CN111801445A - 镀层装置以及镀层系统 - Google Patents

镀层装置以及镀层系统 Download PDF

Info

Publication number
CN111801445A
CN111801445A CN201880089834.0A CN201880089834A CN111801445A CN 111801445 A CN111801445 A CN 111801445A CN 201880089834 A CN201880089834 A CN 201880089834A CN 111801445 A CN111801445 A CN 111801445A
Authority
CN
China
Prior art keywords
plating
cathodes
current
pair
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880089834.0A
Other languages
English (en)
Other versions
CN111801445B (zh
Inventor
山本渡
小岩仁子
秋山胜徳
星野芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamamoto MS Co Ltd
Original Assignee
Yamamoto MS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamoto MS Co Ltd filed Critical Yamamoto MS Co Ltd
Publication of CN111801445A publication Critical patent/CN111801445A/zh
Application granted granted Critical
Publication of CN111801445B publication Critical patent/CN111801445B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4161Systems measuring the voltage and using a constant current supply, e.g. chronopotentiometry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明提供一种可合适地测量微均镀能力的镀层装置。本发明的第一镀层装置(1A)具备:第一阳极(12A),其设置在第一镀层槽(11A)內;绝缘性基材(4),其设置在第一镀层槽(11A)內且具有孔部(5);一对第一阴极(13AX、13AY),其分別设置在孔部(5)的底部与绝缘性基材(4)中的孔部(5)的开口侧的表面;第一镀层电源(14A),其用于在第一阳极(12)与一对第一阴极(13AX、13AY)之间流动电流;以及第一电流计测电路(22A),其计测在一对第一阴极(13AX、13AY)的各自流动的电流值。

