WO2019181396A1 - 入力装置および入力装置付き表示装置 - Google Patents

入力装置および入力装置付き表示装置 Download PDF

Info

Publication number
WO2019181396A1
WO2019181396A1 PCT/JP2019/007448 JP2019007448W WO2019181396A1 WO 2019181396 A1 WO2019181396 A1 WO 2019181396A1 JP 2019007448 W JP2019007448 W JP 2019007448W WO 2019181396 A1 WO2019181396 A1 WO 2019181396A1
Authority
WO
WIPO (PCT)
Prior art keywords
buffer layer
insulating layer
transparent electrode
input device
bridge
Prior art date
Application number
PCT/JP2019/007448
Other languages
English (en)
French (fr)
Inventor
知行 山井
恭志 北村
学 矢沢
山村 憲
智也 桑原
壮太 高橋
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Priority to JP2020507468A priority Critical patent/JP6889803B2/ja
Priority to KR1020207022853A priority patent/KR102402727B1/ko
Priority to EP19770499.2A priority patent/EP3770736A4/en
Priority to CN201980021294.7A priority patent/CN111902800A/zh
Publication of WO2019181396A1 publication Critical patent/WO2019181396A1/ja
Priority to US16/992,504 priority patent/US11194434B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads

Definitions

  • the present invention relates to an input device such as a capacitive sensor, and more particularly to an input device in which a transparent electrode is formed of a material containing conductive nanowires, and a display device with an input device including the input device.
  • An input device such as a capacitive sensor used for a touch panel includes a first transparent electrode and a second transparent electrode provided on a base material, and a bridge portion having a bridge wiring portion at the intersection of both electrodes. Provided. There is also a demand for such a capacitive sensor to be compatible with various shapes such as curved surfaces. Therefore, a material containing conductive nanowires such as gold nanowires, silver nanowires, and copper nanowires may be used as a material for the transparent electrode of the capacitive sensor.
  • Patent Document 1 discloses a translucent conductive member capable of patterning a conductive layer containing silver nanowires into a conductive region and a non-conductive region and improving the optical characteristics of the non-conductive region, and a patterning method thereof.
  • this translucent conductive member a plurality of first electrode parts made of a material containing silver nanowires are connected by a connection conduction part, and a second electrode part adjacent to this connection conduction part is connected with ITO (Indium Tin Oxide) is joined at the bridge wiring part.
  • ITO Indium Tin Oxide
  • Patent Document 2 particularly when Cu, Cu alloy or Ag alloy is used as a low resistance metal, it is possible to ensure good invisible characteristics and improve environmental resistance and electrostatic breakdown resistance of the bridge wiring portion.
  • a possible input device is disclosed.
  • a bridge wiring portion that connects between a plurality of adjacent transparent electrodes has a laminated structure of amorphous ITO / metal layer / amorphous ITO.
  • the bridge wiring portion and the transparent electrode are used to insulate the bridge wiring portion from the lower transparent electrode.
  • An insulating layer is disposed between the two. It is important to ensure adhesion and flexibility between the insulating layer and the transparent electrode and to suppress deterioration of optical characteristics. For example, when an insulating layer of novolac resin is formed on a transparent electrode containing silver nanowires, sufficient adhesion between the matrix resin material of the transparent electrode containing silver nanowires and the novolak resin cannot be obtained.
  • the constituent material of the insulating layer may permeate into the matrix resin material included in the transparent electrode. Then, deterioration of optical characteristics becomes a problem.
  • an object of the present invention is to provide an input device capable of ensuring sufficient adhesion to a transparent electrode and suppressing deterioration of optical characteristics, and a display device with an input device including such an input device.
  • one embodiment of the present invention includes a light-transmitting substrate, a light-transmitting substrate that is disposed in parallel with the first direction in the detection region of the substrate, and includes a conductive nanowire.
  • a plurality of first transparent electrodes made of a material, arranged in parallel with a second direction intersecting the first direction in the detection region, made of a material having translucency and including conductive nanowires;
  • a plurality of second transparent electrodes that are insulated from the transparent electrode, and a connecting portion that is formed of a material including conductive nanowires and electrically connects two adjacent second transparent electrodes to each other, and is provided on the connecting portion.
  • an bridge device that electrically connects two adjacent first transparent electrodes to each other.
  • the bridge portion includes a bridge wiring portion provided so as to connect two adjacent first transparent electrodes, an insulating layer provided between the bridge wiring portion and the connecting portion, an insulating layer, and a connecting portion.
  • the buffer layer is formed of an inorganic oxide material having a light-transmitting property.
  • the buffer layer provided between the insulating layer in the bridge portion and the connecting portion formed of a material containing conductive nanowires increases the adhesion between the insulating layer and the connecting portion, Deterioration of optical characteristics is suppressed. That is, by using an oxide-based material as the buffer layer, the buffer layer has good adhesion to the constituent material (matrix resin material) of the connecting portion and also has good adhesion to the insulating layer. Have. Moreover, by using an inorganic material as the buffer layer, the constituent material of the insulating layer is prevented from penetrating into the connecting portion, and the deterioration of the optical characteristics, particularly the invisibility of the bridge portion is suppressed.
  • the insulating layer may have a portion extending so as to face a part of the two second transparent electrodes electrically connected to the connecting portion, so that the bridge wiring portion and the second transparent electrode This is preferable from the viewpoint of more stably preventing a short circuit with the electrode.
  • the buffer layer has a portion located between the portion of the insulating layer facing the second transparent electrode and the second transparent electrode, thereby suppressing the peeling of the insulating layer from the second transparent electrode. In addition, deterioration of optical characteristics is suppressed.
  • the insulating layer may have a portion extending so as to face a part of two adjacent first transparent electrodes. In this case, the buffer layer has a portion located between the portion of the insulating layer facing the first transparent electrode and the first transparent electrode.
  • the insulating layer has a portion extending so as to face a part of the two first transparent electrodes arranged adjacent to each other with the coupling portion interposed therebetween, and the buffer layer is formed of the insulating layer.
  • You may have a part located between the part which opposes the 1st transparent electrode, and the 1st transparent electrode. Thereby, it can prevent that the constituent material of an insulating layer osmose
  • the buffer layer may be formed between the bridge wiring portion and the first transparent electrode.
  • the buffer layer functions as a protective film for the first transparent electrode and is a portion facing the bridge wiring portion in the first transparent electrode. Can be prevented through the manufacturing process. For this reason, the conductive nanowire contained in the first transparent electrode is unlikely to deteriorate in this portion, and as a result, resistance increase is unlikely to occur between the bridge wiring portion and the first transparent electrode.
  • the buffer layer may be continuously formed between the insulating layer and the first transparent electrode and between the bridge wiring portion and the first transparent electrode.
  • the inorganic oxide material forming the buffer layer is preferably an amorphous material. Thereby, flexibility can be given to the buffer layer.
  • the buffer layer is preferably formed of at least one selected from the group of amorphous ITO (Indium Tin Oxide) and amorphous IZO (Indium Zinc Oxide).
  • the conductive nanowire may be at least one selected from the group consisting of a gold nanowire, a silver nanowire, and a copper nanowire.
  • One embodiment of the present invention is a display device with an input device including a display panel and a touch sensor provided on the display panel, and the touch sensor of the display device with an input device includes the above input device. .
  • the touch sensor of the display device with an input device includes the above input device.
  • the bridge portion having the bridge wiring portion and the insulating layer provided at the intersecting portion of the transparent electrode has sufficient adhesion to the connecting portion, and the optical characteristics are deteriorated, particularly A decrease in invisibility of the bridge portion is suppressed.
  • a display apparatus with an input device provided with said input device is provided.
  • FIGS. 5A to 5E are cross-sectional views illustrating a method for manufacturing a capacitive sensor according to another example of this embodiment.
  • FIGS. It is a schematic diagram which shows the application example of the electrostatic capacitance type sensor which concerns on this embodiment.
  • FIGS. 1A and 1B are plan views illustrating a capacitive sensor which is an example of an input device according to this embodiment.
  • FIG. 1A shows a plan view of the entire capacitive sensor
  • FIG. 1B shows an enlarged plan view of part A shown in FIG.
  • FIGS. 2A and 2B are cross-sectional views of a bridge portion of the capacitive sensor according to the present embodiment.
  • 2A shows a cross-sectional view taken along the line X1-X1 of FIG. 1B
  • FIG. 2B shows a cross-sectional view taken along the line Y1-Y1 of FIG. 1B.
  • “transparent” and “translucent” refer to a state where the visible light transmittance is 50% or more (preferably 80% or more). Furthermore, the haze value is preferably 6% or less.
  • the capacitive sensor 1 includes a base material 10, and a first electrode 11 and a second electrode 12 provided in a detection region S of the base material 10.
  • the base material 10 has translucency and is formed of a film-like material such as polyethylene terephthalate (PET), polycarbonate (PC), cycloolefin polymer (COP), and polyimide (PI).
  • PET polyethylene terephthalate
  • PC polycarbonate
  • COP cycloolefin polymer
  • PI polyimide
  • the substrate 10 preferably has flexibility.
  • the first electrode 11 is arranged in parallel with the X direction (first direction) along the main surface 10a of the substrate 10.
  • the second electrode 12 is arranged in parallel to the Y direction (second direction) perpendicular to the X direction along the main surface 10 a of the substrate 10.
  • the first electrode 11 and the second electrode 12 are insulated from each other.
  • a plurality of first electrodes 11 are arranged at a predetermined pitch in the Y direction
  • a plurality of second electrodes 12 are arranged at a predetermined pitch in the X direction.
  • the first electrode 11 has a plurality of first transparent electrodes 111.
  • the plurality of first transparent electrodes 111 have a shape close to a rhombus and are arranged side by side in the X direction. That is, the plurality of first transparent electrodes 111 are arranged in parallel with the X direction.
  • Two adjacent first transparent electrodes 111 and 111 are electrically connected by a bridge wiring portion 31 of the bridge portion 30.
  • the bridge portion 30 includes a bridge wiring portion 31, an insulating layer 32, and a buffer layer 33 from the upper layer side.
  • the second electrode 12 has a plurality of second transparent electrodes 121.
  • the plurality of second transparent electrodes 121 have a shape close to a rhombus and are arranged side by side in the Y direction. That is, the plurality of second transparent electrodes 121 are arranged in parallel to the Y direction that intersects the X direction. Two adjacent second transparent electrodes 121 and 121 are electrically connected by a connecting portion 122.
  • Each of the first transparent electrode 111 and the second transparent electrode 121 is made of a dispersion layer made of a material having translucency and containing conductive nanowires.
  • the connecting portion 122 that electrically connects the two adjacent second transparent electrodes 121 and 121 is also made of the dispersion layer. That is, the connecting portion 122 is formed integrally with the two second transparent electrodes 121 and 121 that are electrically connected to the connecting portion 122.
  • the conductive nanowire at least one selected from the group consisting of gold nanowire, silver nanowire, and copper nanowire is used.
  • the first transparent electrode 111 and the second transparent electrode 121 can have high translucency and low electrical resistance.
  • the dispersion layer has conductive nanowires and a transparent resin layer (matrix).
  • the conductive nanowires are dispersed in the matrix, and the dispersibility of the conductive nanowires in the dispersion layer is ensured by the matrix.
  • the material constituting the matrix include acrylic resin, polyester resin, and polyurethane resin.
  • Each of the conductive nanowires is in contact with each other at least in part, so that the conductivity in the plane of the material including the conductive nanowire is maintained.
  • the insulating portion 14 When viewed in the normal direction of the main surface 10a, the insulating portion 14 is located between the first transparent electrode 111, the second transparent electrode 121, and the connecting portion 122.
  • the insulating part 14 can be formed by reducing the conductivity from a dispersion layer having the same configuration as the dispersion layer constituting the first transparent electrode 111 and the like. Examples of the method for reducing the conductivity include changing the character of the conductive nanowire so as to lose the conductivity of the conductive nanowire responsible for conductivity, and removing the conductive nanowire.
  • the first transparent electrode 111, the second transparent electrode 121, and the connecting portion 122 (hereinafter, these may be collectively referred to as “electrode portion 15”) form a dispersion layer on the base material 10 to be insulated.
  • the portion corresponding to the portion 14 can be formed by performing the treatment for reducing the conductivity of the dispersion layer as described above.
  • Each of the plurality of first electrodes 11 is connected to a lead-out wiring 11a that is led out to the outside of the detection region S as shown in FIG.
  • each of the plurality of second electrodes 12 is connected to a lead-out wiring 12 a that is led out of the detection region S.
  • a driving voltage is applied to the first electrode 11 through the lead-out wiring 11a, and the second electrode 12 transmits a detection current to an external circuit through the lead-out wiring 12a.
  • Each lead-out wiring 11a, 12a may be formed of a material including conductive nanowires similar to the material constituting the first transparent electrode 111 and the second transparent electrode 121, and the light-transmitting property is not necessarily required, so that You may form with a metal-type material. Thereby, high conductivity can be obtained even if the line width is narrowed.
  • the lead wires 11a and 12a may have a laminated structure.
  • Each of the lead wires 11a and 12a is formed by screen printing or etching, for example.
  • Each of the first transparent electrode 111, the second transparent electrode 121, and the lead-out wirings 11a and 12a may be formed of a photosensitive conductive sheet (a so-called sheet having a conductive layer on a dry film resist).
  • a photosensitive conductive sheet a so-called sheet having a conductive layer on a dry film resist.
  • the first electrode 11 and the second electrode 12 are connected to the connection positions of the two adjacent first transparent electrodes 111 and 111 and the two adjacent second electrodes. It intersects with the connection position of the two transparent electrodes 121 and 121.
  • a bridge portion 30 is provided at the intersecting portion so that the first electrode 11 and the second electrode 12 do not contact at the intersecting portion.
  • a connecting portion 122 is provided between two adjacent second transparent electrodes 121 and 121. Therefore, the second electrode 12 has a configuration in which the second transparent electrode 121 and the connecting portion 122 are alternately repeated in the Y direction. Since the connecting portion 122 is formed integrally with the second transparent electrode 121 as described above, the two adjacent second transparent electrodes 121 and 121 are connected to the connecting portion 122.
