WO2019167988A1 - シリコン単結晶の酸素濃度推定方法、およびシリコン単結晶の製造方法 - Google Patents

シリコン単結晶の酸素濃度推定方法、およびシリコン単結晶の製造方法 Download PDF

Info

Publication number
WO2019167988A1
WO2019167988A1 PCT/JP2019/007444 JP2019007444W WO2019167988A1 WO 2019167988 A1 WO2019167988 A1 WO 2019167988A1 JP 2019007444 W JP2019007444 W JP 2019007444W WO 2019167988 A1 WO2019167988 A1 WO 2019167988A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
silicon single
oxygen concentration
silicon
silicon melt
Prior art date
Application number
PCT/JP2019/007444
Other languages
English (en)
French (fr)
Inventor
伸 松隈
和義 高橋
敏紀 関
大基 金
竜介 横山
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to CN201980015966.3A priority Critical patent/CN112204174B/zh
Priority to US16/971,155 priority patent/US11473211B2/en
Priority to KR1020207025037A priority patent/KR102422843B1/ko
Publication of WO2019167988A1 publication Critical patent/WO2019167988A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/206Controlling or regulating the thermal history of growing the ingot
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields

Definitions

  • the present invention relates to a method for estimating the oxygen concentration of a silicon single crystal and a method for producing a silicon single crystal.
  • CZ method A method called Czochralski method (hereinafter referred to as CZ method) is used for the production of a silicon single crystal.
  • CZ method the raw material polycrystalline silicon accommodated in a quartz crucible is melted by a heating means such as a resistance heater in a reduced pressure inert (Ar) gas atmosphere.
  • a seed crystal (seed) is immersed in the surface of the silicon melt that is near the melting point after melting (seed melt contact process), and the liquid temperature is adjusted to such an extent that the seed crystal is compatible with the silicon melt.
  • seed drawing with a diameter of about 5 mm is performed while pulling the seed upward (neck process).
  • the crystal diameter is expanded in a conical shape while adjusting the liquid temperature and the pulling speed so as to be the product diameter (shoulder forming step).
  • shoulder forming step the part to be the product is grown to a certain length in the vertical direction (straight body forming process), and then the crystal diameter is reduced to a conical shape (tail process), and the diameter becomes sufficiently small. At that point, it is cut off from the melt and the process ends.
  • CZ method it is desired to estimate the temperature distribution of the silicon single crystal at the time of pulling and to manufacture a silicon single crystal of good quality.
  • Patent Document 1 two or more types of temperature distributions in the central axis direction of the silicon melt are measured, two or more types of temperature distributions in the central axis direction measured by changing the heating conditions, and each heating condition are disclosed. After adjusting the turbulent flow parameters so that the temperature distribution in the central axis direction of the silicon melt obtained by comprehensive heat transfer analysis including three-dimensional convection in A technique for estimation by analysis is disclosed.
  • An object of the present invention is to provide an oxygen concentration estimation method for a silicon single crystal, which can grasp a convection pattern in a silicon melt and can estimate an oxygen concentration in a silicon single crystal with high accuracy, and a silicon single crystal It is in providing the manufacturing method of.
  • the method for estimating the oxygen concentration of a silicon single crystal applies a horizontal magnetic field to a silicon melt in a quartz crucible and estimates the oxygen concentration in the silicon single crystal pulled up from the silicon melt.
  • the silicon single crystal is pulled up by a pulling device having a hot zone shape having a non-plane symmetry structure with respect to a plane including a crystal pulling axis and a direction in which the horizontal magnetic field is applied.
  • Te which comprises carrying out the step of estimating the oxygen concentration in the straight body portion of the silicon single crystal pulled up, the.
  • the flow of the inert gas is the same as the direction of rotation of the convection at a position where the flow rate of the inert gas is high, the convection in the silicon melt is accelerated. Agitation is promoted, and the oxygen concentration in the pulled silicon single crystal increases.
  • the flow of the inert gas is opposite to the direction of rotation of the convection at a position where the flow velocity of the inert gas is high on the surface of the silicon melt in the hot zone shape of the non-plane symmetry structure, the rotation speed of the convection is reduced. Since the inert gas flows in the canceling direction, the silicon melt is not easily stirred, and the oxygen concentration in the silicon single crystal is lowered.
  • the non-plane symmetry structure of the hot zone shape forms a notch in a part of the heat shield disposed away from the surface of the silicon melt. According to the present invention, it is possible to form a portion with a low flow rate of the inert gas on the surface of the silicon melt simply by forming a notch in a part of the heat shield. Can be formed. In addition, if the hot zone-shaped non-plane symmetric structure can be formed by the notch, the position where the flow rate of the inert gas is low can be grasped visually from the outside, so that the surface temperature of the silicon melt can be easily measured. .
  • the non-plane symmetry structure of the hot zone shape changes the liquid level of a part of the heat shield disposed away from the surface of the silicon melt.
  • the liquid level height of the heat shield can be changed by increasing the vertical dimension of a part of the heat shield or by providing a step.
  • a portion with a low flow rate of the inert gas can be formed only by increasing the vertical dimension of a part of the heat shield, so that a hot zone-shaped non-plane symmetry structure can be easily formed.
  • the method for producing a silicon single crystal of the present invention is a method for producing a silicon single crystal in which a horizontal magnetic field is applied to a silicon melt in a quartz crucible to pull up the silicon single crystal from the silicon melt.
  • the method for estimating the oxygen concentration of the silicon single crystal was performed, and based on the estimated oxygen concentration of the silicon single crystal, the rotation speed of the quartz crucible constituting the pulling device, the flow rate of the inert gas, and the pressure in the furnace
  • the silicon single crystal is pulled up by adjusting at least one of them. According to the present invention, the same operations and effects as those described above can be enjoyed.
  • the schematic diagram which shows the structure of the raising apparatus which has a non-plane-symmetric hot zone shape which concerns on the 1st Embodiment of this invention.
  • the schematic top view which shows the structure of the raising apparatus which has a non-plane-symmetric hot zone shape in the said embodiment.
  • the schematic diagram which shows the change of the convection of the silicon melt in the said embodiment.
  • the schematic diagram which shows the flow of the argon gas in the pulling apparatus which has a non-plane-symmetric hot zone shape in the said embodiment.