Description

镀层装置以及镀层系统
技术领域
本发明涉及一种用于例如哈林槽(Haring cell)试验等的镀层装置以及镀层系统。
背景技术
以往,作为评价镀层性能的方法,已知有哈林槽试验。在哈林槽试验中,将阳极配置于一对阴极之间并进行镀层,评价在一对阴极析出的镀层的均一电附着(electrodeposition)性。
在电性镀层中,电流密度与镀层(金属)析出量之间基本上是成比例关系。但是,若能求得析出量相对在大范围的电流密度不产生太大差别的条件,则能够对复杂形状的制品进行一定膜厚的镀层成膜。这样,将与电流密度无关地可获得均一的镀层膜厚的性能称为均一电附着性。
电流分布与均一电附着性有较大关联,电流分布可大致分为一次电流分布与二次电流分布。一次电流分布与镀层浴、镀层条件等无关,而是由镀层槽内的几何学的条件(被镀层物的形状、镀层槽的形状、电极配置等)决定,且可通过数学的计算等而求得。镀层分布的大部分是通过相关的一次电流分布而决定。
但是,实际进行镀层时,在阴极界面中产生分极现象,而发生新的电流分布即二次电流分布。二次电流分布由阴极中的分极、镀层浴的传导度等的电化学的特性所决定,会因镀层浴的种类、添加剂的种类以及数量等而变化。
发明内容
发明要解决的问题
在以往的哈林槽试验中,测量均一电附着性之中的在被镀层物的表面整体均一地析出皮膜的能力即巨均镀能力(macro throwing power)。但是,在以往的哈林槽试验中,无法测量在被镀层物的凹部(槽、孔等)析出皮膜的能力即微均镀能力(micro throwingpower)。
本发明是鉴于前述问题点而作出的,本发明的课题是提供一种可以合适地测量微均镀能力的镀层装置以及镀层系统。
解决问题的方案
为了解决前述课题,本发明的镀层装置,其特征在于,具备:阳极,其设置在镀层槽内;绝缘性基材,其设置在前述镀层槽内且具有孔部;一对阴极,其分别设置在前述孔部的底部与前述绝缘性基材中的前述孔部的开口侧的表面;镀层电源,其用于在前述阳极与前述一对阴极之间流动电流;以及电流计测部及电压测量部中的至少一方,前述电流计测部计测在前述一对阴极的各自流动的电流值,前述电压测量部计测前述一对阴极的各自的电压值。
发明效果
利用本发明,可合适地测量微均镀能力。
附图说明
图1(a)是表示本发明的第一实施方式所涉及的第一镀层装置的示意图,图1(b)是示意性地表示第一阴极的剖视图。
图2是表示本发明的第一实施方式所涉及的第一镀层装置的电路图的一例的图。
图3是表示本发明的第一实施方式所涉及的第一镀层装置的电路图的一例的图。
图4是表示本发明的第二实施方式所涉及的镀层系统的示意图。
图5是表示本发明的第二实施方式所涉及的第二镀层装置的电路图的一例的图。
图6是表示本发明的第二实施方式所涉及的第二镀层装置的电路图的一例的图。
图7是表示第一镀层装置中未进行回馈(feedback)电路的电位补正的情况的阴极的电流值以及电压值的经时变化的图表。
图8是表示在第一镀层装置中进行了回馈电路的电位补正的情况的阴极的电流值以及电压值的经时变化的图表。
图9(a)是表示在第二镀层装置中未进行回馈电路的电位补正的情况的阴极的电流值以及电压值的经时变化的图表,图9(b)是表示在第二镀层装置中进行了回馈电路的电位补正的情况的阴极的电流值以及电压值的经时变化的图表。
图10(a)是表示在第二镀层装置中进行了回馈电路的电位补正的情况的电流分配比的经时变化的图表,图10(b)是表示在第二镀层装置中进行了回馈电路的电位补正的情况的电解电压的经时变化的图表。
符号说明
1A…第一镀层装置(镀层装置)
1B…第二镀层装置
2…镀层浴
4…基材(绝缘性基材)
5…孔部
11A…第一镀层槽(镀层槽)
11B…第二镀层槽
12A…第一阳极(阳极)
12B…第二阳极
13A、13AX、13AY…第一阴极(阴极)
13B、13BX、13BY…第二阴极
14A…第一镀层电源(镀层电源)
14B…第二镀层电源
21A…第一回馈电路(回馈电路)
21B…第二回馈电路
22A…第一电流计测电路(电流计测部)
22B…第二电流计测电路(第二电流计测部)
具体实施方式
关于本发明的实施方式,以将本发明的镀层装置以及镀层系统适用在哈林槽试验用的镀层试验器的情况为例,参照附图详细地说明。在说明中,对在同一要素附加同一符号,且省略重复的说明。
<第一实施方式>
如图1(a)所示,本发明的第一实施方式所涉及第一镀层装置1A是用于进行哈林槽试验的镀层试验器,该哈林槽试验对一对第一阴极13AX、13AY同时进行镀层并评价均一电附着性,更详细而言是评价微均镀能力。第一镀层装置1A是通过例如定电流电解以及定电压电解的任一者(在本实施方式中,在一对第一阴极13AX、13AY流动电流的总值为一定值(一定电流)的定电流且定电压的电解)进行镀层。第一镀层装置1A具备第一镀层槽11A、第一阳极12A、一对第一阴极13A(13AX、13AY)、第一镀层电源(整流器)14A、第一电路部20A、控制部31、操作部32以及显示部33。
《第一镀层槽》
在第一镀层槽11A内储存有镀层浴2。作为镀层浴2可列举硫酸铜镀层(一般浴、高均镀(high throw)浴)等。
《第一阳极》
第一阳极12A是金属板,并以在第一镀层槽11A内的一对第一阴极13AX、13AY之间浸泡在镀层浴2的方式设置。
《第一阴极》
一对第一阴极13AX、13AY是金属板,并以互相分离且在第一镀层槽11A内与第一阳极12A对向的状态浸泡在镀层浴2的方式设置。在本实施方式中,第一镀层装置1A具备:基材3,其由绝缘性材料所形成;一方的第一阴极13AX,其设置在基材3的一面上;基材4,其由绝缘性材料所形成,且与基材3共同将一方的第一阴极夹入;以及另一方的第一阴极13AY,其设置在基材4的一面上。在基材4以及另一方的第一阴极13AY形成有呈现圆筒形状的复数个孔部5。一方的第一阴极13AX构成孔部5的底面。另外,基材3、4以及由一对第一阴极13AX、13AY所构成的构造体以孔部5的开口朝向第一阳极12A的姿势设置在镀层浴2内。
《第一镀层电源(整流器)》
第一镀层电源(整流器)14A给一对第一阴极13AX、13AY供给镀层电流。第一镀层电源14A是直流电源,经由第一电路部20A而与第一阳极12A以及一对第一阴极13AX、13AY电连接,且在一对第一阴极13AX、13AY中流动用于析出镀层的镀层电流。在本实施方式中,第一镀层电源14A是定电流电源,使在第一阴极13AX流动的电流与在第一阴极13AY流动的电流的总值为一定。
《第一电路部》
第一电路部20A与第一阳极12A、一对第一阴极13AX、13AY以及第一镀层电源14A共同构成电路。第一电路部20A具备第一回馈电路21A、第一电流计测电路22A以及第一电压计测电路23A。
《第一回馈电路》
第一回馈电路21A基于第一阳极12A以及第一阴极13AX、13AY的电压(电位),以使一对第一阴极13AX、13AY的一方的电位与另一方的电位一致的方式进行回馈控制。换言之,第一回馈电路21基于第一阳极12A以及第一阴极13AX、13AY的电压(电位),以使第一阳极12A和第一阴极13AX之间的电位差与第一阳极12A和第一阴极13AY之间的电位差一致的方式进行回馈控制。该回馈控制在将在第一阴极13AX流动的电流与在第一阴极13AY流动的电流的总值被维持为一定的定电流的状态下进行。另外,该定电流的状态可通过第一镀层电源14A的性能实现,也可通过第一电路部20A的电路构成而实现。另外,第一回馈电路21A可省略。
