyl group may be substituted with a polymerizable group, and is —O— (alkyl group) in which the alkyl group is substituted with a polymerizable group. More preferred.
  • T2 may be substituted with a polymerizable group -O- (Alkyl group) is preferable, and —O— (alkyl group) in which the alkyl group is substituted with a polymerizable group is more preferable.
  • T2 is preferably an-(alkyl group) optionally substituted with a polymerizable group, and substituted with a polymerizable group- (Alkyl group) is more preferable.
  • the divalent organic group in E3 is preferably a group represented by the following formula (B3) or a single bond.
  • the group represented by the above formula (B3) includes A1, A2, and A1 in the formula (2) according to the liquid crystal compound of the first embodiment of the anisotropic dye film-forming composition of the first embodiment of the present invention. And a group represented by the formula (3), which is a divalent organic group in A3.
  • E3 is preferably a phenylene group, a cyclohexanediyl group or a single bond, more preferably a 1,4-phenylene group, a cyclohexane-1,4-diyl group or a single bond.
  • -Z2- is -C ⁇ C-, or a single bond having a low ⁇ bondability
  • -C ( O) O—, —OC ( ⁇ O) —, —C ( ⁇ S) O—, —OC ( ⁇ S) —, —C ( ⁇ O) S—, —SC ( ⁇ O) —, —CH 2 CH 2 —, —CH ⁇ CH—, —C ( ⁇ O) NH—, —NHC ( ⁇ O) —, —CH 2 O—, —OCH 2 —, —CH 2 S—, or —SCH 2 — are preferred, A single bond, —C ( ⁇ O) O—, —OC ( ⁇ O) —, —CH 2 CH 2 —, —CH 2 O—, and —OCH 2 — are more preferred.
  • the liquid crystal compound of the second aspect contained in the composition for forming an anisotropic dye film of the second aspect of the present invention preferably comprises a liquid crystal compound having a partial structure represented by the formula (B1). .
  • the liquid crystal compound of the second aspect contained in the composition for forming an anisotropic dye film of the second aspect of the present invention is 1 of the liquid crystal compound having a partial structure represented by the formula (B1). It may be a seed, or two or more kinds may be used in combination.
  • liquid crystal compounds other than the liquid crystal compound having the partial structure represented by the formula (B1) may be used in combination.
  • the liquid crystal compound contained in the composition for forming an anisotropic dye film of the present invention preferably has an isotropic phase appearance temperature of generally less than 200 ° C. and less than 160 ° C. from the viewpoint of the process. Less than 140 ° C, more preferably less than 115 ° C, even more preferably less than 110 ° C, and particularly preferably less than 105 ° C.
  • the isotropic phase appearance temperature means the phase transition temperature from the liquid crystal to the liquid and the phase transition temperature from the liquid to the liquid crystal. In the present invention, it is preferable that at least one of these phase transition temperatures is in the above range, and it is more preferable that both of these phase transition temperatures are in the above range.
  • the liquid crystal compound contained in the composition for forming an anisotropic dye film of the present invention includes an alkylation reaction, an esterification reaction, an amidation reaction, an etherification reaction, an ipso substitution reaction, a coupling reaction using a metal catalyst, and the like. It can be produced by combining known chemical reactions.
  • the liquid crystal compound contained in the composition for forming an anisotropic dye film of the present invention may be prepared by the method described in the Examples or “449” of “Liquid Crystal Handbook” (Maruzen Co., Ltd., issued October 30, 2000) Can be synthesized according to the method described on pages 468 to 468.
  • the composition for forming an anisotropic dye film of the present invention may contain a solvent, if necessary.
  • the solvent that can be used is not particularly limited as long as it can sufficiently disperse or dissolve the dye or other additives in the liquid crystal compound.
  • methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene Alcohol solvents such as glycol methyl ether, ethylene glycol butyl ether, propylene glycol monomethyl ether; ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, propylene glycol methyl ether acetate, ethyl lactate; acetone, methyl ethyl ketone, Ketone solvents such as cyclopentanone, cyclohexanone, 2-heptanone and methyl isobutyl ketone; fats such as pentane, hexan
  • the solvent is preferably a solvent capable of dissolving the liquid crystal compound and the dye, and more preferably a solvent capable of completely dissolving the liquid crystal compound and the dye.
  • a liquid crystal compound is a polymeric compound, it is preferable that it is a solvent inactive to a polymerization reaction.
  • a solvent having a boiling point in the range of 50 to 200 ° C. is preferable.
  • the content of the solvent in the composition for forming an anisotropic dye film is based on the total amount (100% by mass) of the composition of the present invention. And 50 to 98% by mass is preferable.
  • the solid content in the composition for forming an anisotropic dye film of the present invention is preferably 2 to 50% by mass. If the solid content in the composition for forming an anisotropic dye film is not more than the above upper limit, the viscosity of the composition for forming an anisotropic dye film does not become too high, and the thickness of the obtained polarizing film becomes uniform. There is a tendency that unevenness is hardly generated in the polarizing film.
  • the solid content can be determined in consideration of the thickness of the polarizing film to be manufactured.
  • the viscosity of the composition for an anisotropic dye film of the present invention is not particularly limited as long as a uniform film without thickness unevenness is produced by a coating method described later, but the thickness uniformity in a large area, coating speed, etc. From the viewpoint of obtaining in-plane uniformity of productivity and optical characteristics, 0.1 mPa ⁇ s or more is preferable, 500 mPa ⁇ s or less is preferable, 100 mPa ⁇ s or less is more preferable, and 50 mPa ⁇ s or less is more preferable.
  • the composition for forming an anisotropic dye film of the present invention is further represented by a polymerizable liquid crystal compound other than the liquid crystal compound having a partial structure represented by the formula (1), the formula (1), as necessary.
  • Non-polymerizable liquid crystal compounds other than liquid crystal compounds having a partial structure, polymerization initiator, polymerization inhibitor, polymerization aid, polymerizable non-liquid crystal compound, surfactant, leveling agent, coupling agent, pH adjuster, dispersant , Antioxidants, organic / inorganic fillers, organic / inorganic nanosheets, organic / inorganic nanofibers, and other additives such as metal oxides may be contained.
  • the coating property and stability of the anisotropic dye film forming composition are improved, or the stability of the anisotropic dye film formed from the anisotropic dye film forming composition is improved. May be improved.
  • the method for producing the anisotropic dye film composition of the present invention is not particularly limited.
  • a pigment, a liquid crystal compound, a solvent, and other additives as necessary are mixed, and the pigment is dissolved by stirring and shaking at 0 to 80 ° C.
  • a homogenizer, a bead mill disperser or the like may be used.
  • a filtration step may be included for the purpose of removing foreign substances and the like in the composition.
  • the composition obtained by removing the solvent from the composition for forming the anisotropic dye film may or may not be a liquid crystal at any temperature. It is preferable to exhibit liquid crystallinity.
  • the composition obtained by removing the solvent from the anisotropic dye film-forming composition has an isotropic phase appearance temperature of generally less than 200 ° C. and less than 160 ° C. from the viewpoint of the coating process described below. It is preferably less than 140 ° C, more preferably less than 115 ° C, even more preferably less than 110 ° C, and particularly preferably less than 105 ° C.
  • the anisotropic dye film of the present invention contains a dye and a liquid crystal compound having a partial structure represented by the formula (1) (however, the liquid crystal compound having a partial structure represented by the formula (1) is polymerized. In the case of a functional compound, one of a dye, a liquid crystal compound having a partial structure represented by the formula (1), and a polymer having a unit based on the liquid crystal compound having a partial structure represented by the formula (1) Or both.)
  • the anisotropic dye film of the present invention comprises a polymerizable liquid crystal compound other than the liquid crystal compound having a partial structure represented by the formula (1), a non-polymerizable liquid crystal compound, a polymerization initiator, a polymerization inhibitor, a polymerization aid, Polymerizable non-liquid crystal compound, non-polymerizable non-liquid crystal compound, surfactant, leveling agent, coupling agent, pH adjuster, dispersant, antioxidant, organic / inorganic filler, organic / in
  • the anisotropic dye film of the present invention can be formed using the anisotropic dye film forming composition of the present invention.
  • the anisotropic dye film in the present invention can function as a polarizing film for obtaining linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption.
  • a transparent material can be functionalized as various anisotropic dye films such as refractive anisotropy and conduction anisotropy.
  • the orientation characteristics of the anisotropic dye film can be expressed by using a dichroic ratio. If the dichroic ratio is 8 or more, it functions as a polarizing element, but it is preferably 15 or more, more preferably 20 or more, further preferably 25 or more, particularly preferably 30 or more, and particularly preferably 40 or more. Also, the higher the dichroic ratio, the better. When the dichroic ratio is equal to or higher than the lower limit, it is useful as an optical element described later, particularly a polarizing element.
  • the performance as an antireflection film is improved if the performance of the polarizing element is high. Therefore, if the performance of the polarizing element is high, the layer configuration can be easily simplified, and a sufficient function can be easily developed even in the thin film configuration, and can be suitably used for applications that are used by being deformed including folding and bending. Also, the cost can be kept low.
  • the dichroic ratio (D) referred to in the present invention is represented by the following formula when the pigment is uniformly oriented.
  • D Az / Ay
  • Az is the absorbance observed when the polarization direction of the light incident on the anisotropic dye film is parallel to the orientation direction of the anisotropic dye film
  • Ay is the polarization of the light incident on the anisotropic dye film.
  • Each absorbance is not particularly limited as long as those having the same wavelength are used, and any wavelength may be selected depending on the purpose. It is preferable to use a value corrected by visual sensitivity in a specific wavelength region of ⁇ 780 nm or a value at the maximum absorption wavelength in the visible region.
  • the transmittance of the anisotropic dye film of the present invention in the visible light wavelength region is preferably 25% or more, more preferably 35% or more, and particularly preferably 40% or more.
  • permeability should just be an upper limit according to a use.
  • the transmittance is preferably 50% or less. Since the transmittance is in the above range, it is useful as an optical element to be described later, and particularly as an optical element for a liquid crystal display used for color display or an antireflection film combining an anisotropic dye film and a retardation film. Useful.
  • the film thickness of the anisotropic dye film is preferably 10 nm or more, more preferably 100 nm or more, and further preferably 500 nm or more as a dry film thickness. On the other hand, it is preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less, further preferably 5 ⁇ m or less, and particularly preferably 3 ⁇ m or less.
  • the film thickness of the anisotropic dye film is in the above range, uniform orientation of the dye and a uniform film thickness tend to be obtained in the film.
  • the anisotropic dye film of the present invention is preferably produced by a wet film forming method using the composition for forming an anisotropic dye film of the present invention.
  • the wet film-forming method referred to in the present invention is a method in which an anisotropic dye film composition is applied and oriented on a substrate by any method. Therefore, the composition for an anisotropic dye film only needs to have fluidity, and may or may not contain a solvent. From the viewpoint of viscosity at coating and film uniformity, it is more preferable to contain a solvent.
  • the alignment of the liquid crystal and the dye in the anisotropic dye film may be carried out by shearing or the like in the coating process, or may be carried out in the process of drying the solvent.
  • the liquid crystal, the dye, and the like may be aligned and laminated on the substrate through a process of heating after coating and drying to reorient the liquid crystal, the dye, and the like.
  • the anisotropic dye film composition when the anisotropic dye film composition is applied onto the substrate, it is already in the anisotropic dye film composition, in the course of drying of the solvent, or after the solvent is completely removed.
  • alignment in a minute area occurs when the dye or the liquid crystal compound takes a self-association (molecular association state such as a liquid crystal state).
  • an anisotropic dye film having desired performance can be obtained by orienting in a certain direction in a macro region.
  • the external field includes the influence of the orientation treatment layer previously applied on the substrate, shear force, magnetic field, electric field, heat, etc., and these may be used alone or in combination. Good. If necessary, a heating step may be performed.
  • the process of applying the anisotropic dye film composition on the substrate to form a film, the process of aligning by applying an external field, and the process of drying the solvent may be performed sequentially or simultaneously.
  • Examples of the method for applying the anisotropic dye film forming composition on the substrate in the wet film forming method include a coating method, a dip coating method, an LB film forming method, a known printing method, and the like. There is also a method of transferring the anisotropic dye film thus obtained to another substrate.
  • the orientation direction of the anisotropic dye film may be different from the coating direction.
  • the orientation direction of the anisotropic dye film is, for example, a transmission axis (polarization axis) or an absorption axis of polarized light if it is a polarizing film, and a fast axis if it is a retardation film. Or it is the slow axis.
  • the method for applying the anisotropic dye film composition to obtain the anisotropic dye film is not particularly limited.
  • Yuji Harasaki “Coating Engineering” (Asakura Shoten Co., Ltd., issued March 20, 1971). ), Pages 253 to 277, supervised by Kunihiro Ichimura, “Creation and Application of Molecular Coordinating Materials” (CMC Publishing Co., Ltd., published on March 3, 1998), pages 118 to 149 Slot die coating method, spin coating method, spray coating method, bar coating method, roll coating method, blade coating method, curtain coating method, fountain method, dipping method, etc. on a substrate having a structure (which may be subjected to orientation treatment in advance) The method of apply
  • coating is mentioned.
  • the slot die coating method and the bar coating method are preferable because an anisotropic dye film with high uniformity can be obtained.
  • a die coater used in the slot die coating method generally includes a coating machine that discharges a coating solution, a so-called slit die.
  • a coating machine that discharges a coating solution
  • a so-called slit die for example, Japanese Laid-Open Patent Publication No. 2-164480, Japanese Laid-Open Patent Publication No. 6-154687, Japanese Laid-Open Patent Publication No. 9-131559, “Basics and Applications of Dispersion / Coating / Drying” (2014) Technosystem Co., Ltd., ISBN 9844924728707 C, 305), “Wet coating technology for display and optical members” (2007, Information Organization, ISBN 9784690777752), “Precision coating and drying technology in electronics field” (2007, Technical Information Association, ISBN 98784861041389) ) And the like.
  • These known slit dies can be applied even with a flexible member such as a film or a tape or a hard member such as a glass substrate.
  • a substrate used for forming the anisotropic dye film of the present invention glass, triacetate, acrylic, polyester, polyimide, polyetherimide, polyetheretherketone, polycarbonate, cycloolefin polymer, polyolefin, polyvinyl chloride, triacetyl Examples thereof include cellulose or urethane films.
  • a known method (rubbing) described on pages 226 to 239 of “Liquid Crystal Handbook” (Maruzen Co., Ltd., issued on October 30, 2000) is used on the surface of the substrate in order to control the orientation direction of the dye.
  • an alignment treatment (alignment film) may be applied.
  • an alignment treatment by a rubbing method or a photo-alignment method is particularly preferred.
  • the material used for the rubbing method include polyvinyl alcohol (PVA), polyimide (PI), epoxy resin, acrylic resin, and the like.
  • Examples of the material used for the photo-alignment method include polycinnamate, polyamic acid / polyimide, and azobenzene.
  • the method for supplying the composition for anisotropic dye film and the supply interval when applying the composition for anisotropic dye film are not particularly limited. Since the coating liquid supply operation becomes complicated and the coating film thickness may change when the coating liquid starts and stops, it is continuously anisotropic when the film thickness of the anisotropic dye film is small. It is desirable to apply while supplying the composition for the active dye film.
  • the speed at which the composition for anisotropic dye film is applied is usually 0.001 m / min or more, preferably 0.01 m / min or more, more preferably 0.1 m / min or more, and further preferably. Is 1.0 m / min or more, and particularly preferably 5.0 m / min or more. Moreover, it is 400 m / min or less normally, Preferably it is 200 m / min or less, More preferably, it is 100 m / min or less, More preferably, it is 50 m / min or less.
  • the coating speed is in the above range, the anisotropy of the anisotropic dye film is obtained, and the coating tends to be performed uniformly.
  • the coating temperature of the anisotropic dye film composition is usually 0 ° C. or higher and 100 ° C. or lower, preferably 80 ° C. or lower, and more preferably 60 ° C. or lower.
  • the humidity during application of the anisotropic dye film composition is preferably 10% RH or more, and preferably 80 RH% or less.
  • the anisotropic dye film may be insolubilized.
  • Insolubilization means a process for controlling the elution of a compound from the anisotropic dye film to increase the stability of the film by reducing the solubility of the compound in the anisotropic dye film.
  • film polymerization, overcoat, and the like are preferable from the viewpoint of ease of subsequent processes, durability of the anisotropic dye film, and the like.
  • the film in which the liquid crystal molecules and the dye molecules are aligned is polymerized using light, heat, and / or radiation.
  • the light source of the active energy ray having a wavelength of 190 to 450 nm is not particularly limited.
  • An optical filter can also be used when used by irradiating light of a specific wavelength.
  • Exposure of the active energy ray is preferably 1 ⁇ 100,000J / m 2, more preferably 10 ⁇ 10,000J / m 2.
  • polymerization When polymerization is carried out using heat, it is preferably carried out in the range of 50 to 200 ° C, more preferably in the range of 60 to 150 ° C.
  • Polymerization may be performed using light, heat, and / or radiation, but using photopolymerization or using photopolymerization and thermal polymerization in combination requires a short film formation process and a simple apparatus. To preferred.
  • optical element of the present invention includes the anisotropic dye film of the present invention.
  • the optical element in the present invention has functions such as a polarizing element that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc., retardation element, refractive anisotropy, conduction anisotropy, etc. Represents an element. These functions can be appropriately adjusted by the anisotropic dye film forming process and the selection of a composition containing a substrate or an organic compound (pigment or transparent material).
  • the optical element of the present invention is most preferably used as a polarizing element.
  • the optical element of the present invention can be suitably used for applications such as a flexible display because a polarizing element can be obtained by forming an anisotropic dye film on a substrate by coating or the like.
  • the optical element may be provided with other layers in order to maintain and improve the function of the anisotropic dye film.
  • the polarizing element of the present invention may have any other film (layer) as long as it has the anisotropic dye film of the present invention.
  • it can be produced by providing an alignment film on a substrate and forming the anisotropic dye film of the present invention on the surface of the alignment film.
  • the polarizing element is not limited to an anisotropic dye film, but an overcoat layer having functions such as improving polarization performance and improving mechanical strength; adhesive layer or antireflection layer; alignment film; retardation film , A function as a brightness enhancement film, a function as a reflection or antireflection film, a function as a transflective film, a layer having an optical function such as a function as a diffusion film; .
  • the layers having various functions described above may be formed by lamination by coating, bonding, or the like, and used as a laminate.
  • These layers can be provided as appropriate in accordance with the manufacturing process, characteristics, and functions, and the position and order of the layers are not particularly limited.
  • the position where each layer is formed may be formed on the anisotropic dye film, or may be formed on the opposite surface of the substrate provided with the anisotropic dye film.
  • the order of forming each layer may be before or after forming the anisotropic dye film.
  • These layers having optical functions can be formed by the following method.
  • the layer having a function as a retardation film can be formed by applying or laminating the retardation film to another layer constituting the polarizing element.
  • the retardation film is subjected to stretching treatment described in, for example, Japanese Patent Application Laid-Open No. 2-59703, Japanese Patent Application Laid-Open No. 4-230704, or described in Japanese Patent Application Laid-Open No. 7-230007. It can be formed by processing.
  • the layer having a function as a brightness enhancement film can be formed by applying or pasting the brightness enhancement film to another layer constituting the polarizing element.
  • the brightness enhancement film can be formed by forming micropores by the method described in, for example, Japanese Patent Application Laid-Open No. 2002-169025 and Japanese Patent Application Laid-Open No. 2003-29030, or the central wavelength of selective reflection can be increased. It can be formed by overlapping two or more different cholesteric liquid crystal layers.
  • the layer having a function as a reflective film or a transflective film is formed, for example, by applying or bonding a metal thin film obtained by vapor deposition or sputtering to another layer constituting the polarizing element. Can do.
  • the layer having a function as a diffusion film can be formed, for example, by coating another layer constituting the polarizing element with a resin solution containing fine particles.
  • a layer having a function as a retardation film or an optical compensation film is composed of a liquid crystal compound such as a discotic liquid crystal compound, a nematic liquid crystal compound, a smectic liquid crystal compound, a cholesteric liquid crystal compound, or another layer constituting a polarizing element. It can form by apply
  • the anisotropic dye film of the present invention When used as an anisotropic dye film for various display elements such as LCDs and OLEDs, it is directly applied to the surface of the electrode substrate or the like constituting these display elements.
  • An anisotropic dye film may be formed, or a substrate on which the anisotropic dye film of the present invention is formed may be used as a constituent member of these display elements.
  • Liquid crystallinity of the obtained composition for forming an anisotropic dye film was measured by differential scanning calorimetry (Seiko Instruments Inc. “DSC220CU”), X-ray structural analysis (Rigaku Corporation “NANO-Viewer”), hot stage (Inc. Toyo Technica “HCS302-LN190”) was observed with a polarizing microscope (Nikon Instech Co., Ltd. “ECLIPSE LV100N POL”), and “Liquid Crystal Handbook” (Maruzen Co., Ltd., issued on October 30, 2000) 9 According to the method described on pages 50 to 117, pages 117 to 176, etc., the liquid crystal was identified.
  • the linearly polarized measurement light is incident on the anisotropic dye film, and the transmittance of the anisotropic dye film with respect to the polarized light in the absorption axis direction and the transmittance of the anisotropic dye film with respect to the polarized light in the polarization axis direction are measured.
  • a sandwich cell (cell gap: 8.0 ⁇ m, 10.0 ⁇ m, 12.0 ⁇ m, film formation) in which a polyimide alignment film (LX1400, manufactured by Hitachi Chemical DuPont Microsystems) is formed on glass as a substrate.
  • An anisotropic dye film is prepared by injecting a composition for an anisotropic dye film in an isotropic phase into a previously polyimide that has been rubbed with a cloth and cooling to 80 ° C. at 5 ° C./min. The dichroic ratio was measured at each temperature while being further cooled to 0 ° C. at 5 ° C./min.
  • the dichroic ratio at the temperature and wavelength showing the maximum dichroic ratio was determined as the dichroic ratio of the anisotropic dye film.
  • the anisotropic dichroic film has a dichroic ratio of 40 or more, A, 20 or more and less than 40, B, 8 or more and less than 20 C, and 8 or less, D or anisotropic.
  • the dichroic dye film has a dichroic ratio of 30 or more, it is “++”, 20 or more and less than 30 is “+”, 8 or more and less than 20 is “ ⁇ ”, and 8 or less is “ ⁇ ”. evaluated.
  • Liquid crystal compound (I-1) was synthesized according to the synthesis method described below.
  • Liquid crystal compound (I-2) was synthesized according to the synthesis method described below.
  • reaction solution was extracted with saturated aqueous ammonium chloride and then with saturated brine, and then purified by silica gel column chromatography (hexane / ethyl acetate) to obtain 4.4 g of (I-2-d) as a white solid.
  • (I-2-e) (I-2-d) (4.1 g, 7.9 mmol), ethanol (20 mL) and p-toluenesulfonic acid pyridinium salt (0.40 g, 1.58 mmol) were mixed and heated at 60 ° C. for 1 hour. After cooling to room temperature, it was discharged into water (100 mL), and the resulting solid was filtered off. The obtained solid was recrystallized (ethanol-water) and filtered to obtain 3.3 g of (I-2-e) as a solid.
  • reaction solution was washed with a saturated aqueous solution of ammonium chloride and then with a saturated saline solution and then purified by silica gel column chromatography (hexane / ethyl acetate) to obtain 0.46 g of trans form (I-2-f).
  • Liquid crystal compound (I-3) was synthesized according to the synthesis method described below.
  • reaction solution was washed with a saturated aqueous ammonium chloride solution and then with a saturated saline solution, and then purified by silica gel column chromatography (hexane / ethyl acetate) to obtain 3.63 g of (I-3-a) as a white solid.
  • reaction mixture was washed with saturated aqueous ammonium chloride and then with saturated brine, and then purified by silica gel column chromatography (methylene chloride / ethyl acetate) to obtain 662 mg of white solid (I-3-c).
  • Liquid crystal compound (I-4) was synthesized according to the synthesis method described below.
  • reaction solution was washed with a saturated aqueous ammonium chloride solution, followed by water and saturated brine, dried over magnesium sulfate, and the solvent was evaporated to give a light brown solid.
  • This light brown solid was dissolved in ethanol (220 mL) at 60 ° C. and allowed to stand at 0 ° C. for 15 hours. The resulting solid was collected by filtration and dried at 50 ° C. under reduced pressure to give a white solid (I-4- 39.1 g of d) was obtained.
  • reaction solution was washed with a saturated aqueous ammonium chloride solution and then with a saturated saline solution, and then purified by silica gel column chromatography (toluene / ethyl acetate) to obtain 1.68 g of (I-4-g) as a white solid.
  • reaction solution was washed with a saturated aqueous ammonium chloride solution and then with saturated brine, and then purified by silica gel column chromatography (toluene / ethyl acetate) to obtain 1.13 g of a liquid crystal compound (I-4) as a white solid.
  • liquid crystal compound (I-5) is described in Lub et al. , Recl. Trav. Chim. It was synthesized using a method according to the compound described in Pays-Bas, 115, 321-328 (1996).
  • Liquid crystal compound (I-6) was synthesized according to the synthesis method described below.
  • the obtained organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried by adding sodium sulfate, and then concentrated by filtration to obtain a crude product.
  • the resulting crude product was purified by silica gel column chromatography (hexane / ethyl acetate) to obtain 32.7 g of a white solid (I-6-a).
  • (I-6-c) (I-6-b) (30.6 g, 111.5 mmol) and tetrahydrofuran (250 mL) were mixed and cooled in an ice bath. Tetra-n-butylammonium fluoride tetrahydrofuran solution (1 mol / L, 133.8 mL) was added, and the mixture was stirred at room temperature for 1 hour. After extraction with water-ethyl acetate, the organic layer was washed with saturated brine, dried by adding sodium sulfate, and concentrated by filtration to obtain 22.1 g of (I-6-c).
  • Liquid crystal compound (I-7) A liquid crystal compound (I-7) was synthesized according to the synthesis method described below.
  • (I-7) (I-7-a) (2 g, 4.0 mmol) was synthesized in the same manner as (I-1-g) except that 12-bromo-1-dodecanol was used as the starting material. (I-7-b) (1.68 g, 4.4 mmol), N, N-dimethyl-4-aminopyridine was synthesized in the same manner as (I-1-h) except that 1-dodecanol was used. (97.7 mg, 0.8 mmol) was mixed with methylene chloride (30 mL), EDC (0.92 g, 4.8 mmol) was added at 0 ° C., and the mixture was stirred at room temperature for 12 hours.
  • Liquid crystal compound (I-8) was synthesized according to the synthesis method described below.
  • (I-8-b) (I-8-a) (5.30 g, 22.0 mmol) was dissolved in DMF (30 mL), dodecane iodide (13.0 g, 44.0 mmol), sodium hydride (oil 50-70%, 2. 0 g) was added and stirred at room temperature for 8 hours. After adding water to the reaction solution and extracting with diisopropyl ether, the organic layer was washed with saturated brine. Further, magnesium sulfate was added and dried, followed by concentration by filtration to obtain a crude product. Purification by silica gel column chromatography (hexane / ethyl acetate) gave 4.58 g of (I-8-b).
  • Liquid crystal compound (I-9) was synthesized according to the synthesis method described below.
  • Liquid crystal compound (I-11) A liquid crystal compound (I-11) was synthesized according to the synthesis method described below.
  • (I-11-d) (I-11-c) (0.05 g, 0.11 mmol) was mixed with methanol (1 mL), and after ice cooling, chlorotrimethylsilane (19 ⁇ L, 0.11 mmol) was added and stirred at room temperature for 4 hours. After concentration under reduced pressure, purification by silica gel chromatography (hexane / ethyl acetate) gave 35 mg of (I-11-d).
  • Liquid crystal compound (I-12) was synthesized according to the synthesis method described below.
  • C 11 H 22 means that 11 methylene chains are linearly bonded
  • C 9 H 18 means that 9 methylene chains are linearly bonded
  • C 12 H 24 means that twelve methylene chains are bonded in a straight chain.
  • the isotropic phase appearance temperature (liquid crystal to liquid phase transition temperature and liquid to liquid crystal phase transition temperature) was determined by differential scanning calorimetry.
  • the sample amount is 0.5 mg to 10 mg
  • an aluminum pan is used, the temperature raising process and the cooling process are 5 ° C./min or 10 ° C./min, and heating from ⁇ 50 ° C. to an arbitrary temperature is performed. Cooling was repeatedly measured 3 times, and the third measured value was taken as the phase transition temperature.
  • 4-methoxyphenol was used as a polymerization inhibitor with respect to 100 parts by weight of the liquid crystal compound.
  • Example A1 79.80 parts of chloroform, 20.00 parts of liquid crystal compound (I-1), 0.12 parts of azo dye of formula (II-1) (manufactured by Hayashibara Co., Ltd.), azo dye of formula (II-2) After adding 0.08 part (made by Showa Kako Co., Ltd.), stirring and making it compatible, the composition A1 for anisotropic dye film
  • membrane formation was obtained by removing a solvent.
  • an anisotropic dye film A1 is prepared, and the dichroic ratio of the anisotropic dye film A1 is determined. Were determined. The results are shown in Table 2.
  • the dichroic ratio of the anisotropic dye film A1 was 46.34 at 40.0 ° C. and 570 nm.
  • Example A2 An anisotropic dye film-forming composition A2 and an anisotropic dye film A2 were obtained in the same manner as in Example A1, except that the liquid crystal compound (I-2) was used instead of the liquid crystal compound (I-1). It was.
  • the anisotropic dye film A2 the dichroic ratio of the anisotropic dye film A2 was determined. The results are shown in Table 2.
  • Example A3 An anisotropic dye film-forming composition A9 and an anisotropic dye film A9 were obtained in the same manner as in Example A1, except that the liquid crystal compound (I-7) was used instead of the liquid crystal compound (I-1). It was.
  • the anisotropic dye film A9 the dichroic ratio of the anisotropic dye film A9 was determined. The results are shown in Table 2.
  • Example A4 An anisotropic dye film-forming composition A10 and an anisotropic dye film A10 were obtained in the same manner as in Example A1, except that the liquid crystal compound (I-8) was used instead of the liquid crystal compound (I-1). It was.
  • the anisotropic dye film A10 the dichroic ratio of the anisotropic dye film A10 was determined. The results are shown in Table 2.
  • Example A5 In 79.80 parts of chloroform, 8.00 parts of the liquid crystal compound (I-1), 12.00 parts of the liquid crystal compound (I-9), 0 of the azo dye of the formula (II-1) (manufactured by Hayashibara Co., Ltd.) .12 parts, 0.08 part of an azo dye of the formula (II-2) (manufactured by Showa Kako Co., Ltd.) is added, and the mixture is stirred and dissolved, and then the solvent is removed to form an anisotropic dye film. Composition A11 was obtained.
  • Example A6 An anisotropic dye film-forming composition A12 and an anisotropic dye film A12 were obtained in the same manner as in Example A5 except that the liquid crystal compound (I-10) was used in place of the liquid crystal compound (I-9). It was.
  • the anisotropic dye film A12 the dichroic ratio of the anisotropic dye film A12 was determined. The results are shown in Table 2.
  • Example A7 An anisotropic dye film-forming composition A13 and an anisotropic dye film A13 were obtained in the same manner as in Example A5 except that the liquid crystal compound (I-11) was used in place of the liquid crystal compound (I-9). It was.
  • the anisotropic dye film A13 the dichroic ratio of the anisotropic dye film A13 was determined. The results are shown in Table 2.
  • Example A1 An anisotropic dye film-forming composition A3 and an anisotropic dye film A3 were obtained in the same manner as in Example A1, except that the liquid crystal compound (I-3) was used in place of the liquid crystal compound (I-1). It was.
  • the anisotropic dye film A3 the dichroic ratio of the anisotropic dye film A3 was determined. The results are shown in Table 2.
  • Example A2 An anisotropic dye film-forming composition A4 and an anisotropic dye film A4 were obtained in the same manner as in Example A1, except that the liquid crystal compound (I-4) was used in place of the liquid crystal compound (I-1). It was.
  • the anisotropic dye film A4 the dichroic ratio of the anisotropic dye film A4 was determined. The results are shown in Table 2.
  • Example A3 An anisotropic dye film-forming composition A5 and an anisotropic dye film A5 were obtained in the same manner as in Example A1, except that the liquid crystal compound (I-5) was used instead of the liquid crystal compound (I-1). It was.
  • the anisotropic dye film A5 the dichroic ratio of the anisotropic dye film A5 was determined. The results are shown in Table 2.
  • Example A1 An anisotropic dye film-forming composition A8 and an anisotropic dye film A8 were obtained in the same manner as in Example A1, except that the liquid crystal compound (I-6) was used instead of the liquid crystal compound (I-1). It was.
  • the anisotropic dye film A8 the dichroic ratio of the anisotropic dye film A8 was determined. The results are shown in Table 2.
  • Example A8 To 69.99 parts of cyclopentanone, 28.57 parts of liquid crystal compound (I-1), 0.43 parts of azo dye of formula (II-1), and 0.83 parts of azo dye of formula (II-2). 29 parts, 0.29 parts of IRGACURE (registered trademark) 369 (manufactured by BASF) and 0.43 parts of BYK-361N (manufactured by BYK-Chemie) were added, heated and stirred at 80 ° C., and then a syringe filter (Membrane Solutions). An anisotropic dye film composition A6 was obtained by filtration using a syringe equipped with a PTFE 13045, 0.45 ⁇ m aperture).
  • IRGACURE registered trademark
  • BYK-361N manufactured by BYK-Chemie
  • the composition A6 for the anisotropic dye film is formed on a substrate on which a polyimide alignment film (LX1400, manufactured by Hitachi Chemical DuPont Microsystems, Inc., an alignment film is prepared by a rubbing method) is formed on a glass by a spin coating method. After heating and drying at 120 ° C. for 2 minutes, the mixture was cooled to the liquid crystal phase and polymerized at an exposure amount of 500 mj / cm 2 (365 nm standard) to obtain anisotropic dye film A6. It was confirmed that the obtained anisotropic dye film A6 was brightly dark when held over a commercially available polarizing plate and rotated, and exhibited good performance that could be used as a polarizing film.
  • a polyimide alignment film LX1400, manufactured by Hitachi Chemical DuPont Microsystems, Inc., an alignment film is prepared by a rubbing method
  • Example A9 Example A8 except that the substrate used was a substrate in which a polyimide alignment film (LX1400, manufactured by Hitachi Chemical DuPont Microsystems Co., Ltd., prepared by rubbing) was formed on a polyimide film (film thickness 100 ⁇ m).
  • anisotropic dye film A7 was obtained from anisotropic dye film composition A6. It was confirmed that the obtained anisotropic dye film A7 was brightly dark when held over a commercially available polarizing plate and rotated, and exhibited good performance that could be used as a polarizing film.
  • the film formed using the liquid crystal compound (I-1) or the liquid crystal compound (I-2), which is the liquid crystal compound having the partial structure represented by the formula (1) functions sufficiently as a polarizing film. It became clear that it was possible.
  • Liquid crystal compound (III-1) was synthesized according to the synthesis method described below.
  • (III-1-c) (III-1-b) (5.00 g, 8.33 mmol) was completely dissolved in diisopropylamine (70 mL), and then dichlorobis (triphenylphosphine) palladium (II) (58 mg, 0.08 mmol), iodide. Copper (I) (48 mg, 0.25 mmol) was mixed and trimethylsilylacetylene (0.98 g, 9.99 mmol) was added. The mixture was stirred at room temperature for 30 minutes, extracted with water-ethyl acetate, and washed with saturated brine. The solution was concentrated and purified by silica gel column chromatography (hexane / ethyl acetate) to obtain 4.30 g of a white solid (III-1-c).
  • (III-1-d) (III-1-c) (4.30 g, 7.53 mmol) and chloroform (100 mL) were mixed, cooled in an ice bath, and then tetra-n-butylammonium fluoride (TBAF) tetrahydrofuran solution (1 mol / L, 9 mL) was added. After stirring for 20 minutes, the mixture was extracted with water-chloroform and washed with saturated brine. The solution was concentrated and purified by silica gel column chromatography (hexane / ethyl acetate) to obtain 3.80 g of a white solid (III-1-d).
  • TBAF tetra-n-butylammonium fluoride
  • (III-1-e) (III-1-b) (3.56 g, 5.93 mmol), tetrakistriphenylphosphine palladium (0) (68 mg, 0.06 mmol), copper (I) iodide (34 mg, 0.18 mmol), diisopropylamine ( 120 mL) was mixed and cooled in an ice bath, and then a solution of (III-1-d) (2.96 g, 5.93 mmol) in diisopropylamine (40 mL) was added. The mixture was stirred at room temperature for 1 hour, extracted with water-chloroform, and washed with saturated brine. The solution was concentrated and purified by silica gel column chromatography (chloroform) to obtain a white solid (III-1-e).
  • Compound (III-1) exhibits liquid crystallinity because it is a polarized light attached with a hot stage using 0.2 parts by weight of 4-methoxyphenol as a polymerization inhibitor added to 100 parts by weight of the liquid crystal compound. This was confirmed by observation of birefringence at 70 ° C. with a microscope.
  • ⁇ Liquid crystal compound (III-2)> A liquid crystal compound (III-2), which is the same compound as the liquid crystal compound (I-6), was synthesized by the same synthesis method as in the above ⁇ Liquid crystal compound (I-6)>.
  • Compound (III-2) exhibits liquid crystallinity because it is a polarized light attached with a hot stage using 0.2 parts by weight of 4-methoxyphenol as a polymerization inhibitor added to 100 parts by weight of the liquid crystal compound. This was confirmed by observation of birefringence at 40 ° C. with a microscope.
  • C 11 H 22 means that 11 methylene chains are bonded in a straight chain.
  • Example B1 79.80 parts of chloroform, 20.00 parts of liquid crystal compound (III-1), 0.12 parts of azo dye of formula (II-1) (manufactured by Hayashibara Co., Ltd.), azo dye of formula (II-2) After adding 0.08 part (made by Showa Kako Co., Ltd.), stirring and making it compatible, the composition B1 for anisotropic dye film formation was obtained by removing a solvent. It was confirmed that birefringence was observed at 70 ° C. with a polarizing microscope with a hot stage that the anisotropic dye film-forming composition B1 exhibited liquid crystallinity.
  • the anisotropic dye film B1 is prepared, and the dichroic ratio of the anisotropic dye film B1 is determined. Were determined. The results are shown in Table 3.
  • Example B2 To 69.99 parts of cyclopentanone, 28.57 parts of liquid crystal compound (III-1), 0.43 parts of azo dye of formula (II-1), and 0. 29 parts, 0.29 parts of IRGACURE (registered trademark) 369 (manufactured by BASF) and 0.43 parts of BYK-361N (manufactured by BYK-Chemie) were added, heated and stirred at 80 ° C., and then a syringe filter (Membrane Solutions). An anisotropic dye film composition B2 was obtained by filtration using a syringe equipped with a PTFE 13045, 0.45 ⁇ m aperture).
  • the composition B2 for the anisotropic dye film is formed on a substrate on which a polyimide alignment film (LX1400, manufactured by Hitachi Chemical DuPont Microsystems, Inc., an alignment film is formed by a rubbing method) is formed on glass by spin coating. After heating and drying at 120 ° C. for 2 minutes, the mixture was cooled to the liquid crystal phase and polymerized at an exposure amount of 500 mj / cm 2 (365 nm standard) to obtain anisotropic dye film B2. It was confirmed that the obtained anisotropic dye film B2 was brightly dark when held over a commercially available polarizing plate and rotated, and showed good performance that could be used as a polarizing film.
  • a polyimide alignment film LX1400, manufactured by Hitachi Chemical DuPont Microsystems, Inc., an alignment film is formed by a rubbing method
  • Example B3 An anisotropic dye film-forming composition B3 and an anisotropic dye film B3 were obtained in the same manner as in Example B1, except that the liquid crystal compound (III-2) was used instead of the liquid crystal compound (III-1). It was. It was confirmed that birefringence was observed at 40 ° C. with a polarizing microscope with a hot stage that the anisotropic dye film-forming composition B3 exhibited liquid crystallinity. For the anisotropic dye film B3, the dichroic ratio of the anisotropic dye film B3 was determined. The results are shown in Table 3.
  • the film formed using the liquid crystal compound (III-1) or the liquid crystal compound (III-2), which is the liquid crystal compound having the partial structure represented by the formula (B1) functions sufficiently as a polarizing film. It became clear that it was possible.
  • the composition for forming an anisotropic dye film of the present invention can realize excellent optical performance, particularly a sufficient dichroic ratio. Since the anisotropic dye film of the present invention is formed using the composition for forming an anisotropic dye film of the present invention, it can realize excellent optical performance, particularly a sufficient dichroic ratio. Since the optical element of the present invention includes the anisotropic dye film of the present invention, excellent optical performance, particularly a sufficient dichroic ratio can be realized.
  • the composition for forming an anisotropic dye film of the present invention can realize a low isotropic phase appearance temperature while maintaining excellent optical performance, particularly a sufficient dichroic ratio. Since the anisotropic dye film of the present invention is formed using the anisotropic dye film forming composition of the present invention, it can maintain excellent optical performance, particularly a sufficient dichroic ratio, and is formed at a lower temperature. Is possible. Since the optical element of the present invention includes the anisotropic dye film of the present invention, an anisotropic dye film that can maintain excellent optical performance, particularly a sufficient dichroic ratio, and can be formed at a lower temperature. Can be included.
  • the composition for forming an anisotropic dye film of the present invention can realize excellent optical performance, particularly a sufficient dichroic ratio. Since the anisotropic dye film of the present invention is formed using the composition for forming an anisotropic dye film of the present invention, it can realize excellent optical performance, particularly a sufficient dichroic ratio. Since the optical element of the present invention includes the anisotropic dye film of the present invention, excellent optical performance, particularly a sufficient dichroic ratio can be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明の第一の態様の異方性色素膜形成用組成物は、色素、および、式(1)で表される部分構造を有する液晶化合物を含有する。 -Cy-X2-C≡C-X- ・・・(1) (式中、Cyは、炭化水素環基または複素環基を表し;-X-は、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;-X2-は、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表す。)