  • the first electrode 11 has a configuration in which the first transparent electrode 111 and the bridge portion 30 are alternately repeated in the X direction.
  • a protective layer 50 is provided on the bridge portion 30 via an optical transparent adhesive layer (OCA) 35.
  • OCA optical transparent adhesive layer
  • the protective layer 50 is bonded to the base material 10 via the optical transparent adhesive layer 35.
  • the constituent material of the protective layer 50 is not particularly limited.
  • a flexible plastic substrate is preferably applied as a constituent material of the protective layer 50.
  • the optical transparent adhesive layer 35 is an acrylic adhesive or a double-sided adhesive tape.
  • the bridge unit 30 includes a bridge wiring unit 31, an insulating layer 32, and a buffer layer 33.
  • the bridge wiring portion 31 is provided so as to connect the two adjacent first transparent electrodes 111 and 111. Both ends of the bridge wiring portion 31 are connected to the first transparent electrode 111, and are provided so as to straddle the connecting portion 122 positioned via the insulating portion 14 between the two adjacent first transparent electrodes 111, 111.
  • the two adjacent first transparent electrodes 111 and 111 are electrically connected.
  • the insulating layer 32 is provided between the bridge wiring portion 31 and the connecting portion 122 so that the first transparent electrode 111 and the second transparent electrode 121 are not short-circuited.
  • a novolac resin resist
  • the insulating layer 32 is formed by connecting the connecting portion 122 and the two second transparent electrodes 121 and 121 connected to the connecting portion 122 and the bridge wiring portion 31 when viewed in the normal direction of the main surface 10a. It is only necessary to be positioned at the overlapping portion, but due to a manufacturing requirement (relaxation of alignment accuracy) that stably realizes short circuit prevention between the first transparent electrode 111 and the second transparent electrode 121, FIG.
  • the insulating layer 32 is provided so as to spread over a portion of the two second transparent electrodes 121, 121 connected to the connecting portion 122 and proximal to the connecting portion 122.
  • the electrode 111 is also provided so as to spread over a portion proximal to the connecting portion 122 of the electrode 111.
  • the connecting portion 122 when viewed in the normal direction of the main surface 10a, has a rectangular shape having a width of 150 ⁇ m ⁇ a length of 200 ⁇ m, and the insulating layer 32 has a rectangular shape of 300 ⁇ m ⁇ 300 ⁇ m.
  • the width of the insulating layer 32 may be about 0.7 to 2.0 times the length of the connecting portion 122. Good.
  • the bridge wiring portion 31 is formed from the surface of the insulating layer 32 to the surface of the first transparent electrode 111 located on both sides of the insulating layer 32 in the X direction.
  • an oxide-based conductive material is used for the bridge wiring part 31, for example.
  • the oxide-based conductive material include ITO (IndiumInTin Oxide), IZO (Indium Zinc Oxide), GZO (Gallium-doped Zinc Oxide), AZO (Aluminum-doped Zinc Oxide) and FTO (Fluorine-doped Zinc Oxide).
  • the oxide-based conductive material is preferably amorphous (amorphous) from the viewpoint of increasing flexibility.
  • the bridge wiring part 31 may have a laminated structure.
  • the buffer layer 33 is provided between the insulating layer 32 and the connecting portion 122 as shown in FIG.
  • the insulating layer 32 includes two first transparent electrodes positioned on the two second transparent electrodes 121, 121 connected to the connecting portion 122 and next to the connecting portion 122 via the insulating portion 14. It is also provided on a part of the electrodes 111, 111.
  • the insulating layer 32 has a portion extending so as to face a part of the two second transparent electrodes 121, 121 electrically connected to the connecting portion 122.
  • the insulating layer 32 has a portion extending so as to face a part of the two first transparent electrodes 111 and 111 adjacent to the connecting portion 122. Therefore, as shown in FIG.
  • the buffer layer 33 is formed between the insulating layer 32 and a part of the two second transparent electrodes 121 and 121, and between the insulating layer 32 and the above.
  • the first transparent electrodes 111 and 111 are also provided between some of the first transparent electrodes 111 and 111. That is, the buffer layer 33 has a portion located between the portion of the insulating layer 32 facing the second transparent electrode 121 and the second transparent electrode 121, and the portion of the insulating layer 32 facing the first transparent electrode 111. And a portion located between the first transparent electrode 111.
  • the buffer layer 33 is provided so as to be located at a portion where the insulating layer 32 and the electrode portion 15 overlap.
  • the thickness of the buffer layer 33 is, for example, about 1 nm to 20 nm.
  • the buffer layer 33 is formed of a light-transmitting inorganic oxide material.
  • the light-transmitting inorganic oxide material include amorphous ITO (IndiumInTin Oxide) and amorphous IZO (Indium Zinc Oxide), which are light-transmitting inorganic oxide conductive materials. Note that the light-transmitting inorganic oxide material may not have conductivity.
  • the buffer layer 33 is made of an insulating material, the buffer layer 33 may be provided on the insulating portion 14.
  • the buffer layer 33 is made of a conductive material, as shown in FIG. 2A, the buffer layer 33 is provided so as to avoid the insulating portion 14 as described above, and the first transparent electrode 111 is formed. 111, the second transparent electrodes 121, 121, and the connecting portion 122 may be prevented from being short-circuited.
  • the novolac resin used as the constituent material of the insulating layer 32 has low adhesion to the electrode portion 15 formed from the above-described dispersion layer (a layer made of a material in which conductive nanowires are dispersed in a matrix). For this reason, when the insulating layer 32 is directly formed on the electrode part 15, the formation of the insulating layer 32 is not properly performed, and the bridge wiring part 31 to be provided on the insulating layer 32 is appropriately formed. There may be a concern that it is difficult to form, or that the bridge wiring portion 31 is peeled off together with the insulating layer 32 and that it is difficult to stably form the bridge portion 30.
  • the buffer layer 33 has appropriate adhesion to the insulating layer 32 and also has appropriate adhesion to the dispersion layer constituting the electrode unit 15. Therefore, providing the buffer layer 33 as described above makes it difficult for the insulating layer 32 to peel from the electrode portion 15, and the bridge portion 30 is stably formed. As a result, conduction between the two adjacent first transparent electrodes 111 by the bridge wiring portion 31 is stably realized. From the viewpoint of reducing the possibility that the insulating layer 32 peels from the electrode portion 15, as shown in FIG. 2A, the buffer layer 33 is insulated from a part of two adjacent first transparent electrodes 111, 111. It is preferable that it is also provided between the layers 32. In FIG.
  • the buffer layer 33 since the buffer layer 33 is not provided on the insulating portion 14, the adhesion between the insulating layer 32 and the insulating portion 14 may be reduced. Since the buffer layer 33 is provided on the electrode part 15, the possibility that the insulating layer 32 is peeled off is appropriately reduced. Moreover, since the buffer layer 33 is formed only on the electrode part 15, the part in which the insulating part 14 is located becomes a recessed part as shown to Fig.2 (a). Since the insulating layer 32 is provided so as to fill the recess, an anchor effect is generated and the adhesion of the insulating layer 32 is appropriately ensured. As described above, when the buffer layer 33 is made of an insulating material, the buffer layer 33 may be formed on the insulating portion 14.
  • the buffer layer 33 prevents the material constituting the insulating layer 32 from penetrating into the electrode portion 15.
  • the novolac resin used as the constituent material of the insulating layer 32 has low adhesion to the matrix resin material (for example, acrylic resin) of the electrode portion 15, and therefore, when the buffer layer 33 is not provided, Separation occurs with the electrode portion 15.
  • the constituent material of the insulating layer 32 may permeate into the electrode portion 15. In the portion where the penetration has occurred, the translucency is lowered and the invisibility of the bridge portion 30 is lowered.
  • the buffer layer 33 as described above, the constituent material of the insulating layer 32 can permeate into the electrode portion 15 even when the constituent material of the insulating layer 32 is mainly composed of an acrylic resin. It is suppressed and the fall of the invisibility of the bridge part 30 can be avoided.
  • the buffer layer 33 since the buffer layer 33 is not formed on the insulating portion 14 as shown in FIG. 2A, the constituent material of the insulating layer 32 can penetrate into the insulating portion 14 in this portion. Sex is not denied.
  • the buffer layer 33 may be made of an insulating material and formed also on the insulating portion 14.
  • the buffer layer 33 may not protrude from the insulating layer 32 to the outside. That is, the buffer layer 33 may be provided so as not to protrude from the outer edge of the insulating layer 32 toward the first transparent electrode 111 when viewed in the normal direction of the main surface 10a.
  • the buffer layer 33 protrudes from the outer edge of the insulating layer 32 to the first transparent electrode 111 side, the three layers of the bridge wiring portion 31, the buffer layer 33, and the electrode portion 15 overlap in this portion. Thereby, in this part, there are two boundaries between layers having different refractive indexes.
  • the buffer layer 33 does not protrude from the outer edge of the insulating layer 32 to the first transparent electrode 111 side, the buffer layer 33 is not interposed between the bridge wiring portion 31 and the electrode portion 15 outside the insulating layer 32. That is, the bridge wiring portion 31 and the electrode portion 15 are in contact with each other in two layers, and there is one boundary between layers having different refractive indexes.
  • the invisibility becomes higher as the number of boundaries is smaller. That is, invisibility becomes higher when the buffer layer 33 is not provided between the bridge wiring portion 31 and the electrode portion 15 than when the buffer layer 33 is provided. Therefore, it is preferable to provide the buffer layer 33 so that the buffer layer 33 does not protrude from the outer edge of the insulating layer 32 toward the first transparent electrode 111. From the viewpoint of reliably avoiding the protrusion of the buffer layer 33 from the outer edge of the insulating layer 32, it may be preferable not to provide the buffer layer 33 on the first transparent electrode 111.
  • FIG. 3A and FIG. 3B are cross-sectional views of a bridge portion of a capacitive sensor according to another example of the present embodiment.
  • 3A shows a cross-sectional view taken along the line X1-X1 of FIG. 1B
  • FIG. 3B shows a cross-sectional view taken along the line Y1-Y1 of FIG. 1B.
  • the insulating layer 32 includes a portion 32 a extending so as to face a part of the two first transparent electrodes 111 arranged adjacent to each other with the coupling portion 122 interposed therebetween.
  • the buffer layer 33 has a portion 33 a located between the portion 32 a of the insulating layer 32 facing the first transparent electrode 111 and the first transparent electrode 111.
  • the buffer layer 33 may be provided between the bridge wiring portion 31 and the electrode portion 15 as shown in FIG. As a specific example in such a case, the case where the thickness of the buffer layer 33 is sufficiently thin is mentioned. If the buffer layer 33 is 15 nm or less, the influence on invisibility may be appropriately reduced, and if the buffer layer 33 is 10 nm or less, good invisibility may be realized.
  • the buffer layer 33 may be formed continuously between the insulating layer 32 and the first transparent electrode 111 and between the bridge wiring portion 31 and the first transparent electrode 111.
  • the inorganic oxide material forming the buffer layer 33 is preferably an amorphous material.
  • the constituent material of the buffer layer 33 is preferably at least one selected from the group of amorphous ITO (Indium Tin Oxide) and amorphous IZO (Indium Zinc Oxide).
  • the buffer layer 33 can be flexible. Therefore, damage to the buffer layer 33 can be suppressed even when the device is bent in accordance with various shapes of devices to which the capacitive sensor 1 is applied.
  • the constituent material of the buffer layer 33 may be set in consideration of process applicability.
  • the buffer layer 33 is used not only for the purpose of preventing the constituent material of the insulating layer 32 from penetrating into the electrode part 15 but also for the purpose of protecting the electrode part 15 from the etching process.
  • the buffer layer 33 is used as an etching stopper layer.
  • it can function.
  • the solubility in an acidic etching solution used when etching a metal-based material is higher in amorphous ITO than in amorphous IZO. Therefore, when the above viewpoint (process applicability) is taken into consideration, amorphous IZO is used.
  • Amorphous ITO is positioned as a more preferable material for the buffer layer 33 than the amorphous ITO.
  • FIG. 4 is a flowchart illustrating the method for manufacturing the capacitive sensor according to this embodiment.
  • 5A to 5E are cross-sectional views illustrating a method for manufacturing the capacitive sensor according to this embodiment.
  • the buffer layer 33 is formed. That is, as shown in FIG. 5A, the electrode portion 15 (the first transparent electrode 111, the second transparent electrode 121, and the connecting portion 122) is formed on the main surface 10 a of the base material 10. A buffer layer 33 is formed thereon.
  • the electrode unit 15 is composed of a dispersed layer in which conductive nanowires (for example, silver nanowires) are dispersed in a matrix (for example, an acrylic resin).
  • the insulating portion 14 When viewed in the normal direction of the main surface 10a, the insulating portion 14 is located between the first transparent electrode 111, the second transparent electrode 121, and the connecting portion 122.
  • the insulating portion 14 is formed by losing the conductivity by removing the conductive nanowire from the dispersion layer constituting the electrode portion 15. That is, as described in Patent Document 1, the process of transforming the conductive nanowire and the transformed conductive nanowire are removed from the portion corresponding to the insulating portion 14 of the dispersion layer provided on the substrate 10. Processing is performed to form each pattern of the electrode portion 15 surrounded by the insulating portion 14.
  • a buffer layer 33 made of a transparent inorganic oxide material (for example, amorphous ITO) is formed on the electrode portion 15. Then, only the buffer layer 33 stacked on the insulating portion 14 is removed by etching, and the buffer layer 33 is left only on the electrode portion 15 (the first transparent electrode 111, the second transparent electrode 121, and the connecting portion 122). To. Since the insulating part 14 has a sufficiently high insulating property, when the buffer layer 33 is etched, selective etching may be performed so that the insulating part 14 serves as an etching stopper.
  • a transparent inorganic oxide material for example, amorphous ITO
  • the buffer layer 33 when the buffer layer 33 is made of amorphous ITO and the insulating portion 14 is formed of an acrylic resin, the buffer layer 33 may be etched with oxalic acid that is selective to the acrylic resin. Note that when the buffer layer 33 is etched, the insulating portion 14 may be removed together with the buffer layer 33 by etching.
  • the insulating layer 32 is formed. That is, as shown in FIG. 5B, the insulating layer 32 is formed so as to cover the entire surface of the electrode portion 15 and the insulating portion 14. As the insulating layer 32, a novolac resin (resist) is used.
  • the insulating layer 32 is patterned. That is, as shown in FIG. 5 (c), only the part of the first transparent electrode 111 and the part of the second transparent electrode 121 that are the connection part 122 and its periphery are left, and the other parts are removed. Then, the insulating layer 32 is patterned by photolithography (exposure / development). When the insulating layer 32 is made of a non-photosensitive insulating material such as a resist, the insulating layer 32 is etched and patterned. At this time, selective etching may be performed so that the buffer layer 33 under the insulating layer 32 serves as an etching stopper.