《第一电流计测电路》
第一电流计测电路22A计测在一对第一阴极13AX、13AY的各自流动的电流值,将所计测的电流值向控制部31输出。该电流值在孔部5被镀层皮膜填充且第一阴极13AX、13AY电连接的情况下互相接近。即,该电流值以及其经时变化(从镀层开始起至互相接近为止的时间)是表示镀层浴2的微均镀能力的参数之一。
《第一电压计测电路》
第一电压计测电路23A计测一对第一阴极13AX、13AY的电位即电压值,将所计测的电压值向控制部31输出。另外,在不需要电压值的计测的情况下可省略第一电压计测电路23A。该电压值是在不进行第一回馈电路21A的回馈控制的情况,在孔部5被镀层皮膜填充且第一阴极13AX、13AY电连接的情况下互相接近。即,该电压值以及其经时变化(从镀层开始起至互相接近为止的时间)是表示镀层浴2的微均镀能力的参数之一。
《控制部》
控制部31由CPU(Central Processing Unit;中央处理器)、ROM(Read-OnlyMemory;只读存储器)、RAM(Random Access Memory;随机存取存储器)、输入输出电路等所构成。控制部31取得由第一电流计测电路22A所计测的一对第一阴极13AX、13AY的电流值且向显示部33输出。另外,控制部31取得由第一电压计测电路23A所计测的一对第一阴极13AX、13AY的电压值且向显示部33输出。
另外,控制部31可基于一对第一阴极13AX、13AY的电流值(累计电流值)算出一对第一阴极13AX、13AY中的镀层的析出量(理论析出量)且向显示部33输出。镀层的理论析出量A[g]使用在阴极13B流动的电流I[A]、通电时间t[s]、法拉第(Faraday)常数F[C/mol]以及作为镀层析出的金属的原子量M[g/mol]以及离子价数z并通过下述式而算出。
A=I·t·M/(z·F)
这里,法拉第常数F是预先存储在控制部31。电流I由第二电流计测电路22A所计测。通电时间t由控制部31所计测。原子量M以及离子价数z通过使用者操作操作部32而被输入至控制部31,或通过使用者操作操作部32而从预先存储在控制部31的值中选择。
《操作部》
操作部32由键盘、鼠标等所构成。操作部32将使用者的操作结果向控制部31输出。
《显示部》
显示部33由监视器所构成。显示部33将从控制部31输出的电流值、电压值等的经时变化以图表表示。
<电路图的一例>
图2是将第一镀层槽11A内的构成即将第一阳极12A以及一对第一阴极13AX、13AY模拟为由第一阳极12A以及第一阴极13AX所构成的电阻15AX和由第一阳极12A以及第一阴极13AY所构成的电阻15AY而记载的电路图。如图2所示,本发明的第一实施方式所涉及的第一镀层装置1A以使在一对第一阴极13AX、13AY流动的电流的总值维持在一定值(一定电流)的定电流的状态中的定电流电解进行镀层。镀层装置1A作为电路,其具备第一镀层电源14A、一对电阻15AX、15AY、一对电流计22AX、22AY、第一回馈电路21A以及定电压电路24A。在该电路中,电阻15AX、电流计22AX以及定电压电路24A串联连接,电阻15AY、电流计22AY以及第一回馈电路21A串联连接。另外,所谓电阻15AX、电流计22AX以及定电压电路24A的组合、和电阻15AY、电流计22AY以及第一回馈电路21A的组合相对在第一镀层电源14A互相并联地设置。
《第一镀层电源》
在本实施方式中,第一镀层电源14A的正极与第一阳极12A电连接,第一镀层电源14A的负极与一对第一阴极13AX、13AY电连接。
《电阻》
电阻15AX是表示第一阳极12A与第一阴极13AX之间的电位差的槽电阻(cellresistive)。电阻15AY是表示第一阳极12A与第一阴极13AY之间的电位差的槽电阻。
《电流计》
作为第一电流计测电路22A之一的电流计22AX计测在电阻15AX即在第一阴极13AX流动的电流值。作为第一电流计测电路22A之一的电流计22AY计测在电阻15AY即在第一阴极13AY流动的电流值。
《第一回馈电路》
第一回馈电路21A进行使第一阴极13AY的电位与作为基准的第一阴极13AX的电位一致(使第一阴极13AX与第一阴极13AY之间的电位差成为零)的控制。第一回馈电路21A不限在图示的FET(Field Effect Transistor;场效应晶体管),也可由双极性晶体管(bipolar transistor)、半导体组件等而实现。
《定电压电路》
作为第一电路部20A之一的定电压电路24A是为了使第一阴极13AY的电位进入第一回馈电路21A可控制的电压范围内而用于提高第一阴极13AX的电位的电路。另外,第一镀层装置1A也可为具备可达成与定电压电路24A同样的作用效果的二极管或电阻的构成,以取代定电压电路24A。
在构成该电路时,电流值和电压值的计测用的信号输入线b1至b3(参照图1)以及分别连接信号输入线b1至b3和各极12A、13AX、13AY的夹钳(未图示)与各极12A、13AX、13AY的通电用的信号输入线a1至a3(参照图1)以及分别连接信号输入线a1至a3和各极12A、13AX、13AY的夹钳(未图示)分开设置(并未共享)。
<电路图的另一例>
对在本发明的第一实施方式所涉及的第一镀层装置1A的电路图的另一例,以与前述一例的不同点为中心进行说明。如图3所示,本发明的第一实施方式所涉及的第一镀层装置1A通过在一对第一阴极13AX、13AY流动的电流的总值被维持在一定值(一定电流)的定电流的状态中的定电流电解进行镀层。如图3所示的第一镀层装置1A作为电路,其具备辅助电源25A,以取代定电压电路24A。
《辅助电源以及第一镀层电源》
作为第一电路部20A之一的辅助电源(整流器)25A是直流电源,用于对第一阴极13AY供给镀层电流。在本实施方式中,辅助电源25A是定电流电源,第一镀层电源14A以及辅助电源25A的组合使在第一阴极13AX流动的电流与在第一阴极13AY流动的电流的总值为一定。辅助电极25A的正极与第一阳极12A电连接,负极与第一阴极13AY电连接。
另外,在本实施方式中,第一镀层电源14A对第一阴极13AX供给镀层电流。第一镀层电源14A的正极与第一阳极12A电连接,负极与第一阴极13AX电连接。
在该电路中,第一阴极13AX中流动来自第一镀层电源14A的镀层电流,第一阴极13AY中流动来自辅助电源25A的镀层电流,第一阳极12A中流动第一阴极13AX、13AY的总镀层电流。
辅助电源25A的负极的电位以与第一镀层电源14A的负极的电位相比仅低于规定范围(例如数百mV至数V)的方式设定。这是为了使第一阴极13AY的电位进入第一回馈电路21A可控制的电压范围内的处置。另外,辅助电源25A具有可充分地供给在第一阴极13AY流动的镀层电流的能力。
在构成该电路时,电流值和电压值的计测用的信号输入线b1至b3(参照图1)以及分别连接信号输入线b1至b3和各极12A、13AX、13AY的夹钳(未图示)与各极12A、13AX、13AY的通电用的信号输入线a1至a3(参照图1)以及分别连接信号输入线a1至a3与各极12A、13AX、13AY的夹钳(未图示)分开设置(并未共享)。
在第一镀层装置1A中进行镀层时,在第一阴极13AY上析出的镀层皮膜在孔部5内成长且与第一阴极13AY电连接。在进行利用第一回馈电路21A的回馈控制的情况,在该时间点使第一阴极13AX、13AY的电流值接近。另外,在未进行利用第一回馈电路21A的回馈控制的情况,在该时间点使第一阴极13AX、13AY的电流值以及电压值大致一致。控制部31可将从镀层开始至该时间点为止的时间作为微均镀能力的参数而测量。