Description

異方性色素膜形成用組成物、異方性色素膜、および光学素子
 本発明は、液晶組成物を塗布することにより形成される異方性色素膜、特に、調光素子、液晶素子(LCD)、および有機エレクトロルミネッセンス素子(OLED)の表示素子に具備される偏光膜等に有用な、高い二色性を示す異方性色素膜形成用組成物および異方性色素膜、ならびに光学素子に関する。
 LCDでは、表示における旋光性や複屈折性を制御するために、直線偏光膜および円偏光膜が用いられている。OLEDにおいても、明所での外光の反射防止のために円偏光膜が用いられている。
 従来、このような偏光膜として、たとえば、ポリビニルアルコール(PVA)を低濃度のヨウ素で染色した偏光膜(ヨウ素-PVA偏光膜)を含むものが知られている(特許文献1)。
 また、色素を含有した液晶組成物を塗布して形成される異方性色素膜が偏光膜として機能することも知られている(特許文献2)。
特開平1-105204号公報 特表2004-535483号公報
 しかしながら、このように低濃度としたヨウ素-PVA偏光板は、使用環境によっては、ヨウ素が昇華したり、変質したりして、色目が変わってしまうといった問題や、PVAの延伸が緩和されることによる反りが発生するといった問題がある。
 また、色素を含有した液晶組成物を塗布して形成される偏光膜においては、高い光吸収選択性能を得られない、または、高い光吸収選択性能を得ようとすると、プロセス上の困難が生じることがあるという問題がある。
 そのような状況下、薄膜でも高い光吸収選択性能を有する偏光膜が所望されている。
 ところで、異方性色素膜の製造過程において、異方性色素膜形成用組成物の基板への塗布、乾燥後に必要に応じて行われる配向プロセスにおいては、異方性色素膜形成用組成物の等方相出現温度以上に加熱した後、再度液晶相となるように冷却を行う。または、流動性が高い液晶相(たとえばネマチック相など)が発現する温度に加熱した後、冷却を行う。このことから、等方相出現温度の高い異方性色素膜形成用組成物は、上記の配向プロセスにおいてより高温を必要とすることとなり、色素や液晶化合物の安定性、プロセスの取り扱いやすさ、エネルギー消費の観点等において不利となる。さらに、液晶化合物が重合性基を有する場合には、上記の再配向プロセスにおける高温での加熱により、意図しない熱重合が起こりうる。また、基材の耐熱温度によっては、使用しうる基材の選定自由度が下がってしまう。
 一方、異方性色素膜形成用組成物から形成される異方性色素膜の二色性を高くするためには、異方性色素膜形成用組成物に含有される液晶化合物分子のコアの長軸と短軸の比率を大きくすることが考えられる。
 しかし、液晶化合物分子のコアを大きくすると、液晶化合物の融点(固体および液体間の相転移点)や、等方相出現温度(液晶および液体間の相転移点)が高くなる傾向がある。
 すなわち、等方相出現温度を低くしようとすれば、液晶化合物分子のコアを小さくすることが考えられる一方で、液晶化合物分子のコアを小さくすることにより、液晶化合物分子のコアの長軸と短軸の比率が小さくなってしまい、その結果、異方性色素膜形成用組成物から形成される異方性色素膜の二色性を低くすることとなってしまう。
 このような状況下、異方性色素膜形成用組成物から形成される異方性色素膜の二色性を高く維持したまま、異方性色素膜形成用組成物の等方相出現温度を低くすることが望まれている。
 本発明のある態様(第一の態様)は、優れた光学性能、特に十分な二色比を維持したまま、低い等方相出現温度を実現できる異方性色素膜形成用組成物を提供することを目的とする。
 また、本発明のある態様(第一の態様)は、優れた光学性能、特に十分な二色比を維持でき、より低い温度で形成することが可能な異方性色素膜を提供することを目的とする。
 また、本発明のある態様(第一の態様)は、優れた光学性能、特に十分な二色比を維持でき、より低い温度で形成することが可能な異方性色素膜を含む、光学素子を提供することを目的とする。
 さらに他方では、異方性色素膜形成用組成物から形成される異方性色素膜の二色性を高くするためには、異方性色素膜形成用組成物に含有される液晶化合物分子のコアの長軸と短軸の比率を大きくして、液晶分子を一軸方向に配向させることが考えられる。
 しかし、液晶化合物分子のコアを大きくすると、コアはベンゼン環等の芳香族環やシクロヘキサン環等の脂環式環からなるため、分子間相互作用によって配向膜等から得られる配向規制力の方向に対して、分子が傾いて配向する傾向がある。
 すなわち、液晶化合物分子を一軸方向に配向させるためには、液晶化合物分子のコアを小さくし、分子間相互作用を小さくして、分子の傾きを小さくすることが考えられる一方で、液晶化合物分子のコアを小さくすることにより、液晶化合物分子のコアの長軸と短軸の比率が小さくなってしまい、その結果、異方性色素膜形成用組成物から形成される異方性色素膜の二色性を低くすることとなってしまう。
 このような状況下、異方性色素膜が高い二色性を発現するような液晶化合物分子とそれを含む異方性色素膜形成用組成物の開発が望まれている。
 本発明の別の態様(第二の態様)は、優れた光学性能、特に十分な二色比を実現することが可能な異方性色素膜形成用組成物を提供することを目的とする。
 また、本発明の別の態様(第二の態様)は、優れた光学性能、特に十分な二色比を実現することが可能な異方性色素膜を提供することを目的とする。
 また、本発明の別の態様(第二の態様)は、優れた光学性能、特に十分な二色比を実現することが可能な異方性色素膜を含む、光学素子を提供することを目的とする。
 本発明者らは、色素および液晶化合物を含有する異方性色素膜形成用組成物において、特定の構造を有する液晶化合物を用いることにより、前記課題を解決できることを見出した。
 すなわち、本発明の第一の態様は、以下を要旨とする。
[1]色素および液晶化合物を含有する異方性色素膜形成用組成物であって、
 前記液晶化合物は、式(1)で表される部分構造を有する液晶化合物を含む異方性色素膜形成用組成物。
 -Cy-X2-C≡C-X-  ・・・(1)
(式中、
 Cyは、炭化水素環基または複素環基を表し;
 -X-は、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
 -X2-は、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表す。)
[2]-X-が、-C(=O)O-、-OC(=O)-、-CHCH-、-CHO-、または-OCH-である、[1]に記載の異方性色素膜形成用組成物。
[3]Cyが、炭化水素環基であり、-X2-が、単結合である、[1]または[2]に記載の異方性色素膜形成用組成物。
[4]前記液晶化合物が、式(2)で表される液晶化合物である、[1]~[3]のいずれか一項に記載の異方性色素膜形成用組成物。
 R1-A1-Y1-A2-Y2-A3-R2  ・・・(2)
(式中、
 R1およびR2は、それぞれ独立に、鎖状有機基を表し;
 A1およびA3は、それぞれ独立に、前記式(1)で表される部分構造、2価有機基、または単結合を表し;
 A2は、前記式(1)で表される部分構造または2価有機基を表し;
 -Y1-および-Y2-は、それぞれ独立に、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
 A1およびA3の一方は、前記式(1)で表される部分構造または2価有機基であり;
 A1、A2、およびA3のうち、少なくとも一つは、前記式(1)で表される部分構造である。)
[5]A1、A2、およびA3のうち、一つが、前記式(1)で表される部分構造であり、Cyが炭化水素環基であり、-X2-が単結合であり;それ以外の二つが、それぞれ独立に、2価有機基であり、前記2価有機基が炭化水素環基である、[4]に記載の異方性色素膜形成用組成物。
[6]前記炭化水素環基が、1,4-フェニレン基またはシクロヘキサン-1,4-ジイル基である、[5]に記載の異方性色素膜形成用組成物。
[7]-Y1-および-Y2-が、それぞれ独立に、単結合、-C(=O)O-、-OC(=O)-、-CHCH-、-CHO-、または-OCH-であり、-X-が、-C(=O)O-、-OC(=O)-、-CHCH-、-CHO-、または-OCH-である、[4]~[6]のいずれか一項に記載の異方性色素膜形成用組成物。
[8]Cyが、1,4-フェニレン基である、[4]~[7]のいずれか一項に記載の異方性色素膜形成用組成物。
[9]A1およびA3の一方が、シクロヘキサン-1,4-ジイル基である、[4]~[8]のいずれか一項に記載の異方性色素膜形成用組成物。
[10]A1およびA3の一方が、前記式(1)で表される部分構造であり、
 他方が、シクロヘキサン-1,4-ジイル基である、[4]~[9]のいずれか一項に記載の異方性色素膜形成用組成物。
[11][1]~[10]のいずれか一項に記載の異方性色素膜形成用組成物を用いて形成された、異方性色素膜。
[12][11]に記載の異方性色素膜を含む、光学素子。
 また、本発明の第二の態様は、以下を要旨とする。
<1>色素および液晶化合物を含有する異方性色素膜形成用組成物であって、
 前記液晶化合物は、式(B1)で表される部分構造を有する液晶化合物を含む異方性色素膜形成用組成物。
 -CyH-Z1-E1-C≡C-E2-  ・・・(B1)
(式中、
 CyHは、置換されたまたは無置換の非芳香族炭化水素環基を表し;
 E1およびE2は、それぞれ独立に、炭化水素環基または複素環基を表し;
 -Z1-は、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C≡C-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表す。)
<2>前記液晶化合物が、式(B2)で表される液晶化合物である、<1>に記載の異方性色素膜形成用組成物。
 T1-CyH-Z1-E1-C≡C-E2-Z2-E3-T2  ・・・(B2)
(式中、
 CyH、E1、E2および-Z1-は、それぞれ、前記式(B1)における定義と同義であり;
 T1およびT2は、それぞれ独立に、鎖状有機基を表し;
 E3は、2価有機基または単結合を表し;
 -Z2-は、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C≡C-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表す。)
<3>-Z1-が、-C(=O)O-、-OC(=O)-、-CHCH-、-CHO-、または-OCH-である、<1>または<2>に記載の異方性色素膜形成用組成物。
<4>E1またはE2が、炭化水素環基である、<1>~<3>のいずれかに記載の異方性色素膜形成用組成物。
<5>前記炭化水素環基が、フェニレン基またはシクロヘキサンジイル基である、<4>に記載の異方性色素膜形成用組成物。
<6>E3が、炭化水素環基、複素環基または単結合である、<2>~<5>のいずれかに記載の異方性色素膜形成用組成物。
<7>E3が、フェニレン基、シクロヘキサンジイル基または単結合である、<6>に記載の異方性色素膜形成用組成物。
<8>-Z2-が、単結合、-C(=O)O-、-OC(=O)-、-CHCH-、-CHO-、または-OCH-である、<2>~<7>のいずれかに記載の異方性色素膜形成用組成物。
<9><1>~<8>のいずれかに記載の異方性色素膜形成用組成物を用いて形成された、異方性色素膜。
<10><9>に記載の異方性色素膜を含む、光学素子。
 本発明の第一の態様の異方性色素膜形成用組成物は、優れた光学性能、特に十分な二色比を維持したまま、低い等方相出現温度を実現できる。
 本発明の第一の態様の異方性色素膜は、本発明の異方性色素膜形成用組成物を用いて形成されるため、優れた光学性能、特に十分な二色比を維持でき、より低い温度で形成することが可能である。
 本発明の第一の態様の光学素子は、本発明の異方性色素膜を含むため、優れた光学性能、特に十分な二色比を維持でき、より低い温度で形成することが可能な異方性色素膜を含むことができる。
 本発明の第二の態様の異方性色素膜形成用組成物は、優れた光学性能、特に十分な二色比を実現できる。
 本発明の第二の態様の異方性色素膜は、本発明の異方性色素膜形成用組成物を用いて形成されるため、優れた光学性能、特に十分な二色比を実現できる。
 本発明の第二の態様の光学素子は、本発明の異方性色素膜を含むため、優れた光学性能、特に十分な二色比を実現できる。
 以下、本発明の実施の形態を具体的に説明するが、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。
 本発明で言う異方性色素膜とは、異方性色素膜の厚み方向および任意の直交する面内2方向の立体座標系における合計3方向から選ばれる、任意の2方向における電磁気的性質に異方性を有する色素膜である。電磁気学的性質としては、たとえば、吸収、屈折等の光学的性質、抵抗、容量等の電気的性質が挙げられる。
 吸収、屈折等の光学的異方性を有する膜としては、たとえば、直線偏光膜、円偏光膜等の偏光膜、位相差膜、導電異方性色素膜が挙げられる。本発明の異方性色素膜は、偏光膜、または導電異方性色素膜として用いられることが好ましく、偏光膜に用いられることがより好ましい。
[異方性色素膜形成用組成物]
 本発明の異方性色素膜形成用組成物は、色素および液晶化合物を含有する。
 本発明の異方性色素膜形成用組成物は、相分離を引き起こさない状態であれば、溶液であっても、液晶であっても、分散状態であってもよいが、異方性色素膜形成用組成物としては、基材への塗布が容易である観点から、溶液であることが好ましい。一方、異方性色素膜形成用組成物から溶剤を除いた固形分成分は、後述のように基板上に配向させる観点から、任意の温度で液晶相の状態であることが好ましい。
 なお、本発明において、液晶相の状態であるとは、具体的には、「液晶の基礎と応用」(松本正一、角田市良著;1991年)の1~16ページに記載されているように、液体と結晶の双方または中間の性質を示す液晶状態であり、ネマティック相、スメクチック相、コレステリック相、またはディスコティック相であることを言う。
(色素)
 本発明において色素とは、可視光領域(380nm~780nm)の波長の少なくとも一部を吸収する物質または化合物である。
 本発明に用いることができる色素としては、二色性色素が挙げられる。なお、二色性色素とは、分子の長軸方向における吸光度と、短軸方向における吸光度とが異なる性質を有する色素を言う。また、色素は、液晶性を有する色素であってもよいし、液晶性を有さなくてもよい。なお、液晶性を有するとは、任意の温度で液晶相を発現することを言う。
 本発明の異方性色素膜形成用組成物に含有される色素としては、アゾ系色素、キノン系色素(ナフトキノン系色素、アントラキノン系色素等を含む。)、スチルベン系色素、シアニン系色素、フタロシアニン系色素、インジゴ系色素、縮合多環系色素(ペリレン系色素、オキサジン系色素、アクリジン系色素等を含む。)等が挙げられる。これらの色素の中でも、分子長短軸比が大きく、異方性色素膜中で高い分子配列をとり得るため、アゾ系色素が好ましい。
 アゾ系色素とは、アゾ基(-N=N-)を少なくとも1個以上有する色素を言い、その一分子中のアゾ基の数は、溶剤への溶解性、液晶化合物との相溶性、色調および製造容易性の観点から、1以上が好ましく、2以上がより好ましく、6以下が好ましく、4以下がより好ましく、3以下がさらに好ましい。
 アゾ系色素としては、たとえば、式(A)で表される化合物が挙げられる。
 R11-D1-N=N-(D2-N=N)-D3-R12  ・・・(A)
 式(A)中、
 D1、D2およびD3は、それぞれ独立に、置換基を有していてもよいフェニレン基、置換基を有していてもよいナフチレン基、または置換基を有していてもよい2価の複素環基を表し;
 pは0~4の整数を表し;
 pが2以上の整数である場合、複数のD2は互いに同一でも異なっていてもよく;
 R11およびR12は、同一のまたはそれぞれ異なる1価の有機基を表す。
 D1、D2およびD3は、それぞれ独立に、置換基を有していてもよいフェニレン基、置換基を有していてもよいナフチレン基、または置換基を有していてもよい2価の複素環基を表す。
 フェニレン基の置換位置としては、分子の直線性が高いため、1,4-フェニレン基が好ましい。
 ナフチレン基の置換位置としては、分子の直線性が高いため、1,4-ナフチレン基または2,6-ナフチレン基が好ましい。
 2価の複素環基としては、環を形成する炭素数が好ましくは3以上14以下であり、さらに好ましくは10以下である。特に単環または2環式の複素環基が好ましい。
 2価の複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子から選択される少なくとも1つが挙げられる。複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
 具体的には、ピリジンジイル基、キノリンジイル基、イソキノリンジイル基、チアゾールジイル基、ベンゾチアゾールジイル基、チエノチアゾールジイル基、チエノチオフェンジイル基、ベンズイミダゾリジノンジイル基、ベンゾフランジイル基、フタルイミドジイル基、オキサゾールジイル基、ベンゾオキサゾールジイル基等が挙げられる。
 D1、D2およびD3におけるフェニレン基、ナフチレン基、および2価の複素環基が任意に有する置換基としては、炭素数1~4のアルキル基;メトキシ基、エトキシ基およびブトキシ基などの炭素数1~4のアルコキシ基;トリフルオロメチル基などの炭素数1~4のフッ化アルキル基;シアノ基;ニトロ基;水酸基;ハロゲン原子;アミノ基、ジエチルアミノ基、およびピロリジノ基などの置換または無置換アミノ基(置換アミノ基とは、炭素数1~4のアルキル基を1つまたは2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~8のアルカンジイル基を形成しているアミノ基を意味する。無置換アミノ基は、-NHである。なお、炭素数1~4のアルキル基としては、メチル基、エチル基およびブチル基などが挙げられる。炭素数2~8のアルカンジイル基としては、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基などが挙げられる。)が挙げられる。
 分子直線性が高い点から、無置換、または、置換されている場合には、メチル基、メトキシ基、水酸基、フッ素原子、塩素原子、ジメチルアミノ基、ピロリジニル基、ピペリジニル基で置換されているのが好ましい。
 pは0~4の整数を表す。溶剤への溶解性、液晶化合物との相溶性、色調および製造容易性の観点から、1以上が好ましく、4以下が好ましく、3以下がより好ましい。
 R11およびR12は、同一のまたはそれぞれ異なる1価の有機基を表す。
 R11およびR12における1価の有機基としては、水素原子、分岐を有していてもよい炭素数1~20のアルキル基;脂環式の炭素数1~20のアルキル基;メトキシ基、エトキシ基およびブトキシ基などの分岐を有していてもよい炭素数1~20のアルコキシ基;トリフルオロメチル基などの分岐を有していてもよい炭素数1~20のフッ化アルキル基;シアノ基;ニトロ基;水酸基;ハロゲン原子;アミノ基、ジエチルアミノ基、およびピロリジノ基などの置換または無置換アミノ基(置換アミノ基とは、分岐を有していてもよい炭素数1~20のアルキル基を1つまたは2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~20のアルカンジイル基を形成しているアミノ基を意味する。無置換アミノ基は、-NHである。なお、炭素数1~20のアルキル基としては、メチル基、エチル基およびブチル基などが挙げられる。炭素数2~20のアルカンジイル基としては、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基などが挙げられる。);カルボキシ基;ブトキシカルボニル基などの分岐を有していてもよい炭素数1~20のアルキルオキシカルボニル基;エテニル基などの分岐を有していてもよい炭素数1~20のアルケニル基;2-(4-ブチルフェニル)エテニル基などのアルキルフェニルアルケニル基;カルバモイル基;ブチルカルバモイル基などの分岐を有していてもよい炭素数1~20のアルキルカルバモイル基;スルファモイル基;ブチルスルファモイル基などの分岐を有していてもよい炭素数1~20のアルキルスルファモイル基;ブチルカルボニルアミノ基などの分岐を有していてもよい炭素数1~20のアシルアミノ基;ブチルカルボニルオキシ基などの分岐を有していてもよい炭素数1~20のアシルオキシ基;スルファニル基;ブチルスルファニル基などの炭素数1~20のアルキルスルファニル基;後述の、液晶化合物におけるR1およびR2の重合性基を有する鎖状有機基が挙げられる。
 R11およびR12としては、水素原子、鎖状基、脂肪族有機基(「脂肪族有機基」は、鎖状のものおよび環状のものを含む。)、炭素の一部が窒素および/または酸素で置き換えられた脂肪族有機基(「炭素の一部が窒素および/または酸素で置き換えられた脂肪族有機基」は、鎖状のものおよび環状のものを含み、脂肪族有機基の一部のメチル基が水酸基、オキソ基(=O)、アミノ基、イミノ基等にそれぞれ置き換えられたものを含む。)等が挙げられ、ある態様としては、水素原子、鎖状基が好ましく、別の態様としては、水素原子、脂肪族有機基が好ましく、さらに別の態様としては、水素原子、炭素の一部が窒素および/または酸素で置き換えられた脂肪族有機基が好ましい。
 鎖状基としては、上記の、分岐を有していてもよい炭素数1~20のアルキル基;分岐を有していてもよい炭素数1~20のアルコキシ基;分岐を有していてもよい炭素数1~20のフッ化アルキル基;置換または無置換アミノ基(置換アミノ基とは、分岐を有していてもよい炭素数1~20のアルキル基を1つまたは2つ有するアミノ基を意味する。無置換アミノ基は、-NHである。);カルボキシ基;分岐を有していてもよい炭素数1~20のアルキルオキシカルボニル基;カルバモイル基;分岐を有していてもよい炭素数1~20のアルキルカルバモイル基;スルファモイル基;分岐を有していてもよい炭素数1~20のアルキルスルファモイル基;分岐を有していてもよい炭素数1~20のアシルアミノ基;分岐を有していてもよい炭素数1~20のアシルオキシ基;スルファニル基;炭素数1~20のアルキルスルファニル基等が挙げられる。
 脂肪族有機基としては、上記の、分岐を有していてもよい炭素数1~20のアルキル基、脂環式の炭素数1~20のアルキル基等が挙げられる。
 炭素の一部が窒素および/または酸素で置き換えられた脂肪族有機基としては、上記の、分岐を有していてもよい炭素数1~20のアルコキシ基;置換または無置換アミノ基(置換アミノ基とは、分岐を有していてもよい炭素数1~20のアルキル基を1つまたは2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~20のアルカンジイル基を形成しているアミノ基を意味する。無置換アミノ基は、-NHである。なお、炭素数1~20のアルキル基としては、メチル基、エチル基およびブチル基などが挙げられる。炭素数2~20のアルカンジイル基としては、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基などが挙げられる。);カルボキシ基;分岐を有していてもよい炭素数1~20のアルキルオキシカルボニル基;カルバモイル基;分岐を有していてもよい炭素数1~20のアルキルカルバモイル基;分岐を有していてもよい炭素数1~20のアシルアミノ基;分岐を有していてもよい炭素数1~20のアシルオキシ基等が挙げられる。
 R11およびR12としては、それぞれ独立に、分子直線性が高い点から、水素原子、または、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基などの炭素数1~10のアルキル基;ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基などの炭素数1~10のアルコキシ基、ジエチルアミノ基、ピロリジノ基およびピペリジニル基で置換されていることが好ましい。また、後述の、第一の態様の液晶化合物におけるR1およびR2の重合性基を有する鎖状有機基における好ましいもの、第二の態様の液晶化合物におけるT1およびT2の重合性基を有する鎖状有機基における好ましいものも好ましい。
 本発明の異方性色素膜形成用組成物に含有される色素としては、特に限定されることなく、公知の色素を用いることもできる。
 公知の色素としては、たとえば、上述の特許文献1、日本国特許第5982762号公報、日本国特許出願公開第2017-025317号公報、日本国特許出願公開第2014-095899号公報に記載の色素(二色性色素、二色性染料)が挙げられる。
 具体的には、以下に記載の色素が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000004
 
