WO2023063249A1 - 化合物、該化合物を含む異方性色素膜用組成物、異方性色素膜および光学素子 - Google Patents

化合物、該化合物を含む異方性色素膜用組成物、異方性色素膜および光学素子 Download PDF

Info

Publication number
WO2023063249A1
WO2023063249A1 PCT/JP2022/037584 JP2022037584W WO2023063249A1 WO 2023063249 A1 WO2023063249 A1 WO 2023063249A1 JP 2022037584 W JP2022037584 W JP 2022037584W WO 2023063249 A1 WO2023063249 A1 WO 2023063249A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
carbon atoms
anisotropic dye
dye film
Prior art date
Application number
PCT/JP2022/037584
Other languages
English (en)
French (fr)
Inventor
芳恵 ▲高▼見
靖 志賀
誠治 秋山
輝恒 大澤
奏也 小島
淳一 大泉
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2023554492A priority Critical patent/JPWO2023063249A1/ja
Priority to CN202280046249.9A priority patent/CN117580842A/zh
Priority to KR1020237044911A priority patent/KR20240082268A/ko
Publication of WO2023063249A1 publication Critical patent/WO2023063249A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/68Benzothiazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • C07D277/82Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B33/00Disazo and polyazo dyes of the types A->K<-B, A->B->K<-C, or the like, prepared by diazotising and coupling
    • C09B33/02Disazo dyes
    • C09B33/12Disazo dyes in which the coupling component is a heterocyclic compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B43/00Preparation of azo dyes from other azo compounds
    • C09B43/08Preparation of azo dyes from other azo compounds by reduction
    • C09B43/10Preparation of azo dyes from other azo compounds by reduction with formation of a new azo or an azoxy bridge
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/006Preparation of organic pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K19/2014Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups containing additionally a linking group other than -COO- or -OCO-, e.g. -CH2-CH2-, -CH=CH-, -C=C-; containing at least one additional carbon atom in the chain containing -COO- or -OCO- groups, e.g. -(CH2)m-COO-(CH2)n-
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes
    • C09K19/601Azoic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate

Definitions

  • the present invention relates to compounds useful for polarizing films and the like provided in display elements such as light control elements, liquid crystal elements (LCDs), and organic electroluminescence elements (OLEDs).
  • display elements such as light control elements, liquid crystal elements (LCDs), and organic electroluminescence elements (OLEDs).
  • the present invention also relates to an anisotropic dye film-forming composition, an anisotropic dye film and an optical element containing this compound.
  • LCDs use linear polarizing films and circular polarizing films to control optical rotation and birefringence in display.
  • OLEDs also use a circularly polarizing film to prevent reflection of external light in a bright place.
  • a polarizing film for example, one containing a polarizing film (iodine-PVA polarizing film) obtained by dyeing polyvinyl alcohol (PVA) with a low concentration of iodine is known (Patent Document 1).
  • a polarizing film iodine-PVA polarizing film obtained by dyeing polyvinyl alcohol (PVA) with a low concentration of iodine
  • Patent Document 1 a polarizing film obtained by dyeing polyvinyl alcohol (PVA) with a low concentration of iodine
  • the iodine-PVA polarizing plate with a low PVA concentration has problems such as iodine sublimation or deterioration depending on the usage environment, resulting in a change in color tone, and a problem that stretching of PVA is eased. There is a problem that warpage occurs.
  • Patent Document 2 an anisotropic dye film formed by applying a liquid crystal composition containing a dye functions as a polarizing film.
  • Patent Document 2 there is no disclosure of a dichroic dye that has a maximum absorption in the wavelength range of 560 nm to 800 nm and has both a sufficient dichroic ratio and solubility.
  • an anisotropic dye film combining a dye having a benzothiazole or thienothiazole skeleton and a polymerizable liquid crystal is known (Patent Document 3).
  • a dye having a benzothiazole or thienothiazole skeleton may precipitate in an anisotropic dye film-forming composition that requires solubility.
  • a polarizing film formed by applying a liquid crystal composition containing a dye is desired to have high light absorption selection performance even in a thin film and to have no light leakage in the wavelength range of 350 nm to 800 nm. Therefore, it is necessary to use a plurality of dyes with high dichroism so as to comprehensively absorb the wavelength region of 350 nm to 800 nm.
  • the composition contains a plurality of dyes, the dye concentration in the composition increases, and when the coating is performed under thin film conditions, the dye concentration relative to the liquid crystal increases, making it easier for the dye to precipitate, resulting in poor coating performance. descend.
  • the inventors have found that a compound having a specific structure can solve the above problems.
  • the present invention has the following aspects.
  • a compound represented by the following formula (1) A compound represented by the following formula (1).
  • -A 1 - and -A 2 - each independently have a polycyclic aromatic heterocyclic bivalent group containing one or more optionally substituted S atoms, or a substituent; represents a divalent group of an aromatic hydrocarbon ring that may be -A 3 - represents a divalent group of an aromatic hydrocarbon ring which may have a substituent;
  • -X represents a monovalent organic group,
  • —R x represents an optionally substituted alkyl group having 3 to 15 carbon atoms.
  • —R y represents a hydrogen atom or an optionally branched alkyl group having 1 to 15 carbon atoms, and the optionally branched alkyl group having 1 to 15 carbon atoms is a substituent; may have.
  • R z represents a hydrogen atom or an optionally branched alkyl group having 1 to 15 carbon atoms.
  • n represents 1, 2 or 3; When n is 2 or 3, multiple -A 2 - may be the same or different. However, both -A 1 - and -A 2 - are not divalent groups of an aromatic hydrocarbon ring which may have a substituent. )
  • the polycyclic aromatic heterocyclic ring containing one or more S atoms is a benzothiophene ring, a thienopyrrole ring, a thienothiophene ring, a furothiazole ring, a thienofuran ring, and a thienothiazole ring.
  • a benzoisothiazole ring, or a benzothiazole ring the compound according to [1].
  • At least one of -A 2 - is a polycyclic aromatic heterocyclic divalent group containing one or more optionally substituted S atoms, The compound according to [1] or [2].
  • —Y is —N(—R y )—R x
  • —R x is an optionally substituted branched C 3-15 alkyl
  • -R y is a hydrogen atom or an optionally branched alkyl group having 1 to 15 carbon atoms, and the total number of carbon atoms in the alkyl groups of -R x and -R y is 15 or less
  • —Y is —N(—R y )—R x
  • —R x is an optionally substituted branched C 3-15 alkyl -R y is a hydrogen atom or an unbranched C 1-15 alkyl group, and the unbranched C 1-15 alkyl group may have a substituent , the compound according to any one of [1] to [4].
  • -X is an unbranched alkyl group having 3 or more carbon atoms, an alkoxy group, an alkyl ester group, an alkoxycarbonyl group or an alkylsulfanyl group, [1] to [7 ] The compound according to any one of the above.
  • a composition for forming an anisotropic dye film containing the compound according to any one of [1] to [8] and a polymerizable liquid crystal compound containing the compound according to any one of [1] to [8] and a polymerizable liquid crystal compound.
  • a method for producing an anisotropic dye film comprising the step of applying the anisotropic dye film-forming composition according to any one of [9] to [13] to a substrate.
  • the compounds of the present invention have moderately bulky substituents and are compatible with high dichroism and solubility. Since the anisotropic dye film-forming composition of the present invention contains such a compound of the present invention, precipitation of the compound can be suppressed, coating performance can be improved, and a high dichroic ratio can be realized. According to the anisotropic dye film and the optical element using the composition for forming an anisotropic dye film of the present invention, excellent optical performance, particularly a sufficient dichroic ratio can be achieved.
  • the anisotropic dye film refers to the electromagnetic properties in any two directions selected from a total of three directions in the three-dimensional coordinate system of the thickness direction of the anisotropic dye film and any two orthogonal in-plane directions. It is an anisotropic dye film. Electromagnetic properties include, for example, optical properties such as absorption and refraction, and electrical properties such as resistance and capacitance. Examples of films having optical anisotropy such as absorption and refraction include polarizing films such as linear polarizing films and circular polarizing films, retardation films, and conductive anisotropic dye films. The anisotropic dye film of the present invention is preferably used as a polarizing film or a conductive anisotropic dye film, more preferably as a polarizing film.
  • —R y represents a hydrogen atom or an optionally branched alkyl group having 1 to 15 carbon atoms, and the optionally branched alkyl group having 1 to 15 carbon atoms is a substituent; may have.
  • R z represents a hydrogen atom or an optionally branched alkyl group having 1 to 15 carbon atoms.
  • n represents 1, 2 or 3; When n is 2 or 3, multiple -A 2 - may be the same or different. However, both -A 1 - and -A 2 - are not divalent groups of an aromatic hydrocarbon ring which may have a substituent. )
  • (-X) -X represents a monovalent organic group.
  • the monovalent organic group for -X includes a hydrogen atom, a hydroxy group, an amino group, a cyano group, a carbamoyl group, a nitro group, a halogen atom, -R a , -OR a , -NH-R a , and -C.
  • —R a and —R b are each independently an optionally branched alkyl group having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and the number of atoms constituting the ring represents a cycloalkyl group having 5 to 14, preferably 5 to 10 atoms or an aryl group having 5 to 14, preferably 5 to 10 ring atoms.
  • Each of the alkyl group, cycloalkyl group and aryl group may have a substituent.
  • —R a and —R b may together form a ring having 2 to 15 carbon atoms, preferably 2 to 10 carbon atoms, and the ring may have a substituent.
  • R f and —R g each independently represent a straight or branched alkyl group having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms.
  • One or more methylene groups contained in the linear or branched alkyl group having 1 to 15 carbon atoms are -O-, -S-, -NH-, -N(R h )-, ( _ displace) structure, or a structure replaced with a polymerizable group such as an acryloyloxy group, a methacryloyloxy group, or a glycidyloxy group.
  • R h represents a linear or branched alkyl group having 1 to 6 carbon atoms.
  • the substituent acceptable for the optionally branched alkyl group having 1 to 15 carbon atoms in -R a and -R b is preferably -OR f , for example, methoxy group, ethoxy group, n-propoxy group, n-butoxy group, n-pentoxy group, n-hexoxy group, n-heptoxy group, n-octoxy group, acryloyloxy group, methacryloyloxy group, glycidyloxy group and the like.
  • -R i and -R j each independently represent a linear
  • -R i and -O-R i are preferred as the substituents permissible for the cycloalkyl group or aryl group having 5 to 14 ring-constituting atoms in -R a and -R b .
  • the cycloalkane ring of the cycloalkyl group having 5 to 14 atoms constituting the rings of -R a and -R b includes, for example, a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, Cyclooctane ring, cyclohexene ring, norbornane ring, bornane ring, adamantane ring, tetrahydronaphthalene ring, bicyclo[2.2.2]octane ring and the like.
  • the aryl group having 5 to 14 atoms constituting the ring of -R a and -R b includes a monovalent aromatic heterocyclic ring and a ring exemplified later as an aromatic hydrocarbon ring in -A 3 - can be mentioned.
  • —R a and —R b are optionally branched alkyl groups having 1 to 15 carbon atoms, or —R a and —R b together have a substituent It preferably forms a ring having 2 to 15 carbon atoms, which may be Furthermore, it is more preferably an optionally branched alkyl group having 1 to 6 carbon atoms, or —R a and —R b together form a ring; It is more preferably an alkyl group having 1 to 3 carbon atoms which may be substituted, or --R a and --R b together form a ring. Due to the above, the molecular orientation of the compound of the present invention tends to be good.
  • the number of carbon atoms in -X is preferably 3 or more and 15 or less, more preferably 3 or more and 10 or less, from the viewpoint of good molecular alignment with the polymerizable liquid crystal compound used in the present invention.
  • -R includes, for example, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group and n-nonyl group. From the viewpoint of good molecular alignment with the polymerizable liquid crystal compound used in the present invention, -R is preferably an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, or an n-octyl group. .
  • the monovalent organic group in -X preferably does not have a polymerizable group from the viewpoint of improving the molecular alignment with the polymerizable liquid crystal compound.
  • the monovalent organic group in -X preferably has a polymerizable group from the viewpoint of improving the mechanical strength of the anisotropic dye film.
  • Y is preferably -N(-R y )-R x from the viewpoint of good molecular orientation of the compound of the present invention.
  • —R x represents a branched alkyl group having 3 to 15 carbon atoms, which may have a substituent, and from the viewpoint of good molecular orientation with the polymerizable liquid crystal compound, The number of carbon atoms is preferably 3-10, more preferably 3-8, even more preferably 3-6.
  • R x specifically includes, for example, 1-methylethyl group, 1,1-dimethylethyl group, 1-methylpropyl group, 2-methylpropyl group, 1,2-dimethylpropyl group, 2,2 -dimethylpropyl group, 1,2,2-trimethylpropyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 3,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1,3- dimethylbutyl group, 1,3,3-trimethylbutyl group, 2,3,3-trimethylbutyl group, 2,2,3-trimethylbutyl group, 1,2,2-trimethylbutyl group, 4-methylpentyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, 4,4-dimethylpentyl group, 3,3-dimethylpentyl group, 2,2-dimethylpentyl group, 3,4-dimethylpentyl group, 2,4-d
  • R x is a 1-methylethyl group, a 1,1-dimethylethyl group, a 1-methylpropyl group, a 2-methylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, 1,2,2-trimethylpropyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 3,3-dimethylbutyl group, 2 ,3-dimethylbutyl group, 1,3-dimethylbutyl group, 1,3,3-trimethylbutyl group, 2,3,3-trimethylbutyl group, 1,2,2-trimethylbutyl group, 4-methylpentyl group , 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, 4,4-dimethylpentyl group, 3,4,4-trimethylpentyl group, 2,4,4-trimethylpentyl group, 2,4,4-trimethylpentyl
  • a structure having a branch on the root side of —R x is preferable, such as 1-methylethyl group, 1-methylpropyl group, 1-methylbutyl group, 1 , 2-dimethylbutyl group, 1-methylpentyl group, 1,2-dimethylpentyl group, 1,3-dimethylpentyl group, 1,2,3-trimethylpentyl group, 1-methylhexyl group, 1,2-dimethyl hexyl group, 1,3-dimethylhexyl group, 1,4-dimethylhexyl group, 1,2,3-trimethylhexyl group, 1,3,4-trimethylhexyl group, 1-methylheptyl group, 1,2-dimethyl A heptyl group, a 1,3-dimethylheptyl group, a 1,4-dimethylheptyl group and a 1,5-dimethylheptyl group
  • —R z represents a hydrogen atom or an optionally branched alkyl group having 1 to 15 carbon atoms.
  • optionally branched alkyl group having 1 to 15 carbon atoms include alkyl groups having 1 to 15 carbon atoms which may be branched among the above-mentioned -X monovalent organic groups. Those exemplified as the group can be mentioned.
  • R z1 and —R z2 each independently represent a linear or branched alkyl group having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms.
  • One or more methylene groups contained in the linear or branched alkyl group having 1 to 15 carbon atoms are -O-, -S-, -NH-, -N(R z3 )-, ( _ displace) structure, or a structure replaced with a polymerizable group such as an acryloyloxy group, a methacryloyloxy group, or a glycidyloxy group.
  • R z3 represents a linear or branched alkyl group having 1 to 6 carbon atoms.
  • the substituent acceptable for the branched alkyl group having 3 to 15 carbon atoms in -R x is preferably -OR z1 , and specific examples thereof include methoxy, ethoxy, n- Propoxy group, n-butoxy group, n-pentoxy group, n-hexoxy group, n-heptoxy group, n-octoxy group, acryloyloxy group, methacryloyloxy group and glycidyloxy group.
  • the branched alkyl group having 3 to 15 carbon atoms in —R x preferably does not have a cycloalkyl structure from the viewpoint of improving the molecular alignment with the polymerizable liquid crystal compound.
  • the branched alkyl group having 3 to 15 carbon atoms in —R x preferably does not have a polymerizable group from the viewpoint of improving the molecular orientation with the polymerizable liquid crystal compound.
  • the branched alkyl group having 3 to 15 carbon atoms preferably has a polymerizable group from the viewpoint of improving the mechanical strength of the anisotropic dye film.
  • R y represents a hydrogen atom or an optionally branched alkyl group having 1 to 15 carbon atoms, and the optionally branched alkyl group having 1 to 15 carbon atoms is a substituent; may have.
  • Specific examples of the optionally branched alkyl group having 1 to 15 carbon atoms include alkyl groups having 1 to 15 carbon atoms which may be branched among the above-mentioned -X monovalent organic groups. Those exemplified as the group can be mentioned.
  • —R z represents a hydrogen atom or an optionally branched alkyl group having 1 to 15 carbon atoms.
  • optionally branched alkyl group having 1 to 15 carbon atoms include alkyl groups having 1 to 15 carbon atoms which may be branched among the above-mentioned -X monovalent organic groups. Those exemplified as the group can be mentioned.
  • R z1 and —R z2 each independently represent a linear or branched alkyl group having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms.
  • One or more methylene groups contained in the linear or branched alkyl group having 1 to 15 carbon atoms are -O-, -S-, -NH-, -N(R z3 )-, ( _ displace) structure, or a structure substituted with a polymerizable group such as an acryloyloxy group, a methacryloyloxy group, or a glycidyloxy group.
  • R z3 represents a linear or branched alkyl group having 1 to 6 carbon atoms.
  • the acceptable substituent for the optionally branched alkyl group having 1 to 15 carbon atoms in -R y is preferably -O-R z1 , specifically for example, a methoxy group, ethoxy group, n-propoxy group, n-butoxy group, n-pentoxy group, n-hexoxy group, n-heptoxy group, n-octoxy group, acryloyloxy group, methacryloyloxy group and glycidyloxy group.
  • the optionally branched alkyl group having 1 to 15 carbon atoms in —R y preferably does not have a cycloalkyl structure from the viewpoint of improving the molecular orientation with the polymerizable liquid crystal compound.
  • -R y is preferably a hydrogen atom or an optionally branched alkyl group having 1 to 15 carbon atoms, and a hydrogen atom or an optionally branched carbon number
  • An alkyl group of 1 to 10 is more preferred, and a hydrogen atom or an optionally branched alkyl group of 1 to 4 carbon atoms is even more preferred.
  • -R x and -R y are preferably different from the viewpoint that the molecular orientation can be further improved since the compound of the present invention has an asymmetric structure.
  • -R y is preferably a hydrogen atom or an unbranched alkyl group having 1 to 15 carbon atoms, more preferably a hydrogen atom or an unbranched alkyl group having 1 to 10 carbon atoms.
  • a hydrogen atom, or an unbranched alkyl group having 1 to 4 carbon atoms is more preferable.
  • the number of branches possessed by -Y is not particularly defined, it is preferably 6 or less, more preferably 3 or less, still more preferably 2 or less, and particularly preferably 1, from the viewpoint of good molecular orientation.
  • -Y is -N(-R y )-R x in the formula (1), and carbon atoms in -R x and -R y
  • the total number is preferably 15 or less, more preferably 13 or less, even more preferably 11 or less, even more preferably 9 or less, and particularly preferably 7 or less.
  • -Y is -N(-R y )-R x in the formula (1), and -R x has a substituent.
  • —R y is a hydrogen atom or an optionally branched alkyl group having 1 to 15 carbon atoms
  • -Y is -N(-R y )-R x in the above formula (1), and -R x is a substituent.
  • a branched alkyl group having 3 to 15 carbon atoms, and —R y is preferably a hydrogen atom or an unbranched alkyl group having 1 to 15 carbon atoms, and the branched Alkyl groups having 1 to 15 carbon atoms which do not have may have a substituent.
  • -Y in the above formula (1) preferably has a plurality of branched structures near the Y terminal of -A 3 -. It is considered that the presence of a plurality of branched structures near the -A 3 - terminal tends to suppress the association and aggregation of the compound, thereby improving the solubility of the compound of the present invention.
  • -Y it is preferable that two or more branched structures are present at positions where the number of covalent bonds from the Y-end of -A 3 - is 5 or less, and More preferably, two or more branched structures are present at positions where the number of covalent bonds is three or less.
  • the number of covalent bonds mentioned above means the number of covalent bonds from the Y-side terminal atom of -A 3 - to the branch starting point atom.
  • -Y is -N(-R y )-R x and -R y is an optionally branched C 1-15 alkyl group
  • -R x and -R y are bonds A branched structure exists at the position where the number of covalent bonds from the Y-side end of -A 3 - is one.
  • ( -A3- ) -A 3 - represents a divalent group of an aromatic hydrocarbon ring which may have a substituent.
  • the aromatic hydrocarbon ring of -A 3 - includes benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, acenaphthene ring, fluoranthene ring and fluorene. ring and the like.
  • the divalent group of the aromatic hydrocarbon ring of -A 3 - the absorption transition moment of the compound of the present invention tends to coincide with the long axis direction of the dye, and the dichroic ratio can be increased.
  • a 1,4-phenylene group, a 1,4-naphthylene group and a 2,6-naphthylene group are more preferred, a 1,4-phenylene group is even more preferred, and a 1,4-phenylene group having no substituent is particularly preferred. preferable. Due to the above, the absorption transition moment of the compound of the present invention tends to coincide with the long axis direction of the compound, and the dichroic ratio can be increased.
  • -R A and -R B each independently represent a linear or branched alkyl group having 1 to 15 carbon atoms.
  • the number of carbon atoms in -R A and -R B is preferably 1 or more and 12 or less, more preferably 1 or more and 9 or less, from the viewpoint of good molecular alignment with the polymerizable liquid crystal compound used in the present invention.
  • One or more methylene groups contained in the linear or branched alkyl group may be an etheric oxygen atom, a thioetheric sulfur atom, an amine nitrogen atom (—NH—, —N(R z )— :
  • R z represents a linear or branched alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms.
  • carbonyl group, ester bond, amide bond, -CHF-, -CF 2- , -CHCl-, or -CCl 2 - may be substituted, or polymerizable groups such as acryloyloxy, methacryloyloxy, and glycidyloxy groups may be substituted.
  • substituents for the divalent group of the aromatic hydrocarbon ring in -A 3 - are -R A , -OR A , trifluoromethyl group and fluoro group.
  • -R A includes, for example, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, 5,5-dimethyl-3-methylhexyl group and the like. mentioned. Having the above substituent tends to improve the molecular orientation of the dye of the compound of the present invention.
  • (-A 1 - and -A 2 -) -A 1 - and -A 2 - each independently have a polycyclic aromatic heterocyclic bivalent group containing one or more optionally substituted S atoms, or a substituent; is a divalent group of an aromatic hydrocarbon ring which may be However, both -A 1 - and -A 2 - are not divalent groups of an aromatic hydrocarbon ring which may have a substituent.
  • the aromatic hydrocarbon ring optionally having substituents -A 1 - and -A 2 - the aromatic hydrocarbon ring optionally having substituents -A 3 - and the types and preferred substituents that may be possessed are also the same.
  • a polycyclic aromatic heterocyclic bivalent group containing one or more S atoms which may have substituents -A 1 - and -A 2 - is a condensed aromatic heterocyclic group.
  • the number of carbon atoms in the aromatic heterocycle is not particularly limited, it is preferably 4 or more and 20 or less.
  • aromatic heterocyclic rings of -A 1 - and -A 2 - include benzothiophene ring, thienopyrrole ring, thienothiophene ring, furothiazole ring, thienofuran ring, thienothiazole ring, benzoisothiazole ring and benzothiazole ring. ring and the like.
  • a benzothiophene ring, a thienothiophene ring, a furothiazole ring, a thienofuran ring, a thienothiazole ring, a benzoisothiazole ring, and a benzothiazole ring are preferable from the viewpoint of good molecular orientation of the compound of the present invention.
  • the absorption transition moment of the compound (1) tends to coincide with the long axis direction of the dye, and the structure shown below is more preferable for the reason that the dichroic ratio can be increased. (*1 and *2 in the structure below represent the bond in formula (1))
  • At least one of —A 2 — in formula (1) contains one or more S atoms which may have a substituent. It is preferably a divalent group of a polycyclic aromatic heterocycle.
  • the divalent group, a polycyclic aromatic heterocycle containing one or more S atoms is a benzothiophene ring, a thienothiophene ring, a furothiazole ring, a thienofuran ring, a thienothiazole ring, a benzoisothiazole ring, and a benzothiazole ring.
  • a ring is preferred.
  • -A 1 - in formula (1) is a divalent group of an aromatic hydrocarbon ring which may have a substituent.
  • the absorption transition moment of the compound of the present invention tends to coincide with the long axis direction of the dye, and the dichroic ratio can be increased.
  • a naphthalene ring divalent group (naphthylene group) is preferred, and a benzene ring divalent group (phenylene group) is more preferred.
  • a 1,4-phenylene group, a 1,4-naphthylene group and a 2,6-naphthylene group are more preferred, a 1,4-phenylene group is even more preferred, and a 1,4-phenylene group having no substituent is particularly preferred. preferable. Due to the above, the absorption transition moment of the compound of the present invention tends to coincide with the long axis direction of the compound, and the dichroic ratio can be increased.
  • n represents 1, 2, or 3; n is preferably 1 or 2, more preferably 1. Due to the above, the molecular orientation of the compound of the present invention tends to be good. When n is 2 or 3, each -A 2 - may be the same or different.
  • Specific examples of the compound of the present invention include, but are not limited to, the following compounds.
  • the compound of the present invention may have a maximum absorption ( ⁇ max1) in the wavelength range of 350 to 800 nm, preferably in the wavelength range of 450 to 800 nm, in the anisotropic dye film prepared by the method described later. It has absorption, more preferably in the wavelength range of 510 to 750 nm, more preferably in the wavelength range of 510 to 700 nm.
  • ⁇ max1 maximum absorption
  • the compound of the present invention preferably has a maximum absorption ( ⁇ max1 described above) in the anisotropic dye film at a longer wavelength than the maximum absorption ( ⁇ max2) measured by dissolving in a solvent.
  • This long wavelength shift is a phenomenon that occurs when the compound represented by formula (1) is dispersed in a polymer having units based on a polymerizable liquid crystal compound and/or a polymerizable liquid crystal compound, and formula (1 ) and the polymerizable liquid crystal compound and/or the polymer having units based on the polymerizable liquid crystal compound are strongly intermolecularly interacting.
  • the long wavelength shift means that the difference between the absorption maxima ( ⁇ max1 ⁇ max2) becomes a positive value, and the difference is preferably 10 nm or more, more preferably 20 nm or more, and 30 nm or more. It is even more preferable to have
  • the solubility of the compound of the present invention is not particularly limited, but the solubility in cyclopentanone is preferably 0.4 mass % or more, more preferably 0.6 mass % or more, and 0.8 mass % or more. It is even more preferable to have When the solubility is at least the above lower limit, there is a tendency that good coating film performance is obtained.
  • composition for forming anisotropic dye film contains a dye and a polymerizable liquid crystal compound, and contains at least the compound of the present invention represented by the formula (1) as the dye.
  • the anisotropic dye film-forming composition of the present invention may contain only one of the compounds of the present invention, or may contain two or more thereof.
  • the anisotropic dye film-forming composition of the present invention has the same A 1 , A 2 , A 3 and n in formula (1) from the viewpoint of suppressing precipitation in the composition. and more preferably contain only one compound of the present invention.
  • the anisotropic dye film-forming composition of the present invention may be in a solution, a liquid crystal, or a dispersed state as long as it does not cause phase separation.
  • the composition for forming an anisotropic dye film is preferably in the form of a solution from the viewpoint of easy application to a substrate. From the viewpoint of aligning the solid components of the anisotropic dye film-forming composition on the substrate as described later, the composition for forming an anisotropic dye film of the present invention can be liquid crystal at any temperature. It is preferably in phase.
  • the state of the liquid crystal phase is specifically described in "Fundamentals and Applications of Liquid Crystals” (Shoichi Matsumoto, Ichiyoshi Tsunoda; 1991), pages 1 to 16. , is a liquid crystal state exhibiting properties between liquid and crystal, or intermediate, and refers to a nematic phase, smectic phase, cholesteric phase, or discotic phase.
  • a dye is a substance or compound that absorbs at least part of the wavelengths in the visible light region (350 nm to 800 nm).
  • Dyes that can be used in the present invention include dichroic dyes.
  • a dichroic dye is a dye that has different absorbances in the long-axis direction and the short-axis direction of the molecule.
  • the pigment may be a pigment having liquid crystallinity or may not have liquid crystallinity. Note that having liquid crystallinity means exhibiting a liquid crystal phase at an arbitrary temperature.
  • the anisotropic dye film-forming composition of the present invention contains the compound of the present invention represented by the formula (1) as a dye, but may contain dyes other than the compound of the present invention.
  • Dyes other than the compound of the present invention represented by the formula (1) contained in the anisotropic dye film-forming composition of the present invention include azo dyes, quinone dyes (naphthoquinone dyes, anthraquinone dyes, etc.). ), stilbene dyes, cyanine dyes, phthalocyanine dyes, indigo dyes, condensed polycyclic dyes (including perylene dyes, oxazine dyes, acridine dyes, etc.).
  • the anisotropic dye film composition of the present invention may contain only one dye other than the compound of the present invention, or may contain two or more dyes in any combination and ratio. good.
  • azo dyes are preferable because they can have a high molecular arrangement in an anisotropic dye film.
  • Examples of azo dyes include compounds represented by the following formula (A).
  • -E 1 -, -E 2 - and -E 3 - each independently represent an optionally substituted phenylene group, an optionally substituted naphthylene group, or a substituted represents a divalent heterocyclic group that may be p represents an integer from 0 to 4; when p is an integer of 2 or more, multiple -E 2 - may be the same or different;
  • R 11 and R 12 each independently represent a monovalent organic group.
  • -E 1 -, -E 2 - and -E 3 - each independently represent an optionally substituted phenylene group, an optionally substituted naphthylene group, or a substituted represents a divalent heterocyclic group which may be
  • a 1,4-phenylene group is preferable because the linearity of the molecule is high.
  • a 1,4-naphthylene group or a 2,6-naphthylene group is preferable because the linearity of the molecule is high.
  • the divalent heterocyclic group preferably has 3 or more and 14 or less, more preferably 10 or less carbon atoms forming a ring.
  • a monocyclic or bicyclic heterocyclic group is particularly preferred.
  • Atoms other than carbon constituting the divalent heterocyclic group include at least one selected from a nitrogen atom, a sulfur atom and an oxygen atom.
  • the heterocyclic group has a plurality of non-carbon ring-constituting atoms, these may be the same or different.
  • divalent heterocyclic groups include a pyridinediyl group, a quinolinediyl group, an isoquinolinediyl group, a thiazoldiyl group, a benzothiazoldiyl group, a thienothiazoldiyl group, a thienothiophenediyl group, and a benzimidazolidinonediyl group.
  • a benzofurandiyl group a phthalimidodiyl group, an oxazoldiyl group, a benzoxazoldiyl group, and the like.
  • the substituents optionally possessed by the phenylene group, naphthylene group and divalent heterocyclic group in -E 1 -, -E 2 - and -E 3 - include alkyl groups having 1 to 4 carbon atoms; methoxy group, ethoxy group; alkoxy group having 1 to 4 carbon atoms such as group and butoxy group; fluorinated alkyl group having 1 to 4 carbon atoms such as trifluoromethyl group; cyano group; nitro group; hydroxyl group; halogen atom; amino group, diethylamino group, and A substituted or unsubstituted amino group such as a pyrrolidino group (substituted amino group is an amino group having one or two alkyl groups having 1 to 4 carbon atoms, or an amino group having two substituted alkyl groups bonded to each other and having 2 to 2 carbon atoms) means an amino group forming an alkanediyl group of 8.
  • An unsubstituted amino group is -NH2 .
  • alkyl groups having 1 to 4 carbon atoms include methyl group, ethyl group and butyl group.
  • alkanediyl groups having 2 to 8 carbon atoms include ethylene group, propane-1,3-diyl group, butane-1,3-diyl group, butane-1,4-diyl group, and pentane-1,5-diyl group. , hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group and the like. ).
  • the phenylene group, naphthylene group and divalent heterocyclic group in -E 1 -, -E 2 - and -E 3 - are unsubstituted or substituted in view of high molecular linearity. In some cases, it is preferably substituted with a methyl group, methoxy group, hydroxyl group, fluorine atom, chlorine atom, dimethylamino group, pyrrolidinyl group or piperidinyl group.
  • p represents an integer from 0 to 4. From the viewpoints of solubility in solvents, compatibility with liquid crystal compounds, color tone, and ease of production, p is preferably 1 or more, preferably 4 or less, and more preferably 3 or less.
  • R 11 and R 12 represent the same or different monovalent organic groups.
  • the monovalent organic groups for R 11 and R 12 include a hydrogen atom, an optionally branched alkyl group having 1 to 15 carbon atoms; an alicyclic alkyl group having 1 to 15 carbon atoms; a methoxy group; An alkoxy group having 1 to 15 carbon atoms which may have a branch such as an ethoxy group and a butoxy group; A fluorinated alkyl group having 1 to 15 carbon atoms which may have a branch such as a trifluoromethyl group; Cyano nitro group; hydroxyl group; halogen atom; substituted or unsubstituted amino group such as amino group, diethylamino group and pyrrolidino group; carboxy group; alkyloxycarbonyl group; alkylphenylalkenyl group such as 2-(4-butylphenyl)ethenyl group; carbamoyl group; alkylcarbam
  • the substituted amino group means an amino group having one or two alkyl groups having 1 to 4 carbon atoms, or two substituted alkyl groups bonded together to form an alkanediyl group having 2 to 8 carbon atoms. means an amino group.
  • An unsubstituted amino group is -NH2 .
  • alkyl groups having 1 to 4 carbon atoms include methyl group, ethyl group and butyl group.
  • alkanediyl groups having 2 to 8 carbon atoms include ethylene group, propane-1,3-diyl group, butane-1,3-diyl group, butane-1,4-diyl group, and pentane-1,5-diyl group. , hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group and the like.
  • hydrogen atoms and aliphatic organic groups are preferred, and in another embodiment, hydrogen atoms and aliphatic organic groups are preferred. In still another embodiment, hydrogen atoms and aliphatic organic groups in which part of the carbon atoms are replaced with nitrogen atoms and/or oxygen atoms groups are preferred.
  • the chain group As the chain group, the above alkyl group having 1 to 15 carbon atoms which may be branched; alkoxy group having 1 to 15 carbon atoms which may be branched; A fluorinated alkyl group having 1 to 15 carbon atoms; a substituted or unsubstituted amino group (a substituted amino group is an amino group having one or two optionally branched alkyl groups having 1 to 15 carbon atoms An unsubstituted amino group is —NH 2.
  • a carboxy group ; an optionally branched C1-15 alkyloxycarbonyl group; a carbamoyl group; Alkylcarbamoyl group having 1 to 15 carbon atoms which may have; sulfamoyl group; Alkylsulfamoyl group having 1 to 15 carbon atoms which may have branch; an acyloxy group having 1 to 15 carbon atoms which may have a branch; a sulfanyl group; an alkylsulfanyl group having 1 to 15 carbon atoms; The chain group and the aliphatic organic group partially overlap.
  • aliphatic organic group examples include the above-described optionally branched alkyl group having 1 to 15 carbon atoms, alicyclic alkyl group having 1 to 15 carbon atoms, and the like.
  • Aliphatic organic groups in which a portion of the carbon atoms are replaced with nitrogen atoms and/or oxygen atoms include the above optionally branched alkoxy groups having 1 to 15 carbon atoms; substituted or unsubstituted amino groups.
  • the substituted amino group means an amino group having one or two optionally branched alkyl groups having 1 to 15 carbon atoms, or an amino group having two substituted alkyl groups bonded to each other and having 2 to 15 carbon atoms. It means an amino group forming an alkanediyl group.
  • An unsubstituted amino group is -NH2 .
  • alkyl groups having 1 to 15 carbon atoms include methyl group, ethyl group and butyl group.
  • alkanediyl groups having 2 to 15 carbon atoms include ethylene group, propane-1,3-diyl group, butane-1,3-diyl group, butane-1,4-diyl group, and pentane-1,5-diyl group. , hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group and the like.
  • R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms such as a butyl group, a pentyl group, a hexyl group, a heptyl group and an octyl group; It is preferably substituted with an alkoxy group having 1 to 10 carbon atoms such as butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, diethylamino group, pyrrolidino group and piperidinyl group.
  • R 11 and R 12 -R 1 and -R 2 in the liquid crystal compound described below are also preferable.
  • the azo dye other than the compound of the present invention contained in the anisotropic dye film-forming composition of the present invention is not particularly limited, and known azo dyes can also be used.
  • known azo dyes include, for example, the above-mentioned Patent Document 1, Patent No. 5982762, JP 2017-025317, JP 2014-095899 described in the dyes (dichroic dyes, dichroic dyes).
  • the wavelength showing the maximum value in the absorption curve in the wavelength range of 350 nm to 800 nm is , which is contained in the anisotropic dye film-forming composition and which is shorter than the wavelength showing the maximum value in the absorption curve of the compound of the present invention represented by formula (1) in the wavelength range of 350 nm to 800 nm.
  • Preferred are azo dyes.
  • the difference in wavelength is preferably 5 nm or more, more preferably 10 nm or more.
  • the anisotropic dye film formed using the composition for forming an anisotropic dye film of the present invention is applied to a polarizing element such as a display, the polarization characteristics are exhibited in a wide range of the visible region. can do.
  • the molecular weight of the dye contained in the composition for forming an anisotropic dye film of the present invention is preferably 300 or more, more preferably 350 or more, and 380 or more. is more preferably 1500 or less, more preferably 1200 or less, and even more preferably 1000 or less.
  • the molecular weight of the dye contained in the anisotropic dye film-forming composition of the present invention is preferably 300 to 1,500, more preferably 350 to 1,200, and even more preferably 380 to 1,000. Within the above range, the molecular length and bulkiness of the dye are appropriate, so that the molecular orientation of the dye tends to be favorable.
  • the molecular weight of a dye is the sum of the atomic weights contained in the dye.
  • the content of dyes such as dichroic dyes in the anisotropic dye film-forming composition of the present invention is, for example, anisotropic Based on the solid content (100 parts by mass) of the dye film-forming composition, the amount is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, preferably 30 parts by mass or less, and 25 parts by mass or less. It is more preferably 20 parts by mass or less, and particularly preferably 10 parts by mass or less.
  • the content of the dye (dichroic dye) in the anisotropic dye film-forming composition is, for example, 0.01 to 30 parts by mass, preferably 0.05 to 20 parts by mass, more preferably 0.05 to 10 parts by mass.
  • the composition for forming an anisotropic dye film of the present invention does not disturb the orientation of the liquid crystal compound contained in the composition for forming an anisotropic dye film of the present invention. It tends to be able to polymerize the polymerizable liquid crystal compound contained.
  • the content of the dye is at least the above lower limit, sufficient light absorption tends to be obtained and sufficient polarizing performance can be obtained. If the content of the dye is equal to or less than the upper limit, the inhibition of alignment of liquid crystal molecules tends to be suppressed.
  • the solid content of the composition for the anisotropic dye film corresponds to the sum of all components other than the solvent in the composition for the anisotropic dye film.
  • the anisotropic dye film composition of the present invention may contain the compound of the present invention as a dye as an essential component, and may contain the other dyes described above together with the compound of the present invention.
  • the composition for an anisotropic dye film of the present invention contains other dyes, from the viewpoint of more effectively obtaining the effects of the present invention by using the compound of the present invention, the composition for an anisotropic dye film of the present invention
  • the proportion of the compound of the present invention in 100% by mass of the total amount of dyes in the product is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably 15% by mass or more. , 20% by mass or more.
  • the ratio is preferably 80% by mass or less, more preferably 60% by mass or less, and even more preferably 50% by mass or less. , 40% by mass or less.
  • the dye such as the compound of the present invention contained in the composition for forming an anisotropic dye film of the present invention undergoes alkylation reaction, esterification reaction, amidation reaction, etherification reaction, ipso substitution reaction, diazo coupling reaction, It can be produced by combining known chemical reactions such as a coupling reaction using a metal catalyst.
  • the compounds of the present invention can be prepared by the methods described in Examples below, “New Dyestuff Chemistry” (Yutaka Hosoda, December 21, 1973, Gihodo), “Review Synthetic Dyes” (Hiroshi Horiguchi, Sankyo Publishing, 1968) and “Theory Manufacturing Dye Chemistry” (Yutaka Hosoda, 1957, Gihodo).
  • a liquid crystal compound refers to a substance exhibiting a liquid crystal state, and is specifically described on pages 1 to 28 of "Liquid Crystal Handbook" (published by Maruzen Co., Ltd., October 30, 2000). A compound that does not transition directly from a crystal to a liquid, but goes through an intermediate state that exhibits the properties of both crystals and liquids.
  • the polymerizable liquid crystal compound contained in the composition for forming an anisotropic dye film of the present invention is a liquid crystal compound having a polymerizable group, which will be described later.
  • the polymerizable group can be arranged at any position in the liquid crystal compound molecule, but it is preferable that the polymerizable group is substituted at the end of the liquid crystal compound molecule from the viewpoint of ease of polymerization. .
  • one or more polymerizable groups can be present in the liquid crystal compound molecule. When two or more polymerizable groups are present, the polymerizable groups should be present at both ends of the liquid crystal compound molecule to facilitate polymerization. It is preferable from the viewpoint of flexibility.
  • the polymerizable liquid crystal compound is preferably a compound having a carbon-carbon triple bond in the liquid crystal compound molecule.
  • the carbon-carbon triple bond is capable of rotational motion and can be the core of a liquid crystal molecule, the mobility of the molecule is high, and the liquid crystal molecules are highly mobile. It has a strong intermolecular interaction with compounds having a ⁇ -conjugated system such as dye molecules, and tends to have a high molecular orientation.
  • the polymerizable liquid crystal compound contained in the composition for forming an anisotropic dye film of the present invention is not particularly limited, and a liquid crystal compound having a polymerizable group can be used.
  • polymerizable liquid crystal compound (2) a compound represented by the following formula (2) (hereinafter sometimes referred to as "polymerizable liquid crystal compound (2)" Yes.) can be mentioned.
  • -Q 1 represents a hydrogen atom or a polymerizable group
  • -Q 2 represents a polymerizable group
  • -R 1 - and -R 2 - each independently represent a chain organic group
  • -A 11 - and -A 13 - each independently represent a partial structure represented by the following formula (3), a divalent organic group, or a single bond
  • -A 12 - represents a partial structure or a divalent organic group represented by the following formula (3)
  • formula (2) may be the following formula (2A) or the following formula (2B).
  • Q 1 -R 1 -X 1 -C ⁇ CX 2 -C y -Y 1 -A 12 -(Y 2 -A 13 ) k -R 2 -Q 2 (2B)
  • formula (2) may be the following formula (2C) or the following formula (2D).
  • Q 1 -R 1 -A 11 -Y 1 -X 1 -C ⁇ CX 2 -C y -(Y 2 -A 13 ) k -R 2 -Q 2 (2D)
  • formula (2) may be the following formula (2E) or the following formula (2F).
  • Q 1 -R 1 -A 11 -Y 1 -A 12 -(Y 2 -X 1 -C ⁇ CX 2 -C y ) k -R 2 -Q 2 (2F)
  • -A 11 -, -A 12 -, and -A 13 - are each independently a partial structure or a divalent organic group represented by formula (3), and -A 11 - and -A 13 - may be single bonds, but both -A 11 - and -A 13 - are not single bonds.
  • the hydrocarbon ring group for -C y - includes an aromatic hydrocarbon ring group and a non-aromatic hydrocarbon ring group.
  • Aromatic hydrocarbon ring groups include unlinked aromatic hydrocarbon ring groups and linked aromatic hydrocarbon ring groups.
  • the non-connected aromatic hydrocarbon ring group is a monocyclic or condensed aromatic hydrocarbon ring divalent group, and has 6 to 20 carbon atoms. It is preferable because it is good.
  • the number of carbon atoms in the non-connected aromatic hydrocarbon ring group is more preferably 6-15.
  • aromatic hydrocarbon rings include benzene, naphthalene, anthracene, phenanthrene, perylene, tetracene, pyrene, benzpyrene, chrysene, triphenylene, acenaphthene, fluoranthene, and fluorene rings. mentioned.
  • a linked aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed aromatic hydrocarbon rings are linked by single bonds and have bonds on the atoms constituting the ring.
  • a single ring or a condensed ring having 6 to 20 carbon atoms is preferable because an appropriate core size provides good molecular orientation.
  • the monocyclic or condensed ring preferably has 6 to 15 carbon atoms.
  • the linked aromatic hydrocarbon ring group includes, for example, a first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms and a second monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms.
  • the ring are bonded with a single bond, and have the first bond on the atom constituting the ring of the first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms, and the second carbon number Divalent groups having a second bond on a ring-constituting atom of 6 to 20 monocyclic or condensed aromatic hydrocarbon rings are included.
  • a specific example of the linked aromatic hydrocarbon ring group is a biphenyl-4,4'-diyl group.
  • the aromatic hydrocarbon ring group a non-connected aromatic hydrocarbon ring group is preferable because it optimizes the intermolecular interaction acting between the liquid crystal compounds and thereby improves the molecular orientation.
  • the aromatic hydrocarbon ring group is preferably a benzene ring divalent group or a naphthalene ring divalent group, more preferably a benzene ring divalent group (phenylene group).
  • phenylene group a 1,4-phenylene group is preferred.
  • —C y — is one of these groups, the linearity of liquid crystal molecules tends to be enhanced, and the effect of improving molecular orientation tends to be obtained.
  • the non-aromatic hydrocarbon ring group includes a non-linked non-aromatic hydrocarbon ring group and a linked non-aromatic hydrocarbon ring group.
  • the non-linked non-aromatic hydrocarbon ring group is a divalent group of monocyclic or condensed non-aromatic hydrocarbon rings, and has 3 to 20 carbon atoms. It is preferable for the reason that the properties are good.
  • the number of carbon atoms in the non-connected non-aromatic hydrocarbon ring group is more preferably 3-15.
  • Non-aromatic hydrocarbon rings include, for example, cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclohexene ring, norbornane ring, bornane ring, adamantane ring, tetrahydronaphthalene ring, bicyclo [2.2.2] octane ring and the like.
  • a non-linked non-aromatic hydrocarbon ring group is an alicyclic hydrocarbon ring group that does not have an unsaturated bond as an interatomic bond that constitutes the ring of the non-aromatic hydrocarbon ring, and a ring of the non-aromatic hydrocarbon ring. and an unsaturated non-aromatic hydrocarbon ring group having an unsaturated bond as an interatomic bond constituting As the non-connected non-aromatic hydrocarbon ring group, an alicyclic hydrocarbon ring group is preferable from the viewpoint of productivity.
  • a linked non-aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed non-aromatic hydrocarbon rings are bonded with single bonds and have bonds on the atoms constituting the ring; one or more rings selected from the group consisting of an aromatic hydrocarbon ring, a condensed aromatic hydrocarbon ring, a monocyclic non-aromatic hydrocarbon ring, and a condensed non-aromatic hydrocarbon ring; It is a divalent group that is bonded to a condensed non-aromatic hydrocarbon ring via a single bond and has a bond on an atom that constitutes the ring.
  • the number of carbon atoms in the single ring or condensed ring is preferably 3 to 20 for the reason that an appropriate core size provides good molecular orientation.
  • Examples of linked non-aromatic hydrocarbon ring groups include a first monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms and a second monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms.
  • a hydrocarbon ring is bonded with a single bond, and has a first bond on an atom constituting a ring of a first monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms, and a second and a divalent group having a second bond on a ring-constituting atom of a monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms.
  • a monocyclic or condensed aromatic hydrocarbon ring having 3 to 20 carbon atoms and a monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms are bonded by a single bond, 20 monocyclic or condensed aromatic hydrocarbon ring having the first bond on the ring-constituting atom and constituting a monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms
  • linked non-aromatic hydrocarbon ring groups include bis(cyclohexane)-4,4'-diyl group and 1-cyclohexylbenzene-4,4'-diyl group.
  • non-aromatic hydrocarbon ring group a non-connected non-aromatic hydrocarbon ring group is preferable because it optimizes the intermolecular interaction that works between liquid crystal compounds and thereby improves the molecular orientation.
  • the non-linked non-aromatic hydrocarbon ring group is preferably a cyclohexane divalent group (cyclohexanediyl group), and the cyclohexanediyl group is preferably a cyclohexane-1,4-diyl group.
  • cyclohexanediyl group cyclohexane divalent group
  • cyclohexanediyl group is preferably a cyclohexane-1,4-diyl group.
  • the heterocyclic group in -C y - includes an aromatic heterocyclic group and a non-aromatic heterocyclic group.
  • the aromatic heterocyclic group includes a non-linked aromatic heterocyclic group and a linked aromatic heterocyclic group.
  • the non-linked aromatic heterocyclic group is a monocyclic or condensed aromatic heterocyclic divalent group and has 4 to 20 carbon atoms. preferred for a number of reasons.
  • the number of carbon atoms in the unlinked aromatic heterocyclic group is more preferably 4-15.
  • aromatic heterocyclic rings examples include furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, thiazole ring, isothiazole ring, oxadiazole ring, thiadiazole ring.
  • a linked aromatic heterocyclic group is a divalent group in which a single ring or a plurality of condensed aromatic heterocyclic rings are linked by single bonds and have bonds on the atoms constituting the ring.
  • a monocyclic ring or a condensed ring having 4 to 20 carbon atoms is preferable because an appropriate core size provides good molecular orientation.
  • the number of carbon atoms in the linking aromatic heterocyclic group is more preferably 4-15.
  • the linked aromatic heterocyclic group includes, for example, a first monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms and a second monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms. bonded by a single bond, having a first bond on an atom constituting a first monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms, and a second having 4 to 20 carbon atoms A divalent group having a second bond on an atom constituting a monocyclic or condensed aromatic heterocyclic ring is exemplified.
  • the non-aromatic heterocyclic group includes a non-linked non-aromatic heterocyclic group and a linked non-aromatic heterocyclic group.
  • the non-linked non-aromatic heterocyclic group is a monocyclic or condensed non-aromatic heterocyclic divalent group, and has 4 to 20 carbon atoms. It is preferable because it is good.
  • the number of carbon atoms in the unlinked non-aromatic heterocyclic group is more preferably 4-15.
  • Non-aromatic heterocyclic ring of divalent group of monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms includes tetrahydrofuran ring, tetrahydropyran ring, dioxane ring, tetrahydrothiophene ring, tetrahydrothiopyran ring, pyrrolidine ring , piperidine ring, dihydropyridine ring, piperazine ring, tetrahydrothiazole ring, tetrahydrooxazole ring, octahydroquinoline ring, tetrahydroquinoline ring, octahydroquinazoline ring, tetrahydroquinazoline ring, tetrahydroimidazole ring, tetrahydrobenzimidazole ring, quinuclidine ring, etc. be done.
  • a linked non-aromatic heterocyclic group is a divalent group in which a single ring or a plurality of condensed non-aromatic heterocyclic rings are linked by single bonds and have bonds on atoms constituting the ring.
  • a monocyclic ring or a condensed ring having 4 to 20 carbon atoms is preferable because an appropriate core size provides good molecular orientation.
  • the number of carbon atoms in the linking non-aromatic heterocyclic group is more preferably 4-15.
  • the linked aromatic heterocyclic group includes, for example, a first monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms and a second monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms. is bonded with a single bond, has a first bond on an atom constituting the first monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms, and has a second carbon number of 4 Bivalent groups having a second bond on a ring-constituting atom of up to 20 monocyclic or condensed non-aromatic heterocyclic rings can be mentioned.
  • the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group, and non-aromatic heterocyclic group in -C y - have a highly linear molecular structure, and the polymerizable liquid crystal compound (2) are each independently unsubstituted or substituted with a methyl group, a methoxy group, a fluorine atom, a chlorine atom, or a bromine atom, preferably unsubstituted. is more preferable.
  • the substituents of the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group, and non-aromatic heterocyclic group in -C y - may be the same or different, and may be aromatic
  • the hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group, and non-aromatic heterocyclic group may all be substituted, all may be unsubstituted, or some may be substituted. and a portion may be unsubstituted.
  • -C y - is preferably a hydrocarbon ring group, and more preferably a phenylene group or a cyclohexanediyl group, because the polymerizable liquid crystal compound (2) has good molecular orientation.
  • —C y — is more preferably a 1,4-phenylene group or a cyclohexane-1,4-diyl group, since the linearity of the molecular structure of the polymerizable liquid crystal compound (2) can be increased.
  • -phenylene groups are particularly preferred.
  • -X 1 - is preferably -CH 2 CH 2 -, -CH 2 O-, or -OCH 2 -.
  • -C y - is a group having high linearity. and -C ⁇ C- are preferably linked.
  • the polymerizable group in -Q 1 and -Q 2 is a group having a partial structure that can be polymerized by light, heat, and/or radiation, and is a functional group or atom necessary to ensure the function of polymerization. is a repertoire.
  • the polymerizable group is preferably a photopolymerizable group from the viewpoint of producing an anisotropic dye film.
  • polymerizable group examples include acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy group, acryloylamino group, methacryloylamino group, vinyl group, vinyloxy group, ethynyl group, ethynyloxy group, 1,3 -butadienyl group, 1,3-butadienyloxy group, oxiranyl group, oxetanyl group, glycidyl group, glycidyloxy group, styryl group, styryloxy group and the like, acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy acryloylamino group, methacryloylamino group, oxiranyl group, glycidyl group and glycidyloxy group are preferred, acryloyl group, methacryloyl group, acrylo
  • the chain organic group in -R 1 - and -R 2 - is a divalent group that does not contain a cyclic structure such as the aforementioned aromatic hydrocarbon ring, non-aromatic hydrocarbon ring, aromatic heterocyclic ring, or non-aromatic heterocyclic ring.