  • the graph which shows the relationship between the neck length in the said embodiment, and the temperature of a silicon melt.
  • the graph which shows the relationship between the straight body length and oxygen concentration of the silicon single crystal in the said embodiment.
  • the flowchart which shows the oxygen concentration estimation method of the silicon single crystal in the said embodiment.
  • the schematic diagram which shows the structure of the raising apparatus which has a non-plane-symmetric hot zone shape which concerns on the 2nd Embodiment of this invention.
  • the graph which shows the relationship between the neck length in the Example and comparative example of this invention, and the surface temperature of a silicon melt.
  • the graph which shows the adjustment method of the raising conditions in the Example and comparative example of this invention.
  • the graph which shows the adjustment method of the raising conditions in the Example and comparative example of this invention.
  • the graph which shows the relationship between the straight body length of a silicon single crystal and oxygen concentration in the Example and comparative example of this invention.
  • FIGS. 1 and 2 show an example of the structure of a silicon single crystal pulling apparatus 1 to which the method for manufacturing a silicon single crystal 10 according to the first embodiment of the present invention can be applied.
  • the pulling device 1 is a device that pulls up the silicon single crystal 10 by the Czochralski method, and includes a chamber 2 that constitutes an outline and a crucible 3 that is disposed at the center of the chamber 2.
  • the crucible 3 has a double structure composed of an inner quartz crucible 3A and an outer graphite crucible 3B, and is fixed to the upper end of a support shaft 4 that can rotate and move up and down.
  • a resistance heating heater 5 surrounding the crucible 3 is provided outside the crucible 3, and a heat insulating material 6 is provided along the inner surface of the chamber 2 outside the crucible 3.
  • a crystal pulling shaft 7 such as a wire rotating coaxially with the support shaft 4 in the reverse direction or in the same direction at a predetermined speed is provided above the crucible 3.
  • a seed crystal 8 is attached to the lower end of the crystal pulling shaft 7.
  • the heat shield 12 shields high temperature radiant heat from the silicon melt 9 in the crucible 3, the heater 5, and the side wall of the crucible 3 from the growing silicon single crystal 10, and at the same time, a solid liquid that is a crystal growth interface. For the vicinity of the interface, it plays the role of suppressing the diffusion of heat to the outside and controlling the temperature gradient in the pulling axis direction of the single crystal central part and the single crystal outer peripheral part.
  • the heat shield 12 also has a function as a rectifying cylinder that exhausts the evaporated material from the silicon melt 9 from outside the furnace with an inert gas.
  • a gas inlet 13 for introducing an inert gas such as argon gas (hereinafter also referred to as Ar gas) into the chamber 2 is provided in the upper portion of the chamber 2.
  • an exhaust port 14 is provided for sucking and discharging the gas in the chamber 2 by driving a vacuum pump (not shown).
  • the inert gas introduced into the chamber 2 from the gas inlet 13 descends between the growing silicon single crystal 10 and the heat shield 12, and the lower end of the heat shield 12 and the liquid surface of the silicon melt 9. After passing through the gap, the air flows toward the outside of the heat shield 12 and further toward the outside of the crucible 3, and then descends outside the crucible 3 and is discharged from the exhaust port 14.
  • a horizontal magnetic field is applied to the lifting device 1.
  • the magnetic field lines of the horizontal magnetic field are in the direction orthogonal to the paper surface in FIG.
  • the heat shield 12 has a lower end portion of the left heat shield 12.
  • a notch 121 is formed.
  • a radiation thermometer 15 is disposed immediately above the notch 121 at the top of the chamber 2, and as shown in FIG. 2, the silicon melt at the measurement point P in the vicinity of the notch 121 is arranged.
  • the surface temperature of the liquid 9 can be measured in a non-contact manner.
  • Ar gas supplied from the gas inlet 13 is supplied to the surface of the silicon melt 9 and flows toward the outside of the quartz crucible 3A along the liquid surface. At this time, the flow rate of the Ar gas flowing through the notch 121 becomes lower as the gap is increased by the notch 121. On the other hand, the flow rate of the Ar gas in the part where the notch is not formed is increased as much as the gap is maintained in a small state.
  • a solid material such as polycrystalline silicon filled in the crucible 3 is used as the heater 5 while the chamber 2 is maintained in an inert gas atmosphere under reduced pressure.
  • the silicon melt 9 is formed by melting by heating.
  • the crystal pulling shaft 7 is lowered to immerse the seed crystal 8 in the silicon melt 9, and the crucible 3 and the crystal pulling shaft 7 are rotated in a predetermined direction.
  • the crystal pulling shaft 7 is gradually lifted to grow a silicon single crystal 10 connected to the seed crystal 8.
  • the inventors put a solid polysilicon raw material into the quartz crucible 3A, dissolved it, and then applied a horizontal magnetic field to pull up the silicon single crystal 10; It has been found that there is convection that rotates from the bottom of the quartz crucible 3A toward the surface of the silicon melt 9 around the magnetic field lines of the horizontal magnetic field.
  • the direction of rotation of the convection was two convection patterns when the counterclockwise direction was dominant and when the counterclockwise direction was dominant.
  • the inventors speculated that the occurrence of such a phenomenon is due to the following mechanism.
  • the present inventors have made a difference in the oxygen concentration of the silicon single crystal 10 by the combination of the clockwise and counterclockwise convection and the non-axisymmetric structure of the internal environment of the pulling apparatus 1. I guessed that. From the above, the present inventors have grasped the direction of convection inside the silicon melt 9 by measuring the surface temperature of the surface of the silicon melt 9, and the non-reactor environment of the pulling apparatus 1 It was considered that the oxygen concentration of the silicon single crystal 10 can be estimated with high accuracy from the plane symmetry structure.
  • FIG. 4 shows the relationship between the convection rotation direction of the silicon melt 9 and the non-plane-symmetric hot zone shape of the pulling device 1.
  • the notch 121 is formed on one side of the heat shield 12 of the lifting device 1. That is, the pulling device 1 has a non-plane symmetric hot zone shape with respect to the plane S including the crystal pulling axis 7 and the horizontal magnetic field application direction, and the non-plane symmetric hot zone shape is realized by the notch 121. Is done.
  • the radiation thermometer 15 measures the surface temperature of the silicon melt 9 in the vicinity of the portion where the notch 121 is formed.
