WO2019176295A1 - 自動分析装置および自動分析装置の流路詰まり検出方法 - Google Patents

自動分析装置および自動分析装置の流路詰まり検出方法 Download PDF

Info

Publication number
WO2019176295A1
WO2019176295A1 PCT/JP2019/001964 JP2019001964W WO2019176295A1 WO 2019176295 A1 WO2019176295 A1 WO 2019176295A1 JP 2019001964 W JP2019001964 W JP 2019001964W WO 2019176295 A1 WO2019176295 A1 WO 2019176295A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
automatic analyzer
vacuum tank
clogging
flow path
Prior art date
Application number
PCT/JP2019/001964
Other languages
English (en)
French (fr)
Inventor
雄大 福士
高通 森
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to JP2020505630A priority Critical patent/JP6877629B2/ja
Priority to US16/645,600 priority patent/US11079402B2/en
Priority to EP19767024.3A priority patent/EP3767299B1/en
Priority to CN201980004511.1A priority patent/CN111133317B/zh
Publication of WO2019176295A1 publication Critical patent/WO2019176295A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1095Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1004Cleaning sample transfer devices
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B5/00Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied
    • G08B5/22Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied using electric transmission; using electromagnetic transmission
    • G08B5/36Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied using electric transmission; using electromagnetic transmission using visible light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/30Compensating imbalance
    • G01M1/36Compensating imbalance by adjusting position of masses built-in the body to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00613Quality control
    • G01N35/00623Quality control of instruments
    • G01N2035/00633Quality control of instruments logging process history of individual samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • G01N2035/1018Detecting inhomogeneities, e.g. foam, bubbles, clots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00613Quality control
    • G01N35/00623Quality control of instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00871Communications between instruments or with remote terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms

Definitions

  • the present invention relates to an automatic analyzer and a flow path clogging detection method of the automatic analyzer.
  • the automatic analyzer discharges a certain amount of sample and a certain amount of reagent into a reaction vessel, mixes and reacts them, and optically measures the reaction solution to analyze the components and concentration of the specimen. ing. Since the reaction waste liquid in which the sample and the reagent have reacted is generated in the reaction container after the analysis is completed, in order to remove the reaction waste liquid from the reaction container, there is one that sucks the waste liquid using a vacuum pump or the like. In addition, in automatic analyzers that perform qualitative and quantitative analysis of samples, the occurrence of cross-contamination is suppressed by appropriately cleaning the probe used for dispensing the sample to be analyzed, thereby maintaining analysis accuracy. Some have a cleaning liquid suction mechanism that removes cleaning liquid and the like adhering to the probe surface.
  • An automatic analyzer having a mechanism for sucking reaction waste liquid and a mechanism for sucking cleaning liquid adhering to the surface after probe cleaning depressurizes the vacuum tank with a decompression pump, etc., and arranges an electromagnetic valve in the flow path from the vacuum tank.
  • the solenoid valve is opened and closed, and the waste liquid is sucked by the pressure difference in the vacuum tank.
  • the pressure in the vacuum tank reaches a certain negative pressure, the contact point of the vacuum switch provided in the vacuum tank is switched, and the analysis can be performed. If the flow path of each mechanism connected to the vacuum tank is clogged or the solenoid valve malfunctions, the suction operation cannot be performed normally, and the waste liquid remains in the reaction vessel or the cleaning water remains on the probe.
  • the automatic analyzer disclosed in Patent Document 1 is provided with a separate pressure sensor in the suction nozzle in order to detect clogging of the drainage system of the waste liquid suction means.
  • pressure sensors are required for all of the waste liquid suction units, and the risk of failure increases as the number of sensors increases. Further, when a new clogging detection function is added to an existing apparatus that does not have a pressure sensor, the installation location of the pressure sensor is limited, and the apparatus configuration becomes complicated.
  • An object of the present invention is to provide an automatic analyzer capable of detecting clogging in a flow path and a flow path clogging detecting method of the automatic analyzer.
  • an automatic analyzer of the present invention includes a vacuum tank and a vacuum pump for vacuum suction of a liquid, a first electromagnetic valve provided on a flow path connected to the vacuum tank,
  • An automatic analyzer comprising: a determination unit that determines whether the vacuum value in the vacuum tank is equal to or greater than a predetermined threshold value or less than the predetermined threshold value; and a clogging detection unit that detects clogging in the flow path.
  • the clogging detecting means changes the vacuum pump from ON to OFF in a state where the first electromagnetic valve is closed, and then turns the first electromagnetic valve from closed to open.
  • the vacuum pump is operated until the negative pressure of the vacuum tank becomes constant with the solenoid valve arranged between the vacuum tank and the mechanism requiring vacuum closed.
  • the negative pressure value in the vacuum tank is normally held at a constant negative pressure value if there is no leak. If the vacuum switch is turned off after a certain time, a leak has occurred somewhere in the flow path.
  • the present invention when there is an abnormality in the flow path, it is possible to detect the abnormality of the flow path without using a sensor for measuring pressure.
  • the vacuum pump is operated until the negative pressure of the vacuum tank becomes constant with the solenoid valve disposed between the vacuum tank and the mechanism requiring vacuum closed. .
  • the negative pressure value in the vacuum tank is normally held at a constant negative pressure value if there is no leak. If the vacuum switch is turned off after a certain time, a leak has occurred somewhere in the flow path. Therefore, in order to confirm that there is no more in each flow path system, stop the vacuum pump from the state where the negative pressure of the vacuum tank is constant, and open the solenoid valve of the flow path of the part to be confirmed connected to the vacuum tank Then, the time for which the vacuum switch is turned off is measured and compared with a threshold value to determine whether or not the flow path system is abnormal. By making the determination in all the flow paths using vacuum, it is determined whether there is an abnormality in the flow path system.
  • FIG. 1 is a diagram schematically showing an overall configuration of an automatic analyzer according to the present embodiment.
  • an automatic analyzer 100 is a device that dispenses and reacts a sample and a reagent in a reaction vessel 2 and measures the reacted liquid.
  • the reaction vessel 2 is arranged on the reaction disc 1 in a circumferential shape.
  • the reaction container 2 is a container for storing a mixed liquid in which a sample and a reagent are mixed, and a plurality of reaction containers 2 are arranged on the reaction disk 1.
  • a sample transport mechanism 17 is disposed that transports a sample rack 16 on which one or more sample containers 15 containing samples to be analyzed are mounted.
  • a first sample dispensing mechanism 11 and a second sample dispensing mechanism 12 that can be rotated and moved up and down are arranged.
  • the first sample dispensing mechanism 11 has a sample probe 11a arranged with its tip facing downward, and a sample pump 19 is connected to the sample probe 11a.
  • the first sample dispensing mechanism 11 is configured to be able to discharge from the sample probe 11a wash water (hereinafter referred to as internal wash water) delivered by a sample pump 19 from a wash water tank (not shown). Further, the first sample dispensing mechanism 11 is configured to be capable of rotating in the horizontal direction and moving up and down.
  • the sample probe 11a is inserted into the sample container 15 and the sample pump 19 is operated to operate the sample.
  • the sample is dispensed from the sample container 15 to the reaction container 2 by inserting the sample probe 11a into the reaction container 2 and discharging the sample.
  • a cleaning tank 13 for cleaning the sample probe 11a with a cleaning liquid and a cleaning container 23 for cleaning with a special cleaning liquid are arranged.
  • the position where the sample probe 11a is inserted into the sample container 15 and the sample is sucked is defined as the first sample suction position
  • the position where the sample probe 11a is inserted into the reaction container 2 and the sample is discharged is defined as the first sample discharge position.
  • the tank 13 and the cleaning container 23 are disposed between the first sample suction position and the first sample discharge position.
  • the second sample dispensing mechanism 12 has a sample probe 12a arranged with its tip facing downward, and a sample pump 19 is connected to the sample probe 12a.
  • the second sample dispensing mechanism 12 is configured such that the wash water (internal wash water) sent from the wash water tank (not shown) by the sample pump 19 can be discharged from the sample probe 12a.
  • the second sample dispensing mechanism 12 is configured so as to be able to rotate in the horizontal direction and move up and down.
  • the sample probe 12a is inserted into the sample container 15 and the sample pump 19 is operated to suck the sample. Then, the sample probe 12a is inserted into the reaction vessel 2 and the sample is discharged, thereby dispensing the sample from the sample vessel 15 to the reaction vessel 2.
  • a cleaning tank 14 for cleaning the sample probe 12a with a cleaning liquid and a cleaning container 24 for cleaning with a special cleaning liquid are arranged. If the position where the sample probe 12a is inserted into the sample container 15 and the sample is sucked is the second sample suction position, and the position where the sample probe 12a is inserted into the reaction container 2 and the sample is discharged is the second sample discharge position, the cleaning is performed.
  • the tank 14 and the cleaning container 24 are disposed between the second sample suction position and the second sample discharge position.
  • the washing tanks 13 and 14 are washing tanks for performing washing of the outside and inside of the sample probes 11a and 12a after the reagent dispensing every time the sample is dispensed.
  • the cleaning containers 23 and 24 have the sample probes 11a and 12a before analyzing the sample when the sample of the sample type registered in advance is requested to measure the analysis item registered in advance. It is a part for the additional washing process performed with respect to.
  • the reagent disk 9 is a storage in which a plurality of reagent bottles 10 containing the reagents therein can be placed on the circumference.
  • the reagent disk 9 is kept cold.
  • reagent dispensing mechanisms 7 and 8 for dispensing the reagent from the reagent bottle 10 to the reaction container 2 are configured.
  • reagent probes 7a and 8a arranged with their tips facing downward.
  • a reagent pump 18 is connected to the reagent probes 7a and 8a. The reagent pump 18 dispenses the reagent, detergent, diluent, pretreatment reagent, and the like sucked from the reagent bottle 10 and the like through the reagent probes 7a and 8a into the reaction container 2.
  • a cleaning tank 32 for cleaning the reagent probe 7a with a cleaning liquid is disposed, and in the operating range of the reagent dispensing mechanism 8, a cleaning tank 33 for cleaning the reagent probe 8a with a cleaning liquid is disposed.
  • a spectrophotometer 4 that measures the absorbance of the reaction liquid by measuring the transmitted light obtained from the light source 4a through the reaction liquid of the reaction vessel 2 around the stirring mechanism 5, 6, A cleaning mechanism 3 for cleaning the used reaction vessel 2 is disposed.
  • the stirring mechanisms 5 and 6 are configured so as to be able to rotate in the horizontal direction and move up and down, and agitate the mixed solution (reaction solution) of the sample and the reagent by being inserted into the reaction vessel 2.
  • mixing tanks 30 and 31 for cleaning the stirring mechanisms 5 and 6 with the cleaning liquid are arranged.
  • a detergent discharge mechanism 20 is connected to the cleaning mechanism 3.
  • the control unit 22 is configured by a computer or the like, and controls the operation of each mechanism described above in the automatic analyzer and performs calculation processing for obtaining the concentration of a predetermined component in a liquid sample such as blood or urine.
  • a part of the connection between each mechanism constituting the automatic analyzer and the control unit 22 is omitted.
  • the above is the general configuration of the automatic analyzer 100.
  • the analysis process of the inspection sample by the automatic analyzer 100 as described above is generally performed in the following order.