 本発明の異方性色素膜形成用組成物に含有される色素の分子量としては、300以上が好ましく、350以上がより好ましく、380以上がさらに好ましく、1500以下が好ましく、1200以下がより好ましく、1000以下がさらに好ましい。具体的には、本発明の異方性色素膜形成用組成物に含有される色素の分子量としては、300~1500が好ましく、350~1200がより好ましく、380~1000がさらに好ましい。
 異方性色素膜形成用組成物における色素(二色性色素)が占める含有量としては、例えば、異方性色素膜形成用組成物の固形分(100質量部)に対して、0.01質量部以上が好ましく、0.05質量部以上がより好ましく、30質量部以下が好ましく、10質量部以下がより好ましい。具体的には、異方性色素膜形成用組成物における色素(二色性色素)が占める含有量としては、例えば、異方性色素膜形成用組成物の固形分(100質量部)に対して、0.01~30質量部であり、好ましくは0.05~10質量部である。
 色素(二色性色素)が占める含有量が前記範囲内であれば、本発明の異方性色素膜形成用組成物に含まれる液晶化合物の配向を乱すことなく、本発明の異方性色素膜形成用組成物に含まれる化合物を重合させることができる傾向にある。また、色素(二色性色素)が占める含有量が前記下限値以上であれば、十分な光吸収が得られ、十分な偏光性能が得られる傾向にある。また、色素(二色性色素)が占める含有量が前記上限値以下であれば、液晶分子の配向の阻害が抑制されやすい傾向にある。
 色素(二色性色素)は目的に応じて、1種で使用してもよく、複数種類併用してもよい。
(液晶化合物)
 本発明において、液晶化合物とは、液晶状態を示す物質を指し、具体的には、「液晶便覧」(丸善株式会社、平成12年10月30日発行)の1~28ページに記載されているように、結晶から液体には直接転移せず、結晶と液体の両方の性質を示す中間の状態を経て液体になる化合物をいう。
 本発明の第一の態様の異方性色素膜形成用組成物に含有される、第一の態様の液晶化合物は、下記式(1)で表される部分構造を有する液晶化合物を含む。
 -Cy-X2-C≡C-X-  ・・・(1)
 式(1)中、
 Cyは、炭化水素環基または複素環基を表し;
 -X-は、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
 -X2-は、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表す。
 Cyにおける炭化水素環基は、芳香族炭化水素環基と非芳香族炭化水素環基とを含む。
 芳香族炭化水素環基は、非連結芳香族炭化水素環基と連結芳香族炭化水素環基とを含む。
 非連結芳香族炭化水素環基は、単環もしくは縮合した芳香族炭化水素環の2価基であり、炭素数は6~20が好ましい。芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等が挙げられる。
 連結芳香族炭化水素環基は、単環もしくは縮合した芳香族炭化水素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は6~20が好ましい。たとえば、第1の炭素数6~20の単環もしくは縮合した芳香族炭化水素環と第2の炭素数6~20の単環もしくは縮合した芳香族炭化水素環とが単結合で結合し、第1の炭素数6~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、第2の炭素数6~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基である。連結芳香族炭化水素環基としては、たとえば、ビフェニル-4,4’-ジイル基が挙げられる。
 芳香族炭化水素環基としては、非連結芳香族炭化水素環基が好ましい。
 これらのうち、芳香族炭化水素環基としては、ベンゼン環の2価基、ナフタレン環の2価基が好ましく、ベンゼン環の2価基(フェニレン基)がより好ましい。フェニレン基としては、1,4-フェニレン基が好ましい。
 非芳香族炭化水素環基は、非連結非芳香族炭化水素環基と連結非芳香族炭化水素環基とを含む。
 非連結非芳香族炭化水素環基は、単環もしくは縮合した非芳香族炭化水素環の2価基であり、炭素数は3~20が好ましい。非芳香族炭化水素環としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロヘキセン環、ノルボルナン環、ボルナン環、アダマンタン環、テトラヒドロナフタレン環、ビシクロ[2.2.2]オクタン環等が挙げられる。
 非連結非芳香族炭化水素環基は、非芳香族炭化水素環の環を構成する原子間結合として不飽和結合を有さない脂環式炭化水素環基と、非芳香族炭化水素環の環を構成する原子間結合として不飽和結合を有する不飽和非芳香族炭化水素環基とを含む。非連結非芳香族炭化水素環基としては、脂環式炭化水素環基が好ましい。
 連結非芳香族炭化水素環基は、単環もしくは縮合した非芳香族炭化水素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基;あるいは、単環の芳香族炭化水素環、縮合した芳香族炭化水素環、単環の非芳香族炭化水素環、および縮合した非芳香族炭化水素環からなる群より選択される1つ以上の環と、単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は3~20が好ましい。たとえば、第1の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環と第2の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、第1の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、第2の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基であり、たとえば、炭素数3~20の単環もしくは縮合した芳香族炭化水素環と炭素数3~20の単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、炭素数3~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基である。連結非芳香族炭化水素環基としては、たとえば、ビス(シクロヘキサン)-4,4’-ジイル基、1-シクロヘキシルベンゼン-4,4’-ジイル基が挙げられる。
 非芳香族炭化水素環基としては、非連結非芳香族炭化水素環基が好ましい。
 これらのうち、非芳香族炭化水素環基としては、シクロヘキサンの2価基(シクロヘキサンジイル基)が好ましい。シクロヘキサンジイル基としては、シクロヘキサン-1,4-ジイル基が好ましい。
 Cyにおける複素環基は、芳香族複素環基と非芳香族複素環基とを含む。
 芳香族複素環基は、非連結芳香族複素環基と連結芳香族複素環基とを含む。
 非連結芳香族複素環基は、単環もしくは縮合した芳香族複素環の2価基であり、炭素数は4~20が好ましい。芳香族複素環としては、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、チエノチアゾール環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ピリミジン環、キナゾリン環、キナゾリノン環、アズレン環等が挙げられる。
 連結芳香族複素環基は、単環もしくは縮合した芳香族複素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は4~20が好ましい。たとえば、第1の炭素数4~20の単環もしくは縮合した芳香族複素環と第2の炭素数4~20の単環もしくは縮合した芳香族複素環とが単結合で結合し、第1の炭素数4~20の単環もしくは縮合した芳香族複素環の環を構成する原子上に第1の結合手を有し、第2の炭素数4~20の単環もしくは縮合した芳香族複素環の環を構成する原子上に第2の結合手を有する2価基である。
 非芳香族複素環基は、非連結非芳香族複素環基と連結非芳香族複素環基とを含む。
 非連結非芳香族複素環基は、単環もしくは縮合した非芳香族複素環の2価基であり、炭素数は4~20が好ましい。炭素数4~20の単環もしくは縮合した非芳香族複素環の2価基であり、非芳香族複素環としては、テトラヒドロフラン環、テトラヒドロピラン環、ジオキサン環、テトラヒドロチオフェン環、テトラヒドロチオピラン環、ピロリジン環、ピペリジン環、ジヒドロピリジン環、ピペラジン環、テトラヒドロチアゾール環、テトラヒドロオキサゾール環、オクタヒドロキノリン環、テトラヒドロキノリン環、オクタヒドロキナゾリン環、テトラヒドロキナゾリン環、テトラヒドロイミダゾール環、テトラヒドロベンゾイミダゾール環、キヌクリジン環等が挙げられる。
 連結非芳香族複素環基は、単環もしくは縮合した非芳香族複素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は4~20が好ましい。たとえば、第1の炭素数4~20の単環もしくは縮合した非芳香族複素環と第2の炭素数4~20の単環もしくは縮合した非芳香族複素環とが単結合で結合し、第1の炭素数4~20の単環もしくは縮合した非芳香族複素環の環を構成する原子上に第1の結合手を有し、第2の炭素数4~20の単環もしくは縮合した非芳香族複素環の環を構成する原子上に第2の結合手を有する2価基である。
 Cyにおける芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基は、それぞれ、RA、-OH、-O-RA、-O-C(=O)-RA、-NH、-NH-RA、-N(RB)-RA、-C(=O)-RA、-C(=O)-O-RA、-C(=O)-NH、-C(=O)-NH-RA、-C(=O)-N(RB)-RA、-SH、-S-RA、トリフルオロメチル基、スルファモイル基、カルボキシ基、スルホ基、シアノ基、ニトロ基、およびハロゲンからなる群より選択される1以上の基で置換されていてもよい。ここで、RAおよびRBは、それぞれ独立に、炭素数1~6の直鎖状もしくは分枝状のアルキル基を表す。
 Cyにおける芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基は、分子構造の直線性が高く、式(1)で表される部分構造を有する液晶化合物同士が会合しやすく液晶状態を発現しやすい点から、それぞれ独立に、無置換であるか、メチル基、メトキシ基、フッ素原子、塩素原子、臭素原子が置換していることが好ましく、無置換であることがより好ましい。
 芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基が有する置換基は、同一でも異なっていてもよく、また、芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基の全部が置換されていてもよく、全部が無置換であってもよく、一部が置換されていて一部が無置換であってもよい。
 Cyとしては、炭化水素環基が好ましく、フェニレン基、シクロヘキサンジイル基がより好ましい。また、液晶化合物の分子構造の直線性を高くすることができることから、Cyとしては、1,4-フェニレン基、シクロヘキサン-1,4-ジイル基がさらに好ましく、1,4-フェニレン基がとりわけ好ましい。
 液晶化合物の直線性や分子短軸周りの回転運動がしやすい傾向にあることから、-X-としては、π結合性の小さい、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CHO-、-OCH-、-CHS-、-SCH-が好ましく、-C(=O)O-、-OC(=O)-、-CHCH-、-CHO-、-OCH-がより好ましい。ある態様として、-X-は、-C(=O)O-または-OC(=O)-であり、別の態様として、-X-は、-CHCH-、-CHO-、または-OCH-である。
 液晶化合物のコアを大きくし、異方性色素膜形成用組成物から形成される異方性色素膜の二色性を大きくする観点から直線性が高い基で-Cy-と-C≡C-を連結することが好ましい。具体的には、-X2-としては、単結合、またはπ結合性を有する-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CH=CH-、-C(=O)NH-、-NHC(=O)-であることが好ましく、より直線性が高いことから単結合であることがさらに好ましい。
 本発明の異方性色素膜形成用組成物に含有される、上記式(1)で表される部分構造を有する液晶化合物としては、下記式(2)で表される液晶化合物が挙げられる。
 R1-A1-Y1-A2-Y2-A3-R2  ・・・(2)
 式(2)中、
 R1およびR2は、それぞれ独立に、鎖状有機基を表し;
 A1およびA3は、それぞれ独立に、前記式(1)で表される部分構造、2価有機基、または単結合を表し;
 A2は、前記式(1)で表される部分構造または2価有機基を表し;
 -Y1-および-Y2-は、それぞれ独立に、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
 A1およびA3の一方は、前記式(1)で表される部分構造または2価有機基であり;
 A1、A2、およびA3のうち、少なくとも一つは、前記式(1)で表される部分構造である。
 なお、A1が、式(1)で表される部分構造である場合、式(2)は、
 R1-Cy-X2-C≡C-X-Y1-A2-Y2-A3-R2  ・・・(2A)
であってもよく、
 R1-X-C≡C-X2-Cy-Y1-A2-Y2-A3-R2  ・・・(2B)
であってもよい。
 また、A2が、式(1)で表される部分構造である場合、式(2)は、
 R1-A1-Y1-Cy-X2-C≡C-X-Y2-A3-R2  ・・・(2C)
であってもよく、
 R1-A1-Y1-X-C≡C-X2-Cy-Y2-A3-R2  ・・・(2D)
であってもよい。
 また、A3が、式(1)で表される部分構造である場合、式(2)は、
 R1-A1-Y1-A2-Y2-Cy-X2-C≡C-X-R2  ・・・(2E)
であってもよく、
 R1-A1-Y1-A2-Y2-X-C≡C-X2-Cy-R2  ・・・(2F)
であってもよい。
 同様に、A1、A2、およびA3のうち、二つ以上が式(1)で表される部分構造である場合、それぞれ独立に、式(1)で表される部分構造の向きが反転していてもよい。
 また、上記のように、A1、A2、およびA3は、それぞれ独立に、式(1)で表される部分構造または2価有機基であり;加えて、A1およびA3は、単結合であってもよいが、A1およびA3が、ともに単結合であることはなく;A1、A2、およびA3のうち、少なくとも一つは、前記式(1)で表される部分構造を表す。
 R1およびR2における鎖状有機基は、前述の芳香族炭化水素環、非芳香族炭化水素環、芳香族複素環、非芳香族複素環等の環状構造を含まない(ただし、R1およびR2における鎖状有機基が、オキシラン環、オキセタン環、ビニルベンゼン環等の、後述する、環状の重合性基を有する場合には、重合性基を除く部分が上記の環状構造を含まない。)1価の有機基である。
 このような鎖状有機基としては、-(アルキル基)、-O-(アルキル基)、-S-(アルキル基)、-NH-(アルキル基)、-N(アルキル基)-(アルキル基)、-O(C=O)-(アルキル基)、-C(=O)O-(アルキル基)が挙げられる。このような鎖状有機基としては、-(アルキル基)、-O-(アルキル基)が好ましい。ある態様として、このような鎖状有機基としては、-(アルキル基)であり、別の態様として、このような鎖状有機基としては、-O-(アルキル基)である。
 これらの鎖状有機基におけるアルキル基としては、炭素数1~25の直鎖状もしくは分枝状のアルキル基が挙げられ、アルキル基の炭素-炭素結合は、一部が不飽和結合になっていてもよく、また、アルキル基に含まれる一つまたはそれ以上のメチレン基は、エーテル性酸素原子、チオエーテル性硫黄原子、アミン性窒素原子(-NH-、-N(RA)-:ここで、RAは、炭素数1~6の直鎖状もしくは分枝状のアルキル基を表す。)、カルボニル基、エステル結合、アミド結合、-CHF-、-CF-、-CHCl-、-CCl-によって置き換えられた(displace)構造とされていてもよい。
 これらの鎖状有機基におけるアルキル基としては、分子直線性が高いことから、アルキル基の炭素の一部が不飽和結合になっていてもよく、また、アルキル基に含まれる一つまたはそれ以上のメチレン基が上述の基によって置き換えられた(displace)構造とされていてもよい、炭素数1~25の直鎖状のアルキル基であることが好ましい。
 鎖状有機基における主鎖(鎖状有機基におけるもっとも長い鎖状部分を意味し、鎖状有機基が後述の重合性基で置換されている場合には、重合性基を除いた部分におけるもっとも長い鎖状部分を意味する。)の原子の数は、3~25が好ましく、5~20がより好ましく、6~20がさらに好ましい。
 また、これらのアルキル基には、1~3個の重合性基が置換していてもよい。重合性基は、光、熱、および/または放射線によって重合することが可能な部分構造を有する基であり、重合の機能を担保するために必要な官能基ないし原子団である。重合性基は、光重合性基であることが異方性色素膜の製造の観点から好ましい。
 重合性基としては、たとえば、アクリロイル基、メタアクリロイル基、アクリロイルオキシ基、メタアクリロイルオキシ基、アクリロイルアミノ基、メタアクリロイルアミノ基、ビニル基、ビニルオキシ基、エチニル基、エチニルオキシ基、1,3-ブタジエニル基、1,3-ブタジエニルオキシ基、オキシラニル基、オキセタニル基、グリシジル基、グリシジルオキシ基、スチリル基、スチリルオキシ基等が挙げられ、アクリロイル基、メタアクリロイル基、アクリロイルオキシ基、メタアクリロイルオキシ基、アクリロイルアミノ基、メタアクリロイルアミノ基、オキシラニル基、グリシジル基、グリシジルオキシ基が好ましく、アクリロイル基、メタアクリロイル基、アクリロイルオキシ基、メタアクリロイルオキシ基、アクリロイルアミノ基、メタアクリロイルアミノ基、グリシジル基、グリシジルオキシ基がより好ましく、アクリロイルオキシ基、メタアクリロイルオキシ基、グリシジルオキシ基がさらに好ましい。
 これらのアルキル基に重合性基が置換している場合、重合性基が1つ置換していることが好ましく、1つの重合性基がアルキル基の末端に置換していることがより好ましい。
 鎖状有機基としては、-(CH-CH、-(CH-CH-重合性基、-O-(CH-CH、-O-(CH-CH-重合性基、-(O)n1-(CHCHO)n2-(CHn3-CH、-(O)n1-(CHCHO)n2-(CHn3-重合性基、-(O)n1-(CHn2-(CHCHO)n3-CH、-(O)n1-(CHn2-(CHCHO)n3-重合性基が好ましい。なお、これらの式中のnは、1~24の整数であり、2~24の整数が好ましく、4~19の整数がより好ましく、5~19の整数がさらに好ましい。また、これらの式中のn1、n2、n3は、それぞれ独立して整数を表し、鎖状有機基における主鎖(鎖状有機基におけるもっとも長い鎖状部分を意味し、鎖状有機基が重合性基で置換されている場合には、重合性基を除いた部分におけるもっとも長い鎖状部分を意味する。)の原子の数が、好ましくは3~25、より好ましくは5~20、さらに好ましくは6~20となるように適宜調整される。
 R1およびR2は、それぞれ独立に、重合性基で置換されていてもよい-(アルキル基)、アルキル基が重合性基で置換されていてもよい-O-(アルキル基)であることが好ましく、重合性基で置換された-(アルキル基)、アルキル基が重合性基で置換された-O-(アルキル基)であることがより好ましい。
 式(2B)、式(2E)のように、XとR1もしくはXとR2が結合している場合や;たとえば、式(2B)においてA3が単結合である場合や、式(2E)においてA1が単結合である場合のように、R1もしくはR2がY1もしくはY2と結合している場合;には、XもしくはY1もしくはY2と結合するR1もしくはR2は、重合性基で置換されていてもよい-(アルキル基)であることが好ましく、重合性基で置換された-(アルキル基)であることがより好ましい。
 また、上記以外のように、XもしくはY1もしくはY2と結合しないR1もしくはR2は、重合性基で置換されていてもよい-O-(アルキル基)であることが好ましく、重合性基で置換された-O-(アルキル基)であることがより好ましい。
 A1、A2、およびA3における2価有機基は、下記式(3)で表される基であることが好ましい。
 -Q1-  ・・・(3)
 式(3)中、
 Q1は、炭化水素環基または複素環基を表す。
 Q1における炭化水素環基は、芳香族炭化水素環基と非芳香族炭化水素環基とを含む。
 芳香族炭化水素環基は、非連結芳香族炭化水素環基と連結芳香族炭化水素環基とを含む。
 非連結芳香族炭化水素環基は、単環もしくは縮合した芳香族炭化水素環の2価基であり、炭素数は6~20が好ましい。芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等が挙げられる。
 連結芳香族炭化水素環基は、単環もしくは縮合した芳香族炭化水素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は6~20が好ましい。たとえば、第1の炭素数6~20の単環もしくは縮合した芳香族炭化水素環と第2の炭素数6~20の単環もしくは縮合した芳香族炭化水素環とが単結合で結合し、第1の炭素数6~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、第2の炭素数6~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基である。連結芳香族炭化水素環基としては、たとえば、ビフェニル-4,4’-ジイル基が挙げられる。
 芳香族炭化水素環基としては、非連結芳香族炭化水素環基が好ましい。
 これらのうち、芳香族炭化水素環基としては、ベンゼン環の2価基、ナフタレン環の2価基が好ましく、ベンゼン環の2価基(フェニレン基)がより好ましい。フェニレン基としては、1,4-フェニレン基が好ましい。
 非芳香族炭化水素環基は、非連結非芳香族炭化水素環基と連結非芳香族炭化水素環基とを含む。
 非連結非芳香族炭化水素環基は、単環もしくは縮合した非芳香族炭化水素環の2価基であり、炭素数は3~20が好ましい。非芳香族炭化水素環としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロヘキセン環、ノルボルナン環、ボルナン環、アダマンタン環、テトラヒドロナフタレン環、ビシクロ[2.2.2]オクタン環等が挙げられる。
 非連結非芳香族炭化水素環基は、非芳香族炭化水素環の環を構成する原子間結合として不飽和結合を有さない脂環式炭化水素環基と、非芳香族炭化水素環の環を構成する原子間結合として不飽和結合を有する不飽和非芳香族炭化水素環基とを含む。非連結非芳香族炭化水素環基としては、脂環式炭化水素環基が好ましい。
 連結非芳香族炭化水素環基は、単環もしくは縮合した非芳香族炭化水素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基;あるいは、単環の芳香族炭化水素環、縮合した芳香族炭化水素環、単環の非芳香族炭化水素環、および縮合した非芳香族炭化水素環からなる群より選択される1つ以上の環と、単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は3~20が好ましい。たとえば、第1の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環と第2の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、第1の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、第2の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基であり、たとえば、炭素数3~20の単環もしくは縮合した芳香族炭化水素環と炭素数3~20の単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、炭素数3~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基である。連結非芳香族炭化水素環基としては、たとえば、ビス(シクロヘキサン)-4,4’-ジイル基、1-シクロヘキシルベンゼン-4,4’-ジイル基が挙げられる。
 非芳香族炭化水素環基としては、非連結非芳香族炭化水素環基が好ましい。
 これらのうち、非芳香族炭化水素環基としては、シクロヘキサンの2価基(シクロヘキサンジイル基)が好ましい。シクロヘキサンジイル基としては、シクロヘキサン-1,4-ジイル基が好ましい。
 Q1における複素環基は、芳香族複素環基と非芳香族複素環基とを含む。
 芳香族複素環基は、非連結芳香族複素環基と連結芳香族複素環基とを含む。
 非連結芳香族複素環基は、単環もしくは縮合した芳香族複素環の2価基であり、炭素数は4~20が好ましい。芳香族複素環としては、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、チエノチアゾール環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ピリミジン環、キナゾリン環、キナゾリノン環、アズレン環等が挙げられる。
 連結芳香族複素環基は、単環もしくは縮合した芳香族複素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は4~20が好ましい。たとえば、第1の炭素数4~20の単環もしくは縮合した芳香族複素環と第2の炭素数4~20の単環もしくは縮合した芳香族複素環とが単結合で結合し、第1の炭素数4~20の単環もしくは縮合した芳香族複素環の環を構成する原子上に第1の結合手を有し、第2の炭素数4~20の単環もしくは縮合した芳香族複素環の環を構成する原子上に第2の結合手を有する2価基である。
 非芳香族複素環基は、非連結非芳香族複素環基と連結非芳香族複素環基とを含む。
 非連結非芳香族複素環基は、単環もしくは縮合した非芳香族複素環の2価基であり、炭素数は4~20が好ましい。炭素数4~20の単環もしくは縮合した非芳香族複素環の2価基であり、非芳香族複素環としては、テトラヒドロフラン環、テトラヒドロピラン環、ジオキサン環、テトラヒドロチオフェン環、テトラヒドロチオピラン環、ピロリジン環、ピペリジン環、ジヒドロピリジン環、ピペラジン環、テトラヒドロチアゾール環、テトラヒドロオキサゾール環、オクタヒドロキノリン環、テトラヒドロキノリン環、オクタヒドロキナゾリン環、テトラヒドロキナゾリン環、テトラヒドロイミダゾール環、テトラヒドロベンゾイミダゾール環、キヌクリジン環等が挙げられる。
 連結非芳香族複素環基は、単環もしくは縮合した非芳香族複素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は4~20が好ましい。たとえば、第1の炭素数4~20の単環もしくは縮合した非芳香族複素環と第2の炭素数4~20の単環もしくは縮合した非芳香族複素環とが単結合で結合し、第1の炭素数4~20の単環もしくは縮合した非芳香族複素環の環を構成する原子上に第1の結合手を有し、第2の炭素数4~20の単環もしくは縮合した非芳香族複素環の環を構成する原子上に第2の結合手を有する2価基である。
 Q1における芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基は、それぞれ、RA、-OH、-O-RA、-O-C(=O)-RA、-NH、-NH-RA、-N(RB)-RA、-C(=O)-RA、-C(=O)-O-RA、-C(=O)-NH、-C(=O)-NH-RA、-C(=O)-N(RB)-RA、-SH、-S-RA、トリフルオロメチル基、スルファモイル基、カルボキシ基、スルホ基、シアノ基、ニトロ基、およびハロゲンからなる群より選択される1以上の基で置換されていてもよい。ここで、RAおよびRBは、それぞれ独立に、炭素数1~6の直鎖状もしくは分枝状のアルキル基を表す。
 Q1における芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基は、分子構造の直線性が高く、式(1)で表される部分構造を有する液晶化合物同士が会合しやすく液晶状態を発現しやすい点から、それぞれ独立に、無置換であるか、メチル基、メトキシ基、フッ素原子、塩素原子、臭素原子が置換していることが好ましく、無置換であることがより好ましい。
 芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基が有する置換基は、同一でも異なっていてもよく、また、芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基の全部が置換されていてもよく、全部が無置換であってもよく、一部が置換されていて一部が無置換であってもよい。
 また、A1、A2、およびA3における2価有機基が有する置換基は、同一でも異なっていてもよく、A1、A2、およびA3における2価有機基の全部が置換されていてもよく、全部が無置換であってもよく、一部が置換されていて一部が無置換であってもよい。
 Q1としては、炭化水素環基が好ましく、フェニレン基、シクロヘキサンジイル基がより好ましい。また、液晶化合物の分子構造の直線性を高くすることができることから、Q1としては、1,4-フェニレン基、シクロヘキサン-1,4-ジイル基がさらに好ましい。
 2価有機基としては、Q1が炭化水素環基であること、すなわち、2価有機基として炭化水素環基であることが好ましい。また、2価有機基としては、フェニレン基、シクロヘキサンジイル基がより好ましく、液晶化合物の分子構造の直線性を高くすることができることから、1,4-フェニレン基、シクロヘキサン-1,4-ジイル基がさらに好ましい。
 式(2)としては、A1、A2、およびA3のうち、一つが、式(1)で表される部分構造であり、それ以外の二つが、それぞれ独立に、2価有機基であることが好ましく、A1、A2、およびA3のうち、式(1)で表される部分構造のCyが炭化水素環基であることが好ましく、2価有機基が炭化水素環基であることが特に好ましい。さらに、炭化水素環基が、1,4-フェニレン基またはシクロヘキサン-1,4-ジイル基であることが好ましい。また、A1およびA3の一方が、シクロヘキサン-1,4-ジイル基であることが好ましい。
 また、A1およびA3のうち、一つが、式(1)で表される部分構造であり、それ以外の一つおよびA2が2価有機基であることがより好ましい。この場合、A1およびA3のうち、2価有機基である一方は、シクロヘキサン-1,4-ジイル基であることが好ましく、A2が1,4-フェニレン基であることが特に好ましい。
 液晶化合物の直線性や分子短軸周りの回転運動がしやすい傾向にあることから、-Y1-および-Y2-としては、それぞれ独立して、π結合性の小さい、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-が好ましく、単結合、-C(=O)O-、-OC(=O)-、-CHCH-、-CHO-、-OCH-がより好ましい。
 式(2A)、式(2C)、式(2D)、式(2F)のように、XとY1もしくはXとY2が結合している場合には、Xと結合するY1もしくはXと結合するY2は、単結合であることが好ましく;-X-と、-Y1-および-Y2-の他方は、-C(=O)O-または-OC(=O)-であることが好ましい。
 また、式(2B)、式(2E)のように、XがY1およびY2のいずれとも結合していない場合には、-X-は、-CHCH-、-CHO-、または-OCH-であることが好ましく;-Y1-および-Y2-はいずれも、-C(=O)O-または-OC(=O)-であることが好ましい。
 式(2)としては、上記式(2A)、上記式(2B)、上記(2E)、上記(2F)が好ましい。