  • the heat shield 12 with the notch 121 formed is placed in the vicinity of the silicon single crystal 10, the notch 121
  • the gas flow rate in the furnace becomes uneven.
  • the flow rate of argon gas increases in the notch 121 of the heat shield 12 and the flow velocity increases.
  • the surface layer portion of the silicon melt 9 during the pulling of the silicon single crystal 10 is considered to be a low oxygen concentration region 9A due to evaporation of oxygen from the surface layer.
  • the convection of the silicon melt 9 is clockwise, and the argon gas whose flow rate and flow velocity are large due to the notch 121 with respect to the flow where the low oxygen concentration region 9A approaches the silicon single crystal 10. Therefore, the silicon single crystal 10 is less likely to take in the low oxygen concentration region 9A and has a high oxygen concentration.
  • the residence of the silicon melt 9 is counterclockwise, and the flow rate and flow velocity are large due to the notch 121 with respect to the flow in which the low oxygen concentration region 9A approaches the silicon single crystal. Since the gas flow is in the forward direction, the silicon single crystal 10 can easily take in the low oxygen concentration region 9A and has a low oxygen concentration.
  • Reference numeral 5A in FIG. 6 is a clockwise case in FIG. 4A
  • reference numeral 5B in FIG. 6 is a counterclockwise case in FIG. 4B.
  • the oxygen concentration in the straight body portion of the pulled silicon single crystal 10 is accurately measured by measuring the temperature of the surface of the silicon melt 9 in the neck process. It was confirmed that it can be estimated.
  • the surface temperature of the silicon melt 9 is measured in the neck process, but the present invention is not limited to this.
  • the surface temperature of the silicon melt 9 near the notch 121 may be measured.
  • the present invention can be applied if the surface temperature of the silicon melt 9 near the notch 121 can be measured by the radiation thermometer 15.
  • step S1 a manufacturing method of the silicon single crystal in the present embodiment will be described based on the flowchart shown in FIG.
  • the seed crystal 8 is immersed in the silicon melt 9 and the pulling of the silicon single crystal 10 is started (step S1).
  • step S2 the seed crystal 8 becomes familiar with the silicon melt 9
  • step S2 the seed crystal 8 is pulled upward while the seed is squeezed to start the neck process
  • the surface temperature of the silicon melt 9 near the notch 121 of the thermal shield 12 is measured by the radiation thermometer 15 (process S3).
  • the temperature measurement of the surface of the silicon melt 9 is continued until the neck process is completed during the neck process (process S4).
  • the oxygen concentration in the silicon single crystal 10 is estimated based on the graphs of FIGS. 5 and 6 prepared in advance (step S5).
  • the pulling conditions in the straight body portion of the silicon single crystal 10 are adjusted so that the oxygen concentration is within the product specification (step S6). Specifically, the pulling condition is performed by adjusting the rotational speed of the crucible 3, the argon gas flow rate, and the furnace pressure. When the adjustment of the pulling conditions is completed, the straight body portion of the silicon single crystal 10 is pulled up (step S7).
  • the silicon single crystal 10 pulled up only by measuring the surface temperature of the silicon melt 9 with the radiation thermometer 15. Can be estimated. That is, after starting the pulling of the silicon single crystal 10, temperature measurement is performed between the neck process and the shoulder forming process, and the oxygen concentration of the pulled silicon single crystal 10 can be estimated with high accuracy. Therefore, by pulling up the straight body portion of the silicon single crystal 10, the pulling conditions can be adjusted to pull up the silicon single crystal 10 whose oxygen concentration is within the product specification. Since the non-plane-symmetric hot zone shape in the silicon single crystal pulling apparatus 1 is realized by forming the notch 121 in the thermal shield 12, the temperature measurement of the surface of the silicon melt 9 by the radiation thermometer 15 is performed. The position can be easily recognized, and the temperature of the surface of the silicon melt 9 can be easily measured.
  • the non-plane-symmetric hot zone shape of the silicon single crystal pulling apparatus 1 is performed by forming the notch 121 in the heat shield 12.
  • the non-plane-symmetric hot zone shape of the silicon single crystal pulling apparatus 1 ⁇ / b> A is formed as a thick portion 122 at a part of the lower portion of the heat shield 12.
  • interval of the lower end of the thick part 122 and the liquid level of the silicon melt 9 is smaller than the other part of the heat shield 12.
  • the flow rate and flow velocity of the argon gas on the opposite side where the thick portion 122 is not formed increase, and the low oxygen concentration region 9A on the surface of the silicon melt 9 approaches the silicon single crystal 10.
  • the silicon single crystal 10 is less likely to take in the low oxygen concentration region 9A and has a high oxygen concentration. Therefore, the present embodiment can enjoy the same operations and effects as those described above.
  • this invention is not limited to an Example.
  • the silicon single crystal pulling apparatus 1 With the silicon single crystal pulling apparatus 1 according to the first embodiment, three silicon single crystals 10 were pulled. In the neck process, when the temperature of the surface of the silicon melt 9 near the notch 121 was measured by the radiation thermometer 15, the result shown in FIG. 9 was obtained. As shown in FIG. 9, in the experimental example A, the temperature of the surface of the silicon melt 9 showed a high value during the neck process. On the other hand, in Experimental Example B and Experimental Example C, the temperature of the surface of the silicon melt 9 showed a low value during the neck process.
  • Experimental Example A As shown in FIG. 4A, it was estimated that the convection of the silicon melt 9 was clockwise and the oxygen concentration of the silicon single crystal 10 was increased.
  • Experimental Example B and Experimental Example C as shown in FIG. 4B, it was estimated that the convection of the silicon melt 9 was counterclockwise and the oxygen concentration of the silicon single crystal 10 was reduced. Therefore, in Experimental Example B, as shown in FIG. 10, the furnace pressure was set higher than Experimental Example A and Experimental Example C and was pulled up. In Experimental Example B, as shown in FIG. 11, the crucible rotation speed was also set higher than in Experimental Examples A and C, and was pulled up.
  • the temperature of the surface of the silicon melt 9 in the vicinity of the notch 121 is measured by the radiation thermometer 15, thereby pulling the silicon single crystal pulled up. It was confirmed that an oxygen concentration of 10 could be estimated. In addition, it was confirmed that the oxygen concentration of the pulled silicon single crystal 10 can be adjusted by adjusting the pulling conditions such as the furnace pressure and the crucible rotation number after estimation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