  • the sample in the sample container 15 placed on the sample rack 16 transported near the reaction disk 1 by the sample transport mechanism 17 is sampled by the sample probe 11a of the first sample dispensing mechanism 11 or the second sample dispensing.
  • the sample is dispensed into the reaction vessel 2 on the reaction disk 1 by the sample probe 12 a of the mechanism 12.
  • the reagent used for the analysis is dispensed from the reagent bottle 10 on the reagent disk 9 to the reaction container 2 into which the sample has been dispensed by the reagent probes 7a, 8a of the reagent dispensing mechanisms 7, 8.
  • the mixed solution of the sample and the reagent in the reaction vessel 2 is stirred by the stirring mechanisms 5 and 6.
  • the light generated from the light source 4 a is transmitted through the reaction vessel 2 containing the mixed solution, and the luminous intensity of the transmitted light is measured by the spectrophotometer 4.
  • the light intensity measured by the spectrophotometer 4 is transmitted to the control unit 22 via the A / D converter and the interface. Then, calculation is performed by the control unit 22, the concentration of a predetermined component of the analysis item corresponding to the reagent is obtained, and the result is displayed on a display unit (not shown) or stored in a storage unit (not shown).
  • FIG. 2 is a schematic diagram for explaining an apparatus configuration for performing a waste liquid suction operation.
  • an apparatus configuration for sucking waste liquid will be described.
  • the vacuum tank is provided with a vacuum switch 36 that senses that the pressure in the vacuum tank has been reduced to a specified negative pressure, and when the specified negative pressure is reached and the vacuum switch is turned on, analysis can be performed in the control unit 22. To be judged.
  • the vacuum switch includes a pressure receiving portion that receives pressure and a pressure receiving element that detects the pressure received by the pressure receiving portion, and includes a spring and a switch.
  • the switch contacts are switched by a spring.
  • Reaction waste liquid suction nozzles 37a and 37b or a cleaning waste liquid suction mechanism 39 are provided at the end of the flow path connected to the vacuum tank, and between the vacuum tank and the reaction waste liquid suction nozzles 37a and 37b or the cleaning waste liquid suction mechanism 39.
  • a certain solenoid valve 35c, 35d is opened, vacuum suction can be performed.
  • Vacuum bottles 34a and 34b for trapping the reaction waste liquid are provided between the flow path of the vacuum tank and the reaction waste liquid suction nozzles 37a and 37b and the electromagnetic valve 35c.
  • the electromagnetic valves 35a and 35b connected to the vacuum bottles 34a and 34b are opened, the reaction waste liquid is discharged from the vacuum bottles 34a and 34b.
  • the above is the apparatus configuration for sucking the waste liquid.
  • reaction waste liquid suction operation will be described.
  • the reaction waste liquid is sucked by the reaction waste liquid suction mechanism 21.
  • the reaction disk 1 rotates, and the reaction container 2 containing the reaction waste liquid is moved to the position of the cleaning mechanism 3.
  • the cleaning mechanism 3 is lowered and the reaction waste liquid suction nozzles 37a and 37b enter the reaction vessel 2, the electromagnetic valve 35c connected to the vacuum tank is opened to suck the reaction waste liquid.
  • the sucked reaction waste liquid is trapped in the vacuum bottles 34a and 34b, and is discharged to a waste liquid tank outside the apparatus or a waste water sewage system by opening the electromagnetic valves 35a and 35b.
  • the reaction waste liquid suction nozzle 37a sucks a high concentration reaction waste liquid in which the sample and the reagent are mixed.
  • the reaction waste liquid suction nozzle 37b the reaction waste liquid is sucked, and then the low-concentration reaction waste liquid thinned by the detergent discharged by the detergent discharge mechanism 20 during the cleaning operation of the reaction container 2 is sucked. This completes the description of the reaction waste liquid suction operation.
  • the cleaning waste liquid suction operation will be described.
  • the cleaning waste liquid is sucked by the probe cleaning mechanism 40.
  • the second sample dispensing mechanism 12 that has finished dispensing moves the sample probe 12 a to the cleaning tank 14. Cleaning water is discharged from the cleaning water discharge mechanism 14a, and the sample adhering to the surface of the sample probe 12a is washed away. Thereafter, the second sample dispensing mechanism 12 moves the sample probe 12 a to the cleaning waste liquid suction mechanism 39.
  • the washing water remaining on the surface of the sample probe 12a is sucked by opening the electromagnetic valve 35d. Since the amount of cleaning water to be sucked is extremely small, it is trapped in a vacuum tank.
  • the suction operation of the cleaning waste liquid is also performed in the cleaning tank 13 for the first sample dispensing mechanism 11. This completes the description of the cleaning waste liquid suction operation.
  • FIG. 3A the relationship between the negative pressure in the vacuum tank and the signal of the vacuum switch when there is no abnormality such as clogging in the flow path connected to the vacuum tank and the vacuum tank is opened to the atmosphere will be described.
  • the vertical axis indicates the negative pressure in the vacuum tank, and the horizontal axis indicates time.
  • the vacuum pump is stopped at an arbitrary time T while the negative pressure in the vacuum tank is stable, and one of a plurality of solenoid valves connected to the vacuum tank is opened to open the atmosphere.
  • the negative pressure in the vacuum tank that has been opened to the atmosphere decreases, and the vacuum switch is turned OFF when the vacuum switch threshold is exceeded.
  • the time t n from the arbitrary time T until the vacuum switch is turned off is measured.
  • the negative pressure in the vacuum tank is made constant by turning on the vacuum pump and closing the solenoid valve.
  • the setting of the reference value t n is a condition that measurement is performed with a new flow path configuration.
  • FIG. 3B when there is an abnormality such as clogging in the flow path connected to the vacuum tank, the negative pressure in the vacuum tank and the opening / closing of the electromagnetic valve connecting to the vacuum tank, ON / OFF of the vacuum pump, and vacuum
  • the vacuum pump is stopped at an arbitrary time T, and one of a plurality of electromagnetic valves connected to the vacuum tank is opened to bring the air into an open state. If the flow path is clogged, the negative pressure in the vacuum tank that is open to the atmosphere will decrease more slowly than if there is no clogging, so the time t n ′ until the vacuum switch turns off will be longer. . Therefore, the relationship between the reference values t n and t n ′ is t n ⁇ t n ′, so that clogging can be detected.
  • the above is the clogging determination method.
  • FIG. 4 a shows a flowchart for determining clogging in the probe cleaning mechanism 40.
  • the process proceeds to an analysis operation (S9).
  • the determination result is displayed as an alarm on the operation unit (S10), and the apparatus is stopped (S11). This clogging determination is effective even if a mechanism for sucking a plurality of cleaning waste liquids is connected to the vacuum tank.
  • S1 the blockage clogging determination
  • S2 the solenoid valves connected to the vacuum tank are closed
  • S3 the vacuum pump starts operating
  • S4 the vacuum switch is turned on and the pressure in the vacuum tank becomes constant
  • S5 the solenoid valve of the flow path corresponding to the reference value t 1 is opened (S16).
  • the time t 1 ′ until the vacuum switch is turned off is measured (S17), and clogging is determined (S18).
  • the determination result is accumulated in the storage unit (S25).
  • the opened solenoid valve is closed (S19), the vacuum pump is turned on, and it is confirmed that the vacuum switch is turned on (S20). Opening the only solenoid valve corresponding to the reference value t 2 stops the vacuum pump (S21).
  • Time t 2 ′ until the vacuum switch is turned off is measured (S22), and clogging is determined (S23).
  • the time until the vacuum switch is turned off is measured (S37), and clogging is determined (S38). If there is no clogging, the process proceeds to an analysis operation (S30). If there is a blockage, the opened solenoid valve is closed (S39), the vacuum pump is turned on, and it is confirmed that the vacuum switch is turned on (S40). The vacuum pump is turned off, and one of the solenoid valves 35c and the previous solenoid valve (the solenoid valve 35a) is opened simultaneously (S41). The time until the vacuum switch is turned off is measured (S42), and clogging is determined (S43). By repeating this series of operations n times, clogging is determined for each branched flow path (S44), the determination result is displayed as an alarm (S46), and the apparatus is stopped (S47).
  • the above clogging judgment operation and flowchart are performed during analysis preparation and maintenance.
  • the time until the vacuum switch is turned off measured during maintenance is recorded in the apparatus so that it can be compared with the previous value at every maintenance.
  • By recording the measured time until the vacuum switch is turned off from the time of shipment it is possible to grasp the deterioration of each flow path, and it is possible to use the clogging determination operation as a preventive maintenance function.
  • FIG. 6 shows the relationship between the pressure in the vacuum tank and the altitude when the clogging determination method is used. Since the atmospheric pressure is lower in an area at an altitude of 2000 m than at an altitude of 0 m, the vacuum pump cannot be sufficiently pulled down to a negative pressure, and the waste liquid suction operation using the vacuum has no tolerance. Therefore, when the vacuum pump is stopped while the negative pressure in the vacuum tank is constant, and all the solenoid valves connected to the vacuum tank are opened and the vacuum tank is opened to the atmosphere, the vacuum switch at altitude hm is turned off. If the reference value until is t h , then t 0 > t 2000 .
  • the reference value t h corresponding to this elevation may be set in the apparatus as a value obtained by same for all devices, compared to the vacuum switch when mounting the device measures the time t h 'until the OFF reference value t h To do. If the comparison result is t h > t h ′, it can be determined that there is no tolerance for the suction operation of the waste liquid using the vacuum, so add a vacuum pump or replace it with a vacuum pump that can draw high vacuum Can be determined.
  • Cleaning containers 30, 31, 32, 33 ...
  • Cleaning tanks 34a, 34b ... Vacuum bottle 35a 35b, 35c, 35d ...
  • Solenoid valve 36 ... Vacuum switch 37a, 37b .
  • Reaction waste liquid suction nozzle 39 ...
  • Cleaning waste liquid suction mechanism 40 ... Probe cleaning mechanism 100 ... Automatic analyzer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electromagnetism (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