  • the alkylene group in these chain organic groups includes linear or branched alkylene groups having 1 to 25 carbon atoms. A part of the carbon-carbon bond of the alkylene group may be an unsaturated bond.
  • R m represents a linear or branched alkyl group having 1 to 6 carbon atoms.
  • alkylene group in these chain organic groups has high molecular linearity, some of the carbon atoms in the alkylene group may be unsaturated bonds, and one or more is preferably a linear alkylene group having 1 to 25 carbon atoms, which may have a structure in which the methylene group of is replaced by the above group.
  • the number of atoms in the main chain (meaning the longest chain portion in the chain organic group) of the chain organic group is preferably 3-25, more preferably 5-20, and even more preferably 6-20.
  • chain organic groups include -(CH 2 ) r -CH 2 -, -O-(CH 2 ) r -CH 2 -, -(O) r1 -(CH 2 CH 2 O) r2 -(CH 2 ) r3 -, -(O) r1 -(CH 2 ) r2 -(CH 2 CH 2 O) r3 - are preferred.
  • r is an integer of 1 to 24, preferably an integer of 2 to 24, more preferably an integer of 4 to 19, and even more preferably an integer of 5 to 19.
  • r1, r2, and r3 in these formulas each independently represent an integer, and the number of atoms in the main chain (meaning the longest chain portion in the chain organic group) in the chain organic group is preferably is appropriately adjusted to 3-25, more preferably 5-20, still more preferably 6-20.
  • -R 1 - and -R 2 - are each independently preferably -(alkylene group)-, -O-(alkylene group)-, -(alkylene group)-, -O-(alkylene group) - is more preferred.
  • the chain organic group in -R 1 - and -R 2 - is -(alkylene group)-, and in another embodiment, it is -O-(alkylene group)-.
  • -X 1 - and -R 1 - or -X 1 - and -R 2 - are bonded as in formula (2B) and formula (2E); and -A 13 in formula (2B) - is a single bond, or -A 11 - is a single bond in the above formula (2E), and -R 1 - or -R 2 - is bonded to -Y 1 - or -Y 2 - is preferably -( alkylene group ) - .
  • -R 1 - or -R 2 - not directly bonded to -X 1 -, -Y 1 - or -Y 2 - is preferably -O-( alkylene group)-.
  • the divalent organic group in -A 11 -, -A 12 -, and -A 13 - is preferably a group represented by the following formula (4).
  • Q3 represents a hydrocarbon ring group or a heterocyclic group.
  • the hydrocarbon ring group for -Q 3 - includes an aromatic hydrocarbon ring group and a non-aromatic hydrocarbon ring group.
  • Aromatic hydrocarbon ring groups include unlinked aromatic hydrocarbon ring groups and linked aromatic hydrocarbon ring groups.
  • the non-connected aromatic hydrocarbon ring group is a monocyclic or condensed aromatic hydrocarbon ring divalent group, and preferably has 6 to 20 carbon atoms. Due to the appropriate core size, molecular orientation is good. It is preferable for the following reason.
  • the number of carbon atoms in the non-connected aromatic hydrocarbon ring group is more preferably 6-15.
  • Aromatic hydrocarbon rings include benzene, naphthalene, anthracene, phenanthrene, perylene, tetracene, pyrene, benzpyrene, chrysene, triphenylene, acenaphthene, fluoranthene, and fluorene rings. .
  • a linked aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed aromatic hydrocarbon rings are linked by single bonds and have bonds on the atoms constituting the ring.
  • a single ring or a condensed ring having 6 to 20 carbon atoms is preferred because an appropriate core size will result in good orientation.
  • the number of carbon atoms in the linked aromatic hydrocarbon ring group is more preferably 6-15.
  • the linked aromatic hydrocarbon ring group includes, for example, a first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms and a second monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms.
  • the ring are bonded with a single bond, and have the first bond on the atom constituting the ring of the first monocyclic or condensed aromatic hydrocarbon ring having 6 to 20 carbon atoms, and the second carbon number Divalent groups having a second bond on a ring-constituting atom of 6 to 20 monocyclic or condensed aromatic hydrocarbon rings are included.
  • a specific example of the linked aromatic hydrocarbon ring group is a biphenyl-4,4'-diyl group.
  • the aromatic hydrocarbon ring group a non-connected aromatic hydrocarbon ring group is preferable because it optimizes the intermolecular interaction acting between the liquid crystal compounds and thereby improves the molecular orientation.
  • the aromatic hydrocarbon ring group is preferably a benzene ring divalent group or a naphthalene ring divalent group, more preferably a benzene ring divalent group (phenylene group).
  • phenylene group a 1,4-phenylene group is preferred.
  • —Q 3 — is one of these groups, the linearity of liquid crystal molecules tends to be enhanced, and the effect of improving molecular orientation tends to be obtained.
  • the non-aromatic hydrocarbon ring group includes a non-linked non-aromatic hydrocarbon ring group and a linked non-aromatic hydrocarbon ring group.
  • the non-linked non-aromatic hydrocarbon ring group is a divalent group of monocyclic or condensed non-aromatic hydrocarbon rings, and has 3 to 20 carbon atoms. It is preferable for the reason that the properties are good.
  • the number of carbon atoms in the non-connected non-aromatic hydrocarbon ring group is more preferably 3-15.
  • Non-aromatic hydrocarbon rings include cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclohexene ring, norbornane ring, bornane ring, adamantane ring, tetrahydronaphthalene ring, bicyclo[2] .2.2] octane ring and the like.
  • a non-linked non-aromatic hydrocarbon ring group is an alicyclic hydrocarbon ring group that does not have an unsaturated bond as an interatomic bond that constitutes the ring of the non-aromatic hydrocarbon ring, and a ring of the non-aromatic hydrocarbon ring. and an unsaturated non-aromatic hydrocarbon ring group having an unsaturated bond as an interatomic bond constituting As the non-connected non-aromatic hydrocarbon ring group, an alicyclic hydrocarbon ring group is preferable from the viewpoint of productivity.
  • a linked non-aromatic hydrocarbon ring group is a divalent group in which a plurality of monocyclic or condensed non-aromatic hydrocarbon rings are bonded with single bonds and have bonds on the atoms constituting the ring; one or more rings selected from the group consisting of an aromatic hydrocarbon ring, a condensed aromatic hydrocarbon ring, a monocyclic non-aromatic hydrocarbon ring, and a condensed non-aromatic hydrocarbon ring; It is a divalent group that is bonded to a condensed non-aromatic hydrocarbon ring through a single bond and has a bond on an atom that constitutes the ring.
  • the number of carbon atoms in the single ring or condensed ring is preferably 3 to 20 for the reason that an appropriate core size provides good molecular orientation.
  • Examples of linked non-aromatic hydrocarbon ring groups include a first monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms and a second monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms.
  • a hydrocarbon ring is bonded with a single bond, and has a first bond on an atom constituting a ring of a first monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms, and a second and a divalent group having a second bond on a ring-constituting atom of a monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms.
  • a monocyclic or condensed aromatic hydrocarbon ring having 3 to 20 carbon atoms and a monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms are bonded by a single bond, 20 monocyclic or condensed aromatic hydrocarbon ring having the first bond on the ring-constituting atom and constituting a monocyclic or condensed non-aromatic hydrocarbon ring having 3 to 20 carbon atoms
  • linked non-aromatic hydrocarbon ring group examples include bis(cyclohexane)-4,4'-diyl group and 1-cyclohexylbenzene-4,4'-diyl group.
  • non-aromatic hydrocarbon ring group a non-connected non-aromatic hydrocarbon ring group is preferable because it optimizes the intermolecular interaction that works between liquid crystal compounds and thereby improves the molecular orientation.
  • the non-linked non-aromatic hydrocarbon ring group is preferably a cyclohexane divalent group (cyclohexanediyl group), and the cyclohexanediyl group is preferably a cyclohexane-1,4-diyl group.
  • the heterocyclic group in -Q 3 - includes an aromatic heterocyclic group and a non-aromatic heterocyclic group.
  • the aromatic heterocyclic group includes a non-linked aromatic heterocyclic group and a linked aromatic heterocyclic group.
  • the non-linked aromatic heterocyclic group is a monocyclic or condensed aromatic heterocyclic divalent group and has 4 to 20 carbon atoms. preferred for a number of reasons.
  • the number of carbon atoms in the unlinked aromatic heterocyclic group is more preferably 4-15.
  • Aromatic heterocycles include furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, thiazole ring, oxadiazole ring, indole ring, carbazole ring, pyrroloimidazole ring, and pyrrolopyrazole ring.
  • pyrrolopyrrole ring thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, thienothiazole ring, benzoisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring , triazine ring, quinoline ring, isoquinoline ring, shinoline ring, quinoxaline ring, phenanthridine ring, quinazoline ring, quinazolinone ring, azulene ring and the like.
  • a linked aromatic heterocyclic group is a divalent group in which a single ring or a plurality of condensed aromatic heterocyclic rings are linked by single bonds and have bonds on the atoms constituting the ring.
  • a monocyclic ring or a condensed ring having 4 to 20 carbon atoms is preferable because an appropriate core size provides good molecular orientation.
  • the number of carbon atoms in the linking aromatic heterocyclic group is more preferably 4-15.
  • the linked aromatic heterocyclic group includes, for example, a first monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms and a second monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms. bonded by a single bond, having a first bond on an atom constituting a first monocyclic or condensed aromatic heterocyclic ring having 4 to 20 carbon atoms, and a second having 4 to 20 carbon atoms A divalent group having a second bond on an atom constituting a monocyclic or condensed aromatic heterocyclic ring is exemplified.
  • the non-aromatic heterocyclic group includes a non-linked non-aromatic heterocyclic group and a linked non-aromatic heterocyclic group.
  • the non-linked non-aromatic heterocyclic group is a monocyclic or condensed non-aromatic heterocyclic divalent group, and has 4 to 20 carbon atoms. It is preferable because it is good.
  • the number of carbon atoms in the unlinked non-aromatic heterocyclic group is more preferably 4-15.
  • Non-aromatic heterocyclic ring of divalent group of monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms includes tetrahydrofuran ring, tetrahydropyran ring, dioxane ring, tetrahydrothiophene ring, tetrahydrothiopyran ring, pyrrolidine ring , piperidine ring, dihydropyridine ring, piperazine ring, tetrahydrothiazole ring, tetrahydrooxazole ring, octahydroquinoline ring, tetrahydroquinoline ring, octahydroquinazoline ring, tetrahydroquinazoline ring, tetrahydroimidazole ring, tetrahydrobenzimidazole ring, quinuclidine ring, etc. be done.
  • a linked non-aromatic heterocyclic group is a divalent group in which a single ring or a plurality of condensed non-aromatic heterocyclic rings are linked by single bonds and have bonds on atoms constituting the ring.
  • a monocyclic ring or a condensed ring having 4 to 20 carbon atoms is preferable because an appropriate core size provides good molecular orientation.
  • the number of carbon atoms in the linking non-aromatic heterocyclic group is more preferably 4-15.
  • the linked aromatic heterocyclic group includes, for example, a first monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms and a second monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms. is bonded with a single bond, has a first bond on an atom constituting the first monocyclic or condensed non-aromatic heterocyclic ring having 4 to 20 carbon atoms, and has a second carbon number of 4 Bivalent groups having a second bond on a ring-constituting atom of up to 20 monocyclic or condensed non-aromatic heterocyclic rings can be mentioned.
  • the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group, and non-aromatic heterocyclic group in -Q 3 - have a highly linear molecular structure, and the polymerizable liquid crystal compound (2) are each independently unsubstituted or substituted with a methyl group, a methoxy group, a fluorine atom, a chlorine atom, or a bromine atom, preferably unsubstituted. is more preferable.
  • the substituents of the aromatic hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group, and non-aromatic heterocyclic group in -Q 3 - may be the same or different, and may be aromatic
  • the hydrocarbon ring group, non-aromatic hydrocarbon ring group, aromatic heterocyclic group, and non-aromatic heterocyclic group may all be substituted, all may be unsubstituted, or some may be substituted. and a portion may be unsubstituted.
  • the substituents possessed by the divalent organic groups in -A 11 -, -A 12 - and -A 13 - may be the same or different, and the divalent All of the organic groups may be substituted, all may be unsubstituted, or some may be substituted and some may be unsubstituted.
  • -Q 3 - is preferably a hydrocarbon ring group, more preferably a phenylene group or a cyclohexanediyl group.
  • Q 3 — is more preferably a 1,4-phenylene group or a cyclohexane-1,4-diyl group, since it can increase the linearity of the molecular structure of the polymerizable liquid crystal compound (2).
  • divalent organic groups of -A 11 -, -A 12 - and -A 13 -, -Q 3 - is a hydrocarbon ring group, that is, the divalent organic group is a hydrocarbon ring group.
  • a phenylene group and a cyclohexanediyl group are more preferable, and a 1,4-phenylene group and a cyclohexane-1,4-phenylene group are preferred because they can increase the linearity of the molecular structure of the polymerizable liquid crystal compound (2).
  • -diyl group is more preferred.
  • one of -A 11 -, -A 12 - and -A 13 - is a partial structure represented by formula (3), and the other two are each It is independently preferably a divalent organic group, and among -A 11 -, -A 12 - and -A 13 -, -C y - of the partial structure represented by formula (3) is a hydrocarbon ring group.
  • the divalent organic group is a hydrocarbon ring group.
  • the hydrocarbon ring group is preferably a 1,4-phenylene group or a cyclohexane-1,4-diyl group.
  • one of -A 11 - and -A 13 - is preferably a cyclohexane-1,4-diyl group.
  • one of -A 11 - and -A 13 - is a partial structure represented by formula (3), and the other one and -A 12 - are more preferably divalent organic groups.
  • one of -A 11 - and -A 13 - which is a divalent organic group is preferably a cyclohexane-1,4-diyl group, and -A 12 - is a 1,4-phenylene group. It is particularly preferred to have
  • (k) k is 1 or 2; In one aspect, k is preferably 1. Alternatively, k is preferably two. When k is 2, each -Y 2 - may be the same or different, and each -A 13 - may be the same or different.
  • a compound represented by the formula (2A), (2B), (2E) or (2F) is optimal for the intermolecular interaction acting between the liquid crystal compounds,
  • the polymerizable liquid crystal compound used in the present invention is preferably a low-molecular-weight polymerizable liquid crystal compound, particularly a low-molecular-weight polymerizable liquid crystal compound that does not have a copolymer structure, from the viewpoint of the tendency to obtain good molecular orientation.
  • Liquid crystal compounds are preferred.
  • the molecular weight of the low molecular weight polymerizable liquid crystal compound is preferably 2000 or less, more preferably 1500 or less, and even more preferably 1000 or less. Although the lower limit is not particularly limited, 400 or more is preferable, and 500 or more is preferable.
  • the molecular weight range is preferably from 400 to 2,000, more preferably from 400 to 1,500, and particularly preferably from 500 to 1,000.
  • the molecular weight of the polymerizable liquid crystal compound is the sum of the atomic weights contained in the polymerizable liquid crystal compound.
  • polymerizable liquid crystal compound (Specific example of polymerizable liquid crystal compound)
  • polymerizable liquid crystal compound contained in the anisotropic dye film-forming composition of the present invention include, but are not limited to, the polymerizable liquid crystal compounds described below.
  • C 6 H 13 means an n-hexyl group.
  • the liquid crystal compound contained in the composition for forming an anisotropic dye film of the present invention preferably comprises the polymerizable liquid crystal compound (2).
  • the anisotropic dye film-forming composition of the present invention may contain only one type of polymerizable liquid crystal compound alone, or may contain two or more types in any combination and ratio.
  • the content of the liquid crystal compound in the composition for an anisotropic dye film of the present invention is the solid content of the composition for an anisotropic dye film. (100 parts by mass), preferably 35 parts by mass or more, more preferably 50 parts by mass or more, even more preferably 55 parts by mass or more, preferably 99 parts by mass or less, and more preferably 98 parts by mass or less. If the content of the liquid crystal compound in the composition for an anisotropic dye film is in the range from the lower limit to the upper limit, the orientation of the liquid crystal molecules tends to increase.
  • the composition for an anisotropic dye film of the present invention may contain one or more polymerizable or non-polymerizable liquid crystal compounds other than the polymerizable liquid crystal compound (2). From the viewpoint of obtaining the effects of the present invention by using the polymerizable liquid crystal compound (2) more effectively, the polymerizable liquid crystal in the total amount of 100% by mass of the liquid crystal compounds contained in the composition for an anisotropic dye film of the present invention
  • the proportion of compound (2) is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15 to 100% by mass.
  • composition for an anisotropic dye film of the present invention contains a polymerizable liquid crystal compound, and the mass concentration in the composition for an anisotropic dye film is the compound of the present invention represented by the above formula (1). It is preferable to contain so as to achieve the mass concentration described later with respect to the concentration.
  • the polymerizable liquid crystal compound contained in the anisotropic dye film-forming composition of the present invention preferably has an isotropic phase appearance temperature of 160° C. or lower, more preferably 140° C. or lower. , 115° C. or less is more preferable, 110° C. or less is even more preferable, and 105° C. or less is particularly preferable.
  • the isotropic phase appearance temperature means the phase transition temperature from liquid crystal to liquid and the phase transition temperature from liquid to liquid crystal. In the present invention, at least one of these phase transition temperatures is preferably equal to or lower than the above upper limit, and more preferably both of these phase transition temperatures are equal to or lower than the above upper limit.
  • the polymerizable liquid crystal compound contained in the anisotropic dye film-forming composition of the present invention undergoes alkylation reaction, esterification reaction, amidation reaction, etherification reaction, ipso substitution reaction, and coupling reaction using a metal catalyst.
  • alkylation reaction e.g., alkylation reaction, esterification reaction, amidation reaction, etherification reaction, ipso substitution reaction, and coupling reaction using a metal catalyst.
  • the polymerizable liquid crystal compound contained in the composition for forming an anisotropic dye film of the present invention can be obtained by the method described in Examples below or by the method described in "Liquid Crystal Handbook" (Maruzen Co., Ltd., October 30, 2000). (published by Japan), pages 449-468.
  • the anisotropic dye film-forming composition contains molecules of a polymerizable liquid crystal compound.
  • the number of ring structures (r n1 ) possessed by the polymerizable liquid crystal compound contained in the anisotropic dye film-forming composition and the anisotropic dye film-forming composition is 0.7 to 1.5. is preferred.
  • a condensed ring in which two or more rings are condensed is counted as one ring structure.
  • the number of ring structures (r n2 ) possessed by the compound of the present invention represented by formula (1) is the sum of A 1 , A 2 , and A 3 in the formula, and specifically, If n is 1, r n2 is 3; if n is 2, r n2 is 4; if n is 3, r n2 is 5. Even if -Y is a cyclic functional group such as a pyrrolidinyl group or a piperidinyl group, the ring structure contained in -Y is the number of ring structures (r n2 ).
  • the number of ring structures (r n1 ) possessed by the polymerizable liquid crystal compound contained in the anisotropic dye film-forming composition includes ring structures (for example, oxirane rings and oxetane rings) contained in the polymerizable groups in the polymerizable liquid crystal compound. etc.) are not included.
  • the composition for an anisotropic dye film of the present invention preferably contains the polymerizable liquid crystal compound at a mass concentration of 1 or more times the mass concentration of the compound of the present invention represented by formula (1). If the mass concentration of the polymerizable liquid crystal compound is 1 or more times the mass concentration of the compound of the present invention represented by formula (1), a high dichroic ratio tends to be obtained, and the mechanical strength of the anisotropic dye film is improved. It is preferable from the viewpoint that it can be improved. More preferably, the mass concentration of the polymerizable liquid crystal compound in the composition for an anisotropic dye film of the present invention is at least 1.5 times the mass concentration of the compound of the present invention represented by formula (1).
  • the mass concentration of the polymerizable liquid crystal compound in the anisotropic dye film composition of the present invention is preferably 1000 times or less the mass concentration of the compound of the present invention represented by formula (1). It is more preferably 700 times or less, and even more preferably 500 times or less.
  • the anisotropic dye film-forming composition of the present invention may contain a polymerization initiator, if necessary.
  • a polymerization initiator is a compound that can initiate a polymerization reaction of a polymerizable liquid crystal compound.
  • a photopolymerization initiator that generates active radicals by the action of light is preferred.
  • Examples of usable polymerization initiators include titanocene derivatives; biimidazole derivatives; halomethylated oxadiazole derivatives; halomethyl-s-triazine derivatives; alkylphenone derivatives; iodonium salts; sulfonium salts; anthraquinone derivatives; acetophenone derivatives; thioxanthone derivatives; Among these photopolymerization initiators, alkylphenone derivatives, oxime ester derivatives, biimidazole derivatives, acetophenone derivatives, and thioxanthone derivatives are more preferred.
  • titanocene derivatives include dicyclopentadienyl titanium dichloride, dicyclopentadienyl titanium bisphenyl, dicyclopentadienyl titanium bis(2,3,4,5,6-pentafluoro phenyl-1-yl), dicyclopentadienyl titanium bis(2,3,5,6-tetrafluorophenyl-1-yl), dicyclopentadienyl titanium bis(2,4,6-trifluorophenyl- 1-yl), dicyclopentadienyl titanium di(2,6-difluorophenyl-1-yl), dicyclopentadienyl titanium di(2,4-difluorophenyl-1-yl), di(methylcyclopenta dienyl) titanium bis(2,3,4,5,6-pentafluorophenyl-1-yl), di(methylcyclopentadienyl) titanium bis(2,6-difluorophenyl-1-yl), di(methyl
  • Biimidazole derivatives include, for example, 2-(2'-chlorophenyl)-4,5-diphenylimidazole dimer, 2-(2'-chlorophenyl)-4,5-bis(3'-methoxyphenyl)imidazole dimer, 2-(2′-fluorophenyl)-4,5-diphenylimidazole dimer, 2-(2′-methoxyphenyl)-4,5-diphenylimidazole dimer, (4′-methoxyphenyl )-4,5-diphenylimidazole dimer and the like.
  • halomethylated oxadiazole derivatives include 2-trichloromethyl-5-(2'-benzofuryl)-1,3,4-oxadiazole, 2-trichloromethyl-5-[ ⁇ -(2'- benzofuryl)vinyl]-1,3,4-oxadiazole, 2-trichloromethyl-5-[ ⁇ -(2′-(6′′-benzofuryl)vinyl)]-1,3,4-oxadiazole, 2-trichloromethyl-5-furyl-1,3,4-oxadiazole and the like.
  • halomethyl-s-triazine derivatives examples include 2-(4-methoxyphenyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4-methoxynaphthyl)-4,6-bis( trichloromethyl)-s-triazine, 2-(4-ethoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4-ethoxycarbonylnaphthyl)-4,6-bis(trichloromethyl) -s-triazine and the like.
  • alkylphenone derivatives include diethoxyacetophenone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-( 4-morpholinophenyl)-butanone-1,2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butan-1-one, 4-dimethylaminoethylbenzoate, 4-dimethylaminoisoamyl Benzoate, 4-diethylaminoacetophenone, 4-dimethylaminopropiophenone, 2-ethylhexyl-1,4-dimethylaminobenzoate, 2,5-bis(4-diethylaminobenzal)cyclohexanone, 7-diethylamino -3-(4-diethylaminobenzoyl)coumarin, 4-(diethylamino)chalcone and the like.
  • oxime ester derivatives examples include 2-(benzoyloxyimino)-1-[4-(phenylthio)phenyl]-1-octanone, O-acetyl-1-[6-(2-methylbenzoyl)-9 -Ethyl-9H-carbazol-3-yl]ethanone oxime, oxime ester derivatives described in JP-A-2000-80068, JP-A-2006-36750, International Publication No. 2009/131189, etc. be done.
  • Benzoins include, for example, benzoin, benzoin methyl ether, benzoin phenyl ether, benzoin isobutyl ether, and benzoin isopropyl ether.
  • benzophenone derivatives include benzophenone, Michler's ketone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 2-chlorobenzophenone, 4-bromobenzophenone, 2-carboxybenzophenone, methyl o-benzoylbenzoate, 4 -phenylbenzophenone, 4-benzoyl-4'-methyldiphenylsulfide, 3,3',4,4'-tetra(tert-butylperoxycarbonyl)benzophenone, and 2,4,6-trimethylbenzophenone.
  • Acylphosphine oxide derivatives include, for example, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis-(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide and bis(2,4, 6-trimethylbenzoyl)phenylphosphine oxide and the like.
  • iodonium salts include diphenyliodonium tetrakis(pentafluorophenyl)borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, and di(4-nonylphenyl)iodonium hexafluorophosphate. etc.
  • sulfonium salts include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis(pentafluorophenyl)borate, diphenyl[4-(phenylthio)phenyl]sulfonium hexafluorophosphate.
  • anthraquinone derivatives examples include 2-methylanthraquinone, 2-ethylanthraquinone, 2-t-butylanthraquinone, 1-chloroanthraquinone and the like.
  • Acetophenone derivatives include, for example, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 1-hydroxycyclohexylphenylketone, ⁇ -hydroxy-2-methylphenylpropanone, 1-hydroxy -1-methylethyl-(p-isopropylphenyl)ketone, 1-hydroxy-1-(p-dodecylphenyl)ketone, 2-methyl-(4'-methylthiophenyl)-2-morpholino-1-propanone, 1, 1,1-trichloromethyl-(p-butylphenyl)ketone and the like.
  • Thioxanthone derivatives include, for example, thioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, and 2,4-diisopropylthioxanthone.
  • benzoic acid ester derivatives include ethyl p-dimethylaminobenzoate and ethyl p-diethylaminobenzoate.
  • acridine derivatives examples include 9-phenylacridine and 9-(p-methoxyphenyl)acridine.
  • phenazine derivatives examples include 9,10-dimethylbenzphenazine and the like.
  • Anthrone derivatives include, for example, benzanthrone.
  • the polymerization initiator may be used singly or in combination of two or more.
  • a commercial item can also be used as a polymerization initiator.
  • Commercially available products include, for example, IRGACURE (registered trademark; the same shall apply hereinafter) 250, IRGACURE 651, IRGACURE 184, DAROCURE 1173, IRGACURE 2959, IRGACURE 127, IRGACURE 907, IRGACURE 369, IRGACURE 379EG, LUCIRIN TPO 7, IRGACURE 419 , OXE-01, OXE-02 (both manufactured by BASF); Seikuol (registered trademark) BZ, Z, and BEE (manufactured by Seiko Chemical Co., Ltd.); Kayacure (registered trademark) BP100, and UVI-6992 (manufactured by Dow Chemical Co., Ltd.); ADEKA OPTOMER SP-152 and SP-170 (manufactured by ADEKA Corporation); TAZ-A and TAZ-PP (manufactured by Nihon SiberHeg
  • the content of the polymerization initiator in the composition for forming an anisotropic dye film of the present invention disturbs the alignment of the polymerizable liquid crystal compound. From the viewpoint of difficulty, it is usually 0.1 to 30 parts by mass, preferably 0.5 to 10 parts by mass, more preferably 0.5 to 8 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. be.
  • a polymerization accelerator may be used in combination with the polymerization initiator.
  • the polymerization accelerator used include N,N-dialkylaminobenzoic acid alkyl esters such as N,N-dimethylaminobenzoic acid ethyl ester; mercapto compounds having a heterocyclic ring such as imidazole; and mercapto compounds such as aliphatic polyfunctional mercapto compounds.
  • the polymerization accelerator may also be used singly or in combination of two or more.
  • a sensitizing dye may be used in combination for the purpose of increasing sensitivity.
  • a suitable sensitizing dye is used according to the wavelength of the exposure light source.
  • xanthene dyes described in JP-A-4-221958 and JP-A-4-219756 coumarin dyes having a heterocycle described in JP-A-3-239703 and JP-A-5-289335; 3-ketocoumarin dyes described in JP-A-3-239703, JP-A-5-289335, etc.
  • the anisotropic dye film-forming composition of the present invention may contain a solvent, if necessary.
  • the solvent that can be used for the anisotropic dye film-forming composition of the present invention is not particularly limited as long as it can sufficiently disperse or dissolve the dye or other additives in the polymerizable liquid crystal compound.
  • alcohol solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, propylene glycol monomethyl ether; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, propylene ester solvents such as glycol methyl ether acetate and ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone and methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane and h
  • the solvent is preferably a solvent capable of dissolving the polymerizable liquid crystal compound and the dye, and more preferably a solvent capable of completely dissolving the polymerizable liquid crystal compound and the dye.
  • the solvent is preferably inert to the polymerization reaction of the polymerizable liquid crystal compound.
  • the solvent preferably has a boiling point in the range of 50 to 200° C. from the viewpoint of applying the composition for forming an anisotropic dye film of the present invention, which will be described later.
  • the anisotropic dye film-forming composition of the present invention contains a solvent
  • the content of the solvent in the anisotropic dye film-forming composition is 50 to 98% by mass is preferable.
  • the solid content in the anisotropic dye film-forming composition of the present invention is preferably 2 to 50% by mass.
  • the viscosity of the anisotropic dye film-forming composition does not become too high, and the obtained polarizing film has a uniform thickness. , there is a tendency that unevenness is less likely to occur in the polarizing film.
  • the solid content of the anisotropic dye film-forming composition of the present invention can be determined in consideration of the thickness of the polarizing film to be produced.
  • the viscosity of the anisotropic dye film composition of the present invention is not particularly limited as long as a uniform film with no thickness unevenness is produced by the coating method described below.
  • the viscosity of the composition for forming an anisotropic dye film of the present invention is 0.1 mPa ⁇ s or more from the viewpoint of achieving thickness uniformity over a large area, productivity such as coating speed, and in-plane uniformity of optical properties. is preferably 500 mPa ⁇ s or less, more preferably 100 mPa ⁇ s or less, and even more preferably 50 mPa ⁇ s or less.
  • composition for forming an anisotropic dye film of the present invention may optionally contain, as components other than the dye and the polymerizable liquid crystal compound, a polymerization inhibitor, a polymerization aid, and a polymerization initiator in addition to the polymerization initiator described above.
  • the composition for forming an anisotropic dye film of the present invention can be improved in coatability, stability, etc., or the composition formed from the composition for forming an anisotropic dye film of the present invention can be In some cases, the stability of the anisotropic dye film can be improved.
  • the method for producing the anisotropic dye film composition of the present invention is not particularly limited.
  • a dye containing the compound of the present invention, a polymerizable liquid crystal compound, a solvent, other additives, etc. are mixed as necessary, and the mixture is stirred and shaken at 0 to 80° C. to dissolve the dye. If it is poorly soluble, a homogenizer, a bead mill disperser, or the like may be used.
  • the method for producing the composition for an anisotropic dye film of the present invention may include a filtration step for the purpose of removing foreign substances and the like in the composition.
  • composition for forming an anisotropic dye film of the present invention may or may not be a liquid crystal at any temperature. preferably exhibits liquid crystallinity.
  • the composition obtained by removing the solvent from the anisotropic dye film-forming composition of the present invention preferably has an isotropic phase appearance temperature of less than 160°C, preferably 140°C. It is more preferably less than 115°C, even more preferably less than 110°C, and particularly preferably less than 105°C.
  • the anisotropic dye film of the present invention is formed using the anisotropic dye film-forming composition of the present invention. Accordingly, the anisotropic dye film of the present invention includes a dye and one or both of a polymerizable liquid crystal compound and a polymer having units based on the polymerizable liquid crystal compound, and the dye includes the compound of the present invention.
  • the anisotropic dye film of the present invention formed using the composition for an anisotropic dye film of the present invention preferably has a total mass concentration of the polymerizable liquid crystal compound and the polymer having units based on the polymerizable liquid crystal compound of , 1 time or more, more preferably 1.5 times or more, still more preferably 2 times or more, particularly preferably 3 times or more, and preferably 1000 times or less, the mass concentration of the compound of the present invention represented by formula (1) , more preferably 700 times or less, more preferably 500 times or less.
  • the anisotropic dye film of the present invention contains, as other components, a non-polymerizable liquid crystal compound, a polymerization initiator, a polymerization inhibitor, a polymerization aid, a polymerizable non-liquid crystal compound, a non-polymerizable non-liquid crystal compound, a surfactant, and leveling. agents, coupling agents, pH adjusters, dispersants, antioxidants, organic/inorganic fillers, organic/inorganic nanosheets, organic/inorganic nanofibers, metal oxides, and the like.
  • the anisotropic dye film of the present invention can function as a polarizing film that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption. (or transparent material) can be functionalized as various anisotropic dye films such as refractive anisotropy and conduction anisotropy.
  • the orientation characteristics of the anisotropic dye film can be expressed using a dichroic ratio.
  • a dichroic ratio of 8 or more functions as a polarizing element, preferably 15 or more, more preferably 20 or more, even more preferably 25 or more, particularly preferably 30 or more, and particularly preferably 40 or more. The higher the dichroic ratio of the anisotropic dye film, the better. When the dichroic ratio is equal to or higher than the lower limit, it is useful as an optical element, particularly a polarizing element, which will be described later.
  • the performance of the polarizing element is high, it is easy to simplify the layer structure, and it is easy to exhibit sufficient functions even with a thin film structure, and it can be used suitably for uses in which it is deformed, including folding and bending. Also, the cost can be kept low.
  • the dichroic ratio (D) referred to in the present invention is represented by the following formula when the dyes are uniformly oriented.
  • D Az/Ay
  • Az is the absorbance observed when the polarization direction of the light incident on the anisotropic dye film is parallel to the orientation direction of the anisotropic dye.
  • Ay is the absorbance observed when the polarization direction of the light incident on the anisotropic dye film is perpendicular.
  • Each absorbance (Az, Ay) is not particularly limited as long as the same wavelength is used, and any wavelength may be selected depending on the purpose.
  • the transmittance of the anisotropic dye film of the present invention is preferably 25% or higher, more preferably 35% or higher, and particularly preferably 40% or higher, at the intended wavelength.
  • the transmittance of the anisotropic dye film in the visible light wavelength region is preferably 25% or more. , more preferably 35% or more, and particularly preferably 40% or more.
  • the transmittance of the anisotropic dye film of the present invention may have an upper limit depending on the application. For example, when increasing the degree of polarization, the transmittance is preferably 50% or less.
  • the transmittance is within the above range, it is useful as an optical element to be described later, particularly as an optical element for a liquid crystal display used for color display or for an antireflection film combining an anisotropic dye film and a retardation film. Useful.
  • the dry film thickness of the anisotropic dye film is preferably 10 nm or more, more preferably 100 nm or more, and even more preferably 500 nm or more.
  • the thickness of the anisotropic dye film is preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably 5 ⁇ m or less, and particularly preferably 3 ⁇ m or less. When the film thickness of the anisotropic dye film is within the above range, it tends to be possible to obtain a uniform dye orientation and a uniform film thickness in the film.
  • the anisotropic dye film of the invention is preferably prepared by a wet film-forming method using the composition for forming an anisotropic dye film of the invention.
  • the wet film-forming method referred to in the present invention is a method of coating and orienting a composition for an anisotropic dye film on a substrate by some method. Therefore, the composition for an anisotropic dye film should have fluidity, and may or may not contain a solvent. It is more preferable to contain a solvent from the viewpoint of the viscosity and film uniformity at the time of application.
  • the orientation of the liquid crystals and dyes in the anisotropic dye film may be oriented by shearing during the coating process, or may be oriented during the solvent drying process.
  • liquid crystals, dyes, and the like may be aligned and laminated on a substrate through a process of reorienting liquid crystals, dyes, and the like by heating after application and drying.
  • the dye or the liquid crystal compound self-associates (a molecular association state such as a liquid crystal state) to cause alignment in a minute area.
  • an anisotropic dye film having desired properties By applying an external field to this state, it is possible to obtain an anisotropic dye film having desired properties by orienting the dye in a certain direction in a macroscopic region.
  • the external field includes the influence of an orientation treatment layer previously applied on the substrate, shear force, magnetic field, electric field, heat, and the like, and these may be used singly or in combination. If necessary, a heating step may be performed.
  • the process of applying the anisotropic dye film composition on the substrate to form a film, the process of applying an external field for orientation, and the process of drying the solvent may be carried out sequentially or simultaneously.
  • Examples of the method for applying the anisotropic dye film-forming composition onto the substrate in the wet film-forming method include a coating method, a dip coating method, an LB film-forming method, and a known printing method. There is also a method of transferring the anisotropic dye film thus obtained to another substrate.
  • composition for forming an anisotropic dye film onto the substrate using a coating method.
  • the orientation direction of the anisotropic dye film may be different from the coating direction.
  • the orientation direction of the anisotropic dye film means, for example, the transmission axis (polarization axis) or absorption axis of polarized light in the case of a polarizing film, and the fast or slow axis in the case of a retardation film. It is about the phase axis.
  • the method of applying the composition for an anisotropic dye film to obtain an anisotropic dye film is not particularly limited. ), the method described on pages 253 to 277 of Kunihiro Ichimura, the method described on pages 118 to 149 of "Creation and Application of Molecular Cooperative Materials” (CMC Publishing Co., Ltd., March 3, 1998), supervised by Kunihiro Ichimura, steps Slot die coating method, spin coating method, spray coating method, bar coating method, roll coating method, blade coating method, curtain coating method, fountain method, dip method, etc. on a substrate having a structure (which may be subjected to orientation treatment in advance) A method of coating with Among them, the use of the slot die coating method and the bar coating method is preferable because an anisotropic dye film with high uniformity can be obtained.
  • the die coater used for the slot die coating method is generally equipped with a so-called slit die, which is a coating machine that discharges the coating liquid.
  • Slit dies are described, for example, in JP-A-2-164480, JP-A-6-154687, JP-A-9-131559, “Fundamentals and Applications of Dispersion, Coating and Drying” (2014, Technosystem Co., Ltd., ISBN9784924728707C305), “Wet coating technology for displays and optical members” (2007, Information Organization, ISBN9784901677752), “Precision coating and drying technology in the electronics field” (2007, Technical Information Institute, ISBN9784861041389), etc.
  • These known slit dies can coat flexible members such as films and tapes and hard members such as glass substrates.
  • Examples of the substrate used for forming the anisotropic dye film of the present invention include glass, triacetate, acrylic, polyester, polyimide, polyetherimide, polyetheretherketone, polycarbonate, cycloolefin polymer, polyolefin, polyvinyl chloride, A triacetyl cellulose or urethane-based film or the like can be used.
  • a known method (rubbing method, orientation Alignment is achieved by a method of forming grooves (fine groove structure) on the film surface, a method using polarized ultraviolet light and a polarized laser (photo-alignment method), an alignment method by forming an LB film, an alignment method by oblique vapor deposition of an inorganic substance, etc.).
  • a treatment (orientation film) may be applied.
  • alignment treatment by a rubbing method and a photo-alignment method can be mentioned preferably.
  • Materials used in the rubbing method include polyvinyl alcohol (PVA), polyimide (PI), epoxy resin, acrylic resin, and the like.
  • Examples of materials used in the photo-alignment method include polycinnamate-based materials, polyamic acid/polyimide-based materials, and azobenzene-based materials.
  • an alignment treatment layer it is considered that the liquid crystal compound and the dye are oriented due to the influence of the alignment treatment of the alignment treatment layer and the shear force applied to the anisotropic dye film composition during coating.
  • the supply method and supply interval of the anisotropic dye film composition when applying the anisotropic dye film composition are not particularly limited. If the anisotropic dye film is thin, continuous anisotropic It is desirable to apply while supplying the composition for the dye film.
  • the speed at which the anisotropic dye film composition is applied is usually 0.001 m/min or more, preferably 0.01 m/min or more, more preferably 0.1 m/min or more, and still more preferably It is 1.0 m/min or more, and particularly preferably 5.0 m/min or more.
  • the speed at which the anisotropic dye film composition is applied is usually 400 m/min or less, preferably 200 m/min or less, more preferably 100 m/min or less, and still more preferably 50 m/min or less. . When the coating speed is within the above range, the anisotropy of the anisotropic dye film can be obtained, and there is a tendency for uniform coating.
  • the coating temperature of the anisotropic dye film composition is usually 0°C or higher and 100°C or lower, preferably 80°C or lower, and more preferably 60°C or lower.
  • the humidity during application of the anisotropic dye film composition is preferably 10% RH or more and preferably 80 RH% or less.
  • the anisotropic dye film may be subjected to insolubilization treatment.
  • Insolubilization means a treatment for controlling the elution of the compound from the anisotropic dye film and increasing the stability of the film by reducing the solubility of the compound in the anisotropic dye film.
  • film polymerization, overcoating, and the like are preferable from the viewpoints of ease of subsequent processes, durability of the anisotropic dye film, and the like.
  • the light source of the active energy ray with a wavelength of 190 to 450 nm is not particularly limited.
  • Lamp light sources such as arcs and fluorescent lamps; laser light sources such as argon ion lasers, YAG lasers, excimer lasers, nitrogen lasers, helium cadmium lasers and semiconductor lasers;
  • An optical filter can also be used when using it by irradiating the light of a specific wavelength.
  • the exposure dose of active energy rays is preferably 10 to 10,000 J/m 2 .
  • the polymerization is carried out using heat, it is preferably carried out in the range of 50 to 200°C, more preferably in the range of 60 to 150°C.
  • Polymerization may be performed using light, heat, and/or radiation, but using photopolymerization or using photopolymerization and thermal polymerization in combination shortens the film formation process time and uses simple equipment. Therefore, it is preferable.
  • optical element of the invention includes the anisotropic dye film of the invention.
  • the optical element in the present invention utilizes the anisotropy of light absorption to obtain linearly polarized light, circularly polarized light, elliptical polarized light, etc., a polarizing element, a phase difference element, and has functions such as refractive anisotropy and conduction anisotropy. represents an element. These functions can be appropriately adjusted by selecting the anisotropic dye film forming process and the composition containing the substrate and the organic compound (dye and transparent material).
  • the optical element of the present invention is used as a polarizing element.
  • the optical element of the present invention can be suitably used for applications such as flexible displays because a polarizing element can be obtained by forming an anisotropic dye film on a substrate by coating or the like.
  • the optical element may be provided with other layers in order to maintain and improve the function of the anisotropic dye film.
  • Other layers include, for example, a layer having a function of blocking a specific wavelength and a layer having a function of blocking a specific substance (oxygen Barrier films such as barrier films, water vapor barrier films, etc.); layers containing wavelength cut filters and materials that absorb specific wavelengths, which are used to change the color gamut or improve optical properties; be done.
  • a polarizing element (hereinafter sometimes referred to as "the polarizing element of the present invention") can be manufactured.
  • the polarizing element of the present invention may have any other film (layer) as long as it has the anisotropic dye film of the present invention.
  • it can be produced by providing an alignment film on a substrate and forming the anisotropic dye film of the present invention on the surface of the alignment film.
  • the polarizing element is not limited to an anisotropic dye film, and includes an overcoat layer that has functions such as improving the polarizing performance and improving the mechanical strength; an adhesive layer or an antireflection layer; an alignment film; and a function as a retardation film.
  • a layer having an optical function such as a function as a brightness enhancement film, a function as a reflection or antireflection film, a function as a transflective film, a function as a diffusion film, and the like.
  • the layers having various functions described above may be laminated by coating, lamination, or the like, and used as a laminate.
  • each layer can be formed on the anisotropic dye film or on the opposite side of the substrate provided with the anisotropic dye film.
  • the order of forming each layer may be before or after forming the anisotropic dye film.
  • These layers having optical functions can be formed by the following methods.
  • a layer having a function as a retardation film can be formed by applying or bonding a retardation film to another layer that constitutes the polarizing element.
  • the retardation film is, for example, subjected to the stretching treatment described in JP-A-2-59703, JP-A-4-230704, etc., or the treatment described in JP-A-7-230007. can be formed by
  • a layer functioning as a brightness enhancement film can be formed by applying or bonding a brightness enhancement film to another layer that constitutes a polarizing element.
  • the brightness enhancement film is formed by, for example, forming micropores by a method as described in JP-A-2002-169025 and JP-A-2003-29030, or two or more layers having different central wavelengths of selective reflection. of cholesteric liquid crystal layers.
  • a layer functioning as a reflective film or a semi-transmissive reflective film can be formed, for example, by coating or adhering a metal thin film obtained by vapor deposition or sputtering to another layer constituting the polarizing element. can be done.
  • a layer functioning as a diffusion film can be formed, for example, by coating another layer constituting the polarizing element with a resin solution containing fine particles.
  • a layer having a function as a retardation film or an optical compensation film contains a liquid crystalline compound such as a discotic liquid crystalline compound, a nematic liquid crystalline compound, a smectic liquid crystalline compound, a cholesteric liquid crystalline compound, or another layer constituting a polarizing element. It can be formed by coating and orienting. At that time, an alignment film may be provided on the substrate, and a retardation film or an optical compensation film may be formed on the surface of the alignment film.
  • anisotropic dye film of the present invention When the anisotropic dye film of the present invention is used as an anisotropic dye film or the like in various display elements such as a liquid crystal device (LCD) and an organic electroluminescence device (OLED), electrodes constituting these display devices
  • LCD liquid crystal device
  • OLED organic electroluminescence device
  • the anisotropic dye film of the present invention may be formed directly on the surface of a substrate or the like, or the substrate having the anisotropic dye film of the present invention formed thereon may be used as a constituent member of these display elements.
  • a sandwich cell (cell gap: 8.0 ⁇ m, 10.0 ⁇ m, film-formed polyimide) in which a polyimide alignment film (LX1400, manufactured by Hitachi Chemical DuPont Microsystems) is formed on glass as a substrate
  • a polyimide alignment film LX1400, manufactured by Hitachi Chemical DuPont Microsystems
  • the composition for an anisotropic dye film was injected in an isotropic phase into an anisotropic dye film and cooled to 80° C. at 5° C./min to obtain an anisotropic dye film. While cooling to 0°C at °C/min, the dichroic ratio was measured at each temperature. Among them, the dichroic ratio at the temperature and wavelength showing the maximum dichroic ratio was determined as the dichroic ratio of the anisotropic dye film.
  • the dichroic ratio of the anisotropic dye film measured above is 20 or more, it is practically sufficient and preferable, 30 or more is more preferable, and 40 or more is even more preferable.
  • the isotropic phase appearance temperature (phase transition temperature from liquid crystal to liquid and phase transition temperature from liquid to liquid crystal) was determined by differential scanning calorimetry.
  • 0.2 parts by mass of 4-methoxyphenol as a polymerization inhibitor was added to 100 parts by mass of the polymerizable liquid crystal compound (I-1).
  • the phase transition temperature of the polymerizable liquid crystal compound (I-1) from liquid crystal to liquid was 111.0°C, and the phase transition temperature from liquid to liquid crystal was 109.4°C. It was confirmed by polarizing microscope observation and X-ray structure analysis that this temperature is the isotropic phase appearance temperature.
  • the dye (II-1) in a 10 ppm chloroform solution had a maximum absorption wavelength ( ⁇ max) of 593 nm and a gram extinction coefficient of 131.9 Lg ⁇ 1 cm ⁇ 1 .
  • the solubility of dye (II-1) in cyclopentanone was measured. 3 mg of dye (II-1) was added to 103 mg of cyclopentanone, and the mixture was stirred at 80° C. for 5 minutes. After that, it was allowed to stand at room temperature for 1 hour, and the resulting mixture was filtered using a syringe equipped with a syringe filter (manufactured by Membrane Solutions, PTFE13045, caliber 0.45 ⁇ m) to remove pigment (II-1). A saturated solution of cyclopentanone was obtained. This solution was diluted with 746 mg of tetrahydrofuran, and the concentration was determined using HPLC (L-2300 series manufactured by Hitachi High Technologies).
  • a solution was prepared by dissolving 0.1% by mass of dye (II-1) in tetrahydrofuran, and a calibration curve was drawn at an absorption wavelength of 254 nm. Using this calibration curve, the concentration of saturated cyclopentanone solution was measured. Table 1 shows the results.
  • the dye (II-2) in a 10 ppm chloroform solution had a maximum absorption wavelength ( ⁇ max) of 596 nm and a gram extinction coefficient of 153.2 Lg ⁇ 1 cm ⁇ 1 .
  • (III-1-c) (III-1-b) (113.5 g, 427.7 mmol) and ethyl acetate (1100 mL) were mixed under an argon stream, and then palladium carbon (5% Pd—C, water content 55% by mass, 11.4 g). was added and stirred at 25° C. for 60 hours under a hydrogen atmosphere. After purging the inside of the container with argon, the catalyst was filtered off. The catalyst was extracted with dichloromethane, and the organic layers were combined, concentrated, and purified by silica gel chromatography (dichloromethane) to obtain 99.5 g of (III-1-c).
  • (III-1-f) (III-1-c) (47.3 g, 201 mmol) and 12N hydrochloric acid (375 mL) were mixed under a nitrogen stream, cooled to 0° C. and stirred for 1 hour. An aqueous solution obtained by mixing sodium nitrite (17.3 g, 251 mmol) and water (130 mL) was added thereto, and the mixture was stirred at 5°C for 1 hour to prepare a diazonium solution. (III-1-e) (37.2 g, 241 mmol) and methanol were mixed, and after cooling to 0° C., the above diazonium solution was added dropwise over 40 minutes. The mixture was heated to 25° C. and stirred for 3 hours, the precipitated solid was collected by filtration, and the obtained crude product was washed with hexane to obtain 48.1 g of (III-1-f).
  • the dye (III-1) in a 10 ppm chloroform solution had a maximum absorption wavelength ( ⁇ max) of 563 nm and a gram extinction coefficient of 134.8 Lg ⁇ 1 cm ⁇ 1 .
  • Example 1 Add 20.00 parts of the polymerizable liquid crystal compound (I-1) and 0.23 parts of the dye (II-1) to 2959.1 parts of chloroform, stir to dissolve, and then remove the solvent. Thus, an anisotropic dye film-forming composition 1 was obtained. rn 1 /rn 2 of the composition 1 for forming an anisotropic dye film is 1. It was confirmed that the anisotropic dye film-forming composition 1 exhibited liquid crystallinity by observing birefringence at 40° C. with a polarizing microscope equipped with a hot stage.
  • an anisotropic dye film 1 was produced using a sandwich cell with a cell gap of 8.0 ⁇ m in order to determine the dichroic ratio by the method described above. .
  • the dichroic ratio of the anisotropic dye film 1 was determined. Table 1 shows the results.
  • Example 2 The anisotropic dye film-forming composition 2 and the anisotropic A sexual pigment film 2 was obtained. rn 1 /rn 2 of composition 2 for forming an anisotropic dye film is 1. It was confirmed that the anisotropic dye film-forming composition 2 exhibited liquid crystallinity by observing birefringence at 40° C. with a polarizing microscope equipped with a hot stage. The dichroic ratio of the anisotropic dye film 2 was determined. Table 1 shows the results.
  • the dye (II-1) used in Example 1 and the dye (II-2) used in Example 2 have high solubility in cyclopentanone, and the resulting anisotropic dye film has It showed a good dichroic ratio.
  • Comparative Examples 1 and 2 showed a good dichroic ratio but low solubility in cyclopentanone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)
  • Polarising Elements (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