  • the buffer layer 33 is patterned. That is, as shown in FIG. 5D, the buffer layer 33 other than the portion where the insulating layer 32 is left is removed by etching. As a result, the surfaces of the first transparent electrode 111 and the second transparent electrode 121 are exposed at portions other than the insulating layer 32.
  • selective etching may be performed so that the electrode portion 15 serves as an etching stopper.
  • the buffer layer 33 is amorphous ITO and the electrode portion 15 is made of a dispersion layer in which silver nanowires are dispersed in an acrylic resin
  • the buffer layer 33 is etched by oxalic acid that is selective to the dispersion layer.
  • the insulating layer 32 functions as a mask for the buffer layer 33 in the etching of the buffer layer 33, it is stable that the buffer layer 33 is located outside the insulating layer 32 and affects the invisibility of the bridge portion 30. Therefore, it is preferable.
  • the bridge wiring portion 31 is formed. That is, as shown in FIG. 5E, the bridge wiring portion 31 is formed so as to straddle the insulating layer 32.
  • the bridge wiring portion 31 is formed to have an elongated shape from the surface of the insulating layer 32 to the surface of the first transparent electrode 111 located on both sides of the insulating layer 32 by photolithography and etching. At this time, selective etching may be performed so that the surfaces of the first transparent electrode 111 and the second transparent electrode 121 are not shaved. Thereby, the adjacent 1st transparent electrode 111 is electrically connected via the bridge
  • a protective layer 50 is formed on the bridge portion 30 via the optical transparent adhesive layer 35. Thereby, the capacitive sensor 1 is completed.
  • FIG. 6 is a flowchart illustrating a method for manufacturing a capacitive sensor according to another example of the present embodiment.
  • 7A to 7E are cross-sectional views illustrating a method for manufacturing a capacitive sensor according to another example of this embodiment.
  • the buffer layer 33 is formed. That is, as shown in FIG. 7A, the electrode portion 15 (the first transparent electrode 111, the second transparent electrode 121, and the connecting portion 122) is formed on the main surface 10a of the substrate 10, and the electrode portion 15 A buffer layer 33 is formed thereon.
  • the electrode unit 15 is composed of a dispersed layer in which conductive nanowires (for example, silver nanowires) are dispersed in a matrix (for example, an acrylic resin).
  • a matrix for example, an acrylic resin.
  • the insulating portion 14 is located between the first transparent electrode 111, the second transparent electrode 121, and the connecting portion 122. The insulating portion 14 is formed by losing the conductivity by removing the conductive nanowire from the dispersion layer constituting the electrode portion 15.
  • a buffer layer 33 made of a transparent inorganic oxide material (for example, amorphous ITO) is formed on the electrode portion 15. Then, only the buffer layer 33 stacked on the insulating portion 14 is removed by etching, and the buffer layer 33 is left only on the electrode portion 15 (the first transparent electrode 111, the second transparent electrode 121, and the connecting portion 122). To.
  • a transparent inorganic oxide material for example, amorphous ITO
  • the insulating layer 32 is formed. That is, as shown in FIG. 7B, the insulating layer 32 is formed.
  • the insulating layer 32 is formed so as to cover the entire surface of the electrode portion 15 and the insulating portion 14.
  • a novolac resin resist
  • the insulating layer 32 is patterned. That is, as shown in FIG. 7C, the insulating layer 32 is patterned. That is, by photolithography (exposure / development) so as to leave only the part of the first transparent electrode 111 and the part of the second transparent electrode 121 that are the connection part 122 and the periphery thereof, and remove the other part.
  • the insulating layer 32 is patterned.
  • the insulating layer 32 is made of a non-photosensitive insulating material such as a resist, the insulating layer 32 is etched and patterned. At this time, selective etching may be performed so that the buffer layer 33 under the insulating layer 32 serves as an etching stopper.
  • a bridge film 31a for forming the bridge wiring portion 31 is formed. That is, as shown in FIG. 6D, a bridge film 31a for forming the bridge wiring portion 31 is formed to cover the entire insulating layer 32 and buffer layer 33.
  • a specific example of the material constituting the bridge film 31a is amorphous ITO.
  • the bridge wiring portion 31 is formed. That is, as shown in FIG. 6E, etching is performed on portions other than the portion constituting the bridge wiring portion 31 in the bridge film 31a.
  • the material composing the buffer layer 33 is amorphous ITO like the material composing the bridge film 31a
  • the buffer layer 33 located under the bridge film 31a is also etched by an etching solution for etching the bridge film 31a. Etched. That is, the bridge film 31a and the buffer layer 33 are etched together. As a result, the surfaces of the first transparent electrode 111 and the second transparent electrode 121 are exposed.
  • the buffer layer 33 located therebelow is also left without being etched. Further, the buffer layer 33 located under the insulating layer 32 also remains without being etched because the buffer layer 33 functions as a protective film. In this way, the bridge wiring portion 31 having an elongated shape is formed so as to straddle the insulating layer 32 from the surface of the insulating layer 32 to the surface of the buffer layer 33 on both sides of the insulating layer 32. As a result, the adjacent first transparent electrodes 111 are electrically connected via the bridge wiring portion 31 straddling the buffer layer 33 and the insulating layer 32.
  • a protective layer 50 is formed on the bridge portion 30 via the optical transparent adhesive layer 35. Thereby, the capacitive sensor 1 having the structure shown in FIG. 3 is completed.
  • step S104 in FIG. 4 buffer layer etching
  • step S105 in FIG. 4 formation of the bridge wiring portion
  • the portion of the electrode portion 15 (first transparent electrode 111) where the bridge wiring portion 31 is formed is in an exposed state.
  • the conductive nanowires included in the electrode unit 15 (first transparent electrode 111) include silver nanowires
  • the electrode unit 15 (first first electrode) is left when the process shown in FIG.
  • Silver nanowires contained in the transparent electrode 111) may react with substances in the atmosphere (oxygen, sulfur, etc.) to form a resistance component.
  • the bridge wiring portion 31 and the electrode portion 15 (the first transparent electrode 111) are not connected. The resistance becomes higher.
  • the capacitive sensor is manufactured by the manufacturing method shown in the flowchart of FIG. 6 and the specific configuration of each step is shown in FIG. 7, the state shown in FIG. 7 (e), the electrode portion 15 (first transparent electrode 111) is not exposed until the bridge film 31a and the buffer layer 33 are etched together. That is, the buffer layer 33 functions as a protective film for the electrode portion 15 (first transparent electrode 111) until FIG. Therefore, even if there is an interval between the process shown in FIG. 7C and the next process in the state shown in FIG. Alteration (oxidation, sulfidation, etc.) of the portion where the bridge wiring part 31 is formed in the transparent electrode 111) is suppressed. Therefore, when a capacitive sensor is manufactured by the manufacturing method shown in FIG. 7, the resistance between the bridge wiring portion 31 and the electrode portion 15 (first transparent electrode 111) is not easily increased.
  • a metal material may be used as a constituent material of the lead wirings 11a and 12a.
  • a layer of a metal-based material is laminated on the layer constituting the electrode part 15, and then a process of patterning this layer by etching to form the lead wires 11a and 12a is adopted. There is.
  • the buffer layer 33 is formed on the electrode portion 15 in a stage before the metal material layer is laminated on the electrode portion 15, etching for etching the metal material is performed.
  • the conductive nanowire contained in the electrode part 15 can be protected from the liquid by the buffer layer 33. That is, the buffer layer 33 can be used as an etching stopper layer.
  • the buffer layer 33 is required to have poor solubility in an acidic etching solution. Since amorphous ITO is less soluble in acidic etching solution than amorphous IZO, it is suitable as a constituent material of the buffer layer 33 from this viewpoint.
  • the insulating layer 32 and the buffer layer 33 formed on the electrode portion 15 and the aspect between the bridge wiring portion 31 and the electrode portion 15 (the first transparent electrode 111) are changed to improve adhesion and invisibility and process applicability.
  • the experiment was conducted.
  • the experimental results are shown in Table 1.
  • the experiment was sample no. 1-No. For No. 9, the adhesion between the electrode portion 15 and the insulating layer 32 thereon was measured by a cross-cut test (100 mass test). Moreover, about the same sample, sensory evaluation was performed about the invisibility (hardness to see) of the bridge part 30 which consists of ITO. Furthermore, when a film was formed between the bridge wiring part 31 and the electrode part 15, it was also confirmed whether or not the film was easily dissolved in the acidic etching solution.
  • Sample No. 1 uses a novolac resin as the insulating layer 32, and the buffer layer 33 is not provided.
  • the buffer layer 33 was not provided outside the insulating layer 32.
  • the number of squares that could not be peeled off in the cross-cut test was 0/100, that is, all the pieces were peeled off. Therefore, it resulted in poor adhesion.
  • Sample No. 1 had such poor adhesion, the bridge wiring portion 31 could not be formed, and the invisibility of the bridge portion 30 could not be evaluated.
  • Sample No. 3 is sample no. The sample is different in that the buffer layer 33 having a thickness of 10 nm is provided between the bridge wiring portion 31 and the insulating layer 32.
  • Sample No. In No. 3 the number of squares that could not be peeled off in the cross-cut test was 100/100, that is, no peeling occurred. Therefore, the result was good adhesion. Further, the invisibility of the bridge portion 30 was a good result that it was difficult to see sufficiently.
  • Sample No. 4 is Sample No. The sample was different in that the buffer layer 33 had a thickness of 15 nm. Sample No. In No. 4, the number of squares that could not be peeled off in the cross-cut test was 100/100, that is, no peeling occurred. Therefore, the result was good adhesion. Further, the invisibility of the bridge portion 30 was a good result that it was difficult to see sufficiently.
  • Sample No. Sample No. 5 The sample is different from the sample 4 in that the material of the buffer layer 33 is amorphous IZO. Sample No. In No. 5, the number of squares that could not be peeled off in the cross-cut test was 100/100, that is, no peeling occurred. Therefore, the result was good adhesion. Further, the invisibility of the bridge portion 30 was a good result that it was difficult to see sufficiently.
  • Sample No. Sample No. 7 6 is different in that the buffer layer 33 made of amorphous ITO is formed with a thickness of 15 nm including the portion located on the first transparent electrode 111 located outside the insulating layer 32. It was a sample. This sample has a sample No. for adhesion. 6, but the invisibility of the bridge portion 30 is about 15 nm when the thickness of the buffer layer 33 interposed between the bridge wiring portion 31 and the electrode portion 15 outside the insulating layer 32 is 15 nm. As a result, there were many overlapping layers with different refractive indexes, and the color floating was visible. Therefore, it was shown as “OK” in Table 1.
  • Sample No. 8 is sample No. 6, except that the buffer layer 33 provided on the first transparent electrode 111 located outside the insulating layer 32 is made of IZO.
  • sample no. 6 adheresiveness good, invisibility good
  • sample no. 7 was highly soluble in an acidic etching solution. Therefore, sample no. 6 and sample no. 7 may be used as a member for protecting the first transparent electrode 111 from the etching solution. It was confirmed that it was difficult to use the buffer layer 33 made of 8 IZO film as such a protective film.
  • Sample No. 9 is Sample No. 1, but the sample was different in that an acrylic resin was used as the material of the insulating layer 32.
  • Sample No. In No. 9 the number of squares that could not be peeled off in the cross-cut test was 100/100, that is, no peeling occurred. Therefore, the result was good adhesion. However, penetration of the constituent material of the insulating layer 32 into the electrode portion 15 occurred, and the invisibility of the bridge portion 30 was poor.
  • configuration 1 that is, the configuration in which the buffer layer 33 is not provided between the bridge wiring portion 31 and the first transparent electrode 111, and the configuration shown in FIG.
  • a buffer layer 33 (made of amorphous ITO) having a thickness of 10 nm is positioned on the first transparent electrode 111 positioned outside the insulating layer 32, and the buffer layer is interposed between the bridge wiring portion 31 and the first transparent electrode 111.
  • Configuration 1 is sample No. described above. 3 corresponds to the above sample No. 3. Corresponds to 6.
  • the wiring resistance of the first electrodes 11 arranged in the X-axis direction was measured for each configuration sample.
  • the measurement timing was immediately after production (0 hour), 24 hours later, and 48 hours later.
  • Some samples were subjected to an environmental test (relative humidity 85%, temperature 85 ° C., 168 hours) immediately after production.
  • the wiring resistance was measured at the timing immediately after the test (0 hour), 24 hours, and 48 hours later.
  • the measurement results are shown in Table 2.
  • the numerical values in the table are the rate of increase in resistance (unit:%) based on the measurement result immediately after sample manufacture (0 hour).
  • FIG. 8 is a schematic diagram illustrating an application example of the capacitive sensor according to the present embodiment.
  • FIG. 8 illustrates an example in which the capacitive sensor 1 is applied to a touch panel 200 that is an example of a display device with an input device.
  • the touch panel 200 includes a display panel 210 and a touch sensor 220 provided on the display panel 210.
  • the touch sensor 220 includes the capacitive sensor 1.
  • As the display panel 210 for example, a liquid crystal display panel is used.
  • a display panel 210 formed of a liquid crystal display panel includes a drive substrate 211 and a counter substrate 212 that are arranged to face each other, and a liquid crystal layer 213 is provided between the drive substrate 211 and the counter substrate 212.
  • the touch sensor 220 is provided on the front side of the counter substrate 212.
  • the present embodiment sufficient adhesion between the bridge portion 30 and the electrode portion 15 at the transparent electrode intersection portion can be secured, and the optical characteristics are deteriorated (particularly, the invisibility of the bridge portion 30 is reduced). ) Can be provided, and the touch panel 200 (display device with an input device) can be provided.
  • the present invention is not limited to these examples.
  • the materials of the electrode portion 15, the bridge wiring portion 31 (bridge film 31 a), the insulating layer 32, and the buffer layer 33 are other than those described above, a material that can obtain the same effects as the present invention can be obtained. If so, it is applicable.
  • the above-described embodiments include those in which those skilled in the art appropriately added, deleted, and changed the design of the above-described embodiments, and combinations of the characteristics of the configuration examples of each embodiment as appropriate. As long as it is provided, it is included in the scope of the present invention.
  • Capacitive sensor (input device) DESCRIPTION OF SYMBOLS 10 ... Base material 10a ... Main surface 11 ... 1st electrode 11a ... Lead wire 12 ... 2nd electrode 12a ... Lead wire 14 ... Insulation part 15 ... Electrode part 30 ... Bridge part 31 ... Bridge wiring part 31a ... Bridge film 32 ... Insulation Layer 32a ... portion 33 ... buffer layer 33a ... portion 35 ... optical transparent adhesive layer 50 ... protective layer 111 ... first transparent electrode 121 ... second transparent electrode 122 ... connecting portion 200 ... touch panel (display device with input device) 210: Display panel 211 ... Drive substrate 212 ... Counter substrate 213 ... Liquid crystal layer 220 ... Touch sensor (input device) S: Detection area