反応廃液を吸引する機構及び試料及びプローブ表面の洗浄液等を吸引する機構を複数有する自動分析装置は減圧ポンプ等により真空タンクを減圧し、その負圧によって廃液の吸引を行う。真空タンク内の圧力がある規定の負圧に到達すると真空タンク内に備えられている真空スイッチの接点が接触し、分析を行える状態となる。真空タンクに接続する各機構の流路部に詰まりがあった場合、吸引動作が正常に行えず、分析性能に影響が出てしまう。 真空タンクに接続する電磁弁を個別に開放するタイミングで真空ポンプをOFFにし、真空タンクの圧力が規定の負圧に到達するまでの時間を計測する。計測した時間を正常な場合のパラメータと比較し、異常の有無を判別する。

Description

自動分析装置および自動分析装置の流路詰まり検出方法
 本発明は、自動分析装置および自動分析装置の流路詰まり検出方法に関する。
 自動分析装置は、一定量の試料と一定量の試薬とを、反応容器内に吐出し、混合して反応させ、この反応液を光学的に測定することにより検体の成分や濃度等を分析している。
 分析終了後には試料と試薬とが反応した反応廃液が反応容器内に生じるため、この反応廃液を反応容器から除去するため、減圧ポンプ等を用いて廃液を吸引するものがある。また試料の定性・定量分析を行う自動分析装置においては、分析対象である試料の分注に用いるプローブを適宜洗浄することによりクロスコンタミネーションの発生を抑制して分析精度の維持を図っており、プローブ表面に付着した洗浄液等を除去する洗浄液吸引機構を備えたものもある。
WO07/132632
 反応廃液を吸引する機構及びプローブ洗浄後に表面に付着した洗浄液等を吸引する機構を複数有する自動分析装置は減圧ポンプ等により真空タンクを減圧し、真空タンクからの流路に電磁弁を配置しその電磁弁を開閉し真空タンク内の圧力差によって廃液の吸引を行う。真空タンク内の圧力がある規定の負圧に到達すると真空タンク内に備えられている真空スイッチの接点が切り替わり、分析を行える状態となる。真空タンクに接続する各機構の流路部に詰まりや電磁弁に動作不良があった場合、吸引動作が正常に行えず、廃液が反応容器に残ったり、プローブに洗浄水が付着して残ったままになるなど分析性能に影響が出てしまう可能性が高い。特許文献1に開示された自動分析装置は、廃液吸引手段の排水系の詰まりを検出するため、吸引ノズルに個別の圧力センサを設置している。この場合、廃液吸引部全てに圧力センサが必要となり、センサの数が多い分、故障のリスクも高くなる。また圧力センサを持たない既存の装置に関して、新たに詰まり検知機能を追加しようとした場合、圧力センサの設置場所は限られており、装置構成が複雑化する。
 本発明は、流路内の詰まりを検出することが可能な自動分析装置および自動分析装置の流路詰まり検出方法を提供することを目的とする。
 上記課題を解決するために、本発明の自動分析装置は、液体を真空吸引するための真空タンク及び真空ポンプと、前記真空タンクに接続された流路上に備えられた第1の電磁弁と、真空タンク内の真空値が所定の閾値以上であるか、当該所定の閾値より小さいかを判定する判定手段と、前記流路内の詰まりを検知する詰まり検知手段と、を備えた自動分析装置であって、前記詰まり検知手段は、第1の電磁弁を閉にした状態で、真空ポンプをONからOFFへ変更し、その後、第1の電磁弁を閉から開にし、第1の電磁弁を閉から開にした時点から、前記判定手段により真空タンク内の真空値が所定の閾値以上になった時までの時間を、所定の閾値を比較することにより、流路の詰まりの有無を検知する。
 上記課題を解決するために、真空タンクと真空を必要とする機構の間に配置される電磁弁を閉じた状態で真空ポンプを真空タンクの負圧が一定になるまで動作させ真空ポンプを停止する。真空タンク内の負圧値は通常リークがなければ一定の負圧値で保持される。もしある時間で真空スイッチがOFFとなるような場合は流路内のどこかでリークが発生していることになる。そこで各流路系に以上がないかを確認するために真空タンクの負圧が一定になった状態から真空ポンプを停止し、真空タンクに接続された確認したい部位の流路の電磁弁をOPENにして真空スイッチがOFFになる時間を計測し、閾値と比較して流路系の異常有無を判別する。真空を使用する全流路において前記判定をおこなうことで流路系の異常有無を判断する。 
 本発明によれば、流路に異常があった場合、圧力を測定するセンサを用いずに流路の異常を検知することができる。
本発明の実施形態である自動分析装置の概略を示した図である。 本発明の実施形態の廃液吸引機構と真空タンクの接続を説明する概略図である。 吸引機構に詰まりがなく正常な場合、廃液を吸引した時の圧力と電磁弁の開閉、真空ポンプのON/OFF及び真空スイッチの信号の波形を示す図である。 吸引機構が詰まっていた場合、廃液を吸引した時の圧力と電磁弁の開閉、真空ポンプのON/OFF及び真空スイッチの信号の波形を示す図である。 洗浄廃液を吸引する機構における詰まりの判別フローチャートを示す図である。 洗浄廃液を吸引する機構がn個以上(n=2)真空タンクに接続している場合の詰まりの判別フローチャートを示す図である。 反応廃液を吸引する機構において真空タンクに接続する電磁弁とノズルの間の流路が分岐していた場合の詰まり判定のフローチャートを示す 詰まり判定方法を用いた場合の真空タンク内圧力と標高の関係を示す。
 本発明の自動分析装置では、真空タンクと真空を必要とする機構の間に配置される電磁弁を閉じた状態で真空ポンプを真空タンクの負圧が一定になるまで動作させ真空ポンプを停止する。真空タンク内の負圧値は通常リークがなければ一定の負圧値で保持される。もしある時間で真空スイッチがOFFとなるような場合は流路内のどこかでリークが発生していることになる。そこで各流路系に以上がないかを確認するために真空タンクの負圧が一定になった状態から真空ポンプを停止し、真空タンクに接続された確認したい部位の流路の電磁弁をOPENにして真空スイッチがOFFになる時間を計測し、閾値と比較して流路系の異常有無を判別する。真空を使用する全流路において前記判定をおこなうことで流路系の異常有無を判断する。
 以下、本発明の自動分析装置および分注プローブの洗浄方法の実施形態を、図1乃至図16を用いて詳細に説明する。
 まず、自動分析装置全体の構成について図1を用いて説明する。図1は、本実施形態に係る自動分析装置の全体構成を概略的に示す図である。
 図1において、自動分析装置100は、反応容器2に試料と試薬とを各々分注して反応させ、この反応させた液体を測定する装置であり、試料搬送機構17と、試薬ディスク9と、反応ディスク1と、第1試料分注機構11および第2試料分注機構12と、試薬分注機構7,8と、攪拌機構5,6と、光源4aと、分光光度計4と、洗浄機構3と、制御部21とから概略構成されている。
 反応ディスク1には、反応容器2が円周状に並んでいる。反応容器2は試料と試薬とを混合させた混合液を収容するための容器であり、反応ディスク1上に複数並べられている。反応ディスク1の近くには、分析対象の試料を収容した試料容器15を一つ以上搭載した試料ラック16を搬送する試料搬送機構17が配置されている。
 反応ディスク1と試料搬送機構17との間には、回転および上下動可能な第1試料分注機構11および第2試料分注機構12が配置されている。
 第1試料分注機構11は、その先端を下方に向けて配置された試料プローブ11aを有しており、試料プローブ11aには、試料用ポンプ19が接続されている。第1試料分注機構11は、図示しない洗浄水タンクから試料用ポンプ19により送出される洗浄水(以下、内洗水と記載)を試料プローブ11aから吐出可能であるように構成されている。また、第1試料分注機構11は、水平方向への回転動作および上下動作が可能なように構成されており、試料プローブ11aを試料容器15に挿入して試料用ポンプ19を作動させて試料を吸引し、試料プローブ11aを反応容器2に挿入して試料を吐出することにより、試料容器15からから反応容器2への試料の分注を行う。第1試料分注機構11の稼動範囲には、試料プローブ11aを洗浄液により洗浄する洗浄槽13および特別な洗浄液により洗浄する洗浄容器23が配置されている。試料プローブ11aを試料容器15に挿入して試料を吸引する位置を第1試料吸引位置とし、試料プローブ11aを反応容器2に挿入して試料を吐出する位置を第1試料吐出位置とすると、洗浄槽13および洗浄容器23は第1試料吸引位置と第1試料吐出位置との間に配置されている。