下記式(1)で示される化合物。 X-A-(N=N-A-N=N-A-Y …(1) (-A-、-A-は、置換基を有していてもよいS原子を1つ以上含む多環式の芳香族複素環の2価基、又は置換基を有していてもよい芳香族炭化水素環の2価基。-A-は置換基を有していてもよい芳香族炭化水素環の2価基。-Xは1価の有機基。-Yは-N(-R)-R、-OC(=O)-R又は-C(=O)-O-R。-Rは分岐を有する炭素数3~15のアルキル基。-Rは水素原子又は分岐を有していてもよい炭素数1~15のアルキル基。nは1~3。-A-と-A-が共に置換基を有していてもよい芳香族炭化水素環の2価基であることはない。)

Description

化合物、該化合物を含む異方性色素膜用組成物、異方性色素膜および光学素子
 本発明は、調光素子、液晶素子(LCD)、および有機エレクトロルミネッセンス素子(OLED)の表示素子に具備される偏光膜等に有用な化合物に関する。本発明はまた、この化合物を含む異方性色素膜形成用組成物、異方性色素膜および光学素子に関する。
 LCDでは、表示における旋光性や複屈折性を制御するために、直線偏光膜および円偏光膜が用いられている。OLEDにおいても、明所での外光の反射防止のために円偏光膜が用いられている。
 従来、このような偏光膜として、たとえば、ポリビニルアルコール(PVA)を低濃度のヨウ素で染色した偏光膜(ヨウ素-PVA偏光膜)を含むものが知られている(特許文献1)。しかし、PVAを低濃度としたヨウ素-PVA偏光板は、使用環境によっては、ヨウ素が昇華したり、変質したりして、色目が変わってしまうといった問題や、PVAの延伸が緩和されることによる反りが発生するといった問題がある。
 色素を含有した液晶組成物を塗布して形成される異方性色素膜が偏光膜として機能することも知られている(特許文献2)。しかし、波長560nm~800nmの範囲に極大吸収を有し、十分な二色比と溶解性を両立する二色性色素については開示されていない。
 波長550nm~800nmの範囲に極大吸収を有する二色性色素として、ベンゾチアゾールもしくはチエノチアゾール骨格を有する色素と重合性液晶を組み合わせた異方性色素膜は知られている(特許文献3)。しかし、ベンゾチアゾールもしくはチエノチアゾール骨格を有する色素は、溶解性が求められる異方性色素膜形成用組成物では色素が析出するおそれがある。
特開平1-105204号公報 特開2013-210624号公報 特開2016-170368号公報
 色素を含有した液晶組成物を塗布して形成される偏光膜においては、薄膜でも高い光吸収選択性能を有し、350nm~800nmの波長領域において光抜けの無いことが所望されている。そのため、二色性の高い色素を複数使用して350nm~800nmの波長領域を網羅的に吸収するよう調節する必要がある。しかし、この場合、複数の色素を含むために組成物中の色素濃度が高くなり、薄膜条件で塗布する場合、液晶に対する色素濃度が濃くなることで、色素が析出しやすくなって、塗布性能が低下する。
 本発明は、溶解性が高く、組成物中で析出などの懸念がないことから塗布性能が良好であり、得られる異方性色素膜が高い二色性を発現する色素化合物を提供することを目的とする。
 本発明はまた、該化合物を含む異方性色素膜形成用組成物、異方性色素膜および光学素子を提供することを目的とする。
 本発明者は、特定構造を有する化合物が前記課題を解決できることを見出した。
 本発明は、以下の態様を有する。
[1] 下記式(1)で示される化合物。
X-A-(N=N-A-N=N-A-Y   …(1)
(式(1)中、
 -A-および-A-はそれぞれ独立に、置換基を有していてもよいS原子を1つ以上含む多環式の芳香族複素環の2価基、又は置換基を有していてもよい芳香族炭化水素環の2価基を表し、
 -A-は置換基を有していてもよい芳香族炭化水素環の2価基を表し、
 -Xは1価の有機基を表し、
 -Yは-N(-R)-R、-OC(=O)-R、または-C(=O)-O-Rを表し、
 -Rは、置換基を有していてもよい、分岐を有する炭素数3~15のアルキル基を表す。
 -Rは、水素原子、又は分岐を有していてもよい炭素数1~15のアルキル基を表し、前記分岐を有していてもよい炭素数1~15のアルキル基は、置換基を有していてもよい。
 前記分岐を有する炭素数3~15のアルキル基および前記分岐を有していてもよい炭素数1~15のアルキル基に含まれる一つ、またはそれ以上のメチレン基は、-O-、-S-、-NH-、-N(-R)-、-C(=O)-、-C(=O)-O-、-C(=O)-NH-、-CHF-、-CF-、-CHCl-、-CCl-、または重合性基によって置き換えられた構造であってもよい。-Rは、水素原子、又は分岐を有していてもよい炭素数1~15のアルキル基を表す。
 nは1、2または3を表す。
 nが2または3の場合、複数の-A-は互いに同一でも異なっていてもよい。
 ただし、-A-および-A-が共に置換基を有していてもよい芳香族炭化水素環の2価基であることはない。)
[2] 前記式(1)において、S原子を1つ以上含む多環式の芳香族複素環が、ベンゾチオフェン環、チエノピロ-ル環、チエノチオフェン環、フロチアゾール環、チエノフラン環、チエノチアゾール環、ベンゾイソチアゾール環、又はベンゾチアゾール環である、[1]に記載の化合物。
[3] 前記式(1)において、-A-の少なくとも一つは置換基を有していてもよいS原子を1つ以上含む多環式の芳香族複素環の2価基である、[1]又は[2]に記載の化合物。
[4] 前記式(1)において、-Yが-N(-R)-Rであり、-Rは置換基を有していてもよい、分岐を有する炭素数3~15のアルキル基であり、-Rは、水素原子、又は分岐を有していてもよい炭素数1~15のアルキル基であり、-R及び-Rのアルキル基における炭素数の合計が15以下である、[1]~[3]のいずれかに記載の化合物。
[5] 前記式(1)において、-Yが-N(-R)-Rであり、-Rは置換基を有していてもよい、分岐を有する炭素数3~15のアルキル基であり、-Rは水素原子、又は分岐を有しない炭素数1~15のアルキル基であり、前記分岐を有しない炭素数1~15のアルキル基は置換基を有していてもよい、[1]~[4]のいずれかに記載の化合物。
[6] 前記式(1)において、-A-が、置換基を有していてもよいフェニレン基である、[1]~[5]のいずれかに記載の化合物。
[7] 前記式(1)において、-A-が、置換基を有していてもよいフェニレン基である、[1]~[6]のいずれかに記載の化合物。
[8] 前記式(1)において、-Xは分岐を有さない、炭素数3以上のアルキル基、アルキコシ基、アルキルエステル基、アルコキシカルボニル基またはアルキルスルファニル基である、[1]~[7]のいずれかに記載の化合物。
[9] [1]~[8]のいずれかに記載の化合物と重合性液晶化合物とを含む異方性色素膜形成用組成物。
[10] 前記重合性液晶化合物が、炭素-炭素三重結合を有する化合物である、[9]に記載の異方性色素膜形成用組成物。
[11] 前記重合性液晶化合物の質量濃度が前記式(1)で示される化合物の質量濃度の1倍以上である、[9]又は[10]に記載の異方性色素膜形成用組成物。
[12] 350nm~800nmの波長域の吸収曲線における最大値を示す波長が、前記式(1)で示される化合物の350nm~800nmの波長域の吸収曲線における最大値を示す波長よりも短い色素を、さらに含む、[9]~[11]のいずれかに記載の異方性色素膜形成用組成物。
[13] 前記色素がアゾ色素である、[12]に記載の異方性色素膜形成用組成物。
[14] [9]~[13]のいずれかに記載の異方性色素膜形成用組成物を用いて形成された異方性色素膜。
[15] [14]に記載の異方性色素膜を含む光学素子。
[16] [9]~[13]のいずれかに記載の異方性色素膜形成用組成物を基板へ塗布する工程を有する、異方性色素膜の製造方法。
 本発明の化合物は適度な嵩高い置換基を有し、高い二色性および溶解度を両立するものである。
 本発明の異方性色素膜形成用組成物は、このような本発明の化合物を含むため、化合物の析出を抑制し、塗布性能の向上を図った上で、高い二色比を実現できる。
 本発明の異方性色素膜形成用組成物を用いた異方性色素膜および光学素子によれば、優れた光学性能、特に十分な二色比を実現できる。
 以下、本発明の実施の形態を具体的に説明する。本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。
 本発明でいう異方性色素膜とは、異方性色素膜の厚み方向および任意の直交する面内2方向の立体座標系における合計3方向から選ばれる、任意の2方向における電磁気的性質に異方性を有する色素膜である。電磁気学的性質としては、たとえば、吸収、屈折等の光学的性質、抵抗、容量等の電気的性質が挙げられる。
 吸収、屈折等の光学的異方性を有する膜としては、たとえば、直線偏光膜、円偏光膜等の偏光膜、位相差膜、導電異方性色素膜が挙げられる。
 本発明の異方性色素膜は、偏光膜、または導電異方性色素膜として用いられることが好ましく、偏光膜に用いられることがより好ましい。
[化合物]
 本発明の化合物は、下記式(1)で表される新規の化合物である。
X-A-(N=N-A-N=N-A-Y   …(1)
(式(1)中、
 -A-および-A-はそれぞれ独立に、置換基を有していてもよいS原子を1つ以上含む多環式の芳香族複素環の2価基、又は置換基を有していてもよい芳香族炭化水素環の2価基を表し、
 -A-は置換基を有していてもよい芳香族炭化水素環の2価基を表し、
 -Xは1価の有機基を表し、
 -Yは-N(-R)-R、-OC(=O)-Rまたは-C(=O)-O-Rを表し、
 -Rは、置換基を有していてもよい、分岐を有する炭素数3~15のアルキル基を表す。
 -Rは、水素原子、又は分岐を有していてもよい炭素数1~15のアルキル基を表し、前記分岐を有していてもよい炭素数1~15のアルキル基は、置換基を有していてもよい。
 前記分岐を有する炭素数3~15のアルキル基および前記分岐を有していてもよい炭素数1~15のアルキル基に含まれる一つ、またはそれ以上のメチレン基は、-O-、-S-、-NH-、-N(-R)-、-C(=O)-、-C(=O)-O-、-C(=O)-NH-、-CHF-、-CF-、-CHCl-、-CCl-、または重合性基によって置き換えられた構造であってもよい。-Rは、水素原子、又は分岐を有していてもよい炭素数1~15のアルキル基を表す。
 nは1、2または3を表す。
 nが2または3の場合、複数の-A-は互いに同一でも異なっていてもよい。
 ただし、-A-および-A-が共に置換基を有していてもよい芳香族炭化水素環の2価基であることはない。)
(-X)
 -Xは、1価の有機基を表す。
 -Xにおける1価の有機基としては、水素原子、ヒドロキシ基、アミノ基、シアノ基、カルバモイル基、ニトロ基、ハロゲン原子、-R、-O-R、-NH-R、-C(=O)-R、-C(=O)-O-R、-C(=O)-NH-R、-C(=O)-N(-R)-R、-O-C(=O)-R、-NH-C(=O)-R、-N(-R)-C(=O)-R等が挙げられる。
 -Rおよび-Rは、それぞれ独立に、分岐を有していてもよい炭素数1~15、好ましくは1~10、より好ましくは1~6のアルキル基、環を構成する原子の数が5~14、好ましくは5~10のシクロアルキル基または環を構成する原子の数が5~14、好ましくは5~10のアリール基を表す。
 上記アルキル基、シクロアルキル基およびアリール基は、それぞれ置換基を有していてもよい。
 -Rおよび-Rは、一体となって炭素数2~15、好ましくは2~10の環を形成していてもよく、該環は置換基を有していてもよい。
 該分岐を有していてもよい炭素数1~15のアルキル基、環を構成する原子の数が5~14のシクロアルキル基または-Rおよび-Rが一体となって形成した環に含まれる一つまたはそれ以上のメチレン基は、-O-、-S-、-NH-、-C(=O)-、-C(=O)-O-、-C(=O)-NH-、-CHF-、-CF-、-CHCl-、-CCl-によって置き換えられた(displace)構造であってもよく、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基の重合性基に置き換えられた構造であってもよい。
 -Rおよび-Rにおける分岐を有していてもよい炭素数1~15のアルキル基に許容される置換基としては、たとえば、-OH、-O-R、-O-C(=O)-R、-NH、-NH-R、-N(-R)-R、-C(=O)-R、-C(=O)-O-R、-C(=O)-NH、-C(=O)-NH-R、-C(=O)-N(-R)-R、-SH、-S-R、スルファモイル基、カルボキシ基、シアノ基、ニトロ基、ハロゲン、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基などの重合性基等が挙げられる。-Rおよび-Rは、それぞれ独立に、炭素数1~15、好ましくは1~10の直鎖状もしくは分枝状のアルキル基を表す。
 前記炭素数1~15の直鎖状もしくは分枝状のアルキル基に含まれる一つまたはそれ以上のメチレン基は、-O-、-S-、-NH-、-N(R)-、-C(=O)-、-C(=O)-O-、-C(=O)-NH-、-CHF-、-CF-、-CHCl-、-CCl-によって置き換えられた(displace)構造であってもよく、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基の重合性基に置き換えられた構造であってもよい。ここで、Rは、炭素数1~6の直鎖状または分枝状のアルキル基を表す。
 これらのうち、-Rおよび-Rにおける分岐を有していてもよい炭素数1~15のアルキル基に許容される置換基としては、-O-Rが好ましく、たとえば、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、n-ペントキシ基、n-ヘキソキシ基、n-ヘプトキシ基、n-オクトキシ基、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基等が挙げられる。
 -Rおよび-Rにおける環を構成する原子の数が5~14のシクロアルキル基もしくはアリール基に許容される置換基としては、たとえば、-R、-OH、-O-R、-O-C(=O)-R、-NH、-NH-R、-N(-R)-R、-C(=O)-R、-C(=O)-O-R、-C(=O)-NH、-C(=O)-NH-R、-C(=O)-N(-R)-R、-SH、-S-R、トリフルオロメチル基、スルファモイル基、カルボキシ基、シアノ基、ニトロ基、ハロゲンが挙げられる。ここで、-Rおよび-Rは、それぞれ独立に、炭素数1~10、好ましくは1~5の直鎖状もしくは分枝状のアルキル基を表す。
 これらのうち、-Rおよび-Rにおける環を構成する原子の数が5~14のシクロアルキル基もしくはアリール基に許容される置換基としては、-R、-O-Rが好ましく、たとえば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、n-ペントキシ基、n-ヘキソキシ基、n-ヘプトキシ基、n-オクトキシ基、2-エチルヘキシルオキシ基、5,5-ジメチル-3-メチルヘキシルオキシ基等が挙げられる。
 -Rおよび-Rの環を構成する原子の数が5~14のシクロアルキル基のシクロアルカン環としては、たとえば、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロヘキセン環、ノルボルナン環、ボルナン環、アダマンタン環、テトラヒドロナフタレン環、ビシクロ[2.2.2]オクタン環等が挙げられる。
 -Rおよび-Rの環を構成する原子の数が5~14のアリール基としては、芳香族複素環の1価基や、-A-における芳香族炭化水素環として後に例示する環の1価基を挙げることができる。
 -Rおよび-Rとしては、分岐を有していてもよい炭素数1~15のアルキル基であるか、または-Rおよび-Rが一体となって、置換基を有していてもよい炭素数2~15の環を形成していることが好ましい。さらに、分岐を有していてもよい炭素数1~6のアルキル基であるか、または-Rおよび-Rが一体となって環を形成していることがより好ましく;分岐を有していてもよい炭素数1~3のアルキル基であるか、または-Rおよび-Rが一体となって環を形成していることがさらに好ましい。上記であることで本発明の化合物の分子配向が良好になる傾向にある。
 -Xにおける1価の有機基としては、高い二色比と高い溶解度を両立させる観点から、分岐を有さない、炭素数3以上のアルキル基(-R)、アルコキシ基(-О-R)、アルキルエステル基(-O-C(=O)-R)、アルコキシカルボニル基(-C(=О)-O-R)、またはアルキルスルファニル基(-S-R)が好ましい。ここで、-Xの炭素数は、本発明で用いる重合性液晶化合物との分子配向が良好になる観点で、3以上15以下が好ましく、3以上10以下がより好ましい。
 -Rとしては例えば、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基が挙げられる。本発明で用いる重合性液晶化合物との分子配向が良好になる観点から、-Rとしては、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基が好ましい。
 -Xにおける1価の有機基としては、重合性液晶化合物との分子配向を良好にさせる観点からは、重合性基を有していない方が好ましい。一方、-Xにおける1価の有機基としては、異方性色素膜の機械強度を向上させる観点からは、重合性基を有することが好ましい。
(-Y)
 Yは-N(-R)-R、-OC(=O)-Rまたは-C(=O)-O-Rを表す。
 上記の中でも、本発明の化合物の分子配向性が良好となる観点から、Yは-N(-R)-Rが好ましい。
 ここで、-Rは、置換基を有していてもよい、分岐を有する炭素数3~15のアルキル基を表し、重合性液晶化合物との分子配向が良好になる観点から該アルキル基の炭素数は3~10であることが好ましく、3~8であることがより好ましく、3~6であることがさらに好ましい。
 -Rとしては、具体的には、たとえば、1-メチルエチル基、1,1-ジメチルエチル基、1-メチルプロピル基、2-メチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基、1,2,2-トリメチルプロピル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、3,3-ジメチルブチル基、2,3-ジメチルブチル基、1,3-ジメチルブチル基、1,3,3-トリメチルブチル基、2,3,3-トリメチルブチル基、2,2,3-トリメチルブチル基、1,2,2-トリメチルブチル基、4-メチルペンチル基、3-メチルペンチル基、2-メチルペンチル基、1-メチルペンチル基、4,4-ジメチルペンチル基、3,3-ジメチルペンチル基、2,2-ジメチルペンチル基、3,4-ジメチルペンチル基、2,4-ジメチルペンチル基、1,4-ジメチルペンチル基、3,4,4-トリメチルペンチル基、2,4,4-トリメチルペンチル基、1,4,4-トリメチルペンチル基、3,3,4-トリメチルペンチル基、2,3,3-トリメチルペンチル基、1,3,3-トリメチルペンチル基、2,2,4-トリメチルペンチル基、2,2,3-トリメチルペンチル基、1,2,2-トリメチルペンチル基、2,3,4-トリメチルペンチル基、5-メチルヘキシル基、4-メチルヘキシル基、3-メチルヘキシル基、2-メチルヘキシル基、1-メチルヘキシル基、5,5-ジメチルヘキシル基、4,4-ジメチルヘキシル基、3,3-ジメチルヘキシル基、2,2-ジメチルヘキシル基、4,5-ジメチルヘキシル基、3,5-ジメチルヘキシル基、2,5-ジメチルヘキシル基、1,5-ジメチルヘキシル基、1,4-ジメチルヘキシル基、4,5,5-トリメチルヘキシル基、3,5,5-トリメチルヘキシル基、2,5,5-トリメチルヘキシル基、1,5,5-トリメチルヘキシル基、6-メチルヘプチル基、5-メチルヘプチル基、6,6-ジメチルヘプチル基、5,6-ジメチルヘプチル基、4,6-ジメチルヘプチル基、3,6-ジメチルヘプチル基、2,6-ジメチルヘプチル基、1,6-ジメチルヘプチル基、6-メチルオクチル基、3-メチルオクチル基、1-メチルオクチル基、1-メチルノニル基、シクロヘキシル基、4-メチルシクロヘキシル基、4-エチルシクロヘキシル基、4-プロピルシクロヘキシル基、4-ブチルシクロヘキシル基等が挙げられる。
 上記の中でも、本発明の化合物の分子配向が良好になる観点から、-Rとしては、1-メチルエチル基、1,1-ジメチルエチル基、1-メチルプロピル基、2-メチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基、1,2,2-トリメチルプロピル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、3,3-ジメチルブチル基、2,3-ジメチルブチル基、1,3-ジメチルブチル基、1,3,3-トリメチルブチル基、2,3,3-トリメチルブチル基、1,2,2-トリメチルブチル基、4-メチルペンチル基、3-メチルペンチル基、2-メチルペンチル基、1-メチルペンチル基、4,4-ジメチルペンチル基、3,4,4-トリメチルペンチル基、2,4,4-トリメチルペンチル基、1,4,4-トリメチルペンチル基、5-メチルヘキシル基、4-メチルヘキシル基、3-メチルヘキシル基、2-メチルヘキシル基、1-メチルヘキシル基、5,5-ジメチルヘキシル基、3,5,5-トリメチルヘキシル基が好ましい。
 本発明の化合物の分子配向と溶解度が良好に両立させる観点からは、-Rの根幹側に分岐を有する構造が好ましく、1-メチルエチル基、1-メチルプロピル基、1-メチルブチル基、1,2-ジメチルブチル基、1-メチルペンチル基、1,2-ジメチルペンチル基、1,3-ジメチルペンチル基、1,2,3-トリメチルペンチル基、1-メチルヘキシル基、1,2-ジメチルヘキシル基、1,3-ジメチルヘキシル基、1,4-ジメチルヘキシル基、1,2,3-トリメチルヘキシル基、1,3,4-トリメチルヘキシル基、1-メチルヘプチル基、1,2-ジメチルヘプチル基、1,3-ジメチルヘプチル基、1,4-ジメチルヘプチル基、1,5-ジメチルヘプチル基がより好ましい。
 前記分岐を有する炭素数3~15のアルキル基に含まれる一つ、またはそれ以上のメチレン基は、-O-、-S-、-NH-、-N(-R)-、-C(=O)-、-C(=O)-O-、-C(=O)-NH-、-CHF-、-CF-、-CHCl-、-CCl-、またはアクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基などの重合性基によって置き換えられた構造であってもよい。前記メチレン基が置き換えられた構造のなかでも、-O-、-S-、-NH-、-N(-R)-、-C(=O)-、-C(=O)-O-、-C(=O)-NH-が分子配向性および溶解度の観点から好ましく、-O-、-C(=O)-、-C(=O)-O-がより好ましく、-O-がさらに好ましい。
 ここで、-Rは、水素原子、又は分岐を有していてもよい炭素数1~15のアルキル基を表す。分岐を有していてもよい炭素数1~15のアルキル基の具体例としては、前述の-Xの1価の有機基のうち、分岐を有していてもよい炭素数1~15のアルキル基として例示したものが挙げられる。
 -Rにおける分岐を有する炭素数3~15のアルキル基に許容される置換基としては、例えば、-OH、-O-Rz1、-O-C(=O)-Rz1、-NH、-NH-Rz1、-N(-Rz2)-Rz1、-C(=O)-Rz1、-C(=O)-O-Rz1、-C(=O)-NH、-C(=O)-NH-Rz1、-C(=O)-N(-Rz2)-Rz1、-SH、-S-Rz1、スルファモイル基、カルボキシ基、シアノ基、ニトロ基、ハロゲン、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基などの重合性基等が挙げられる。-Rz1および-Rz2は、それぞれ独立に、炭素数1~15、好ましくは1~10の直鎖状もしくは分枝状のアルキル基を表す。
 前記炭素数1~15の直鎖状もしくは分枝状のアルキル基に含まれる一つまたはそれ以上のメチレン基は、-O-、-S-、-NH-、-N(Rz3)-、-C(=O)-、-C(=O)-O-、-C(=O)-NH-、-CHF-、-CF-、-CHCl-、-CCl-によって置き換えられた(displace)構造であってもよく、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基の重合性基に置き換えられた構造であってもよい。ここで、Rz3は、炭素数1~6の直鎖状または分枝状のアルキル基を表す。
 これらのうち、-Rにおける分岐を有する炭素数3~15のアルキル基に許容される置換基としては、-O-Rz1が好ましく、具体的には例えば、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、n-ペントキシ基、n-ヘキソキシ基、n-ヘプトキシ基、n-オクトキシ基、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基が挙げられる。
 -Rにおける分岐を有する炭素数3~15のアルキル基は、重合性液晶化合物との分子配向を良好にさせる観点からは、シクロアルキル構造を有さないことが好ましい。
 -Rにおける分岐を有する炭素数3~15のアルキル基としては、重合性液晶化合物との分子配向を良好にさせる観点からは、重合性基を有していない方が好ましい。一方、前記分岐を有する炭素数3~15のアルキル基としては、異方性色素膜の機械強度を向上させる観点からは、重合性基を有することが好ましい。
 -Rは、水素原子、又は分岐を有していてもよい炭素数1~15のアルキル基を表し、前記分岐を有していてもよい炭素数1~15のアルキル基は、置換基を有していてもよい。
 分岐を有していてもよい炭素数1~15のアルキル基の具体例としては、前述の-Xの1価の有機基のうち、分岐を有していてもよい炭素数1~15のアルキル基として例示したものが挙げられる。
 前記分岐を有していてもよい炭素数1~15のアルキル基に含まれる一つ、またはそれ以上のメチレン基は、-O-、-S-、-NH-、-N(R)-、-C(=O)-、-C(=O)-O-、-C(=O)-NH-、-CHF-、-CF-、-CHCl-、-CCl-、またはアクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基などの重合性基によって置き換えられた構造であってもよい。前記メチレン基が置き換えられた構造のなかでも、-O-、-S-、-NH-、-N(-R)-、-C(=O)-、-C(=O)-O-、-C(=O)-NH-が分子配向性および溶解度の観点から好ましく、-O-、-C(=O)-、-C(=O)-O-がより好ましく、-O-がさらに好ましい。
 ここで、-Rは、水素原子、又は分岐を有していてもよい炭素数1~15のアルキル基を表す。分岐を有していてもよい炭素数1~15のアルキル基の具体例としては、前述の-Xの1価の有機基のうち、分岐を有していてもよい炭素数1~15のアルキル基として例示したものが挙げられる。
 -Rにおける分岐を有していてもよい炭素数1~15のアルキル基に許容される置換基としては、例えば、-OH、-O-Rz1、-O-C(=O)-Rz1、-NH、-NH-Rz1、-N(-Rz2)-Rz1、-C(=O)-Rz1、-C(=O)-O-Rz1、-C(=O)-NH、-C(=O)-NH-Rz1、-C(=O)-N(-Rz2)-Rz1、-SH、-S-Rz1、スルファモイル基、カルボキシ基、シアノ基、ニトロ基、ハロゲン、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基の重合性基等が挙げられる。-Rz1および-Rz2は、それぞれ独立に、炭素数1~15、好ましくは1~10の直鎖状もしくは分枝状のアルキル基を表す。
 前記炭素数1~15の直鎖状もしくは分枝状のアルキル基に含まれる一つまたはそれ以上のメチレン基は、-O-、-S-、-NH-、-N(Rz3)-、-C(=O)-、-C(=O)-O-、-C(=O)-NH-、-CHF-、-CF-、-CHCl-、-CCl-によって置き換えられた(displace)構造であってもよく、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基などの重合性基に置き換えられた構造であってもよい。ここで、Rz3は、炭素数1~6の直鎖状または分枝状のアルキル基を表す。
 これらのうち、-Rにおける分岐を有していてもよい炭素数1~15のアルキル基に許容される置換基としては、-O-Rz1が好ましく、具体的には例えば、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、n-ペントキシ基、n-ヘキソキシ基、n-ヘプトキシ基、n-オクトキシ基、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基が挙げられる。
 -Rにおける分岐を有していてもよい炭素数1~15のアルキル基は、重合性液晶化合物との分子配向を良好にさせる観点からは、シクロアルキル構造を有さないことが好ましい。
 分子配向性および溶解度の観点から、-Rは水素原子、又は分岐を有していてもよい炭素数1~15のアルキル基が好ましく、水素原子、又は分岐を有していてもよい炭素数1~10のアルキル基がより好ましく、水素原子、又は分岐を有していてもよい炭素数1~4のアルキル基がさらに好ましい。
 本発明の化合物が非対称構造を取ることから分子配向がさらに良好になりえる観点から、-Rと-Rは異なることが好ましい。具体的には、-Rは、水素原子、又は分岐を有さない炭素数1~15のアルキル基が好ましく、水素原子、又は分岐を有さない炭素数1~10のアルキル基がより好ましく、水素原子、又は分岐を有さない炭素数1~4のアルキル基がさらに好ましい。
 -Yの有する分岐の数は特に規定されないが、分子配向を良好にさせる観点から、6以下が好ましく、3以下がより好ましく、2以下がさらに好ましく、1が特に好ましい。
 本発明の化合物の分子配向と溶解度を良好に両立させる観点からは、前記式(1)において、-Yが-N(-R)-Rであり、-R及び-Rにおける炭素数の合計が15以下であることが好ましく、13以下であることがより好ましく、11以下であることがさらに好ましく、9以下であることがよりさらに好ましく、7以下であること特に好ましい。
 本発明の化合物の分子配向と溶解度を良好に両立させる観点からは、前記式(1)において、-Yが-N(-R)-Rであり、-Rは置換基を有していてもよい、分岐を有する炭素数3~15のアルキル基であり、-Rは水素原子、又は、分岐を有していてもよい炭素数1~15のアルキル基であり、前記分岐を有していてもよい炭素数1~15のアルキル基は置換基を有していてもよく、-R及び-Rのアルキル基における炭素数合計が15以下であることも好ましい。
 また、本発明の化合物の分子配向と溶解度を良好に両立させる観点からは、前記式(1)において、-Yが-N(-R)-Rであり、-Rは置換基を有していてもよい、分岐を有する炭素数3~15のアルキル基であり、-Rは水素原子、又は、分岐を有しない炭素数1~15のアルキル基であることも好ましく、前記分岐を有しない炭素数1~15のアルキル基は置換基を有していてもよい。
 本発明の化合物の溶解度を良好にする観点からは、前記式(1)の-Yにおいて、-A-のY側末端から近い位置に分岐構造を複数有することが好ましい。
 -A-末端から近い位置に分岐構造が複数存在することで、化合物の会合および凝集を抑制される傾向となり、本発明の化合物の溶解度が良好になると考えられる。
 具体的には、-Yにおいて、-A-のY側末端からの共有結合数が5以下の位置に、分岐構造が2以上存在することが好ましく、-A-のY側末端からの共有結合数が3以下の位置に、分岐構造が2以上存在することがより好ましい。
 上記の共有結合数とは、-A-のY側末端原子から分岐起点となる原子までの共有結合数を意味する。-Yが-N(-R)-Rであり、-Rが分岐を有していてもよい炭素数1~15のアルキル基である場合は、-R、-Rが結合しているNが分岐起点となり、-A-のY側末端からの共有結合数が1の位置に分岐構造が存在することになる。
(-A-)
 -A-は、置換基を有していてもよい芳香族炭化水素環の2価基を表す。
 -A-の芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等が挙げられる。
 -A-の芳香族炭化水素環の2価基としては、本発明の化合物の吸収遷移モ-メントが色素の長軸方向に一致する傾向となり、二色比を高くできることから、置換基を有していてもよい、ベンゼン環の2価基(フェニレン基)、ナフタレン環の2価基(ナフチレン基)が好ましく、ベンゼン環の2価基(フェニレン基)がより好ましい。特に、1,4-フェニレン基、1,4-ナフチレン基、2,6-ナフチレン基がより好ましく、1,4-フェニレン基がさらに好ましく、置換基を有さない1,4-フェニレン基が特に好ましい。上記であることで本発明の化合物の吸収の遷移モ-メントが化合物の長軸方向に一致する傾向となり、二色比を高くできる。
 -A-の芳香族炭化水素環の2価基に許容される置換基としては、例えば、-R、-OH、-O-R、-O-C(=O)-R、-NH、-NH-R、-N(-R)-R、-C(=O)-R、-C(=O)-O-R、-C(=O)-NH、-C(=O)-NH-R、-C(=O)-N(-R)-R、-SH、-S-R、トリフルオロメチル基、フルオロ基、スルファモイル基、カルボキシ基、シアノ基、ニトロ基、ハロゲンが挙げられる。ここで、-Rおよび-Rは、それぞれ独立に、炭素数1~15の直鎖状もしくは分枝状のアルキル基を表す。-Rおよび-Rの炭素数としては、本発明で用いる重合性液晶化合物との分子配向が良好になる観点で、1以上12以下が好ましく、1以上9以下がさらに好ましい。
 該直鎖状もしくは分枝状のアルキル基に含まれる一つまたはそれ以上のメチレン基は、エーテル性酸素原子、チオエーテル性硫黄原子、アミン性窒素原子(-NH-、-N(R)-:ここで、Rは、炭素数1~6、好ましくは1~4の直鎖状もしくは分枝状のアルキル基を表す。)、カルボニル基、エステル結合、アミド結合、-CHF-、-CF-、-CHCl-、-CCl-によって置き換えられた構造とされていてもよく、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基の重合性基が置換していてもよい。
 これらのうち、-A-における芳香族炭化水素環の2価基に許容される置換基としては、-R、-O-R、トリフルオロメチル基、フルオロ基が好ましい。-Rとしては例えば、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、5,5-ジメチル-3-メチルヘキシル基等が挙げられる。上記置換基を有することで本発明の化合物の色素の分子配向が良好になる傾向にある。
(-A-および-A-)
 -A-および-A-はそれぞれ独立に、置換基を有していてもよいS原子を1つ以上含む多環式の芳香族複素環の2価基、又は置換基を有していてもよい芳香族炭化水素環の2価基である。ただし、-A-および-A-が共に置換基を有していてもよい芳香族炭化水素環の2価基であることはない。
 -A-および-A-の置換基を有していてもよい芳香族炭化水素環の2価基としては、-A-の置換基を有していてもよい芳香族炭化水素環の2価基として例示したものが挙げられ、有し得る置換基の種類や好ましいものも同様である。
 -A-および-A-の置換基を有していてもよいS原子を1つ以上含む多環式の芳香族複素環の2価基は、縮合した芳香族複素環基である。該芳香族複素環の炭素数は特に限定されないが4以上20以下であることが好ましい。
 -A-および-A-の芳香族複素環としては、例えば、ベンゾチオフェン環、チエノピロ-ル環、チエノチオフェン環、フロチアゾール環、チエノフラン環、チエノチアゾール環、ベンゾイソチアゾール環、ベンゾチアゾール環等が挙げられる。これらの中でも、本発明の化合物の分子配向が良好になる観点から、ベンゾチオフェン環、チエノチオフェン環、フロチアゾール環、チエノフラン環、チエノチアゾール環、ベンゾイソチアゾール環、ベンゾチアゾール環が好ましく、本発明の化合物の吸収遷移モ-メントが色素の長軸方向に一致する傾向となり、二色比を高くできる理由で以下に示した構造がより好ましい。(下記構造中の*1と*2は、式(1)中の結合を表す)
Figure JPOXMLDOC01-appb-C000001
 本発明で用いる重合性液晶化合物との分子配向が良好になる観点から、式(1)において、-A-の少なくとも一つは置換基を有していてもよいS原子を1つ以上含む多環式の芳香族複素環の2価基であることが好ましい。該2価基である、S原子を1つ以上含む多環式の芳香族複素環は、ベンゾチオフェン環、チエノチオフェン環、フロチアゾール環、チエノフラン環、チエノチアゾール環、ベンゾイソチアゾール環、ベンゾチアゾール環であることが好ましい。
 本発明で用いる重合性液晶化合物との分子配向が良好になる観点から、式(1)において、-A-は、置換基を有していてもよい芳香族炭化水素環の2価基であることが好ましい。特に本発明の化合物の吸収遷移モ-メントが色素の長軸方向に一致する傾向となり、二色比を高くできることから、置換基を有していてもよい、ベンゼン環の2価基(フェニレン基)、ナフタレン環の2価基(ナフチレン基)が好ましく、ベンゼン環の2価基(フェニレン基)がより好ましい。特に、1,4-フェニレン基、1,4-ナフチレン基、2,6-ナフチレン基がより好ましく、1,4-フェニレン基がさらに好ましく、置換基を有さない1,4-フェニレン基が特に好ましい。上記であることで本発明の化合物の吸収の遷移モ-メントが化合物の長軸方向に一致する傾向となり、二色比を高くできる。
(n)
 nは1、2、または3を表す。
 nは1または2であることが好ましく、1であることがより好ましい。上記であることで本発明の化合物の分子配向が良好となる傾向にある。
 nが2または3である場合、それぞれの-A-は、同一であっても異なっていてもよい。
 式(1)中の-N=N-は、トランス型であることが本発明の化合物の直線性を高める観点で好ましい。
(本発明の化合物の具体例)
 本発明の化合物の具体例としては、以下の化合物が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
(吸収特性)