另外,第一镀层装置1A可通过对第一阴极13AX、13AY以及基材3、4的组合而准备孔部5的形状(直径、深度、间隔等)不同物体进行测量,从而预测对在具有各种各样的凹部(槽、孔等)的被镀层物的微均镀能力的差别(埋入性)。
本发明的第一实施方式所涉及的第一镀层装置1A中,第一阴极13AX、13AY分别设置在孔部5的底面以及开口的周缘,所以可合适地测量微均镀能力。
另外,第一镀层装置1A可进行排除了电流计22AX、22AY的影响的哈林槽试验。
<第二实施方式>
接下来,对本发明的第二实施方式所涉及的镀层系统,以与第一实施方式所涉及的第一镀层装置1A的不同点为中心进行说明。如图4所示,本发明的第二实施方式所涉及的镀层系统MS作为第二镀层装置1B而具备第二镀层槽11B、第二阳极12B、一对第二阴极13B(13BX、13BY)、第二镀层电源(整流器)14B以及第二电路部20B。控制部31、操作部32以及显示部33与第一镀层装置1A共享化。
本发明的第二实施方式所涉及的镀层装置1B是用于进行哈林槽试验的镀层试验器,该哈林槽试验对一对第二阴极13BX、13BY同时进行镀层且基于所析出的镀层的重量而评价均一电附着性,更详细而言是评价巨均镀能力。第二镀层装置1B通过例如定电流电解以及定电压电解的任一者(本实施方式中,在一对第二阴极13BX、13BY流动的电流的总值为一定值(一定电流)的定电流且定电压电解)而进行镀层。
《第二镀层槽》
在第二镀层槽11B内储存有与第一镀层槽11A同种的镀层浴2。作为镀层浴2可列举硫酸铜镀层(一般浴、高均镀浴)等。
《第二阳极》
第二阳极12B是金属板,并以在第二镀层槽11B内的一对第二阴极13BX、13BY之间浸泡在镀层浴2的方式设置。第二阳极12B可变更与一对第二阴极13BX、13BY之间的距离。即,第二阳极12B可在一对第二阴极13BX、13BY之间接近一方的第二阴极13BX(即远离另一方的第二阴极13BY)或接近另一方的第二阴极13BY(即远离一方的第二阴极13BX)。
《第二阴极》
一对第二阴极13BX、13BY是金属板,并以互相分离且在第二镀层槽11B内将第二阳极12B夹在中间的状态下浸泡在镀层浴2的方式设置。另外,第二阴极13BX、13BY的至少一方也可是作为实际实施了镀层的加工品的金属制的镀层对象物。
另外,第二阳极12B与一对第二阴极13BX、13BY之间的配置关系不限于前述。例如,一对第二阴极13BX、13BY也可在第二阳极12B的一方侧分别以不同的距离配置。
《第二镀层电源(整流器)》
第二镀层电源(整流器)14B对一对第二阴极13BX、13BY供给镀层电流。第二镀层电源14B是直流电源,经由第二电路部20B而与第二阳极12B以及一对第二阴极13BX、13BY电连接,且在一对第二阴极13BX、13BY中流动用于析出镀层的镀层电流。本实施方式中,第二镀层电源14B是定电流电源,使在第二阴极13BX流动的电流与在第二阴极13BY流动的电流的总值为一定。
《第二电路部》
第二电路部20B与第二阳极12B、一对第二阴极13BX、13BY以及第二镀层电源14B共同构成电路。第二电路部20B具备第二回馈电路21B、第二电流计测电路22B以及第二电压计测电路23B。
《第二回馈电路》
第二回馈电路21B基于第二阳极12B以及第二阴极13BX、13BY的电压(电位),以使一对第二阴极13BX、13BY的一方的电位与另一方的电位一致的方式进行回馈控制。换言之,第二回馈电路21B基于第二阳极12B以及第二阴极13BX、13BY的电压(电位),以使第二阳极12B和第二阴极13BX之间的电位差与第二阳极12B和第二阴极13BY之间的电位差一致的方式进行回馈控制。该回馈控制在将在第二阴极13BX流动的电流与在第二阴极13BY流动的电流的总值被维持为一定的定电流的状态下进行。另外,该定电流的状态可通过第二镀层电源14B的性能实现或也可通过第二电路部20B的电路构成实现。
《第二电流计测电路》
第二电流计测电路22B计测在一对第二阴极13BX、13BY的各自流动的电流值,将所计测的电流值向控制部31输出。
《第二电压计测电路》
第二电压计测电路23B计测一对第二阴极13BX、13BY的电位即电压值,将所计测的电压值向控制部31输出。另外,在不需要电压值的计测的情况下,可省略第二电压计测电路23B。
《控制部》
控制部31由CPU、ROM、RAM、输入输出电路等所构成。控制部31在实际试验前预先存储从操作部32输出的第二阳极12B与一对第二阴极13BX、13BY之间的距离(或其比)。或者,控制部31在算出各种参数前,取得从操作部32输出的第二阳极12B与一对第二阴极13BX、13BY之间的距离(或其比),基于所取得的距离(或其比)算出各种参数。另外,控制部31取得通过第二电流计测电路22B所计测的一对第二阴极13BX、13BY的电流值且向显示部33输出。另外,控制部31取得由第二电压计测电路23B所计测的一对第二阴极13BX、13BY的电压值且向显示部33输出。
另外,控制部31可基于由第二电流计测电路22B(详细而言为后述的电流计22BX、22BY)计测的一对第二阴极13BX、13BY的电流值,算出在一对第二阴极13BX、13BY流动的电流之比即电流分配比且向显示部33输出。
另外,控制部31可基于一对第二阴极13BX、13BY的电流值(累计电流值),算出一对第二阴极13BX、13BY中的镀层的析出量(理论析出量)且向显示部33输出。镀层的理论析出量A[g]使用在阴极流动的电流I[A]、通电时间t[s]、法拉第常数F[C/mol]及作为镀层析出的金属的原子量M[g/mol]以及离子价数z并通过下述式而算出。
A=I·t·M/(z·F)
这里,法拉第常数F是被预先存储在控制部31。电流I由第二电流计测电路22B所计测。通电时间t由控制部31所计测。原子量M以及离子价数z可为通过使用者操作操作部32而被输入至控制部31,或也可为通过使用者操作操作部32而从预先存储在控制部31的值中选择。
另外,在控制部31存储有在第二阴极13BX、13BY流动的电流的值与镀层的实际的析出量的关系,即作为基于过去的实验将在第二阴极13BX、13BY流动的电流的值和通过该电流的值而在每单位时间实际析出的镀层的析出量与每个第二阴极13BX、13BY有关联而成的图等。使用者使用重量计计测镀层前的第二阴极13BX、13BY的重量和镀层后的第二阴极13BX、13BY的重量(附着镀层),从它们之差获得在各第二阴极13BX、13BY析出的镀层的析出量(实测析出量)。然后,使用者通过操作操作部32而使控制部31存储基于该实测析出量和一对第二阴极13BX、13BY的电流值(电流计22BX、22BY的计测值)而得的前述关系。控制部31可使用电流计22BX、22BY的计测结果(在一对第二阴极13BX、13BY流动的电流的值)参照前述关系并且考虑通电时间t,从而算出镀层的析出量(推定析出量)且向显示部33输出。
另外,控制部31可基于预先存储的第二阳极12B分别与一对第二阴极13BX、13BY的距离以及算出的一对第二阴极13BX、13BY的推定析出量而算出均一电附着指数TA且向显示部33输出。这里,若将离第二阳极12B较近的第二阴极13BX与第二阳极12B之间的距离设为d1,将离第二阳极12B较远的第二阴极13BY与第二阳极12B之间的距离设为d2,将离第二阳极12B较近的第二阴极13BX的推定析出量设为A1,离第二阳极12B较远的第二阴极13BY的推定析出量设为A2,则均一电附着指数TA[%]可通过下述式算出。