シリコン単結晶の酸素濃度推定方法において、シリコン単結晶は、結晶引き上げ軸および水平磁場の印加方向を含む面に対して、非面対称構造となるホットゾーン形状を有する引き上げ装置により引き上げられ、シリコン単結晶のネック工程および肩部形成工程の少なくともいずれかにおいて、ホットゾーン形状の非面対称構造となる位置におけるシリコン融液の表面温度を計測する工程(S3)と、計測されたシリコン融液の表面温度と、予め準備されたシリコン融液の表面温度およびシリコン単結晶中の酸素濃度の関係とに基づいて、引き上げられたシリコン単結晶の直胴部における酸素濃度を推定する工程(S5)と、を実施する。

Description

シリコン単結晶の酸素濃度推定方法、およびシリコン単結晶の製造方法
 本発明は、シリコン単結晶の酸素濃度推定方法、およびシリコン単結晶の製造方法に関する。
 シリコン単結晶の製造にはチョクラルスキー法(以下、CZ法という)と呼ばれる方法が使われる。たとえば、減圧不活性(Ar)ガス雰囲気中で、石英るつぼ内に収容された原料多結晶シリコンを抵抗加熱ヒーターなどの加熱手段で溶融する。
 溶融後融点付近となっているシリコン融液表面に種結晶(シード)を漬け(シード融液接触工程)、種結晶がシリコン融液となじむ程度に液温を調節し、なじんだら種結晶内の転位を除去するためにシードを上方に引上げながら直径5mm前後のシード絞りを行う(ネック工程)。
 シード絞りを行うネック工程後、製品径となるように液温と引上速度を調節しながら円錐状に結晶径を拡大させる(肩部形成工程)。結晶径が製品径に達したら、製品となる部位を鉛直方向に一定長さ育成し(直胴部形成工程)、その後結晶径を円錐状に減径させ(テール工程)、直径が十分小さくなったところで融液から切り離して終了となる。
 このようなCZ法では、引き上げ時のシリコン単結晶の温度分布を推定し、良質な品質のシリコン単結晶を製造することが要望されている。
 このため、特許文献1には、シリコン融液の中心軸方向の温度分布を2種類以上測定し、加熱条件を変更して測定された2種類以上の中心軸方向の温度分布と、各加熱条件における三次元の対流を含んだ総合伝熱解析で得られるシリコン融液の中心軸方向の温度分布とが一致するように、乱流パラメータを調整したうえで、シリコン単結晶の温度を総合伝熱解析により推定する技術が開示されている。
特開2016-98147号公報
 しかしながら、前記特許文献1に記載の技術によりシリコン単結晶の温度を総合伝熱解析により推定しても、実際のシリコン単結晶の引き上げ時には、いくつかの対流のパターンがあるため、推定精度を向上することができないという問題がある。
 本発明の目的は、シリコン融液内の対流のパターンを把握することができ、高い精度でシリコン単結晶中の酸素濃度を推定することのできるシリコン単結晶の酸素濃度推定方法、およびシリコン単結晶の製造方法を提供することにある。
 本発明のシリコン単結晶の酸素濃度推定方法は、石英ルツボ内のシリコン融液に水平磁場を印加して、前記シリコン融液から引き上げられたシリコン単結晶内の酸素濃度を推定するシリコン単結晶の酸素濃度推定方法であって、前記シリコン単結晶は、結晶引き上げ軸および前記水平磁場の印加方向を含む面に対して、非面対称構造となるホットゾーン形状を有する引き上げ装置により引き上げられ、前記シリコン単結晶のネック工程および肩部形成工程の少なくともいずれかにおいて、前記ホットゾーン形状の非面対称構造となる位置における前記シリコン融液の表面温度を計測する工程と、計測された前記シリコン融液の表面温度と、予め準備された前記シリコン融液の表面温度および前記シリコン単結晶中の酸素濃度の関係とに基づいて、引き上げられたシリコン単結晶の直胴部における酸素濃度を推定する工程と、を実施することを特徴とする。
 シリコン単結晶の引き上げ中、シリコン融液内には、石英ルツボの底部からシリコン融液の表面間に対流が生じている。水平磁場を印加しない状態では、この対流は、石英ルツボの上方から見て、石英ルツボの回転方向に沿って、右回りか左回りで回転している。この状態で水平磁場を印加すると、右回りか左回りの回転が拘束され、石英ルツボの底部からシリコン融液の表面間の対流が、右回りか左回りの回転に固定される。
 引き上げ装置の結晶引き上げ軸および水平磁場の印加方向を含む平面に対して、非面対称構造となるホットゾーン形状を有する引き上げ装置におけるシリコン融液の表面の不活性ガスの流速の低い位置において、不活性ガスの流れが対流の回転方向と逆向きになれば、逆に不活性ガスの流速の高い位置においては、対流の回転方向と同じ向きになる。
 したがって、不活性ガスの流速の高い位置において、不活性ガスの流れが対流の回転方向と同じであれば、シリコン融液内の対流が増速されるので、底部にある酸素濃度の高い部分の撹拌が促進され、引き上げられたシリコン単結晶中の酸素濃度が高くなる。
 一方、非面対称構造のホットゾーン形状におけるシリコン融液の表面の不活性ガスの流速の高い位置において、不活性ガスの流れが、対流の回転方向と逆向きになれば、対流の回転速度を相殺する方向に不活性ガスが流れるため、シリコン融液が撹拌されにくくなり、シリコン単結晶中の酸素濃度が低くなる。
 以上のことから、不活性ガスの流速の低い位置におけるシリコン融液の表面温度を計測することにより、シリコン融液内の対流の回転方向を知ることができるため、予め準備されたシリコン融液の表面温度およびシリコン単結晶中の酸素濃度の関係に基づいて、引き上げられたシリコン単結晶中の酸素濃度を高い精度で推定することができる。
 本発明では、前記ホットゾーン形状の非面対称構造は、前記シリコン融液の表面から離間して配置される熱遮蔽体の一部に切欠部を形成することが考えられる。
 この発明によれば、熱遮蔽体の一部に切欠部を形成するだけで、シリコン融液の表面の不活性ガスの流速の低い部分を形成できるため、ホットゾーン形状の非面対称構造を容易に形成することができる。
 また、ホットゾーン形状の非面対称構造が、切欠部により形成できれば、外部から目視で不活性ガスの流速の低い位置を把握できるため、シリコン融液の表面温度の測定を容易に行うことができる。
 本発明では、前記ホットゾーン形状の非面対称構造は、前記シリコン融液の表面から離間して配置される熱遮蔽体の一部の液面高さを変更することが考えられる。
 ここで、熱遮蔽体の液面高さの変更は、熱遮蔽体の一部の上下寸法を厚くしたり、段差を設けたりすることにより、行うことができる。
 この発明によっても、熱遮蔽体の一部の上下寸法を厚くするだけで、不活性ガスの流速の低い部分を形成できるため、ホットゾーン形状の非面対称構造を容易に形成することができる。
 本発明のシリコン単結晶の製造方法は、石英ルツボ内のシリコン融液に水平磁場を印加して、前記シリコン融液からシリコン単結晶を引き上げるシリコン単結晶の製造方法であって、前述したいずれかのシリコン単結晶の酸素濃度推定方法を実施し、推定された前記シリコン単結晶の酸素濃度に基づいて、前記引き上げ装置を構成する石英ルツボの回転数、不活性ガスの流量、および炉内圧力の少なくともいずれかを調整して、前記シリコン単結晶の引き上げを行うことを特徴とする。
 この発明によっても、前述した作用および効果と同様の作用および効果を享受できる。
本発明の第1の実施の形態に係る非面対称のホットゾーン形状を有する引き上げ装置の構造を示す模式図。 前記実施の形態における非面対称のホットゾーン形状を有する引き上げ装置の構造を示す模式平面図。 前記実施の形態におけるシリコン融液の対流の変化を示す模式図。 前記実施の形態における非面対称のホットゾーン形状を有する引き上げ装置におけるアルゴンガスの流れを示す模式図。 前記実施の形態におけるネック長さとシリコン融液の温度の関係を示すグラフ。 前記実施の形態におけるシリコン単結晶の直胴長さと酸素濃度の関係を示すグラフ。 前記実施の形態におけるシリコン単結晶の酸素濃度推定方法を示すフローチャート。 本発明の第2の実施の形態に係る非面対称のホットゾーン形状を有する引き上げ装置の構造を示す模式図。 本発明の実施例および比較例におけるネック長さとシリコン融液の表面温度の関係を示すグラフ。 本発明の実施例および比較例における引き上げ条件の調整方法を示すグラフ。 本発明の実施例および比較例における引き上げ条件の調整方法を示すグラフ。 本発明の実施例および比較例におけるシリコン単結晶の直胴長さと酸素濃度との関係を示すグラフ。