 具体的には、式(2)として以下の化合物が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
 本発明の第一の態様の異方性色素膜形成用組成物に含有される第一の態様の液晶化合物は、前記式(1)で表される部分構造を有する液晶化合物からなることが好ましい。ここで、本発明の第一の態様の異方性色素膜形成用組成物に含有される第一の態様の液晶化合物は、前記式(1)で表される部分構造を有する液晶化合物の1種でもよく、2種以上が併用されてもよい。また、前記式(1)で表される部分構造を有する液晶化合物以外の液晶化合物が併用されてもよい。
 本発明の第二の態様の異方性色素膜形成用組成物に含有される第二の態様の液晶化合物は、下記式(B1)で表される部分構造を有する液晶化合物を含む。
 -CyH-Z1-E1-C≡C-E2-  ・・・(B1)
 式(1)中、
 CyHは、置換されたまたは無置換の非芳香族炭化水素環基を表し;
 E1およびE2は、それぞれ独立に、炭化水素環基または複素環基を表し;
 -Z1-は、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C≡C-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表す。
 CyHにおける非芳香族炭化水素環基は、非連結非芳香族炭化水素環基と連結非芳香族炭化水素環基とを含み、本発明の第一の態様の異方性色素膜形成用組成物の第一の態様の液晶化合物に係る、式(1)中のCyにおける非芳香族炭化水素環基と同義である。
 また、CyHにおける非芳香族炭化水素環基において許容される置換基も、本発明の第一の態様の異方性色素膜形成用組成物の第一の態様の液晶化合物に係る、式(1)中のCyにおける非芳香族炭化水素環基において許容される置換基と同じである。
 CyHにおける非芳香族炭化水素環基としては、シクロヘキサンの2価基(シクロヘキサンジイル基)が好ましい。シクロヘキサンジイル基としては、液晶化合物の分子構造の直線性を高くすることができることから、置換されたまたは無置換のシクロヘキサン-1,4-ジイル基であることが好ましい。
 また、CyHにおける置換されたまたは無置換の非芳香族炭化水素環基は、分子構造の直線性が高く、式(B1)で表される部分構造を有する液晶化合物同士が会合しやすく液晶状態を発現しやすい点から、無置換であるか、メチル基、メトキシ基、フッ素原子、塩素原子、臭素原子が置換していることが好ましく、無置換であることがより好ましい。
 E1およびE2における炭化水素環基および複素環基は、それぞれ独立に、本発明の第一の態様の異方性色素膜形成用組成物の第一の態様の液晶化合物に係る、式(1)中のCyにおける炭化水素環基および複素環基と同義である。
 また、E1およびE2における炭化水素環基および複素環基において許容される置換基も、それぞれ独立に、本発明の第一の態様の異方性色素膜形成用組成物の第一の態様の液晶化合物に係る、式(1)中のCyにおける炭化水素環基および複素環基において許容される置換基と同じである。
 また、E1およびE2における炭化水素環基および複素環基における好ましい態様も、それぞれ独立に、本発明の第一の態様の異方性色素膜形成用組成物の第一の態様の液晶化合物に係る、式(1)中のCyにおける炭化水素環基および複素環基における好ましい態様と同じである。
 液晶化合物の直線性や分子短軸周りの回転運動がしやすい傾向にあることから、-Z1-としては、-C≡C-、あるいはπ結合性の小さい、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CHO-、-OCH-、-CHS-、-SCH-が好ましく、-C(=O)O-、-OC(=O)-、-CHCH-、-CHO-、-OCH-がより好ましい。ある態様として、-Z1-は、-C(=O)O-または-OC(=O)-であり、別の態様として、-Z1-は、-CHCH-、-CHO-、または-OCH-である。
 本発明の異方性色素膜形成用組成物に含有される、上記式(B1)で表される部分構造を有する液晶化合物としては、下記式(B2)で表される液晶化合物が挙げられる。
 T1-CyH-Z1-E1-C≡C-E2-Z2-E3-T2  ・・・(B2)
 式(B2)中、
 CyH、E1、E2及び-Z1-は、それぞれ、前記式(B1)における定義と同義であり;
 T1およびT2は、それぞれ独立に、鎖状有機基を表し;
 E3は、2価有機基または単結合を表し;
 -Z2-は、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C≡C-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表す。
 T1およびT2における鎖状有機基は、それぞれ独立に、本発明の第一の態様の異方性色素膜形成用組成物の第一の態様の液晶化合物に係る、式(2)中のR1およびR2における鎖状有機基と同義である。
 T1およびT2は、それぞれ独立に、重合性基で置換されていてもよい-(アルキル基)、アルキル基が重合性基で置換されていてもよい-O-(アルキル基)であることが好ましく、重合性基で置換された-(アルキル基)、アルキル基が重合性基で置換された-O-(アルキル基)であることがより好ましい。
 T1は、アルキル基が重合性基で置換されていてもよい-O-(アルキル基)であることが好ましく、アルキル基が重合性基で置換された-O-(アルキル基)であることがより好ましい。
 -Z2-が単結合であり、E3が単結合である場合や;E3が2価有機基である場合;には、T2は、アルキル基が重合性基で置換されていてもよい-O-(アルキル基)であることが好ましく、アルキル基が重合性基で置換された-O-(アルキル基)であることがより好ましい。
 -Z2-が単結合以外であり、E3が単結合である場合、T2は、重合性基で置換されていてもよい-(アルキル基)であることが好ましく、重合性基で置換された-(アルキル基)であることがより好ましい。
 E3における2価有機基は、下記式(B3)で表される基または単結合であることが好ましい。
 -Q1-  ・・・(B3)
 上記式(B3)で表される基は、本発明の第一の態様の異方性色素膜形成用組成物の第一の態様の液晶化合物に係る、式(2)中のA1、A2、およびA3における2価有機基である、式(3)で表される基と同義である。
 E3としては、フェニレン基、シクロヘキサンジイル基または単結合であることが好ましく、1,4-フェニレン基、シクロヘキサン-1,4-ジイル基または単結合であることがより好ましい。
 液晶化合物の直線性や分子短軸周りの回転運動がしやすい傾向にあることから、-Z2-としては、-C≡C-、あるいはπ結合性の小さい、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-が好ましく、単結合、-C(=O)O-、-OC(=O)-、-CHCH-、-CHO-、-OCH-がより好ましい。
 具体的には、式(B2)として以下の化合物が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
 本発明の第二の態様の異方性色素膜形成用組成物に含有される第二の態様の液晶化合物は、前記式(B1)で表される部分構造を有する液晶化合物からなることが好ましい。ここで、本発明の第二の態様の異方性色素膜形成用組成物に含有される第二の態様の液晶化合物は、前記式(B1)で表される部分構造を有する液晶化合物の1種でもよく、2種以上が併用されてもよい。また、前記式(B1)で表される部分構造を有する液晶化合物以外の液晶化合物が併用されてもよい。
 本発明の異方性色素膜形成用組成物に含有される液晶化合物は、プロセスの観点から、その等方相出現温度が、一般的には200℃未満で、160℃未満であることが好ましく、140℃未満がより好ましく、115℃未満がさらに好ましく、110℃未満がよりさらに好ましく、105℃未満が特に好ましい。
 なお、ここで等方相出現温度とは、液晶から液体への相転移温度および液体から液晶への相転移温度を意味する。本発明においては、これらの相転移温度の少なくとも一方が前記範囲にあることが好ましく、これらの相転移温度の両方が前記範囲にあることがより好ましい。
 本発明の異方性色素膜形成用組成物に含有される液晶化合物は、アルキル化反応、エステル化反応、アミド化反応、エーテル化反応、イプソ置換反応、金属触媒を用いたカップリング反応等の公知の化学反応を組み合わせることにより製造することができる。
 たとえば、本発明の異方性色素膜形成用組成物に含有される液晶化合物は、実施例に記載の方法や、「液晶便覧」(丸善株式会社、平成12年10月30日発行)の449~468ページに記載の方法にしたがって合成することができる。
(溶剤)
 本発明の異方性色素膜形成用組成物は、必要に応じて、溶剤を含有してもよい。
 使用しうる溶剤としては、液晶化合物中に色素またはその他の添加剤を十分に分散または溶解させ得るものであれば特に限定されないが、たとえば、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール溶剤;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、メチルイソブチルケトン等のケトン溶剤;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶剤;トルエン、キシレン等の芳香族炭化水素溶剤;アセトニトリル等のニトリル溶剤;テトラヒドロフラン、ジメトキシエタン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル等のエーテル溶剤;ペルフルオロベンゼン、ペルフルオロトルエン、ペルフルオロデカリン、ペルフルオロメチルシクロヘキサン、ヘキサフルオロ-2-プロパノール等のフッ素含有溶剤;および、クロロホルム、ジクロロメタン、クロロベンゼン、ジクロロベンゼン等の塩素含有溶剤;が挙げられる。
 これら溶剤は、一種類のみを用いてもよく、二種類以上を組み合わせて用いてもよい。
 溶剤は、液晶化合物および色素を溶解し得る溶剤であることが好ましく、液晶化合物および色素が完全に溶解する溶剤であることがさらに好ましい。また、液晶化合物が重合性化合物である場合には重合反応に不活性な溶剤であることが好ましい。また、後述する本発明の異方性色素膜形成用組成物を塗布する観点から、沸点が50~200℃の範囲である溶剤が好ましい。
 本発明の異方性色素膜形成用組成物が溶剤を含む場合において、異方性色素膜形成用組成物において溶剤が占める含有割合は、本発明の組成物の総量(100質量%)に対して、50~98質量%が好ましい。換言すると、本発明の異方性色素膜形成用組成物における固形分は、2~50質量%が好ましい。
 異方性色素膜形成用組成物における固形分含有量が前記上限値以下であれば、異方性色素膜形成用組成物の粘度が高くなりすぎず、得られる偏光膜の厚みが均一になり、偏光膜にムラが生じにくくなる傾向がある。
 かかる固形分含有量は、製造しようとする偏光膜の厚さを考慮して定めることができる。
 本発明の異方性色素膜用組成物の粘度は、後述の塗布方法により、厚みムラのない均一な膜が作製されれば特に問わないが、大面積での厚み均一性、塗布速度などの生産性、光学特性の面内均一性を得る観点からは、0.1mPa・s以上が好ましく、500mPa・s以下が好ましく、100mPa・s以下がより好ましく、50mPa・s以下がさらに好ましい。
(その他の添加剤)
 本発明の異方性色素膜形成用組成物は、さらに必要に応じて、前記式(1)で表される部分構造を有する液晶化合物以外の重合性液晶化合物、前記式(1)で表される部分構造を有する液晶化合物以外の非重合性液晶化合物、重合開始剤、重合禁止剤、重合助剤、重合性非液晶化合物、界面活性剤、レベリング剤、カップリング剤、pH調整剤、分散剤、酸化防止剤、有機・無機フィラー、有機・無機ナノシート、有機・無機ナノファイバー、金属酸化物等のその他の添加剤を含有してもよい。添加剤を含有することにより、異方性色素膜形成用組成物の塗布性や安定性等を向上させたり、異方性色素膜形成用組成物から形成される異方性色素膜の安定性を向上させたりし得る場合がある。
[異方性色素膜形成用組成物の製造方法]
 本発明の異方性色素膜用組成物を製造する方法は特に限定されない。たとえば、色素、液晶化合物、必要に応じて溶剤、その他の添加剤等を混合し、0~80℃で撹拌、振盪して色素を溶解する。難溶性の場合は、ホモジナイザー、ビーズミル分散機等を用いてもよい。
 本発明の異方性色素膜用組成物を製造する方法として、組成物中の異物等を除去する目的で、ろ過工程を有していてもよい。
 本発明の異方性色素膜形成用組成物は、異方性色素膜形成用組成物から溶剤を除いた組成物が、任意の温度で液晶であってもなくてもよいが、任意の温度で液晶性を示すことが好ましい。異方性色素膜形成用組成物から溶剤の除いた組成物は、下記に記載の塗工プロセスの観点からその等方相出現温度が、一般的には200℃未満で、160℃未満であることが好ましく、140℃未満がより好ましく、115℃未満がさらに好ましく、110℃未満がよりさらに好ましく、105℃未満が特に好ましい。
[異方性色素膜]
 本発明の異方性色素膜は、色素および前記式(1)で表される部分構造を有する液晶化合物を含有する(ただし、前記式(1)で表される部分構造を有する液晶化合物が重合性化合物である場合は、色素と、前記式(1)で表される部分構造を有する液晶化合物および前記式(1)で表される部分構造を有する液晶化合物に基づく単位を有する重合物の一方または両方とを含有する。)。
 本発明の異方性色素膜は、前記式(1)で表される部分構造を有する液晶化合物以外の重合性液晶化合物、非重合性液晶化合物、重合開始剤、重合禁止剤、重合助剤、重合性非液晶化合物、非重合性非液晶化合物、界面活性剤、レベリング剤、カップリング剤、pH調整剤、分散剤、酸化防止剤、有機・無機フィラー、有機・無機ナノシート、有機・無機ナノファイバー、金属酸化物等を含んでもよい。
 本発明の異方性色素膜は、本発明の異方性色素膜形成用組成物を用いて形成することができる。
 本発明における異方性色素膜は、光吸収の異方性を利用して、直線偏光、円偏光、楕円偏光等を得る偏光膜として機能しうる他、膜形成プロセスと基板や有機化合物(色素や透明材料)を含有する組成物の選択により、屈折異方性や伝導異方性等の各種異方性色素膜として機能化が可能である。
 本発明の異方性色素膜を液晶ディスプレイ用や、OLED用反射防止膜の偏光素子として使う場合は、異方性色素膜の配向特性は二色比を用いて表すことができる。二色比は8以上あれば偏光素子として機能するが、15以上が好ましく、20以上がさらに好ましく、25以上がさらに好ましく、30以上が特に好ましく、40以上がことさら好ましい。また、二色比は高いほど好ましい。二色比が前記下限値以上であることで、後述する光学素子、特に偏光素子として有用である。
 OLED用反射防止膜の偏光素子として用いる場合、位相差フィルム等の周辺材料の性能が低くても、偏光素子の性能が高ければ、反射防止膜としての特性は向上する。そのため、偏光素子の性能が高ければ、層構成を簡素化させやすく、薄膜構成でも十分な機能を発現しやすくなり、折る、曲げる、を含む変形させて使用する用途にも好適に使用できる。また、コストも低く抑えることが可能となる。
 本発明で言う二色比(D)は、色素が一様に配向している場合、以下の式で表される。
 D=Az/Ay
 ここで、Azは異方性色素膜に入射した光の偏光方向が異方性色素の配向方向に平行な場合に観測される吸光度であり、Ayは異方性色素膜に入射した光の偏光方向が垂直な場合に観測される吸光度である。
 それぞれの吸光度は同じ波長のものを用いれば特に制限はなく、目的によっていずれの波長を選択してもよいが、異方性色素膜の配向の度合を表す場合は、異方性色素膜の380nm~780nmの特定波長域に視感度で補正した値や、可視域の極大吸収波長における値を用いることが好ましい。
 また、本発明の異方性色素膜の可視光波長域における透過率は、好ましくは25%以上であり、35%以上がさらに好ましく、40%以上が特に好ましい。また、透過率は用途に応じた上限であればよい。たとえば、偏光度を高くする場合には、透過率は50%以下であることが好ましい。透過率が上記範囲であることで、後述する光学素子として有用であり、特にカラー表示に用いる液晶ディスプレイ用や、異方性色素膜と位相差膜とを組み合わせた反射防止膜用の光学素子として有用である。
 異方性色素膜の膜厚は、乾燥膜厚として、好ましくは10nm以上、より好ましくは100nm以上、さらに好ましくは500nm以上である。一方、好ましくは30μm以下、より好ましくは10μm以下、さらに好ましくは5μm以下、とりわけ好ましくは3μm以下である。異方性色素膜の膜厚が上記範囲にあることで、膜内で色素の均一な配向および均一な膜厚を得られる傾向にある。
[異方性色素膜の製造方法]
 本発明の異方性色素膜は、本発明の異方性色素膜形成用組成物を用いて、湿式成膜法により作製することが好ましい。
 本発明で言う湿式成膜法とは、異方性色素膜用組成物を基板上に何らかの手法により塗布、配向させる方法である。そのため、異方性色素膜用組成物は流動性を持てばよく、溶剤を含んでいても、含んでいなくてもよい。塗布する際の粘度や膜均一性の観点から、溶剤を含んでいる方がより好ましい。
 異方性色素膜中の液晶や色素の配向は、塗布過程で剪断などにより配向してもよいし、溶剤が乾燥する過程で配向してもよい。また、塗布、乾燥後に加熱し、液晶や色素等を再配向させるプロセスを経て、液晶や色素等を基板上で配向、積層させてもよい。湿式成膜法では、異方性色素膜用組成物を基板上に付与すると、すでに異方性色素膜用組成物中で、または溶剤が乾燥する過程で、または溶媒が完全に除去された後で、色素や液晶化合物が自己会合(液晶状態等の分子会合状態)を取ることにより微小面積での配向が起こる。この状態に外場を与えることにより、マクロな領域で一定方向に配向させ、所望の性能を有する異方性色素膜を得ることができる。この点で、ポリビニルアルコール(PVA)フィルム等を、色素を含む溶液で染色して延伸し、延伸工程だけで色素を配向させることを原理とする方法とは異なる。なお、ここで外場とは、あらかじめ基板上に施された配向処理層の影響、せん断力、磁場、電場、熱等が挙げられ、これらを単独で用いてもよく、複数組み合わせて用いてもよい。必要があれば、加熱工程を経てもよい。
 異方性色素膜用組成物を基板上に付与し成膜する過程、外場を与えて配向させる過程、溶剤を乾燥させる過程は、逐次行ってもよいし、同時に行ってもよい。
 湿式成膜法における異方性色素膜形成用組成物の基板上へ付与する方法としては、たとえば、塗布法、ディップコート法、LB膜形成法、公知の印刷法等が挙げられる。また、このようにして得た異方性色素膜を別の基板に転写する方法もある。
 これらのなかでも、塗布法を用いて異方性色素膜形成用組成物を基板上に付与することが好ましい。
 異方性色素膜の配向方向は塗布方向と異なっていてもよい。なお、本発明において異方性色素膜の配向方向とは、たとえば、偏光膜であれば、偏光の透過軸(偏光軸)または吸収軸のことであり、位相差膜であれば、進相軸または遅相軸のことである。
 異方性色素膜用組成物を塗布し、異方性色素膜を得る方法としては、特に限定されないが、たとえば、原崎勇次著「コーティング工学」(株式会社朝倉書店、1971年3月20日発行)の253~277ページに記載の方法、市村國宏監修「分子協調材料の創製と応用」(株式会社シーエムシー出版、1998年3月3日発行)の118~149ページに記載の方法、段差構造を有する基板(予め配向処理を施してもよい)上にスロットダイコート法、スピンコート法、スプレーコート法、バーコート法、ロールコート法、ブレードコート法、カーテンコート法、ファウンテン法、ディップ法等で塗布する方法が挙げられる。なかでも、スロットダイコート法やバーコート法を採用すると、均一性の高い異方性色素膜が得られるため好適である。
 スロットダイコート法に用いるダイコーターは、一般的に塗布液を吐出する塗布機、いわゆるスリットダイを備えている。スリットダイは、たとえば、日本国特開平2-164480号公報、日本国特開平6-154687号公報、日本国特開平9-131559号公報、「分散・塗布・乾燥の基礎と応用」(2014年、株式会社テクノシステ、ISBN9784924728707 C 305)、「ディスプレイ・光学部材における湿式コーティング技術」(2007年、情報機構、ISBN9784901677752)、「エレクトロニクス分野における精密塗布・乾燥技術」(2007年、技術情報協会、ISBN9784861041389)等に開示されている。これら公知のスリットダイは、フィルムやテープなどの可撓性を有した部材やガラス基板のような硬い部材であっても塗布が実施できる。
 本発明の異方性色素膜形成に使用される基板として、ガラスや、トリアセテート、アクリル、ポリエステル、ポリイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリカーボネート、シクロオレフィンポリマー、ポリオレフィン、ポリ塩化ビニル、トリアセチルセルロースまたはウレタン系のフィルム等が挙げられる。また、この基板表面には、色素の配向方向を制御するために、「液晶便覧」(丸善株式会社、平成12年10月30日発行)の226~239ページ等に記載の公知の方法(ラビング法、配向膜表面上にグルーブ(微細な溝構造)を形成する方法、偏光紫外光・偏光レーザーを用いる方法(光配向法)、LB膜形成による配向方法、無機物の斜め蒸着による配向方法等)により、配向処理(配向膜)を施していてもよい。特に、ラビング法、光配向法による配向処理を好ましく挙げることができる。ラビング法に用いる材料としては、ポリビニルアルコール(PVA)、ポリイミド(PI)、エポキシ樹脂、アクリル樹脂等が挙げられる。光配向法に用いる材料としては、ポリシンナメート系、ポリアミック酸・ポリイミド系、アゾベンゼン系等が挙げられる。配向処理層を設けた場合、配向処理層の配向処理の影響と、塗布時に異方性色素膜用組成物にかかるせん断力によって、液晶化合物や色素が配向すると考えられる。
 異方性色素膜用組成物を塗布する際の、異方性色素膜用組成物の供給方法、供給間隔は特に限定されない。塗布液の供給操作が繁雑になったり、塗布液の開始時と停止時に塗布膜厚の変動を生じたりする場合があるため、異方性色素膜の膜厚が薄い時には、連続的に異方性色素膜用組成物を供給しながら塗布することが望ましい。
 異方性色素膜用組成物を塗布する速度としては、通常0.001m/分以上であり、好ましくは0.01m/分以上であり、より好ましくは0.1m/分以上であり、さらに好ましくは1.0m/分以上であり、特に好ましくは5.0m/分以上である。また、通常400m/分以下であり、好ましくは200m/分以下であり、より好ましくは100m/分以下であり、さらに好ましくは50m/分以下である。塗布速度が上記範囲であることで、異方性色素膜の異方性が得られ、均一に塗布できる傾向にある。
 異方性色素膜用組成物の塗布温度としては、通常0℃以上100℃以下、好ましくは80℃以下、さらに好ましくは60℃以下である。
 異方性色素膜用組成物の塗布時の湿度は、好ましくは10%RH以上であり、好ましくは80RH%以下である。
 異方性色素膜には、不溶化処理を行ってもよい。不溶化とは、異方性色素膜中の化合物の溶解性を低下させることにより、化合物の異方性色素膜からの溶出を制御し、膜の安定性を高める処理を意味する。
 具体的には、膜の重合やオーバーコートなどが、後工程の容易さ、異方性色素膜の耐久性等の点から好ましい。
 膜の重合を行う場合、液晶分子と色素分子が配向した膜に対して、光、熱、および/または放射線を用いて重合を行う。
 光または放射線を用いて重合をおこなう場合、波長が190~450nmの範囲にある活性エネルギー線を照射することが好ましい。
 波長190~450nmの活性エネルギー線の光源は、特に限定されるものではないが、例えば、キセノンランプ、ハロゲンランプ、タングステンランプ、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、中圧水銀灯、低圧水銀灯、カーボンアーク、蛍光ランプ等のランプ光源;アルゴンイオンレーザー、YAGレーザー、エキシマレーザー、窒素レーザー、ヘリウムカドミニウムレーザー、半導体レーザー等のレーザー光源等が挙げられる。特定の波長の光を照射して使用する場合には、光学フィルターを利用することもできる。活性エネルギー線の露光量は、1~100,000J/mが好ましく、10~10,000J/mがより好ましい。
 熱を用いて重合を行う場合は、50~200℃の範囲で行うことが好ましく、60~150℃の範囲で行うことがさらに好ましい。
 光、熱、および/または放射線を用いて重合を行ってもよいが、光重合を用いる、または、光重合と熱重合を併用するのが膜形成プロセスの時間が短く、装置も簡易であることから好ましい。
[光学素子]
 本発明の光学素子は、本発明の異方性色素膜を含む。
 本発明における光学素子は、光吸収の異方性を利用して、直線偏光、円偏光、楕円偏光等を得る偏光素子、位相差素子、屈折異方性や伝導異方性等の機能を有する素子を表す。これらの機能は、異方性色素膜形成プロセスと、基板や有機化合物(色素や透明材料)を含有する組成物の選択により、適宜調整することができる。
 本発明の光学素子は、偏光素子として用いることが最も好ましい。
 本発明の光学素子は、基板上に塗布等により異方性色素膜を形成することで偏光素子を得ることができるという点から、フレキシブルディスプレイ等の用途にも好適に使用することができる。
 光学素子は、異方性色素膜の機能を維持、向上させるために、他の層が設けられていてもよい。たとえば、耐光性、耐熱性、耐水性等の耐久性を向上させるために用いる、特定の波長を遮断する機能を有する層や特定物質を遮断する機能を有する層(酸素遮断フィルム、水蒸気遮断フィルムなどのバリアフィルム等);色域を変更したり、光学特性を向上させたりするために用いる、波長カットフィルターや特定の波長を吸収する材料を含有する層;等が挙げられる。
[偏光素子]
 本発明の偏光素子は、本発明の異方性色素膜を有するものであれば他の如何なる膜(層)を有するものであってもよい。たとえば、基板上に配向膜を設け、配向膜の表面に、本発明の異方性色素膜を形成することにより製造することができる。
 また、偏光素子は異方性色素膜だけに限らず、偏光性能を向上させる、機械的強度を向上させる等の機能を有するオーバーコート層;粘着層または反射防止層;配向膜;位相差フィルムとしての機能、輝度向上フィルムとしての機能、反射または反射防止フィルムとしての機能、半透過反射フィルムとしての機能、拡散フィルムとしての機能などの光学機能を有する層;等、と組み合わせて使用してもよい。具体的には、前述の様々な機能を有する層を塗布や貼合等により積層形成し、積層体として使用してもよい。
 これらの層は、製造プロセス、特性および機能に合わせ適宜設けることができ、その積層の位置、順番等は特に限定されない。たとえば、各層を形成する位置は、異方性色素膜の上に形成してもよく、異方性色素膜を設けた基板の反対面に形成してもよい。また、各層を形成する順番は、異方性色素膜を形成する前でも形成した後でもよい。
 これら光学機能を有する層は、以下の様な方法により形成することができる。
 位相差フィルムとしての機能を有する層は、位相差フィルムを、偏光素子を構成する他の層に塗布や貼合等を行うことにより形成することができる。位相差フィルムは、たとえば、日本国特開平2-59703号公報、日本国特開平4-230704号公報等に記載の延伸処理を施したり、日本国特開平7-230007号公報等に記載された処理を施したりすることにより形成することができる。
 輝度向上フィルムとしての機能を有する層は、輝度向上フィルムを、偏光素子を構成する他の層に塗布や貼合等を行うことにより形成することができる。輝度向上フィルムは、たとえば、日本国特開2002-169025号公報および日本国特開2003-29030号公報に記載されるような方法で微細孔を形成することにより、または、選択反射の中心波長が異なる2層以上のコレステリック液晶層を重畳することにより形成することができる。
 反射フィルムまたは半透過反射フィルムとしての機能を有する層は、たとえば、蒸着やスパッタリングなどで得られた金属薄膜を、偏光素子を構成する他の層に塗布や貼合等を行うことにより形成することができる。
 拡散フィルムとしての機能を有する層は、たとえば、偏光素子を構成する他の層に微粒子を含む樹脂溶液をコーティングすることにより形成することができる。
 位相差フィルムや光学補償フィルムとしての機能を有する層は、ディスコティック液晶性化合物、ネマティック液晶性化合物、スメクチック液晶性化合物、コレステリック液晶性化合物等の液晶性化合物を、偏光素子を構成する他の層に塗布して配向させることにより形成することができる。その際に、基板上に配向膜を設け、配向膜の表面に、位相差フィルムや光学補償フィルムを形成してもよい。
 本発明の異方性色素膜を、LCDやOLED等の各種の表示素子に異方性色素膜等として用いる場合には、これらの表示素子を構成する電極基板等の表面に直接、本発明の異方性色素膜を形成してもよいし、本発明の異方性色素膜を形成した基板を、これら表示素子の構成部材として用いてもよい。
 実施例により本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
 以下の記載において、「部」は「重量部」を意味する。
[液晶相の同定方法]
 得られた異方性色素膜形成用組成物の液晶性は、示差走査熱量測定(セイコーインスツルメンツ社「DSC220CU」)、X線構造解析(株式会社リガク「NANO-Viewer」)、ホットステージ(株式会社東陽テクニカ「HCS302-LN190」)が付属する偏光顕微鏡(株式会社ニコンインステック「ECLIPSE LV100N POL」)にて観察し、「液晶便覧」(丸善株式会社、平成12年10月30日発行)の9~50ページ、117~176ページ等に記載の方法にしたがって、液晶であることの同定を行った。
[異方性色素膜の吸収軸/偏光軸方向の偏光に対する透過率の測定および二色比]
 得られた異方性色素膜の吸収軸/偏光軸方向の偏光に対する透過率は、グラントムソン偏光子を備える分光光度計(大塚電子(株)製、製品名「RETS-100」)を用いて測定した。
 異方性色素膜に直線偏光の測定光を入射し、異方性色素膜の吸収軸方向の偏光に対する透過率および異方性色素膜の偏光軸方向の偏光に対する透過率を測定し、次式により二色比(D)を算出した。
 D=Az/Ay
(式中、
 Ay=-log(Ty)であり;
 Az=-log(Tz)であり;
 Tzは、異方性色素膜の吸収軸方向の偏光に対する透過率であり;
 Tyは、異方性色素膜の偏光軸方向の偏光に対する透過率である。)
 具体的には、基材としてガラス上にポリイミドの配向膜(LX1400、日立化成デュポンマイクロシステムズ社製)が形成されたサンドイッチセル(セルギャップ:8.0μm、10.0μm、12.0μm、成膜済みのポリイミドにあらかじめ布でラビング処理を施したもの)に、異方性色素膜用組成物を等方相で注入し、5℃/minで80℃まで冷却することにより異方性色素膜を得、さらに5℃/minで0℃まで冷却しながら、各温度で二色比を測定した。その中で、最大の二色比を示した温度および波長における二色比をその異方性色素膜の二色比と決定した。
 また、異方性色素膜の二色比が、40以上のものをA、20以上40未満のものをB、8以上20未満のものをC、8未満のものをDと、あるいは、異方性色素膜の二色比が、30以上のものを「++」、20以上30未満のものを「+」、8以上20未満のものを「-」、8未満のものを「--」と評価した。
 以下、本発明の第一の態様を具体的な例を用いて説明する。
[液晶化合物の合成A]
<液晶化合物(I-1)>
 下記に記載の合成法に従い、液晶化合物(I-1)を合成した。
Figure JPOXMLDOC01-appb-C000021
 