 本発明の化合物は、後述する方法で作成した異方性色素膜中において、350~800nmの波長範囲に極大吸収(λmax1)を有していてもよく、好ましくは450~800nmの波長範囲に極大吸収を有しており、より好ましくは510~750nmの波長範囲に有しており、さらに好ましくは510~700nmの波長範囲に有している。この波長範囲に極大吸収(λmax1)を有することで、より短波長側に極大吸収を有する色素と組み合わせた場合、350~800nmの波長範囲を網羅的に吸収することが可能となる傾向にある。
 本発明の化合物は、溶媒に溶解して測定した極大吸収(λmax2)に比べて、異方性色素膜中における極大吸収(上述のλmax1)が長波長に存在していることが好ましい。この長波長シフトは、式(1)で表される化合物が、重合性液晶化合物および/または重合性液晶化合物に基づく単位を有する重合物中に分散することによって発現する現象であり、式(1)で表される化合物と、重合性液晶化合物および/または重合性液晶化合物に基づく単位を有する重合物とが強く分子間相互作用していることを示している。長波長シフトとは、吸収極大の差分(λmax1-λmax2)が正の値となることを意味し、その差は、10nm以上であることが好ましく、20nm以上であることがより好ましく、30nm以上であることがさらに好ましい。
(溶解度)
 本発明の化合物の溶解度は特に限定されないが、シクロペンタノンに対する溶解度が0.4質量%以上であることが好ましく、0.6質量%以上であることがより好ましく、0.8質量%以上であることがさらに好ましい。溶解度が上記下限以上であることで、良好な塗膜性能が得られる傾向にある。
[異方性色素膜形成用組成物]
 本発明の異方性色素膜形成用組成物は、色素と重合性液晶化合物を含むものであり、該色素として少なくとも前記式(1)で表される本発明の化合物を含む。
 本発明の異方性色素膜形成用組成物は、本発明の化合物の1種のみを含むものであってもよく、2種以上を含むものであってもよい。
 本発明の異方性色素膜形成用組成物は、組成物中で析出を抑制する傾向となる観点から、式(1)中のA、A、Aおよびnが同じである本発明の化合物を1種のみ含むものが好ましく、本発明の化合物を1種のみ含むものがより好ましい。
 本発明の異方性色素膜形成用組成物は、相分離を引き起こさない状態であれば、溶液であっても、液晶であっても、分散状態であってもよい。
 異方性色素膜形成用組成物としては、基材への塗布が容易である観点から、本発明の異方性色素膜形成用組成物は、溶液であることが好ましい。
 異方性色素膜形成用組成物から溶剤を除いた固形分成分は、後述のように基板上に配向させる観点から、本発明の異方性色素膜形成用組成物は、任意の温度で液晶相の状態であることが好ましい。
 本発明において、液晶相の状態であるとは、具体的には、「液晶の基礎と応用」(松本正一、角田市良著;1991年)の1~16ページに記載されているように、液体と結晶の双方または中間の性質を示す液晶状態であり、ネマティック相、スメクチック相、コレステリック相、またはディスコティック相であることを言う。
<色素>
 本発明において色素とは、可視光領域(350nm~800nm)の波長の少なくとも一部を吸収する物質または化合物である。
 本発明に用いることができる色素としては、二色性色素が挙げられる。
 二色性色素とは、分子の長軸方向における吸光度と、短軸方向における吸光度とが異なる性質を有する色素を言う。また、色素は、液晶性を有する色素であってもよいし、液晶性を有さなくてもよい。なお、液晶性を有するとは、任意の温度で液晶相を発現することを言う。
 本発明の異方性色素膜形成用組成物は、色素として、前記式(1)で表される本発明の化合物を含むが、本発明の化合物以外の色素を含んでいてもよい。本発明の異方性色素膜形成用組成物に含まれる前記式(1)で表される本発明の化合物以外の色素としては、アゾ系色素、キノン系色素(ナフトキノン系色素、アントラキノン系色素等を含む。)、スチルベン系色素、シアニン系色素、フタロシアニン系色素、インジゴ系色素、縮合多環系色素(ペリレン系色素、オキサジン系色素、アクリジン系色素等を含む。)等が挙げられる。
 本発明の異方性色素膜用組成物には、本発明の化合物以外の色素の1種のみが単独で含まれていてもよく、2種以上が任意の組み合わせおよび比率で含まれていてもよい。
 上記に例示した色素の中でも、異方性色素膜中で高い分子配列をとり得るため、アゾ系色素が好ましい。
 アゾ系色素とは、アゾ基(-N=N-)を少なくとも1個以上有する色素を言い、その一分子中のアゾ基の数は、溶剤への溶解性、液晶化合物との相溶性、色調および製造容易性の観点から、1以上が好ましく、2以上がより好ましく、6以下が好ましく、4以下がより好ましく、3以下がさらに好ましい。
 アゾ系色素としては、たとえば、下記式(A)で表される化合物が挙げられる。
  R11-E-N=N-(E-N=N)-E-R12   …(A)
(式(A)中、
 -E-、-E-および-E-は、それぞれ独立に、置換基を有していてもよいフェニレン基、置換基を有していてもよいナフチレン基、または置換基を有していてもよい2価の複素環基を表し;
 pは0~4の整数を表し;
 pが2以上の整数である場合、複数の-E-は互いに同一でも異なっていてもよく;
 R11およびR12は、それぞれ独立に、1価の有機基を表す。)
 -E-、-E-および-E-は、それぞれ独立に、置換基を有していてもよいフェニレン基、置換基を有していてもよいナフチレン基、または置換基を有していてもよい2価の複素環基を表す。
 フェニレン基の置換位置としては、分子の直線性が高いため、1,4-フェニレン基が好ましい。
 ナフチレン基の置換位置としては、分子の直線性が高いため、1,4-ナフチレン基または2,6-ナフチレン基が好ましい。
 2価の複素環基としては、環を形成する炭素数が好ましくは3以上14以下であり、さらに好ましくは10以下の複素環基である。特に単環または2環式の複素環基が好ましい。
 2価の複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子から選択される少なくとも1つが挙げられる。複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
 2価の複素環基としては、具体的には、ピリジンジイル基、キノリンジイル基、イソキノリンジイル基、チアゾールジイル基、ベンゾチアゾールジイル基、チエノチアゾールジイル基、チエノチオフェンジイル基、ベンズイミダゾリジノンジイル基、ベンゾフランジイル基、フタルイミドジイル基、オキサゾールジイル基、ベンゾオキサゾールジイル基等が挙げられる。
 -E-、-E-および-E-におけるフェニレン基、ナフチレン基、および2価の複素環基が任意に有する置換基としては、炭素数1~4のアルキル基;メトキシ基、エトキシ基およびブトキシ基などの炭素数1~4のアルコキシ基;トリフルオロメチル基などの炭素数1~4のフッ化アルキル基;シアノ基;ニトロ基;水酸基;ハロゲン原子;アミノ基、ジエチルアミノ基、およびピロリジノ基などの置換または無置換アミノ基(置換アミノ基とは、炭素数1~4のアルキル基を1つまたは2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~8のアルカンジイル基を形成しているアミノ基を意味する。無置換アミノ基は、-NHである。
 炭素数1~4のアルキル基としては、メチル基、エチル基およびブチル基などが挙げられる。炭素数2~8のアルカンジイル基としては、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基などが挙げられる。)が挙げられる。
 分子直線性が高い点から、-E-、-E-および-E-におけるフェニレン基、ナフチレン基、および2価の複素環基は、無置換であるか、または、置換されている場合には、メチル基、メトキシ基、水酸基、フッ素原子、塩素原子、ジメチルアミノ基、ピロリジニル基、ピペリジニル基で置換されていることが好ましい。
 pは0~4の整数を表す。溶剤への溶解性、液晶化合物との相溶性、色調および製造容易性の観点から、pは1以上が好ましく、4以下が好ましく、3以下がより好ましい。
 R11およびR12は、同一のまたはそれぞれ異なる1価の有機基を表す。
 R11およびR12における1価の有機基としては、水素原子、分岐を有していてもよい炭素数1~15のアルキル基;脂環式の炭素数1~15のアルキル基;メトキシ基、エトキシ基およびブトキシ基などの分岐を有していてもよい炭素数1~15のアルコキシ基;トリフルオロメチル基などの分岐を有していてもよい炭素数1~15のフッ化アルキル基;シアノ基;ニトロ基;水酸基;ハロゲン原子;アミノ基、ジエチルアミノ基、およびピロリジノ基などの置換または無置換アミノ基;カルボキシ基;ブトキシカルボニル基などの分岐を有していてもよい炭素数1~15のアルキルオキシカルボニル基;2-(4-ブチルフェニル)エテニル基などのアルキルフェニルアルケニル基;カルバモイル基;ブチルカルバモイル基などの分岐を有していてもよい炭素数1~15のアルキルカルバモイル基;スルファモイル基;ブチルスルファモイル基などの分岐を有していてもよい炭素数1~15のアルキルスルファモイル基;ブチルカルボニルアミノ基などの分岐を有していてもよい炭素数1~15のアシルアミノ基;ブチルカルボニルオキシ基などの分岐を有していてもよい炭素数1~15のアシルオキシ基;スルファニル基;ブチルスルファニル基などの炭素数1~15のアルキルスルファニル基;後述の液晶化合物における-Rおよび-Rが挙げられる。
 上記置換アミノ基とは、炭素数1~4のアルキル基を1つまたは2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~8のアルカンジイル基を形成しているアミノ基を意味する。無置換アミノ基は、-NHである。炭素数1~4のアルキル基としては、メチル基、エチル基およびブチル基などが挙げられる。炭素数2~8のアルカンジイル基としては、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基などが挙げられる。
 R11およびR12としては、水素原子、鎖状基、脂肪族有機基(「脂肪族有機基」は、鎖状のものおよび環状のものを含む。)、炭素原子の一部が窒素原子および/または酸素原子で置き換えられた脂肪族有機基(「炭素原子の一部が窒素原子および/または酸素原子で置き換えられた脂肪族有機基」は、鎖状のものおよび環状のものを含み、脂肪族有機基の一部のメチル基が水酸基、オキソ基(=O)、アミノ基、イミノ基等にそれぞれ置き換えられたものを含む。)等が挙げられ、ある態様としては、水素原子、鎖状基が好ましく、別の態様としては、水素原子、脂肪族有機基が好ましく、さらに別の態様としては、水素原子、炭素原子の一部が窒素原子および/または酸素原子で置き換えられた脂肪族有機基が好ましい。
 鎖状基としては、上記の、分岐を有していてもよい炭素数1~15のアルキル基;分岐を有していてもよい炭素数1~15のアルコキシ基;分岐を有していてもよい炭素数1~15のフッ化アルキル基;置換または無置換アミノ基(置換アミノ基とは、分岐を有していてもよい炭素数1~15のアルキル基を1つまたは2つ有するアミノ基を意味する。無置換アミノ基は、-NHである。);カルボキシ基;分岐を有していてもよい炭素数1~15のアルキルオキシカルボニル基;カルバモイル基;分岐を有していてもよい炭素数1~15のアルキルカルバモイル基;スルファモイル基;分岐を有していてもよい炭素数1~15のアルキルスルファモイル基;分岐を有していてもよい炭素数1~15のアシルアミノ基;分岐を有していてもよい炭素数1~15のアシルオキシ基;スルファニル基;炭素数1~15のアルキルスルファニル基等が挙げられる。上記鎖状基と脂肪族有機基とは一部重複する。
 脂肪族有機基としては、上記の、分岐を有していてもよい炭素数1~15のアルキル基、脂環式の炭素数1~15のアルキル基等が挙げられる。
 炭素原子の一部が窒素原子および/または酸素原子で置き換えられた脂肪族有機基としては、上記の、分岐を有していてもよい炭素数1~15のアルコキシ基;置換または無置換アミノ基:カルボキシ基;分岐を有していてもよい炭素数1~15のアルキルオキシカルボニル基;カルバモイル基;分岐を有していてもよい炭素数1~15のアルキルカルバモイル基;分岐を有していてもよい炭素数1~15のアシルアミノ基;分岐を有していてもよい炭素数1~15のアシルオキシ基等が挙げられる。
 上記置換アミノ基とは、分岐を有していてもよい炭素数1~15のアルキル基を1つまたは2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~15のアルカンジイル基を形成しているアミノ基を意味する。無置換アミノ基は、-NHである。炭素数1~15のアルキル基としては、メチル基、エチル基およびブチル基などが挙げられる。炭素数2~15のアルカンジイル基としては、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基などが挙げられる。
 分子直線性が高い点から、R11およびR12としては、それぞれ独立に、水素原子、または、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基などの炭素数1~10のアルキル基;ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基などの炭素数1~10のアルコキシ基、ジエチルアミノ基、ピロリジノ基およびピペリジニル基で置換されていることが好ましい。R11およびR12としては、後述の液晶化合物における-Rおよび-Rも好ましい。
 本発明の異方性色素膜形成用組成物に含まれる本発明の化合物以外のアゾ系色素としては、特に限定されることなく、公知のアゾ系色素を用いることもできる。
 公知のアゾ系色素としては、たとえば、上述の特許文献1、特許第5982762号公報、特開2017-025317号公報、特開2014-095899号公報に記載の色素(二色性色素、二色性染料)が挙げられる。
 具体的には、以下に記載のアゾ系色素が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 本発明の異方性色素膜形成用組成物に含まれる、式(1)で表される本発明の化合物以外の色素としては、350nm~800nmの波長域の吸収曲線における極大値を示す波長が、異方性色素膜形成用組成物に含まれる、式(1)で表される本発明の化合物の350nm~800nmの波長域の吸収曲線における最大値を示す波長よりも短い色素であることが好ましく、アゾ色素が好ましい。また、その波長の差が、5nm以上であることが好ましく、10nm以上であることが好ましい。上記であることで、本発明の異方性色素膜形成用組成物を用いて形成した異方性色素膜をディスプレイ等の偏光素子に適用する場合に、可視領域の広い範囲で偏光特性を発現することができる。
(色素の分子量)
 本発明の異方性色素膜形成用組成物に含まれる色素の分子量(2種以上の色素を併用する場合には、それぞれの分子量)は、300以上が好ましく、350以上がより好ましく、380以上がさらに好ましく、1500以下が好ましく、1200以下がより好ましく、1000以下がさらに好ましい。具体的には、本発明の異方性色素膜形成用組成物に含まれる色素の分子量は、300~1500が好ましく、350~1200がより好ましく、380~1000がさらに好ましい。上記範囲であることで適切な分子長、嵩高さとなるため、色素の分子配向が良好になる傾向にある。
 色素の分子量は、色素に含まれる原子量の総和である。
(色素の含有量)
 本発明の異方性色素膜形成用組成物における二色性色素等の色素が占める含有量(2種以上の色素を併用する場合は、それぞれの含有量の総和)としては、例えば、異方性色素膜形成用組成物の固形分(100質量部)に対して、0.01質量部以上が好ましく、0.05質量部以上がより好ましく、30質量部以下が好ましく、25質量部以下がより好ましく、20質量部以下がさらに好ましく、10質量部以下が特に好ましい。具体的には、異方性色素膜形成用組成物における色素(二色性色素)が占める含有量としては、例えば、異方性色素膜形成用組成物の固形分(100質量部)に対して、0.01~30質量部であり、好ましくは0.05~20質量部であり、より好ましくは0.05~10質量部である。
 色素が占める含有量が前記範囲内であれば、本発明の異方性色素膜形成用組成物に含まれる液晶化合物の配向を乱すことなく、本発明の異方性色素膜形成用組成物に含まれる重合性液晶化合物を重合させることができる傾向にある。色素が占める含有量が前記下限値以上であれば、十分な光吸収が得られ、十分な偏光性能が得られる傾向にある。色素が占める含有量が前記上限値以下であれば、液晶分子の配向の阻害が抑制されやすい傾向にある。
 ここで、異方性色素膜用組成物の固形分とは異方性色素膜用組成物中の溶剤以外のすべての成分の合計に相当する。
 本発明の異方性色素膜用組成物は、色素として本発明の化合物を必須成分として含有していればよく、前述のその他の色素を本発明の化合物と共に含有するものであってもよい。
 本発明の異方性色素膜用組成物がその他の色素を含有する場合、本発明の化合物を用いることによる本発明の効果をより有効に得る観点から、本発明の異方性色素膜用組成物中の色素の総量100質量%中の本発明の化合物の割合は、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることがさらに好ましく、20質量%以上であることが特に好ましい。可視領域の広い範囲で偏光特性を発現させる観点からは、この割合は、80質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることがさらに好ましく、40質量%以下であることが特に好ましい。
(色素の製造方法)
 本発明の異方性色素膜形成用組成物に含有される本発明の化合物等の色素は、アルキル化反応、エステル化反応、アミド化反応、エーテル化反応、イプソ置換反応、ジアゾカップリング反応、金属触媒を用いたカップリング反応等の公知の化学反応を組み合わせることにより製造することができる。
 たとえば、本発明の化合物は、後掲の実施例に記載の方法や、「新染料化学」(細田豊著、昭和48年12月21日、技報堂)、「総説合成染料」(堀口博著、1968年、三共出版)、「理論製造 染料化学」(細田豊著、1957年、技報堂)に記載の方法にしたがって合成することができる。
<重合性液晶化合物>
 本発明において、液晶化合物とは、液晶状態を示す物質を指し、具体的には、「液晶便覧」(丸善株式会社、平成12年10月30日発行)の1~28ページに記載されているように、結晶から液体には直接転移せず、結晶と液体の両方の性質を示す中間の状態を経て液体になる化合物をいう。
 本発明の異方性色素膜形成用組成物に含まれる重合性液晶化合物は、後述する重合性基を有する液晶化合物である。
 重合性液晶化合物において、重合性基は液晶化合物分子内の任意の位置に配置することができるが、重合性基は液晶化合物分子の末端に置換していることが重合しやすさの観点から好ましい。
 重合性液晶化合物において、重合性基は液晶化合物分子内に1つ以上存在することができるが、2つ以上存在する場合は、液晶化合物分子の両末端にそれぞれ存在していることが重合しやすさの観点から好ましい。
 重合性液晶化合物は、液晶化合物分子内に炭素-炭素三重結合を有する化合物であることが好ましい。炭素-炭素三重結合を有する化合物であると、該炭素-炭素三重結合が、回転運動が可能でありながら、液晶分子のコアとなることが可能で、分子の運動性が高く、かつ液晶分子同士や色素分子などのπ共役系を有する化合物と分子間相互作用が強く、分子配向が高くなる傾向にある。
 本発明の異方性色素膜形成用組成物に含まれる重合性液晶化合物としては、特に限定されることなく重合性基を有する液晶化合物を用いることができる。
 たとえば、本発明の異方性色素膜形成用組成物に含まれる重合性液晶化合物としては、下記式(2)で表される化合物(以下、「重合性液晶化合物(2)」と称す場合がある。)を挙げることができる。
  Q-R-A11-Y-A12-(Y-A13-R-Q 
                           …(2)
(式(2)中、
 -Qは、水素原子または重合性基を表し;
 -Qは、重合性基を表し;
 -R-および-R-は、それぞれ独立に、鎖状有機基を表し;
 -A11-および-A13-は、それぞれ独立に、下記式(3)で表される部分構造、2価有機基、または単結合を表し;
 -A12-は、下記式(3)で表される部分構造または2価有機基を表し;
 -Y-および-Y-は、それぞれ独立に、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C≡C-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
 -A11-および-A13-の一方は、下記式(3)で表される部分構造または2価有機基であり;
 kは1または2である。
 kが2の場合、2つの-Y-A13-は互いに同一でも異なっていてもよい。)
  -C-X-C≡C-X-  …(3)
(式(3)中、
 -C-は、炭化水素環基または複素環基を表し;
 -X-は、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表し;
 -X-は、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表す。)
 なお、-A11-が、式(3)で表される部分構造である場合、式(2)は、下記式(2A)であってもよく、下記式(2B)であってもよい。
 Q-R-C-X-C≡C-X-Y-A12-(Y-A13-R-Q …(2A)
 Q-R-X-C≡C-X-C-Y-A12-(Y-A13-R-Q …(2B)
 また、-A12-が、式(3)で表される部分構造である場合、式(2)は、下記式(2C)であってもよく、下記式(2D)であってもよい。
 Q-R-A11-Y-C-X-C≡C-X-(Y-A13-R-Q …(2C)
 Q-R-A11-Y-X-C≡C-X-C-(Y-A13-R-Q …(2D)
 また、-A13-が、式(3)で表される部分構造である場合、式(2)は、下記式(2E)であってもよく、下記式(2F)であってもよい。
 Q-R-A11-Y-A12-(Y-C-X-C≡C-X-R-Q …(2E)
 Q-R-A11-Y-A12-(Y-X-C≡C-X-C-R-Q …(2F)
 同様に、-A11-、-A12-、および-A13-のうち、二つ以上が式(3)で表される部分構造である場合、それぞれ独立に、式(3)で表される部分構造の向きが反転していてもよい。
 上記のように、-A11-、-A12-、および-A13-は、それぞれ独立に、式(3)で表される部分構造または2価有機基であり、加えて、-A11-および-A13-は、単結合であってもよいが、-A11-および-A13-が、ともに単結合であることはない。
(-C-)
 -C-における炭化水素環基は、芳香族炭化水素環基と非芳香族炭化水素環基とを含む。
 芳香族炭化水素環基は、非連結芳香族炭化水素環基と連結芳香族炭化水素環基とを含む。
 非連結芳香族炭化水素環基は、単環もしくは縮合した芳香族炭化水素環の2価基であり、その炭素数は6~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結芳香族炭化水素環基の炭素数は6~15がより好ましい。芳香族炭化水素環としては、たとえば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等が挙げられる。
 連結芳香族炭化水素環基は、単環もしくは縮合した芳香族炭化水素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は6~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。単環もしくは縮合環の炭素数は6~15がより好ましい。連結芳香族炭化水素環基としては、たとえば、第1の炭素数6~20の単環もしくは縮合した芳香族炭化水素環と第2の炭素数6~20の単環もしくは縮合した芳香族炭化水素環とが単結合で結合し、第1の炭素数6~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、第2の炭素数6~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。連結芳香族炭化水素環基としては、具体的には、ビフェニル-4,4’-ジイル基が挙げられる。
 芳香族炭化水素環基としては、非連結芳香族炭化水素環基が液晶化合物の間に働く分子間相互作用を最適とすることで分子配向性が良好となる理由で好ましい。
 これらのうち、芳香族炭化水素環基としては、ベンゼン環の2価基、ナフタレン環の2価基が好ましく、ベンゼン環の2価基(フェニレン基)がより好ましい。フェニレン基としては、1,4-フェニレン基が好ましい。-C-がこれらの基であることで液晶分子の直線性が高まり、分子配向性向上の効果が得られる傾向にある。
 非芳香族炭化水素環基は、非連結非芳香族炭化水素環基と連結非芳香族炭化水素環基とを含む。
 非連結非芳香族炭化水素環基は、単環もしくは縮合した非芳香族炭化水素環の2価基であり、その炭素数は3~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結非芳香族炭化水素環基の炭素数は3~15がより好ましい。非芳香族炭化水素環としては、たとえば、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロヘキセン環、ノルボルナン環、ボルナン環、アダマンタン環、テトラヒドロナフタレン環、ビシクロ[2.2.2]オクタン環等が挙げられる。
 非連結非芳香族炭化水素環基は、非芳香族炭化水素環の環を構成する原子間結合として不飽和結合を有さない脂環式炭化水素環基と、非芳香族炭化水素環の環を構成する原子間結合として不飽和結合を有する不飽和非芳香族炭化水素環基とを含む。非連結非芳香族炭化水素環基としては、生産性の観点から脂環式炭化水素環基が好ましい。
 連結非芳香族炭化水素環基は、単環もしくは縮合した非芳香族炭化水素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基;あるいは、単環の芳香族炭化水素環、縮合した芳香族炭化水素環、単環の非芳香族炭化水素環、および縮合した非芳香族炭化水素環からなる群より選択される1つ以上の環と、単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、環を構成する原子上に結合手を有する2価基である。
 単環もしくは縮合環の炭素数は適切なコアの大きさにより分子配向性が良好となる理由で3~20であることが好ましい。
 連結非芳香族炭化水素環基としてはたとえば、第1の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環と第2の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、第1の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、第2の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。さらに、たとえば、炭素数3~20の単環もしくは縮合した芳香族炭化水素環と炭素数3~20の単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、炭素数3~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。
 連結非芳香族炭化水素環基としては、具体的には、たとえば、ビス(シクロヘキサン)-4,4’-ジイル基、1-シクロヘキシルベンゼン-4,4’-ジイル基が挙げられる。
 非芳香族炭化水素環基としては、液晶化合物の間に働く分子間相互作用を最適とすることで分子配向性が良好となる理由で非連結非芳香族炭化水素環基が好ましい。
 非連結非芳香族炭化水素環基としては、シクロヘキサンの2価基(シクロヘキサンジイル基)が好ましく、シクロヘキサンジイル基としては、シクロヘキサン-1,4-ジイル基が好ましい。-C-がこれらの基であることで液晶分子の直線性が高まり、分子配向性向上の効果が得られる傾向にある。
 -C-における複素環基は、芳香族複素環基と非芳香族複素環基とを含む。
 芳香族複素環基は、非連結芳香族複素環基と連結芳香族複素環基とを含む。
 非連結芳香族複素環基は、単環もしくは縮合した芳香族複素環の2価基であり、その炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結芳香族複素環基の炭素数は4~15がより好ましい。
 芳香族複素環としては、たとえば、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロ-ル環、ピラゾ-ル環、イミダゾ-ル環、チアゾール環、イソチアゾール環、オキサジアゾ-ル環、チアジアゾール環、トリアゾール環、インド-ル環、カルバゾ-ル環、ピロロイミダゾ-ル環、ピロロピラゾ-ル環、ピロロピロ-ル環、チエノピロ-ル環、チエノチオフェン環、フロピロ-ル環、フロフラン環、チエノフラン環、チエノチアゾ-ル環、ベンゾイソオキサゾ-ル環、ベンゾイソチアゾ-ル環、ベンゾイミダゾ-ル環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、キナゾリン環、キナゾリノン環、アズレン環等が挙げられる。
 連結芳香族複素環基は、単環もしくは縮合した芳香族複素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。連結芳香族複素環基の炭素数は4~15がより好ましい。
 連結芳香族複素環基としては、たとえば、第1の炭素数4~20の単環もしくは縮合した芳香族複素環と第2の炭素数4~20の単環もしくは縮合した芳香族複素環とが単結合で結合し、第1の炭素数4~20の単環もしくは縮合した芳香族複素環の環を構成する原子上に第1の結合手を有し、第2の炭素数4~20の単環もしくは縮合した芳香族複素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。
 非芳香族複素環基は、非連結非芳香族複素環基と連結非芳香族複素環基とを含む。
 非連結非芳香族複素環基は、単環もしくは縮合した非芳香族複素環の2価基であり、その炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結非芳香族複素環基の炭素数は4~15がより好ましい。
 炭素数4~20の単環もしくは縮合した非芳香族複素環の2価基の非芳香族複素環としては、テトラヒドロフラン環、テトラヒドロピラン環、ジオキサン環、テトラヒドロチオフェン環、テトラヒドロチオピラン環、ピロリジン環、ピペリジン環、ジヒドロピリジン環、ピペラジン環、テトラヒドロチアゾール環、テトラヒドロオキサゾール環、オクタヒドロキノリン環、テトラヒドロキノリン環、オクタヒドロキナゾリン環、テトラヒドロキナゾリン環、テトラヒドロイミダゾール環、テトラヒドロベンゾイミダゾール環、キヌクリジン環等が挙げられる。
 連結非芳香族複素環基は、単環もしくは縮合した非芳香族複素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。連結非芳香族複素環基の炭素数は4~15がより好ましい。
 連結芳香族複素環基としては、たとえば、第1の炭素数4~20の単環もしくは縮合した非芳香族複素環と第2の炭素数4~20の単環もしくは縮合した非芳香族複素環とが単結合で結合し、第1の炭素数4~20の単環もしくは縮合した非芳香族複素環の環を構成する原子上に第1の結合手を有し、第2の炭素数4~20の単環もしくは縮合した非芳香族複素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。
 -C-における芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基は、それぞれ、-R、-OH、-O-R、-O-C(=O)-R、-NH、-NH-R、-N(Rk’)-R、-C(=O)-R、-C(=O)-O-R、-C(=O)-NH、-C(=O)-NH-R、-C(=O)-N(Rk’)-R、-SH、-S-R、トリフルオロメチル基、スルファモイル基、カルボキシ基、スルホ基、シアノ基、ニトロ基、およびハロゲンからなる群より選択される1以上の基で置換されていてもよい。-Rおよび-Rk’は、それぞれ独立に、炭素数1~6の直鎖状もしくは分枝状のアルキル基を表す。
 -C-における芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基は、分子構造の直線性が高く、重合性液晶化合物(2)同士が会合しやすく液晶状態を発現しやすい点から、それぞれ独立に、無置換であるか、メチル基、メトキシ基、フッ素原子、塩素原子、臭素原子が置換していることが好ましく、無置換であることがより好ましい。
 -C-における芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基が有する置換基は、同一でも異なっていてもよく、また、芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基の全部が置換されていてもよく、全部が無置換であってもよく、一部が置換されていて一部が無置換であってもよい。
 -C-としては、重合性液晶化合物(2)の分子配向性が良好となることから炭化水素環基が好ましく、フェニレン基、シクロヘキサンジイル基がより好ましい。重合性液晶化合物(2)の分子構造の直線性を高くすることができることから、-C-としては、1,4-フェニレン基、シクロヘキサン-1,4-ジイル基がさらに好ましく、1,4-フェニレン基がとりわけ好ましい。
(-X-)
 -X-は、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-または-SCH-を表すが、このうち、重合性液晶化合物(2)の直線性や分子短軸周りの回転運動がしやすい傾向にあることから、-X-としては、π結合性の小さい、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CHO-、-OCH-、-CHS-、-SCH-等が好ましいものとして挙げられる。これらの中でもより好ましくは、-C(=O)O-、-OC(=O)-、-CHCH-、-CHO-、-OCH-であり、さらに好ましくは、-X-は、-C(=O)O-または-OC(=O)-である。別の態様として、-X-は、-CHCH-、-CHO-、または-OCH-であることが好ましい。
(-X-)
 -X-は、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表す。
 重合性液晶化合物(2)のコアを大きくし、異方性色素膜形成用組成物から形成される異方性色素膜の二色性を大きくする観点から直線性が高い基で-C-と-C≡C-を連結することが好ましい。具体的には、-X-としては、単結合、またはπ結合性を有する-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CH=CH-、-C(=O)NH-、-NHC(=O)-であることが好ましく、より直線性が高いことから単結合であることがさらに好ましい。
(-Qおよび-Q
 -Qおよび-Qにおける重合性基は、光、熱、および/または放射線によって重合することが可能な部分構造を有する基であり、重合の機能を担保するために必要な官能基ないし原子団である。該重合性基は、光重合性基であることが異方性色素膜の製造の観点から好ましい。
 該重合性基として具体的には、たとえば、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、ビニルオキシ基、エチニル基、エチニルオキシ基、1,3-ブタジエニル基、1,3-ブタジエニルオキシ基、オキシラニル基、オキセタニル基、グリシジル基、グリシジルオキシ基、スチリル基、スチリルオキシ基等が挙げられ、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、オキシラニル基、グリシジル基、グリシジルオキシ基が好ましく、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、グリシジル基、グリシジルオキシ基がより好ましく、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基がさらに好ましい。
(-R-および-R-)
 -R-および-R-における鎖状有機基は、前述の芳香族炭化水素環、非芳香族炭化水素環、芳香族複素環、非芳香族複素環等の環状構造を含まない2価の有機基である。
 このような鎖状有機基としては、-(アルキレン基)-、-O-(アルキレン基)-、-S-(アルキレン基)-、-NH-(アルキレン基)-、-N(アルキル基)-(アルキレン基)-、-OC(=O)-(アルキレン基)-、-C(=O)O-(アルキレン基)-が挙げられる。
 これらの鎖状有機基におけるアルキレン基としては、炭素数1~25の直鎖状もしくは分枝状のアルキレン基が挙げられる。アルキレン基の炭素-炭素結合は、一部が不飽和結合になっていてもよい。アルキレン基に含まれる一つまたはそれ以上のメチレン基は、-O-、-S-、-NH-、-N(R)-、-C(=O)-、-C(=O)-O-、-C(=O)-NH-、-CHF-、-CF-、-CHCl-、-CCl-によって置き換えられた(displace)構造とされていてもよい。Rは、炭素数1~6の直鎖状または分枝状のアルキル基を表す。
 これらの鎖状有機基におけるアルキレン基としては、分子直線性が高いことから、アルキレン基の炭素の一部が不飽和結合になっていてもよく、また、アルキレン基に含まれる一つまたはそれ以上のメチレン基が上述の基によって置き換えられた(displace)構造とされていてもよい、炭素数1~25の直鎖状のアルキレン基であることが好ましい。
 鎖状有機基における主鎖(鎖状有機基におけるもっとも長い鎖状部分を意味する。)の原子の数は、3~25が好ましく、5~20がより好ましく、6~20がさらに好ましい。