 以下、本発明の実施の形態を図面に基づいて説明する。
 [1]第1の実施の形態
 図1および図2には、本発明の第1の実施の形態に係るシリコン単結晶10の製造方法を適用できるシリコン単結晶の引き上げ装置1の構造の一例を表す模式図が示されている。引き上げ装置1は、チョクラルスキー法によりシリコン単結晶10を引き上げる装置であり、外郭を構成するチャンバ2と、チャンバ2の中心部に配置されるルツボ3とを備える。
 ルツボ3は、内側の石英ルツボ3Aと、外側の黒鉛ルツボ3Bとから構成される二重構造であり、回転および昇降が可能な支持軸4の上端部に固定されている。
 ルツボ3の外側には、ルツボ3を囲む抵抗加熱式のヒーター5が設けられ、その外側には、チャンバ2の内面に沿って断熱材6が設けられている。
 ルツボ3の上方には、支持軸4と同軸上で逆方向または同一方向に所定の速度で回転するワイヤなどの結晶引き上げ軸7が設けられている。この結晶引き上げ軸7の下端には種結晶8が取り付けられている。
 熱遮蔽体12は、育成中のシリコン単結晶10に対して、ルツボ3内のシリコン融液9やヒーター5やルツボ3の側壁からの高温の輻射熱を遮断するとともに、結晶成長界面である固液界面の近傍に対しては、外部への熱の拡散を抑制し、単結晶中心部および単結晶外周部の引き上げ軸方向の温度勾配を制御する役割を担う。
 また、熱遮蔽体12は、シリコン融液9からの蒸発物を炉上方から導入した不活性ガスにより、炉外に排気する整流筒としての機能もある。
 チャンバ2の上部には、アルゴンガス(以下、Arガスともいう)などの不活性ガスをチャンバ2内に導入するガス導入口13が設けられている。チャンバ2の下部には、図示しない真空ポンプの駆動により、チャンバ2内の気体を吸引して排出する排気口14が設けられている。
 ガス導入口13からチャンバ2内に導入された不活性ガスは、育成中のシリコン単結晶10と熱遮蔽体12との間を下降し、熱遮蔽体12の下端とシリコン融液9の液面との隙間を経た後、熱遮蔽体12の外側、さらにルツボ3の外側に向けて流れ、その後にルツボ3の外側を下降し、排気口14から排出される。
 引き上げ装置1には、水平磁場が印加される。水平磁場の磁力線は、図1において、紙面直交方向である。水平磁場の磁力線の印加方向および結晶引き上げ軸7を含む平面Sに対して、ホットゾーン形状を非面対称構造とするために、熱遮蔽体12には、左側の熱遮蔽体12の下端部に切欠部121が形成されている。
 また、図1に示すように、チャンバ2の上部の切欠部121の直上には、放射温度計15が配置され、図2に示すように、切欠部121の近傍となる測定点Pにおけるシリコン融液9の表面温度を非接触で測定することができるようになっている。
 ガス導入口13から供給されるArガスは、シリコン融液9の表面に供給され、液面に沿って石英ルツボ3Aの外側に向かって流れる。この際、切欠部121の部分を流れるArガスの流速は、切欠部121によって隙間が大きくなっている分低くなる。一方、切欠部が形成されていない部分のArガスの流速は、隙間が小さい状態で維持される分、流速が高くなる。
 このような引き上げ装置1を用いてシリコン単結晶10を製造する際、チャンバ2内を減圧下の不活性ガス雰囲気に維持した状態で、ルツボ3に充填した多結晶シリコンなどの固形原料をヒーター5の加熱により溶融させ、シリコン融液9を形成する。
 ルツボ3内にシリコン融液9が形成されると、結晶引き上げ軸7を下降させて種結晶8をシリコン融液9に浸漬し、ルツボ3および結晶引き上げ軸7を所定の方向に回転させながら、結晶引き上げ軸7を徐々に引き上げ、これにより種結晶8に連なったシリコン単結晶10を育成する。
 [2]本発明に至る背景
 本発明者らは、同一の引き上げ装置1を用い、同一の引き上げ条件で引き上げを行っても、引き上げられたシリコン単結晶10の酸素濃度が高い場合と、酸素濃度が低い場合があることを知っていた。従来、これを解消するために、引き上げ条件等を重点的に調査してきたが、確固たる解決方法が見つからなかった。
 その後、調査を進めていくうちに、本発明者らは、石英ルツボ3A中に固体のポリシリコン原料を投入して、溶解した後、水平磁場を印加してシリコン単結晶10を引き上げる工程において、水平磁場の磁力線を軸として石英ルツボ3Aの底部からシリコン融液9の表面に向かって回転する対流があることを知見した。その対流の回転方向は、左回りが優勢となる場合と、左回りが優勢となる場合の2つの対流パターンであった。
 このような現象の発生は、発明者らは、以下のメカニズムによるものであると推測した。
 まず、図3(A)に示すように、水平磁場を印加せず、石英ルツボ3Aを回転させない状態では、石英ルツボ3Aの外周近傍でシリコン融液9が加熱されるため、シリコン融液9の底部から表面に向かう上昇方向の対流が生じている。上昇したシリコン融液9は、シリコン融液9の表面で冷却され、石英ルツボ3Aの中心で石英ルツボ3Aの底部に戻り、下降方向の対流が生じる。
 外周部分で上昇し、中央部分で下降する対流が生じた状態では、熱対流による不安定性により下降流の位置は無秩序に移動し、中心からずれる。
 図3(A)の状態で水平磁場を印加すると、石英ルツボ3Aの上方から見たときの下降流の回転が徐々に拘束され、図3(B)に示すように、水平磁場の中心の磁力線の位置から最も離れた位置に拘束される。
 この状態を継続して水平磁場の強度を大きくすると、図3(C)に示すように、下降流の右側と左側における上昇方向の対流の大きさが変化し、図3(C)であれば、下降流の左側の上昇方向の対流が優勢になる。
 最後に、図3(D)に示すように、下降流の右側の上昇方向の対流が消え去り、左側が上昇方向の対流、右側が下降方向の対流となり、右回りの対流となる。
 一方、図3(A)の最初の下降流の位置を石英ルツボ3Aの回転方向に180度位相をずらせば、下降流は、図3(C)とは位相が180度ずれた左側の位置で拘束され、左回りの対流となる。
 そこで、本発明者らは、この右回り、左回りの対流と、引き上げ装置1の炉内環境の非軸対称構造との組み合わせが、シリコン単結晶10の酸素濃度に違いを生じさせる原因となっているものと推測した。
 以上のことから、本発明者らは、シリコン融液9の液面の表面温度を測定することにより、シリコン融液9の内部の対流の方向を把握し、引き上げ装置1の炉内環境の非面対称構造から、シリコン単結晶10の酸素濃度を高い精度で推定できるものと考えた。
 [3]シリコン単結晶の酸素濃度推定方法
 図4には、シリコン融液9の対流の回転方向と、引き上げ装置1の非面対称のホットゾーン形状の関係が示されている。前述したように引き上げ装置1の熱遮蔽体12の一方には、切欠部121が形成されている。すなわち、引き上げ装置1は、結晶引き上げ軸7および水平磁場の印加方向を含む平面Sに対して、非面対称のホットゾーン形状を有し、非面対称のホットゾーン形状は、切欠部121によって実現される。
 放射温度計15は、図4(A)、図4(B)に示すように、切欠部121が形成された部分の近傍のシリコン融液9の表面温度を測定する。
 固体のポリシリコンを溶解した後、磁場を印加して、シリコン単結晶10を引き上げる工程において、切欠部121が形成された熱遮蔽体12をシリコン単結晶10の近傍に設置すると、切欠部121により炉内のガス流量が不均一となる。アルゴンガスは、熱遮蔽体12の切欠部121において、流量が増加し、流速が速くなる。
 シリコン単結晶10の引き上げ中のシリコン融液9の表層部は、該表層からの酸素の蒸発によって低酸素濃度の領域9Aになっていると考えられる。