 第2試料分注機構12は、その先端を下方に向けて配置された試料プローブ12aを有しており、試料プローブ12aには、試料用ポンプ19が接続されている。第2試料分注機構12は、図示しない洗浄水タンクから試料用ポンプ19により送出される洗浄水(内洗水)を試料プローブ12aから吐出可能であるように構成されている。第2試料分注機構12は、水平方向への回転動作および上下動作が可能なように構成されており、試料プローブ12aを試料容器15に挿入して試料用ポンプ19を作動させて試料を吸引し、試料プローブ12aを反応容器2に挿入して試料を吐出することにより、試料容器15からから反応容器2への試料の分注を行う。第2試料分注機構12の稼動範囲には、試料プローブ12aを洗浄液により洗浄する洗浄槽14および特別な洗浄液により洗浄する洗浄容器24が配置されている。試料プローブ12aを試料容器15に挿入して試料を吸引する位置を第2試料吸引位置とし、試料プローブ12aを反応容器2に挿入して試料を吐出する位置を第2試料吐出位置とすると、洗浄槽14および洗浄容器24は第2試料吸引位置と第2試料吐出位置との間に配置されている。
 洗浄槽13,14は、試薬分注後の試料プローブ11a,12aの外側および内側の洗浄を試料分注のたびに行うための洗浄槽である。これに対し、洗浄容器23,24は、予め登録された検体種別の試料に対して、予め登録された分析項目の測定依頼があった場合に、その試料を分析する前に試料プローブ11a,12aに対して行う追加洗浄処理のための部分である。
 試薬ディスク9は、その中に試薬を収容した試薬ボトル10を複数個円周上に載置可能となっている保管庫である。試薬ディスク9は保冷されている。
 反応ディスク1と試薬ディスク9との間には、水平方向への回転移動および上下動作が可能に構成され、試薬ボトル10から反応容器2に試薬を分注するための試薬分注機構7,8が設置されており、それぞれその先端を下方に向けて配置された試薬プローブ7a,8aを備えている。試薬プローブ7a,8aには、試薬用ポンプ18が接続されている。この試薬用ポンプ18により、試薬プローブ7a,8aを介して試薬ボトル10等から吸引した試薬、洗剤、希釈液、前処理用試薬等を反応容器2に分注する。
 試薬分注機構7の稼動範囲には試薬プローブ7aを洗浄液により洗浄する洗浄槽32が、試薬分注機構8の稼動範囲には試薬プローブ8aを洗浄液により洗浄する洗浄槽33が配置されている。
 反応ディスク1の周囲には、攪拌機構5,6や、光源4aから反応容器2の反応液を介して得られる透過光を測定することにより、反応液の吸光度を測定する分光光度計4や、使用済みの反応容器2を洗浄する洗浄機構3等が配置されている。
 攪拌機構5,6は、水平方向への回転動作および上下動作が可能なように構成されており、反応容器2に挿入することにより試料と試薬との混合液(反応液)の攪拌を行う。攪拌機構5,6の稼動範囲には、攪拌機構5,6を洗浄液により洗浄する洗浄槽30,31が配置されている。また、洗浄機構3には、洗剤吐出機構20が接続されている。
 制御部22は、コンピュータ等から構成され、自動分析装置内の上述した各機構の動作を制御するとともに、血液や尿等の液体試料中の所定の成分の濃度を求める演算処理を行う。なお、図1においては、図示の簡単のため、自動分析装置を構成する各機構と制御部22との接続を一部省略して示している。
 以上が自動分析装置100の一般的な構成である。上述のような自動分析装置100による検査試料の分析処理は、一般的に以下の順に従い実行される。
 まず、試料搬送機構17によって反応ディスク1近くに搬送された試料ラック16の上に載置された試料容器15内の試料を、第1試料分注機構11の試料プローブ11aまたは第2試料分注機構12の試料プローブ12aにより反応ディスク1上の反応容器2へと分注する。次に、分析に使用する試薬を、試薬ディスク9上の試薬ボトル10から試薬分注機構7,8の試薬プローブ7a,8aにより先に試料を分注した反応容器2に対して分注する。続いて、攪拌機構5,6で反応容器2内の試料と試薬との混合液の撹拌を行う。その後、光源4aら発生させた光を混合液の入った反応容器2を透過させ、透過光の光度を分光光度計4により測定する。分光光度計4により測定された光度を、A/Dコンバータおよびインターフェイスを介して制御部22に送信する。そして制御部22によって演算を行い、試薬に応じた分析項目の所定の成分の濃度を求め、結果を表示部(不図示)等にて表示させたり、記憶部(不図示)に記憶させる。
 図2は廃液吸引動作を行うための装置構成を説明する概略図である。まず廃液を吸引するための装置構成について説明する。真空ポンプが動作すると真空ポンプに接続した真空タンク内が減圧される。真空タンクには真空タンク内の圧力が規定の負圧まで減圧されたことを感知する真空スイッチ36が備わっており、規定の負圧に達し、真空スイッチがONになると制御部22において分析可能と判断される。真空スイッチは圧力を受ける受圧部と前記受圧部が受けた圧力を検知する受圧素子が備えられ、ばねとスイッチで構成されている。受圧部が受けた圧力が設定された圧力値に到達したことを受圧素子により感知するとばねによりスイッチの接点が切り替わる構造になっている。真空タンクに接続する流路の最端部には反応廃液吸引ノズル37a,37bもしくは洗浄廃液吸引機構39が備わっており、真空タンクと反応廃液吸引ノズル37a,37bもしくは洗浄廃液吸引機構39の間にある電磁弁35c,35dが開放されると真空吸引を行うことができる。真空タンクと反応廃液吸引ノズル37a,37bと電磁弁35cの流路の間には反応廃液をトラップする真空瓶34a,34bが備わっている。真空瓶34a,bに接続する電磁弁35a,bを開放すると反応廃液が真空瓶34a,bから排出される。以上が廃液を吸引するための装置構成である。
 次に反応廃液の吸引動作について説明する。反応廃液の吸引は反応廃液吸引機構21で行う。分析終了後、反応容器2には試料と試薬を反応させた反応廃液が残るため、反応ディスク1が回転し、反応廃液の入った反応容器2を洗浄機構3の位置に移動させる。洗浄機構3が下降し、反応容器2の内部に反応廃液吸引ノズル37a,bが進入する際、真空タンクに接続された電磁弁35cが開くことで反応廃液を吸引する。吸引された反応廃液は真空瓶34a,bでトラップされ、電磁弁35a,bを開放することで装置外の廃液タンクまたは廃液の下水設備に排出される。反応廃液吸引ノズル37aでは試料と試薬が混合した高濃度の反応廃液を吸引する。反応廃液吸引ノズル37bでは反応廃液が吸引された後、反応容器2の洗浄動作の際に洗剤吐出機構20が吐出する洗剤によって薄くなった低濃度の反応廃液を吸引する。以上が反応廃液の吸引動作についての説明である。
 次に洗浄廃液の吸引動作について説明する。洗浄廃液の吸引はプローブ洗浄機構40で行う。分注を終えた第2試料分注機構12は洗浄槽14まで試料プローブ12aを移動させる。洗浄水吐出機構14aからは洗浄水が吐出され、試料プローブ12aの表面に付着した試料を洗い流す。その後第2試料分注機構12は試料プローブ12aを洗浄廃液吸引機構39に移動させる。試料プローブ12a表面に残った洗浄水は電磁弁35dを開放することで吸引される。吸引する洗浄水の量は極めて微量であるため真空タンク内でトラップする。洗浄廃液の吸引動作は第1試料分注機構11に対しても洗浄槽13内で行われる。以上が洗浄廃液の吸引動作についての説明である。