 鎖状有機基としては、-(CH-CH-、-O-(CH-CH-、-(O)r1-(CHCHO)r2-(CHr3-、-(O)r1-(CHr2-(CHCHO)r3-が好ましい。これらの式中のrは、1~24の整数であり、2~24の整数が好ましく、4~19の整数がより好ましく、5~19の整数がさらに好ましい。これらの式中のr1、r2、r3は、それぞれ独立に、整数を表し、鎖状有機基における主鎖(鎖状有機基におけるもっとも長い鎖状部分を意味する。)の原子の数が、好ましくは3~25、より好ましくは5~20、さらに好ましくは6~20となるように適宜調整される。
 -R-および-R-は、それぞれ独立に、-(アルキレン基)-、-O-(アルキレン基)-であることが好ましく、-(アルキレン基)-、-O-(アルキレン基)-であることがより好ましい。ある態様として、-R-および-R-における鎖状有機基としては、-(アルキレン基)-であり、別の態様として、-O-(アルキレン基)-である。
 前記式(2B)、式(2E)のように、-X-と-R-または-X-と-R-が結合している場合や;前記式(2B)において-A13-が単結合であるか或いは、前記式(2E)において-A11-が単結合であって、-R-もしくは-R-が、-Y-または-Y-と結合している場合;には、-X-、-Y-もしくは-Y-と直接結合する-R-または-R-は、-(アルキレン基)-であることが好ましい。
 上記以外で、-X-、-Y-もしくは-Y-と直接結合しない-R-または-R-は、-O-(アルキレン基)-であることが好ましい。
(-A11-、-A12-、および-A13-における2価有機基)
 -A11-、-A12-、および-A13-における2価有機基は、下記式(4)で表される基であることが好ましい。
  -Q-  …(4)
(式(4)中、Qは、炭化水素環基または複素環基を表す。)
 -Q-における炭化水素環基は、芳香族炭化水素環基と非芳香族炭化水素環基とを含む。
 芳香族炭化水素環基は、非連結芳香族炭化水素環基と連結芳香族炭化水素環基とを含む。
 非連結芳香族炭化水素環基は、単環もしくは縮合した芳香族炭化水素環の2価基であり、その炭素数は6~20であることが適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結芳香族炭化水素環基の炭素数は6~15がより好ましい。芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等が挙げられる。
 連結芳香族炭化水素環基は、単環もしくは縮合した芳香族炭化水素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は6~20であることが、適切なコアの大きさにより配向性が良好となる理由で好ましい。連結芳香族炭化水素環基の炭素数は6~15がより好ましい。連結芳香族炭化水素環基としては、たとえば、第1の炭素数6~20の単環もしくは縮合した芳香族炭化水素環と第2の炭素数6~20の単環もしくは縮合した芳香族炭化水素環とが単結合で結合し、第1の炭素数6~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、第2の炭素数6~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。連結芳香族炭化水素環基としては、具体的には、ビフェニル-4,4’-ジイル基が挙げられる。
 芳香族炭化水素環基としては、非連結芳香族炭化水素環基が液晶化合物の間に働く分子間相互作用を最適とすることで分子配向性が良好となる理由で好ましい。
 これらのうち、芳香族炭化水素環基としては、ベンゼン環の2価基、ナフタレン環の2価基が好ましく、ベンゼン環の2価基(フェニレン基)がより好ましい。フェニレン基としては、1,4-フェニレン基が好ましい。-Q-がこれらの基であることで液晶分子の直線性が高まり、分子配向性向上の効果が得られる傾向にある。
 非芳香族炭化水素環基は、非連結非芳香族炭化水素環基と連結非芳香族炭化水素環基とを含む。
 非連結非芳香族炭化水素環基は、単環もしくは縮合した非芳香族炭化水素環の2価基であり、その炭素数は3~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結非芳香族炭化水素環基の炭素数は3~15がより好ましい。非芳香族炭化水素環としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロヘキセン環、ノルボルナン環、ボルナン環、アダマンタン環、テトラヒドロナフタレン環、ビシクロ[2.2.2]オクタン環等が挙げられる。
 非連結非芳香族炭化水素環基は、非芳香族炭化水素環の環を構成する原子間結合として不飽和結合を有さない脂環式炭化水素環基と、非芳香族炭化水素環の環を構成する原子間結合として不飽和結合を有する不飽和非芳香族炭化水素環基とを含む。非連結非芳香族炭化水素環基としては、生産性の観点から脂環式炭化水素環基が好ましい。
 連結非芳香族炭化水素環基は、単環もしくは縮合した非芳香族炭化水素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基;あるいは、単環の芳香族炭化水素環、縮合した芳香族炭化水素環、単環の非芳香族炭化水素環、および縮合した非芳香族炭化水素環からなる群より選択される1つ以上の環と、単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、環を構成する原子上に結合手を有する2価基である。
 単環もしくは縮合環の炭素数は適切なコアの大きさにより分子配向性が良好となる理由で3~20であることが好ましい。
 連結非芳香族炭化水素環基としてはたとえば、第1の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環と第2の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、第1の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、第2の炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。さらに、たとえば、炭素数3~20の単環もしくは縮合した芳香族炭化水素環と炭素数3~20の単環もしくは縮合した非芳香族炭化水素環とが単結合で結合し、炭素数3~20の単環もしくは縮合した芳香族炭化水素環の環を構成する原子上に第1の結合手を有し、炭素数3~20の単環もしくは縮合した非芳香族炭化水素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。
 連結非芳香族炭化水素環基としては、具体的には、ビス(シクロヘキサン)-4,4’-ジイル基、1-シクロヘキシルベンゼン-4,4’-ジイル基が挙げられる。
 非芳香族炭化水素環基としては、液晶化合物の間に働く分子間相互作用を最適とすることで分子配向性が良好となる理由で非連結非芳香族炭化水素環基が好ましい。
 非連結非芳香族炭化水素環基としては、シクロヘキサンの2価基(シクロヘキサンジイル基)が好ましく、シクロヘキサンジイル基としては、シクロヘキサン-1,4-ジイル基が好ましい。
 -Q-における複素環基は、芳香族複素環基と非芳香族複素環基とを含む。
 芳香族複素環基は、非連結芳香族複素環基と連結芳香族複素環基とを含む。
 非連結芳香族複素環基は、単環もしくは縮合した芳香族複素環の2価基であり、その炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結芳香族複素環基の炭素数は4~15がより好ましい。
 芳香族複素環としては、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、チアゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、チエノチアゾール環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、キナゾリン環、キナゾリノン環、アズレン環等が挙げられる。
 連結芳香族複素環基は、単環もしくは縮合した芳香族複素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。連結芳香族複素環基の炭素数は4~15がより好ましい。
 連結芳香族複素環基としては、たとえば、第1の炭素数4~20の単環もしくは縮合した芳香族複素環と第2の炭素数4~20の単環もしくは縮合した芳香族複素環とが単結合で結合し、第1の炭素数4~20の単環もしくは縮合した芳香族複素環の環を構成する原子上に第1の結合手を有し、第2の炭素数4~20の単環もしくは縮合した芳香族複素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。
 非芳香族複素環基は、非連結非芳香族複素環基と連結非芳香族複素環基とを含む。
 非連結非芳香族複素環基は、単環もしくは縮合した非芳香族複素環の2価基であり、その炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。非連結非芳香族複素環基の炭素数は4~15がより好ましい。
 炭素数4~20の単環もしくは縮合した非芳香族複素環の2価基の非芳香族複素環としては、テトラヒドロフラン環、テトラヒドロピラン環、ジオキサン環、テトラヒドロチオフェン環、テトラヒドロチオピラン環、ピロリジン環、ピペリジン環、ジヒドロピリジン環、ピペラジン環、テトラヒドロチアゾール環、テトラヒドロオキサゾール環、オクタヒドロキノリン環、テトラヒドロキノリン環、オクタヒドロキナゾリン環、テトラヒドロキナゾリン環、テトラヒドロイミダゾール環、テトラヒドロベンゾイミダゾール環、キヌクリジン環等が挙げられる。
 連結非芳香族複素環基は、単環もしくは縮合した非芳香族複素環の複数が単結合で結合し、環を構成する原子上に結合手を有する2価基である。単環もしくは縮合環の炭素数は4~20であることが、適切なコアの大きさにより分子配向性が良好となる理由で好ましい。連結非芳香族複素環基の炭素数は4~15がより好ましい。
 連結芳香族複素環基としては、たとえば、第1の炭素数4~20の単環もしくは縮合した非芳香族複素環と第2の炭素数4~20の単環もしくは縮合した非芳香族複素環とが単結合で結合し、第1の炭素数4~20の単環もしくは縮合した非芳香族複素環の環を構成する原子上に第1の結合手を有し、第2の炭素数4~20の単環もしくは縮合した非芳香族複素環の環を構成する原子上に第2の結合手を有する2価基が挙げられる。
 -Q-における芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基は、それぞれ、-R、-OH、-O-R、-O-C(=O)-R、-NH、-NH-R、-N(Rn’)-R、-C(=O)-R、-C(=O)-O-R、-C(=O)-NH、-C(=O)-NH-R、-C(=O)-N(Rn’)-R、-SH、-S-R、トリフルオロメチル基、スルファモイル基、カルボキシ基、スルホ基、シアノ基、ニトロ基、およびハロゲンからなる群より選択される1以上の基で置換されていてもよい。-Rおよび-Rn’は、それぞれ独立に、炭素数1~6の直鎖状もしくは分枝状のアルキル基を表す。
 -Q-における芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基は、分子構造の直線性が高く、重合性液晶化合物(2)同士が会合しやすく液晶状態を発現しやすい点から、それぞれ独立に、無置換であるか、メチル基、メトキシ基、フッ素原子、塩素原子、臭素原子が置換していることが好ましく、無置換であることがより好ましい。
 -Q-における芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基が有する置換基は、同一でも異なっていてもよく、また、芳香族炭化水素環基、非芳香族炭化水素環基、芳香族複素環基、非芳香族複素環基の全部が置換されていてもよく、全部が無置換であってもよく、一部が置換されていて一部が無置換であってもよい。
 -A11-、-A12-および-A13-における2価有機基が有する置換基は、同一でも異なっていてもよく、-A11-、-A12-および-A13-における2価有機基の全部が置換されていてもよく、全部が無置換であってもよく、一部が置換されていて一部が無置換であってもよい。
 -Q-としては、炭化水素環基が好ましく、フェニレン基、シクロヘキサンジイル基がより好ましい。重合性液晶化合物(2)の分子構造の直線性を高くすることができることから、-Q-としては、1,4-フェニレン基、シクロヘキサン-1,4-ジイル基がさらに好ましい。
 -A11-、-A12-および-A13-の2価有機基としては、-Q-が炭化水素環基であること、すなわち、2価有機基として炭化水素環基であることが好ましい。2価有機基としては、フェニレン基、シクロヘキサンジイル基がより好ましく、重合性液晶化合物(2)の分子構造の直線性を高くすることができることから、1,4-フェニレン基、シクロヘキサン-1,4-ジイル基がさらに好ましい。
 重合性液晶化合物(2)としては、-A11-、-A12-および-A13-のうち、一つが、式(3)で表される部分構造であり、それ以外の二つが、それぞれ独立に、2価有機基であることが好ましく、-A11-、-A12-および-A13-のうち、式(3)で表される部分構造の-C-が炭化水素環基であることが好ましく、2価有機基が炭化水素環基であることが特に好ましい。さらに、該炭化水素環基が、1,4-フェニレン基またはシクロヘキサン-1,4-ジイル基であることが好ましい。また、-A11-および-A13-の一方が、シクロヘキサン-1,4-ジイル基であることが好ましい。
 また、-A11-および-A13-のうち、一つが、式(3)で表される部分構造であり、それ以外の一つおよび-A12-が2価有機基であることがより好ましい。この場合、-A11-および-A13-のうち、2価有機基である一方は、シクロヘキサン-1,4-ジイル基であることが好ましく、-A12-が1,4-フェニレン基であることが特に好ましい。
(-Y-および-Y-)
 -Y-および-Y-は、それぞれ独立に、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C≡C-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-を表す。重合性液晶化合物(2)の直線性や分子短軸周りの回転運動がしやすい傾向にあることから、-Y-および-Y-としては、それぞれ独立に、π結合性の小さい、単結合、-C(=O)O-、-OC(=O)-、-C(=S)O-、-OC(=S)-、-C(=O)S-、-SC(=O)-、-CHCH-、-CH=CH-、-C(=O)NH-、-NHC(=O)-、-CHO-、-OCH-、-CHS-、または-SCH-が好ましく、単結合、-C(=O)O-、-OC(=O)-、-CHCH-、-CHO-、-OCH-がより好ましい。
 前記式(2A)、式(2C)、式(2D)、式(2F)のように、-X-と-Y-または-X-と-Y-が結合している場合には、-X-と結合する-Y-または-X-と結合する-Y-は単結合であることが好ましい。-X-と-Y-および-Y-の他方は、-C(=O)O-または-OC(=O)-であることが好ましい。
 前記式(2B)、式(2E)のように、-X-が-Y-および-Y-のいずれとも結合していない場合には、-X-は、-CHCH-、-CHO-、または-OCH-であることが好ましく、-Y-および-Y-はいずれも、-C(=O)O-または-OC(=O)-であることが好ましい。
(k)
 kは1または2である。ある態様としては、kは1であることが好ましい。別の態様としては、kは2であることが好ましい。
 kが2である場合、それぞれの-Y-は互いに同一でも異なっていてもよく、それぞれの-A13-は互いに同一でも異なっていてもよい。
(好適構造)
 重合性液晶化合物(2)としては、前記式(2A)、(2B)、(2E)または(2F)で表される化合物であることが液晶化合物の間に働く分子間相互作用を最適とし、かつ適切なコアの大きさとなり分子配向性が良好となる理由で好ましい。
 また、本発明で用いる重合性液晶化合物は、良好な分子配向性が得られる傾向である観点から、低分子重合性液晶化合物であることが好ましく、特に共重合構造を有さない低分子重合性液晶化合物であることが好ましい。
 低分子重合性液晶化合物における分子量としては、2000以下であることが好ましく、1500以下がより好ましく、1000以下がさらに好ましい。下限は特に限定されないが、400以上が好ましく、500以上が好ましい。分子量範囲としては、400~2000が好ましく、400~1500がより好ましく、特に500~1000であることが好ましい。
 重合性液晶化合物の分子量は、重合性液晶化合物に含まれる原子量の総和である
(重合性液晶化合物の具体例)
 本発明の異方性色素膜形成用組成物に含まれる重合性液晶化合物として、具体的には、以下に記載の重合性液晶化合物が挙げられるが、これらに限定されるものではない。以下の例示式中、C13は、n-ヘキシル基を意味する。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
(液晶化合物の含有量)
 本発明の異方性色素膜形成用組成物に含有される液晶化合物は、重合性液晶化合物(2)からなることが好ましい。本発明の異方性色素膜形成用組成物には、重合性液晶化合物の1種のみが単独で含まれていてもよく、2種以上が任意の組み合わせおよび比率で含まれていてもよい。
 本発明の異方性色素膜用組成物における液晶化合物の含有量(2種以上の液晶化合物を併用する場合は、それぞれの含有量の総和)は、異方性色素膜用組成物の固形分(100質量部)に対して、35質量部以上が好ましく、50質量部以上がより好ましく、55質量部以上がさらに好ましく、99質量部以下が好ましく、98質量部以下がより好ましい。異方性色素膜用組成物の液晶化合物の含有量が上記下限以上上限以下であれば液晶分子の配向性が高くなる傾向にある。
 本発明の異方性色素膜用組成物は、重合性液晶化合物(2)以外の他の重合性または非重合性の液晶化合物の1種または2種以上を含むものであってもよいが、重合性液晶化合物(2)を用いることによる本発明の効果をより一層有効に得る観点から、本発明の異方性色素膜用組成物に含まれる液晶化合物の総量100質量%中の重合性液晶化合物(2)の割合は、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、特に15~100質量%であることが好ましい。
 また、本発明の異方性色素膜用組成物は、重合性液晶化合物を、その異方性色素膜用組成物中の質量濃度が、前記式(1)で表される本発明の化合物の濃度に対して、後述の質量濃度となるように含有することが好ましい。
(等方相出現温度)
 本発明の異方性色素膜形成用組成物に含有される重合性液晶化合物は、プロセスの観点から、その等方相出現温度が、160℃以下であることが好ましく、140℃以下がより好ましく、115℃以下がさらに好ましく、110℃以下がよりさらに好ましく、105℃以下が特に好ましい。
 ここで等方相出現温度とは、液晶から液体への相転移温度および液体から液晶への相転移温度を意味する。本発明においては、これらの相転移温度の少なくとも一方が上記上限以下であることが好ましく、これらの相転移温度の両方が上記上限以下であることがより好ましい。
(重合性液晶化合物の製造方法)
 本発明の異方性色素膜形成用組成物に含有される重合性液晶化合物は、アルキル化反応、エステル化反応、アミド化反応、エーテル化反応、イプソ置換反応、金属触媒を用いたカップリング反応等の公知の化学反応を組み合わせることにより製造することができる。
 たとえば、本発明の異方性色素膜形成用組成物に含有される重合性液晶化合物は、後掲の実施例に記載の方法や、「液晶便覧」(丸善株式会社、平成12年10月30日発行)の449~468ページに記載の方法にしたがって合成することができる。
(重合性液晶化合物と本発明の化合物との関係)
 異方性色素膜形成用組成物を用いて形成される異方性色素膜の配向性を向上させやすいとの観点で、異方性色素膜形成用組成物においては、重合性液晶化合物の分子長と色素の分子長との差が小さいほうが液晶分子と色素分子の分子間相互作用が強く、色素分子が液晶分子同士の会合を阻害し難いため好ましい。
 したがって、本発明の異方性色素膜形成用組成物においては、異方性色素膜形成用組成物に含まれる重合性液晶化合物が有する環構造の数(rn1)と、異方性色素膜形成用組成物に含まれる式(1)で表される本発明の化合物が有する環構造の数(rn2)との比(rn1/rn2)が、0.7~1.5であることが好ましい。
 なお、2つ以上の環が縮合する縮合環は、環構造としては1つとして数える。
 ここで、式(1)で表される本発明の化合物が有する環構造の数(rn2)とは、式中のA、A、およびAの総和であり、具体的には、nが1の場合、rn2は3;nが2の場合、rn2は4;nが3の場合、rn2は5である。
 なお、-Yがピロリジニル基やピペリジニル基のような環状の官能基であっても、-Yに含まれる環構造は式(1)で表される本発明の化合物が有する環構造の数(rn2)には含めない。
 より具体的には以下の通りである。
 nが1の場合、rn2は3であるので、rn1は3または4である。
 nが2の場合、rn2は4であるので、rn1は3、4、5または6である。
 nが3の場合、rn2は5であるので、rn1は4、5、6、または7である。
 このような値であれば、異方性色素膜形成用組成物に含まれる重合性液晶化合物が有する環構造の数(rn1)と、異方性色素膜形成用組成物に含まれる式(1)で表される色素が有する環構造の数(rn2)との比(rn1/rn2)が0.7~1.5となるため好ましい。
 異方性色素膜形成用組成物に含まれる重合性液晶化合物が有する環構造の数(rn1)には、重合性液晶化合物における重合性基に含まれる環構造(たとえば、オキシラン環やオキセタン環など。)は含めない。
 本発明の異方性色素膜用組成物は、重合性液晶化合物の質量濃度が式(1)で表される本発明の化合物の質量濃度の1倍以上となるように含むことが好ましい。重合性液晶化合物の質量濃度が式(1)で表される本発明の化合物の質量濃度の1倍以上であれば高い二色比が得られる傾向があり、異方性色素膜の機械強度を向上できる観点から好ましい。本発明の異方性色素膜用組成物の重合性液晶化合物の質量濃度は、式(1)で表される本発明の化合物の質量濃度の1.5倍以上であることがより好ましく、2倍以上であることがさらに好ましく、3倍以上であることが特に好ましい。一方で、重合性液晶化合物が式(1)で表される本発明の化合物に対して多過ぎると異方性色素膜としての吸光度が小さくなる傾向である。このため、本発明の異方性色素膜用組成物中の重合性液晶化合物の質量濃度は、式(1)で表される本発明の化合物の質量濃度の1000倍以下であることが好ましく、700倍以下であることがより好ましく、500倍以下であることがさらに好ましい。
<重合開始剤>
 本発明の異方性色素膜形成用組成物は、必要に応じて、重合開始剤を含んでもよい。
 重合開始剤は、重合性液晶化合物の重合反応を開始し得る化合物である。重合開始剤としては、光の作用により活性ラジカルを発生する光重合開始剤が好ましい。
 使用しうる重合開始剤としては、たとえば、チタノセン誘導体類;ビイミダゾール誘導体類;ハロメチル化オキサジアゾール誘導体類;ハロメチル-s-トリアジン誘導体類;アルキルフェノン誘導体類;オキシムエステル系誘導体類;ベンゾイン類;ベンゾフェノン誘導体類;アシルホスフィンオキサイド誘導体類;ヨードニウム塩類;スルホニウム塩類;アントラキノン誘導体類;アセトフェノン誘導体類;チオキサントン誘導体類;安息香酸エステル誘導体類;アクリジン誘導体類;フェナジン誘導体類;アンスロン誘導体類等が挙げられる。
 これらの光重合開始剤の中では、アルキルフェノン誘導体類、オキシムエステル系誘導体類、ビイミダゾ-ル誘導体類、アセトフェノン誘導体類、およびチオキサントン誘導体類がより好ましい。
 具体的には、チタノセン誘導体類としては、たとえば、ジシクロペンタジエニルチタニウムジクロライド、ジシクロペンタジエニルチタニウムビスフェニル、ジシクロペンタジエニルチタニウムビス(2,3,4,5,6-ペンタフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウムビス(2,3,5,6-テトラフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウムビス(2,4,6-トリフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウムジ(2,6-ジフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウムジ(2,4-ジフルオロフェニ-1-イル)、ジ(メチルシクロペンタジエニル)チタニウムビス(2,3,4,5,6-ペンタフルオロフェニ-1-イル)、ジ(メチルシクロペンタジエニル)チタニウムビス(2,6-ジフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウム〔2,6-ジ-フルオロ-3-(ピロ-1-イル)-フェニ-1-イル〕等が挙げられる。
 ビイミダゾール誘導体類としては、たとえば、2-(2’-クロロフェニル)-4,5-ジフェニルイミダゾール2量体、2-(2’-クロロフェニル)-4,5-ビス(3’-メトキシフェニル)イミダゾール2量体、2-(2’-フルオロフェニル)-4,5-ジフェニルイミダゾール2量体、2-(2’-メトキシフェニル)-4,5-ジフェニルイミダゾール2量体、(4’-メトキシフェニル)-4,5-ジフェニルイミダゾール2量体等が挙げられる。
 ハロメチル化オキサジアゾール誘導体類としては、たとえば、2-トリクロロメチル-5-(2’-ベンゾフリル)-1,3,4-オキサジアゾール、2-トリクロロメチル-5-〔β-(2’-ベンゾフリル)ビニル〕-1,3,4-オキサジアゾール、2-トリクロロメチル-5-〔β-(2’-(6’’-ベンゾフリル)ビニル)〕-1,3,4-オキサジアゾール、2-トリクロロメチル-5-フリル-1,3,4-オキサジアゾール等が挙げられる。
 ハロメチル-s-トリアジン誘導体類としては、たとえば、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシカルボニルナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン等が挙げられる。
 アルキルフェノン誘導体類としては、たとえば、ジエトキシアセトフェノン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、4-ジメチルアミノエチルベンゾエ-ト、4-ジメチルアミノイソアミルベンゾエ-ト、4-ジエチルアミノアセトフェノン、4-ジメチルアミノプロピオフェノン、2-エチルヘキシル-1,4-ジメチルアミノベンゾエ-ト、2,5-ビス(4-ジエチルアミノベンザル)シクロヘキサノン、7-ジエチルアミノ-3-(4-ジエチルアミノベンゾイル)クマリン、4-(ジエチルアミノ)カルコン等が挙げられる。
 オキシムエステル系誘導体類としては、たとえば、2-(ベンゾイルオキシイミノ)-1-[4-(フェニルチオ)フェニル]-1-オクタノン、O-アセチル-1-[6-(2-メチルベンゾイル)-9-エチル-9H-カルバゾール-3-イル]エタノンオキシム、特開2000-80068号公報、特開2006-36750号公報、国際公開第2009/131189号等に記載されているオキシムエステル誘導体等が挙げられる。
 ベンゾイン類としては、たとえば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインフェニルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。
 ベンゾフェノン誘導体類としては、たとえば、ベンゾフェノン、ミヒラーズケトン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、2-クロロベンゾフェノン、4-ブロモベンゾフェノン、2-カルボキシベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’,4,4’-テトラ(tert-ブチルパ-オキシカルボニル)ベンゾフェノン、および2,4,6-トリメチルベンゾフェノン等が挙げられる。
 アシルホスフィンオキサイド誘導体類としては、たとえば、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイドおよびビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド等が挙げられる。
 ヨ-ドニウム塩類としては、たとえば、ジフェニルヨードニウム・テトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウム・ヘキサフルオロホスフェ-ト、ジフェニルヨードニウム・ヘキサフルオロアンチモネート、ジ(4-ノニルフェニル)ヨードニウム・ヘキサフルオロホスフェート等が挙げられる。
 スルホニウム塩類としては、たとえば、トリフェニルスルホニウム・ヘキサフルオロホスフェート、トリフェニルスルホニウム・ヘキサフルオロアンチモネート、トリフェニルスルホニウム・テトラキス(ペンタフルオロフェニル)ボレート、ジフェニル〔4-(フェニルチオ)フェニル〕スルホニウム・ヘキサフルオロホスフェート、4,4’-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィド・ビスヘキサフルオロホスフェート、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド・ビスヘキサフルオロアンチモネート、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド・ビスヘキサフルオロホスフェート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン・ヘキサフルオロアンチモネート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン・テトラキス(ペンタフルオロフェニル)ボレート、4-フェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド・ヘキサフルオロホスフェート、4-(p-tert-ブチルフェニルカルボニル)-4’-ジフェニルスルホニオ-ジフェニルスルフィド・ヘキサフルオロアンチモネート、4-(p-tert-ブチルフェニルカルボニル)-4’-ジ(p-トルイル)スルホニオ-ジフェニルスルフィド・テトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
 アントラキノン誘導体類としては、2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン等が挙げられる。
 アセトフェノン誘導体類としては、たとえば、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシアセトフェノン、1-ヒドロキシシクロへキシルフェニルケトン、α-ヒドロキシ-2-メチルフェニルプロパノン、1-ヒドロキシ-1-メチルエチル-(p-イソプロピルフェニル)ケトン、1-ヒドロキシ-1-(p-ドデシルフェニル)ケトン、2-メチル-(4’-メチルチオフェニル)-2-モルホリノ-1-プロパノン、1,1,1-トリクロロメチル-(p-ブチルフェニル)ケトン等が挙げられる。
 チオキサントン誘導体類としては、たとえば、チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン等が挙げられる。
 安息香酸エステル誘導体類としては、たとえば、p-ジメチルアミノ安息香酸エチル、p-ジエチルアミノ安息香酸エチル等が挙げられる。
 アクリジン誘導体類としては、たとえば、9-フェニルアクリジン、9-(p-メトキシフェニル)アクリジン等が挙げられる。
 フェナジン誘導体類としては、たとえば、9,10-ジメチルベンズフェナジン等が挙げられる。
 アンスロン誘導体類としては、たとえば、ベンズアンスロン等が挙げられる。
 重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 重合開始剤として、市販品を用いることもできる。
 市販品としては、例えば、IRGACURE(登録商標。以下同様。) 250、IRGACURE 651、IRGACURE 184、DAROCURE 1173、IRGACURE 2959、IRGACURE 127、IRGACURE 907、IRGACURE 369、IRGACURE 379EG、LUCIRIN TPO、IRGACURE 819、IRGACURE 784、OXE-01、OXE-02(いずれも、BASF社製);セイクオール(登録商標)BZ、Z、およびBEE(精工化学株式会社製);カヤキュアー(kayacure)(登録商標)BP100、およびUVI-6992(ダウ・ケミカル株式会社製);アデカオプトマーSP-152、およびSP-170(株式会社ADEKA製);TAZ-A、およびTAZ-PP(日本シイベルヘグナー株式会社製);並びに、TAZ-104(株式会社三和ケミカル製);TRONLYTR-PBG-304、TRONLYTR-PBG-309、TRONLYTR-PBG-305、TRONLYTR-PBG-314(常州強力電子新材料有限公司社(CHANGZHOU TRONLY NEW ELECTRONIC MATERIALS CO.,LTD)製)が挙げられる。
 本発明の異方性色素膜形成用組成物が重合開始剤を含む場合、本発明の異方性色素膜形成用組成物における重合開始剤の含有量は、重合性液晶化合物の配向を乱し難いという観点から、重合性液晶化合物100質量部に対して、通常0.1~30質量部であり、好ましくは0.5~10質量部であり、より好ましくは0.5~8質量部である。
 必要に応じて重合開始剤に重合加速剤を併用してもよい。用いられる重合加速剤としては、例えば、N,N-ジメチルアミノ安息香酸エチルエステル等のN,N-ジアルキルアミノ安息香酸アルキルエステル類;2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾイミダゾール等の複素環を有するメルカプト化合物;脂肪族多官能メルカプト化合物等のメルカプト化合物類等が挙げられる。
 重合加速剤もまた、1種を単独で用いてもよく、2種以上を併用してもよい。
 必要に応じて感応感度を高める目的で、増感色素を併用してもよい。増感色素は、露光光源の波長に応じて、適切なものが用いられる。例えば特開平4-221958号公報、特開平4-219756号公報等に記載のキサンテン系色素;特開平3-239703号公報、特開平5-289335号公報等に記載の複素環を有するクマリン系色素;特開平3-239703号公報、特開平5-289335号公報等に記載の3-ケトクマリン系色素;特開平6-19240号公報等に記載のピロメテン系色素;特開昭47-2528号公報、特開昭54-155292号公報、特公昭45-37377号公報、特開昭48-84183号公報、特開昭52-112681号公報、特開昭58-15503号公報、特開昭60-88005号公報、特開昭59-56403号公報、特開平2-69号公報、特開昭57-168088号公報、特開平5-107761号公報、特開平5-210240号公報、特開平4-288818号公報等に記載のジアルキルアミノベンゼン骨格を有する色素等が挙げられる。
 増感色素もまた、1種を単独で用いてもよく、2種以上を併用してもよい。
<溶剤>
 本発明の異方性色素膜形成用組成物は、必要に応じて、溶剤を含有してもよい。
 本発明の異方性色素膜形成用組成物に使用しうる溶剤としては、重合性液晶化合物中に色素またはその他の添加剤を十分に分散または溶解させ得るものであれば特に限定されない。たとえば、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール溶剤;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、メチルイソブチルケトン等のケトン溶剤;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶剤;トルエン、キシレン等の芳香族炭化水素溶剤;アセトニトリル等のニトリル溶剤;テトラヒドロフラン、ジメトキシエタン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル等のエーテル溶剤;ペルフルオロベンゼン、ペルフルオロトルエン、ペルフルオロデカリン、ペルフルオロメチルシクロヘキサン、ヘキサフルオロ-2-プロパノール等のフッ素含有溶剤;および、クロロホルム、ジクロロメタン、クロロベンゼン、ジクロロベンゼン等の塩素含有溶剤;が挙げられる。
 これら溶剤は、一種類のみを用いてもよく、二種類以上を組み合わせて用いてもよい。
 溶剤は、重合性液晶化合物および色素を溶解し得る溶剤であることが好ましく、重合性液晶化合物および色素が完全に溶解する溶剤であることがさらに好ましい。溶剤は、重合性液晶化合物の重合反応に不活性な溶剤であることが好ましい。溶剤は、後述する本発明の異方性色素膜形成用組成物を塗布する観点から、沸点が50~200℃の範囲である溶剤が好ましい。
 本発明の異方性色素膜形成用組成物が溶剤を含む場合において、異方性色素膜形成用組成物において溶剤が占める含有割合は、本発明の組成物の総量(100質量%)に対して、50~98質量%が好ましい。換言すると、本発明の異方性色素膜形成用組成物における固形分は、2~50質量%が好ましい。
 異方性色素膜形成用組成物における固形分含有量が前記上限値以下であれば、異方性色素膜形成用組成物の粘度が高くなりすぎず、得られる偏光膜の厚みが均一になり、偏光膜にムラが生じにくくなる傾向がある。
 本発明の異方性色素膜形成用組成物の固形分含有量は、製造しようとする偏光膜の厚さを考慮して定めることができる。