 図4(A)の場合、シリコン融液9の対流が右回りであり、低酸素濃度の領域9Aがシリコン単結晶10に接近する流れに対して、切欠部121により流量および流速が大きいアルゴンガスの流れが逆行しているため、シリコン単結晶10は、低酸素濃度の領域9Aを取り込みにくくなり、高酸素濃度となる。
 一方、図4(B)の場合、シリコン融液9の滞留が左回りであり、低酸素濃度の領域9Aがシリコン単結晶に接近する流れに対して、切欠部121により流量および流速が大きいアルゴンガスの流れが順方向となるため、シリコン単結晶10は低酸素濃度の領域9Aを取り込みやすくなり、低酸素濃度となる。
 シリコン単結晶10のネック(NECK)工程において、シリコン融液9の対流が、右回り、左回りの相違による放射温度計15で測定されたシリコン融液9の表面温度は、図5に示すように、明らかに差異が生じることが確認された。図5における符号4Aは、図4(A)の右回りの場合であり、図5における符号4Bは、図4(B)の左回りの場合である。これにより、シリコン融液9の表面温度を計測することにより、シリコン融液9の対流が右回りであるか、左回りであるかを判別できることが確認された。
 次に、ネック工程で測定したシリコン融液9の表面温度から引き上げられたシリコン単結晶10の直胴部の酸素濃度を、FTIR(Fourier Transform Infrared Spectroscopy)で測定したところ、図6に示すように、直胴部の酸素濃度に差異が生じることが確認された。図6における符号5Aは、図4(A)の右回りの場合であり、図6における符号5Bは、図4(B)の左回りの場合である。
 したがって、図5および図6の関係を利用すれば、ネック工程において、シリコン融液9の表面の温度を測定することにより、引き上げられたシリコン単結晶10の直胴部の酸素濃度を高精度に推定できることが確認された。なお、本実施の形態では、ネック工程においてシリコン融液9の表面温度を測定していたが、本発明はこれに限られない。たとえば、シリコン単結晶10の肩部形成工程において、切欠部121の近傍のシリコン融液9の表面温度を測定してもよい。要するに、放射温度計15により、切欠部121近傍のシリコン融液9の表面温度を測定できるのであれば、本発明を適用することができる。
 [4]シリコン単結晶の製造方法
 次に、本実施の形態におけるシリコン単結晶の製造方法を図7に示すフローチャートに基づいて説明する。
 前述したシリコン単結晶の引き上げ装置1において、種結晶8をシリコン融液9に漬けて、シリコン単結晶10の引き上げを開始する(工程S1)。
 種結晶8がシリコン融液9になじんだら種結晶8を上方に引き上げながら、シード絞りを行い、ネック工程を開始する(工程S2)。
 ネック工程の開始とともに、放射温度計15により、熱遮蔽体12の切欠部121の近傍のシリコン融液9の表面温度測定を行う(工程S3)。
 シリコン融液9の表面の温度測定は、ネック工程の間継続してネック工程が終了するまで実施する(工程S4)。
 シリコン融液9の温度測定が終了したら、予め準備された図5および図6のグラフに基づいて、シリコン単結晶10中の酸素濃度を推定する(工程S5)。
 引き上げるシリコン単結晶10中の酸素濃度が推定されたら、酸素濃度が製品規格内となるように、シリコン単結晶10の直胴部における引き上げ条件を調整する(工程S6)。引き上げ条件は、具体的には、ルツボ3の回転数、アルゴンガス流量、炉内圧力を調整することにより、行われる。
 引き上げ条件の調整が終了したら、シリコン単結晶10の直胴部の引き上げを行う(工程S7)。
 [5]第1の実施の形態の作用および効果
 このような本実施の形態によれば、シリコン融液9の表面の温度を放射温度計15により測定するだけで、引き上げられたシリコン単結晶10の酸素濃度を推定することができる。すなわち、シリコン単結晶10の引き上げ開始後、ネック工程、肩部形成工程の間に温度測定を行い、引き上げられたシリコン単結晶10の酸素濃度を高い精度で推定することができる。
 したがって、シリコン単結晶10の直胴部の引き上げまでに、引き上げ条件を調整して、酸素濃度が製品規格内となるシリコン単結晶10の引き上げを行うことができる。
 シリコン単結晶の引き上げ装置1における非面対称のホットゾーン形状を、熱遮蔽体12に切欠部121を形成することにより実現しているため、放射温度計15によるシリコン融液9の表面の温度測定位置が視認し易くなり、シリコン融液9の表面の温度測定を容易に行うことができる。
 [6]第2の実施の形態
 次に、本発明の第2の実施の形態について説明する。なお、以下の説明では、既に説明した部分等については、同一符号を付してその説明を省略する。
 前述した第1の実施の形態では、シリコン単結晶の引き上げ装置1の非面対称のホットゾーン形状は、熱遮蔽体12に切欠部121を形成することにより行っていた。
 これに対して、本実施の形態では、図8に示すように、シリコン単結晶の引き上げ装置1Aの非面対称のホットゾーン形状を、熱遮蔽体12の下部の一部に厚肉部122として変更することにより、実現している点が相違する。
 厚肉部122では、熱遮蔽体12の他の部分よりも、厚肉部122の下端と、シリコン融液9の液面との間隔が小さくなっている。この部分の間隔を小さくすると、厚肉部122を形成していない反対側のアルゴンガスの流量および流速が増し、シリコン融液9の表面の低酸素濃度の領域9Aがシリコン単結晶10に接近する方向に逆行する流れとなり、シリコン単結晶10は、低酸素濃度の領域9Aを取り込みにくくなり、高酸素濃度となる。
 したがって、このような本実施の形態によっても、前述した作用および効果と同様の作用および効果を享受できる。
 次に、本発明の実施例について説明する。なお、本発明は実施例に限定されるものではない。
 第1の実施の形態に係るシリコン単結晶の引き上げ装置1により、3本のシリコン単結晶10の引き上げを行った。ネック工程において、放射温度計15により、切欠部121の近傍のシリコン融液9の表面の温度を測定したところ、図9に示す結果となった。
 図9に示すように、実験例Aでは、ネック工程の間、シリコン融液9の表面の温度は、高い値を示していた。一方、実験例Bおよび実験例Cでは、ネック工程の間、シリコン融液9の表面の温度は、低い値を示していた。
 実験例Aは、図4(A)に示すように、シリコン融液9の対流が右回りであり、シリコン単結晶10の酸素濃度が高くなると推定された。
 一方、実験例B、実験例Cは、図4(B)に示すように、シリコン融液9の対流が左回りであり、シリコン単結晶10の酸素濃度が低くなると推定された。そこで、実験例Bでは、図10に示すように、炉内圧を実験例A、実験例Cよりも高く設定して引き上げを行った。また、実験例Bでは、図11に示すように、ルツボ回転数も実験例A、実験例Cよりも高く設定して引き上げを行った。
 引き上げられたシリコン単結晶10の酸素濃度を測定したところ、図12に示す結果となった。
 実験例Aは、推定した通り、酸素濃度が高くなっていた。実験例Cは、推定した通り、酸素濃度が低くなっていた。
 実験例Bは、炉内圧、ルツボ回転数を調整することにより、実験例Cの場合よりも、酸素濃度が向上することが確認された。
 以上のことから、非面対称構造のシリコン単結晶の引き上げ装置1において、切欠部121の近傍のシリコン融液9の表面の温度を放射温度計15で測定することにより、引き上げられたシリコン単結晶10の酸素濃度を推定することができることが確認された。
 また、推定後、炉内圧、ルツボ回転数等の引き上げ条件を調整することにより、引き上げられたシリコン単結晶10の酸素濃度を調整することができることが確認された。
 1…引き上げ装置、1A…引き上げ装置、2…チャンバ、3…ルツボ、3A…石英ルツボ、3B…黒鉛ルツボ、4…支持軸、5…ヒーター、6…断熱材、7…結晶引き上げ軸、8…種結晶、9…シリコン融液、10…シリコン単結晶、12…熱遮蔽体、13…ガス導入口、14…排気口、15…放射温度計、121…切欠部、122…厚肉部、P…測定点、S…結晶引き上げ軸および水平磁場の印加方向を含む面。