 上記の構成において、真空タンクに接続された複数ある流路から詰まり等の異常を検知するための方法について説明する。はじめに図3Aにおいて、真空タンクに接続された流路に詰まり等の異常がなく、真空タンクを大気開放した場合の真空タンク内の負圧と真空スイッチの信号の関係を説明する。縦軸が真空タンク内の負圧を示し、横軸が時間を示している。真空ポンプがONになると真空タンク内が減圧され、真空スイッチの閾値に到達すると真空スイッチ36がONとなる。真空タンク内の負圧が安定している状態で任意時間Tに真空ポンプを停止させ、かつ真空タンクに接続している複数ある電磁弁の一つを開放することで大気開放状態にする。大気開放状態になった真空タンク内の負圧は低下していき、真空スイッチの閾値を下回ると真空スイッチはOFFとなる。この時、任意時間Tから真空スイッチがOFFになるまでの時間tを計測する。計測終了後、真空ポンプをONかつ電磁弁を閉めることで真空タンク内の負圧を一定にする。上記の計測を真空タンクに接続する電磁弁n個分、n回測定を行い(n=1,2…n)、それぞれの流路に詰まりが無い場合の基準値tとして記憶部に設定する。基準値tは装置出荷時に測定して決定するため電磁弁や流路を構成するチューブの内径などの個体差をオフセットする。従って基準値tの設定は新品の流路構成で測定することが条件となる。
 次に図3Bにおいて、真空タンクに接続された流路に詰まり等の異常がある場合の廃液を真空タンク内の負圧と真空タンクに接続する電磁弁の開閉、真空ポンプのON/OFF及び真空スイッチ36の信号の関係を説明する。図3A同様、任意時間Tに真空ポンプを停止させ、かつ真空タンクに接続している複数ある電磁弁の一つを開放することで大気開放状態にする。流路に詰まりがあった場合、大気開放状態になった真空タンク内の負圧は詰まりが無い場合に比べて緩やかに低下するため、真空スイッチはOFFになるまでの時間tn’が長くなる。したがって基準値tnとtn’の関係はtn<tn’となるため、詰まりを検出することができる。以上が詰まりの判別方法である。
 図4aにプローブ洗浄機構40における詰まりの判別フローチャートを示す。準備動作として流路の詰まり判定の開始時(S1)、真空タンクに接続する電磁弁を全て閉める(S2)。真空ポンプが動作を開始し(S3)、真空タンク内の負圧が真空スイッチの閾値を超えると真空スイッチがONになり、真空タンク内の圧力が一定になる(S4)。任意時間Tにおいて真空ポンプをOFFにする(S5)。判定動作として真空タンクに接続する電磁弁35cを開放する(S6)。真空スイッチがOFFになるまでの時間t1を測定し(S7)、詰まり判定を行う(S8)。詰まりが無いと判定された場合は分析動作へ移行する(S9)。詰まりがあると判定された場合には判定結果を操作部にアラーム表示し(S10)、装置は停止する(S11)。この詰まりの判定は真空タンクに複数の洗浄廃液を吸引する機構が接続していても有効である。
 図4bに洗浄廃液を吸引する機構がn個以上(n=2)真空タンクに接続している場合のフローチャートを示す。図4a同様、準備動作として流路の詰まり判定の開始時(S1)、真空タンクに接続する電磁弁を全て閉める(S2)。真空ポンプが動作を開始し(S3)、真空タンク内の負圧が真空スイッチの閾値を超えると真空スイッチがONになり、真空タンク内の圧力が一定になる(S4)。任意時間Tにおいて真空ポンプをOFFにする(S5)。判定動作として基準値t1に対応する流路の電磁弁を開放する(S16)。真空スイッチがOFFになるまでの時間t1’を測定し(S17)、詰まり判定を行う(S18)。判定結果は記憶部に蓄積する(S25)。詰まり判定後、開放した電磁弁を閉め(S19)、真空ポンプをONにし、真空スイッチがONになることを確認する(S20)。真空ポンプを停止させ基準値t2に対応する電磁弁のみを開放する(S21)。真空スイッチがOFFになるまでの時間t2’を測定し(S22)、詰まり判定を行う(S23)。この一連の操作をn回繰り返すことで、真空タンクに接続する各流路について詰まり判定を行い(S24)、判定結果を表示する(S26)。詰まりがない場合には分析動作へ移行し(S27)、詰まりが有る場合にはアラーム表示と装置を停止する(S28)。
 図5に反応廃液吸引機構21のように真空タンクに接続する電磁弁35cより先に分岐して電磁弁がn個以上(n=2)ある場合の詰まり判定のフローチャートを示す。準備動作として流路の詰まり判定の開始時(S1)、真空タンクに接続する電磁弁を全て閉める(S2)。真空ポンプが動作を開始し(S3)、真空タンク内の負圧が真空スイッチの閾値を超えると真空スイッチがONになり、真空タンク内の圧力が一定になる(S4)。任意時間Tにおいて真空ポンプをOFFにする(S5)。判定動作として真空タンクに接続する電磁弁35cのみを開放する(S36)。真空スイッチがOFFになるまでの時間を測定し(S37)、詰まり判定を行う(S38)。詰まりがない場合には分析動作へ移行する(S30)。詰まりがあった場合には開放した電磁弁を閉め(S39)、真空ポンプをONにし、真空スイッチがONになることを確認する(S40)。真空ポンプをOFFにし、電磁弁35cと分岐した先の電磁弁のうち一つ(電磁弁35a)を同時に開放する(S41)。真空スイッチがOFFとなるまでの時間を測定し(S42)、詰まり判定を行う(S43)。この一連の操作をn回繰り返すことで、分岐したそれぞれの流路について詰まり判定を行い(S44)、判定結果をアラーム表示し(S46)、装置を停止する(S47)。
 前記の詰まり判定動作およびフローチャートは分析準備時とメンテナンス時に行う。特にメンテナンス時に測定した真空スイッチOFFまでの時間を装置内で記録しておき、メンテナンスの度に前回値と比較ができるようにする。測定した真空スイッチOFFまでの時間を出荷時から記録することで各流路の劣化を把握することもでき、予防保全機能としても詰まり判定動作を利用が可能である。
 図6に前記詰まり判定方法を用いた場合の真空タンク内圧力と標高の関係を示す。標高2000mの地域は標高0mに比べて大気圧が低くなるため、真空ポンプが十分に負圧に引くことができず、真空を利用した廃液の吸引動作について裕度がない状態になる。したがって真空タンク内の負圧が一定となっている状態で真空ポンプを停止し、真空タンクに接続する電磁弁すべてを開放して真空タンク内を大気開放した場合、標高hmおける真空スイッチがOFFになるまでの基準値をthとするとt0>t2000となる。この標高に応じた基準値tをすべての装置で統一した値として装置内に設定しておき、装置の据付時に真空スイッチがOFFになるまで時間th’を測定し基準値thと比較する。比較結果がth>th’であった場合、真空を利用した廃液の吸引動作について裕度がないと判断できるので真空ポンプを追加するもしくは高真空度に引くことのできる真空ポンプと交換するなどの対応を判断することができる。
 また基準値tを用いることで分析終了動作時の大気開放時間を装置据付先の標高に合わせて個別に設定することが出来る。自動分析装置では分析終了動作時、真空タンク内を大気圧まで戻すことが一般的である。これは真空タンク内に負圧が残ったままだと、真空ポンプには常に負圧が掛かった状態となり、真空ポンプ起動時に負圧の状態からダイヤフラムを作動させるため負荷が掛かり、真空ポンプの劣化が早くなるからである。装置に据え付け場所の標高hを入力すると、標高に応じた真空タンク内の大気圧に戻るまでの時間として基準値tを分析終了動作の大気開放時間として設定できる。これにより、適切な時間で分析終了動作を終了することでオペレータの待機時間を短縮することができる。
1…反応ディスク
2…反応容器
3…洗浄機構
4…分光光度計
4a…光源
5,6…攪拌機構
7,8…試薬分注機構
7a,8a…試薬プローブ
9…試薬ディスク
10…試薬ボトル
11…第1試料分注機構
11a…試料プローブ
12…第2試料分注機構
12a…試料プローブ
13,14…洗浄槽
14a…洗浄水吐出口
15,15a,15b…試料容器
16…試料ラック
17…試料搬送機構
18…試薬用ポンプ
19…試料用ポンプ
20…洗剤吐出機構
21…反応廃液吸引機構
22…制御部
23,24…洗浄容器
30,31,32,33,…洗浄槽
34a,34b…真空瓶
35a,35b,35c,35d…電磁弁
36…真空スイッチ
37a,37b…反応廃液吸引ノズル
39…洗浄廃液吸引機構
40…プローブ洗浄機構
100…自動分析装置