(I-1-a)の合成:
 p-ヨードフェノール(11.0g,50mmol)のN,N-ジメチルホルムアミド溶液(150mL)に、プロピオル酸エチル(9.7g,99mmol)、酸化銅(I)(7.5g,94mmol)を添加し、110℃で9時間撹拌し、室温まで放冷した。沈殿を濾別したのち酢酸エチルを添加し、水、続いて飽和食塩水で洗浄した。シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、褐色結晶(I-1-a)を7.3g得た。
(I-1-b)の合成:
 (I-1-a)(4.20g,22.1mmol)、11-ブロモ-1-ウンデカノール(5.55g,22.1mmol)、炭酸カリウム(6.10g,44.2mmol)、N,N-ジメチルホルムアミド(30mL)を混合し、80℃で4時間撹拌した。沈殿を濾別後、ジエチルエーテルを添加し、水、続いて飽和食塩水で洗浄した。シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、橙色固体(I-1-b)を5.5g得た。
(I-1-c)の合成:
 (I-1-b)(3.6g,10mmol)、水酸化カリウム(1.7g,30mmol)、水(20mL)を混合し、100℃で2時間撹拌した。水(20mL)を加え、濃塩酸で酸性にしたのち、析出した沈殿を濾別した。得られた沈殿をアセトニトリルで懸洗し、乳白色固体(I-1-c)を3.2g得た。
(I-1-d)の合成:
 (I-1-c)(2.33g,7.0mmol)、テトラヒドロフラン(20mL)を混合し、続いてN,N-ジメチルアニリン(1.02g,8.4mmol)、2,5-ジ-t-ブチルフェノール(54mg)を添加した。氷浴で冷却したのち、アクリロイルクロリド(0.76g,8.4mmol)をゆっくり添加した。氷浴下6時間撹拌したのち、塩化メチレンを添加し、1mol/L塩酸、飽和炭酸水素ナトリウム水、飽和食塩水の順に洗浄した。シリカゲルカラムクロマトグラフィー(クロロホルム/メタノール)で精製し、白色固体(I-1-d)を2.0g得た。
(I-1-e)の合成:
 日本国特開2014-262884号公報に記載の合成法により(I-1-e)を合成した。
(I-1-f)の合成:
 (I-1-d)(2.00g,5.17mmol)、(I-1-e)(1.01g,5.17mmol)、N,N-ジメチルアミノ-4-ピリジン(0.13g,1.03mmol)、2,5-ジ-t-ブチルフェノール(58mg)、塩化メチレン(30mL)を混合し、氷浴で冷却したのち、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(1.09g,5.69mmol)を添加した。一晩放置したのち、塩化アンモニウム飽和水溶液、続いて飽和食塩水で洗浄した。シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、白色固体(I-1-f)を1.9g得た。
(I-1-g)の合成:
 (I-1-f)(2.6g,4.62mmol)、p-トルエンスルホン酸ピリジニウム塩(0.23g,0.92mmol)、2,5-ジ-t-ブチルフェノール(44mg)、エタノール(20mL)を混合し、50℃で2時間撹拌した。反応溶液を水に放出し、析出した沈殿を濾別、乾燥させ、白色固体(I-1-g)を2.0g得た。
(I-1-h)の合成:
 下記に記載の合成法に従い、化合物(I-1-h)を合成した。
Figure JPOXMLDOC01-appb-C000022
 