Abstract

導電性ナノワイヤを含む材料で透明電極を形成し、ブリッジ配線部を設ける場合、ブリッジ配線部と透明電極とを絶縁する絶縁層を含むブリッジ部の透明電極に対する十分な密着性および可撓性を確保できるとともに、光学特性の劣化を抑制することができる入力装置および入力装置付き表示装置は、導電性ナノワイヤを含む材料により形成され、互いに交差する複数の第1透明電極および複数の第2透明電極と、隣り合う2つの第1透明電極を電気的に接続するブリッジ部と、を備え、ブリッジ部はブリッジ配線部と絶縁層とバッファ層とを有し、バッファ層は、隣り合う2つの第2透明電極を電気的に接続する連結部と絶縁層との間に設けられ、バッファ層は透光性を有する無機酸化物系材料によって形成される。

Description

入力装置および入力装置付き表示装置
 本発明は、静電容量式センサなどの入力装置に関し、特に導電性ナノワイヤを含む材料によって透明電極が形成された入力装置、およびこの入力装置を備える入力装置付き表示装置に関するものである。
 タッチパネルに用いられる静電容量式センサなどの入力装置は、基材の上に設けられ第1透明電極と、第2透明電極とを備え、両電極の交差位置にブリッジ配線部を有するブリッジ部を設けている。このような静電容量式センサにおいて、曲面などの多様な形状に対応できるようにしたいという要望もある。そこで、静電容量式センサの透明電極の材料として、金ナノワイヤ、銀ナノワイヤおよび銅ナノワイヤなどの導電性ナノワイヤを含む材料を用いることがある。
 特許文献1には、銀ナノワイヤを含む導電層を導電領域と非導電領域とにパターニングでき、非導電領域の光学特性を良好にできる透光性導電部材およびそのパターニング方法が開示される。この透光性導電部材では、銀ナノワイヤを含む材料で構成された複数の第1の電極部を連結導通部で接続し、この連結導通部を挟んで隣接する第2の電極部をITO(Indium Tin Oxide)のブリッジ配線部で接合している。
 特許文献2には、特に、低抵抗金属としてCu、Cu合金あるいはAg合金を用いた際に、良好な不可視特性を確保できるとともにブリッジ配線部の耐環境性や静電破壊耐性を向上させることが可能な入力装置が開示される。この入力装置では、隣接する複数の透明電極の間を接続するブリッジ配線部が、アモルファスITO/金属層/アモルファスITOの積層構造を有する。
国際公開第WO2015/019805号 特開2013-178738号公報
 静電容量式センサなどの入力装置において、導電性ナノワイヤを含む材料を用いた透明電極にブリッジ配線部を設ける場合、ブリッジ配線部と下層の透明電極とを絶縁するためにブリッジ配線部と透明電極との間に絶縁層が配置される。この絶縁層と透明電極との密着性や可撓性の確保、光学特性の劣化抑制が重要となる。例えば、銀ナノワイヤを含む透明電極の上に、ノボラック樹脂の絶縁層を形成した場合、銀ナノワイヤを含む透明電極のマトリックス樹脂材料とノボラック樹脂との十分な密着性が得られない。一方、密着性を重視した例えばアクリル系樹脂を絶縁層として用いた場合には、絶縁層の構成材料が透明電極に含まれるマトリックス樹脂材料へ浸透することがあり、このような現象が生じた部分では光学特性の悪化が問題となる。
 本発明は、導電性ナノワイヤを含む材料で透明電極を形成し、上記のように透明電極に設けられた絶縁層を介してブリッジ配線部を設ける場合、ブリッジ配線部および絶縁層を含むブリッジ部の透明電極に対する十分な密着性を確保できるとともに、光学特性の劣化を抑制することができる入力装置およびかかる入力装置を備える入力装置付き表示装置を提供することを目的とする。
 上記課題を解決するため、本発明の一態様は、透光性を有する基材と、基材の検出領域において第1方向と平行に配置され、透光性を有し、導電性ナノワイヤを含む材料により形成された複数の第1透明電極と、検出領域において第1方向と交差する第2方向と平行に配置され、透光性を有し、導電性ナノワイヤを含む材料により形成され、第1透明電極と絶縁された複数の第2透明電極と、導電性ナノワイヤを含む材料により形成され、隣り合う2つの第2透明電極を互いに電気的に接続する連結部と、連結部の上に設けられ、隣り合う2つの第1透明電極を互いに電気的に接続するブリッジ部と、を備えた入力装置である。このブリッジ部は、隣り合う2つの第1透明電極の間を繋ぐように設けられたブリッジ配線部と、ブリッジ配線部と連結部との間に設けられた絶縁層と、絶縁層と連結部との間に設けられたバッファ層と、を有し、バッファ層は、透光性を有する無機酸化物系材料によって形成される。
 このような構成によれば、ブリッジ部における絶縁層と、導電性ナノワイヤを含む材料により形成された連結部と、の間に設けたバッファ層によって、絶縁層と連結部との密着性が高まり、光学特性の劣化が抑制される。すなわち、バッファ層として酸化物系材料を用いることで、バッファ層は、連結部の構成材料(マトリックス樹脂材料)に対して良好な密着性を有するとともに、絶縁層に対しても良好な密着性を有する。また、バッファ層として無機系材料を用いることで、絶縁層の構成材料が連結部に浸透することが抑制され、光学特性の劣化、特にブリッジ部の不可視性の低下が抑制される。
 上記の入力装置において、絶縁層は、連結部に電気的に接続された2つの第2透明電極の一部に対向するように延設された部分を有することが、ブリッジ配線部と第2透明電極との短絡をより安定的に防止する観点から好ましい。この場合には、バッファ層は、絶縁層の第2透明電極に対向する部分と第2透明電極との間に位置する部分を有することにより、絶縁層の第2透明電極からの剥離が抑制されるとともに、光学特性の劣化が抑制される。絶縁層は、隣り合う2つの第1透明電極の一部に対向するように延設された部分を有していてもよい。この場合には、バッファ層は、絶縁層の第1透明電極に対向する部分と第1透明電極との間に位置する部分を有する。
 上記の入力装置において、絶縁層は、連結部を挟んで隣り合って配置された2つの第1透明電極の一部に対向するように延設された部分を有し、バッファ層は、絶縁層の第1透明電極に対向する部分と第1透明電極との間に位置する部分を有していてもよい。これにより、絶縁層の構成材料が電極部に浸透することを防止することができる。
 上記の入力装置において、バッファ層はブリッジ配線部と第1透明電極の間に形成されていてもよい。この場合には、製造過程の初期段階で第1透明電極をバッファ層で覆っておけば、バッファ層は第1透明電極の保護膜として機能し、第1透明電極におけるブリッジ配線部に対向する部分が露出することを製造過程を通じて防ぐことができる。このため、この部分で第1透明電極に含まれる導電性ナノワイヤが変質しにくく、結果、ブリッジ配線部と第1透明電極との間で抵抗上昇が生じにくい。また、上記の入力装置において、バッファ層は、絶縁層と第1透明電極との間と、ブリッジ配線部と第1透明電極との間とで連続して形成されていてもよい。
 上記の入力装置において、バッファ層を形成する無機酸化物系材料はアモルファス材料であることが好ましい。これにより、バッファ層に可撓性を持たせることができる。
 上記の入力装置において、バッファ層は、アモルファスITO(Indium Tin Oxide)およびアモルファスIZO(Indium Zinc Oxide)の群より選択された少なくとも一つにより形成されていることが好ましい。これにより、絶縁層と導電性ナノワイヤを含む材料との密着性向上、光学特性の劣化抑制、およびバッファ層の可撓性を得ることができる。
 上記の入力装置において、導電性ナノワイヤは、金ナノワイヤ、銀ナノワイヤ、および銅ナノワイヤよりなる群から選択された少なくとも1つであってもよい。これにより、透明電極の低抵抗化、透光性向上および十分な可撓性を得ることができる。
 本発明の一態様は、表示パネルと、表示パネルの上に設けられたタッチセンサと、を備える入力装置付き表示装置であって、かかる入力装置付き表示装置のタッチセンサは上記の入力装置からなる。これにより、光学特性に優れ、曲面など様々な形状に対応可能な入力装置付き表示装置を構成することができる。
 本発明により提供される入力装置では、透明電極の交差部分に設けられた、ブリッジ配線部および絶縁層を有するブリッジ部が連結部に対して十分な密着性を有するとともに、光学特性の劣化、特にブリッジ部の不可視性の低下が抑制されている。また、本発明によれば、上記の入力装置を備える入力装置付き表示装置が提供される。
(a)および(b)は、本実施形態に係る静電容量式センサを例示する平面図である。 (a)および(b)は、本実施形態に係る静電容量式センサのブリッジ部分の断面図である。 (a)および(b)は、本実施形態の他の一例に係る静電容量式センサのブリッジ部分の断面図である。 本実施形態に係る静電容量式センサの製造方法を例示するフローチャートである。 (a)~(e)は、本実施形態に係る静電容量式センサの製造方法を例示する断面図である。 本実施形態の他の一例に係る静電容量式センサの製造方法を例示するフローチャートである。 (a)~(e)は、本実施形態の他の一例に係る静電容量式センサの製造方法を例示する断面図である。 本実施形態に係る静電容量式センサの適用例を示す模式図である。
 以下、本発明の実施形態を図面に基づいて説明する。なお、以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。
 図1(a)および(b)は、本実施形態に係る入力装置の一例である静電容量式センサを例示する平面図である。図1(a)には静電容量式センサの全体の平面図が示され、図1(b)には図1(a)に示すA部を拡大した平面図が示される。図2(a)および(b)は、本実施形態に係る静電容量式センサのブリッジ部分の断面図である。図2(a)には図1(b)のX1-X1断面図が示され、図2(b)には図1(b)のY1-Y1断面図が示される。本願明細書において「透明」および「透光性」とは、可視光線透過率が50%以上(好ましくは80%以上)の状態を指す。更に、ヘイズ値が6%以下であることが好適である。
 図1(a)に示すように、本実施形態に係る静電容量式センサ1は、基材10と、基材10の検出領域Sに設けられた第1電極11および第2電極12を備える。基材10は、透光性を有し、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリイミド(PI)等のフィルム状の材料によって形成される。基材10は可撓性を有していることが好ましい。
 第1電極11は、基材10の主面10aに沿ったX方向(第1方向)と平行に配置される。第2電極12は、基材10の主面10aに沿いX方向と直交するY方向(第2方向)に平行に配置される。第1電極11および第2電極12は、互いに絶縁される。本実施形態では、Y方向に所定のピッチで複数の第1電極11が配置され、X方向に所定のピッチで複数の第2電極12が配置される。
 第1電極11は、複数の第1透明電極111を有する。本実施形態では、複数の第1透明電極111は、菱形に近い形状を有し、X方向に並んで配置される。つまり、複数の第1透明電極111は、X方向と平行に配置されている。隣り合う2つの第1透明電極111、111は、ブリッジ部30のブリッジ配線部31により電気的に接続されている。詳細は後述するが、ブリッジ部30は、上層側から、ブリッジ配線部31、絶縁層32およびバッファ層33を有する。
 第2電極12は、複数の第2透明電極121を有する。複数の第2透明電極121は、菱形に近い形状を有し、Y方向に並んで配置される。つまり、複数の第2透明電極121は、X方向と交差するY方向と平行に配置されている。隣り合う2つの第2透明電極121、121は、連結部122により電気的に接続されている。
 第1透明電極111および第2透明電極121のそれぞれは、透光性を有し、導電性ナノワイヤを含む材料により形成された分散層からなる。隣り合う2つの第2透明電極121、121を電気的に接続する連結部122も上記の分散層からなる。すなわち、連結部122は、連結部122と電気的に接続される2つの第2透明電極121、121と一体的に形成されている。導電性ナノワイヤとしては、金ナノワイヤ、銀ナノワイヤ、および銅ナノワイヤよりなる群から選択された少なくとも1つが用いられる。導電性ナノワイヤを含む材料を用いることで、第1透明電極111および第2透明電極121の高い透光性とともに低電気抵抗化を図ることができる。
 分散層は、導電性ナノワイヤと、透明な樹脂層(マトリックス)と、を有する。導電性ナノワイヤはマトリックスの中において分散され、分散層における導電性ナノワイヤの分散性は、マトリックスにより確保されている。マトリックスを構成する材料(マトリックス樹脂材料)としては、例えば、アクリル樹脂、ポリエステル樹脂、およびポリウレタン樹脂などが挙げられる。導電性ナノワイヤのそれぞれが少なくとも一部において互いに接触することにより、導電性ナノワイヤを含む材料の面内における導電性が保たれている。