 本発明の異方性色素膜用組成物の粘度は、後述の塗布方法により、厚みムラのない均一な膜が作製されれば特に問わない。本発明の異方性色素膜形成用組成物の粘度は、大面積での厚み均一性、塗布速度などの生産性、光学特性の面内均一性を得る観点からは、0.1mPa・s以上が好ましく、500mPa・s以下が好ましく、100mPa・s以下がより好ましく、50mPa・s以下がさらに好ましい。
<その他の添加剤>
 本発明の異方性色素膜形成用組成物は、さらに必要に応じて、色素および重合性液晶化合物以外の成分として、前述の重合開始剤等の他に、重合禁止剤、重合助剤、重合性非液晶化合物、界面活性剤、レベリング剤、カップリング剤、pH調整剤、分散剤、酸化防止剤、有機・無機フィラー、有機・無機ナノシート、有機・無機ナノファイバー、金属酸化物等のその他の添加剤を含有してもよい。これらの添加剤を含有することにより、本発明の異方性色素膜形成用組成物の塗布性や安定性等を向上させたり、本発明の異方性色素膜形成用組成物から形成される異方性色素膜の安定性を向上させたりし得る場合がある。
<異方性色素膜形成用組成物の製造方法>
 本発明の異方性色素膜用組成物を製造する方法は特に限定されない。たとえば、本発明の化合物を含む色素、重合性液晶化合物、必要に応じて溶剤、その他の添加剤等を混合し、0~80℃で攪拌、振盪して色素を溶解する。難溶性の場合は、ホモジナイザー、ビーズミル分散機等を用いてもよい。
 本発明の異方性色素膜用組成物を製造する方法として、組成物中の異物等を除去する目的で、濾過工程を有していてもよい。
 本発明の異方性色素膜形成用組成物は、異方性色素膜形成用組成物から溶剤の除いた組成物が、任意の温度で液晶であってもなくてもよいが、任意の温度で液晶性を示すことが好ましい。
 本発明の異方性色素膜形成用組成物から溶剤を除いた組成物は、下記に記載の塗工プロセスの観点からその等方相出現温度が、160℃未満であることが好ましく、140℃未満がより好ましく、115℃未満がさらに好ましく、110℃未満がよりさらに好ましく、105℃未満が特に好ましい。
[異方性色素膜]
 本発明の異方性色素膜は、本発明の異方性色素膜形成用組成物を用いて形成される。したがって、本発明の異方性色素膜は、色素と、重合性液晶化合物および重合性液晶化合物に基づく単位を有する重合物の一方または両方とを含み、色素は、本発明の化合物を含む。
 本発明の異方性色素膜用組成物を用いて形成される本発明の異方性色素膜は、好ましくは重合性液晶化合物および重合性液晶化合物に基づく単位を有する重合物の合計質量濃度が、式(1)で表される本発明の化合物の質量濃度の1倍以上、より好ましくは1.5倍以上、さらに好ましくは2倍以上、特に好ましくは3倍以上、また好ましくは1000倍以下、より好ましくは700倍以下、さらに好ましくは500倍以下となるように含むものである。
 本発明の異方性色素膜は、その他の成分として非重合性液晶化合物、重合開始剤、重合禁止剤、重合助剤、重合性非液晶化合物、非重合性非液晶化合物、界面活性剤、レベリング剤、カップリング剤、pH調整剤、分散剤、酸化防止剤、有機・無機フィラー、有機・無機ナノシート、有機・無機ナノファイバー、金属酸化物等を含んでもよい。
 本発明の異方性色素膜は、光吸収の異方性を利用して、直線偏光、円偏光、楕円偏光等を得る偏光膜として機能しうる他、膜形成プロセスと基板や有機化合物(色素や透明材料)を含有する組成物の選択により、屈折異方性や伝導異方性等の各種異方性色素膜として機能化が可能である。
 本発明の異方性色素膜を液晶ディスプレイ用や、OLED用反射防止膜の偏光素子として使う場合は、異方性色素膜の配向特性は二色比を用いて表すことができる。二色比は8以上あれば偏光素子として機能するが、15以上が好ましく、20以上がより好ましく、25以上がさらに好ましく、30以上が特に好ましく、40以上がとりわけ好ましい。異方性色素膜の二色比は高いほど好ましい。二色比が前記下限値以上であることで、後述する光学素子、特に偏光素子として有用である。
 OLED用反射防止膜の偏光素子として用いる場合、位相差膜等の周辺材料の性能が低くても、偏光素子の性能が高ければ、反射防止膜としての特性は向上する。そのため、偏光素子の性能が高ければ、層構成を簡素化させやすく、薄膜構成でも十分な機能を発現しやすくなり、折る、曲げる、を含む変形させて使用する用途にも好適に使用できる。また、コストも低く抑えることが可能となる。
 本発明で言う二色比(D)は、色素が一様に配向している場合、以下の式で表される。
 D=Az/Ay
 ここで、Azは異方性色素膜に入射した光の偏光方向が異方性色素の配向方向に平行な場合に観測される吸光度である。Ayは異方性色素膜に入射した光の偏光方向が垂直な場合に観測される吸光度である。
 それぞれの吸光度(Az、Ay)は同じ波長のものを用いれば特に制限はなく、目的によっていずれの波長を選択してもよい。異方性色素膜の配向の度合を表す場合は、異方性色素膜の350nm~800nmの特定波長域に視感度で補正した値や、可視域の極大吸収波長における値を用いることが好ましい。
 本発明の異方性色素膜の透過率は、使用する目的の波長において、好ましくは25%以上であり、35%以上がさらに好ましく、40%以上が特に好ましい。本発明の異方性色素膜を可視光波長域全体において異方性を有する色素膜として用いる場合には、異方性色素膜の可視光波長域における透過率は、好ましくは25%以上であり、35%以上がさらに好ましく、40%以上が特に好ましい。本発明の異方性色素膜の透過率は用途に応じた上限であればよい。たとえば、偏光度を高くする場合には、透過率は50%以下であることが好ましい。透過率が上記範囲であることで、後述する光学素子として有用であり、特にカラー表示に用いる液晶ディスプレイ用や、異方性色素膜と位相差膜とを組み合わせた反射防止膜用の光学素子として有用である。
 異方性色素膜の膜厚は、乾燥膜厚として、好ましくは10nm以上、より好ましくは100nm以上、さらに好ましくは500nm以上である。異方性色素膜の膜厚は、好ましくは30μm以下、より好ましくは10μm以下、さらに好ましくは5μm以下、とりわけ好ましくは3μm以下である。異方性色素膜の膜厚が上記範囲にあることで、膜内で色素の均一な配向および均一な膜厚を得られる傾向にある。
[異方性色素膜の製造方法]
 本発明の異方性色素膜は、本発明の異方性色素膜形成用組成物を用いて、湿式成膜法により作製することが好ましい。
 本発明で言う湿式成膜法とは、異方性色素膜用組成物を基板上に何らかの手法により塗布、配向させる方法である。そのため、異方性色素膜用組成物は流動性を持てばよく、溶剤を含んでいても、含んでいなくてもよい。塗布する際の粘度や膜均一性の観点から、溶剤を含んでいることがより好ましい。
 異方性色素膜中の液晶や色素の配向は、塗布過程で剪断などにより配向してもよいし、溶剤が乾燥する過程で配向してもよい。また、塗布、乾燥後に加熱し、液晶や色素等を再配向させるプロセスを経て、液晶や色素等を基板上で配向、積層させてもよい。湿式成膜法では、異方性色素膜用組成物を基板上に付与すると、すでに異方性色素膜用組成物中で、または溶剤が乾燥する過程で、または溶剤が完全に除去された後で、色素や液晶化合物が自己会合(液晶状態等の分子会合状態)を取ることにより微小面積での配向が起こる。この状態に外場を与えることにより、マクロな領域で一定方向に配向させ、所望の性能を有する異方性色素膜を得ることができる。この点で、ポリビニルアルコール(PVA)フィルム等を、色素を含む溶液で染色して延伸し、延伸工程だけで色素を配向させることを原理とする方法とは異なる。ここで外場とは、あらかじめ基板上に施された配向処理層の影響、せん断力、磁場、電場、熱等が挙げられ、これらを単独で用いてもよく、複数組み合わせて用いてもよい。必要があれば、加熱工程を経てもよい。
 異方性色素膜用組成物を基板上に付与し成膜する過程、外場を与えて配向させる過程、溶剤を乾燥させる過程は、逐次行ってもよいし、同時に行ってもよい。
 湿式成膜法における異方性色素膜形成用組成物の基板上へ付与する方法としては、たとえば、塗布法、ディップコート法、LB膜形成法、公知の印刷法等が挙げられる。また、このようにして得た異方性色素膜を別の基板に転写する方法もある。
 これらのなかでも、塗布法を用いて異方性色素膜形成用組成物を基板上に付与することが好ましい。
 異方性色素膜の配向方向は塗布方向と異なっていてもよい。本発明において異方性色素膜の配向方向とは、たとえば、偏光膜であれば、偏光の透過軸(偏光軸)または吸収軸のことであり、位相差膜であれば、進相軸または遅相軸のことである。
 異方性色素膜用組成物を塗布し、異方性色素膜を得る方法としては、特に限定されないが、たとえば、原崎勇次著「コーティング工学」(株式会社朝倉書店、1971年3月20日発行)の253~277ページに記載の方法、市村國宏監修「分子協調材料の創製と応用」(株式会社シーエムシー出版、1998年3月3日発行)の118~149ページに記載の方法、段差構造を有する基板(予め配向処理を施してもよい)上にスロットダイコート法、スピンコート法、スプレーコート法、バーコート法、ロールコート法、ブレードコート法、カーテンコート法、ファウンテン法、ディップ法等で塗布する方法が挙げられる。なかでも、スロットダイコート法やバーコート法を採用すると、均一性の高い異方性色素膜が得られるため好適である。
 スロットダイコート法に用いるダイコーターは、一般的に塗布液を吐出する塗布機、いわゆるスリットダイを備えている。スリットダイは、たとえば、特開平2-164480号公報、特開平6-154687号公報、特開平9-131559号公報、「分散・塗布・乾燥の基礎と応用」(2014年、株式会社テクノシステ、ISBN9784924728707 C 305)、「ディスプレイ・光学部材における湿式コーティング技術」(2007年、情報機構、ISBN9784901677752)、「エレクトロニクス分野における精密塗布・乾燥技術」(2007年、技術情報協会、ISBN9784861041389)等に開示されている。これら公知のスリットダイは、フィルムやテープなどの可撓性を有した部材やガラス基板のような硬い部材であっても塗布が実施できる。
 本発明の異方性色素膜形成に使用される基板として、たとえば、ガラスや、トリアセテート、アクリル、ポリエステル、ポリイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリカーボネート、シクロオレフィンポリマー、ポリオレフィン、ポリ塩化ビニル、トリアセチルセルロースまたはウレタン系のフィルム等が挙げられる。
 基板表面には、色素の配向方向を制御するために、「液晶便覧」(丸善株式会社、平成12年10月30日発行)の226~239ページ等に記載の公知の方法(ラビング法、配向膜表面上にグルーブ(微細な溝構造)を形成する方法、偏光紫外光・偏光レーザーを用いる方法(光配向法)、LB膜形成による配向方法、無機物の斜め蒸着による配向方法等)により、配向処理(配向膜)を施していてもよい。特に、ラビング法、光配向法による配向処理を好ましく挙げることができる。ラビング法に用いる材料としては、ポリビニルアルコール(PVA)、ポリイミド(PI)、エポキシ樹脂、アクリル樹脂等が挙げられる。光配向法に用いる材料としては、たとえば、ポリシンナメート系、ポリアミック酸・ポリイミド系、アゾベンゼン系等が挙げられる。配向処理層を設けた場合、配向処理層の配向処理の影響と、塗布時に異方性色素膜用組成物にかかるせん断力によって、液晶化合物や色素が配向すると考えられる。
 異方性色素膜用組成物を塗布する際の、異方性色素膜用組成物の供給方法、供給間隔は特に限定されない。塗布液の供給操作が繁雑になったり、塗布液の開始時と停止時に塗布膜厚の変動を生じたりする場合があるため、異方性色素膜の膜厚が薄い時には、連続的に異方性色素膜用組成物を供給しながら塗布することが望ましい。
 異方性色素膜用組成物を塗布する速度は、通常0.001m/分以上であり、好ましくは0.01m/分以上であり、より好ましくは0.1m/分以上であり、さらに好ましくは1.0m/分以上であり、特に好ましくは5.0m/分以上である。異方性色素膜用組成物を塗布する速度は、通常400m/分以下であり、好ましくは200m/分以下であり、より好ましくは100m/分以下であり、さらに好ましくは50m/分以下である。塗布速度が上記範囲であることで、異方性色素膜の異方性が得られ、均一に塗布できる傾向にある。
 異方性色素膜用組成物の塗布温度は、通常0℃以上100℃以下、好ましくは80℃以下、さらに好ましくは60℃以下である。
 異方性色素膜用組成物の塗布時の湿度は、好ましくは10%RH以上であり、好ましくは80RH%以下である。
 異方性色素膜には、不溶化処理を行ってもよい。不溶化とは、異方性色素膜中の化合物の溶解性を低下させることにより、化合物の異方性色素膜からの溶出を制御し、膜の安定性を高める処理を意味する。
 具体的には、膜の重合やオーバーコートなどが、後工程の容易さ、異方性色素膜の耐久性等の点から好ましい。
 膜の重合を行う場合、液晶分子と色素分子が配向した膜に対して、光、熱、および/または放射線を用いて重合を行う。
 光または放射線を用いて重合を行う場合、波長が190~450nmの範囲にある活性エネルギー線を照射することが好ましい。
 波長190~450nmの活性エネルギー線の光源は、特に限定されるものではないが、例えば、キセノンランプ、ハロゲンランプ、タングステンランプ、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、中圧水銀灯、低圧水銀灯、カーボンアーク、蛍光ランプ等のランプ光源;アルゴンイオンレーザー、YAGレーザー、エキシマレーザー、窒素レーザー、ヘリウムカドミニウムレーザー、半導体レーザー等のレーザー光源等が挙げられる。特定の波長の光を照射して使用する場合には、光学フィルターを利用することもできる。活性エネルギー線の露光量は、10~10,000J/mが好ましい。
 熱を用いて重合を行う場合は、50~200℃の範囲で行うことが好ましく、60~150℃の範囲で行うことがさらに好ましい。
 重合は、光、熱、および/または放射線を用いて行ってもよいが、光重合を用いる、または、光重合と熱重合を併用するのが膜形成プロセスの時間が短く、装置も簡易であることから好ましい。
[光学素子]
 本発明の光学素子は、本発明の異方性色素膜を含む。
 本発明における光学素子は、光吸収の異方性を利用して、直線偏光、円偏光、楕円偏光等を得る偏光素子、位相差素子、屈折異方性や伝導異方性等の機能を有する素子を表す。これらの機能は、異方性色素膜形成プロセスと、基板や有機化合物(色素や透明材料)を含有する組成物の選択により、適宜調整することができる。
 本発明の光学素子は、偏光素子として用いることが最も好ましい。
 本発明の光学素子は、基板上に塗布等により異方性色素膜を形成することで偏光素子を得ることができるという点から、フレキシブルディスプレイ等の用途にも好適に使用することができる。
 光学素子は、異方性色素膜の機能を維持、向上させるために、他の層が設けられていてもよい。他の層としては、たとえば、耐光性、耐熱性、耐水性等の耐久性を向上させるために用いる、特定の波長を遮断する機能を有する層や特定の物質を遮断する機能を有する層(酸素遮断フィルム、水蒸気遮断フィルムなどのバリアフィルム等);色域を変更したり、光学特性を向上させたりするために用いる、波長カットフィルターや特定の波長を吸収する材料を含有する層;等が挙げられる。
[偏光素子]
 本発明の異方性色素膜を用いて偏光素子(以下、「本発明の偏光素子」と称す場合がある。)を製造することができる。
 本発明の偏光素子は、本発明の異方性色素膜を有するものであれば他の如何なる膜(層)を有するものであってもよい。たとえば、基板上に配向膜を設け、配向膜の表面に、本発明の異方性色素膜を形成することにより製造することができる。
 偏光素子は異方性色素膜だけに限らず、偏光性能を向上させる、機械的強度を向上させる等の機能を有するオーバーコート層;粘着層または反射防止層;配向膜;位相差フィルムとしての機能、輝度向上フィルムとしての機能、反射または反射防止フィルムとしての機能、半透過反射フィルムとしての機能、拡散フィルムとしての機能などの光学機能を有する層;等、と組み合わせて使用してもよい。具体的には、前述の様々な機能を有する層を塗布や貼合等により積層形成し、積層体として使用してもよい。
 これらの層は、製造プロセス、特性および機能に合わせ適宜設けることができ、その積層の位置、順番等は特に限定されない。たとえば、各層を形成する位置は、異方性色素膜の上であってもよく、異方性色素膜を設けた基板の反対面であってもよい。また、各層を形成する順番は、異方性色素膜を形成する前でも形成した後でもよい。
 これら光学機能を有する層は、以下の様な方法により形成することができる。
 位相差フィルムとしての機能を有する層は、位相差フィルムを、偏光素子を構成する他の層に塗布や貼合等を行うことにより形成することができる。位相差フィルムは、たとえば、特開平2-59703号公報、特開平4-230704号公報等に記載の延伸処理を施したり、特開平7-230007号公報等に記載された処理を施したりすることにより形成することができる。
 輝度向上フィルムとしての機能を有する層は、輝度向上フィルムを、偏光素子を構成する他の層に塗布や貼合等を行うことにより形成することができる。輝度向上フィルムは、たとえば、特開2002-169025号公報および特開2003-29030号公報に記載されるような方法で微細孔を形成することにより、または、選択反射の中心波長が異なる2層以上のコレステリック液晶層を重畳することにより形成することができる。
 反射フィルムまたは半透過反射フィルムとしての機能を有する層は、たとえば、蒸着やスパッタリングなどで得られた金属薄膜を、偏光素子を構成する他の層に塗布や貼合等を行うことにより形成することができる。
 拡散フィルムとしての機能を有する層は、たとえば、偏光素子を構成する他の層に微粒子を含む樹脂溶液をコーティングすることにより形成することができる。
 位相差フィルムや光学補償フィルムとしての機能を有する層は、ディスコティック液晶性化合物、ネマティック液晶性化合物、スメクチック液晶性化合物、コレステリック液晶性化合物等の液晶性化合物を、偏光素子を構成する他の層に塗布して配向させることにより形成することができる。その際に、基板上に配向膜を設け、配向膜の表面に、位相差フィルムや光学補償フィルムを形成してもよい。
 本発明の異方性色素膜を、液晶素子(LCD)や有機エレクトロルミネッセンス素子(OLED)等の各種の表示素子に異方性色素膜等として用いる場合には、これらの表示素子を構成する電極基板等の表面に直接、本発明の異方性色素膜を形成してもよいし、本発明の異方性色素膜を形成した基板を、これら表示素子の構成部材として用いてもよい。
 以下に実施例により本発明をさらに具体的に説明する。本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
 以下の記載において、「部」は「質量部」を意味する。
[液晶相の同定方法]
 得られた異方性色素膜形成用組成物の液晶性は、示差走査熱量測定(セイコーインスツルメンツ社「DSC220CU」)、X線構造解析(株式会社リガク「NANO-Viewer」)、ホットステージ(株式会社東陽テクニカ「HCS302-LN190」)が付属する偏光顕微鏡(株式会社ニコンインステック「ECLIPSE LV100N POL」)にて観察し、「液晶便覧」(丸善株式会社、平成12年10月30日発行)の9~50ページ、117~176ページ等に記載の方法にしたがって、液晶であることの同定を行った。
[異方性色素膜の吸収軸/偏光軸方向の偏光に対する透過率の測定および二色比]
 得られた異方性色素膜の吸収軸/偏光軸方向の偏光に対する透過率は、グラントムソン偏光子を備える分光光度計(大塚電子(株)製、製品名「RETS-100」)を用いて測定した。
 異方性色素膜に直線偏光の測定光を入射し、異方性色素膜の吸収軸方向の偏光に対する透過率および異方性色素膜の偏光軸方向の偏光に対する透過率を測定し、次式により二色比(D)を算出した。
  D=Az/Ay
(式中、
 Ay=-log(Ty)であり;
 Az=-log(Tz)であり;
 Tzは、異方性色素膜の吸収軸方向の偏光に対する透過率であり;
 Tyは、異方性色素膜の偏光軸方向の偏光に対する透過率である。)
 具体的には、基材としてガラス上にポリイミドの配向膜(LX1400、日立化成デュポンマイクロシステムズ社製)が形成されたサンドイッチセル(セルギャップ:8.0μm、10.0μm、成膜済みのポリイミドにあらかじめ布でラビング処理を施したもの)に、異方性色素膜用組成物を等方相で注入し、5℃/minで80℃まで冷却することにより異方性色素膜を得、さらに5℃/minで0℃まで冷却しながら、各温度で二色比を測定した。その中で、最大の二色比を示した温度および波長における二色比をその異方性色素膜の二色比と決定した。
 上記測定した異方性色素膜の二色比としては20以上であれば、実用上充分であり好ましく、30以上がより好ましく、40以上がさらに好ましい。
[重合性液晶化合物の合成]
<重合性液晶化合物(I-1)>
 下記構造式で表わされる重合性液晶化合物(I-1)を特開2020-042305号公報の記載に従い合成した。下記式中、C1122はメチレン鎖が直鎖状に11個結合していることを意味する。
Figure JPOXMLDOC01-appb-C000025
 重合性液晶化合物(I-1)について、等方相出現温度(液晶から液体への相転移温度および液体から液晶への相転移温度)を示差走査熱量測定により求めた。示差走査熱量測定には、重合性液晶化合物(I-1)100質量部に対して、重合禁止剤として4-メトキシフェノールを0.2質量部添加したものを用いた。
 重合性液晶化合物(I-1)の液晶から液体への相転移温度は111.0℃、液体から液晶への相転移温度は109.4℃であった。
 この温度が等方相出現温度であることは、偏光顕微鏡観察およびX線構造解析により確認した。
[色素の合成]
<色素(II-1)>
 下記に記載の合成法に従い、色素(II-1)を合成した。
Figure JPOXMLDOC01-appb-C000026
(II-1-a)の合成:
 2-チオフェンカルボン酸(2.00g,15.6mmol)、ジフェニルリン酸アジド(4.30g,15.6mmol)、トリエチルアミン(2.2ml,15.6mmol)、tert-ブチルアルコール(20mL)を混合し、還流状態で5時間加熱撹拌した。25℃まで冷却した後、ここに水(300mL)を添加し、ジエチルエーテルで抽出した。有機層を濃縮した後、シリカゲルクロマトグラフィー(ヘキサン/ジクロロメタン)で精製し、(II-1-a)を1.9g得た。
(II-1-b)の合成:
 (II-1-a)(2.00g,10.0mmol)、12N塩酸(36mL)、ジエチルエーテル(85mL)を混合し、25℃で30分撹拌した後、溶媒を留去し(II-1-b)を1.36g得た。
(II-1-c)の合成:
 窒素気流下、4-ブチルアニリン(44.35g,369mmol)、12N塩酸(410mL)を混合し0℃まで冷却して1時間撹拌した。ここへ亜硝酸ナトリウム(32.0g,461mmol)と水(220mL)を混合した水溶液を加え、5℃で1時間撹拌し、ジアゾニウム溶液を調整した。
 (II-1-b)(62.5g,461mmol)とメタノール(625mL)を混合し0℃に冷却後、上記のジアゾニウム溶液を40分かけて滴下した。0~5℃で1時間撹拌した後、25℃に昇温し3時間撹拌した。析出した固体をろ取し、得られた粗体をイオン交換水で洗浄することにより、(II-1-c)を72.66g得た。
(II-1-d)の合成
 窒素気流下、(II-1-c)(72.6g,245mmol)、チオシアン酸ナトリウム(39.4g,490mmol)、酢酸(1100mL)を混合した後、臭素(13.2ml,257mmol)を滴下し25℃で3時間撹拌した。水(1000mL)を加えて混合した後に濾別した後、得られた固形分を減圧乾燥して粗体を得た。粗体をメタノール(150mL)で懸洗し、減圧乾燥することで、(II-1-d)を59.4g得た。
Figure JPOXMLDOC01-appb-C000027
(II-1-e)の合成:
 3,5,5-トリエチル-1-ヘキサノール(38.4g,266mmol)、47%HBr水溶液(50.4g,293mmol)、濃硫酸(8.3g,82.5mmol)を混合し、120℃で5時間撹拌した。25℃まで冷却した後、ヘキサン(600mL)へ添加し、水(1200mL×3回)で洗浄した。有機層を濃縮した後、シリカゲルクロマトグラフィー(ヘキサン)で精製し、(II-1-e)を35.5g得た。
(II-1-f)の合成:
 N-エチルアニリン(20.0g,165mmol)、(II-1-e)(47.9g,231mmol)、炭酸カリウム(59.4g,330mmol)、アセトニトリル(80mL)を混合し、還流状態で26時間加熱撹拌した。25℃まで冷却した後、反応液を濾過し、ろ液を濃縮した。得られた黄色油状の粗体をシリカゲルクロマトグラフィー(ヘキサン/ジクロロメタン)で精製し、(II-1-f)を25.4g得た。
(II-1)の合成:
 (II-1-d)(0.75g,2.37mmol)、酢酸(20mL)、プロピオン酸(10mL)を混合し、3℃まで冷却した。冷却した溶液へ、亜硝酸ナトリウム(0.21g,3.08mmol)と濃硫酸の混合物を滴下し、3℃で1時間撹拌してジアゾニウム溶液を調製した。
 (II-1-f)(0.58g,3.56mmol)、テトラヒドロフラン(6mL)、メタノール(6mL)、酢酸ナトリウム(5.4g)を混合し、3℃に冷却後、上記のジアゾニウム溶液を1時間かけて滴下し、3℃で3時間撹拌した。25℃に昇温し12時間撹拌した後、水(10mL)を加えて撹拌した。析出した固体をろ取し、得られた粗体をシリカゲルクロマトグラフィー(ヘキサン/ジクロロメタン)で精製することにより色素(II-1)を0.16g得た。
 色素(II-1)の10ppmクロロホルム溶液での極大吸収波長(λmax)は593nm、グラム吸光係数は131.9Lg-1cm-1であった。
 色素(II-1)のNMRによる構造確認を行った。結果を以下に示す。
H-NMR(CDCl,400MHz)δ0.95-1.00(m,12H),δ1.06(d,3H,J=6.3Hz),δ1.16-1.21(m,1H),δ1.27-1.32(m,4H),δ1.38-1.43(m,2H),δ1.63-1.71(m,3H),δ2.71(t,2H,J=7.5Hz),δ3.40-3.55(m,4Hz),δ6.74(d,2H,9.4Hz),δ7.32(d,2H,8.5Hz),δ7.82(d,2H,8.5Hz),δ7.92(s,1H),δ7.96(d,2H,9.4Hz)
 色素(II-1)のシクロペンタノンに対する溶解度を測定した。
 シクロペンタノン103mgに色素(II-1)3mgを加え、80℃で5分間撹拌した。その後、1時間室温で静置し、得られた混合液をシリンジフィルタ-(Membrane Solutions社製、PTFE13045、口径0.45μm)を備えたシリンジを用いて濾過することで色素(II-1)のシクロペンタノン飽和溶液を得た。この溶液をテトラヒドロフラン746mgにて希釈し、濃度をHPLC(日立ハイテクノロジ-ズ製L-2300シリ-ズ)を用いて決定した。色素(II-1)をテトラヒドロフランに0.1質量%溶解した溶液を作製し、吸収波長254nmにて検量線を作成した。この検量線を用いて、シクロペンタノン飽和溶液の濃度を測定した。結果を表1に示す。
<色素(II-2)>
 下記に記載の合成法に従い、色素(II-2)を合成した。
Figure JPOXMLDOC01-appb-C000028
(II-2-a)の合成:
 N-エチルアニリン(130.0g,1073mmol)、2-ヨードプロパン(200g,1080mmol)、炭酸カリウム(297g,2146mmol)、アセトニトリル(520mL)を混合し、還流状態で16時間加熱撹拌した。25℃まで冷却した後、反応液を濾過し、ろ液を濃縮した。得られた黄色油状の粗体をシリカゲルクロマトグラフィー(ヘキサン/ジクロロメタン)で精製し、(II-2-a)を100g得た。
(II-2)の合成:
 (II-1-d)(0.75g,2.37mmol)、酢酸(20mL)、プロピオン酸(10mL)を混合し、3℃まで冷却した。冷却した溶液へ、亜硝酸ナトリウム(0.21g,3.08mmol)と濃硫酸の混合物を滴下し、3℃で1時間撹拌してジアゾニウム溶液を調製した。
 (II-2-a)(0.58g,3.56mmol)、テトラヒドロフラン(6mL)、メタノール(6mL)、酢酸ナトリウム(5.3g)を混合し、3℃に冷却後、上記のジアゾニウム溶液を1時間かけて滴下し、3℃で3時間撹拌した。25℃に昇温し12時間撹拌した後、水(10mL)、メタノール(8mL)を加えて撹拌した。析出物を濾別した後のろ液へ水50mlを添加し、析出した固形分を濾別して粗体を取得した。粗体をシリカゲルクロマトグラフィー(ヘキサン/ジクロロメタン)で精製することにより色素(II-2)を0.04g得た。
 色素(II-2)の10ppmクロロホルム溶液中のでの極大吸収波長(λmax)は596nm、グラム吸光係数は153.2Lg-1cm-1であった。
 色素(II-2)のNMRによる構造確認を行った。結果を以下に示す。
H-NMR(CDCl,400MHz)δ0.97(t,3H,J=7.4Hz),δ1.28-1.34(m,8H),δ1.38-1.44(m,2H),δ1.65-1.70(m,2H),δ2.71(t,2H,J=7.9Hz),δ3.47(q,2H,J=7.3Hz),δ4.32(m,1H),δ6.85(d,2H,9.4Hz),δ7.32(d,2H,8.5Hz),δ7.82(d,2H,8.5Hz),δ7.92(s,1H),δ7.97(d,2H,9.4Hz)
 色素(II-2)についても色素(II-1)と同様にシクロペンタノン飽和溶液の濃度を測定した。結果を表1に示す。
<色素(III-1)>
 下記に記載の合成法に従い、色素(III-1)を合成した。
Figure JPOXMLDOC01-appb-C000029
(III-1-a)の合成:
 3,5,5-トリエチル-1-ヘキサノール(38.4g,266mmol)、47%HBr水溶液(50.4g,293mmol)、濃硫酸(8.3g,82.5mmol)を混合し、120℃で5時間撹拌した。25℃まで冷却した後、ヘキサン(600mL)へ添加し、水(1200mL×3回)で洗浄した。有機層を濃縮した後、シリカゲルクロマトグラフィー(ヘキサン)で精製し、(III-1-a)を35.5g得た。
(III-1-b)の合成:
 窒素気流下、4-ニトロフェノール(65.0g,467mmol)、(III-1-a)(116.2g,560mmol)、ジメチルホルムアミド(520mL)、炭酸カリウム(129.1g、934mmol)を混合し、90℃で6時間撹拌した。ここへ水(1000mL)を添加し、酢酸エチル/ヘキサン=1/4混合液で抽出し、油層を濃縮した。シリカゲルクロマトグラフィー(酢酸エチル/ヘキサン)で精製し、(III-1-b)を113.5g得た。
(III-1-c)の合成:
 アルゴン気流下、(III-1-b)(113.5g,427.7mmol)、酢酸エチル(1100mL)を混合した後、パラジウム炭素(5%Pd-C,含水量55質量%,11.4g)を添加し、水素雰囲気下25℃で60時間撹拌した。容器内をアルゴン置換した後、触媒を濾別した。触媒をジクロロメタンで抽出し、有機層を合わせて濃縮した後、シリカゲルクロマトグラフィー(ジクロロメタン)で精製し、(III-1-c)を99.5g得た。
Figure JPOXMLDOC01-appb-C000030
(III-1-d)の合成:
 2-チオフェンカルボン酸(2.00g,15.6mmol)、ジフェニルリン酸アジド(4.30g,15.6mmol)、トリエチルアミン(2.2mL,15.6mmol)、tert-ブチルアルコール(20mL)を混合し、還流状態で5時間加熱撹拌した。25℃まで冷却した後、ここに水(300mL)を添加し、ジエチルエーテルで抽出した。有機層を濃縮した後、シリカゲルクロマトグラフィー(ヘキサン/ジクロロメタン)で精製し、(III-1-d)を1.9g得た。
(III-1-e)の合成:
 (III-1-d)(2.00g,10.0mmol)、12N塩酸(36mL)、ジエチルエーテル(85mL)を混合し、25℃で30分撹拌した後、溶媒を留去し(III-1-e)を1.36g得た。
(III-1-f)の合成:
 窒素気流下、(III-1-c)(47.3g,201mmol)、12N塩酸(375mL)を混合し0℃まで冷却して1時間撹拌した。ここへ亜硝酸ナトリウム(17.3g,251mmol)と水(130mL)を混合した水溶液を加え、5℃で1時間撹拌し、ジアゾニウム溶液を調製した。
 (III-1-e)(37.2g,241mmol)とメタノールを混合し、0℃に冷却後、上記のジアゾニウム溶液を40分かけて滴下した。25℃に昇温し3時間撹拌し、析出した固体をろ取し、得られた粗体をヘキサンで洗浄することにより、(III-1-f)を48.1g得た。
(III-1-g)の合成:
 窒素気流下、(III-1-f)(48.1g,125.7mmol)、チオシアン酸ナトリウム(20.4g,251.4mmol)、酢酸(720mL)を混合した後、N-ブロモスクシンイミド(24.6g,138.3mmol)を滴下し25℃で3時間撹拌した。ここへ水(600mL)を加えて混合した後に濾別した後、得られた固形分を減圧乾燥して粗体を得た。粗体をシリカゲルクロマトグラフィー(ジクロロメタン/メタノール)で精製し、(III-1-g)を31.4g得た。
(III-1)の合成:
 (III-1-g)(0.75g,1.86mmol)、酢酸(3.8mL)、塩酸(3.8mL)を混合し、3℃まで冷却した。亜硝酸ナトリウム(0.17g,2.42mmol)を加え、3℃で1時間撹拌してジアゾニウム溶液を調整した。
 ジエチルアニリン(0.56g,3.73mmol)、テトラヒドロフラン(15mL)、酢酸ナトリウム(7.4g)を混合し、3℃に冷却後、上記のジアゾニウム溶液を1時間かけて滴下し、3℃で3時間撹拌した。25℃に昇温し12時間撹拌した後、水(7.5mL)、メタノール(15mL)を加えて撹拌した。析出した固体をろ取し、得られた粗体をシリカゲルクロマトグラフィー(ヘキサン/ジクロロメタン)で精製することにより色素(III-1)を0.14g得た。
 色素(III-1)の10ppmクロロホルム溶液での極大吸収波長(λmax)は563nm、グラム吸光係数は134.8Lg-1cm-1であった。
 色素(III-1)のNMRによる構造確認を行った。結果を以下に示す。
H-NMR(CDCl,400MHz)δ0.93(s,9H),δ1.03(d,3H,J=6.7Hz),δ1.13-1.18(m,1H),δ1.28-1.37(m,7H),δ1.65-1.72(m,1H),δ1.76-1.91(m,2H),δ3.53(q,4H,J=7.2Hz),δ4.09(t,2H,J=6.7Hz),δ6.76(d,2H,9.4Hz),δ7.00(d,2H,9.1Hz),δ7.85(s,1H),δ7.88(d,2H,9.1Hz),δ7.95(d,2H,9.4Hz)
 色素(III-1)についても色素(II-1)と同様にシクロペンタノン飽和溶液の濃度を測定した。結果を表1に示す。
 上記で合成した重合性液晶化合物(I-1)および色素(II-1)、(II-2)、(III-1)の化学構造を以下に示す。
Figure JPOXMLDOC01-appb-C000031
 比較例で使用した色素(III-2)の化学構造を以下に示す。
Figure JPOXMLDOC01-appb-C000032
[実施例1]
 クロロホルム2959.1部に、重合性液晶化合物(I-1)の20.00部、色素(II-1)の0.23部を加え、撹拌して相溶させた後、溶媒を除去することにより、異方性色素膜形成用組成物1を得た。異方性色素膜形成用組成物1のrn/rnは、1である。
 異方性色素膜形成用組成物1が液晶性を示すことは、ホットステージが付属する偏光顕微鏡にて、40℃で複屈折が観察されたことで確認した。
 得られた異方性色素膜形成用組成物1を用いて、上述の方法で二色比を決定するため、セルギャップ8.0μmのサンドウィッチセルを使用して異方性色素膜1を作製した。異方性色素膜1の二色比を決定した。
 その結果を表1に示す。
[実施例2]
 色素(II-1)0.23部に代えて、色素(II-2)0.20部を加えたほかは実施例1と同様にして、異方性色素膜形成用組成物2および異方性色素膜2を得た。異方性色素膜形成用組成物2のrn/rnは、1である。
 異方性色素膜形成用組成物2が液晶性を示すことは、ホットステージが付属する偏光顕微鏡にて、40℃で複屈折が観察されたことで確認した。
 異方性色素膜2の二色比を決定した。
 その結果を表1に示す。
[比較例1]
 色素(II-1)0.23部に代えて、色素(III-1)0.22部を用いたほかは実施例1と同様にして、異方性色素膜形成用組成物3および異方性色素膜3を得た。異方性色素膜形成用組成物3のrn/rnは、1である。
 異方性色素膜形成用組成物3が液晶性を示すことは、ホットステージが付属する偏光顕微鏡にて、40℃で複屈折が観察されたことで確認した。
 異方性色素膜3の二色比を決定した。
 その結果を表1に示す。
[比較例2]
 色素(II-1)0.23部に代えて、色素(III-2)0.20部を用いたほかは実施例1と同様にして、異方性色素膜形成用組成物4および異方性色素膜4を得た。異方性色素膜形成用組成物4のrn/rnは、1である。
 異方性色素膜形成用組成物4が液晶性を示すことは、ホットステージが付属する偏光顕微鏡にて、40℃で複屈折が観察されたことで確認した。
 異方性色素膜4の二色比を決定した。
 その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000033
 表1より、実施例1に用いた色素(II-1)、実施例2に用いた色素(II-2)はシクロペンタノンへの溶解性が高く、且つ得られた異方性色素膜において良好な二色比を示した。一方、比較例1および比較例2では、良好な二色比となるもののシクロペンタノンへの溶解性が低いことが示された。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2021年10月11日付で出願された日本特許出願2021-166895に基づいており、その全体が引用により援用される。