Claims (10)

  1.  液体を真空吸引するための真空タンク及び真空ポンプと、
     前記真空タンクに接続された流路上に備えられた第1の電磁弁と、
     真空タンク内の真空値が所定の閾値以上であるか、当該所定の閾値より小さいかを判定する判定手段と、
     前記流路内の詰まりを検知する詰まり検知手段と、を備えた自動分析装置であって、
     前記詰まり検知手段は、
     第1の電磁弁を閉にした状態で、真空ポンプをONからOFFへ変更し、
     その後、第1の電磁弁を閉から開にし、第1の電磁弁を閉から開にした時点から、前記判定手段により真空タンク内の真空値が所定の閾値以上になった時までの時間を、所定の閾値を比較することにより、流路の詰まりの有無を検知することを特徴とする、自動分析装置。
  2.  請求項1に記載の自動分析装置において、
     前記第1の電磁弁における前記真空タンクの反対側には、試料プローブの表面の洗浄液を前記真空ポンプにより吸引するための洗浄廃液吸引機構が備えられていることを特徴とする、自動分析装置。
  3.  請求項2に記載の自動分析装置において、
     前記洗浄廃液吸引機構に隣接して、試薬プローブの洗浄液を収容した洗浄槽が備えられていることを特徴とする、自動分析装置。
  4.  請求項1に記載の自動分析装置において、
     前記第1の電磁弁及び流路の組合せが複数備えられており、
     前記詰まり検知手段は、前記詰まり検知を各流路について、第1の電磁弁の開閉を制御することにより順次行なうことを特徴とする、自動分析装置。
  5.  請求項1に記載の自動分析装置において、
     前記第1の電磁弁における前記真空タンクの反対側には、真空タンクに近いほうから廃液を収容する廃液瓶、および反応容器を備えていることを特徴とする、自動分析装置。
  6.  請求項5に記載の自動分析装置において、
     前記廃液瓶が複数備えられており、それぞれの廃液瓶には廃液を排出する排出側に第2の電磁弁を備えており、
     前記廃液瓶ごとに反応容器から真空タンクまでの流路が備えられていることを特徴とする、自動分析装置。
  7.  請求項6に記載の自動分析装置において、
     前記詰まり検知手段は、流路の詰まりが有と判断した場合には、第1の電磁弁を閉にし、真空ポンプをOFFからONにし、前記判定手段により真空タンク内の真空値が所定の閾値より小さくなることを確認し、その後、真空ポンプをONからOFFにし、第1の電磁弁と、いずれかの第2の電磁弁を閉から開にし、閉から開にした時点から前記判定手段により真空タンク内の真空値が所定の閾値以上になった時までの時間を、所定の閾値を比較することにより、流路の詰まりの有無を検知することを特徴とする、自動分析装置。
  8.  請求項7に記載の自動分析装置において、
     第1の電磁弁といずれかの第2の電磁弁の閉から開の動作を、順次行なうことにより、いずれの流路に詰まりがあるかを検出することを特徴とする、自動分析装置。
  9.  前記判定手段により詰まりを検知するときに用いる閾値は、装置が設置されている標高の高さを基に設定されていることを特徴とする、自動分析装置。
  10.  液体を真空吸引するための真空タンク及び真空ポンプと、
     前記真空タンクに接続された流路上に備えられた第1の電磁弁と、
     真空タンク内の真空値が所定の閾値以上であるか、当該所定の閾値より小さいかを判定する判定手段と、
     前記流路内の詰まりを検知する詰まり検知手段と、を備えた自動分析装置の流路詰まり検出方法であって、
     前記詰まり検知手段は、
     第1の電磁弁を閉にした状態で、真空ポンプをONからOFFへ変更し、
    その後、第1の電磁弁を閉から開にし、第1の電磁弁を閉から開にした時点から、前記判定手段により真空タンク内の真空値が所定の閾値以上になった時までの時間を、所定の閾値を比較することにより、流路の詰まりの有無を検知することを特徴とする、自動分析装置の流路詰まり検出方法。
PCT/JP2019/001964 2018-03-15 2019-01-23 自動分析装置および自動分析装置の流路詰まり検出方法 WO2019176295A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020505630A JP6877629B2 (ja) 2018-03-15 2019-01-23 自動分析装置および自動分析装置の流路詰まり検出方法
US16/645,600 US11079402B2 (en) 2018-03-15 2019-01-23 Automatic analyzing apparatus, and method for detecting flow path clogging of the automatic analyzing apparatus
EP19767024.3A EP3767299B1 (en) 2018-03-15 2019-01-23 Automatic analyzing apparatus, and method for detecting flow path clogging of the automatic analyzing apparatus
CN201980004511.1A CN111133317B (zh) 2018-03-15 2019-01-23 自动分析装置以及自动分析装置的流路堵塞检测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018047432 2018-03-15
JP2018-047432 2018-03-15