 Lub et al.,Recl.Trav.ChIm.Pays-Bas,115,321-328(1996)に記載の化合物に準じた方法で(I-1-i)を合成した。
 次に、(I-1-i)(トランス体のみ)(42.9g,107.6mmol)、p-トルエンスルホン酸ピリジニウム塩(2.6g,10.8mmol)、エタノール(430mL)を混合し、78℃で2時間撹拌した。溶媒を留去し、酢酸エチル(150mL)に溶解し、ヘキサン(750mL)を加え、冷却した。析出した沈殿を濾別、ヘキサンで洗浄後、乾燥させ、白色固体(I-1-j)を29.2g得た。
 (I-1-j)(37.2g,118.3mmol)、N,N-ジメチルアニリン(21.5g,177.5mmol)、2,5-ジ-t-ブチルフェノール(0.24g)、テトラヒドロフラン(380mL)を混合した。氷浴で冷却したのち、アクリロイルクロリド(16.1g,177.5mmol)をゆっくり添加した。滴下後50℃で2時間撹拌したのち、液量が190mLになるまで溶媒を留去し、氷冷下の1mol/L塩酸に放出した。析出した沈殿を濾別、水、ヘキサンで洗浄した。シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、白色固体(I-1-h)を39.4g得た。
(I-1)の合成:
 (I-1-g)(494mg,1.03mmol)、(I-1-h)(400mg,1.09mmol)、N,N-ジメチルアミノ-4-ピリジン(27mg,0.22mmol)、2,5-ジ-t-ブチルフェノール(2mg)、塩化メチレン(10mL)を混合し、氷浴で冷却したのち、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(230mg,1.19mmol)を添加した。氷浴下4時間撹拌したのち、塩化アンモニウム飽和水溶液、続いて飽和食塩水で洗浄した。シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、液晶化合物(I-1)を白色固体として530mg得た。
 この化合物の液体クロマトグラフ-質量分析の結果を下記に示す。
LC-MS(APCI)m/z 851.5(M+Na+
 また、NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ1.20-1.70(m,38H),1.74-1.85(m,2H),2.05-2.25(m,4H), 2.49-2.57(m,1H),3.21-3.29(m,1H),3.46(t,2H,J=6.8Hz),3.99(t,2H,J=6.8Hz),4.15(t,4H,J=6.8Hz),5.80(d,2H,J=10.4Hz),6.12(dd,2H,J=17.2,10.4Hz),6.39(d,2H,J=17.2Hz),6.89(d,2H,J=6.8Hz), 7.10(d,2H,J=6.8Hz), 7.19(d,2H,J=6.8Hz),7.55(d,2H,J=6.8Hz)
<液晶化合物(I-2)>
 下記に記載の合成法に従い、液晶化合物(I-2)を合成した。
Figure JPOXMLDOC01-appb-C000023
 
(I-2-a)の合成:
 4-ヨード安息香酸エチル(8.20g,29.7mmol)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)(626mg,0.89mmol)、ヨウ化銅(I)(170mg,0.89mmol)、トリエチルアミン(200mL)を混合し、10-ウンデシン-1-オール(5.0g,29.7mmol)を添加した。室温で4時間、さらに40℃で1時間加熱した後、室温まで放冷した。水-エーテル抽出した後、1mol/L塩酸でさらに洗浄し、分液、濃縮して粗精製の茶色油状化合物(I-2-a)を得た。
(I-2-b)の合成:
 上記操作で得られた粗精製の(I-2-a)、水酸化カリウム(5.0g,90mmol)の50mL水溶液を混合し、100℃で5時間加熱した。室温まで放冷した後、氷浴下、水を20mL添加した後、pH=1になるまで濃塩酸を添加した。析出した白色固体をろ別し、熱アセトニトリルで再結晶を行い、乳白色固体(I-2-b)を7.5g得た。
(I-2-c)の合成:
 (I-2-b)(7.4g,25.7mmol)、テトラヒドロフラン(50mL)、N,N-ジメチルアニリン(3.78g,31.2mmol)、p-メトキシフェノール(89mg)を混合し、水浴下、内温が15℃以下となったことを確認した後、アクリロイルクロリド(2.82g,31.2mmol)をゆっくり添加した。30分間経過後、水浴を外し、さらに2時間撹拌した。反応液を100mLの水に放出し、濃塩酸(0.8mL)を加えた後、酢酸エチルで抽出した。濃縮により得られた褐色粉末の半量をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、乳白色粉末の(I-2-c)を3.0g得た。
(I-2-d)の合成:
 (I-2-c)(2.95g,8.6mmol)、(I-1-e)(1.70g,8.8mmol)、N,N-ジメチルアミノピリジン(0.21g,1.75mmol)、ジクロロメタン(13mL)を混合し、氷浴下、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(1.84g,9.6mmol)を添加した。氷浴下30分間撹拌の後、室温でさらに1時間撹拌した。反応液を塩化アンモニウム飽和水溶液、続いて飽和食塩水で抽出した後、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、白色固体の(I-2-d)を4.4g得た。
(I-2-e)の合成:
 (I-2-d)(4.1g,7.9mmol)、エタノール(20mL)、p-トルエンスルホン酸ピリジニウム塩(0.40g,1.58mmol)を混合し、60℃で1時間加熱した。室温まで放冷した後、水(100mL)に放出し、得られた固体をろ別した。得られた固体を再結晶(エタノール-水)し、ろ別し、(I-2-e)を固体として3.3g得た。
(I-2-f)の合成:
 (I-2-e)(435mg,1.0mmol)、(I-1-i)(トランス/シス=67:33の混合物)(438mg,1.1mmol)、N,N-ジメチルアミノピリジン(24mg,0.2mmol)、ジクロロメタン(10mL)を入れ、氷浴下、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(211mg,1.1mmol)を添加した。氷浴下30分間撹拌の後、室温でさらに2時間撹拌した。反応液を塩化アンモニウム飽和水溶液、続いて飽和食塩水で洗浄した後、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)により精製し、トランス体の(I-2-f)を0.46g得た。
(I-2-g)の合成:
 (I-2-f)(0.46g,0.56mmol)、エタノール(10mL)、p-トルエンスルホン酸ピリジニウム塩(28mg,0.11mmol)を混合し、60℃で2時間加熱した。室温まで放冷した後、水(20mL)を添加し、得られた固体をろ別した。得られた固体を再結晶(エタノール-水)し、(I-2-g)を固体として0.36g得た。
(I-2)の合成:
 (I-2-g)(0.36g,0.49mmol)、テトラヒドロフラン(10mL)、N,N-ジメチルアニリン(72mg,0.59mmol)、p-メトキシフェノール(3.6mg)を混合し、水浴下、アクリロイルクロリド(53mg,0.59mmol)をゆっくり添加した。水浴下で30分間撹拌後、さらに2時間撹拌した。反応液を水(20mL)に放出し、濃塩酸(0.2mL)を加えた後、酢酸エチルで抽出した。濃縮により得られた褐色粉末の半量をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、液晶化合物(I-2)を白色粉末として183mg得た。
<液晶化合物(I-3)>
 下記に記載の合成法に従い、液晶化合物(I-3)を合成した。
Figure JPOXMLDOC01-appb-C000024
 
(I-3-a)の合成:
 p-アセトキシ安息香酸(3.60g,20.0mmol)、(I-1-e)(3.88g,20.0mmol)、N,N-ジメチルアミノピリジン(489mg,4.0mmol)、ジクロロメタン(50mL)を混合し、2℃で、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(4.22g,22.0mmol)を添加した。2℃で30分間撹拌の後、室温でさらに17時間撹拌した。反応液を塩化アンモニウム飽和水溶液、続いて飽和食塩水で洗浄した後、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)により精製し、白色固体の(I-3-a)を3.63g得た。
(I-3-b)の合成:
 (I-3-a)(0.95g,2.7mmol)、エタノール(20mL)、p-トルエンスルホン酸ピリジニウム塩(134mg,0.53mmol)を混合し、78℃で3時間加熱した。室温まで放冷した後、水(60mL)を添加し、得られた固体をろ別、減圧下、50℃で乾燥し、白色固体(I-3-b)を0.31g得た。
(I-3-c)の合成:
 (I-3-b)(230mg,1.0mmol)、(I-1-i)(トランス体のみ)(810mg,2.0mmol)、N,N-ジメチルアミノピリジン(58mg,0.48mmol)、ジクロロメタン(6mL)を混合し、2℃で、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(428mg,2.2mmol)を添加した。2℃で30分間撹拌の後、室温でさらに20時間撹拌した。反応液を塩化アンモニウム飽和水溶液、続いて飽和食塩水で洗浄した後、シリカゲルカラムクロマトグラフィー(塩化メチレン/酢酸エチル)により精製し、白色固体の(I-3-c)を662mg得た。
(I-3-d)の合成:
 (I-3-c)(662mg,0.67mmol)、エタノール(15mL)、p-トルエンスルホン酸ピリジニウム塩(69mg,0.27mmol)を混合し、78℃で1時間加熱した。室温まで放冷した後、水(70mL)を添加し、得られた固体をろ別、減圧下、50℃で乾燥し、白色固体(I-3-d)を555mg得た。
(I-3)の合成:
 (I-3-d)(555mg,0.67mmol)、塩化メチレン(12mL)、N,N-ジメチルアニリン(225mg,1.85mmol)を混合し、2℃で、アクリロイルクロリド(169mg,1.87mmol)をゆっくり添加した。2℃で30分間撹拌後、さらに室温で18時間撹拌した。反応液を塩化アンモニウム飽和水溶液、続いて飽和食塩水で洗浄した後、シリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル)により精製し、液晶化合物(I-3)を白色固体として424mg得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ8.21(d,2H,J=9.2Hz),7.21(d,4H,J=9.2Hz),7.12(d,2H,J=9.2Hz),6.40(dd,2H,J=17.2,1.6Hz),6.12(dd,2H,J=17.2,10.4Hz),5.81(dd,2H,J=10.4,1.6Hz),4.15(t,4H,J=7.2Hz),3.47(t,4H,J=6.8Hz),3.32-3.21(m,2H),2.62-2.49(m,2H),2.25-2.10(m,8H),1.71-1.52(m,16H),1.42-1.25(m,28H)
<液晶化合物(I-4)>
 下記に記載の合成法に従い、液晶化合物(I-4)を合成した。
Figure JPOXMLDOC01-appb-C000025
 
(I-4-b)の合成:
 日本国特開2015-896号公報に記載の合成法により(I-4-b)を合成した。
(I-4-c)の合成:
 (I-4-b)(50.3g,162mmol)、テトラヒドロフラン(320mL)、N,N-ジメチルアニリン(23.6mg,195mmol)、4-メトキシフェノール(307mg)を混合し、15℃で、アクリロイルクロリド(17.6g,195mmol)を40分間かけて添加した。室温で18時間撹拌後、反応液を水(940mL)に放出し、濃塩酸でpHを1.2にした後、析出した固体をろ取した。得られた固体を水で洗浄し、50℃で減圧下、乾燥して、白色固体の(I-4-c)を58.5g得た。
(I-4-d)の合成:
 (I-4-c)(35.8g,98.7mmol)、(I-1-e)(19.2g,98.7mmol)、N,N-ジメチルアミノピリジン(2.41g,19.7mmol)、4-メトキシフェノール(47mg)、ジクロロメタン(150mL)を混合し、3℃で、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(16.9g,109mmol)を添加した。氷浴下30分間撹拌の後、室温でさらに21時間撹拌した。反応液を塩化アンモニウム飽和水溶液、続いて水、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、溶媒を留去して、薄褐色固体を得た。この薄褐色固体をエタノール(220mL)に60℃で溶解した後、0℃で15時間静置し、生じた固体をろ取、50℃で減圧下乾燥して、白色固体の(I-4-d)を39.1g得た。
(I-4-e)の合成:
 (I-4-d)(39.0g,72.4mmol)、エタノール(180mL)、p-トルエンスルホン酸ピリジニウム塩(3.71g,14.8mmol)を混合し、60℃で1時間加熱した。室温まで放冷した後、水(490mL)に放出し、得られた固体をろ別、減圧下、50℃で乾燥し、白色固体(I-4-e)を32.8g得た。
(I-4-f)の合成:
 下記に記載の合成法に従い、化合物(I-4-f)を合成した。
Figure JPOXMLDOC01-appb-C000026
 
 トランス-4-ヒドロキシシクロヘキサンカルボン酸(4.33g,30.0mmol)、ジクロロメタン(100mL)、p-トルエンスルホン酸ピリジニウム塩(1.51g,6.0mmol)を混合し、15℃で3,4-ジヒドロ-2H-ピラン(5.05g,60mmol)を10分間かけて滴下した。室温で15時間撹拌後、反応液を7.5wt%炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去し、透明液体の(I-4-i)を8.47g得た。
 上記で得られた(I-4-i)(8.14g、26.0mmol)を10wt%水酸化カリウム水溶液(73g)と混合し、100℃で5時間撹拌した。室温まで放冷した後、33wt%クエン酸水溶液(75g)を添加し、撹拌後、塩化メチレン(200mL)で抽出し、水、飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去し、得られた固体をシリカゲルカラムクロマトグラフィー(クロロホルム/酢酸エチル)により精製し、白色固体の(I-4-f)を4.35g得た。
(I-4-g)の合成:
 (I-4-e)(1.39g,3.1mmol)、(I-4-f)(700mg,3.1mmol)、N,N-ジメチルアミノピリジン(75mg,0.61mmol)、ジクロロメタン(7.5mL)を混合し、2℃で、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(647mg,3.4mmol)を添加した。2℃で30分間撹拌の後、室温でさらに16時間撹拌した。反応液を塩化アンモニウム飽和水溶液、続いて飽和食塩水で洗浄した後、シリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル)により精製し、白色固体の(I-4-g)を1.68g得た。
(I-4-h)の合成:
 (I-4-g)(1.68g,2.53mmol)、エタノール(20mL)、p-トルエンスルホン酸ピリジニウム塩(64mg,0.25mmol)を混合し、60℃で1時間加熱した。室温まで放冷した後、水(40mL)を添加し、得られた固体をろ別、減圧下、50℃で乾燥し、白色固体(I-4-h)を1.42g得た。
(I-4)の合成:
 (I-4-h)(1.39g,2.4mmol)、(I-1-h)(888mg,2.4mmol)、N,N-ジメチルアミノピリジン(58mg,0.48mmol)、ジクロロメタン(7.5mL)を混合し、2℃で、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(523mg,2.7mmol)を添加した。2℃で1時間撹拌の後、室温でさらに6時間撹拌した。反応液を塩化アンモニウム飽和水溶液、続いて飽和食塩水で洗浄した後、シリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル)により精製し、液晶化合物(I-4)を白色固体として1.13g得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ8.12(d,2H,J=8.8Hz),7.21(d,2H,J=8.8Hz),7.11(d,2H,J=8.8Hz),6.96(d,2H,J=9.2Hz),6.40(dd,2H,J=17.2,1.2Hz),6.12(dd,2H,J=17.2,10.4Hz),5.81(dd,2H,J=10.4,1.2Hz),4.81-4.68(m,1H),4.15(t,4H,J=6.8Hz),4.04(t,2H,J=6.8Hz),3.44(t,2H,J=6.8Hz),3.25-3.25(m,1H),2.62-2.48(m,1H),2.30-1.96(m,9H),1.86-1.20(m,44H)
<液晶化合物(I-5)>
 液晶化合物(I-5)は、Lub et al.,Recl.Trav.Chim.Pays-Bas,115,321-328(1996)に記載の化合物に準じた方法を使用して合成した。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ1.23-1.72(m,38H),1.76-1.86(m,2H),2.11-2.23(m,4H),2.48-2.60(m,1H),3.20-3.30(m,1H),3.47(t,2H,J=6.8Hz),4.04(t,2H,J=6.8Hz),4.15(t,2H,J=6.8Hz)5.82(d,2H,J=10.4Hz),6.12(dd,2H,J=10.4,17.4Hz),6.40(d,2H,J=17.4Hz),6.97(d,2H,J=9.2Hz),7.11(d,2H,J=9.2Hz),7.21(d,2H,J=9.0Hz),8.13(d,2H,J=9.0Hz)
<液晶化合物(I-6)>
 下記に記載の合成法に従い、液晶化合物(I-6)を合成した。
Figure JPOXMLDOC01-appb-C000027
 
(I-6-a)の合成:
 4-ヨードフェノール(25g,114mmol)、4-ジヒドロ-2H-ピラン(13.4g,160mmol)、ジクロロメタン溶液(125mL)を混合し、p-トルエンスルホン酸ピリジニウム塩(PPTS)(2.85g,11.4mmol)を加えて室温で5時間撹拌後、飽和炭酸水素ナトリウム水溶液(200mL)を加え、塩化メチレンで抽出をおこなった。得られた有機層を飽和炭酸水素ナトリウム水溶液、および飽和食塩水で洗浄し、硫酸ナトリウムを加えて乾燥後、ろ過濃縮をおこなうことにより、粗体を得た。得られた粗体をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、白色固体(I-6-a)を32.7g得た。
(I-6-b)の合成:
 (I-6-a)(32.7g,107.5mmol)、テトラヒドロフラン(370mL)にトリメチルシリルアセチレン(11.6g,118.3mmol)、トリエチルアミン(31.6mL,225.8mmol)、ヨウ化銅(I)(2.03g,10.7mmol)を加え、撹拌した。その後、ジクロロビス(トリフェニルホスフィン)パラジウム(II)(3.8g,5.38mmol)を加えた。室温で12時間撹拌後、水-酢酸エチルで抽出をおこなった。有機層を飽和食塩水で洗浄後、硫酸ナトリウムを加えて乾燥後、ろ過濃縮をおこない、粗体を得た。得られた粗体をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、白色固体(I-6-b)を30.6g得た。
(I-6-c)の合成:
 (I-6-b)(30.6g,111.5mmol)、テトラヒドロフラン(250mL)を混合し、氷浴で冷却した。フッ化テトラ-n-ブチルアンモニウムテトラヒドロフラン溶液(1mol/L,133.8mL)を添加し、室温で1時間撹拌した。水-酢酸エチルで抽出し、有機層を飽和食塩水で洗浄後、硫酸ナトリウムを加えて乾燥し、ろ過濃縮をおこなうことにより、(I-6-c)22.1gを得た。
(I-6-d)の合成:
 上記操作で得られた(I-6-c)(22.1g,109.3mmol)、4-ヨードフェノール(26.4g,102.2mmol)、テトラヒドロフラン(300mL)を混合し、トリエチルアミン(23mL,229.5mmol)を加えた。反応溶液にヨウ化銅(I)(2.1g,10.9mmol)、テトラキストリフェニルホスフィンパラジウム(0)(3.8g,5.5mmol)を加え、室温で4時間撹拌をおこなった。反応溶液をセライトろ過したのち、ろ液を減圧濃縮した。得られた粗体を塩化メチレンを用いて懸洗することにより(I-6-d)22.1gを得た。
(I-6-e)の合成:
 (I-6-d)(11.0g,37.4mmol)、N,N-ジメチルホルムアミド(22mL)を混合し、11-ブロモ-1-ウンデカノール(9.39g,37.4mmol)、炭酸カリウム(25.8g,187mmol)を加えて90℃で1時間撹拌した。放冷後氷水に加え、析出した固体をろ取し、ヘキサンで洗浄することにより粗体を得た。得られた粗体を酢酸エチルに溶解後、硫酸ナトリウムを加えて乾燥し、セライト濾過を行い、溶媒留去を行うことにより、(I-6-e)17.0gを得た。
(I-6-f)の合成:
 (I-6-e)(4.0g,8.61mmol)、テトラヒドロフラン(40mL)、トリエチルアミン(2.4mL,17.2mmol)を混合し、氷浴で冷却後、アクリロイルクロリド(1.04mL,12.9mmol)を加え、10分間撹拌した。反応液を氷水に加えたのち、酢酸エチルで抽出を行い、有機層を飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗浄した。得られた有機層に硫酸ナトリウムを加えて乾燥後、ろ過濃縮することにより(I-6-f)4.44gを得た。
(I-6-g)の合成:
 (I-6-f)(4.44g,8.56mmol)、エタノール(45mL)を混合し、PPTS(215mg,0.856mmol)を加えて50℃で1時間撹拌した。放冷後、減圧濃縮したのち、粗体をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、(I-6-g)3.36gを得た。
(I-6)の合成:
 (I-6-g)(1.0g,2.3mmol)、(I-1-i)(0.85g,2.3mmol)、N,N-ジメチルアミノ-4-ピリジン(56mg,0.46mmol)、塩化メチレン(10mL)を混合し、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC)(0.57g,3.0mmol)を0℃で加え、室温で2時間撹拌した。得られた反応溶液を氷水(20mL)に注いだのち、塩化メチレンで抽出おこなった。得られた有機層を飽和食塩水で洗浄し、硫酸ナトリウムを加えて乾燥後、ろ過濃縮を行なうことにより粗体を得た。得られた粗体をシリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン/酢酸エチル)で精製し、(I-6)0.98gを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.50(d,2H,J=6.8Hz),7.44(d,2H,J=6.8Hz),7.04(d,2H,J=6.8Hz),6.86(d,2H,J=6.8Hz),6.39(d,2H,J=17.2Hz),6.12(dd,2H,J=17.2,10.4Hz),5.82(d,2H,J=10.4Hz),4.15(t,4H,J=6.8Hz),3.99(t,2H,J=6.8Hz),3.47(t,2H,J=6.8Hz),3.29-3.21(m,1H),2.57-2.49(m,1H),2.25-2.10(m,4H),1.88-1.70(m,2H),1.70-1.24(m,38H)
<液晶化合物(I-7)>
 下記に記載の合成法に従い、液晶化合物(I-7)を合成した。
Figure JPOXMLDOC01-appb-C000028
 
(I-7)の合成:
 出発原料として12-ブロモ-1-ドデカノールを用いた以外は(I-1-g)と同様の方法で合成した(I-7-a)(2g,4.0mmol)、出発原料として12-ブロモ-1-ドデカノールを用いた以外は(I-1-h)と同様の方法で合成した(I-7-b)(1.68g,4.4mmol)、N,N-ジメチル-4-アミノピリジン(97.7mg,0.8mmol)を塩化メチレン(30mL)と混合し、EDC(0.92g,4.8mmol)を0℃で加え、室温で12時間撹拌した。反応溶液に飽和炭酸水素ナトリウム水溶液を加えたのち、塩化メチレンで抽出をおこない、得られた有機層を飽和食塩水で洗浄し、硫酸マグネシウムを加えて乾燥後、ろ過濃縮を行った。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン/酢酸エチル)で精製を行うことにより、(I-7)2.17gを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.55(d,2H),7.19(d,2H),7.11(d,2H),6.89(d,2H),6.39(dd,2H),6.12(dd,2H),5.81(dd,2H),4.15(t,4H),3.99(t,2H),3.46(t,2H),3.21-3.29(m,1H),2.49-2.57(m,1H),2.15(m4H),1.79(m,2H),1.52-1.72(m,12H),1.24-1.49(m,42H)
<液晶化合物(I-8)>
 下記に記載の合成法に従い、液晶化合物(I-8)を合成した。
Figure JPOXMLDOC01-appb-C000029
 