 主面10aの法線方向にみたとき、第1透明電極111と第2透明電極121および連結部122との間には絶縁部14が位置する。絶縁部14は、第1透明電極111などを構成する分散層と同様の構成を有する分散層から、導電性を低下させることによって形成することができる。導電性を低下させる方法として、導電性を担う導電性ナノワイヤの導電性を喪失させるように導電性ナノワイヤの形質を変換することや、導電性ナノワイヤを除去したりすることが例示される。したがって、第1透明電極111、第2透明電極121および連結部122(以下、これらを「電極部15」と総称する場合がある。)は、基材10の上に分散層を形成し、絶縁部14に対応する部分について、上記のような分散層の導電性を低下させる処理を行うことによって形成することができる。
 複数の第1電極11のそれぞれには、図1に表したように、検出領域Sの外側へ引き出される引き出し配線11aが接続される。また、複数の第2電極12のそれぞれには、検出領域Sの外側へ引き出される引き出し配線12aが接続される。第1電極11には引き出し配線11aを介して駆動電圧が与えられ、第2電極12は引き出し配線12aを介して検出電流を外部回路に伝達する。各引き出し配線11a、12aは、第1透明電極111および第2透明電極121を構成する材料と同様な導電性ナノワイヤを含む材料により形成されてもよいし、透光性は必ずしも要求されないので別の金属系材料により形成してもよい。これにより、線幅が細くなっても高い導電性を得ることができる。引き出し配線11a、12aは積層構造を有していてもよい。
 引き出し配線11a、12aのそれぞれは、例えばスクリーン印刷やエッチングによって形成される。また、第1透明電極111、第2透明電極121、引き出し配線11a、12aのそれぞれは、感光型導電性シート(いわゆる、ドライフィルムレジストに導電層を有したシート)によって形成されてもよい。感光型導電性シートを用いることで、このシートを貼り付けて露光および現像を行って第1透明電極111、第2透明電極121、引き出し配線11a、12aを生産性高く形成することができる。
 図2(a)および図2(b)に表したように、第1電極11と第2電極12とは、隣り合う2つの第1透明電極111、111の連結位置と、隣り合う2つの第2透明電極121、121の連結位置と、で交差している。この交差部分にブリッジ部30が設けられ、交差部分において第1電極11と第2電極12とが接触しないようになっている。
 本実施形態において、隣り合う2つの第2透明電極121、121の間には連結部122が設けられる。したがって、第2電極12は、Y方向に第2透明電極121と連結部122とが交互に繰り返される構成となる。連結部122は、前述のように、第2透明電極121と一体的に形成されるため、隣り合う2つの第2透明電極121、121は連結部122に連設されている。
 一方、隣り合う2つの第1透明電極111の間にはブリッジ部30が設けられる。したがって、第1電極11は、X方向に第1透明電極111とブリッジ部30とが交互に繰り返される構成となる。
 ブリッジ部30の上には、光学透明粘着層(OCA;Optical Clear Adhesive)35を介して保護層50が設けられている。保護層50は、光学透明粘着層35を介して基材10と接合されている。保護層50の構成材料は、特には限定されない。保護層50の構成材料としては、可撓性を有するプラスチック基材が好ましく適用される。光学透明粘着層35は、アクリル系粘着剤や両面粘着テープ等である。
 本実施形態において、ブリッジ部30は、ブリッジ配線部31と、絶縁層32と、バッファ層33と、を有する。ブリッジ配線部31は、隣り合う2つの第1透明電極111、111の間を繋ぐように設けられる。ブリッジ配線部31の両端はそれぞれ第1透明電極111と接続されており、隣り合う2つの第1透明電極111、111の間で絶縁部14を介して位置する連結部122を跨ぐように設けられ、隣り合う2つの第1透明電極111、111を電気的に接続する。
 絶縁層32は、第1透明電極111と第2透明電極121とが短絡しないように、ブリッジ配線部31と連結部122との間に設けられる。絶縁層32としては、例えばノボラック樹脂(レジスト)が用いられる。原理的には、絶縁層32は、主面10aの法線方向にみたときの、連結部122および連結部122に連設された2つの第2透明電極121、121とブリッジ配線部31との重なり部分にのみ位置すればよいが、第1透明電極111と第2透明電極121との短絡防止を安定的に実現する製造上の要請(位置合わせ精度の緩和)により、図2(b)に示されるように、絶縁層32は、連結部122に連設された2つの第2透明電極121、121の連結部122に近位な部分の上に広がって設けられている。また、同様に、短絡防止に寄与する製造上の要請(絶縁層32の形状精度の緩和)により、図2(a)に示されるように、連結部122の周辺に位置する2つの第1透明電極111、111の連結部122に近位な部分の上にも広がって設けられている。限定されない例示として、主面10aの法線方向にみたとき、連結部122は幅150μm×長さ200μmの矩形の形状を有し、絶縁層32は300μm×300μmの矩形の形状を有する。このように、主面10aの法線方向にみたとき、絶縁層32の幅は、連結部122の長さに対して0.7倍から2.0倍程度の大きさを有していてもよい。
 ブリッジ配線部31は、絶縁層32の表面から絶縁層32のX方向の両側に位置する第1透明電極111の表面にかけて形成されている。ブリッジ配線部31には、例えば酸化物系の導電材料が用いられる。酸化物系の導電材料としては、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、GZO(Gallium-doped Zinc Oxide)、AZO(Aluminum-doped Zinc Oxide)およびFTO(Fluorine-doped Zinc Oxide)などが挙げられる。酸化物系の導電材料はアモルファス(非晶質)であることが可撓性を高める観点から好ましい。ブリッジ配線部31は積層構造を有していてもよい。
 バッファ層33は、図2(b)に示されるように、絶縁層32と連結部122との間に設けられる。本実施形態では、絶縁層32は、連結部122に連設された2つの第2透明電極121、121の上、および絶縁部14を介して連結部122の隣に位置する2つの第1透明電極111、111の一部の上にも設けられている。換言すれば、絶縁層32は、連結部122に電気的に接続された2つの第2透明電極121、121の一部に対向するように延設された部分を有する。また、この絶縁層32は、連結部122に隣り合う2つの第1透明電極111、111の一部に対向するように延設された部分を有する。このため、バッファ層33は、図2(a)に示されるように、絶縁層32と、上記の2つの第2透明電極121、121の一部と、の間、および絶縁層32と、上記の2つの第1透明電極111、111の一部と、の間にも設けられている。すなわち、バッファ層33は、絶縁層32の第2透明電極121に対向する部分と第2透明電極121との間に位置する部分を有し、絶縁層32の第1透明電極111に対向する部分と第1透明電極111との間に位置する部分を有する。このように、主面10aの法線方向にみたとき、バッファ層33は、絶縁層32と電極部15とが重なる部分に位置するように設けられている。バッファ層33の厚さは、例えば1nm以上20nm以下程度である。
 本実施形態において、バッファ層33は、透光性を有する無機酸化物系材料によって形成される。透光性を有する無機酸化物系材料としては、例えば、透光性を有する無機酸化物系の導電材料であるアモルファスITO(Indium Tin Oxide)、アモルファスIZO(Indium Zinc Oxide)が挙げられる。なお、透光性を有する無機酸化物系材料は導電性を有していなくてもよい。バッファ層33が絶縁性の材料からなる場合には、バッファ層33は絶縁部14の上に設けられていてもよい。バッファ層33が導電性の材料からなる場合には、上記のように図2(a)に示されるように、バッファ層33を絶縁部14の上を避けるように設けて、第1透明電極111、111と、第2透明電極121、121および連結部122との短絡を防げばよい。
 絶縁層32の構成材料として用いられるノボラック樹脂は、前述の分散層(導電性ナノワイヤがマトリックスに分散した材料からなる層)から形成された電極部15に対する密着性が低い。このため、電極部15の上に絶縁層32を直接的に形成する場合には、絶縁層32の形成が適切に行われない、絶縁層32の上に設けられるべきブリッジ配線部31を適切に形成することが困難となる、ブリッジ配線部31が絶縁層32とともに剥離するなど、ブリッジ部30の安定形成が困難となる、といった懸念が生じうる。
 これに対し、バッファ層33は、絶縁層32に対して適切な密着性を有するとともに、電極部15を構成する分散層に対しても適切な密着性を有する。したがって、上記のようにバッファ層33を設けることで、絶縁層32が電極部15から剥離しにくくなって、ブリッジ部30が安定的に形成される。その結果、ブリッジ配線部31による隣り合う2つの第1透明電極111の導通が安定的に実現される。絶縁層32が電極部15から剥離する可能性を低減する観点から、図2(a)に示されるように、バッファ層33は、隣り合う2つの第1透明電極111、111の一部と絶縁層32との間にも設けられていることが好ましい。なお、図2(a)では、絶縁部14の上にはバッファ層33が設けられていないため、絶縁層32と絶縁部14との間では密着性が低下している可能性があるが、電極部15の上にバッファ層33が設けられているため、絶縁層32が剥離する可能性は適切に低減されている。また、バッファ層33は電極部15の上にのみ形成されているため、絶縁部14が位置する部分は、図2(a)に示されるように凹部となる。絶縁層32はこの凹部を充填するように設けられるため、アンカー効果が生じて絶縁層32の密着性は適切に確保されている。バッファ層33が絶縁性の材料から構成される場合には、絶縁部14の上にバッファ層33を形成してもよいことは前述のとおりである。
 また、バッファ層33は、絶縁層32を構成する材料が電極部15に浸透することを抑制する。上記のとおり、絶縁層32の構成材料として用いられるノボラック樹脂は、電極部15のマトリックス樹脂材料(例えば、アクリル樹脂)に対する密着性が低いため、バッファ層33を設けない場合には絶縁層32と電極部15との間で剥離が生じてしまう。この密着性を改善するために、絶縁層32としてアクリル樹脂を主成分とするレジスト材料を用いると、絶縁層32の構成材料が電極部15へ浸透するおそれがある。この浸透が生じた部分では透光性が低下し、ブリッジ部30の不可視性の低下をもたらしてしまう。
 しかしながら、上記のようにバッファ層33を設けることにより、絶縁層32の構成材料がアクリル系樹脂を主成分とする場合であっても、絶縁層32の構成材料が電極部15へ浸透することが抑制され、ブリッジ部30の不可視性の低下を回避することができる。なお、この場合には、図2(a)に示されるように絶縁部14の上にバッファ層33が形成されていないため、この部分で絶縁層32の構成材料が絶縁部14に浸透する可能性は否定されない。しかしながら、主面10aの法線方向にみたとき、絶縁部14がブリッジ部30の全体に占める面積割合は小さいため、ブリッジ部30の不可視性に与える影響は高くない。この影響を排除することが求められる場合には、バッファ層33を絶縁性の材料から構成し、絶縁部14の上にも形成すればよい。
 バッファ層33は、絶縁層32から外側にはみ出ないようにしてもよい。すなわち、バッファ層33は、主面10aの法線方向にみたとき、絶縁層32の外縁から第1透明電極111の側へはみ出ないように設けられていてもよい。バッファ層33が絶縁層32の外縁から第1透明電極111の側へはみ出ていると、この部分においてブリッジ配線部31、バッファ層33および電極部15の3層が重なることになる。これにより、この部分では屈折率の異なる層の境界が2つになる。
 一方、絶縁層32の外縁から第1透明電極111の側へバッファ層33がはみ出していなければ、絶縁層32の外側においてブリッジ配線部31と電極部15との間にバッファ層33が介在しない。すなわち、ブリッジ配線部31と電極部15との2層の接触になり、屈折率の異なる層の境界は1つとなる。