Publications (1)

Publication Number Publication Date
WO2019176295A1 true WO2019176295A1 (ja) 2019-09-19

Family

ID=67907101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001964 WO2019176295A1 (ja) 2018-03-15 2019-01-23 自動分析装置および自動分析装置の流路詰まり検出方法

Country Status (5)

Country Link
US (1) US11079402B2 (ja)
EP (1) EP3767299B1 (ja)
JP (1) JP6877629B2 (ja)
CN (1) CN111133317B (ja)
WO (1) WO2019176295A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244565A1 (ja) * 2021-05-21 2022-11-24 株式会社日立ハイテク 自動分析装置
JP7476077B2 (ja) 2020-11-02 2024-04-30 日本電子株式会社 自動分析装置、および自動分析方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209901A (ja) * 1993-01-13 1994-08-02 Olympus Optical Co Ltd 気腹装置
JPH0938029A (ja) * 1995-07-28 1997-02-10 Olympus Optical Co Ltd 気腹装置
JP2000046846A (ja) * 1998-07-24 2000-02-18 Fujirebio Inc 吸引流路の詰まりまたは吸引量不足の検出方法、試料液吸引 装置、及び分注装置
WO2007132632A1 (ja) 2006-05-17 2007-11-22 Olympus Corporation 洗浄装置および自動分析装置
WO2014119525A1 (ja) * 2013-01-31 2014-08-07 株式会社日立ハイテクノロジーズ 自動分析装置
JP2018503835A (ja) * 2015-01-05 2018-02-08 ソシエテ ドゥ コンストリュクシオン デキプマン ドゥ メカニザシオン エ ドゥ マシーン エスセウエムエム 工具の少なくとも1つの内部パイプの部分的または完全な閉塞を検知するシステム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR870002377A (ko) * 1985-08-05 1987-03-31 미다 가쓰시게 자동차용 부압공급장치
JP3682138B2 (ja) * 1997-02-13 2005-08-10 アロカ株式会社 分注装置
JP4949389B2 (ja) * 2006-05-11 2012-06-06 ベックマン コールター, インコーポレイテッド 自動分析装置
CH704397A2 (de) * 2011-01-28 2012-07-31 Tecan Trading Ag Verfahren zum Erfassen der Befüllbarkeit eines Abfallbehälters von Mikroplatten-Waschgeräten.
JP6018828B2 (ja) * 2012-07-27 2016-11-02 株式会社日立ハイテクノロジーズ 自動分析装置
JP5984584B2 (ja) * 2012-08-28 2016-09-06 株式会社日立ハイテクノロジーズ 自動分析装置
US9616426B2 (en) * 2012-08-29 2017-04-11 Siemens Healthcare Diagnostics Inc. Pipettor, reagent, and wash solution heater
JP6261941B2 (ja) * 2013-10-24 2018-01-17 東芝メディカルシステムズ株式会社 自動分析装置
WO2015111470A1 (ja) * 2014-01-27 2015-07-30 株式会社 日立ハイテクノロジーズ 自動分析装置
JP6316670B2 (ja) * 2014-06-17 2018-04-25 キヤノンメディカルシステムズ株式会社 臨床検査装置
JP6567890B2 (ja) * 2015-06-19 2019-08-28 株式会社日立ハイテクノロジーズ 自動分析装置
JP7051803B2 (ja) * 2017-02-24 2022-04-11 株式会社日立ハイテク 自動分析装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209901A (ja) * 1993-01-13 1994-08-02 Olympus Optical Co Ltd 気腹装置
JPH0938029A (ja) * 1995-07-28 1997-02-10 Olympus Optical Co Ltd 気腹装置
JP2000046846A (ja) * 1998-07-24 2000-02-18 Fujirebio Inc 吸引流路の詰まりまたは吸引量不足の検出方法、試料液吸引 装置、及び分注装置
WO2007132632A1 (ja) 2006-05-17 2007-11-22 Olympus Corporation 洗浄装置および自動分析装置
WO2014119525A1 (ja) * 2013-01-31 2014-08-07 株式会社日立ハイテクノロジーズ 自動分析装置
JP2018503835A (ja) * 2015-01-05 2018-02-08 ソシエテ ドゥ コンストリュクシオン デキプマン ドゥ メカニザシオン エ ドゥ マシーン エスセウエムエム 工具の少なくとも1つの内部パイプの部分的または完全な閉塞を検知するシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3767299A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7476077B2 (ja) 2020-11-02 2024-04-30 日本電子株式会社 自動分析装置、および自動分析方法
WO2022244565A1 (ja) * 2021-05-21 2022-11-24 株式会社日立ハイテク 自動分析装置

Also Published As

Publication number Publication date
US11079402B2 (en) 2021-08-03
EP3767299A4 (en) 2021-12-08
EP3767299A1 (en) 2021-01-20
JP6877629B2 (ja) 2021-05-26
EP3767299B1 (en) 2023-06-07
US20200278373A1 (en) 2020-09-03
JPWO2019176295A1 (ja) 2020-10-22
CN111133317B (zh) 2021-05-04
CN111133317A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
US8088343B2 (en) Automatic analyzer
WO2009154049A1 (ja) 自動分析装置
JP6018828B2 (ja) 自動分析装置
JP6009872B2 (ja) 自動分析装置
JP2007315969A (ja) 自動分析装置および分注機構の分注異常判定方法
WO2019176295A1 (ja) 自動分析装置および自動分析装置の流路詰まり検出方法
JP6654881B2 (ja) 自動分析装置及び自動分析装置の異常判定方法
JP2010210596A (ja) 自動分析装置およびプローブ洗浄方法
JP2010071765A (ja) 分注プローブ洗浄方法および自動分析装置
JP5111328B2 (ja) 自動分析装置
JP3120180U (ja) 自動分析装置
JP2011106828A (ja) 分注装置、自動分析装置及び分注方法
JP6711690B2 (ja) 自動分析装置
US10761105B2 (en) Automatic analyzing apparatus
JP6338898B2 (ja) 自動分析装置
JP2001305145A (ja) 自動分析装置
JPH1073601A (ja) 自動分析装置
JP7002669B2 (ja) 自動分析装置
JP7167037B2 (ja) 自動分析装置および検体分注機構の異常検出方法
JPH05164764A (ja) 自動化学分析装置のサンプリングシステム
JP2005308506A (ja) 自動分析装置
CN113039440A (zh) 自动分析装置
JP2016090526A (ja) 自動分析装置
JP2010223638A (ja) 分注装置、自動分析装置及び分注装置の分注監視方法
JPH06331631A (ja) 生化学自動分析装置の洗浄装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767024

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505630

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019767024

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019767024

Country of ref document: EP

Effective date: 20201015