(I-8-a)の合成:
 trans-4-ヒドロキシシクロヘキシルフェノール(10.0g,52.0mmol)、炭酸カリウム(28.8g,208mmol)のDMF溶液(100mL)にクロロメチルメチルエーテル(6.30g,78.0mmol)を加えて6時間撹拌した。反応溶液に水(100mL)を加えたのち、ジイソプロピルエーテル(100mL)で3回抽出をおこなった。得られた有機層を飽和食塩水で洗浄後、硫酸マグネシウムを加えて撹拌した。ろ過濃縮を行った後、シリカゲルカラムクロマトグラフィー(塩化メチレン/酢酸エチル)を行うことにより、(I-8-a)5.79gを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.12(d,2H),6.96(d,2H),5.15(s,2H),3.6-3.7(m,1H),3.47(d,3H),2.6-2.7(m,1H),2.0-2.1(m,2H),1.85-1.95(m,2H),1.3-1.6(m,6H)
(I-8-b)の合成:
 (I-8-a)(5.30g,22.0mmol)をDMF(30mL)に溶解し、ヨウ化ドデカン(13.0g,44.0mmol)、水素化ナトリウム(油性50-70%、2.0g)を加えて室温で8時間撹拌した。反応溶液に水を加えてジイソプロピルエーテルを用いて抽出したのち、有機層を飽和食塩水で洗浄をおこなった。さらに硫酸マグネシウムを加えて乾燥後、ろ過濃縮を行い、粗生成物を得た。シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製を行うことにより、(I-8-b)4.58gを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.11(d,2H),6.96(d,2H),5.14(s,2H),3.47(m,5H),3.2-3.3(m,1H),2.4-2.5(m,1H),2.1-2.2(m,2H),1.9-2.0(m,2H),1.2-1.6(m,20H),0.88(t,3H)
(I-8-c)の合成:
 (I-8-b)(4.58g,11.7mmol)をメタノール(60mL)に溶解し、に濃塩酸(18mL)を加えて40℃で2時間、室温で24時間撹拌した。生成した沈殿をろ過したのち、水で洗浄することにより、(I-8-c)3.93gを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.07(d,2H),6.75(d,2H),3.49(t,2H),3.2-3.3(m,1H),2.4-2.5(m,1H),2.1-2.2(m,2H),1.9-2.0(m,2H),1.2-1.6(m,20H),0.88(t,3H)
(I-8)の合成:
 (I-8-c)(438mg,1.26mmol)、(I-1-d)(465mg,1.20mmol)、N,N-ジメチル-4-アミノピリジン(29.3mg,0.24mmol)を塩化メチレン(30mL)に溶解し、EDC(276mg,1.44mmol)を0℃で加え、室温で4時間撹拌した。反応溶液に炭酸水素ナトリウム飽和水溶液を加えたのち、塩化メチレンで抽出をおこない、得られた有機層を飽和食塩水で洗浄し、硫酸マグネシウムを加えて乾燥後、ろ過濃縮を行った。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)でカラム精製を行うことにより、(I-8)447mgを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.6(d,2H),6.95(d,2H),3.47(t,2H),3.2-3.3(m,1H),2.4-2.5(m,1H),2.1-2.2(m,2H),1.8-1.9(m,1H),1.2-1.6(m,20H),0.88(t,3H)
<液晶化合物(I-9)>
 下記に記載の合成法に従い、液晶化合物(I-9)を合成した。
Figure JPOXMLDOC01-appb-C000030
 
(I-9-a)の合成:
 下記で合成した(I-10-b)(3.25g,10.7mmol)のDMF溶液(20mL)に水素化ナトリウム(油性50-70%、1.03g)を加え1時間撹拌した。その後、1-ブロモウンデカン(7.80g,31.4mmol)を加え、室温でさらに4時間撹拌した。反応溶液に飽和塩化アンモニウム水溶液(50mL)と水(50mL)を加えてジイソプロピルエーテルを用いて抽出をおこなった。有機層を飽和食塩水で洗浄したのち、硫酸マグネシウムを加えて乾燥後、ろ過し減圧下で濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開液:ヘキサン)で精製したのち、メタノールで懸洗することにより、(I-9-a)3.61gを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.6(d,2H),6.95(d,2H),3.47(t,2H),3.2-3.3(m,1H),2.4-2.5(m,1H),2.1-2.2(m,2H),1.8-1.9(m,1H),1.2-1.6(m,20H),0.88(t,3H)
(I-9-b)の合成:
 (I-9-a)(1.88g,4.0mmol)、酸化銅(I)(858mg,6.0mmol)、DMF(10mL)を混合し、プロピオン酸(785mg,8.0mmol)を加えて、窒素気流下、110℃で10.5時間加熱撹拌した。室温まで冷却したのち、水(100mL)を加え、ジイソプロピルエーテルで抽出を行った。有機層に硫酸マグネシウムを加えて乾燥後、ろ過し、減圧下で濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開液:ヘキサン/酢酸エチル)により精製することにより、(I-9-b)791mgを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.5(d,2H),7.2(d,2H),4.28(q,2H),3.47(t,2H),3.2-3.3(m,1H),2.4-2.5(m,1H),2.1-2.2(m,2H),1.8-1.9(m,1H),1.2-1.6(m,20H),0.88(t,3H)
(I-9-c)の合成:
 (I-9-b)(420mg,0.95mmol)、水酸化カリウム(104mg,2.0mmol)、塩化メチレン(4mL)と水(10mL)を加えて100℃で1時間加熱撹拌したのち、室温まで冷やし、2mol/Lの塩酸を加え、生成した沈殿物をエタノールで洗浄することにより(I-9-c)237mgを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.5(d,2H),7.2(d,2H),3.47(t,2H),3.2-3.3(m,1H),2.4-2.5(m,1H),2.1-2.2(m,2H),1.8-1.9(m,1H),1.2-1.6(m,20H),0.88(t,3H)
(I-9)の合成:
 (I-9-c)(697mg,1.6mmol)、(I-10-g)(602mg,1.8mmol)、N,N-ジメチル-4-アミノピリジン(39.0mg,0.32mmol)、塩化メチレン(30mL)を混合し、EDC(364mg,1.9mmol)を窒素気流下中、0℃で加えたのち、室温まで昇温し、6時間撹拌した。飽和炭酸水素ナトリウム水溶液を加えて塩化メチレン溶液で抽出し、得られた有機層を飽和食塩水で洗浄した。その後、硫酸マグネシウムを加え乾燥後、ろ過し、減圧下で濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)により精製をおこない、(I-9)774mgを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.54(d,2H),7.23(d,2H),7.08(d,2H),6.89(d,2H),6.39(d,1H),6.12(dd,1H),5.8(d,1H),4.15(t,2H),3.94(t,2H),3.48(t,2H),3.2-3.3(m,1H),2.4-2.5(m,1H),2.1-2.2(m,2H),1.9-2.0(m,1H),1.7-1.8(m,2H),1.6-1.7(m,2H),1.2-1.6(m,34H),0.88(t,3H)
<液晶化合物(I-10)>
 下記に記載の合成法に従い、液晶化合物(I-10)を合成した。
Figure JPOXMLDOC01-appb-C000031
 
(I-10-a)の合成:
 4-シクロヘキシルフェニル(36.8g、211mmol)、1-クロロメチル-4-フルオロ-1,4-ジアゾニアビシクロ[2.2.2]オクタンビス(テトラフルオロボラート)(30.0g,84.0mmol)、アセトニトリル(800mL)を混合し、ヨウ素(21.3g,84.0mmol)を加えて60℃で3時間加熱撹拌をおこなった。室温まで冷却させたのち、飽和炭酸水素ナトリウム水溶液(400mL)を加えたのち、ジイソプロピルエーテル(200mL)で3回抽出をおこなった。得られた有機層を飽和食塩水(200mL)で洗浄したのち、硫酸マグネシウムを加えて乾燥後、減圧下で濃縮をおこなった。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開液:ヘキサン/酢酸エチル)により精製することにより、(I-10-a)28.0gを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.64(d,2H),6.99(d,2H),2.94-3.01(m,1H),2.48-2.51(m,4H),2.04-2.16(m,2H),1.56-1.85(m,2H)
(I-10-b)の合成:
 (I-10-a)(17.6g,58.6mmol)、炭酸水素ナトリウム(1.62g,11.7mmol)とアセトニトリル(330mL)を混合し、水素化ホウ素ナトリウム(4.40g,107mmol)を40℃で加えたのち、74℃まで昇温し、1時間加熱撹拌をおこなった。室温まで冷却し、飽和塩化アンモニウム水溶液(20mL)を加え撹拌した。その後、水(200mL)を加えたのち、ジイソプロピルエーテル(200mL)を用いて抽出し、有機層を飽和食塩水で洗浄した。得られた有機層に硫酸マグネシウムを加え乾燥後ろ過をおこない、減圧下で濃縮した。得られた粗生成物をアセトンで洗浄することにより(I-10-b)8.93gを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.6(d,2H),6.95(d,2H),3.6-3.7(m,2H),2.4-2.5(m,1H),2.1-2.2(m,2H),1.9-2.0(m,2H),1.39-1.51(m,4H)
(I-10-c)の合成:
 (I-10-b)(8.93g,29.6mmol)とDMF(60mL)を混合し、水素化ナトリウム(油性50%,3.40g)を加え、窒素気流下中、泡の発生がなくなるまで撹拌した。その後、2-(11-ブロモウンデコキシ)オキサン(29.5g,88.0mmol)を加えて60℃で5時間撹拌した。室温まで冷却したのち、水(100mL)を加え、ジイソプロピルエーテル(200mL)を加え、抽出をおこなった。2回繰り返したのち、飽和食塩水で洗浄後、硫酸マグネシウムを加えて乾燥を行い、ろ過後減圧で濃縮をおこなった。得られえた粗生成物をシリカゲルカラムクロマトグラフィー(展開液:ヘキサン/酢酸エチル)により精製し、(I-10-c)13.8gを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.59(d,2H),6.95(d,2H),4.5-4.6(m,1H),3.83-3.9(m,1H),3.69-3.74(m,1H),3.2-3.5(m,5H),2.4-2.5(m,1H),2.13-2.18(m,2H),1.2-1.92(m,22H)
(I-10-d)の合成:
 (I-10-c)(2.22g,4.0mmol)、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(84.0mg,0.12mmol)、ヨウ化銅(I)(44.0mg,0.24mmol)、炭酸ナトリウム(1.66g,12.0mmol)、DMF(20mL)を混合し、窒素気流下中、プロピオン酸エチル(588mg,6.0mmol)を加え、70℃で5時間撹拌した。室温まで冷却したのち、水(100mL)を加え、ジイソプロピルエーテルで抽出をおこなった。得られた有機層を飽和食塩水で洗浄し、硫酸マグネシウムを加えて乾燥後、ろ過をおこない、減圧下で濃縮をおこなった。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開液:ヘキサン/酢酸エチル)により精製することにより、(I-10-d)1.78gを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.59(d,2H),7.19(d,2H),4.5-4.6(m,1H),4.29(q,2H),3.83-3.9(m,1H),3.69-3.74(m,1H),3.2-3.5(m,5H),2.4-2.5(m,1H),2.13-2.18(m,2H),1.2-1.92(m,25H)
(I-10-e)の合成:
 (I-10-d)(602mg,1.1mmol)にTHF(5mL)、エタノール(2.5mL)を加えて、完溶させたのち、水酸化カリウム(188mg,3.3mmol)を水(5mL)に溶解した液を加えて室温で1時間撹拌した。2mol/L塩酸(20mL)を加えたのち、室温でさらに10分間撹拌した。その溶液にジイソプロピルエーテルを加えて抽出を行い、有機層を飽和食塩水で洗浄したのち、硫酸マグネシウムを加えて乾燥し、ろ過後減圧下で濃縮をおこなった。得られた粗生成物とエタノール(20mL)、PPTS(30mg,0.12mmol)を混合して、50℃で1時間撹拌した。溶媒を濃縮したのち、水洗することにより(I-10-e)435mg得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDOD,400MHz)δ7.52(d,2H),7.30(d,2H),3.52-3.57(m,4H),3.32-3.36(m,1H),2.4-2.5(m,1H),2.13-2.18(m,2H),1.34-1.59(m,22H)
(I-10-f)の合成:
 (I-10-e)(1.20g,3.0mmol)、N,N-ジメチルアニリン(909mg,7.5mmol)、THF(30mL)を混合し、塩化アクリロイル(452mg,5.0mmol)を0℃で加え、50℃で2.5時間撹拌した。その後、氷冷した2mol/L塩酸(50mL)に反応液を加えて撹拌後、ジイソプロピルエーテルを用いて抽出を行った。有機層を飽和食塩水で洗浄後、硫酸マグネシウムを加え乾燥させたのち、ろ過後減圧下で濃縮した。得られた粗生成物にヘキサンを加えてろ過、懸洗することにより、(I-10-f)691mgを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.53(d,2H),7.23(d,2H),6.39(d,1H),6.11(dd,1H),5.81(d,1H),4.15(t,2H),3.48(t,2H),3.32-3.36(m,1H),2.45-2.5(m,1H),2.13-2.18(m,2H),1.28-1.69(m,22H)
(I-10-g)の合成:
下記に記載の合成法に従い、化合物(I-10-g)を合成した。
Figure JPOXMLDOC01-appb-C000032
 
(1-10-h)の合成:
 (I-1-e)(31.1g,160mmol)、11-ブロモ-1-ウンデカノール(44.2g、176mmol)、炭酸カリウム(44.2g,320mmol)をDMF(125mL)と混合し、100℃で1.5時間撹拌した。撹拌後、室温まで冷却したのち、水(2L)に加え、固形物をろ取し、水で洗浄した。その後固形物をジクロロメタンに溶解し、水、飽和食塩水で洗浄し、硫酸ナトリウムを加えて乾燥後、減圧下濃縮した。濃縮後、イソプロパノールを加えて懸濁させ、固形物をろ取することで(I-10-h)47.6gを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ6.96(d,2H),6.92(d,2H),5.28(m,1H),3.38-3.94(m,3H),3.3-3.6(m,3H),1.14-2.0(m,22H)
(1-10-i)の合成:
 (I-10-h)(47.6g,131mmol)とTHF(480mL)を混合し、N,N-ジメチルアニリン(31.6g,261mmol)と塩化アクリロイル(17.7g,196mmol)を加え、室温で2時間撹拌した。反応液を水に注ぎ、酢酸エチルで抽出した。抽出液を1mol/L塩酸、飽和食塩水で順次洗浄し、硫酸ナトリウムを加えて乾燥後、減圧下で濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)により精製することにより、(I-10-i)48.6gを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ6.96(d,2H),6.92(d,2H),6.3(d,1H),6.15(dd,1H),5.8(d,1H),5.28(m,1H),4.15(t,2H),3.8-4.0(m,3H),3.5-3.6(m,1H),1.2-2.1(m,24H)
(1-10-g)の合成:
 (I-10-i)(48.6g,116mmol)をエタノール(260mL)と混合し、PPTS(2.9g,11.6mmol)を加え、1時間、加熱還流をおこなった。室温まで冷却したのち、反応液を減圧下濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン/酢酸エチル)で精製し(I-10-g)25.9gを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ6.7-6.8(m,4H),6.37(d,2H),6.14(d,1H),6.80(dd,1H),5.8(d,1H),4.15(t,2H),3.75(t,2H),1.2-2.1(m,18H)
(I-10)の合成:
 (I-10-f)(829mg,1.77mmol)、(I-10-g)(669mg,2mmol)、N,N-ジメチル-4-アミノピリジン(43mg,0.35mmol)を塩化メチレン(20mL)と混合し、EDC(403mg,2.1mmol)を窒素気流下中、0℃で加えたのち、室温まで昇温し、3時間撹拌した。飽和炭酸水素ナトリウム水溶液を加えて塩化メチレン溶液で抽出し、得られた有機層を飽和食塩水で洗浄した。その後、硫酸マグネシウムを加え乾燥後、ろ過し、減圧下で濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)により精製し、(I-10)740mgを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.53(d,2H),7.23(d,2H),7.07(d,2H),6.90(d,2H),6.39(d,2H),6.11(dd,2H),5.81(d,4H),4.15(t,2H),3.94(t,2H),3.48(t,2H),3.24-3.27(m,1H),2.45-2.5(m,1H),2.13-2.18(m,2H),1.92-1.95(m,2H),1.2-1.8(m,40H)
<液晶化合物(I-11)>
 下記に記載の合成法に従い、液晶化合物(I-11)を合成した。
Figure JPOXMLDOC01-appb-C000033
 
(I-11-a)の合成:
 (I-8-a)(7.20g、30.5mmol)とDMF(35mL)を混合し、水素化ナトリウム(油性:含有量50%、3.6g、91.4mmol)を加え、窒素気流下中、泡の発生がなくなるまで撹拌した。その後、2-(11-ブロモウンデコキシ)オキサン(19.3g,54.5mmol)を加えて6時間加熱撹拌した。室温まで冷却したのち、水(100mL)を加え、酢酸エチルを用いて抽出をおこなった。3回繰り返したのち、飽和食塩水で洗浄後、硫酸ナトリウムを加えて乾燥を行い、ろ過後減圧で濃縮をおこなった。得られえた粗生成物をシリカゲルカラムクロマトグラフィー(展開液:ヘキサン/酢酸エチル)により精製し、(I-11-a)12.4gを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.12(d,2H),6.97(d,2H),5.15(s,2H),4.56-4.58(m,1H),3.85-3.9(m,1H),3.7-3.75(m,1H),3.41-3.52(m,6H),3.35-3.39(m,1H),3.22-3.35(m,1H),2.4-2.5(m,1H),2.1-2.2(m,2H),1.8-1.93(m,3H),1.68-1.75(m,1H),1.2-1.6(m,29H)
(I-11-b)の合成:
 窒素気流下、(I-11-a)(18.6g、37.9mmol)、PPTS(1.0g、3.8mmol)をエタノール(200mL)と混合し、40℃で撹拌した。溶媒を減圧蒸留したのち、得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開液:ヘキサン:酢酸エチル)を用いて精製し、(I-11-b)10.5gを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.12(d,2H),6.96(d,2H),5.15(s,2H),3.65(t,2H),3.48(t,3H),3.23-3.28(m,1H),2.4-2.5(m,1H),2.1-2.2(m,2H),1.89-1.93(m,2H),1.2-1.6(m,19H)
(I-11-c)の合成:
 窒素気流下、(I-11-b)(1.2g,3.0mmol)とTHF(12mL)を混合し、N,N-ジメチルアニリン(0.56mL,4.5mmol)を加え、氷冷しながら塩化アクリロイル(0.29mL,3.6mmol)を加え、室温で3時間撹拌した。反応溶液を2mol/L塩酸(2.3mL)と氷水(10mL)を混合した溶液に加えpHを1としたのち、酢酸エチルで3回抽出を行った。有機層を水、飽和食塩水で洗浄後、硫酸ナトリウムを加えて乾燥し、ろ過後、減圧下で濃縮することにより(I-11-c)1.36gを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.12(d,2H),6.96(d,2H),6.39(d,1H),6.12(dd,1H),5.81(d,1H),5.15(s,2H),4.12(t,2H),3.46(t,2H),3.23-3.28(m,1H),2.4-2.5(m,1H),2.1-2.2(m,2H),1.89-1.93(m,2H),1.2-1.6(m,19H)
(I-11-d)の合成:
 (I-11-c)(0.05g,0.11mmol)をメタノール(1mL)と混合し、氷冷後、クロロトリメチルシラン(19μL,0.11mmol)を加えて室温で4時間撹拌した。減圧濃縮したのち、シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル)により精製することにより、(I-11-d)35mgを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.08(d,2H),6.77(d,2H),6.39(d,1H),6.12(dd,1H),5.81(d,1H),4.8(s,1H),4.15(t,2H),3.48(t,2H),3.22-3.3(m,1H),2.4-2.47(m,1H),2.1-2.2(m,2H),1.89-1.93(m,2H),1.2-1.6(m,19H)
(I-11)の合成:
 (I-11-d)(3.55g,8.5mmol)、(I-1-d)(3.05g,7.7mmol)、N,N-ジメチル-4-アミノピリジン(188mg,1.54mmol)、を塩化メチレン(50mL)と混合し、EDC(1.77g,9.24mmol)を0℃で加え、室温で4時間撹拌した。反応溶液に炭酸水素ナトリウムの飽和溶液を加えたのち、塩化メチレンで抽出をおこない、得られた有機層を飽和食塩水で洗浄し、硫酸マグネシウムを加えて乾燥後、ろ過濃縮を行った。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、(I-11)1.60gを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.54(d,2H),7.22(d,2H),7.09(d,2H),6.88(d,2H),6.39(d,2H),6.12(dd,2H),5.81(d,1H),4.15(t,4H),3.98(t,2H),3.48(t,2H),3.22-3.3(m,1H),2.4-2.47(m,1H),2.1-2.2(m,2H),1.89-1.93(m,2H),1.75-1.81(m,2H),1.2-1.6(m,38H)
<液晶化合物(I-12)>
 下記に記載の合成法に従い、液晶化合物(I-12)を合成した。
Figure JPOXMLDOC01-appb-C000034
 
(1-12)の合成:
 (I-1-g)(1.44g,3.0mmol)、(I-7-b)(1.26g,3.3mmol)、N,N-ジメチル-4-アミノピリジン(80mg,0.60mmol)を塩化メチレン(30mL)と混合し、EDC(632mg,3.3mmol)を0℃で加え、室温で17時間撹拌した。反応溶液に飽和炭酸水素ナトリウム水溶液を加えたのち、塩化メチレンで抽出をおこない、得られた有機層を飽和食塩水で洗浄し、硫酸マグネシウムを加えて乾燥後、ろ過濃縮を行った。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン/酢酸エチル)で精製し、(I-12)1.26gを得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl,400MHz)δ7.55(d,2H),7.19(d,2H),7.11(d,2H),6.89(d,2H),6.39(dd,2H),6.12(dd,2H),5.81(dd,2H),4.15(t,4H),3.99(t,2H),3.46(t,2H),3.21-3.29(m,1H),2.49-2.57(m,1H),2.15(m4H),1.79(m,2H),1.52-1.72(m,12H),1.24-1.49(m,40H)
 上記で合成した液晶化合物、ならびに下記実施例または比較例で使用した色素の化学構造式を以下に示す。なお、式中、C1122は、メチレン鎖が直鎖状に11個結合していることを意味し、C18は、メチレン鎖が直鎖状に9個結合していることを意味し、C1224は、メチレン鎖が直鎖状に12個結合していることを意味する。
Figure JPOXMLDOC01-appb-C000035
 
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000037
 
Figure JPOXMLDOC01-appb-C000038
 
Figure JPOXMLDOC01-appb-C000039
 
Figure JPOXMLDOC01-appb-C000040
 
Figure JPOXMLDOC01-appb-C000041
 
Figure JPOXMLDOC01-appb-C000042
 
Figure JPOXMLDOC01-appb-C000043
 
Figure JPOXMLDOC01-appb-C000044
 
Figure JPOXMLDOC01-appb-C000045
 
Figure JPOXMLDOC01-appb-C000046
 
Figure JPOXMLDOC01-appb-C000047
 
Figure JPOXMLDOC01-appb-C000048
 
 液晶化合物(I-1)~液晶化合物(I-12)について、等方相出現温度(液晶から液体への相転移温度および液体から液晶への相転移温度)を示差走査熱量測定により求めた。示差走査熱量測定は、サンプル量は0.5mg~10mg、アルミパンを使用し、昇温過程および冷却過程は5℃/分または10℃/分とし、-50℃から任意の温度までの加熱と冷却を3回繰り返し測定し、3回目の測定値を相転移温度とした。
 なお、示差走査熱量測定には、液晶化合物(I-1)~液晶化合物(I-8)および(I-12)については、液晶化合物100重量部に対して、重合禁止剤として4-メトキシフェノールを0.2重量部添加したものを用いた。液晶化合物(I-9)については、後述の異方性色素膜形成用組成物11を用いた。液晶化合物(I-10)については、後述の異方性色素膜形成用組成物12を用いた。液晶化合物(I-11)については後述の異方性色素膜形成用組成物13を用いた。
 その結果を、表1に示す。
 なお、この温度が等方相出現温度であることは、偏光顕微鏡観察およびX線構造解析により確認した。
Figure JPOXMLDOC01-appb-T000049
 