TA={(d2/d1)-(A1/A2)}/{(d2/d1)+(A1/A2)-2}×100
这里,推定析出量A1、A2使用前述电流值与实际的析出量(在事前实验的实测析出量)的关系而算出。极间距离d1、d2通过观察了设置在第二镀层槽11B的刻度(表示距离比的刻度或单纯表示距离的尺度,未图示)的使用者操作操作部32而被输入至控制部31,或者通过使用者操作操作部32而从预先存储在控制部31的值中选择。
均一电附着指数TA[%]表示一对第二阴极13BX、13BY析出的镀层的均一性的程度的参数。均一电附着指数TA是在大概±100%的范围内推移的值,且在当向一对第二阴极13BX、13BY的电流分配比与极间距离比d2/d1一致的情况成为0%。另外,在均一电附着指数TA与一对第二阴极13BX、13BY的析出量相等的情况下,则与极间距离比d2/d1无关而成为100%。即,均一电附着指数TA越显示接近100%的值,则表示在一对第二阴极13BX、13BY中越均一地电附着。
另外,控制部31也可使用在各第二阴极13BX、13BY实际流动的电流值算出均一电附着指数TB且向显示部33输出。这里,若将离第二阳极12B较近的第二阴极13BX流动的电流的值设为I1,将离第二阳极12B较远的第二阴极13BY流动的电流的值设为I2,则均一电附着指数TB[%]可通过下述式算出。
TB={(d2/d1)-(I1/I2)}/{(d2/d1)+(I1/I2)-2}×100
这里,电流值I1、I2由第二电流计测电路22B所计测。
相对于使用了极间距离d1、d2的均一电附着指数TA比较接近理论的值,使用了实际流动的电流值I1、I2(电流分配比I1/I2)的均一电附着指数TB是被实际的镀层浴2的性能(例如添加剂的性能、导电率)影响的值。使用者可通过比较均一电附着指数TA、TB或观察随电流值I1、I2(电流分配比I1:I2、I1/I2等)的变化的均一电附着指数TB的值的变化而知道镀层浴2的性能以及状态(例如添加剂的性能、平衡、对电流效率的影响)。
另外,控制部31也可使用理论析出量算出均一电附着指数TA、TB且向显示部33输出。在该情况下,使用者可比较基于推定析出量而得的均一电附着指数TA、TB与基于理论析出量而得的均一电附着指数TA、TB
另外,控制部31可基于推定析出量以及理论析出量算出电流效率且向显示部33输出。所谓电流效率是表示在第二阴极13BX、13BY流动的电流仅以多少高效地用于镀层的析出的参数。
电流效率[%]=(推定析出量/理论析出量)×100
作为电流效率,除了可基于第二阴极13BX、13BY的总析出量算出综合性的电流效率之外,也可算出各第二阴极13BX、13BY各自的电流效率。
另外,镀层系统MS的使用者可使用重量计实际地计测在第二阴极13BX、13BY析出的镀层的析出量(实测析出量),并且可通过操作操作部32而将实测析出量输入至控制部31。
在该情况下,控制部31可取得从操作部32输出的实测析出量,且基于所取得的实测析出量和算出的理论析出量算出电流效率且向显示部33输出。
电流效率[%]=(实测析出量/理论析出量)×100
该电流效率可对一对第二阴极13BX、13BY的整体的析出量而算出,也可对各第二阴极13BX、13BY的个别的析出量而算出。
另外,控制部31可对第二阴极13BX、13BY的每个电流密度算出均一电附着指数TA、TB以及电流效率,将电流密度与均一电附着指数TA、TB以及电流效率相关联且向显示部33输出。这里,电流密度通过采用了在第二阴极13BX流动的电流值IX、在第二阴极13BY流动的电流值IY、第二阴极13BX的有效表面积(镀层浴2内的可析出镀层的表面积)SX、第二阴极13BY的有效表面积(镀层浴2内的可析出镀层的表面积)SY的下述式而算出。
一对第二阴极13BX、13BY的平均电流密度[A/m2]=(IX+IY)/(SX+SY)。
第二阴极13BX的电流密度[A/m2]=IX/SX
第二阴极13BY的电流密度[A/m2]=IY/SY
这里,第二阴极13BX、13BY的有效表面积SX、SY预先被存储在控制部31,或者在电流密度的算出前通过使用者操作操作部32而被输入至控制部31。在本实施方式中,第二阴极13BX、13BY形成为同一形状,有效表面积SX以及有效表面积SY设定为同一值。另外,本发明也可适用在第二阴极13BX、13BY分别形成为不同的形状或有效表面积SX以及有效表面积SY被设定为不同的值的情况。
《操作部》
例如,操作部32基于由使用者进行的操作而将第二阳极12B与一对第二阴极13BX、13BY之间的各自的距离(或距离之比)向控制部31输出。
<电路图的一例>
图5是将第二镀层槽11B内的构成即第二阳极12B以及一对第二阴极13BX、13BY模拟为由第二阳极12B以及第二阴极13BX所构成的电阻15BX和由第二阳极12B以及第二阴极13BY所构成的电阻15BY而记载的电路图。如图4所示,本发明的第二实施方式所涉及的第二镀层装置1B以在一对第二阴极13BX、13BY流动的电流的总值被维持在一定值(一定电流)的定电流的状态中的定电流电解进行镀层。镀层装置1B作为电路,其具备第二镀层电源14B、一对电阻15BX、15BY、一对电流计22BX、22BY、第二回馈电路21B以及定电压电路24B。在该电路中,电阻15BX、电流计22BX以及定电压电路24B串联连接,电阻15BY、电流计22BY以及第二回馈电路21B串联连接。另外,电阻15BX、电流计22BX以及定电压电路24B的组合和电阻15BY、电流计22BY以及第二回馈电路21B的组合相对在第二镀层电源14B互相并联地设置。
《第二镀层电源》
本实施方式中,第二镀层电源14B的正极与第二阳极12B电连接,第二镀层电源14B的负极与一对第二阴极13BX、13BY电连接。
《电阻》
电阻15BX是表示第二阳极12B与第二阴极13BX之间的电位差的槽电阻。电阻15BY是表示第二阳极12B与第二阴极13BY之间的电位差的槽电阻。
《电流计》
作为第二电流计测电路22B之一的电流计22BX计测在电阻15BX即第二阴极13BX流动的电流值。作为第二电流计测电路22B之一的电流计22BY计测在电阻15BY即第二阴极13BY流动的电流值。
《第二回馈电路》
第二回馈电路21B进行使第二阴极13BY的电位与作为基准的第二阴极13BX的电位一致(使第二阴极13BX和第二阴极13BY之间的电位差成为零)的控制。第二回馈电路21B不限定于图示的FET,也可通过双极性晶体管、半导体组件等而实现。
《定电压电路》
作为第二电路部20B之一的定电压电路24B是为了使第二阴极13BY的电位进入第二回馈电路21B可控制的电压范围内而用于提高第二阴极13BX的电位的电路。另外,第二镀层装置1B也可为具备达成与定电压电路24B同样的作用效果的二极管或电阻的构成,以取代定电压电路24B。
在构成该电路时,电流值和电压值的计测用的信号输入线b1至b3(参照图4)以及分别连接信号输入线b1至b3和各极12B、13BX、13BY的夹钳(未图示)与各极12B、13BX、13BY的通电用的信号输入线a1至a3(参照图4)以及分别连接信号输入线a1至a3和各极12B、13BX、13BY的夹钳(未图示)分开设置(并未共享)。
<电路图的另一例>