 屈折率の異なる層の境界では光の反射が起きやすいため、境界の数が少ないほど不可視性は高くなる。つまり、ブリッジ配線部31と電極部15との間にバッファ層33が設けられていないほうが、設けられている場合に比べて不可視性が高くなる。したがって、絶縁層32の外縁から第1透明電極111の側へバッファ層33がはみ出ないように設けることが、ブリッジ部30の不可視性を高める上で好適である。上記のバッファ層33の絶縁層32の外縁からのはみ出しを確実に回避する観点からは、第1透明電極111の上にバッファ層33を設けないことが好ましい場合もある。
 図3(a)および図3(b)は、本実施形態の他の一例に係る静電容量式センサのブリッジ部分の断面図である。図3(a)には図1(b)のX1-X1断面図が示され、図3(b)には図1(b)のY1-Y1断面図が示される。図3に示す例において、絶縁層32は、連結部122を挟んで隣り合って配置された2つの第1透明電極111の一部に対向するように延設された部分32aを有する。また、バッファ層33は、絶縁層32の第1透明電極111に対向する部分32aと第1透明電極111との間に位置する部分33aを有している。
 バッファ層33を設けても不可視性を確保できる場合には、図3に示されるように、ブリッジ配線部31と電極部15との間にバッファ層33が設けられていてもよい。そのような場合の具体例として、バッファ層33の厚さが十分に薄い場合が挙げられる。バッファ層33が15nm以下であれば不可視性に与える影響が適切に低減される場合があり、バッファ層33が10nm以下であれば良好な不可視性が実現される場合がある。
 また、バッファ層33は、絶縁層32と第1透明電極111の間と、ブリッジ配線部31と第1透明電極111の間で連続して形成されていてもよい。
 また、バッファ層33を形成する無機酸化物系材料としては、アモルファス材料であることが好ましい。例えば、バッファ層33の構成材料は、アモルファスITO(Indium Tin Oxide)およびアモルファスIZO(Indium Zinc Oxide)の群より選択された少なくとも一つであることが好ましい。これにより、バッファ層33に可撓性を持たせることができる。したがって、静電容量式センサ1を適用する機器の様々な形状に合わせて湾曲等させた場合でも、バッファ層33の損傷を抑制することができる。
 なお、バッファ層33の構成材料は、プロセス適用性を考慮して設定される場合もある。例えば、バッファ層33を、絶縁層32の構成材料が電極部15に浸透することを防止する目的のみならず、エッチングプロセスから電極部15を保護する目的でも用いる場合には、エッチングのストッパ層として機能できることが好ましい。金属系材料をエッチングする際に使用される酸性のエッチング液に対する溶解性は、アモルファスITOの方がアモルファスIZOよりも高いため、上記の観点(プロセス適用性)も考慮に入れる場合には、アモルファスIZOよりもアモルファスITOの方がバッファ層33の構成材料として好ましい材料と位置づけられる。
 図4は、本実施形態に係る静電容量式センサの製造方法を例示するフローチャートである。図5(a)~(e)は、本実施形態に係る静電容量式センサの製造方法を例示する断面図である。
 先ず、図4のステップS101に示すように、バッファ層33を形成する。すなわち、図5(a)に示すように、基材10の主面10a上に電極部15(第1透明電極111、第2透明電極121および連結部122)を形成し、この電極部15の上にバッファ層33を形成する。電極部15は、導電性ナノワイヤ(例えば銀ナノワイヤからなる。)がマトリックス(例えばアクリル系樹脂からなる。)に分散してなる分散層から構成される。主面10aの法線方向にみたとき、第1透明電極111と第2透明電極121および連結部122との間には絶縁部14が位置する。絶縁部14は、電極部15を構成する分散層から導電性ナノワイヤを除去することにより導電性を喪失させることによって形成される。すなわち、特許文献1に記載されるように、基材10上に設けられた分散層の絶縁部14に対応する部分について、導電性ナノワイヤを形質変化させる処理および形質変化した導電性ナノワイヤを除去する処理を行い、絶縁部14によって囲まれた電極部15の各パターンを形成する。
 この電極部15の上に、透明な無機酸化物系材料(例えば、アモルファスITO)からなるバッファ層33を形成する。そして、絶縁部14の上に積層されたバッファ層33のみをエッチングで除去し、電極部15(第1透明電極111、第2透明電極121および連結部122)上にのみバッファ層33を残すようにする。絶縁部14の絶縁性は十分に高いため、バッファ層33をエッチングする際に、絶縁部14がエッチングストッパとなるような選択エッチングを行ってもよい。例えば、バッファ層33がアモルファスITOであり、絶縁部14がアクリル系樹脂によって形成されている場合、アクリル系樹脂に対して選択性のあるシュウ酸によってバッファ層33のエッチングを行うとよい。なお、バッファ層33をエッチングする際に、バッファ層33とともに絶縁部14をエッチングで除去してもよい。
 次に、図4のステップS102に示すように、絶縁層32を形成する。すなわち、図5(b)に示すように、絶縁層32は、電極部15および絶縁部14の全面を覆うように形成される。絶縁層32としては、ノボラック樹脂(レジスト)が用いられる。
 次に、図4のステップS103に示すように、絶縁層32のパターニングを行う。すなわち、図5(c)に示すように、連結部122とその周辺となる第1透明電極111の一部および第2透明電極121の一部の上のみを残し、その他の部分を除去するように、フォトリソグラフィ(露光・現像)によって絶縁層32をパターニングする。絶縁層32がレジストなどの感光性を有しない絶縁材料からなる場合には、絶縁層32をエッチングしてパターニングする。この際、絶縁層32の下のバッファ層33がエッチングストッパとなるような選択的なエッチングを行うとよい。
 次に、図4のステップS104に示すように、バッファ層33のパターニングを行う。すなわち、図5(d)に示すように、絶縁層32が残された部分以外のバッファ層33をエッチングによって除去する。これにより、絶縁層32以外の部分について第1透明電極111および第2透明電極121の面が露出する状態となる。このバッファ層33のエッチングにおいては、電極部15がエッチングストッパとなるような選択的なエッチングを行うとよい。例えば、バッファ層33がアモルファスITOであり、電極部15が、銀ナノワイヤがアクリル系樹脂に分散してなる分散層からなる場合、分散層に対して選択性のあるシュウ酸によってバッファ層33のエッチングを行うとよい。このバッファ層33のエッチングにおいて絶縁層32がバッファ層33のマスクとして機能する場合には、絶縁層32の外側にバッファ層33が位置してブリッジ部30の不可視性に影響を与えることが安定的に抑制されるため、好ましい。
 次に、図4のステップS105に示すように、ブリッジ配線部31を形成する。すなわち、図5(e)に示すように、絶縁層32を跨ぐようにブリッジ配線部31を形成する。ブリッジ配線部31は、フォトリソグラフィおよびエッチングによって絶縁層32の表面から絶縁層32の両側に位置する第1透明電極111の表面にかけて細長い形状を有するように形成される。この際、第1透明電極111および第2透明電極121の表面が削られないように選択的なエッチングを行うとよい。これにより、絶縁層32を跨ぐブリッジ配線部31を介して隣り合う第1透明電極111が電気的に接続される。
 その後は、図2に示すように、ブリッジ部30の上に光学透明粘着層35を介して保護層50を形成する。これにより、静電容量式センサ1が完成する。
 図6は、本実施形態の他の一例に係る静電容量式センサの製造方法を例示するフローチャートである。図7(a)~(e)は、本実施形態の他の一例に係る静電容量式センサの製造方法を例示する断面図である。
 先ず、図6のステップS201に示すように、バッファ層33を形成する。すなわち、図7(a)に示すように、基材10の主面10a上に電極部15(第1透明電極111、第2透明電極121および連結部122)を形成し、この電極部15の上にバッファ層33を形成する。電極部15は、導電性ナノワイヤ(例えば銀ナノワイヤからなる。)がマトリックス(例えばアクリル系樹脂からなる。)に分散してなる分散層から構成される。主面10aの法線方向にみたとき、第1透明電極111と第2透明電極121および連結部122との間には絶縁部14が位置する。絶縁部14は、電極部15を構成する分散層から導電性ナノワイヤを除去することにより導電性を喪失させることによって形成される。
 この電極部15の上に、透明な無機酸化物系材料(例えば、アモルファスITO)からなるバッファ層33を形成する。そして、絶縁部14の上に積層されたバッファ層33のみをエッチングで除去し、電極部15(第1透明電極111、第2透明電極121および連結部122)上にのみバッファ層33を残すようにする。
 次に、図6のステップS202に示すように、絶縁層32を形成する。すなわち、図7(b)に示すように、絶縁層32を形成する。絶縁層32は、電極部15および絶縁部14の全面を覆うように形成される。絶縁層32としては、ノボラック樹脂(レジスト)が用いられる。
 次に、図6のステップS203に示すように、絶縁層32のパターニングを行う。すなわち、図7(c)に示すように、絶縁層32のパターニングを行う。すなわち、連結部122とその周辺となる第1透明電極111の一部および第2透明電極121の一部の上のみを残し、その他の部分を除去するように、フォトリソグラフィ(露光・現像)によって絶縁層32をパターニングする。絶縁層32がレジストなどの感光性を有しない絶縁材料からなる場合には、絶縁層32をエッチングしてパターニングする。この際、絶縁層32の下のバッファ層33がエッチングストッパとなるような選択的なエッチングを行うとよい。
 次に、図6のステップS204に示すように、ブリッジ配線部31を形成するためのブリッジ膜31aの形成を行う。すなわち、図6(d)に示すように、ブリッジ配線部31を形成するためのブリッジ膜31aを形成して、絶縁層32およびバッファ層33の全体を覆う。このブリッジ膜31aを構成する材料の具体例はアモルファスITOである。
 次に、図7のステップS205に示すように、ブリッジ配線部31の形成を行う。すなわち、図6(e)に示すように、ブリッジ膜31aのうちブリッジ配線部31を構成する部分以外について、エッチングを行う。ここで、バッファ層33を構成する材料はブリッジ膜31aを構成する材料と同じくアモルファスITOであるから、ブリッジ膜31aをエッチングするためのエッチング液により、ブリッジ膜31aの下層に位置するバッファ層33もエッチングされる。すなわち、ブリッジ膜31aとバッファ層33とが一括でエッチングされる。その結果、第1透明電極111および第2透明電極121の表面が露出する。ブリッジ膜31aのうちブリッジ配線部31を構成する部分はレジストにより保護されるため、その下層に位置するバッファ層33もエッチングされずに残る。また、絶縁層32の下層に位置するバッファ層33もバッファ層33が保護膜として機能するため、エッチングされずに残る。こうして、絶縁層32の表面から絶縁層32の両側のバッファ層33の表面にかけて細長い形状を有するブリッジ配線部31がバッファ層33の上から絶縁層32を跨ぐように形成される。これにより、バッファ層33および絶縁層32を跨ぐブリッジ配線部31を介して隣り合う第1透明電極111が電気的に接続される。
 その後は、図3に示すように、ブリッジ部30の上に光学透明粘着層35を介して保護層50を形成する。これにより、図3に示す構造の静電容量式センサ1が完成する。
 図6および図7に示される製造方法によれば、図4および図5に示される製造方法との対比で次のようなメリットが得られる。図4や図6のフローチャートに示される製造ステップはすべて連続的に行われるとは限らず、あるステップが終了してから次のステップが始まるまでの期間(インターバル)にばらつきがある場合もある。このような場合の具体例として、あるステップが連続処理であって、そのステップに続くステップがバッチ処理である場合が挙げられ、さらに具体的には、図4のステップS104(バッファ層のエッチング)と図4のステップS105(ブリッジ配線部の形成)とがそのような関係にある。
 図5に示される製造方法により静電容量式センサが製造されるときには、図5(d)に示される工程と図5(e)に示される工程との間にインターバルがある。図5(d)に示される工程が終了した段階では、電極部15(第1透明電極111)におけるブリッジ配線部31がその上に形成される部分は露出した状態にある。電極部15(第1透明電極111)に含まれる導電性ナノワイヤが銀ナノワイヤを含む場合には、図5(d)に示される工程が終了した状態で放置されると、電極部15(第1透明電極111)に含まれる銀ナノワイヤが大気中の物質(酸素、硫黄など)と反応して抵抗成分が形成されることがある。そのような抵抗成分が形成されると、図5(e)に示される工程でブリッジ配線部31が形成されたときに、ブリッジ配線部31と電極部15(第1透明電極111)との間の抵抗が高くなる。