 前記式(1)で表される部分構造を有する液晶化合物である、液晶化合物(I-1)、液晶化合物(I-2)、液晶化合物(I-7)、液晶化合物(I-8)、液晶化合物(I-9)、液晶化合物(I-10)、液晶化合物(I-11)および液晶化合物(I-12)は、前記式(1)で表される部分構造を有さない液晶化合物である、液晶化合物(I-3)、液晶化合物(I-4)、および液晶化合物(I-5)と比べて、等方相出現温度が低く、プロセスの取り扱いやすさ、エネルギー消費の観点、等方相へ加熱する再配向プロセスや、基材の選定自由度に優れていることが明らかである。
実施例A1
 クロロホルム79.80部に、液晶化合物(I-1)の20.00部、式(II-1)のアゾ色素(株式会社林原製)の0.12部、式(II-2)のアゾ色素(昭和化工株式会社製)の0.08部を加え、撹拌して相溶させた後、溶媒を除去することにより、異方性色素膜形成用組成物A1を得た。
 得られた異方性色素膜形成用組成物A1を用いて、上述の方法で二色比を決定するため、異方性色素膜A1を作製し、異方性色素膜A1の二色比を決定した。
 その結果を、表2に示す。なお、異方性色素膜A1の二色比は、40.0℃、570nmにおいて、46.34であった。
実施例A2
 液晶化合物(I-1)に代えて、液晶化合物(I-2)を用いたほかは実施例A1と同様にして、異方性色素膜形成用組成物A2および異方性色素膜A2を得た。異方性色素膜A2について、異方性色素膜A2の二色比を決定した。
 その結果を、表2に示す。
実施例A3
 液晶化合物(I-1)に代えて、液晶化合物(I-7)を用いたほかは実施例A1と同様にして、異方性色素膜形成用組成物A9および異方性色素膜A9を得た。異方性色素膜A9について、異方性色素膜A9の二色比を決定した。
 その結果を、表2に示す。
実施例A4
 液晶化合物(I-1)に代えて、液晶化合物(I-8)を用いたほかは実施例A1と同様にして、異方性色素膜形成用組成物A10および異方性色素膜A10を得た。異方性色素膜A10について、異方性色素膜A10の二色比を決定した。
 その結果を、表2に示す。
実施例A5
 クロロホルム79.80部に、液晶化合物(I-1)の8.00部、液晶化合物(I-9)の12.00部、式(II-1)のアゾ色素(株式会社林原製)の0.12部、式(II-2)のアゾ色素(昭和化工株式会社製)の0.08部を加え、撹拌して相溶させた後、溶媒を除去することにより、異方性色素膜形成用組成物A11を得た。
 得られた異方性色素膜形成用組成物A11を用いて、上述の方法で二色比を決定するため、異方性色素膜A11を作製し、異方性色素膜A11の二色比を決定した。
 その結果を、表2に示す。
実施例A6
 液晶化合物(I-9)に代えて、液晶化合物(I-10)を用いたほかは実施例A5と同様にして、異方性色素膜形成用組成物A12および異方性色素膜A12を得た。異方性色素膜A12について、異方性色素膜A12の二色比を決定した。
 その結果を、表2に示す。
実施例A7
 液晶化合物(I-9)に代えて、液晶化合物(I-11)を用いたほかは実施例A5と同様にして、異方性色素膜形成用組成物A13および異方性色素膜A13を得た。異方性色素膜A13について、異方性色素膜A13の二色比を決定した。
 その結果を、表2に示す。
比較例A1
 液晶化合物(I-1)に代えて、液晶化合物(I-3)を用いたほかは実施例A1と同様にして、異方性色素膜形成用組成物A3および異方性色素膜A3を得た。異方性色素膜A3について、異方性色素膜A3の二色比を決定した。
 その結果を、表2に示す。
比較例A2
 液晶化合物(I-1)に代えて、液晶化合物(I-4)を用いたほかは実施例A1と同様にして、異方性色素膜形成用組成物A4および異方性色素膜A4を得た。異方性色素膜A4について、異方性色素膜A4の二色比を決定した。
 その結果を、表2に示す。
比較例A3
 液晶化合物(I-1)に代えて、液晶化合物(I-5)を用いたほかは実施例A1と同様にして、異方性色素膜形成用組成物A5および異方性色素膜A5を得た。異方性色素膜A5について、異方性色素膜A5の二色比を決定した。
 その結果を、表2に示す。
参考例A1
 液晶化合物(I-1)に代えて、液晶化合物(I-6)を用いたほかは実施例A1と同様にして、異方性色素膜形成用組成物A8および異方性色素膜A8を得た。異方性色素膜A8について、異方性色素膜A8の二色比を決定した。
 その結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000050
 
実施例A8
 シクロペンタノンの69.99部に、液晶化合物(I-1)の28.57部、式(II-1)のアゾ色素の0.43部、式(II-2)のアゾ色素の0.29部、IRGACURE(登録商標)369(BASF社製品)の0.29部、BYK-361N(BYK-Chemie社製)の0.43部を加え、80℃で加熱撹拌後、シリンジフィルター(Membrane Solutions社製、PTFE13045、口径0.45μm)を備えたシリンジを用いて濾過することで異方性色素膜用組成物A6を得た。
 異方性色素膜用組成物A6をスピンコート法により、ガラス上にポリイミドの配向膜(LX1400、日立化成デュポンマイクロシステムズ社製、ラビング法で配向膜を作製)が形成された基板に成膜し、120℃で2分間加熱乾燥した後、液晶相まで冷却し露光量500mj/cm(365nm基準)で重合し異方性色素膜A6を得た。得られた異方性色素膜A6を市販の偏光板の上にかざし回転させると明暗し、偏光膜として利用しうる良好な性能を示すことが確認できた。
実施例A9
 用いた基板を、ポリイミドフィルム(膜厚100μm)上にポリイミドの配向膜(LX1400、日立化成デュポンマイクロシステムズ社製、ラビング法で配向膜を作製)が形成された基板を用いたほかは実施例A8と同様にして、異方性色素膜用組成物A6から異方性色素膜A7を得た。得られた異方性色素膜A7を市販の偏光板の上にかざし回転させると明暗し、偏光膜として利用しうる良好な性能を示すことが確認できた。
 上記より、前記式(1)で表される部分構造を有する液晶化合物である、液晶化合物(I-1)または液晶化合物(I-2)を用いて作成した膜は、偏光膜として十分に機能しうることが明らかとなった。
 以下、本発明の第二の態様を具体的な例を用いて説明する。
[液晶化合物の合成B]
<液晶化合物(III-1)>
 下記に記載の合成法に従い、液晶化合物(III-1)を合成した。
Figure JPOXMLDOC01-appb-C000051
 
(III-1-a)の合成:
 Lub et al.,Recl.Trav.Chim.Pays-Bas,115,321-328(1996)に記載の化合物に準じた方法で(III-1-a)を合成した。
(III-1-b)の合成:
 4-ヨードフェノール(3.62g,16.5mmol)、(III-1-a)(6.43g,16.1mmol)、N,N-ジメチルアミノ-4-ピリジン(0.39g,3.20mmol)、塩化メチレン(80mL)を混合し、氷浴で冷却したのち、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)(3.39g,17.7mmol)を添加し、5分間撹拌した。その後、室温で2時間攪拌し、塩化アンモニウム飽和水溶液、続いて飽和食塩水で洗浄した。溶液を濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、白色固体(III-1-b)を8.49g得た。
(III-1-c)の合成:
 ジイソプロピルアミン(70mL)に(III-1-b)(5.00g,8.33mmol)を入れ完溶させた後、ジクロロビス(トリフェニルホスフィン)パラジウム(II)(58mg,0.08mmol)、ヨウ化銅(I)(48mg,0.25mmol)を混合し、トリメチルシリルアセチレン(0.98g,9.99mmol)を添加した。室温で30分間撹拌した後、水-酢酸エチルで抽出した後、飽和食塩水で洗浄した。溶液を濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、白色固体(III-1-c)を4.30g得た。
(III-1-d)の合成:
 (III-1-c)(4.30g,7.53mmol)、クロロホルム(100mL)を混合し、氷浴で冷却したのち、フッ化テトラ-n-ブチルアンモニウム(TBAF)テトラヒドロフラン溶液(1mol/L,9mL)を添加した。20分間撹拌後、水-クロロホルムで抽出し、飽和食塩水で洗浄した。溶液を濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、白色固体(III-1-d)を3.80g得た。
(III-1-e)の合成:
 (III-1-b)(3.56g,5.93mmol)、テトラキストリフェニルホスフィンパラジウム(0)(68mg,0.06mmol)、ヨウ化銅(I)(34mg,0.18mmol)、ジイソプロピルアミン(120mL)を混合し、氷浴で冷却したのち、(III-1-d)(2.96g,5.93mmol)のジイソプロピルアミン(40mL)溶液を添加した。室温で1時間撹拌した後、水-クロロホルムで抽出した後、飽和食塩水で洗浄した。溶液を濃縮し、シリカゲルカラムクロマトグラフィー(クロロホルム)で精製し、白色固体(III-1-e)を得た。
(III-1-f)の合成:
 上記操作で得られた(III-1-e)、テトラヒドロフラン(60mL)を混合し、50℃で完溶させた後、エタノール(60mL)を添加した。このスラリー溶液にp-トルエンスルホン酸ピリジニウム塩(PPTS)(0.54g,2.13mmol)を加え、60℃で2時間加熱した後、一晩放置した。翌日再び60℃に加熱し完溶させた後、氷水に反応液を加えた。クロロホルムで抽出、溶液を濃縮の後、得られた固体をヘキサンで懸洗し白色固体(III-1-f)を4.02g得た。
(III-1)の合成:
 (III-1-f)(4.00g,4.98mmol)、アクリル酸(0.72g,9.96mmol、N,N-ジメチル-4-アミノピリジン(0.12g,0.10mmol)、ジクロロメタン(100mL)を混合し、氷浴で冷却したのち、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC)(2.10g,11.0mmol)を添加した。2時間撹拌した後、アクリル酸(0.36g,4.98mmol)、EDC(1.05g,5.5mmol)を添加、18時間後さらにアクリル酸(0.36g,4.98mmol)、EDC(1.05g,5.5mmol)を添加し、5時間撹拌した。反応液を塩化アンモニウム飽和水溶液、続いて飽和食塩水で洗浄し、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、白色固体(III-1)を2.30g得た。
 NMRによる構造確認をおこなった。結果を以下に示す。
H NMR(CDCl、400MHz)δ7.52(d,4H,J=8.8Hz),7.06(d,4H,J=8.8Hz),6.40(d,2H,J=17.2Hz),6.12(dd,2H,J=10.4,17.2Hz),5.81(d,2H,J=10.4Hz),4.15(t,4H,J=6.8Hz),3.46(t,4H,J=9.2Hz),3.30-3.20(m,2H),2.60-2.45(m,2H),2.22-2.10(m,8H),1.70-1.50(m,8H),1.45-1.25(m,36H)
 化合物(III-1)が液晶性を示すことは、液晶化合物100重量部に対して、重合禁止剤として4-メトキシフェノールを0.2重量部添加したものを用いて、ホットステージが付属する偏光顕微鏡にて、70℃で複屈折が観察されたことで確認した。
<液晶化合物(III-2)>
 上記<液晶化合物(I-6)>と同様の合成法で、液晶化合物(I-6)と同じ化合物の液晶化合物(III-2)を合成した。
 化合物(III-2)が液晶性を示すことは、液晶化合物100重量部に対して、重合禁止剤として4-メトキシフェノールを0.2重量部添加したものを用いて、ホットステージが付属する偏光顕微鏡にて、40℃で複屈折が観察されたことで確認した。
 上記で合成した液晶化合物、ならびに下記実施例で使用した色素の化学構造式を以下に示す。なお、式中、C1122は、メチレン鎖が直鎖状に11個結合していることを意味する。
Figure JPOXMLDOC01-appb-C000052
 
Figure JPOXMLDOC01-appb-C000053
 
Figure JPOXMLDOC01-appb-C000054
 
Figure JPOXMLDOC01-appb-C000055
 
実施例B1
 クロロホルム79.80部に、液晶化合物(III-1)の20.00部、式(II-1)のアゾ色素(株式会社林原製)の0.12部、式(II-2)のアゾ色素(昭和化工株式会社製)の0.08部を加え、撹拌して相溶させた後、溶媒を除去することにより、異方性色素膜形成用組成物B1を得た。
 異方性色素膜形成用組成物B1が液晶性を示すことは、ホットステージが付属する偏光顕微鏡にて、70℃で複屈折が観察されたことで確認した。
 得られた異方性色素膜形成用組成物B1を用いて、上述の方法で二色比を決定するため、異方性色素膜B1を作製し、異方性色素膜B1の二色比を決定した。
 その結果を、表3に示す。
実施例B2
 シクロペンタノンの69.99部に、液晶化合物(III-1)の28.57部、式(II-1)のアゾ色素の0.43部、式(II-2)のアゾ色素の0.29部、IRGACURE(登録商標)369(BASF社製品)の0.29部、BYK-361N(BYK-Chemie社製)の0.43部を加え、80℃で加熱撹拌後、シリンジフィルター(Membrane Solutions社製、PTFE13045、口径0.45μm)を備えたシリンジを用いて濾過することで異方性色素膜用組成物B2を得た。
 異方性色素膜用組成物B2をスピンコート法により、ガラス上にポリイミドの配向膜(LX1400、日立化成デュポンマイクロシステムズ社製、ラビング法で配向膜を形成)が形成された基板に成膜し、120℃で2分間加熱乾燥した後、液晶相まで冷却し露光量500mj/cm(365nm基準)で重合し異方性色素膜B2を得た。得られた異方性色素膜B2を市販の偏光板の上にかざし回転させると明暗し、偏光膜として利用ししうる良好な性能を示すことが確認できた。
 上記より、前記式(B1)で表される部分構造を有する液晶化合物である、液晶化合物(III-1)を用いて作成した膜は、偏光膜として十分に機能しうることが明らかとなった。
実施例B3
 液晶化合物(III-1)に代えて、液晶化合物(III-2)を用いたほかは実施例B1と同様にして、異方性色素膜形成用組成物B3および異方性色素膜B3を得た。
 異方性色素膜形成用組成物B3が液晶性を示すことは、ホットステージが付属する偏光顕微鏡にて、40℃で複屈折が観察されたことで確認した。
 異方性色素膜B3について、異方性色素膜B3の二色比を決定した。
 その結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000056
 
 上記より、前記式(B1)で表される部分構造を有する液晶化合物である、液晶化合物(III-1)または液晶化合物(III-2)を用いて作成した膜は、偏光膜として十分に機能しうることが明らかとなった。
 本発明の異方性色素膜形成用組成物は、優れた光学性能、特に十分な二色比を実現できる。
 本発明の異方性色素膜は、本発明の異方性色素膜形成用組成物を用いて形成されるため、優れた光学性能、特に十分な二色比を実現できる。
 本発明の光学素子は、本発明の異方性色素膜を含むため、優れた光学性能、特に十分な二色比を実現できる。
 本発明の異方性色素膜形成用組成物は、優れた光学性能、特に十分な二色比を維持したまま、低い等方相出現温度を実現できる。
 本発明の異方性色素膜は、本発明の異方性色素膜形成用組成物を用いて形成されるため、優れた光学性能、特に十分な二色比を維持でき、より低い温度で形成することが可能である。
 本発明の光学素子は、本発明の異方性色素膜を含むため、優れた光学性能、特に十分な二色比を維持でき、より低い温度で形成することが可能な異方性色素膜を含むことができる。
 本発明の異方性色素膜形成用組成物は、優れた光学性能、特に十分な二色比を実現できる。
 本発明の異方性色素膜は、本発明の異方性色素膜形成用組成物を用いて形成されるため、優れた光学性能、特に十分な二色比を実現できる。
 本発明の光学素子は、本発明の異方性色素膜を含むため、優れた光学性能、特に十分な二色比を実現できる。

Claims (12)

  1.  色素および液晶化合物を含有する異方性色素膜形成用組成物であって、
     前記液晶化合物は、式(1)で表される部分構造を有する液晶化合物を含む異方性色素膜形成用組成物。
     -Cy-X2-C≡C-X-  ・・・(1)
    (式中、
     Cyは、炭化水素環基または複素環基を表し;
     -X-は、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
     -X2-は、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表す。)
  2.  -X-が、-C(=O)O-、-OC(=O)-、-CHCH-、-CHO-、または-OCH-である、請求項1に記載の異方性色素膜形成用組成物。
  3.  Cyが、炭化水素環基であり、-X2-が、単結合である、請求項1または2に記載の異方性色素膜形成用組成物。
  4.  前記液晶化合物が、式(2)で表される液晶化合物である、請求項1~3のいずれか一項に記載の異方性色素膜形成用組成物。
     R1-A1-Y1-A2-Y2-A3-R2  ・・・(2)
    (式中、
     R1およびR2は、それぞれ独立に、鎖状有機基を表し;
     A1およびA3は、それぞれ独立に、前記式(1)で表される部分構造、2価有機基、または単結合を表し;
     A2は、前記式(1)で表される部分構造または2価有機基を表し;
     -Y1-および-Y2-は、それぞれ独立に、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
     A1およびA3の一方は、前記式(1)で表される部分構造または2価有機基であり;
     A1、A2、およびA3のうち、少なくとも一つは、前記式(1)で表される部分構造である。)
  5.  A1、A2、およびA3のうち、一つが、前記式(1)で表される部分構造であり、Cyが炭化水素環基であり、-X2-が単結合であり;それ以外の二つが、それぞれ独立に、2価有機基であり、前記2価有機基が炭化水素環基である、請求項4に記載の異方性色素膜形成用組成物。
  6.  前記炭化水素環基が、1,4-フェニレン基またはシクロヘキサン-1,4-ジイル基である、請求項5に記載の異方性色素膜形成用組成物。
  7.  -Y1-および-Y2-が、それぞれ独立に、単結合、-C(=O)O-、-OC(=O)-、-CHCH-、-CHO-、または-OCH-であり、-X-が、-C(=O)O-、-OC(=O)-、-CHCH-、-CHO-、または-OCH-である、請求項4~6のいずれか一項に記載の異方性色素膜形成用組成物。
  8.  Cyが、1,4-フェニレン基である、請求項4~7のいずれか一項に記載の異方性色素膜形成用組成物。
  9.  A1およびA3の一方が、シクロヘキサン-1,4-ジイル基である、請求項4~8のいずれか一項に記載の異方性色素膜形成用組成物。
  10.  A1およびA3の一方が、前記式(1)で表される部分構造であり、
     他方が、シクロヘキサン-1,4-ジイル基である、請求項4~9のいずれか一項に記載の異方性色素膜形成用組成物。
  11.  請求項1~10のいずれか一項に記載の異方性色素膜形成用組成物を用いて形成された、異方性色素膜。
  12.  請求項11に記載の異方性色素膜を含む、光学素子。
PCT/JP2019/011270 2018-03-19 2019-03-18 異方性色素膜形成用組成物、異方性色素膜、および光学素子 WO2019181888A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980016045.9A CN111788505B (zh) 2018-03-19 2019-03-18 各向异性色素膜形成用组合物、各向异性色素膜及光学元件
KR1020207024854A KR102710150B1 (ko) 2018-03-19 2019-03-18 이방성 색소막 형성용 조성물, 이방성 색소막, 및 광학 소자

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018051634 2018-03-19
JP2018-051634 2018-03-19
JP2019-047473 2019-03-14
JP2019047473A JP7272021B2 (ja) 2019-03-14 2019-03-14 異方性色素膜形成用組成物、異方性色素膜、および光学素子

Publications (1)

Publication Number Publication Date
WO2019181888A1 true WO2019181888A1 (ja) 2019-09-26

Family

ID=67986506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011270 WO2019181888A1 (ja) 2018-03-19 2019-03-18 異方性色素膜形成用組成物、異方性色素膜、および光学素子

Country Status (4)

Country Link
KR (1) KR102710150B1 (ja)
CN (1) CN111788505B (ja)
TW (1) TWI795538B (ja)
WO (1) WO2019181888A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071162A1 (ja) * 2022-09-27 2024-04-04 三菱ケミカル株式会社 光学異方性積層体および光学素子

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189715A (ja) * 2002-10-15 2004-07-08 Chisso Corp 液晶性ビニルケトン誘導体およびその重合体
JP2005035985A (ja) * 2003-06-23 2005-02-10 Chisso Corp 液晶性化合物、液晶組成物およびそれらの重合体
JP2011184417A (ja) * 2010-03-11 2011-09-22 Dic Corp 重合性アセチレン化合物
KR20120139428A (ko) * 2011-06-17 2012-12-27 한국화학연구원 중합성 메조겐 또는 액정 화합물 및 이의 제조 방법
JP2013506015A (ja) * 2009-09-28 2013-02-21 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 重合性化合物および液晶ディスプレイにおけるそれらの使用
JP2015078153A (ja) * 2013-10-17 2015-04-23 Dic株式会社 重合性化合物及び光学異方体
WO2015122387A1 (ja) * 2014-02-12 2015-08-20 Jx日鉱日石エネルギー株式会社 位相差板、位相差板を用いた積層偏光板、および位相差板を用いた表示装置
WO2016114066A1 (ja) * 2015-01-16 2016-07-21 Dic株式会社 重合性組成物及びそれを用いた光学異方体
WO2018186503A1 (ja) * 2017-04-07 2018-10-11 富士フイルム株式会社 異方性光吸収膜および積層体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543748B2 (ja) 1987-07-03 1996-10-16 株式会社クラレ 偏光フイルム及びその製造法
DE10033912A1 (de) * 1999-09-18 2001-05-03 Merck Patent Gmbh Chirale polymerisierbare Verbindungen
EP1256602A1 (en) 2001-05-08 2002-11-13 Rolic AG Dichroic mixture
JP5336206B2 (ja) * 2009-01-16 2013-11-06 富士フイルム株式会社 液晶性組成物、これを用いた光吸収異方性膜、偏光素子及び液晶表示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189715A (ja) * 2002-10-15 2004-07-08 Chisso Corp 液晶性ビニルケトン誘導体およびその重合体
JP2005035985A (ja) * 2003-06-23 2005-02-10 Chisso Corp 液晶性化合物、液晶組成物およびそれらの重合体
JP2013506015A (ja) * 2009-09-28 2013-02-21 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 重合性化合物および液晶ディスプレイにおけるそれらの使用
JP2011184417A (ja) * 2010-03-11 2011-09-22 Dic Corp 重合性アセチレン化合物
KR20120139428A (ko) * 2011-06-17 2012-12-27 한국화학연구원 중합성 메조겐 또는 액정 화합물 및 이의 제조 방법
JP2015078153A (ja) * 2013-10-17 2015-04-23 Dic株式会社 重合性化合物及び光学異方体
WO2015122387A1 (ja) * 2014-02-12 2015-08-20 Jx日鉱日石エネルギー株式会社 位相差板、位相差板を用いた積層偏光板、および位相差板を用いた表示装置
WO2016114066A1 (ja) * 2015-01-16 2016-07-21 Dic株式会社 重合性組成物及びそれを用いた光学異方体
WO2018186503A1 (ja) * 2017-04-07 2018-10-11 富士フイルム株式会社 異方性光吸収膜および積層体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071162A1 (ja) * 2022-09-27 2024-04-04 三菱ケミカル株式会社 光学異方性積層体および光学素子

Also Published As

Publication number Publication date
KR20200131223A (ko) 2020-11-23
CN111788505B (zh) 2022-10-04
CN111788505A (zh) 2020-10-16
TW201940672A (zh) 2019-10-16
TWI795538B (zh) 2023-03-11
KR102710150B1 (ko) 2024-09-25

Similar Documents

Publication Publication Date Title
TWI589938B (zh) A retarder, a circular polarizer, and a video display device
JP5219594B2 (ja) 組成物、光学フィルム及びフラットパネル表示装置
JP2002308832A (ja) 重合性液晶化合物および光学フィルム
JP2006330710A (ja) フィルム及びその製造方法
US12049583B2 (en) Compound, composition for anisotropic dye films including the compound, anisotropic dye film, and optical element
JP2002265421A (ja) 液晶性(メタ)アクリレート化合物、該化合物を含有する液晶組成物およびこれらを用いた光学フィルム
KR100951312B1 (ko) 플루오렌 유도체, 이를 포함하는 액정 조성물 및 이 액정조성물을 사용한 광학 필름
JP6798600B2 (ja) 異方性色素膜形成用組成物、異方性色素膜、および光学素子
JP2018053167A (ja) 二色性色素化合物、着色組成物、光吸収異方性膜、積層体および画像表示装置
KR101095695B1 (ko) 중합성 액정 화합물, 이를 포함하는 액정 조성물 및 이 액정 조성물을 사용한 광학 필름
WO2019181888A1 (ja) 異方性色素膜形成用組成物、異方性色素膜、および光学素子
KR100951311B1 (ko) 이축성 액정 화합물, 이를 포함하는 액정 조성물 및 이액정 조성물을 사용한 광학 필름
WO2019188495A1 (ja) 光学異方体及びその製造方法、1/4波長板、偏光板及び有機エレクトロルミネッセンス表示パネル
JP7467850B2 (ja) 異方性色素膜形成用組成物、異方性色素膜、および光学素子
WO2023063249A1 (ja) 化合物、該化合物を含む異方性色素膜用組成物、異方性色素膜および光学素子
JP6042538B2 (ja) 重合性液晶化合物、これを含む液晶組成物及び光学異方体
JP4076288B2 (ja) 光学的異方性材料、異方導電性材料、それらの製造方法およびディスコティック液晶性分子
JP7272021B2 (ja) 異方性色素膜形成用組成物、異方性色素膜、および光学素子
JP7467851B2 (ja) 異方性色素膜形成用組成物、異方性色素膜、および光学素子
JP2022028423A (ja) 異方性色素膜形成用組成物、異方性色素膜、および光学素子
JP7363887B2 (ja) 異方性色素膜形成用組成物、異方性色素膜、および光学素子
WO2024024701A1 (ja) 光学異方性膜および位相差板
CN115772409A (zh) 具有高度有序二色性宾主效应的可聚合液晶体系及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19770919

Country of ref document: EP

Kind code of ref document: A1