对本发明的第二实施方式所涉及的第二镀层装置1B的电路图的另一例,以与前述一例的不同点为中心进行说明。如图6所示,本发明的第二实施方式所涉及的第二镀层装置1B以将在一对第二阴极13BX、13BY流动的电流的总值维持一定值(一定电流)的定电流的状态中的定电流电解进行镀层。如图5所示,第二镀层装置1B作为电路,其具备辅助电源25B以取代定电压电路24B。
《辅助电源以及第二镀层电源》
作为第二电路部20B之一的辅助电源(整流器)25B是直流电源,用于对第二阴极13BY供给镀层电流。本实施方式中,辅助电源25B是定电流电源,第二镀层电源14B以及辅助电源25B的组合使在第二阴极13BX流动的电流与在第二阴极13BY流动的电流的总值为一定。辅助电极25B的正极与第二阳极12B电连接,负极与第二阴极13BY电连接。
另外,本实施方式中,第二镀层电源14B对第二阴极13BX供给镀层电流。第二镀层电源14B的正极与第二阳极12B电连接,负极与第二阴极13BX电连接。
在该电路中,第二阴极13BX中流动来自第二镀层电源14B的镀层电流,第二阴极13BY中流动来自辅助电源25B的镀层电流,第二阳极12B中流动第二阴极13BX、13BY的总镀层电流。
辅助电源25B的负极的电位以与第二镀层电源14B的负极的电位相比仅低于规定范围(例如,数百mV至数V)的方式设定。这是为了使第二阴极13BY的电位进入第二回馈电路21B可控制的电压范围内的处置。另外,辅助电源25B具有可充分地供给在第二阴极13BY流动的镀层电流的能力。
在构成该电路时,电流值和电压值的计测用的信号输入线b1至b3(参照图4)以及分别连接信号输入线b1至b3与各极12B、13BX、13BY的夹钳(未图示)与各极12B、13BX、13BY的通电用的信号输入线a1至a3(参照图4)以及分别连接信号输入线a1至a3与各极12B、13BX、13BY的夹钳(未图示)分开设置(并未共享)。
本发明的第二实施方式所涉及的镀层系统MS除可测量微均镀能力外还可检测巨均镀能力作为电附着均一性。因此,镀层系统MS可合适地测量镀层浴2的性能。
另外,由于具备第二镀层装置1B的镀层系统MS在第二阴极13BX、13BY流动的电流的总值被维持为一定的状态下,第二回馈电路21B使第二阴极13BX、13BY的电位一致,因此可排除配线电阻、接触电阻等的可能进入电路中的电阻成分的影响,而可进行利用本来的二次电流分配的哈林槽试验。
另外,具备第二镀层装置1B的镀层系统MS可基于本来的二次电流分配测量重现性以及信赖性高的镀层的析出量以及(电流密度,更详细而言为一对第二阴极13BX、13BY的每个平均电流密度的)均一电附着指数TB
另外,具备第二镀层装置1B的镀层系统MS可进行排除了电流计22BX、22BY的影响的哈林槽试验。
另外,具备第二镀层装置1B的镀层系统MS可通过使用电流计22BX、22BY的计测结果正确地算出在第二阴极13BX、13BY流动的电流的电流分配比(I1:I2、I1/I2等)。
另外,具备第二镀层装置1B的镀层系统MS的使用者可根据由镀层系统MS所算出的第二阴极13BX、13BY的镀层的推定析出量以及理论析出量,得知第二阴极13BX、13BY的(电流密度,更详细而言为一对第二阴极13BX、13BY的平均电流密度或各第二阴极13BX、13BY的个别的电流密度的)电流效率(即,一对第二阴极13BX、13BY整体或个别的阴极电流效率)。
由于电流分配比、电流效率以及均一电附着指数TB会因镀层浴2的组成而大幅变化,因此使用者可通过调查电流分配比、电流效率以及均一电附着指数TB的经时变化而得知镀层浴2的特性以及状态的经时变化。
以上,虽然说明了本发明的实施方式,但本发明不被限定在前述实施方式,而可在不脱离本发明的要旨的范围内适宜变更。例如,第一镀层装置1A中的孔部5的直径、深度、间隔可适宜变更。另外,作为变形例也可为以下构成:具备呈现圆筒形状的较大直径的第一阴极与呈现圆筒形状的较小直径的第二阴极,在第二阴极被收容在第一阴极的状态下析出镀层皮膜。另外,也可为在第一镀层装置1A中,孔部5也可为呈现在第一阴极13A以及基材4上连续形成的通孔形状的构成。
(实施例)
<实施例1>
使用从第一镀层装置1A(参照图1)省略了第一回馈电路21A的装置,以无添加剂、无空气搅拌的方式实施铜镀层。如图7所示,在不进行电位补正的情况下,在镀层开始后1400秒附近,一对第一阴极13AX、13AY的电压值以及电流值成为大略一致。这是因在第一阴极13AX上成长的铜镀层填埋孔部5而与第一阴极13AY电连接之故。
<实施例2>
使用第一镀层装置1A(参照图2),以无添加剂、有空气搅拌的方式实施铜镀层。如图8所示,在进行利用第一回馈电路21A的电位补正的情况下,在镀层开始后1000秒附近,一对第一阴极13AX、13AY的电流值接近。这是因在第一阴极13AX上成长的铜镀层填埋孔部5而与第一阴极13AY电连接之故。
<实施例3>
使用第二镀层装置1B(参照图4),将硫酸铜镀层以一般浴、无添加剂而实施。将电路中的全电流设定为1.2A,极间距离比(第二阳极12B与第二阴极13BX之间的距离:第二阳极12B与第二阴极13BY之间的距离)设定为1:5。将在第二镀层装置1B(参照图4)中不进行第二回馈电路21B的电位补正的情况(比较例)的第二阴极13BX、13BY的电流值以及电压值的经时变化表示在图9(a),将在第二镀层装置1B中进行第二回馈电路21B的电位补正的情况(实施例)的第二阴极13BX、13BY的电流值以及电压值的经时变化表示在图9(b)。
如图9(a)所示,在不进行电位补正的情况下,在镀层开始后1000秒后,在一对第二阴极13BX、13BY的电位产生了约160mV的电位差。另外,由于配线电阻等的影响,因此电流分配比(在第二阴极13BX流动的电流值:在第二阴极13BY流动的电流值)为1:3.05的低值。这是因配线电阻等的存在使在一对第二阴极13BX、13BY流动的电流值均一化的方向上产生影响之故。因此,由推定析出量而得的均一电附着指数TB为30.9%的高值。
对此,如图9(b)所示,在进行电位补正的情况下,一对第二阴极13BX、13BY的电位在测量误差的范围内完全一致。另外,通过去除配线电阻等的影响而使电流分配比为1:4.12。因此,由推定析出量而得的均一电附着指数TB为10.5%而剧烈地变小。即,可知由在实施例3所用的镀层浴2的推定析出量而得的均一电附着指数TB实际为10.5%。
<实施例4>
使用第二镀层装置1B(参照图4),以无添加剂的方式实施硫酸铜镀层。将电路中的全电流设定为1.2A,将极间距离比设定为1:5。进行第二回馈电路21B的电位补正,以一般浴以及高均镀浴分别进行镀层。将该情况下的电流分配比的经时变化表示在图10(a),将该情况下的电解电压的经时变化表示在图10(b)。
如图10(a)所示,因镀层浴2的种类而会在电流分配比产生明显的不同。由一般浴的推定析出量而得的均一电附着指数TB为11%,由高均镀浴的推定析出量而得的均一电附着指数TB为33%。
另外,如图10(b)所示,在高均镀浴中,在第二阳极12B上形成有皮膜(黑膜)的状态(系列2至5)与未形成皮膜的状态(系列1)下,在电解开始时的电解电位的举动产生差别。另外,在镀层开始时可见的电解电压的上升是表示因第二阴极13BX、13BY附近的铜离子的减少所致的浓度过电压的上升。如上所述,在将在第二阴极13BX、13BY流动的电流的总值维持在一定的定电流的状态下,通过回馈控制使第二阴极13BX、13BY的电位一致,因此,可测量镀层的细微的变化。