 これに対し、図6のフローチャートに概要が示され、図7に各ステップの具体的な構成が示される製造方法により静電容量式センサが製造されるときには、図7(a)の状態から図7(e)においてブリッジ膜31aとバッファ層33とが一括でエッチングされるまで、電極部15(第1透明電極111)は露出しない。すなわち、バッファ層33は図7(e)まで電極部15(第1透明電極111)の保護膜として機能する。それゆえ、図7(c)に示される工程が終了した状態や図7(d)に示される工程が終了した状態で次の工程までの間にインターバルがあっても、電極部15(第1透明電極111)におけるブリッジ配線部31が形成される部分の変質(酸化、硫化など)が抑制される。したがって、図7に示される製造方法により静電容量式センサが製造された場合には、ブリッジ配線部31と電極部15(第1透明電極111)との間の抵抗が高くなりにくい。
 なお、金属系材料に対するエッチングのストッパ層としての観点から、バッファ層33の材料としてアモルファスITOを用いる方がアモルファスIZOよりも使いやすい。引き出し配線11a,12aは検出領域Sの外側に位置するため透光性が求められない。そこで、導電性を高める観点から、引き出し配線11a,12aの構成材料として金属系材料が用いられる場合がある。このような場合には、電極部15を構成する層の上に金属系材料の層が積層され、その後、エッチングによってこの層をパターニングして引き出し配線11a,12aを形成するプロセスが採用されることがある。
 かかるプロセスを採用するときには、電極部15の上に金属系材料の層が積層される前の段階で、電極部15の上にバッファ層33を形成しておけば、金属系材料をエッチングするエッチング液から電極部15に含まれる導電性ナノワイヤを、バッファ層33により保護することができる。すなわち、バッファ層33をエッチングのストッパ層として用いることができる。この目的でもバッファ層33を用いる場合には、バッファ層33には酸性エッチング液に対する難溶性を有していることが求められる。アモルファスITOはアモルファスIZOよりも酸性エッチング液に溶けにくいため、この観点でバッファ層33の構成材料として好適である。
 電極部15の上に形成した絶縁層32およびバッファ層33さらにブリッジ配線部31と電極部15(第1透明電極111)との間の態様を変えて、密着性および不可視性さらにプロセス適用性についての実験を行った。実験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実験は、サンプルNo.1~No.9について、電極部15と、その上の絶縁層32との密着性をクロスカット試験(100マス試験)で測定した。また、同サンプルについて、ITOからなるブリッジ部30の不可視性(見えにくさ)を官能評価した。さらに、ブリッジ配線部31と電極部15との間に膜形成した場合には、その膜が酸性エッチング液に溶解しやすいか否かについても確認した。
 サンプルNo.1は、絶縁層32としてノボラック系樹脂を用い、バッファ層33は設けなかった。絶縁層32の外側にもバッファ層33は設けなかった。バッファ層33が設けられていないサンプルNo.1では、クロスカット試験で剥がれないマスの数が0/100、すなわち、全て剥がれた。したがって、密着性不良という結果となった。サンプルNo.1ではこのように密着性が不良であったため、ブリッジ配線部31を形成できず、ブリッジ部30の不可視性の評価を行うことができなかった。
 サンプルNo.2は、絶縁層32としてノボラック系樹脂を用い、バッファ層33としてアモルファスITOを5nm厚で形成した。絶縁層32と電極部15との間にバッファ層33が設けられたサンプルNo.2では、クロスカット試験で剥がれないマスの数が100/100、すなわち、剥がれは発生しなかった。したがって、密着性良好という結果となった。また、ブリッジ部30の不可視性については、非常に見えにくく、色浮きも非常に少ないという特に良好な結果となった。
 サンプルNo.3は、サンプルNo.2と同様な構成であるが、ブリッジ配線部31と絶縁層32との間に厚さが10nmのバッファ層33が設けられている点で相違するサンプルであった。サンプルNo.3では、クロスカット試験で剥がれないマスの数が100/100、すなわち、剥がれは発生しなかった。したがって、密着性良好という結果となった。また、ブリッジ部30の不可視性については、十分に見えにくいという良好な結果となった。
 サンプルNo.4は、サンプルNo.2と同様な構成であるが、バッファ層33の厚さが15nmとなっている点で相違するサンプルであった。サンプルNo.4では、クロスカット試験で剥がれないマスの数が100/100、すなわち、剥がれは発生しなかった。したがって、密着性良好という結果となった。また、ブリッジ部30の不可視性については、十分に見えにくいという良好な結果となった。
 サンプルNo.5は、サンプルNo.4と同様な構成であるが、バッファ層33の材料がアモルファスIZOとなっている点で相違するサンプルであった。サンプルNo.5では、クロスカット試験で剥がれないマスの数が100/100、すなわち、剥がれは発生しなかった。したがって、密着性良好という結果となった。また、ブリッジ部30の不可視性については、十分に見えにくいという良好な結果となった。
 サンプルNo.6は、サンプルNo.3と同様な構成(バッファ層33の厚さ:10nm)であるが、絶縁層32の外側に位置する第1透明電極111の上にも10nm厚のバッファ層33(アモルファスITOからなる。)が残されている点で相違するサンプルであった。このため、ブリッジ配線部31は第1透明電極111にバッファ層33を介して接続されていた。サンプルNo.6では、クロスカット試験で剥がれないマスの数が100/100、すなわち、剥がれは発生しなかった。したがって、密着性が良好という結果となった。また、ブリッジ部30の不可視性についても、十分見えにくいという良好な結果であった。この結果から、ブリッジ配線部31と第1透明電極111との間にバッファ層33が設けられている場合であっても、その厚さを適切に設定すれば、良好な不可視性を確保できることが確認された。
 サンプルNo.7は、サンプルNo.6と同様な構成であるが、絶縁層32の外側に位置する第1透明電極111の上に位置する部分を含め、アモルファスITOからなるバッファ層33が15nm厚で形成されている点で相違するサンプルであった。このサンプルは、密着性についてはサンプルNo.6と同様の結果となったが、ブリッジ部30の不可視性については、絶縁層32の外側においてブリッジ配線部31と電極部15との間に介在しているバッファ層33の厚さが15nmであったことから、屈折率の異なる層の重なりが多く、色浮きが見える結果となった。したがって表1では「可」と示した。
 サンプルNo.8は、サンプルNo.6と同様な構成であるが、絶縁層32の外側に位置する第1透明電極111の上に設けられるバッファ層33がIZOからなる点で相違するサンプルであった。密着性および不可視性の評価では、サンプルNo.6と同じ結果(密着性良好、不可視性良好)となったが、銅系材料をエッチングするための酸性エッチング液への溶解性を評価した結果、サンプルNo.6のITO膜からなるバッファ層33は酸性エッチング液への溶解性が低かったが、サンプルNo.8のIZO膜からなるバッファ層33は酸性エッチング液への溶解性が高くなった。したがって、サンプルNo.6やサンプルNo.7のITO膜からなるバッファ層33は、エッチング液から第1透明電極111を保護する部材として使用可能であるが、サンプルNo.8のIZO膜からなるバッファ層33をそのような保護膜として用いることは困難であることが確認された。
 サンプルNo.9は、サンプルNo.1と同様な構成であるが、絶縁層32の材料としてアクリル系樹脂を用いた点で相違するサンプルであった。サンプルNo.9では、クロスカット試験で剥がれないマスの数が100/100、すなわち、剥がれは発生しなかった。したがって、密着性良好という結果となった。しかし、絶縁層32の構成材料の電極部15への浸透が発生しており、ブリッジ部30の不可視性については不良という結果となった。
 図2に示される構成と図3に示される構成との相違を確認するために、次のような実験を行った。実験結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 図2に示される構成(構成1)、すなわち、ブリッジ配線部31と第1透明電極111との間にバッファ層33が設けられていない構成と、図3に示される構成(構成2)、すなわち、絶縁層32の外側に位置する第1透明電極111の上に10nm厚のバッファ層33(アモルファスITOからなる。)が位置し、ブリッジ配線部31と第1透明電極111との間にバッファ層33が設けられている構成とを用意した。構成1は、上記のサンプルNo.3に対応し、構成2は上記のサンプルNo.6に対応する。
 各構成のサンプルについて、X軸方向に並ぶ第1電極11の配線抵抗を測定した。測定タイミングは、製造直後(0時間)、24時間後、および48時間後とした。また、一部のサンプルについては、製造直後に環境試験(相対湿度85%、温度85℃、168時間)に供した。この環境試験後のサンプルについても、試験直後(0時間)、24時間後、および48時間後のタイミングで配線抵抗を測定した。測定結果を表2に示す。表中の数値は、サンプル製造直後(0時間)の測定結果を基準とする抵抗増加率(単位:%)である。
 表2に示されるように、ブリッジ配線部31と第1透明電極111との間にバッファ層33が設けられていない構成1では、経時的に配線抵抗が上昇し、その傾向は、環境試験を行うと顕著となった。これに対し、ブリッジ配線部31と第1透明電極111との間にバッファ層33が設けられている構成2では、ほとんど経時的な抵抗増加は認められず、環境試験を行っても抵抗増加は構成1との対比でわずかであった。
 次に、本実施形態に係る入力装置の一例である静電容量式センサ1の適用例について説明する。
 図8は、本実施形態に係る静電容量式センサの適用例を示す模式図である。
 図8には、静電容量式センサ1を入力装置付き表示装置の一例であるタッチパネル200に適用した例が表される。タッチパネル200は、表示パネル210と、表示パネル210の上に設けられたタッチセンサ220と、を備える。このタッチセンサ220は静電容量式センサ1からなる。表示パネル210としては、例えば液晶表示パネルが用いられる。液晶表示パネルからなる表示パネル210は、互いに対向配置された駆動基板211および対向基板212を有し、駆動基板211と対向基板212との間に液晶層213が設けられる。タッチセンサ220は、対向基板212の表側に設けられる。
 以上説明したように、本実施形態によれば、透明電極交差部のブリッジ部30と電極部15との十分な密着性を確保できるとともに、光学特性の劣化(特にブリッジ部30の不可視性の低下)を抑制することができる静電容量式センサ1(入力装置)およびタッチパネル200(入力装置付き表示装置)を提供することが可能になる。
 なお、上記に本実施形態を説明したが、本発明はこれらの例に限定されるものではない。例えば、電極部15、ブリッジ配線部31(ブリッジ膜31a)、絶縁層32およびバッファ層33のそれぞれの材料について、上記説明したもの以外であっても、本発明と同様な作用効果を得られる材料であれば適用可能である。また、前述の各実施形態に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、各実施形態の構成例の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に含有される。
1…静電容量式センサ(入力装置)
10…基材
10a…主面
11…第1電極
11a…引き出し配線
12…第2電極
12a…引き出し配線
14…絶縁部
15…電極部
30…ブリッジ部
31…ブリッジ配線部
31a…ブリッジ膜
32…絶縁層
32a…部分
33…バッファ層
33a…部分
35…光学透明粘着層
50…保護層
111…第1透明電極
121…第2透明電極
122…連結部
200…タッチパネル(入力装置付き表示装置)
210…表示パネル
211…駆動基板
212…対向基板
213…液晶層
220…タッチセンサ(入力装置)
S…検出領域

