WO2019175990A1 - めっき装置及びめっきシステム - Google Patents

めっき装置及びめっきシステム Download PDF

Info

Publication number
WO2019175990A1
WO2019175990A1 PCT/JP2018/009815 JP2018009815W WO2019175990A1 WO 2019175990 A1 WO2019175990 A1 WO 2019175990A1 JP 2018009815 W JP2018009815 W JP 2018009815W WO 2019175990 A1 WO2019175990 A1 WO 2019175990A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
current
cathodes
pair
cathode
Prior art date
Application number
PCT/JP2018/009815
Other languages
English (en)
French (fr)
Inventor
渡 山本
仁子 小岩
秋山 勝徳
芳明 星野
Original Assignee
株式会社山本鍍金試験器
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社山本鍍金試験器 filed Critical 株式会社山本鍍金試験器
Priority to DE112018007274.6T priority Critical patent/DE112018007274B4/de
Priority to US16/980,834 priority patent/US11674236B2/en
Priority to JP2020506005A priority patent/JP6877070B2/ja
Priority to CN201880089834.0A priority patent/CN111801445B/zh
Priority to KR1020207026247A priority patent/KR102373893B1/ko
Priority to PCT/JP2018/009815 priority patent/WO2019175990A1/ja
Priority to TW108105020A priority patent/TWI691620B/zh
Publication of WO2019175990A1 publication Critical patent/WO2019175990A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4161Systems measuring the voltage and using a constant current supply, e.g. chronopotentiometry

Definitions

  • the present invention relates to a plating apparatus and a plating system used for, for example, a Harling cell test.
  • Haring cell test is known as a method for evaluating plating performance.
  • an anode is placed between a pair of cathodes to perform plating, and the uniform electrodeposition of plating deposited on the pair of cathodes is evaluated.
  • the current distribution is largely related to the uniform electrodeposition, and the current distribution is roughly divided into a primary current distribution and a secondary current distribution.
  • the primary current distribution is determined by the geometric conditions in the plating tank (the shape of the object to be plated, the shape of the plating tank, the electrode arrangement, etc.) regardless of the plating bath, plating conditions, etc. Is possible. Most of the plating distribution is determined by the primary current distribution.
  • the secondary current distribution is determined by electrochemical characteristics such as the polarization at the cathode, the conductivity of the plating bath, and the like, and varies depending on the type of the plating bath, the type and amount of the additive, and the like.
  • the macro throwing power which is the ability to deposit a film uniformly on the entire surface of the object to be plated.
  • the micro throwing power which is the ability to deposit a film in the recesses (grooves, holes, etc.) of the object to be plated.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a plating apparatus and a plating system capable of suitably measuring the micro throwing power.
  • a plating apparatus of the present invention includes an anode provided in a plating tank, an insulating base material provided in the plating tank, having a hole, and a bottom of the hole. And a pair of cathodes respectively provided on the opening side surface of the hole portion in the insulating base, a plating power source for flowing a current between the anode and the pair of cathodes, and the pair of It is characterized by comprising at least one of a current measuring unit for measuring a current value flowing through each of the cathodes and a voltage measuring unit for measuring the respective voltage values of the pair of cathodes.
  • the micro throwing power can be suitably measured.
  • (A) is a schematic diagram which shows the 1st plating apparatus which concerns on 1st embodiment of this invention
  • (b) is sectional drawing which shows a 1st cathode typically. It is a figure which shows the example of the circuit diagram of the 1st plating apparatus which concerns on 1st embodiment of this invention. It is a figure which shows the example of the circuit diagram of the 1st plating apparatus which concerns on 1st embodiment of this invention. It is a schematic diagram which shows the plating system which concerns on 2nd embodiment of this invention. It is a figure which shows the example of the circuit diagram of the 2nd plating apparatus which concerns on 2nd embodiment of this invention.
  • (A) is a graph showing temporal changes in the current value and voltage value of the cathode when potential correction by the feedback circuit is not performed in the second plating apparatus, and (b) is potential correction by the feedback circuit in the second plating apparatus. It is a graph which shows the time-dependent change of the electric current value and voltage value of a cathode at the time of performing.
  • (A) is a graph showing the change over time in the current distribution ratio when the potential correction is performed by the feedback circuit in the second plating apparatus, and (b) is the electrolysis when the potential correction is performed by the feedback circuit in the second plating apparatus. It is a graph which shows a time-dependent change of a voltage.
  • the first plating apparatus 1A performs plating on a pair of cathodes 13AX and 13AY at the same time, so that the electrodeposition is more detailed. Is a plating tester for performing a Harling cell test for evaluating micro throwing power.
  • the first plating apparatus 1A is, for example, one of constant current electrolysis and constant voltage electrolysis (in this embodiment, the total current flowing through the pair of first cathodes 13AX and 13AY is a constant current having a constant value (constant current). And plating by constant voltage electrolysis).
  • the first plating apparatus 1A includes a first plating tank 11A, a first anode 12A, a pair of first cathodes 13A (13AX, 13AY), a first plating power source (rectifier) 14A, Circuit unit 20A, control unit 31, operation unit 32, and display unit 33.
  • the plating bath 2 is stored in the first plating tank 11A.
  • Examples of the plating bath 2 include copper sulfate plating (general bath, high-throw bath).
  • the first anode 12A is a metal plate provided so as to be immersed in the plating bath 2 between the pair of first cathodes 13AX and 13AY in the first plating tank 11A.
  • the pair of first cathodes 13AX and 13AY are metal plates that are spaced apart from each other and are provided so as to be immersed in the plating bath 2 in a state of facing the first anode 12A in the first plating tank 11A.
  • the first plating apparatus 1A includes a base material 3 formed of an insulating material, one first cathode 13AX provided on one surface of the base material 3, and an insulating material.
  • the base material 4 which is formed and sandwiches the first cathode together with the base material 3 and the other second cathode 13AY provided on one surface of the base material 4 are provided.
  • a plurality of holes 5 having a cylindrical shape are formed in the substrate 4 and the other second cathode 13AY.
  • One first cathode 13 AX constitutes the bottom surface of the hole 5. Further, the structure constituted by the base materials 3 and 4 and the pair of first cathodes 13AX and 13AY is provided in the plating bath 2 in such a posture that the opening of the hole portion 5 faces the first anode 12A.
  • the first plating power source (rectifier) 14A supplies a plating current to the pair of first cathodes 13AX and 13AY.
  • the first plating power source 14A is electrically connected to the first anode 12A and the pair of first cathodes 13AX, 13AY via the first circuit portion 20A, and the pair of first cathodes 13AX, 13AY.
  • This is a direct current power source for passing a plating current for depositing plating on the substrate.
  • the first plating power source 14A is a constant current power source, and makes the total value of the current flowing through the first cathode 13AX and the current flowing through the first cathode 13AY constant.
  • the first circuit unit 20A constitutes an electric circuit together with the first anode 12A, the pair of first cathodes 13AX and 13AY, and the first plating power source 14A.
  • the first circuit unit 20A includes a first feedback circuit 21A, a first current measurement circuit 22A, and a first voltage measurement circuit 23A.
  • the first feedback circuit 21A matches one potential of the pair of first cathodes 13AX and 13AY with the other potential based on the voltage (potential) of the first anode 12A and the first cathodes 13AX and 13AY. Feedback control is performed. In other words, the first feedback circuit 21 determines the potential difference between the first anode 12A and the first cathode 13AX based on the voltages (potentials) of the first anode 12A and the first cathodes 13AX and 13AY. The feedback control is performed so that the potential difference between the first anode 12A and the first cathode 13AY matches.
  • Such feedback control is performed in a constant current state in which the total value of the current flowing through the first cathode 13AX and the current flowing through the first cathode 13AY is maintained constant.
  • the constant current state may be realized by the performance of the first plating power source 14A or may be realized by the circuit configuration of the first circuit unit 20A. Further, the first feedback circuit 21A can be omitted.
  • the first current measurement circuit 22 ⁇ / b> A measures the current value flowing through each of the pair of first cathodes 13 ⁇ / b> AX and 13 ⁇ / b> AY and outputs the measured current value to the control unit 31.
  • Such a current value approaches each other when the hole 5 is filled with the plating film and the first cathodes 13AX and 13AY are electrically connected. That is, such a current value and its change with time (time from the start of plating to approaching each other) are one of the parameters indicating the micro throwing power of the plating bath 2.
  • the first voltage measurement circuit 23 ⁇ / b> A measures the potential of the pair of first cathodes 13 ⁇ / b> AX and 13 ⁇ / b> AY, that is, the voltage value, and outputs the measured voltage value to the control unit 31.
  • the first voltage measurement circuit 23 ⁇ / b> A can be omitted when voltage value measurement is unnecessary.
  • Such voltage values approach each other when the hole 5 is filled with a plating film and the first cathodes 13AX and 13AY are electrically connected when feedback control by the first feedback circuit 21A is not performed. That is, the voltage value and its change with time (the time from the start of plating until it approaches each other) are one of the parameters indicating the micro throwing power of the plating bath 2.
  • the control unit 31 includes a CPU (Central Processing Unit), a ROM (Read-Only Memory), a RAM (Random Access Memory), an input / output circuit, and the like.
  • the control unit 31 acquires the current values of the pair of first cathodes 13AX and 13AY measured by the first current measurement circuit 22A and outputs them to the display unit 33. Further, the control unit 31 acquires the voltage value of the pair of first cathodes 13AX and 13AY measured by the first voltage measurement circuit 23A and outputs the voltage value to the display unit 33.
  • control unit 31 calculates the deposition amount (theoretical deposition amount) of the plating on the pair of second cathodes 13AX and 13AY based on the current value (integrated current value) of the pair of second cathodes 13AX and 13AY. Can be output to the display unit 33.
  • the theoretical deposition amount A [g] of plating is the current I [A] flowing through the cathode 13B, the energization time t [s], the Faraday constant F [C / mol], and the atomic weight M [g / g of metal deposited as plating.
  • mol] and the ionic valence z are calculated by the following formula.
  • the Faraday coefficient F is stored in the control unit 31 in advance.
  • the current I is measured by the second current measurement circuit 22A.
  • the energization time t is measured by the control unit 31.
  • the atomic weight M and the ion valence z are input to the control unit 31 by the operation of the operation unit 32 by the user, or are selected from the values stored in the control unit 31 in advance by the operation of the operation unit 32 by the user. Yes.
  • the operation unit 32 includes a keyboard, a mouse, and the like.
  • the operation unit 32 outputs the operation result by the user to the control unit 31.
  • the display unit 33 is configured by a monitor.
  • the display unit 33 graphically displays changes over time such as current values and voltage values output from the control unit 31.
  • FIG. 2 shows a configuration in the first plating tank 11A, that is, a first anode 12A and a pair of first cathodes 13AX and 13AY, a resistor 15AX constituted by the first anode 12A and the first cathode 13AX, It is a circuit diagram imitating and describing the resistor 15AY constituted by the first anode 12A and the first cathode 13AY.
  • the sum of the currents flowing through the pair of first cathodes 13AX and 13AY is maintained at a constant value (constant current).
  • the plating apparatus 1A includes, as an electric circuit, a first plating power source 14A, a pair of resistors 15AX and 15AY, a pair of ammeters 22AX and 22AY, a first feedback circuit 21A, and a constant voltage circuit 24A. .
  • the resistor 15AX, the ammeter 22AX, and the constant voltage circuit 24A are connected in series, and the resistor 15AY, the ammeter 22AY, and the first feedback circuit 21A are connected in series.
  • the combination of the resistor 15AX, the ammeter 22AX and the constant voltage circuit 24A, and the combination of the resistor 15AY, the ammeter 22AY and the first feedback circuit 21A are provided in parallel to the first plating power source 14A. Yes.
  • the positive electrode of the first plating power source 14A is electrically connected to the first anode 12A, and the negative electrode of the first plating power source 14A is electrically connected to the pair of first cathodes 13AX and 13AY. Connected.
  • the resistor 15AX is a cell resistor that represents a potential difference between the first anode 12A and the first cathode 13AX.
  • the resistor 15AY is a cell resistor that represents a potential difference between the first anode 12A and the first cathode 13AY.
  • An ammeter 22AX which is one of the first current measurement circuits 22A, measures the value of the current flowing through the resistor 15AX, that is, the first cathode 13AX.
  • An ammeter 22AY which is one of the first current measurement circuits 22A, measures a current value flowing through the resistor 15AY, that is, the first cathode 13AY.
  • the first feedback circuit 21A matches the potential of the first cathode 13AY with the potential of the first cathode 13AX serving as a reference (the potential difference between the first cathode 13AX and the first cathode 13AY is set to zero). ) Control.
  • the first feedback circuit 21A is not limited to the illustrated FET (Field Effect Transistor), but can also be realized by a bipolar transistor, a semiconductor element, or the like.
  • the constant voltage circuit 24A which is one of the first circuit units 20A, sets the potential of the first cathode 13AX in order to put the potential of the first cathode 13AY within the controllable voltage range of the first feedback circuit 21A. It is a circuit for making it high.
  • the first plating apparatus 1A may be configured to include a diode or a resistor that has the same effect as the constant voltage circuit 24A instead of the constant voltage circuit 24A.
  • clips for connecting the signal input lines b1 to b3 (see FIG. 1) and the signal input lines b1 to b3 for measuring the current value and the voltage value and the respective poles 12A, 13AX, and 13AY (The signal input lines a1 to a3 (see FIG. 1) for energization of the respective poles 12A, 13AX, and 13AY and clips that connect the signal input lines a1 to a3 and the respective poles 12A, 13XA, and 13AY (not shown). (Not shown) provided separately (not shared).
  • FIG. 3 In the first plating apparatus 1A according to the first embodiment of the present invention, the sum of the currents flowing through the pair of first cathodes 13AX, 13AY is maintained at a constant value (constant current). Plating is performed by constant current electrolysis in a constant current state.
  • the first plating apparatus 1A shown in FIG. 3 includes an auxiliary power source 25A as an electric circuit instead of the constant voltage circuit 24A.
  • An auxiliary power source (rectifier) 25A that is one of the first circuit units 20A is a DC power source that supplies a plating current to the first cathode 13AY.
  • the auxiliary power source 25A is a constant current power source, and the combination of the first plating power source 14A and the auxiliary power source 25A is the sum of the current flowing through the first cathode 13AX and the current flowing through the first cathode 13AY. Keep the value constant.
  • the positive electrode of the auxiliary electrode 25A is electrically connected to the first anode 12A, and the negative electrode is electrically connected to the first cathode 13AY.
  • the first plating power source 14A supplies a plating current to the first cathode 13AX.
  • the positive electrode of the first plating power source 14A is electrically connected to the first anode 12A, and the negative electrode is electrically connected to the first cathode 13AX.
  • a plating current from the first plating power source 14A flows to the first cathode 13AX, and a plating current from the auxiliary power source 25A flows to the first cathode 13AY, and flows to the first anode 12A.
  • the total plating current of the first cathodes 13AX and 13AY flows.
  • the potential of the negative electrode of the auxiliary power supply 25A is set to be lower than the potential of the negative electrode of the first plating power supply 14A by a predetermined range (for example, several hundred [mV] to several [V]). This is a measure for putting the potential of the first cathode 13AY within the controllable voltage range of the first feedback circuit 21A.
  • the auxiliary power source 25A has a capability of sufficiently supplying a plating current flowing through the first cathode 13AY.
  • clips for connecting the signal input lines b1 to b3 (see FIG. 1) and the signal input lines b1 to b3 for measuring the current value and the voltage value and the respective poles 12A, 13AX, and 13AY (The signal input lines a1 to a3 (see FIG. 1) for energization of the respective poles 12A, 13AX, and 13AY and clips that connect the signal input lines a1 to a3 and the respective poles 12A, 13AX, and 13AY (not shown). (Not shown) provided separately (not shared).
  • a plating film deposited on the first cathode 13AY grows in the hole 5 and is electrically connected to the first cathode 13AY.
  • the current values of the first cathodes 13AX and 13AY approach at this point. If the feedback control by the first feedback circuit 21A is not performed, the current values and voltage values of the first cathodes 13AX and 13AY substantially coincide at this time.
  • the control unit 31 can measure the time from the start of plating to the time point as a parameter of the micro throwing power.
  • the first plating apparatus 1A prepares and measures the combination of the first cathodes 13AX and 13AY and the base materials 4 and 5 with different shapes (diameters, depths, intervals, etc.) of the hole portions 5. By performing, it becomes possible to predict the difference (embedding property) of the micro throwing power with respect to the object to be plated having various recesses (grooves, holes, etc.).
  • the micro throwing power is suitably used. Can be measured.
  • the first plating apparatus 1A can perform a Haring cell test that excludes the influence of the ammeters 22AX and 22AY.
  • a plating system MS according to the second embodiment of the present invention includes a second plating tank 11B, a second anode 12B, and a pair of second plating apparatuses 1B.
  • a cathode 13B (13BX, 13BY), a second plating power source (rectifier) 14B, and a second circuit unit 20B are provided.
  • the control unit 31, the operation unit 32, and the display unit 33 are shared with the first plating apparatus 1A.
  • the plating apparatus 1B performs plating on the pair of second cathodes 13BX and 13BY at the same time, and performs uniform electrodeposition based on the weight of the deposited plating. It is a plating tester for performing a Haring cell test for evaluating throwing power.
  • the second plating apparatus 1B is, for example, one of constant current electrolysis and constant voltage electrolysis (in this embodiment, the total current flowing through the pair of second cathodes 13BX and 13BY is a constant current having a constant value (constant current). And plating by constant voltage electrolysis).
  • a plating bath 2 of the same type as the first plating tank 11A is stored in the second plating tank 11B.
  • Examples of the plating bath 2 include copper sulfate plating (general bath, high-throw bath).
  • the second anode 12B is a metal plate provided so as to be immersed in the plating bath 2 between the pair of second cathodes 13BX and 13BY in the second plating tank 11B.
  • the distance between the second anode 12B and the pair of second cathodes 13BX and 13BY can be changed. That is, the second anode 12B is close to one second cathode 13BX (that is, away from the other second cathode 13BY) between the pair of second cathodes 13BX and 13BY, or the other cathode 13BY. (That is, away from one second cathode 13BX).
  • the pair of second cathodes 13BX and 13BY are metal plates that are separated from each other and are provided so as to be immersed in the plating bath 2 with the second anode 12B sandwiched in the second plating tank 11B. .
  • at least one of the second cathodes 13BX and 13BY may be a metal plating object that is a processed product that is actually plated.
  • the arrangement relationship between the second anode 12B and the pair of second cathodes 13BX and 13BY is not limited to that described above.
  • the pair of second cathodes 13BX and 13BY may be arranged at different distances on one side of the second anode 12B.
  • the second plating power source (rectifier) 14B supplies a plating current to the pair of second cathodes 13BX and 13BY.
  • the second plating power source 14B is electrically connected to the second anode 12B and the pair of second cathodes 13BX and 13BY via the second circuit portion 20B, and the pair of second cathodes 13BX and 13BY.
  • This is a direct current power source for passing a plating current for depositing plating on the substrate.
  • the second plating power source 14B is a constant current power source, and makes the total value of the current flowing through the second cathode 13BX and the current flowing through the second cathode 13BY constant.
  • the second circuit unit 20B constitutes an electric circuit together with the second anode 12B, the pair of second cathodes 13BX and 13BY, and the second plating power source 14B.
  • the second circuit unit 20B includes a second feedback circuit 21B, a second current measurement circuit 22B, and a second voltage measurement circuit 23B.
  • the second feedback circuit 21B Based on the voltage (potential) of the second anode 12B and the second cathode 13BX, 13BY, the second feedback circuit 21B matches one potential of the pair of second cathodes 13BX, 13BY with the other potential. Feedback control is performed. In other words, the second feedback circuit 21B has a potential difference between the second anode 12B and the second cathode 13BX based on the voltages (potentials) of the second anode 12B and the second cathodes 13BX and 13BY. The feedback control is performed so that the potential difference between the second anode 12B and the second cathode 13BY matches.
  • Such feedback control is performed in a constant current state in which the total value of the current flowing through the second cathode 13BX and the current flowing through the second cathode 13BY is kept constant.
  • the constant current state may be realized by the performance of the second plating power source 14B, or may be realized by the circuit configuration of the second circuit unit 20B.
  • the second current measurement circuit 22 ⁇ / b> B measures the current value flowing through each of the pair of second cathodes 13 ⁇ / b> BX and 13 ⁇ / b> BY and outputs the measured current value to the control unit 31.
  • the second voltage measurement circuit 23B measures the potential, that is, the voltage value of the pair of second cathodes 13BX and 13BY, and outputs the measured voltage value to the control unit 31.
  • the 2nd voltage measurement circuit 23B can be abbreviate
  • the control unit 31 includes a CPU (Central Processing Unit), a ROM (Read-Only Memory), a RAM (Random Access Memory), an input / output circuit, and the like.
  • the control unit 31 stores in advance the distance (or the ratio) between the second anode 12B and the pair of second cathodes 13BX and 13BY output from the operation unit 32 before the actual test.
  • the control unit 31 acquires and acquires the distance (or the ratio) between the second anode 12B and the pair of second cathodes 13BX and 13BY output from the operation unit 32 before calculating various parameters.
  • Various parameters are calculated based on the measured distance (or ratio).
  • control unit 31 acquires the current values of the pair of second cathodes 13BX and 13BY measured by the second current measurement circuit 22B and outputs them to the display unit 33. In addition, the control unit 31 acquires the voltage values of the pair of second cathodes 13BX and 13BY measured by the second voltage measurement circuit 23B and outputs them to the display unit 33.
  • control unit 31 performs a pair of first current measurement circuits 22B (specifically, ammeters 22BX and 22BY described later) based on the current values of the pair of second cathodes 13BX and 13BY.
  • a current distribution ratio that is a ratio of currents flowing through the second cathodes 13BX and 13BY can be calculated and output to the display unit 33.
  • control unit 31 calculates the deposition amount (theoretical deposition amount) of the plating on the pair of second cathodes 13BX and 13BY based on the current value (integrated current value) of the pair of second cathodes 13BX and 13BY. Can be output to the display unit 33.
  • the theoretical deposition amount A [g] of plating is the current I [A] flowing through the cathode 13B, the energization time t [s], the Faraday constant F [C / mol], and the atomic weight M [g / g of metal deposited as plating.
  • mol] and the ionic valence z are calculated by the following formula.
  • A I ⁇ t ⁇ M / (z ⁇ F)
  • the Faraday coefficient F is stored in the control unit 31 in advance.
  • the current I is measured by the second current measurement circuit 22B.
  • the energization time t is measured by the control unit 31.
  • the atomic weight M and the ion valence z are input to the control unit 31 by the operation of the operation unit 32 by the user, or are selected from the values stored in the control unit 31 in advance by the operation of the operation unit 32 by the user. Yes.
  • the control unit 31 also has a relationship between the value of the current flowing through the second cathode 13B and the actual deposition amount of plating, that is, the value of the current flowing through the second cathode 13B based on past experiments.
  • the amount of plating that is actually deposited per unit time depending on the current value is stored as a map or the like in association with each of the second cathodes 13BX and 13BY.
  • the user measures the weight of the second cathodes 13BX and 13BY before plating and the weight of the second cathodes 13BX and 13BY after plating (with plating) using a weigh scale.
  • a plating deposition amount (measured deposition amount) deposited on the second cathodes 13BX and 13BY is obtained.
  • the user operates the operation unit 32 to obtain the relationship based on the measured deposition amount and the current values of the pair of second cathodes 13BX and 13BY (measured values of the ammeters 22BX and 22BY). And stored in the control unit 31.
  • the control unit 31 uses the measurement results of the ammeters 22BX and 22BY (values of the currents flowing through the pair of second cathodes 13BX and 13BY) to refer to the relationship, and by considering the energization time t, plating is performed.
  • the amount of precipitation (estimated amount of precipitation) can be calculated and output to the display unit 33.
  • the controller 31 stores the distance between the second anode 12B stored in advance and the pair of second cathodes 13BX, 13BY, the estimated deposition amount of the pair of second cathodes 13BX, 13BY, based on, it calculates the uniform electrodeposition index T a, can be output to the display unit 33.
  • the distance between the second cathode 13B close to the second anode 12B and the second anode 12B is d 1
  • the distance between the second cathode 13B far from the second anode 12B and the second anode 12B is d 2
  • the uniform electrodeposition index T A [%] can be calculated by the following equation.
  • the estimated precipitation amounts A 1 and A 2 are calculated using the relationship between the above-described current value and the actual precipitation amount (actual precipitation amount in a preliminary experiment).
  • the inter-electrode distances d 1 and d 2 are those of the operation unit 32 by the user who has seen the scale (distance indicating the distance ratio or simply indicating the distance, not shown) provided in the second plating tank 11B.
  • the value is input to the control unit 31 by an operation, or is selected from values stored in the control unit 31 in advance by an operation of the operation unit 32 by a user.
  • Uniform electrodeposition index T A [%] is a parameter indicating the degree of uniformity of the plating deposited pair of second cathode 13 bx, the 13BY.
  • Uniform electrodeposition index T A is a value which changes within a range of approximately ⁇ 100%, if the pair of the second cathode 13 bx, the current distribution ratio to 13BY match the machining gap distance ratio d 2 / d 1 And 0%.
  • the control unit 31, the second cathode 13 bx calculates the uniform electrodeposition index T B using actually flowing current value 13BY, can output to the display unit 33.
  • uniform electrodeposition index T B [%] can be calculated by the following equation.
  • T B ⁇ (d 2 / d 1 ) ⁇ (I 1 / I 2 ) ⁇ / ⁇ (d 2 / d 1 ) + (I 1 / I 2 ) ⁇ 2 ⁇ ⁇ 100
  • the current values I 1 and I 2 are measured by the second current measurement circuit 22B.
  • Throwing power index T A with interelectrode distance d 1, d 2 is relatively whereas a value close to the theoretical value I 1 of the current actually flowing, I 2 (current distribution ratio I 1 / I 2) throwing power index T B with is the actual plating bath 2 performance (e.g., performance additives, is affected by the conductivity) value.
  • control unit 31 can also calculate the uniform electrodeposition indices T A and T B using the theoretical precipitation amount and output the calculated values to the display unit 33. In this case, it is possible to compare throwing power exponent T A based on the estimated amount of precipitated throwing power based on T B and the theoretical amount of precipitated index T A, and T B to the user.
  • control unit 31 can calculate the current efficiency based on the estimated precipitation amount and the theoretical precipitation amount, and can output the current efficiency to the display unit 33.
  • the current efficiency is a parameter indicating how efficiently the current flowing through the second cathodes 13BX and 13BY is used for plating deposition.
  • Current efficiency [%] (estimated precipitation amount / theoretical precipitation amount) ⁇ 100
  • the current efficiency for each of the second cathodes 13BX and 13BY can be calculated.
  • the user of the plating system MS actually measures the deposition amount (measured deposition amount) of the plating deposited on the second cathodes 13BX and 13BY by using a weigh scale and operates the operation unit 32.
  • the measured precipitation amount can be input to the control unit 31.
  • the control unit 31 acquires the actual precipitation amount output from the operation unit 32, calculates the current efficiency based on the acquired actual precipitation amount and the calculated theoretical precipitation amount, The data can be output to the display unit 33.
  • the control unit 31 a uniform electrodeposited index T A, the T B and current efficiency, a second cathode 13 bx, was calculated for each current density of 13BY, current density and throwing power exponent T A, T B and the current The efficiency can be correlated and output to the display unit 33.
  • the current density includes the current value I X flowing through the second cathode 13BX, the current value I Y flowing through the second cathode 13BY, the effective surface area of the second cathode 13BX (the plating in the plating bath 2 can be deposited).
  • the second cathodes 13BX and 13BY are formed in the same shape, and the effective surface area S X and the effective surface area S Y are set to the same value.
  • the present invention is also applicable when the second cathodes 13BX and 13BY are formed in different shapes or when the effective surface area S X and the effective surface area S Y are set to different values.
  • the operation unit 32 outputs the distance (or the ratio of the distances) between the second anode 12B and the pair of second cathodes 13BX and 13BY to the control unit 31 based on an operation by the user.
  • FIG. 5 shows a configuration in the second plating tank 11B, that is, a second anode 12B and a pair of second cathodes 13BX and 13BY, a resistor 15BX constituted by the second anode 12B and the second cathode 13BX, It is the circuit diagram which imitated and described resistor 15BY comprised by 2nd anode 12B and 2nd cathode 13BY.
  • the sum of the currents flowing through the pair of second cathodes 13BX and 13BY is maintained at a constant value (constant current).
  • the plating apparatus 1B includes, as an electric circuit, a second plating power source 14B, a pair of resistors 15BX and 15BY, a pair of ammeters 22BX and 22BY, a second feedback circuit 21B, and a constant voltage circuit 24B.
  • the resistor 15BX, the ammeter 22BX, and the constant voltage circuit 24B are connected in series
  • the resistor 15BY, the ammeter 22BY, and the second feedback circuit 21B are connected in series.
  • the combination of the resistor 15BX, the ammeter 22BX, and the constant voltage circuit 24B, and the combination of the resistor 15BY, the ammeter 22BY, and the second feedback circuit 21B are provided in parallel to the second plating power source 14B. Yes.
  • the positive electrode of the second plating power source 14B is electrically connected to the second anode 12B, and the negative electrode of the second plating power source 14B is electrically connected to the pair of second cathodes 13BX and 13BY. Connected.
  • the resistor 15BX is a cell resistor that represents a potential difference between the second anode 12B and the second cathode 13BX.
  • the resistor 15BY is a cell resistor that represents a potential difference between the second anode 12B and the second cathode 13BY.
  • An ammeter 22BX which is one of the second current measurement circuits 22B, measures a current value flowing through the resistor 15BX, that is, the second cathode 13BX.
  • An ammeter 22BY which is one of the second current measurement circuits 22B, measures a current value flowing through the resistor 15BY, that is, the second cathode 13BY.
  • the second feedback circuit 21B makes the potential of the second cathode 13BY coincide with the potential of the second cathode 13BX serving as a reference (the potential difference between the second cathode 13BX and the second cathode 13BY is set to zero). ) Control.
  • the second feedback circuit 21B is not limited to the illustrated FET (Field Effect Transistor), but can also be realized by a bipolar transistor, a semiconductor element, or the like.
  • the constant voltage circuit 24B which is one of the second circuit sections 20B, sets the potential of the second cathode 13BX in order to put the potential of the second cathode 13BY within the controllable voltage range of the second feedback circuit 21B. It is a circuit for making it high.
  • the second plating apparatus 1B may be configured to include a diode or a resistor that has the same effect as the constant voltage circuit 24B, instead of the constant voltage circuit 24B.
  • clips for connecting the signal input lines b1 to b3 (see FIG. 4) and the signal input lines b1 to b3 for measuring the current value and the voltage value and the respective poles 12B, 13BX, and 13BY are signal input lines a1 to a3 (see FIG. 4) for energizing the poles 12B, 13BX, and 13BY, and clips that connect the signal input lines a1 to a3 and the poles 12B, 13BX, and 13BY, respectively. (Not shown) provided separately (not shared).
  • An auxiliary power supply (rectifier) 25B which is one of the second circuit units 20B, is a DC power supply that supplies a plating current to the second cathode 13BY.
  • the auxiliary power supply 25B is a constant current power supply
  • the combination of the second plating power supply 14B and the auxiliary power supply 25B is the sum of the current flowing through the second cathode 13BX and the current flowing through the second cathode 13BY. Keep the value constant.
  • the auxiliary electrode 25B has a positive electrode electrically connected to the second anode 12B and a negative electrode electrically connected to the second cathode 13BY.
  • the second plating power source 14B supplies a plating current to the second cathode 13BX.
  • the positive electrode of the second plating power source 14B is electrically connected to the second anode 12B, and the negative electrode is electrically connected to the second cathode 13BX.
  • the plating current from the second plating power source 14B flows to the second cathode 13BX
  • the plating current from the auxiliary power source 25B flows to the second cathode 13BY
  • the second anode 12B flows to the second anode 12B.
  • the total plating current of the second cathodes 13BX and 13BY flows.
  • the negative electrode potential of the auxiliary power supply 25B is set to be lower than the negative electrode potential of the second plating power supply 14B by a predetermined range (for example, several hundred [mV] to several [V]). This is a measure for putting the potential of the second cathode 13BY within the controllable voltage range of the second feedback circuit 21B.
  • the auxiliary power supply 25B has a capability of sufficiently supplying a plating current that flows to the second cathode 13BY.
  • clips for connecting the signal input lines b1 to b3 (see FIG. 4) and the signal input lines b1 to b3 for measuring the current value and the voltage value and the respective poles 12B, 13BX, and 13BY are signal input lines a1 to a3 (see FIG. 4) for energizing the poles 12B, 13BX, and 13BY, and clips that connect the signal input lines a1 to a3 and the poles 12B, 13BX, and 13BY, respectively. (Not shown) provided separately (not shared).
  • the plating system MS according to the second embodiment of the present invention can measure the macro throwing power in addition to the micro throwing power as the electrodeposition uniformity. Therefore, the plating system MS can suitably measure the performance of the plating bath 2. Further, in the plating system MS including the second plating apparatus 1B, the second feedback circuit 21B has the second cathodes 13BX and 13BY in a state where the total value of the currents flowing through the second cathodes 13BX and 13BY is kept constant. Therefore, it is possible to eliminate the influence of resistance components that can enter the circuit, such as wiring resistance and contact resistance, and to perform a Harling cell test by inherent secondary current distribution.
  • the plating system MS including the second plating apparatus 1B has a reproducible and reliable plating deposition amount (current density, more specifically, a pair of second currents) based on the original secondary current distribution. can be the measurement of the cathode 13 bx, per average current density of 13BY) uniform electrodeposition index T B.
  • the plating system MS provided with the second plating apparatus 1B can perform a Haring cell test that eliminates the influence of the ammeters 22BX and 22BY.
  • the plating system MS including the second plating apparatus 1B uses the measurement results of the ammeters 22BX and 22BY, thereby using the current distribution ratio (I 1 : I 2 , I 2) of the current flowing through the second cathodes 13BX and 13BY. 1 / I 2 etc.) can be calculated accurately.
  • the user of the plating system MS including the second plating apparatus 1B can use the second cathode based on the estimated deposition amount and the theoretical deposition amount of the plating on the second cathodes 13BX and 13BY calculated by the plating system MS.
  • the diameter, depth, and interval of the hole 5 in the first plating apparatus 1A can be changed as appropriate.
  • a first cathode having a relatively large diameter having a cylindrical shape and a second cathode having a relatively small diameter having a cylindrical shape are provided, and the second cathode is accommodated in the first cathode.
  • the structure which deposits a plating film in the state of having been sufficient may be sufficient.
  • the hole 5 may have a through-hole shape that is continuously formed in the first cathode 13A and the base material 4.
  • Example 1 Using an apparatus in which the first feedback circuit 21A was omitted from the first plating apparatus 1A (see FIG. 1), the process was performed without a copper plating additive and without air agitation. As shown in FIG. 7, when the potential correction was not performed, the voltage value and current value of the pair of first cathodes 13AX and 13AY substantially coincided with each other around 1400 [seconds] after the start of plating. . This is because the copper plating grown on the first cathode 13AX filled the hole 5 and was electrically connected to the first cathode 13AY.
  • Example 2 Using the first plating apparatus 1A (see FIG. 2), copper plating was performed without additives and with air agitation. As shown in FIG. 8, when the potential correction was performed by the first feedback circuit 21A, the current values of the pair of first cathodes 13AX and 13AY approached around 1000 [seconds] after the start of plating. This is because the copper plating grown on the first cathode 13AX filled the hole 5 and was electrically connected to the first cathode 13AY.
  • Example 3> Using the second plating apparatus 1B (see FIG. 4), copper sulfate plating was performed without a general bath and additives.
  • the total current in the electric circuit is 1.2 [A]
  • the inter-electrode distance ratio (distance between the second anode 12B and the second cathode 13BX: distance between the second anode 12B and the second cathode 13BY) is 1. : Set to 5.
  • FIG. 9 shows changes over time in the current values and voltage values of the second cathodes 13BX and 13BY when potential correction by the second feedback circuit 21B is not performed in the second plating apparatus 1B (see FIG. 4).
  • FIG. 9 shows changes over time in the current values and voltage values of the second cathodes 13BX and 13BY when the potential correction is performed by the second feedback circuit 21B in the second plating apparatus 1B shown in FIG. Shown in (b).
  • the potential of the pair of second cathodes 13BX and 13BY is about 160 [mV] after 1000 [seconds] after the start of plating. A potential difference occurred.
  • the current distribution ratio (current value flowing through the second cathode 13BX: current value flowing through the second cathode 13BY) was a low value of 1: 3.05 due to the influence of the wiring resistance and the like. This is because the presence of wiring resistance or the like affects the direction in which the current values flowing through the pair of second cathodes 13BX and 13BY are made uniform. Therefore, uniform electrodeposition index T B by the estimation precipitation amount was a value higher 30.9%.
  • Example 4 Using the second plating apparatus 1B (see FIG. 4), copper sulfate plating was performed without an additive.
  • the total current in the electric circuit was set to 1.2 [A], and the inter-electrode distance ratio was set to 1: 5.
  • Potential correction by the second feedback circuit 21B was performed, and plating was performed in each of a general bath and a high-throw bath.
  • FIG. 10A shows the change over time of the current distribution ratio in such a case
  • FIG. 10B shows the change over time of the electrolysis voltage.
  • the potential of the second cathodes 13BX and 13BY is matched by feedback control in a constant current state in which the total value of the currents flowing through the second cathodes 13BX and 13BY is kept constant, so that a slight change in plating can be achieved. Can be measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

ミクロスローイングパワーを好適に測定することが可能なめっき装置を提供する。 第一のめっき装置(1A)は、第一のめっき槽(11A)内に設けられる第一の陽極(12A)と、第一のめっき槽(11A)内に設けられており、穴部(5)を有する絶縁性基材(4)と、穴部(5)の底部と、絶縁性基材(4)における穴部(5)の開口側の面と、にそれぞれ設けられる一対の第一の陰極(13AX,13AY)と、第一の陽極(12)と一対の第一の陰極(13AX,13AY)との間に電流を流すための第一のめっき電源(14A)と、一対の第一の陰極(13AX,13AY)のそれぞれに流れる電流値を計測する第一の電流計測回路(22A)と、を備える。

Description

めっき装置及びめっきシステム
 本発明は、例えばハーリングセル試験等に用いられるめっき装置及びめっきシステムに関する。
 従来、めっき性能を評価する手法として、ハーリングセル試験が知られている。ハーリングセル試験では、一対の陰極間に陽極を配置してめっきを行い、一対の陰極に析出するめっきの均一電着性を評価する。
 電気めっきにおいて、電流密度とめっき(金属)析出量とには、基本的には比例関係が成立する。しかし、広範囲の電流密度に対して析出量にそれほど差が生じない条件が得られれば、複雑な形状の製品に対して一定膜厚のめっき成膜が可能となる。このように、電流密度に関わらず均一なめっき膜厚が得られる性能を均一電着性とよぶ。
 均一電着性には電流分布が大きく関与しており、電流分布には、大きく分けて一次電流分布と二次電流分布とがある。一次電流分布は、めっき浴、めっき条件等に関係なく、めっき槽内の幾何学的条件(被めっき物の形状、めっき槽の形状、電極配置等)によって決まり、数学的な計算等で求めることが可能である。めっき分布の大部分は、かかる一次電流分布によって決まる。
 しかし、実際にめっきを行うと、陰極界面において分極現象が生じ、新たな電流分布すなわち二次電流分布が発生する。二次電流分布は、陰極における分極、めっき浴の伝導度等といった電気化学的特性によって決まるものであり、めっき浴の種類、添加剤の種類及び量等によって変化する。
 従来のハーリングセル試験では、均一電着性のうち、被めっき物の表面全体に均一に皮膜が析出する能力であるマクロスローイングパワーが測定されていた。しかし、従来のハーリングセル試験では、被めっき物の凹部(溝、穴等)に皮膜が析出する能力であるミクロスローイングパワーを測定することはできなかった。
 本発明は、前記の点に鑑みてなされたものであり、ミクロスローイングパワーを好適に測定することが可能なめっき装置及びめっきシステムを提供することを課題とする。
 前記した課題を解決するために、本発明のめっき装置は、めっき槽内に設けられる陽極と、前記めっき槽内に設けられており、穴部を有する絶縁性基材と、前記穴部の底部と、前記絶縁性基材における前記穴部の開口側の面と、にそれぞれ設けられる一対の陰極と、前記陽極と前記一対の陰極との間に電流を流すためのめっき電源と、前記一対の陰極のそれぞれに流れる電流値を計測する電流計測部及び前記一対の陰極のそれぞれの電圧値を計測する電圧測定部の少なくとも一方と、を備えることを特徴とする。
 本発明によると、ミクロスローイングパワーを好適に測定することができる。
(a)は本発明の第一の実施形態に係る第一のめっき装置を示す模式図、(b)は第一の陰極を模式的に示す断面図である。 本発明の第一の実施形態に係る第一のめっき装置の回路図の例を示す図である。 本発明の第一の実施形態に係る第一のめっき装置の回路図の例を示す図である。 本発明の第二の実施形態に係るめっきシステムを示す模式図である。 本発明の第二の実施形態に係る第二のめっき装置の回路図の例を示す図である。 本発明の第二の実施形態に係る第二のめっき装置の回路図の例を示す図である。 第一のめっき装置においてフィードバック回路による電位補正を行わなかった場合の陰極の電流値及び電圧値の経時変化を示すグラフである。 第一のめっき装置においてフィードバック回路による電位補正を行った場合の陰極の電流値及び電圧値の経時変化を示すグラフである。 (a)は第二のめっき装置においてフィードバック回路による電位補正を行わなかった場合の陰極の電流値及び電圧値の経時変化を示すグラフ、(b)は第二のめっき装置においてフィードバック回路による電位補正を行った場合の陰極の電流値及び電圧値の経時変化を示すグラフである。 (a)は第二のめっき装置においてフィードバック回路による電位補正を行った場合の電流配分比の経時変化示すグラフ、(b)は第二のめっき装置においてフィードバック回路による電位補正を行った場合の電解電圧の経時変化を示すグラフである。
 本発明の実施形態について、本発明のめっき装置及びめっきシステムをハーリングセル試験用のめっき試験器に適用した場合を例にとり、図面を参照して詳細に説明する。説明において、同一の要素には同一の符号を付し、重複する説明は省略する。
<第一の実施形態>
 図1(a)に示すように、本発明の第一の実施形態に係る第一のめっき装置1Aは、一対の陰極13AX,13AYに対して同時にめっきを行い、均一電着性、より詳細にはミクロスローイングパワーを評価するハーリングセル試験を行うためのめっき試験器である。第一のめっき装置1Aは、例えば定電流電解及び定電圧電解のいずれか(本実施形態では、一対の第一の陰極13AX,13AYに流れる電流の合計が一定値(一定電流)の定電流で、かつ、定電圧電解)によってめっきを行う。第一のめっき装置1Aは、第一のめっき槽11Aと、第一の陽極12Aと、一対の第一の陰極13A(13AX,13AY)と、第一のめっき電源(整流器)14Aと、第一の回路部20Aと、制御部31と、操作部32と、表示部33と、を備える。
≪第一のめっき槽≫
 第一のめっき槽11A内には、めっき浴2が貯留される。めっき浴2としては、硫酸銅めっき(一般浴、ハイスロー浴)等が挙げられる。
≪第一の陽極≫
 第一の陽極12Aは、第一のめっき槽11A内の一対の第一の陰極13AX,13AY間でめっき浴2に浸かるように設けられる金属板である。
≪第一の陰極≫
 一対の第一の陰極13AX,13AYは、互いに離間しており、第一のめっき槽11A内において第一の陽極12Aと対向する状態でめっき浴2に浸かるように設けられる金属板である。本実施形態において、第一のめっき装置1Aは、絶縁性材料によって形成されている基材3と、基材3の一面上に設けられている一方の第一の陰極13AXと、絶縁性材料によって形成されて基材3とともに一方の第一の陰極を挟み込む基材4と、基材4の一面上に設けられている他方の第二の陰極13AYと、を備える。基材4及び他方の第二の陰極13AYには、円筒形状を呈する複数の穴部5が形成されている。一方の第一の陰極13AXは、穴部5の底面を構成する。また、基材3,4及び一対の第一の陰極13AX,13AYによって構成される構造体は、穴部5の開口が第一の陽極12Aに向く姿勢でめっき浴2内に設けられる。
≪第一のめっき電源(整流器)≫
 第一のめっき電源(整流器)14Aは、一対の第一の陰極13AX,13AYにめっき電流を供給する。第一のめっき電源14Aは、第一の回路部20Aを介して第一の陽極12A及び一対の第一の陰極13AX,13AYと電気的に接続されており、一対の第一の陰極13AX,13AYにめっきを析出させるためのめっき電流を流す直流電源である。本実施形態において、第一のめっき電源14Aは、定電流電源であり、第一の陰極13AXに流れる電流と第一の陰極13AYに流れる電流との合計値を一定にする。
≪第一の回路部≫
 第一の回路部20Aは、第一の陽極12A、一対の第一の陰極13AX,13AY及び第一のめっき電源14Aとともに電気回路を構成する。第一の回路部20Aは、第一のフィードバック回路21Aと、第一の電流計測回路22Aと、第一の電圧計測回路23Aと、を備える。
≪第一のフィードバック回路≫
 第一のフィードバック回路21Aは、第一の陽極12A及び第一の陰極13AX,13AYの電圧(電位)に基づいて、一対の第一の陰極13AX,13AYの一方の電位を他方の電位に一致させるようにフィードバック制御を行う。換言すると、第一のフィードバック回路21は、第一の陽極12A及び第一の陰極13AX,13AYの電圧(電位)に基づいて、第一の陽極12Aと第一の陰極13AXとの間の電位差と、第一の陽極12Aと第一の陰極13AYとの間の電位差と、を一致させるようにフィードバック制御を行う。かかるフィードバック制御は、第一の陰極13AXに流れる電流と第一の陰極13AYに流れる電流との合計値が一定に維持された定電流の状態で行われる。なお、かかる定電流の状態は、第一のめっき電源14Aの性能によって実現されてもよく、第一の回路部20Aの回路構成によって実現されてもよい。また、第一のフィードバック回路21Aは省略可能である。
≪第一の電流計測回路≫
 第一の電流計測回路22Aは、一対の第一の陰極13AX,13AYのそれぞれに流れる電流値を計測し、計測された電流値を制御部31へ出力する。かかる電流値は、穴部5がめっき皮膜によって充填されて第一の陰極13AX,13AYが電気的に接続された場合に互いに近づく。すなわち、かかる電流値及びその経時変化(めっき開始から互いに近づくまでの時間)が、めっき浴2のミクロスローイングパワーを示すパラメータの一つである。
≪第一の電圧計測回路≫
 第一の電圧計測回路23Aは、一対の第一の陰極13AX,13AYの電位すなわち電圧値を計測し、計測された電圧値を制御部31へ出力する。なお、電圧値の計測が不要な場合には、第一の電圧計測回路23Aは省略可能である。かかる電圧値は、第一のフィードバック回路21Aによるフィードバック制御が行われない場合において、穴部5がめっき皮膜によって充填されて第一の陰極13AX,13AYが電気的に接続された場合に互いに近づく。すなわち、かかる電圧値及びその経時変化(めっき開始から互いに近づくまでの時間)が、めっき浴2のミクロスローイングパワーを示すパラメータの一つである。
≪制御部≫
 制御部31は、CPU(Central Processing Unit)、ROM(Read-Only Memory)、RAM(Random Access Memory)、入出力回路等によって構成されている。制御部31は、第一の電流計測回路22Aによって計測された一対の第一の陰極13AX,13AYの電流値を取得し、表示部33へ出力する。また、制御部31は、第一の電圧計測回路23Aによって計測された一対の第一の陰極13AX,13AYの電圧値を取得し、表示部33へ出力する。
 また、制御部31は、一対の第二の陰極13AX,13AYの電流値(積算電流値)に基づいて、一対の第二の陰極13AX,13AYにおけるめっきの析出量(理論析出量)を算出し、表示部33へ出力することができる。めっきの理論析出量A[g]は、陰極13Bに流れる電流I[A]、通電時間t[s]、ファラデー定数F[C/mol]、並びに、めっきとして析出する金属の原子量M[g/mol]及びイオン価数zを用いて、下記式によって算出される。
A=I・t・M/(z・F)
 ここで、ファラデー係数Fは、制御部31に予め記憶されている。電流Iは、第二の電流計測回路22Aによって計測されている。通電時間tは、制御部31によって計測されている。原子量M及びイオン価数zは、利用者による操作部32の操作によって制御部31に入力されているか、利用者による操作部32の操作によって、予め制御部31に記憶された値から選択されている。
≪操作部≫
 操作部32は、キーボード、マウス等によって構成されている。操作部32は、利用者による操作結果を制御部31へ出力する。
≪表示部≫
 表示部33は、モニタによって構成されている。表示部33は、制御部31から出力された電流値、電圧値等の経時変化をグラフ表示する。
<回路図の一例>
 図2は、第一のめっき槽11A内の構成すなわち第一の陽極12A及び一対の第一の陰極13AX,13AYを、第一の陽極12A及び第一の陰極13AXによって構成される抵抗15AXと、第一の陽極12A及び第一の陰極13AYによって構成される抵抗15AYと、に模して記載した回路図である。図2に示すように、本発明の第一の実施形態に係る第一のめっき装置1Aは、一対の第一の陰極13AX,13AYに流れる電流の合計が一定値(一定電流)に維持される定電流の状態における定電流電解でめっきを行う。めっき装置1Aは、電気回路として、第一のめっき電源14Aと、一対の抵抗15AX,15AYと、一対の電流計22AX,22AYと、第一のフィードバック回路21Aと、定電圧回路24Aと、を備える。かかる回路において、抵抗15AX、電流計22AX及び定電圧回路24Aは、直列に接続されており、抵抗15AY、電流計22AY及び第一のフィードバック回路21Aは、直列に接続されている。また、抵抗15AX、電流計22AX及び定電圧回路24Aの組み合わせと、抵抗15AY、電流計22AY及び第一のフィードバック回路21Aの組み合わせとは、第一のめっき電源14Aに対して互いに並列に設けられている。
≪第一のめっき電源≫
 本実施形態において、第一のめっき電源14Aの正極は、第一の陽極12Aと電気的に接続されており、第一のめっき電源14Aの負極は、一対の第一の陰極13AX,13AYと電気的に接続されている。
≪抵抗≫
 抵抗15AXは、第一の陽極12Aと第一の陰極13AXとの間の電位差を表すセル抵抗である。抵抗15AYは、第一の陽極12Aと第一の陰極13AYとの間の電位差を表すセル抵抗である。
≪電流計≫
 第一の電流計測回路22Aの一つである電流計22AXは、抵抗15AXすなわち第一の陰極13AXに流れる電流値を計測する。第一の電流計測回路22Aの一つである電流計22AYは、抵抗15AYすなわち第一の陰極13AYに流れる電流値を計測する。
≪第一のフィードバック回路≫
 第一のフィードバック回路21Aは、基準となる第一の陰極13AXの電位に第一の陰極13AYの電位を一致させる(第一の陰極13AXと第一の陰極13AYとの間の電位差をゼロとする)制御を行う。第一のフィードバック回路21Aは、図示したFET(Field Effect Transistor)に限定されず、バイポーラトランジスタ、半導体素子等によっても具現化可能である。
≪定電圧回路≫
 第一の回路部20Aの一つである定電圧回路24Aは、第一の陰極13AYの電位を第一のフィードバック回路21Aの制御可能な電圧範囲に入れるために、第一の陰極13AXの電位を高くするための回路である。なお、第一のめっき装置1Aは、定電圧回路24Aに代えて、当該定電圧回路24Aと同様の作用効果を奏するダイオード又は抵抗を備える構成であってもよい。
 かかる電気回路を構成するに際して、電流値及び電圧値の計測用の信号入力線b1~b3(図1参照)及び信号入力線b1~b3と各極12A,13AX,13AYとをそれぞれ接続するクリップ(図示せず)は、各極12A,13AX,13AYの通電用の信号入力線a1~a3(図1参照)及び信号入力線a1~a3と各極12A,13XA,13AYとをそれぞれ接続するクリップ(図示せず)とは別に設けられている(共用されていない)。
<回路図の別例>
 本発明の第一の実施形態に係る第一のめっき装置1Aの回路図の別例について、前記した一例との相違点を中心に説明する。図3に示すように、本発明の第一の実施形態に係る第一のめっき装置1Aは、一対の第一の陰極13AX,13AYに流れる電流の合計が一定値(一定電流)に維持される定電流の状態における定電流電解でめっきを行う。図3に示す第一のめっき装置1Aは、電気回路として、定電圧回路24Aに代えて、補助電源25Aを備える。
≪補助電源及び第一のめっき電源≫
 第一の回路部20Aの一つである補助電源(整流器)25Aは、第一の陰極13AYに対してめっき電流を供給する直流電源である。本実施形態において、補助電源25Aは、定電流電源であり、第一のめっき電源14A及び補助電源25Aの組み合わせは、第一の陰極13AXに流れる電流と第一の陰極13AYに流れる電流との合計値を一定にする。補助電極25Aの正極は、第一の陽極12Aと電気的に接続されており、負極は、第一の陰極13AYと電気的に接続されている。
 また、本実施形態において、第一のめっき電源14Aは、第一の陰極13AXに対してめっき電流を供給する。第一のめっき電源14Aの正極は、第一の陽極12Aと電気的に接続されており、負極は、第一の陰極13AXと電気的に接続されている。
 かかる電気回路において、第一の陰極13AXには、第一のめっき電源14Aからのめっき電流が流れ、第一の陰極13AYには、補助電源25Aからのめっき電流が流れ、第一の陽極12Aには、第一の陰極13AX,13AYの合計めっき電流が流れる。
 補助電源25Aの負極の電位は、第一のめっき電源14Aの負極の電位よりも所定範囲(例えば、数百[mV]~数[V])だけ低くなるように設定されている。これは、第一の陰極13AYの電位を第一のフィードバック回路21Aの制御可能な電圧範囲に入れるための措置である。また、補助電源25Aは、第一の陰極13AYに流れるめっき電流を十分に供給することが可能な能力を有する。
 かかる電気回路を構成するに際して、電流値及び電圧値の計測用の信号入力線b1~b3(図1参照)及び信号入力線b1~b3と各極12A,13AX,13AYとをそれぞれ接続するクリップ(図示せず)は、各極12A,13AX,13AYの通電用の信号入力線a1~a3(図1参照)及び信号入力線a1~a3と各極12A,13AX,13AYとをそれぞれ接続するクリップ(図示せず)とは別に設けられている(共用されていない)。
 第一のめっき装置1Aにおいてめっきが行われると、第一の陰極13AY上に析出しためっき皮膜が穴部5内で成長し、第一の陰極13AYと電気的に接続される。第一のフィードバック回路21Aによるフィードバック制御が行われている場合には、この時点で、第一の陰極13AX,13AYの電流値が近づく。また、第一のフィードバック回路21Aによるフィードバック制御が行われていない場合には、この時点で、第一の陰極13AX,13AYの電流値及び電圧値が略一致する。制御部31は、めっき開始からかかる時点までの時間を、ミクロスローイングパワーのパラメータとして測定することができる。
 また、第一のめっき装置1Aは、第一の陰極13AX,13AY及び基材4,5の組み合わせに関して、穴部5の形状(径、深さ、間隔等)が異なるものを用意して測定を行うことによって、様々な凹部(溝、穴等)を有する被めっき物に対するミクロスローイングパワーの違い(埋め込み性)を予測することを可能とする。
 本発明の第一の実施形態に係る第一のめっき装置1Aは、第一の陰極13AX,13AYが穴部5の底面及び開口の周縁のそれぞれに設けられているので、ミクロスローイングパワーを好適に測定することができる。
 また、第一のめっき装置1Aは、電流計22AX,22AYの影響を排除したハーリングセル試験を行うことができる。
<第二の実施形態>
 続いて、本発明の第二の実施形態に係るめっきシステムについて、第一の実施形態に係る第一のめっき装置1Aとの相違点を中心に説明する。図4に示すように、本発明の第二の実施形態に係るめっきシステムMSは、第二のめっき装置1Bとして、第二のめっき槽11Bと、第二の陽極12Bと、一対の第二の陰極13B(13BX,13BY)と、第二のめっき電源(整流器)14Bと、第二の回路部20Bと、を備える。制御部31、操作部32及び表示部33は、第一のめっき装置1Aと共用化されている。
 本発明の第二の実施形態に係るめっき装置1Bは、一対の第二の陰極13BX,13BYに対して同時にめっきを行い、析出しためっきの重量に基づいて均一電着性、より詳細にはマクロスローイングパワーを評価するハーリングセル試験を行うためのめっき試験器である。第二のめっき装置1Bは、例えば定電流電解及び定電圧電解のいずれか(本実施形態では、一対の第二の陰極13BX,13BYに流れる電流の合計が一定値(一定電流)の定電流で、かつ、定電圧電解)によってめっきを行う。
≪第二のめっき槽≫
 第二のめっき槽11B内には、第一のめっき槽11Aと同種のめっき浴2が貯留される。めっき浴2としては、硫酸銅めっき(一般浴、ハイスロー浴)等が挙げられる。
≪第二の陽極≫
 第二の陽極12Bは、第二のめっき槽11B内の一対の第二の陰極13BX,13BY間でめっき浴2に浸かるように設けられる金属板である。第二の陽極12Bは、一対の第二の陰極13BX,13BYとの距離を変更可能である。すなわち、第二の陽極12Bは、一対の第二の陰極13BX,13BY間において、一方の第二の陰極13BXに近づけたり(すなわち、他方の第二の陰極13BYから遠ざけたり)、他方の陰極13BYに近づけたり(すなわち、一方の第二の陰極13BXから遠ざけたり)することができる。
≪第二の陰極≫
 一対の第二の陰極13BX,13BYは、互いに離間しており、第二のめっき槽11B内において第二の陽極12Bを間に挟んだ状態でめっき浴2に浸かるように設けられる金属板である。なお、第二の陰極13BX,13BYの少なくとも一方は、実際にめっきが施された加工品となる金属製のめっき対象物であってもよい。
 なお、第二の陽極12Bと一対の第二の陰極13BX,13BYとの配置関係は、前記したものに限定されない。例えば、一対の第二の陰極13BX,13BYは、第二の陽極12Bの一方側にそれぞれ異なる距離で配置されていてもよい。
≪第二のめっき電源(整流器)≫
 第二のめっき電源(整流器)14Bは、一対の第二の陰極13BX,13BYにめっき電流を供給する。第二のめっき電源14Bは、第二の回路部20Bを介して第二の陽極12B及び一対の第二の陰極13BX,13BYと電気的に接続されており、一対の第二の陰極13BX,13BYにめっきを析出させるためのめっき電流を流す直流電源である。本実施形態において、第二のめっき電源14Bは、定電流電源であり、第二の陰極13BXに流れる電流と第二の陰極13BYに流れる電流との合計値を一定にする。
≪第二の回路部≫
 第二の回路部20Bは、第二の陽極12B、一対の第二の陰極13BX,13BY及び第二のめっき電源14Bとともに電気回路を構成する。第二の回路部20Bは、第二のフィードバック回路21Bと、第二の電流計測回路22Bと、第二の電圧計測回路23Bと、を備える。
≪第二のフィードバック回路≫
 第二のフィードバック回路21Bは、第二の陽極12B及び第二の陰極13BX,13BYの電圧(電位)に基づいて、一対の第二の陰極13BX,13BYの一方の電位を他方の電位に一致させるようにフィードバック制御を行う。換言すると、第二のフィードバック回路21Bは、第二の陽極12B及び第二の陰極13BX,13BYの電圧(電位)に基づいて、第二の陽極12Bと第二の陰極13BXとの間の電位差と、第二の陽極12Bと第二の陰極13BYとの間の電位差と、を一致させるようにフィードバック制御を行う。かかるフィードバック制御は、第二の陰極13BXに流れる電流と第二の陰極13BYに流れる電流との合計値が一定に維持された定電流の状態で行われる。なお、かかる定電流の状態は、第二のめっき電源14Bの性能によって実現されてもよく、第二の回路部20Bの回路構成によって実現されてもよい。
≪第二の電流計測回路≫
 第二の電流計測回路22Bは、一対の第二の陰極13BX,13BYのそれぞれに流れる電流値を計測し、計測された電流値を制御部31へ出力する。
≪第二の電圧計測回路≫
 第二の電圧計測回路23Bは、一対の第二の陰極13BX,13BYの電位すなわち電圧値を計測し、計測された電圧値を制御部31へ出力する。なお、電圧値の計測が不要な場合には、第二の電圧計測回路23Bは省略可能である。
≪制御部≫
 制御部31は、CPU(Central Processing Unit)、ROM(Read-Only Memory)、RAM(Random Access Memory)、入出力回路等によって構成されている。制御部31は、操作部32から出力された第二の陽極12Bと一対の第二の陰極13BX,13BYとの距離(又はその比)を、実際の試験前に予め記憶している。または、制御部31は、各種パラメータの算出前に、操作部32から出力された第二の陽極12Bと一対の第二の陰極13BX,13BYとの距離(又はその比)を取得し、取得された距離(又はその比)に基づいて各種パラメータを算出する。また、制御部31は、第二の電流計測回路22Bによって計測された一対の第二の陰極13BX,13BYの電流値を取得し、表示部33へ出力する。また、制御部31は、第二の電圧計測回路23Bによって計測された一対の第二の陰極13BX,13BYの電圧値を取得し、表示部33へ出力する。
 また、制御部31は、第二の電流計測回路22B(詳細には、後記する電流計22BX,22BY)によって計測された一対の第二の陰極13BX,13BYの電流値に基づいて、一対の第二の陰極13BX,13BYに流れる電流の比である電流配分比を算出し、表示部33へ出力することができる。
 また、制御部31は、一対の第二の陰極13BX,13BYの電流値(積算電流値)に基づいて、一対の第二の陰極13BX,13BYにおけるめっきの析出量(理論析出量)を算出し、表示部33へ出力することができる。めっきの理論析出量A[g]は、陰極13Bに流れる電流I[A]、通電時間t[s]、ファラデー定数F[C/mol]、並びに、めっきとして析出する金属の原子量M[g/mol]及びイオン価数zを用いて、下記式によって算出される。
A=I・t・M/(z・F)
 ここで、ファラデー係数Fは、制御部31に予め記憶されている。電流Iは、第二の電流計測回路22Bによって計測されている。通電時間tは、制御部31によって計測されている。原子量M及びイオン価数zは、利用者による操作部32の操作によって制御部31に入力されているか、利用者による操作部32の操作によって、予め制御部31に記憶された値から選択されている。
 また、制御部31には、第二の陰極13Bに流れる電流の値とめっきの実際の析出量との関係性、すなわち、過去の実験に基づいて、第二の陰極13Bに流れる電流の値と、当該電流の値によって単位時間あたりに実際に析出するめっきの析出量と、が第二の陰極13BX,13BYごとに関連付けてマップ等として記憶されている。利用者は、めっき前の第二の陰極13BX,13BYの重量と、めっき後の第二の陰極13BX,13BYの重量(めっき付き)と、を重量計を用いて計測し、これらの差から各第二の陰極13BX,13BYに析出しためっきの析出量(実測析出量)を得る。そして、利用者は、操作部32を操作することによって、かかる実測析出量と一対の第二の陰極13BX,13BYの電流値(電流計22BX、22BYの計測値)と、に基づく前記関係性を、制御部31に記憶させる。制御部31は、電流計22BX,22BYの計測結果(一対の第二の陰極13BX,13BYに流れる電流の値)を用いて前記関係性を参照するとともに、通電時間tを考慮することによって、めっきの析出量(推定析出量)を算出し、表示部33へ出力することができる。
 また、制御部31は、予め記憶された第二の陽極12Bと一対の第二の陰極13BX,13BYそれぞれとの距離と、算出された一対の第二の陰極13BX,13BYの推定析出量と、に基づいて、均一電着指数Tを算出し、表示部33へ出力することができる。ここで、第二の陽極12Bに近い第二の陰極13Bと第二の陽極12Bとの距離をd、第二の陽極12Bから遠い第二の陰極13Bと第二の陽極12Bとの距離をd、第二の陽極12Bに近い第二の陰極13Bの推定析出量をA、第二の陽極12Bから遠い第二の陰極13Bの推定析出量をAとすると、均一電着指数T[%]は、下記式によって算出可能である。
={(d/d)-(A/A)}/{(d/d)+(A/A)-2}×100
 ここで、推定析出量A,Aは、前記した電流値と実際の析出量(事前実験での実測析出量)との関係性を用いて算出されている。極間距離d,dは、第二のめっき槽11Bに設けられた目盛(距離比を示す目盛、又は、単に距離を示すメジャー。図示せず)を見た利用者による操作部32の操作によって制御部31に入力されているか、利用者による操作部32の操作によって、予め制御部31に記憶された値から選択されている。
 均一電着指数T[%]は、一対の第二の陰極13BX,13BYに析出するめっきの均一性の度合いを示すパラメータである。均一電着指数Tは、およそ±100%の範囲内で推移する値であり、一対の第二の陰極13BX,13BYへの電流配分比が極間距離比d/dと一致する場合に、0[%]となる。また、均一電着指数Tは、一対の第二の陰極13BX,13BYの析出量が等しい場合に、極間距離比d/dに関わらず、100[%]となる。すなわち、均一電着指数Tは、100[%]に近い値を示すほど、一対の第二の陰極13BX,13BYに均一に電着していることを示す。
 また、制御部31は、各第二の陰極13BX,13BYに実際に流れる電流値を用いて均一電着指数Tを算出し、表示部33へ出力することもできる。ここで、第二の陽極12Bに近い第二の陰極13Bに流れる電流の値をI、第二の陽極12Bから遠い第二の陰極13Bに流れる電流の値をIとすると、均一電着指数T[%]は、下記式によって算出可能である。
={(d/d)-(I/I)}/{(d/d)+(I/I)-2}×100
 ここで、電流値I,Iは、第二の電流計測回路22Bによって計測されている。
 極間距離d,dを用いた均一電着指数Tは、比較的、理論に近い値であるのに対し、実際に流れる電流の値I,I(電流配分比I/I)を用いた均一電着指数Tは、実際のめっき浴2の性能(例えば、添加剤の性能、導電率)に影響される値である。利用者は、均一電着指数T,Tを比較したり、電流の値I,I(電流配分比I:I、I/I等)の変化に伴う均一電着指数Tの値の変化を見たりすることによって、めっき浴2の性能及び状態(例えば、添加剤の性能、バランス、電流効率への影響)を知ることができる。
 なお、制御部31は、理論析出量を用いて均一電着指数T,Tを算出し、表示部33へ出力することもできる。この場合には、推定析出量に基づく均一電着指数T,Tと理論析出量に基づく均一電着指数T,Tとを利用者に比較させることができる。
 また、制御部31は、推定析出量及び理論析出量に基づいて電流効率を算出し、表示部33へ出力することができる。電流効率とは、第二の陰極13BX,13BYに流れる電流がどれだけ効率よくめっきの析出に用いられたかを示すパラメータである。
 電流効率[%]=(推定析出量/理論析出量)×100
 電流効率としては、第二の陰極13BX,13BYの合計析出量に基づく総合的な電流効率に加え、各第二の陰極13BX,13BYごとの電流効率も算出可能である。
 また、めっきシステムMSの利用者は、第二の陰極13BX,13BYに析出しためっきの析出量(実測析出量)を、重量計を用いて実際に計測するとともに、操作部32を操作することによって実測析出量を制御部31に入力させることができる。
 この場合には、制御部31は、操作部32から出力された実測析出量を取得し、取得された実測析出量と、算出された理論析出量と、に基づいて、電流効率を算出し、表示部33へ出力することができる。
 電流効率[%]=(実測析出量/理論析出量)×100
 かかる電流効率は、一対の第二の陰極13BX,13BYの全体の析出量に関して算出されてもよく、第二の陰極13BX,13BYごとの個別の析出量に関して算出されてもよい。
 また、制御部31は、均一電着指数T,T及び電流効率を、第二の陰極13BX,13BYの電流密度ごとに算出し、電流密度と均一電着指数T,T及び電流効率とを関連付けて表示部33へ出力することができる。ここで、電流密度は、第二の陰極13BXに流れる電流値I、第二の陰極13BYに流れる電流値I、第二の陰極13BXの有効表面積(めっき浴2内のめっきが析出可能な表面積)S、第二の陰極13BYの有効表面積(めっき浴2内のめっきが析出可能な表面積)Sを用いた下記式によって算出される。
 一対の第二の陰極13BX,13BYの平均電流密度[A/m]=(I+I)/(S+S
 第二の陰極13BXの電流密度[A/m]=I/S
 第二の陰極13BYの電流密度[A/m]=I/S
 ここで、第二の陰極13BX,13BYの有効表面積S,Sは、予め制御部31に記憶されているか、電流密度の算出前に利用者による操作部32の操作によって制御部31に入力される。本実施形態では、第二の陰極13BX,13BYは、同一形状に形成されており、有効表面積S及び有効表面積Sは、同一の値に設定されている。なお、本発明は、第二の陰極13BX,13BYがそれぞれ異なる形状に形成されていたり、有効表面積S及び有効表面積Sが異なる値に設定されていたりする場合にも適用可能である。
≪操作部≫
 例えば、操作部32は、利用者による操作に基づいて、第二の陽極12Bと一対の第二の陰極13BX,13BYとのそれぞれの距離(又は距離の比)を制御部31へ出力する。
<回路図の一例>
 図5は、第二のめっき槽11B内の構成すなわち第二の陽極12B及び一対の第二の陰極13BX,13BYを、第二の陽極12B及び第二の陰極13BXによって構成される抵抗15BXと、第二の陽極12B及び第二の陰極13BYによって構成される抵抗15BYと、に模して記載した回路図である。図4に示すように、本発明の第二の実施形態に係る第二のめっき装置1Bは、一対の第二の陰極13BX,13BYに流れる電流の合計が一定値(一定電流)に維持される定電流の状態における定電流電解でめっきを行う。めっき装置1Bは、電気回路として、第二のめっき電源14Bと、一対の抵抗15BX,15BYと、一対の電流計22BX,22BYと、第二のフィードバック回路21Bと、定電圧回路24Bと、を備える。かかる回路において、抵抗15BX、電流計22BX及び定電圧回路24Bは、直列に接続されており、抵抗15BY、電流計22BY及び第二のフィードバック回路21Bは、直列に接続されている。また、抵抗15BX、電流計22BX及び定電圧回路24Bの組み合わせと、抵抗15BY、電流計22BY及び第二のフィードバック回路21Bの組み合わせとは、第二のめっき電源14Bに対して互いに並列に設けられている。
≪第二のめっき電源≫
 本実施形態において、第二のめっき電源14Bの正極は、第二の陽極12Bと電気的に接続されており、第二のめっき電源14Bの負極は、一対の第二の陰極13BX,13BYと電気的に接続されている。
≪抵抗≫
 抵抗15BXは、第二の陽極12Bと第二の陰極13BXとの間の電位差を表すセル抵抗である。抵抗15BYは、第二の陽極12Bと第二の陰極13BYとの間の電位差を表すセル抵抗である。
≪電流計≫
 第二の電流計測回路22Bの一つである電流計22BXは、抵抗15BXすなわち第二の陰極13BXに流れる電流値を計測する。第二の電流計測回路22Bの一つである電流計22BYは、抵抗15BYすなわち第二の陰極13BYに流れる電流値を計測する。
≪第二のフィードバック回路≫
 第二のフィードバック回路21Bは、基準となる第二の陰極13BXの電位に第二の陰極13BYの電位を一致させる(第二の陰極13BXと第二の陰極13BYとの間の電位差をゼロとする)制御を行う。第二のフィードバック回路21Bは、図示したFET(Field Effect Transistor)に限定されず、バイポーラトランジスタ、半導体素子等によっても具現化可能である。
≪定電圧回路≫
 第二の回路部20Bの一つである定電圧回路24Bは、第二の陰極13BYの電位を第二のフィードバック回路21Bの制御可能な電圧範囲に入れるために、第二の陰極13BXの電位を高くするための回路である。なお、第二のめっき装置1Bは、定電圧回路24Bに代えて、当該定電圧回路24Bと同様の作用効果を奏するダイオード又は抵抗を備える構成であってもよい。
 かかる電気回路を構成するに際して、電流値及び電圧値の計測用の信号入力線b1~b3(図4参照)及び信号入力線b1~b3と各極12B,13BX,13BYとをそれぞれ接続するクリップ(図示せず)は、各極12B,13BX,13BYの通電用の信号入力線a1~a3(図4参照)及び信号入力線a1~a3と各極12B,13BX,13BYとをそれぞれ接続するクリップ(図示せず)とは別に設けられている(共用されていない)。
<回路図の別例>
 本発明の第二の実施形態に係る第二のめっき装置1Bの回路図の別例について、前記した一例との相違点を中心に説明する。図6に示すように、本発明の第二の実施形態に係る第二のめっき装置1Bは、一対の第二の陰極13BX,13BYに流れる電流の合計が一定値(一定電流)に維持される定電流の状態における定電流電解でめっきを行う。図5に示す第二のめっき装置1Bは、電気回路として、定電圧回路24Bに代えて、補助電源25Bを備える。
≪補助電源及び第二のめっき電源≫
 第二の回路部20Bの一つである補助電源(整流器)25Bは、第二の陰極13BYに対してめっき電流を供給する直流電源である。本実施形態において、補助電源25Bは、定電流電源であり、第二のめっき電源14B及び補助電源25Bの組み合わせは、第二の陰極13BXに流れる電流と第二の陰極13BYに流れる電流との合計値を一定にする。補助電極25Bの正極は、第二の陽極12Bと電気的に接続されており、負極は、第二の陰極13BYと電気的に接続されている。
 また、本実施形態において、第二のめっき電源14Bは、第二の陰極13BXに対してめっき電流を供給する。第二のめっき電源14Bの正極は、第二の陽極12Bと電気的に接続されており、負極は、第二の陰極13BXと電気的に接続されている。
 かかる電気回路において、第二の陰極13BXには、第二のめっき電源14Bからのめっき電流が流れ、第二の陰極13BYには、補助電源25Bからのめっき電流が流れ、第二の陽極12Bには、第二の陰極13BX,13BYの合計めっき電流が流れる。
 補助電源25Bの負極の電位は、第二のめっき電源14Bの負極の電位よりも所定範囲(例えば、数百[mV]~数[V])だけ低くなるように設定されている。これは、第二の陰極13BYの電位を第二のフィードバック回路21Bの制御可能な電圧範囲に入れるための措置である。また、補助電源25Bは、第二の陰極13BYに流れるめっき電流を十分に供給することが可能な能力を有する。
 かかる電気回路を構成するに際して、電流値及び電圧値の計測用の信号入力線b1~b3(図4参照)及び信号入力線b1~b3と各極12B,13BX,13BYとをそれぞれ接続するクリップ(図示せず)は、各極12B,13BX,13BYの通電用の信号入力線a1~a3(図4参照)及び信号入力線a1~a3と各極12B,13BX,13BYとをそれぞれ接続するクリップ(図示せず)とは別に設けられている(共用されていない)。
 本発明の第二の実施形態に係るめっきシステムMSは、電着均一性として、ミクロスローイングパワーに加えてマクロスローイングパワーを測定することができる。したがって、めっきシステムMSは、めっき浴2の性能を好適に測定することができる。
 また、第二のめっき装置1Bを備えるめっきシステムMSは、第二の陰極13BX,13BYに流れる電流の合計値が一定に維持された状態において第二のフィードバック回路21Bが第二の陰極13BX,13BYの電位を一致させるので、配線抵抗、接触抵抗等といった回路中に入り得る抵抗成分の影響を排除し、本来の二次電流配分によるハーリングセル試験を行うことができる。
 また、第二のめっき装置1Bを備えるめっきシステムMSは、本来の二次電流配分に基づいて、再現性及び信頼性の高いめっきの析出量及び(電流密度、より詳細には、一対の第二の陰極13BX,13BYの平均電流密度ごとの)均一電着指数Tを測定することができる。
 また、第二のめっき装置1Bを備えるめっきシステムMSは、電流計22BX,22BYの影響を排除したハーリングセル試験を行うことができる。
 また、第二のめっき装置1Bを備えるめっきシステムMSは、電流計22BX,22BYの計測結果を用いることによって、第二の陰極13BX,13BYに流れる電流の電流配分比(I:I、I/I等)を正確に算出することができる。
 また、第二のめっき装置1Bを備えるめっきシステムMSの利用者は、めっきシステムMSによって算出された第二の陰極13BX,13BYにおけるめっきの推定析出量及び理論析出量に基づいて、第二の陰極13BX,13BYの(電流密度、より詳細には、一対の第二の陰極13BX,13BYの平均電流密度、又は、各第二の陰極13BX,13BYの個別の電流密度ごとの)電流効率(すなわち、一対の第二の陰極13BX,13BY全体又は個別の陰極電流効率)を知ることができる。
 電流配分比、電流効率及び均一電着指数Tはめっき浴2の組成によって大きく変わるため、利用者は、電流配分比、電流効率及び均一電着指数Tの経時変化を調べることによって、めっき浴2の特性及び状態の経時変化を知ることができる。
 以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されず、本発明の要旨を逸脱しない範囲で適宜変更可能である。例えば、第一のめっき装置1Aにおける穴部5の径、深さ、間隔は、適宜変更可能である。また、変形例として、円筒形状を呈する比較的大径な第一の陰極と、円筒形状を呈する比較的小径な第二の陰極と、を備え、第二の陰極が第一の陰極に収容された状態でめっき皮膜を析出させる構成であってもよい。また、第一のめっき装置1Aにおいて、穴部5は、第一の陰極13A及び基材4にも連続形成されたスルーホール形状を呈する構成であってもよい。
<実施例1>
 第一のめっき装置1A(図1参照)から第一のフィードバック回路21Aを省略した装置を用いて、銅めっき添加剤無し、空気撹拌無しで実施した。図7に示すように、電位補正を行わなかった場合には、めっき開始後1400[秒]付近において、一対の第一の陰極13AX,13AYの電圧値及び電流値が略一致するようになった。これは、第一の陰極13AX上で成長した銅めっきが、穴部5を埋めて第一の陰極13AYと電気的に接続されたためである。
<実施例2>
 第一のめっき装置1A(図2参照)を用いて、銅めっきを添加剤無し、空気撹拌ありで実施した。図8に示すように、第一のフィードバック回路21Aによる電位補正を行った場合には、めっき開始後1000[秒]付近において、一対の第一の陰極13AX,13AYの電流値が近づいた。これは、第一の陰極13AX上で成長した銅めっきが、穴部5を埋めて第一の陰極13AYと電気的に接続されたためである。
<実施例3>
 第二のめっき装置1B(図4参照)を用いて、硫酸銅めっきを一般浴、添加剤無しで実施した。電気回路における全電流を1.2[A]、極間距離比(第二の陽極12Bと第二の陰極13BXとの距離:第二の陽極12Bと第二の陰極13BYとの距離)を1:5に設定した。第二のめっき装置1B(図4参照)において第二のフィードバック回路21Bによる電位補正を行わなかった場合(比較例)の第二の陰極13BX,13BYの電流値及び電圧値の経時変化を図9(a)に示し、第二のめっき装置1Bにおいて第二のフィードバック回路21Bによる電位補正を行った場合(実施例)の第二の陰極13BX,13BYの電流値及び電圧値の経時変化を図9(b)に示す。
 図9(a)に示すように、電位補正を行わなかった場合には、めっき開始後1000[秒]後において、一対の第二の陰極13BX,13BYの電位には、約160[mV]の電位差が生じた。また、配線抵抗等の影響によって、電流配分比(第二の陰極13BXに流れる電流値:第二の陰極13BYに流れる電流値)は、1:3.05と低めの値となった。これは、配線抵抗等の存在が、一対の第二の陰極13BX,13BYに流れる電流値を均一化する方向に影響するためである。そのため、推定析出量による均一電着指数Tは、30.9[%]と高めの値となった。
 これに対し、図9(b)に示すように、電位補正を行った場合には、一対の第二の陰極13BX,13BYの電位は、測定誤差の範囲内で完全に一致した。また、配線抵抗等の影響が除去されることによって、電流配分比は、1:4.12となった。そのため、推定析出量による均一電着指数Tは、10.5[%]と劇的に小さくなった。すなわち、実施例3で用いられためっき浴2の推定析出量による均一電着指数Tは、実際には10.5[%]であることがわかった。
<実施例4>
 第二のめっき装置1B(図4参照)を用いて、硫酸銅めっきを添加剤無しで実施した。電気回路における全電流を1.2[A]、極間距離比を1:5に設定した。第二のフィードバック回路21Bによる電位補正を行い、一般浴及びハイスロー浴のそれぞれでめっきを行った。かかる場合における電流配分比の経時変化を図10(a)に示し、電解電圧の経時変化を図10(b)に示す。
 図10(a)に示すように、めっき浴2の種類によって、電流配分比に明確な違いが生じた。一般浴の推定析出量による均一電着指数Tは11[%]であり、ハイスロー浴の推定析出量による均一電着指数Tは33[%]であった。
 また、図10(b)に示すように、ハイスロー浴において、第二の陽極12B上に皮膜(ブラックフィルム)が形成された状態(系列2~5)と皮膜が形成されていない状態(系列1)とで、電解開始時の電解電位の挙動に違いが生じた。また、めっき開始時に見られる電解電圧の上昇は、第二の陰極13BX,13BY近傍の銅イオンの減少による濃度過電圧の上昇を示している。このように、第二の陰極13BX,13BYに流れる電流の合計値を一定に維持した定電流の状態で第二の陰極13BX,13BYの電位をフィードバック制御によって一致させることで、めっきの些細な変化を測定することが可能となる。
 1A 第一のめっき装置(めっき装置)
 1B 第二のめっき装置
 2   めっき浴
 4   基材(絶縁性基材)
 5   穴部
 11A 第一のめっき槽(めっき槽)
 11B 第二のめっき槽
 12A 第一の陽極(陽極)
 12B 第二の陽極
 13A,13AX,13AY 第一の陰極(陰極)
 13B,13BX,13BY 第二の陰極
 14A 第一のめっき電源(めっき電源)
 14B 第二のめっき電源
 21A 第一のフィードバック回路(フィードバック回路)
 21B 第二のフィードバック回路
 22A 第一の電流計測回路(電流計測部)
 22B 第二の電流計測回路(第二の電流計測部)