Claims (16)

  1.  下記式(1)で示される化合物。
    X-A-(N=N-A-N=N-A-Y   …(1)
    (式(1)中、
     -A-および-A-はそれぞれ独立に、置換基を有していてもよいS原子を1つ以上含む多環式の芳香族複素環の2価基、又は置換基を有していてもよい芳香族炭化水素環の2価基を表し、
     -A-は置換基を有していてもよい芳香族炭化水素環の2価基を表し、
     -Xは1価の有機基を表し、
     -Yは-N(-R)-R、-OC(=O)-Rまたは-C(=O)-O-Rを表し、
     -Rは、置換基を有していてもよい、分岐を有する炭素数3~15のアルキル基を表す。
     -Rは、水素原子、又は分岐を有していてもよい炭素数1~15のアルキル基を表し、前記分岐を有していてもよい炭素数1~15のアルキル基は、置換基を有していてもよい。
     前記分岐を有する炭素数3~15のアルキル基および前記分岐を有していてもよい炭素数1~15のアルキル基に含まれる一つ、またはそれ以上のメチレン基は、-O-、-S-、-NH-、-N(-R)-、-C(=O)-、-C(=O)-O-、-C(=O)-NH-、-CHF-、-CF-、-CHCl-、-CCl-、または重合性基によって置き換えられた構造であってもよい。-Rは、水素原子、又は分岐を有していてもよい炭素数1~15のアルキル基を表す。
     nは1、2または3を表す。
     nが2または3の場合、複数の-A-は互いに同一でも異なっていてもよい。
     ただし、-A-および-A-が共に置換基を有していてもよい芳香族炭化水素環の2価基であることはない。)
  2.  前記式(1)において、S原子を1つ以上含む多環式の芳香族複素環が、ベンゾチオフェン環、チエノピロ-ル環、チエノチオフェン環、フロチアゾール環、チエノフラン環、チエノチアゾール環、ベンゾイソチアゾール環、又はベンゾチアゾール環である、請求項1に記載の化合物。
  3.  前記式(1)において、-A-の少なくとも一つは置換基を有していてもよいS原子を1つ以上含む多環式の芳香族複素環の2価基である、請求項1又は2に記載の化合物。
  4.  前記式(1)において、-Yが-N(-R)-Rであり、-Rは置換基を有していてもよい、分岐を有する炭素数3~15のアルキル基であり、-Rは、水素原子、又は分岐を有していてもよい炭素数1~15のアルキル基であり、前記分岐を有していてもよい炭素数1~15のアルキル基は、置換基を有していてもよく、-R及び-Rのアルキル基における炭素数の合計が15以下である、請求項1~3のいずれか1項に記載の化合物。
  5.  前記式(1)において、-Yが-N(-R)-Rであり、-Rは置換基を有していてもよい、分岐を有する炭素数3~15のアルキル基であり、-Rは水素原子、又は分岐を有しない炭素数1~15のアルキル基であり、前記分岐を有しない炭素数1~15のアルキル基は置換基を有していてもよい、請求項1~4のいずれか1項に記載の化合物。
  6.  前記式(1)において、-A-が、置換基を有していてもよいフェニレン基である、請求項1~5のいずれか一項に記載の化合物。
  7.  前記式(1)において、-A-が、置換基を有していてもよいフェニレン基である、請求項1~6のいずれか一項に記載の化合物。
  8.  前記式(1)において、-Xは分岐を有さない、炭素数3以上のアルキル基、アルキコシ基、アルキルエステル基、アルコキシカルボニル基またはアルキルスルファニル基である、請求項1~7のいずれか一項に記載の化合物。
  9.  請求項1~8のいずれか一項に記載の化合物と重合性液晶化合物とを含む異方性色素膜形成用組成物。
  10.  前記重合性液晶化合物が、炭素-炭素三重結合を有する化合物である、請求項9に記載の異方性色素膜形成用組成物。
  11.  前記重合性液晶化合物の質量濃度が前記式(1)で示される化合物の質量濃度の1倍以上である、請求項9又は10に記載の異方性色素膜形成用組成物。
  12.  350nm~800nmの波長域の吸収曲線における最大値を示す波長が、前記式(1)で示される化合物の350nm~800nmの波長域の吸収曲線における最大値を示す波長よりも短い色素を、さらに含む、請求項9~11のいずれか一項に記載の異方性色素膜形成用組成物。
  13.  前記色素がアゾ色素である、請求項12に記載の異方性色素膜形成用組成物。
  14.  請求項9~13のいずれか一項に記載の異方性色素膜形成用組成物を用いて形成された異方性色素膜。
  15.  請求項14に記載の異方性色素膜を含む光学素子。
  16.  請求項9~13のいずれか一項に記載の異方性色素膜形成用組成物を基板へ塗布する工程を有する、異方性色素膜の製造方法。

     
PCT/JP2022/037584 2021-10-11 2022-10-07 化合物、該化合物を含む異方性色素膜用組成物、異方性色素膜および光学素子 WO2023063249A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023554492A JPWO2023063249A1 (ja) 2021-10-11 2022-10-07
CN202280046249.9A CN117580842A (zh) 2021-10-11 2022-10-07 化合物、包含该化合物的各向异性色素膜用组合物、各向异性色素膜及光学元件
KR1020237044911A KR20240082268A (ko) 2021-10-11 2022-10-07 화합물, 그 화합물을 함유하는 이방성 색소막용 조성물, 이방성 색소막 및 광학 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-166895 2021-10-11
JP2021166895 2021-10-11

Publications (1)

Publication Number Publication Date
WO2023063249A1 true WO2023063249A1 (ja) 2023-04-20

Family

ID=85987763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037584 WO2023063249A1 (ja) 2021-10-11 2022-10-07 化合物、該化合物を含む異方性色素膜用組成物、異方性色素膜および光学素子

Country Status (5)

Country Link
JP (1) JPWO2023063249A1 (ja)
KR (1) KR20240082268A (ja)
CN (1) CN117580842A (ja)
TW (1) TW202317736A (ja)
WO (1) WO2023063249A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12049583B2 (en) * 2020-08-03 2024-07-30 Mitsubishi Chemical Corporation Compound, composition for anisotropic dye films including the compound, anisotropic dye film, and optical element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993777A (ja) * 1982-10-22 1984-05-30 ミネソタ・マイニング・アンド・マニユフアクチユアリング・コンパニ− ヘリクロミック―スメクチック液晶組成物
JPH08108625A (ja) * 1994-10-07 1996-04-30 Mitsui Toatsu Chem Inc 光記録媒体
JP2004307633A (ja) * 2003-04-07 2004-11-04 Konica Minolta Holdings Inc 着色組成物、着色微粒子分散物、感熱転写記録材料、インクジェット用インク、インクジェット記録方法
JP2013227532A (ja) * 2012-03-26 2013-11-07 Sumitomo Chemical Co Ltd 組成物及び偏光膜
CN105384693A (zh) * 2015-10-21 2016-03-09 盐城工学院 含苯并唑环双偶氮结构的化合物、其合成方法及用途
CN105949821A (zh) * 2016-06-15 2016-09-21 深圳市国华光电科技有限公司 一种染料组合物、油墨及包括该油墨的电润湿显示器
WO2022030381A1 (ja) * 2020-08-03 2022-02-10 三菱ケミカル株式会社 化合物、該化合物を含む異方性色素膜用組成物、異方性色素膜および光学素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993777A (ja) * 1982-10-22 1984-05-30 ミネソタ・マイニング・アンド・マニユフアクチユアリング・コンパニ− ヘリクロミック―スメクチック液晶組成物
JPH08108625A (ja) * 1994-10-07 1996-04-30 Mitsui Toatsu Chem Inc 光記録媒体
JP2004307633A (ja) * 2003-04-07 2004-11-04 Konica Minolta Holdings Inc 着色組成物、着色微粒子分散物、感熱転写記録材料、インクジェット用インク、インクジェット記録方法
JP2013227532A (ja) * 2012-03-26 2013-11-07 Sumitomo Chemical Co Ltd 組成物及び偏光膜
CN105384693A (zh) * 2015-10-21 2016-03-09 盐城工学院 含苯并唑环双偶氮结构的化合物、其合成方法及用途
CN105949821A (zh) * 2016-06-15 2016-09-21 深圳市国华光电科技有限公司 一种染料组合物、油墨及包括该油墨的电润湿显示器
WO2022030381A1 (ja) * 2020-08-03 2022-02-10 三菱ケミカル株式会社 化合物、該化合物を含む異方性色素膜用組成物、異方性色素膜および光学素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12049583B2 (en) * 2020-08-03 2024-07-30 Mitsubishi Chemical Corporation Compound, composition for anisotropic dye films including the compound, anisotropic dye film, and optical element

Also Published As

Publication number Publication date
CN117580842A (zh) 2024-02-20
JPWO2023063249A1 (ja) 2023-04-20
TW202317736A (zh) 2023-05-01
KR20240082268A (ko) 2024-06-10

Similar Documents

Publication Publication Date Title
JP5453956B2 (ja) 化合物、光学フィルム及び光学フィルムの製造方法
JP5451176B2 (ja) 光学フィルム、偏光板、表示装置及び光学フィルムの製造方法
JP5391682B2 (ja) 化合物、光学フィルム及び光学フィルムの製造方法
JP5375644B2 (ja) 組成物及び光学フィルム
JP5613992B2 (ja) 組成物、フィルム及びフィルムの製造方法
JP6616963B2 (ja) 着色組成物、光吸収異方性膜、積層体、偏光板、画像表示装置及び化合物
EP3187566B1 (en) Polymerizable liquid crystal compound, composition for optical film, and optical film, compensation film, antireflective film, and display device including the same
US12049583B2 (en) Compound, composition for anisotropic dye films including the compound, anisotropic dye film, and optical element
JP2009274984A (ja) 化合物、光学フィルムおよび光学フィルムの製造方法
TWI791639B (zh) 聚合性液晶化合物、聚合性組合物、聚合物、相位差膜及其製造方法、轉印用積層體、光學構件及其製造方法、以及顯示裝置
KR20170077819A (ko) 위상차 필름
JP2010001284A (ja) 化合物及び光学フィルム
WO2023063249A1 (ja) 化合物、該化合物を含む異方性色素膜用組成物、異方性色素膜および光学素子
JP7467850B2 (ja) 異方性色素膜形成用組成物、異方性色素膜、および光学素子
JP2022028423A (ja) 異方性色素膜形成用組成物、異方性色素膜、および光学素子
JP7363887B2 (ja) 異方性色素膜形成用組成物、異方性色素膜、および光学素子
JP7272022B2 (ja) 異方性色素膜形成用組成物、異方性色素膜、および光学素子
KR102710150B1 (ko) 이방성 색소막 형성용 조성물, 이방성 색소막, 및 광학 소자
JP7272021B2 (ja) 異方性色素膜形成用組成物、異方性色素膜、および光学素子
WO2023181907A1 (ja) 化合物、異方性色素膜形成用組成物、異方性色素膜及び光学素子
JP7467851B2 (ja) 異方性色素膜形成用組成物、異方性色素膜、および光学素子
WO2024075762A1 (ja) 化合物、組成物、異方性色素膜及び光学素子
WO2024071162A1 (ja) 光学異方性積層体および光学素子
JP2009249586A (ja) 重合性化合物および光学フィルム
JP2016103013A (ja) 位相差板、楕円偏光板およびそれを用いた表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880944

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023554492

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280046249.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22880944

Country of ref document: EP

Kind code of ref document: A1