Claims (9)

  1.  透光性を有する基材と、
     前記基材の検出領域において第1方向と平行に配置され、透光性を有し、導電性ナノワイヤを含む材料により形成された複数の第1透明電極と、
     前記検出領域において前記第1方向と交差する第2方向と平行に配置され、透光性を有し、導電性ナノワイヤを含む材料により形成され、前記第1透明電極と絶縁された複数の第2透明電極と、
     導電性ナノワイヤを含む材料により形成され、隣り合う2つの前記第2透明電極を互いに電気的に接続する連結部と、
     前記連結部の上に設けられ、隣り合う2つの前記第1透明電極を互いに電気的に接続するブリッジ部と、
     を備え、
     前記ブリッジ部は、
      前記隣り合う2つの前記第1透明電極の間を繋ぐように設けられたブリッジ配線部と、
      前記ブリッジ配線部と前記連結部との間に設けられた絶縁層と、
      前記絶縁層と前記連結部との間に設けられたバッファ層と、を有し、
     前記バッファ層は、透光性を有する無機酸化物系材料によって形成された、入力装置。
  2.  前記絶縁層は、前記連結部に電気的に接続された2つの前記第2透明電極の一部に対向するように延設された部分を有し、前記バッファ層は、前記絶縁層の前記第2透明電極に対向する部分と前記第2透明電極との間に位置する部分を有する、請求項1に記載の入力装置。
  3.  前記絶縁層は、前記連結部を挟んで隣り合って配置された2つの前記第1透明電極の一部に対向するように延設された部分を有し、
     前記バッファ層は、前記絶縁層の前記第1透明電極に対向する部分と前記第1透明電極との間に位置する部分を有する、請求項1または2に記載の入力装置。
  4.  前記バッファ層は前記ブリッジ配線部と前記第1透明電極の間に形成された請求項1から3のいずれか一項に記載の入力装置。
  5.  前記バッファ層は、前記絶縁層と前記第1透明電極との間と、前記ブリッジ配線部と前記第1透明電極との間とで連続して形成された請求項4に記載の入力装置。
  6.  前記無機酸化物系材料はアモルファス材料である、請求項1から5のいずれか一項に記載の入力装置。
  7.  前記バッファ層は、アモルファスITO(Indium Tin Oxide)およびアモルファスIZO(Indium Zinc Oxide)の群より選択された少なくとも一つにより形成された、請求項1から6のいずれか一項に記載の入力装置。
  8.  前記導電性ナノワイヤは、金ナノワイヤ、銀ナノワイヤ、および銅ナノワイヤよりなる群から選択された少なくとも1つであることを特徴とする請求項1から7のいずれか一項に記載の入力装置。
  9.  表示パネルと、
     前記表示パネルの上に設けられたタッチセンサと、
     を備え、
     前記タッチセンサは、請求項1から8のいずれか一項に記載の入力装置からなる、入力装置付き表示装置。
PCT/JP2019/007448 2018-03-23 2019-02-27 入力装置および入力装置付き表示装置 WO2019181396A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020507468A JP6889803B2 (ja) 2018-03-23 2019-02-27 入力装置および入力装置付き表示装置
KR1020207022853A KR102402727B1 (ko) 2018-03-23 2019-02-27 입력 장치 및 입력 장치 부착 표시 장치
EP19770499.2A EP3770736A4 (en) 2018-03-23 2019-02-27 INPUT DEVICE AND DISPLAY DEVICE INCLUDING AN INPUT DEVICE
CN201980021294.7A CN111902800A (zh) 2018-03-23 2019-02-27 输入装置以及附带输入装置的显示装置
US16/992,504 US11194434B2 (en) 2018-03-23 2020-08-13 Input device having transparent electrodes containing nanowires and display apparatus with input device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018057019 2018-03-23
JP2018-057019 2018-03-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/992,504 Continuation US11194434B2 (en) 2018-03-23 2020-08-13 Input device having transparent electrodes containing nanowires and display apparatus with input device

Publications (1)

Publication Number Publication Date
WO2019181396A1 true WO2019181396A1 (ja) 2019-09-26

Family

ID=67987720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007448 WO2019181396A1 (ja) 2018-03-23 2019-02-27 入力装置および入力装置付き表示装置

Country Status (7)

Country Link
US (1) US11194434B2 (ja)
EP (1) EP3770736A4 (ja)
JP (1) JP6889803B2 (ja)
KR (1) KR102402727B1 (ja)
CN (1) CN111902800A (ja)
TW (1) TWI697830B (ja)
WO (1) WO2019181396A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193459A1 (ja) * 2020-03-25 2021-09-30 アルプスアルパイン株式会社 静電容量式センサおよび入力装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008310550A (ja) * 2007-06-14 2008-12-25 Epson Imaging Devices Corp 静電容量型入力装置
JP2011039759A (ja) * 2009-08-11 2011-02-24 Seiko Epson Corp タッチパネル装置、タッチパネル装置の製造方法、表示装置および電子機器
JP2013178738A (ja) 2012-02-10 2013-09-09 Alps Electric Co Ltd 入力装置
JP2014178979A (ja) * 2013-03-15 2014-09-25 Shin Etsu Polymer Co Ltd 電極基板および静電容量センサーシート
WO2015019805A1 (ja) 2013-08-05 2015-02-12 アルプス電気株式会社 透光性導電部材およびそのパターニング方法
JP2018147486A (ja) * 2017-03-06 2018-09-20 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 電極接続構造物、タッチセンサー及び画像表示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101101088B1 (ko) * 2010-05-03 2011-12-30 삼성모바일디스플레이주식회사 터치 스크린 패널 및 그 제조방법
WO2012047013A2 (ko) * 2010-10-05 2012-04-12 네오뷰코오롱 주식회사 정전용량방식 터치 패널 소자 및 이의 제조방법
CN103430134B (zh) * 2011-01-19 2017-03-29 Lg伊诺特有限公司 触摸板及其制造方法
CN102375641B (zh) * 2011-10-27 2014-01-29 汕头超声显示器(二厂)有限公司 一种具有高接触性的电容触摸屏
TWI468820B (zh) * 2012-04-18 2015-01-11 Ind Tech Res Inst 觸控感測元件
KR20140078881A (ko) * 2012-12-18 2014-06-26 (주)인터플렉스 결정질 ito와 비정질 ito를 사용하는 터치패널
CN104156127A (zh) * 2013-05-13 2014-11-19 胜华科技股份有限公司 触控面板
KR102211863B1 (ko) * 2013-10-15 2021-02-04 삼성디스플레이 주식회사 터치 패널 및 터치 패널의 제조 방법
TWM486092U (zh) * 2014-02-13 2014-09-11 Rtr Tech Technology Co Ltd 觸控面板
CN103970393A (zh) * 2014-05-23 2014-08-06 山东华芯富创电子科技有限公司 跨桥式电容式触控面板结构及其制作方法
KR102322084B1 (ko) * 2015-04-30 2021-11-04 삼성디스플레이 주식회사 터치 센서 장치 및 그 제조 방법
JP6405298B2 (ja) * 2015-12-09 2018-10-17 アルプス電気株式会社 静電容量式センサ、タッチパネルおよび電子機器
KR20170113033A (ko) * 2016-03-31 2017-10-12 동우 화인켐 주식회사 필름 터치 센서 및 이를 포함하는 터치 스크린 패널

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008310550A (ja) * 2007-06-14 2008-12-25 Epson Imaging Devices Corp 静電容量型入力装置
JP2011039759A (ja) * 2009-08-11 2011-02-24 Seiko Epson Corp タッチパネル装置、タッチパネル装置の製造方法、表示装置および電子機器
JP2013178738A (ja) 2012-02-10 2013-09-09 Alps Electric Co Ltd 入力装置
JP2014178979A (ja) * 2013-03-15 2014-09-25 Shin Etsu Polymer Co Ltd 電極基板および静電容量センサーシート
WO2015019805A1 (ja) 2013-08-05 2015-02-12 アルプス電気株式会社 透光性導電部材およびそのパターニング方法
JP2018147486A (ja) * 2017-03-06 2018-09-20 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 電極接続構造物、タッチセンサー及び画像表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3770736A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193459A1 (ja) * 2020-03-25 2021-09-30 アルプスアルパイン株式会社 静電容量式センサおよび入力装置
US11762514B2 (en) 2020-03-25 2023-09-19 Alps Alpine Co., Ltd. Capacitive sensor and input device
JP7356578B2 (ja) 2020-03-25 2023-10-04 アルプスアルパイン株式会社 静電容量式センサおよび入力装置

Also Published As

Publication number Publication date
CN111902800A (zh) 2020-11-06
TWI697830B (zh) 2020-07-01
US20200371642A1 (en) 2020-11-26
EP3770736A1 (en) 2021-01-27
JPWO2019181396A1 (ja) 2020-10-22
KR102402727B1 (ko) 2022-05-26
US11194434B2 (en) 2021-12-07
EP3770736A4 (en) 2021-12-22
TW201941044A (zh) 2019-10-16
KR20200106931A (ko) 2020-09-15
JP6889803B2 (ja) 2021-06-18

Similar Documents

Publication Publication Date Title
KR102056928B1 (ko) 터치스크린 패널 및 그의 제조방법
US9229555B2 (en) Touch screen panel and method of manufacturing the same
TWI489343B (zh) Input device
JP5865819B2 (ja) 入力装置
US20200150804A1 (en) Touch substrate and method of fabracating the same, touch display device
TWI550465B (zh) 觸控裝置
JP6735850B2 (ja) 静電容量式センサおよび機器
US10921929B2 (en) Touch screen panel and method of manufacturing the same
WO2016002461A1 (ja) 入力装置およびその製造方法
KR101049891B1 (ko) 터치패널의 제조용 패드 및 이에 인쇄회로기판이 결합한 조립체
WO2019181396A1 (ja) 入力装置および入力装置付き表示装置
JP6405298B2 (ja) 静電容量式センサ、タッチパネルおよび電子機器
JP2019105752A (ja) 調光装置及び調光装置の製造方法
CN103052932A (zh) 静电电容触控传感器及包括它的窗口面板一体型的静电电容触控面板
JP5075287B1 (ja) 入力装置
JP2014194720A (ja) タッチパネルセンサ、タッチパネルモジュールおよびタッチパネルセンサの製造方法
JP2011113382A (ja) タッチパネル及びその製造方法
KR20150120169A (ko) 터치 패널 및 제조 방법
JP2015161998A (ja) 入力装置
WO2020261662A1 (ja) 入力装置および入力装置付き表示装置
KR101111090B1 (ko) 정전용량 터치 센서, 이를 이용한 정전용량 터치 패널, 및 정전용량 터치 센서 제조방법
TWI672626B (zh) 靜電電容式感測器
JP2016133937A (ja) 静電容量式センサの製造方法、静電容量式センサ、感光型導電性シート、タッチパネル及び電子機器
KR101551733B1 (ko) 터치 패널 형성용 도전성 필름 및 이로부터 제조된 터치패널
JP2013164828A (ja) 入力装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770499

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507468

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207022853

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019770499

Country of ref document: EP