Claims (4)

  1.  めっき槽内に設けられる陽極と、
     前記めっき槽内に設けられており、穴部を有する絶縁性基材と、
     前記穴部の底部と、前記絶縁性基材における前記穴部の開口側の面と、にそれぞれ設けられる一対の陰極と、
     前記陽極と前記一対の陰極との間に電流を流すためのめっき電源と、
     前記一対の陰極のそれぞれに流れる電流値を計測する電流計測部及び前記一対の陰極のそれぞれの電圧値を計測する電圧測定部の少なくとも一方と、
     を備えることを特徴とするめっき装置。
  2.  めっき槽内に設けられる陽極と、
     前記めっき槽内に設けられており、穴部を有する絶縁性基材と、
     前記穴部の底部と、前記絶縁性基材における前記穴部の開口側の面と、にそれぞれ設けられる一対の陰極と、
     前記陽極と前記一対の陰極との間に電流を流すためのめっき電源と、
     前記一対の陰極に流れる電流の合計値が一定に保たれた状態で、一方の前記陰極の電位と他方の前記陰極の電位とを一致させるフィードバック回路と、
    前記一対の陰極のそれぞれに流れる電流値を計測する電流計測部と、
     を備えることを特徴とするめっき装置。
  3.  請求項1又は請求項2に記載のめっき装置と、
     第二のめっき装置と、
     を備えるめっきシステムであって、
     前記第二のめっき装置は、
     第二のめっき槽内に設けられる第二の陽極及び一対の第二の陰極と、
     前記第二の陽極と前記一対の第二の陰極との間に電流を流すための第二のめっき電源と、
     前記一対の陰極に流れる電流の合計値が一定に保たれた状態で、一方の前記陰極の電位と他方の前記陰極の電位とを一致させる第二のフィードバック回路と、
     を備えることを特徴とするめっきシステム。
  4.  前記一対の第二の陰極のそれぞれに流れる電流値を計測する第二の電流計測部を備える
     ことを特徴とする請求項3に記載のめっきシステム。
PCT/JP2018/009815 2018-03-13 2018-03-13 めっき装置及びめっきシステム WO2019175990A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE112018007274.6T DE112018007274B4 (de) 2018-03-13 2018-03-13 Beschichtungsvorrichtung und Beschichtungssystem
US16/980,834 US11674236B2 (en) 2018-03-13 2018-03-13 Plating apparatus and plating system
JP2020506005A JP6877070B2 (ja) 2018-03-13 2018-03-13 めっき装置及びめっきシステム
CN201880089834.0A CN111801445B (zh) 2018-03-13 2018-03-13 镀层装置以及镀层系统
KR1020207026247A KR102373893B1 (ko) 2018-03-13 2018-03-13 도금 장치 및 도금 시스템
PCT/JP2018/009815 WO2019175990A1 (ja) 2018-03-13 2018-03-13 めっき装置及びめっきシステム
TW108105020A TWI691620B (zh) 2018-03-13 2019-02-15 鍍覆裝置以及鍍覆系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/009815 WO2019175990A1 (ja) 2018-03-13 2018-03-13 めっき装置及びめっきシステム

Publications (1)

Publication Number Publication Date
WO2019175990A1 true WO2019175990A1 (ja) 2019-09-19

Family

ID=67907624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009815 WO2019175990A1 (ja) 2018-03-13 2018-03-13 めっき装置及びめっきシステム

Country Status (7)

Country Link
US (1) US11674236B2 (ja)
JP (1) JP6877070B2 (ja)
KR (1) KR102373893B1 (ja)
CN (1) CN111801445B (ja)
DE (1) DE112018007274B4 (ja)
TW (1) TWI691620B (ja)
WO (1) WO2019175990A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115046833B (zh) * 2022-08-16 2022-12-09 中铝材料应用研究院有限公司 铝合金的金相覆膜方法及覆膜装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183136A (ja) * 1989-12-12 1991-08-09 Fujitsu Ltd 半導体装置の製造方法
JP2001168524A (ja) * 1999-12-08 2001-06-22 Ibiden Co Ltd プリント基板の製造方法
JP2009242876A (ja) * 2008-03-31 2009-10-22 Ne Chemcat Corp めっきつきまわり評価装置および評価方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3554878A (en) * 1968-07-02 1971-01-12 North American Rockwell Plating tin-lead alloy on printed circuits and electrolyte therefor
JPH0794450A (ja) * 1993-06-29 1995-04-07 Japan Storage Battery Co Ltd 局所アッシング装置
JP4766579B2 (ja) * 1998-11-30 2011-09-07 アプライド マテリアルズ インコーポレイテッド 電気化学堆積装置
KR20010018689A (ko) * 1999-08-21 2001-03-15 김영환 웨이퍼 주변 노광장치
JP3379755B2 (ja) * 2000-05-24 2003-02-24 インターナショナル・ビジネス・マシーンズ・コーポレーション 金属めっき装置
WO2001099168A1 (fr) * 2000-06-23 2001-12-27 Fujitsu Limited Dispositif a semi-conducteur et procede de fabrication associe
JP2003231993A (ja) * 2002-02-08 2003-08-19 Tokyo Electron Ltd 電解メッキ方法、電解メッキ装置、及び電解メッキシステム
JP4124327B2 (ja) * 2002-06-21 2008-07-23 株式会社荏原製作所 基板ホルダ及びめっき装置
JP2005019802A (ja) * 2003-06-27 2005-01-20 Fujitsu Ltd 半導体装置の製造方法およびウェーハ構造体
JP2005113162A (ja) * 2003-10-02 2005-04-28 Ebara Corp めっき方法及びめっき装置
JP4074592B2 (ja) * 2004-02-03 2008-04-09 株式会社山本鍍金試験器 電極カートリッジ及びめっき内部応力測定システム
US7442286B2 (en) * 2004-02-26 2008-10-28 Atotech Deutschland Gmbh Articles with electroplated zinc-nickel ternary and higher alloys, electroplating baths, processes and systems for electroplating such alloys
JP2006299367A (ja) * 2005-04-22 2006-11-02 Yamamoto Mekki Shikenki:Kk 電気めっき試験器
JP4733477B2 (ja) * 2005-09-05 2011-07-27 株式会社山本鍍金試験器 電気めっき試験器
JP4783261B2 (ja) * 2006-10-30 2011-09-28 株式会社東芝 半導体装置の製造方法
JP2013077619A (ja) 2011-09-29 2013-04-25 Renesas Electronics Corp 半導体装置の製造方法
JP6125884B2 (ja) * 2013-04-23 2017-05-10 株式会社荏原製作所 基板処理装置及び処理基板の製造方法
CN106949571B (zh) * 2017-03-09 2023-04-25 华南理工大学 一种基于筛网式两性离子交换膜电极的电化学除湿装置
CN106947980A (zh) * 2017-04-28 2017-07-14 深圳骏涵实业有限公司 一种电化学氟化电解槽及其方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183136A (ja) * 1989-12-12 1991-08-09 Fujitsu Ltd 半導体装置の製造方法
JP2001168524A (ja) * 1999-12-08 2001-06-22 Ibiden Co Ltd プリント基板の製造方法
JP2009242876A (ja) * 2008-03-31 2009-10-22 Ne Chemcat Corp めっきつきまわり評価装置および評価方法

Also Published As

Publication number Publication date
JP6877070B2 (ja) 2021-05-26
KR20200118864A (ko) 2020-10-16
CN111801445A (zh) 2020-10-20
TWI691620B (zh) 2020-04-21
US20210254236A1 (en) 2021-08-19
KR102373893B1 (ko) 2022-03-11
JPWO2019175990A1 (ja) 2020-12-03
DE112018007274T5 (de) 2020-11-19
CN111801445B (zh) 2022-07-05
US11674236B2 (en) 2023-06-13
TW201945601A (zh) 2019-12-01
DE112018007274B4 (de) 2021-12-02

Similar Documents

Publication Publication Date Title
TWI753215B (zh) 鍍覆解析方法、鍍覆解析系統及鍍覆解析用的電腦程式
US6790331B2 (en) Electrodeposition coating film thickness calculating method, recording medium stored with film thickness calculating program and readable by means of computer, and electrodeposition coating film thickness simulation apparatus
RU2635058C2 (ru) Устройство и способ нанесения электролитического покрытия на объект
WO2019175990A1 (ja) めっき装置及びめっきシステム
CN110088362B (zh) 镀覆装置
JP5114271B2 (ja) めっきつきまわり評価装置および評価方法
JP5124756B1 (ja) めっき電流密度分布測定装置およびめっき電流密度分布の測定方法
JP5365296B2 (ja) 湿式めっき方法及び湿式めっき装置
US5236571A (en) Electrode and method for measuring levelling power
KR20120079414A (ko) 인쇄회로기판의 도금 방법
US20060289299A1 (en) Multi-channel current probe
JPS62297499A (ja) 電気メツキ法におけるメツキ膜厚均一性評価方法
JP3901641B2 (ja) 表面積測定方法および表面積測定装置、並びにメッキ方法
CS243827B1 (cs) Způsob měřeni a zjišfovánl průběhu potenciálu při elektrolytickém vylučováni kovů a zapojení k provádění způsobu
JPH10274661A (ja) 電解液の流速測定装置および方法
JP2007077504A (ja) 表面積測定方法および表面積測定装置、並びにメッキ方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910089

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020506005

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20207026247

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18910089

Country of ref document: EP

Kind code of ref document: A1