Claims (4)

1.一种镀层装置,其特征在于,具备:
阳极,其设置在镀层槽內;
绝缘性基材,其设置在前述镀层槽內且具有孔部;
一对阴极,其分別设置在前述孔部的底部与前述绝缘性基材中的前述孔部的开口侧的表面;
镀层电源,其用于在前述阳极与前述一对阴极之间流动电流;以及
电流计测部及电压测量部中的至少一方,前述电流计测部计测在前述一对阴极的各自流动的电流值,前述电压测量部计测前述一对阴极的各自的电压值。
2.一种镀层装置,其特征在于,具备:
阳极,其设置在镀层槽內;
绝缘性基材,其设置在前述镀层槽內且具有孔部;
一对阴极,其分別设置在前述孔部的底部与前述绝缘性基材中的前述孔部的开口侧的表面;
镀层电源,其用于在前述阳极与前述一对阴极之间流动电流;
回馈电路,其在前述一对阴极流动的电流的总值被维持为一定的状态下,使一方的前述阴极的电位与另一方的前述阴极的电位一致;以及
电流计测部,其计测在前述一对阴极的各自流动的电流值。
3.一种镀层系统,其特征在于,具备:
如权利要求1或2所述的镀层装置;以及
第二镀层装置;
前述第二镀层装置具备:
第二阳极以及一对第二阴极,其设置在第二镀层槽內;
第二镀层电源,用于在前述第二阳极与前述一对第二阴极之间流动电流;以及
第二回馈电路,其在前述一对第二阴极流动的电流的总值被维持为一定的状态下,使一方的前述阴极的电位与另一方的前述阴极的电位一致。
4.如权利要求3所述的镀层系统,其特征在于,具备:第二电流计测部,其用于计测在前述一对第二阴极的各自流动的电流值。
CN201880089834.0A 2018-03-13 2018-03-13 镀层装置以及镀层系统 Active CN111801445B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/009815 WO2019175990A1 (ja) 2018-03-13 2018-03-13 めっき装置及びめっきシステム