Claims (4)

  1.  石英ルツボ内のシリコン融液に水平磁場を印加して、前記シリコン融液から引き上げられたシリコン単結晶内の酸素濃度を推定するシリコン単結晶の酸素濃度推定方法であって、
     前記シリコン単結晶は、結晶引き上げ軸および前記水平磁場の印加方向を含む面に対して、非面対称構造となるホットゾーン形状を有する引き上げ装置により引き上げられ、
     前記シリコン単結晶のネック工程および肩部形成工程の少なくともいずれかにおいて、
     前記ホットゾーン形状の非面対称構造となる位置における前記シリコン融液の表面温度を計測する工程と、
     計測された前記シリコン融液の表面温度と、予め準備された前記シリコン融液の表面温度および前記シリコン単結晶中の酸素濃度の関係とに基づいて、引き上げられたシリコン単結晶の直胴部における酸素濃度を推定する工程と、
    を実施することを特徴とするシリコン単結晶の酸素濃度推定方法。
  2.  請求項1に記載のシリコン単結晶の酸素濃度推定方法において、
     前記ホットゾーン形状の非面対称構造は、前記シリコン融液の表面から離間して配置される熱遮蔽体の一部に切欠部を形成することを特徴とするシリコン単結晶の酸素濃度推定方法。
  3.  請求項1に記載のシリコン単結晶の酸素濃度推定方法において、
     前記ホットゾーン形状の非面対称構造は、前記シリコン融液の表面から離間して配置される熱遮蔽体の一部の高さを変更することを特徴とするシリコン単結晶の酸素濃度推定方法。
  4.  石英ルツボ内のシリコン融液に水平磁場を印加して、前記シリコン融液からシリコン単結晶を引き上げるシリコン単結晶の製造方法であって、
     請求項1から請求項3のいずれか一項に記載のシリコン単結晶の酸素濃度推定方法を実施し、
     推定された前記シリコン単結晶の酸素濃度に基づいて、前記引き上げ装置を構成する石英ルツボの回転数、不活性ガスの流量、および炉内圧力の少なくともいずれかを調整して、前記シリコン単結晶の引き上げを行うことを特徴とするシリコン単結晶の製造方法。
PCT/JP2019/007444 2018-02-28 2019-02-27 シリコン単結晶の酸素濃度推定方法、およびシリコン単結晶の製造方法 WO2019167988A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980015966.3A CN112204174B (zh) 2018-02-28 2019-02-27 单晶硅的氧浓度推断方法及单晶硅的制造方法
US16/971,155 US11473211B2 (en) 2018-02-28 2019-02-27 Method of estimating oxygen concentration of silicon single crystal and method of manufacturing silicon single crystal
KR1020207025037A KR102422843B1 (ko) 2018-02-28 2019-02-27 실리콘 단결정의 산소 농도 추정 방법 및 실리콘 단결정의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-035829 2018-02-28
JP2018035829A JP6977619B2 (ja) 2018-02-28 2018-02-28 シリコン単結晶の酸素濃度推定方法、およびシリコン単結晶の製造方法

Publications (1)

Publication Number Publication Date
WO2019167988A1 true WO2019167988A1 (ja) 2019-09-06

Family

ID=67804901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007444 WO2019167988A1 (ja) 2018-02-28 2019-02-27 シリコン単結晶の酸素濃度推定方法、およびシリコン単結晶の製造方法

Country Status (6)

Country Link
US (1) US11473211B2 (ja)
JP (1) JP6977619B2 (ja)
KR (1) KR102422843B1 (ja)
CN (1) CN112204174B (ja)
TW (1) TWI694182B (ja)
WO (1) WO2019167988A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024116476A1 (ja) * 2022-11-29 2024-06-06 株式会社Sumco 引上装置の制御方法、制御プログラム、制御装置、単結晶シリコンインゴットの製造方法、及び単結晶シリコンインゴット

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6930458B2 (ja) * 2018-02-28 2021-09-01 株式会社Sumco シリコン融液の対流パターン推定方法、シリコン単結晶の酸素濃度推定方法、シリコン単結晶の製造方法、および、シリコン単結晶の引き上げ装置
TWI785889B (zh) * 2020-12-08 2022-12-01 日商Sumco股份有限公司 矽單結晶的氧濃度推定方法、矽單結晶的製造方法及矽單結晶製造裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10291892A (ja) * 1997-04-22 1998-11-04 Komatsu Electron Metals Co Ltd 結晶中の不純物濃度検出方法および単結晶の製造方法並びに単結晶引上げ装置
JP2001002492A (ja) * 1999-06-17 2001-01-09 Komatsu Electronic Metals Co Ltd 単結晶製造方法およびその装置
JP2004323322A (ja) * 2003-04-28 2004-11-18 Sumitomo Mitsubishi Silicon Corp 熱遮蔽部材およびこれを用いた単結晶引上げ装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004393A (en) 1997-04-22 1999-12-21 Komatsu Electronic Metals Co., Ltd. Detecting method of impurity concentration in crystal, method for producing single crystal and apparatus for the pull-up of a single crystal
US5882402A (en) * 1997-09-30 1999-03-16 Memc Electronic Materials, Inc. Method for controlling growth of a silicon crystal
DE60334722D1 (de) * 2002-11-12 2010-12-09 Memc Electronic Materials Verfahren zur herstellung eines siliciumeinkristalie temperaturgradienten zu steuern
WO2006046280A1 (ja) * 2004-10-26 2006-05-04 Sumco Corporation 熱遮蔽部材およびこれを用いた単結晶引上げ装置
JP5181178B2 (ja) 2007-09-12 2013-04-10 Sumco Techxiv株式会社 半導体単結晶製造装置における位置計測装置および位置計測方法
EP2270264B1 (en) * 2009-05-13 2011-12-28 Siltronic AG A method and an apparatus for growing a silicon single crystal from melt
CN107075717B (zh) * 2014-09-19 2020-06-16 各星有限公司 用于防止熔体污染的拉晶机
JP6222056B2 (ja) 2014-11-21 2017-11-01 信越半導体株式会社 シリコン単結晶の温度の推定方法及びシリコン単結晶の製造方法
CN105506731B (zh) 2015-12-09 2019-03-29 上海超硅半导体有限公司 单晶硅生长氧含量控制方法
JP6528710B2 (ja) 2016-04-11 2019-06-12 株式会社Sumco シリコン試料の炭素濃度測定方法およびシリコン単結晶インゴットの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10291892A (ja) * 1997-04-22 1998-11-04 Komatsu Electron Metals Co Ltd 結晶中の不純物濃度検出方法および単結晶の製造方法並びに単結晶引上げ装置
JP2001002492A (ja) * 1999-06-17 2001-01-09 Komatsu Electronic Metals Co Ltd 単結晶製造方法およびその装置
JP2004323322A (ja) * 2003-04-28 2004-11-18 Sumitomo Mitsubishi Silicon Corp 熱遮蔽部材およびこれを用いた単結晶引上げ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024116476A1 (ja) * 2022-11-29 2024-06-06 株式会社Sumco 引上装置の制御方法、制御プログラム、制御装置、単結晶シリコンインゴットの製造方法、及び単結晶シリコンインゴット

Also Published As

Publication number Publication date
JP2019151499A (ja) 2019-09-12
CN112204174B (zh) 2022-07-08
KR20200111799A (ko) 2020-09-29
US20200407870A1 (en) 2020-12-31
CN112204174A (zh) 2021-01-08
TW201940756A (zh) 2019-10-16
KR102422843B1 (ko) 2022-07-19
TWI694182B (zh) 2020-05-21
JP6977619B2 (ja) 2021-12-08
US11473211B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
JP6583142B2 (ja) シリコン単結晶の製造方法及び装置
WO2019167988A1 (ja) シリコン単結晶の酸素濃度推定方法、およびシリコン単結晶の製造方法
JP5664573B2 (ja) シリコン融液面の高さ位置の算出方法およびシリコン単結晶の引上げ方法ならびにシリコン単結晶引上げ装置
CN108779577B (zh) 单晶硅的制造方法
WO2020039553A1 (ja) シリコン単結晶の育成方法
JP6950581B2 (ja) シリコン単結晶の製造方法およびシリコン単結晶の引き上げ装置
JP2009057270A (ja) シリコン単結晶の引上方法
WO2017217104A1 (ja) シリコン単結晶の製造方法
TWI635199B (zh) 單晶矽的製造方法
JP6729470B2 (ja) 単結晶の製造方法及び装置
TWI625432B (zh) 單晶矽的製造方法及單晶矽
JP6237605B2 (ja) シリコン単結晶の製造方法
JP5088338B2 (ja) シリコン単結晶の引き上げ方法
WO2019167986A1 (ja) シリコン融液の対流パターン制御方法、および、シリコン単結晶の製造方法
JP6485286B2 (ja) シリコン単結晶の製造方法
JP5482547B2 (ja) シリコン単結晶の製造方法
WO2018003264A1 (ja) シリコン単結晶の製造方法
JP6958632B2 (ja) シリコン単結晶及びその製造方法並びにシリコンウェーハ
JP2018043904A (ja) シリコン単結晶の製造方法
JP5929825B2 (ja) シリコン単結晶の製造方法
JP7249913B2 (ja) シリコン単結晶の製造方法
WO2022254885A1 (ja) シリコン単結晶の製造方法
KR20100071507A (ko) 실리콘 단결정 제조 장치, 제조 방법 및 실리콘 단결정의 산소 농도 조절 방법
KR20090008969A (ko) 실리콘 단결정 성장 장치 및 실리콘 단결정 성장 방법
JP5136252B2 (ja) シリコン単結晶の育成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207025037

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760954

Country of ref document: EP

Kind code of ref document: A1