Publications (2)

Publication Number Publication Date
CN111801445A true CN111801445A (zh) 2020-10-20
CN111801445B CN111801445B (zh) 2022-07-05

Family

ID=67907624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880089834.0A Active CN111801445B (zh) 2018-03-13 2018-03-13 镀层装置以及镀层系统

Country Status (7)

Country Link
US (1) US11674236B2 (zh)
JP (1) JP6877070B2 (zh)
KR (1) KR102373893B1 (zh)
CN (1) CN111801445B (zh)
DE (1) DE112018007274B4 (zh)
TW (1) TWI691620B (zh)
WO (1) WO2019175990A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115046833B (zh) * 2022-08-16 2022-12-09 中铝材料应用研究院有限公司 铝合金的金相覆膜方法及覆膜装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106947980A (zh) * 2017-04-28 2017-07-14 深圳骏涵实业有限公司 一种电化学氟化电解槽及其方法
CN106949571A (zh) * 2017-03-09 2017-07-14 华南理工大学 一种基于筛网式两性离子交换膜电极的电化学除湿装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3554878A (en) * 1968-07-02 1971-01-12 North American Rockwell Plating tin-lead alloy on printed circuits and electrolyte therefor
JPH03183136A (ja) * 1989-12-12 1991-08-09 Fujitsu Ltd 半導体装置の製造方法
JPH0794450A (ja) * 1993-06-29 1995-04-07 Japan Storage Battery Co Ltd 局所アッシング装置
JP4766579B2 (ja) * 1998-11-30 2011-09-07 アプライド マテリアルズ インコーポレイテッド 電気化学堆積装置
KR20010018689A (ko) * 1999-08-21 2001-03-15 김영환 웨이퍼 주변 노광장치
JP2001168524A (ja) * 1999-12-08 2001-06-22 Ibiden Co Ltd プリント基板の製造方法
JP3379755B2 (ja) * 2000-05-24 2003-02-24 インターナショナル・ビジネス・マシーンズ・コーポレーション 金属めっき装置
EP1310988B1 (en) * 2000-06-23 2010-05-26 Fujitsu Limited Method of manufacturing a semiconductor element
JP2003231993A (ja) * 2002-02-08 2003-08-19 Tokyo Electron Ltd 電解メッキ方法、電解メッキ装置、及び電解メッキシステム
JP4124327B2 (ja) * 2002-06-21 2008-07-23 株式会社荏原製作所 基板ホルダ及びめっき装置
JP2005019802A (ja) * 2003-06-27 2005-01-20 Fujitsu Ltd 半導体装置の製造方法およびウェーハ構造体
JP2005113162A (ja) * 2003-10-02 2005-04-28 Ebara Corp めっき方法及びめっき装置
JP4074592B2 (ja) * 2004-02-03 2008-04-09 株式会社山本鍍金試験器 電極カートリッジ及びめっき内部応力測定システム
US7442286B2 (en) * 2004-02-26 2008-10-28 Atotech Deutschland Gmbh Articles with electroplated zinc-nickel ternary and higher alloys, electroplating baths, processes and systems for electroplating such alloys
JP2006299367A (ja) * 2005-04-22 2006-11-02 Yamamoto Mekki Shikenki:Kk 電気めっき試験器
JP4733477B2 (ja) * 2005-09-05 2011-07-27 株式会社山本鍍金試験器 電気めっき試験器
JP4783261B2 (ja) * 2006-10-30 2011-09-28 株式会社東芝 半導体装置の製造方法
JP5114271B2 (ja) * 2008-03-31 2013-01-09 メタローテクノロジーズジャパン株式会社 めっきつきまわり評価装置および評価方法
JP2013077619A (ja) 2011-09-29 2013-04-25 Renesas Electronics Corp 半導体装置の製造方法
JP6125884B2 (ja) * 2013-04-23 2017-05-10 株式会社荏原製作所 基板処理装置及び処理基板の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106949571A (zh) * 2017-03-09 2017-07-14 华南理工大学 一种基于筛网式两性离子交换膜电极的电化学除湿装置
CN106947980A (zh) * 2017-04-28 2017-07-14 深圳骏涵实业有限公司 一种电化学氟化电解槽及其方法

Also Published As

Publication number Publication date
WO2019175990A1 (ja) 2019-09-19
DE112018007274T5 (de) 2020-11-19
KR20200118864A (ko) 2020-10-16
DE112018007274B4 (de) 2021-12-02
US11674236B2 (en) 2023-06-13
CN111801445B (zh) 2022-07-05
JP6877070B2 (ja) 2021-05-26
US20210254236A1 (en) 2021-08-19
TW201945601A (zh) 2019-12-01
KR102373893B1 (ko) 2022-03-11
TWI691620B (zh) 2020-04-21
JPWO2019175990A1 (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
Tan et al. Understanding and improving the uniformity of electrodeposition
CN103797161B (zh) 用于连续检测互连的电解池中的电流分布的持久系统
TWI753215B (zh) 鍍覆解析方法、鍍覆解析系統及鍍覆解析用的電腦程式
CN111801445B (zh) 镀层装置以及镀层系统
CN110088362B (zh) 镀覆装置
US1735878A (en) Device for measuring the current densities of galvanic baths
JP5114271B2 (ja) めっきつきまわり評価装置および評価方法
JP5124756B1 (ja) めっき電流密度分布測定装置およびめっき電流密度分布の測定方法
JP5365296B2 (ja) 湿式めっき方法及び湿式めっき装置
US5236571A (en) Electrode and method for measuring levelling power
Litovka et al. Numerical calculation of the electric field in an electroplating bath with bipolar electrodes
CN104962957B (zh) 一种检测电解铜箔用阳极条电位变化的方法
KR20120079414A (ko) 인쇄회로기판의 도금 방법
Tan Studying non-uniform electrodeposition using the wire beam electrode method
US20060289299A1 (en) Multi-channel current probe
TWI769559B (zh) 評估鍍膜層耐蝕性方法
JPS62297499A (ja) 電気メツキ法におけるメツキ膜厚均一性評価方法
SU1044964A1 (ru) Способ определени площади поверхности электропроводного объекта
Schwöbel et al. Mathematical modeling and simulation of the dissolution of zinc anodes in industrial electroplating
CS243827B1 (cs) Způsob měřeni a zjišfovánl průběhu potenciálu při elektrolytickém vylučováni kovů a zapojení k provádění způsobu
RU2230290C2 (ru) Измеритель площади металлизации
Hintringer et al. A Quantitative Investigation of Factors that Affect the Efficiency of a Redox System.
JPS6227655A (ja) 接液面の電流密度測定装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant