JP5929825B2 - シリコン単結晶の製造方法 - Google Patents

シリコン単結晶の製造方法 Download PDF

Info

Publication number
JP5929825B2
JP5929825B2 JP2013099020A JP2013099020A JP5929825B2 JP 5929825 B2 JP5929825 B2 JP 5929825B2 JP 2013099020 A JP2013099020 A JP 2013099020A JP 2013099020 A JP2013099020 A JP 2013099020A JP 5929825 B2 JP5929825 B2 JP 5929825B2
Authority
JP
Japan
Prior art keywords
temperature
melt
silicon
single crystal
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013099020A
Other languages
English (en)
Other versions
JP2014218402A (ja
Inventor
祥 高島
祥 高島
宮原 祐一
祐一 宮原
淳 岩崎
淳 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2013099020A priority Critical patent/JP5929825B2/ja
Publication of JP2014218402A publication Critical patent/JP2014218402A/ja
Application granted granted Critical
Publication of JP5929825B2 publication Critical patent/JP5929825B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Description

本発明は、水平磁場印加チョクラルスキー法(Horizontal Magnetic field application Czochralski method:HMCZ法ともいう)によるシリコン単結晶の製造方法に関するものである。
半導体基板に用いられるシリコン単結晶を製造する方法には種々の方法があるが、そのなかでも回転引き上げ法として広く採用されているものにチョクラルスキー法(以下、CZ法ともいう)がある。
さらに、シリコン単結晶の低酸素濃度化や大口径結晶を容易に製造することなどを目的に、水平磁場を印加しながらCZ法でシリコン単結晶を引き上げるHMCZ法が広く知られている。
ここで、CZ法では、種付け前に、シリコン融液の表面温度を測定し、その結果を元にシリコン融液形成用のヒーターの出力を調整し、種付け(種結晶の着液)に適したシリコン融液表面温度に合わせてから種付けを行っている。
そして、その後ダッシュネッキング法等により種結晶を引き上げてシリコン融液から種絞りを作製し、所定の直径を有する直胴部(定径部)の直径にまで拡径する為のコーンを育成した後、所定の直径でシリコン単結晶を育成する直胴部を形成し、単結晶が目標の長さに達すると終端部のテール絞りを行い、単結晶の育成を終了することが一般的に行われている。
ところで、種付けに適した融液表面温度とは、種付け後の絞り作製時に、適正な直径の絞りが作製できる温度のことを言う。
例えば、融液表面温度が高過ぎる場合には、絞りが所定の直径より細くなり、引き上げるシリコン単結晶の重量に耐えられなくなる。さらに融液表面温度が高い場合には、絞りがシリコン融液から切り離れてしまい、単結晶引き上げが継続できなくなる。
また、融液表面温度が低過ぎる場合には、絞りの直径が縮径せず、その結果種付け時に種結晶に導入された転位が抜けきらず、単結晶が有転位化してしまう。
これらの場合(高温でも低温でも)には、単結晶の引き上げは再度種付けからやり直しとなる為、生産性の低下を招く。
このように、種付け時のシリコン融液の融液表面温度(以下、表面温度ともいう)はシリコン単結晶を引き上げる上で非常に重要であり、その融液表面温度を種付け前に安定して測定することが要求される。
しかし、HMCZ法では、シリコン融液表面に磁力線と平行な方向に周囲より温度の低い低温領域が形成されることが知られており(特許文献1等参照)、その融液表面の低温領域の位置は、印加する磁場強度およびルツボ回転により変化する。また、磁場強度およびルツボ回転が一定条件の下でも、融液表面の低温領域の位置は特定範囲内(低温領域になり得る領域)で常に移動しており、安定していない。
その為、融液表面温度の測定位置によっては当該低温領域の温度を計測したりしなかったりで、融液表面温度の測定値がばらつき、その結果種付け時の融液表面温度を適正な温度に合わせることができず、適正な直径の絞りが作製できないという問題があった。
この解決策として、特許文献2では、予め二次元温度計によりシリコン融液表面温度分布を測定して、融液表面温度が他の領域よりも低温の低温領域になり得る領域を特定し、その後、放射温度計による温度測定点を低温領域になり得る領域の外に設定することが提案されている。
また、前記問題の解決策として、特許文献3では、1台の引き上げ装置に複数の放射温度計を設置し、融液表面の複数位置の温度を測定し、その平均値を用いることが提案されている。
特開2000−272992号公報 特開2012−31005号公報 特開2009−161400号公報
しかし、特許文献2に記載の方法では放射温度計の測定部では温度が安定していても、低温領域が常に移動しており安定しているとは限らない状態であり、低温領域を種結晶着液部に固定できない。また種結晶着液部での温度が安定していないことを確認できない為、適正な温度に合わせることができず、適正な直径の絞りが作製できない事があり、種付けに失敗する問題があった。
また、特許文献3に記載の方法では複数の放射温度計が必要となる為、装置コストが高くなるという問題がある。
また、温度計としてCCDカメラを使った二次元温度計を利用する方法もある。
しかしながら、この二次元温度計は、放射温度計に対して非常に高価であり、この方法も装置コストが高くなるという問題がある。また、この二次元温度計は、CCDカメラから出力される輝度信号から温度を求めている為、温度測定用に設けられた引き上げ装置のガラス窓がシリコン融液から発生するシリコン酸化物などで汚れると、放射温度計とは異なって温度測定値が大きく変化してしまい、種付けに適正なシリコン融液表面温度を測定できないという問題がある。
本発明は、上記問題に鑑みなされたものであって、HMCZ法でのシリコン単結晶製造における種付け工程で、種結晶着液部のシリコン融液表面温度を安定させることで、適正な種付け温度に合わせることができ、絞りの失敗や不適正な絞りに起因するコーン育成時の有転位化を従来に比べて抑制することができ、これにより生産性を向上させることができるシリコン単結晶の製造方法を提供することを目的とする。
上記目的を達成するために、本発明は、単結晶製造装置内のルツボに多結晶シリコン原料を充填し、ヒーターで加熱して前記多結晶シリコン原料を融解した後に該シリコン融液に種結晶を着液して該種結晶の下方にシリコン単結晶を育成する際に、前記ヒーターの外側に磁場印加装置を前記ルツボを挟んで対向配備して、前記原料融液に水平磁場を印加する、水平磁場印加チョクラルスキー法を用いたシリコン単結晶の製造方法であって、前記ルツボを3rpm以上で回転させつつ、前記種結晶を前記シリコン融液に着液する前に、予め二次元温度計により前記シリコン融液の表面温度分布を測定して、該測定中に、融液表面温度が他の領域より低温であり続ける常低温領域を特定し、その後、放射温度計によって前記シリコン融液の融液表面温度を測定して該測定温度に基づき前記シリコン融液への前記種結晶の着液時の融液表面温度を調節する際に、前記放射温度計による温度測定点を前記常低温領域内に設定し、かつ、前記常低温領域内に前記種結晶を着液させることを特徴とするシリコン単結晶の製造方法を提供する。
このように、HMCZ法によるシリコン単結晶を育成する際に、種付け工程のシリコン融液の融液表面温度の測定時にルツボ回転を3rpm以上とする事で、融液表面温度の低温領域となる範囲を拡大させ且つ揺らぎによる低温領域の位置の変化量を低温領域の範囲に対し相対的に小さく安定させることができる。
そして、予め二次元温度計による測定から求めた、他の領域より低温であり続ける常低温領域内において、放射温度計による温度測定点を設定し且つ種結晶を着液させ、その後、単結晶の引上げを行う。
これによって、たとえ、ある範囲内で低温領域の位置が揺らいで変化しても、温度測定点と種結晶着液部を共に常低温領域となる範囲に留めるため、融液表面温度の検出値が安定し、ヒーター出力の制御を従来に比べて安定化・高精度化することができる。そして、種付け時のシリコン融液表面温度を適正な温度に合わせることができ、絞りの失敗やコーン育成中の有転位化に関して、従来に比べてそれらの発生頻度を低くすることができる。よって生産性の改善を図ることができ、シリコン単結晶のコストを低減することができる。
ここで、前記常低温領域を特定した後に前記二次元温度計を取り外し、該二次元温度計を取り外した位置に前記放射温度計を取り付けることが好ましい。
これによって、取り外した高価な二次元温度計を別の単結晶製造装置の測定に用いることができるため、シリコン単結晶引き上げの種付け時において、一般的な1台の引き上げ装置に1台のシリコン融液表面温度測定用の放射温度計が設置された構成の装置であっても、融液表面温度を安定して測定することができる。その結果、種付け時のシリコン融液表面温度を適正な温度に合わせることができるし、装置コストも安くできるので、シリコン単結晶の製造コストの更なる低減を達成することができる。
以上説明したように、本発明によれば、種付け時のシリコン融液表面温度の測定値と種結晶着液部の温度が安定する為、種付けに適正なシリコン融液表面温度に合わせやすくなる。そして、絞りの失敗やコーン育成時の有転位化を従来よりも確実に防止でき、生産性の改善及びシリコン単結晶の製造コストの低減を図ることができる。
また、高価なカメラを多数台準備する必要もなく、装置コストを安くすることができるため、単結晶製造コストの低減も図ることができる。
HMCZ法によるシリコン単結晶の製造方法を実施するのに適した単結晶製造装置の概略の一例を示す図である。 本発明におけるシリコン融液の表面温度分布を示す模式図である。 実施例1における放射温度計による種結晶着液部と温度測定点でのシリコン融液表面温度の温度変動を示すグラフである。 実施例1と比較例1における種結晶着液部でのシリコン融液表面温度の温度変動幅を比較したグラフである。 実施例1と比較例1における結晶1本当たりのトラブル(絞りの失敗とコーンの有転位化)発生率を比較したグラフである。 比較例1−3におけるシリコン融液の表面温度分布を示す模式図である。 比較例1における放射温度計による種結晶着液部と温度測定点でのシリコン融液表面温度の温度変動を示すグラフである。 従来法におけるシリコン融液の表面温度分布を模式的に示す図である。
以下、本発明について図を参照して詳細に説明するが、本発明はこれらに限定されるものではない。
まず、本発明のようなHMCZ法によるシリコン単結晶の製造方法を実施するのに適した単結晶製造装置の概略の一例を図1を用いて説明する。
図1に示すように、単結晶製造装置22の外観は、中空円筒状のメインチャンバー9aとそれに連通するプルチャンバー9bで構成され、メインチャンバー9aの外側には、水平磁場を印加する為の電磁石12が設置されている。
そしてメインチャンバー9aの中心部にはルツボが配設されている。
このルツボは二重構造であり、有底円筒状をなす石英製の内層保持容器1a(以下、単に「石英ルツボ」という)と、その石英ルツボ1aの外側を保持すべく適合された同じく有底円筒状の黒鉛製の外層保持容器1b(以下、単に「黒鉛ルツボ」という)とから構成されている。これらのルツボは、回転および昇降が可能になるように支持軸7の上端部に固定されている。
そして、石英ルツボ1a及び黒鉛ルツボ1bの外側には抵抗加熱式ヒーター2が概ね同心円状に配設されており、このヒーター2によってルツボ内に投入された所定重量の多結晶シリコン原料が溶融され、シリコン融液3が形成される。
また、ヒーター2の周辺には保温材が施されており、ヒーター2の外側には保温筒8aが同心円状に配設され、またその下方で装置底部には保温板8bが配設されている。
また、シリコン融液3を充填したルツボの中心軸上には、支持軸7と同一軸上で逆方向または同方向に所定の速度で回転する引き上げワイヤー(または引き上げシャフト、以下両者を合わせて「引き上げ軸4」という)が配設されており、引き上げ軸4の下端には種ホルダー6が設置され、種ホルダー6に種結晶5が保持されている。さらに、引き上げ軸4と同心円状にパージチューブ10が配設され、その下端にはカラー11が設けられている。
更に、プルチャンバー9bもしくはメインチャンバー9aにはガラス窓16が設けられ、その外側に温度計が設けられており、ガラス窓16から温度計でシリコン融液表面温度を測定できるようになっている。
このプルチャンバー9bに設けられた温度測定用のガラス窓16の外側には、種付け時のシリコン融液表面温度を測定する為の放射温度計15aが1台設置されている。また、この放射温度計15aの代わりに、種付け前のシリコン融液の表面温度分布を測定する為の二次元温度計15bを取り付けることも可能になっている。ただし、放射温度計15aおよび二次元温度計15bを同時に取り付け可能な装置とすることもできる。コスト等に応じて適宜決定できる。
次に、本発明のHMCZ法によるシリコン単結晶の製造方法の工程の一例について説明する。
上記の様な単結晶製造装置22を用いて、HMCZ法によってシリコン単結晶を製造するには、まず、前記石英ルツボ内に多結晶シリコン原料を投入して充填し、これをヒーター2によって加熱して原料を融解して、シリコン融液3とする。
そして、種付け工程では、単結晶を育成するのに適した温度に融液表面温度が安定したら、種ホルダー6に固定された種結晶5をルツボ内のシリコン融液3に着液させて、引き上げワイヤーを回転させながら巻き上げていく。これによりコーン部および直胴部を成長させ、種結晶の下方にシリコン単結晶を育成させていく。
このとき、図1に示すように、ヒーター2の外側にルツボを挟んで対向配備した水平磁場用電磁石12により、シリコン融液3に水平磁場(磁場中心14を中心とした磁力線13のような磁場)を印加しながら種付け・単結晶の育成を行う。
ここで、種付け工程においては、種結晶5をシリコン融液3に着液させる種付け前に、シリコン融液3の表面温度を測定し、その結果を基にしてヒーター2の出力を調整し、種付けに適した融液表面温度に合わせてから種付けを行う必要がある。
そして本発明においては、プルチャンバー9bの温度測定用のガラス窓16の外側に設置されている放射温度計15aでいきなりシリコン融液表面の温度を測定するのではなく、予めルツボの回転条件を3rpm以上とした上で、二次元温度計15bを用いてシリコン融液3の表面温度分布を測定する。この種付け前の測定におけるシリコン融液の表面温度分布の一例を図2に示す。
前述したように、HMCZ法ではシリコン融液3の表面温度分布に関して、他の領域よりも温度が低い領域が形成され(図2の低温領域18)、該低温領域18の位置は経時的にある特定の範囲(低温領域になり得る領域19)内で変化する。このように低温領域になり得る領域19は、上記のような低温領域18の位置の揺らぎによってある程度の幅を持つことになる。そして本発明では低温領域18の位置の揺らぎがあっても、上記測定によって、測定中、融液表面温度が他の領域より低温であり続ける常低温領域20を特定する。
本発明のようにルツボの回転数を3rpm以上とする事で、低温領域18の領域を拡大させ且つ経時的な低温領域の位置の変化量を低温領域の範囲に対し相対的に小さく安定させる事ができる。これにより常低温領域を広く形成することができるため、種付け時に常低温領域内の融液表面温度を測定できるし、常低温領域内に種結晶を着液させることができる(種結晶着液部21(ルツボの中心位置))。したがって、融液表面温度の測定値やヒーター出力の制御の安定化・高精度化が可能であり、種結晶着液部において適正な融液表面温度で種結晶を着液し、適正に絞りを行うことができる。
これに対してルツボの回転数が3rpm未満の場合、図8のシリコン融液の表面温度分布に示すように、低温領域118の範囲は狭く、その位置も大きく揺らぐ。揺らいで最大限移動したときの低温領域の位置118’からも分かるように、低温領域118が図上方に移動したときと図下方に移動したときとでは位置範囲が重複しておらず、常低温領域を得ることができなくなる。したがって、温度測定点での測定温度から種結晶着液部の温度安定性などの確認をするのは難しく、種付け時に、種結晶着液部における融液表面温度を適切に測定および調節することが難しくなり、適正な直径の絞りの作製が困難になったり不安定になったりする。
なお、低温領域18としては、例えば、融液表面においてルツボ中心を通る磁力線に対して垂直方向でルツボ中心から同一半径の温度を測定し、ルツボ中心に比べ温度差が7℃以内となる領域とすることができる。本発明においては、上記のように低温領域18の位置の揺らぎを小さくすることができ、そのためルツボ中心のまわりに常に温度差が7℃以内となる常低温領域20を形成することができる。
上記温度差は7℃以内に限定されるものではなく適宜決定することができるが、7℃以内であれば、種付け・絞り等を行うにあたって十分に小さな温度差であり、種結晶着液部の温度制御を行いやすく、絞りのやり直しやコーンの有転位化を防ぐ上で好ましい。
また、このシリコン融液表面の低温領域18は、ある範囲内で不規則に移動する為、シリコン融液表面温度の二次元分布を測定する際は、例えば1分間以上60分間以内の時間で行って常低温領域20を十分に確定させることが好ましい。
また、シリコン融液表面温度の二次元分布を測定する時の磁場強度は特に限定されないが、特には、低温領域18が形成され易い2000ガウス以上5000ガウス以下で行うことが好ましい。
さらには、実際の種付け時に使用する磁場強度で行うことが望ましい。
また、この他のシリコン融液表面温度の二次元分布を測定する時の条件としては、実際の種付け時に使用する、ガス流量、炉内圧、ルツボ位置等の条件も実際の種付け時と同じにすることが好ましい。
このようにすることで、実際の種付け時の条件により一層近づけることができ、より正確な種付けを行うことが可能になる。
そして、上述のような二次元温度計を用いたシリコン融液3の表面温度分布の測定によって常低温領域20を特定したら、放射温度計15aによってシリコン融液3の融液表面温度を測定する。そして該測定温度に基づいて種結晶5のシリコン融液3への着液時の融液表面温度をヒーター2の出力などを制御して調節し、種付けを行う。このときのルツボ回転数や磁場強度、ガス流量等は、既に述べたように好ましくはシリコン融液の表面温度分布の測定のときと同様のものとすることができる。また、融液表面温度の調節方法は特に限定されず、ヒーター出力調整など従来法と同様にして行うことができる。
そしてこの際、放射温度計15aによるシリコン融液表面での温度測定点17を、常低温領域20内に設定する。また、種結晶着液部21も常低温領域20の内側に設定して種付けを行う。
このようにすれば、従来のように低温領域18の経時的な移動の影響を大きく受けなくなる為、種付け時の放射温度計15aによる融液表面温度の測定値を安定させることができる。また温度測定点17も種結晶着液部21も常低温領域20内であるため、種結晶着液部21の融液表面温度をより正確に測定することができる。
その結果、不適正なシリコン融液表面温度の状態で種付けがなされることを防ぐことができる。このため、種付けに起因する絞りの失敗やコーンの有転位化の発生率を従来に比べて低くすることができ、単結晶製造歩留りを改善することができ、製造コストの低減を図ることができる。
なお、放射温度計15aによる測定の際、二次元温度計15bを設置していた箇所に設置することができる。すなわち、二次元温度計15bによる測定を行って常低温領域20を特定した後は二次元温度計15bを取り外し、該二次元温度計15bを取り外した位置に放射温度計15aを取り付けて種付け時の融液表面温度の測定を行うことができる。
このような方法を採ることで、高価な二次元温度計15bは、シリコン融液表面温度の二次元分布の測定用に1台あれば、複数の単結晶製造装置においても使用することができるようになり、そのため一台の二次元温度計によって同様の方法で各単結晶製造装置毎のシリコン融液表面において適正な温度測定点17を求めることができる。
また、シリコン単結晶の引き上げを行う時には、一般的な放射温度計15aを1台設置すれば済む為、装置コストは従来とほとんど変わらないこととすることができる。また、放射温度計であれば、ガラス窓16の汚れによる温度測定値への影響を抑制することができ、製造歩留りの改善を達成することができる。
この他、単結晶製造装置毎に放射温度計15aおよび二次元温度計15bの両方を予め取り付けておき、そのうち二次元温度計15bにより種結晶5の着液前の温度測定を行い、続いて放射温度計15aを用いて着液時の温度測定を行っても良い。コストや交換取り付けに要する手間等を考慮して適宜決定することができる。
上記のようにして種付けを行った後、ダッシュネッキング法等により種結晶5を引き上げて、シリコン融液3から種絞りを作製し、所定の直径を有する直胴部(定径部)の直径にまで拡径する為のコーンを育成する。
更に、所定の直径でシリコン単結晶を育成させ、シリコン単結晶が目標の長さに達した時点で終端部のテール絞りを行い、シリコン単結晶の育成を終了する。
以上の方法により、絞りの失敗やコーンの有転位化を抑制することができるシリコン単結晶の製造方法となる。
以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
(実施例1)
図1に示すような単結晶製造装置を用いて、内径800mmの石英ルツボ1aに多結晶シリコン原料を充填して、ヒーターによって溶融させてシリコン融液3を形成した後に、直径300mmの単結晶を引き上げた。
ここで、種付け前の測定時および種付け時の磁場強度を4000ガウス、ルツボの回転数は4rpmとした。
この状態でプルチャンバー9bの上に設けられたガラス窓16の外側に二次元温度計15bを設置した。そして、ガラス窓16を通して、二次元温度計15bによりパージチューブ10の内側のシリコン融液表面温度の二次元分布を15分間測定し、シリコン融液表面における常低温領域20を予め求めた。このとき、ルツボ中心を通る磁力線に対して垂直方向でルツボ中心から同一半径の温度を測定し、ルツボ中心からの温度差が7℃以内となる領域を低温領域として特定した。
上記二次元温度計による測定結果より図2のような表面温度分布が得られ、常低温領域20は、ルツボ中心を通る磁力線に沿って、これと垂直な方向にルツボ中心から約±15cmの範囲であることが判った。すなわち、ルツボ中心の種結晶着液部21は常低温領域20の内側となる。
その後、二次元温度計15bを取り外し、放射温度計15aを設置した。この時、放射温度計15aのシリコン融液表面での温度測定点17を、図2に示すような、上述した常低温領域20の内側で、かつルツボの中心から半径120mmの位置に設定した。
そして、温度測定点17での測定結果に基づいてヒーター2等の制御を行って融液表面温度を調節しつつ、種結晶を着液し、種絞りやコーン形成、さらには直胴部を形成してシリコン単結晶を製造した。
ここで、本発明を実施した実施例1でのシリコン融液表面温度について考察する。
なお、上記の様に設定した温度測定点17でシリコン融液の融液表面温度を測定するとともに、参考として種結晶着液部21での融液表面温度も測定した。
この温度測定点17でのシリコン融液表面の温度と、種結晶着液部21との温度差との関係を評価した。その結果を図3に示す。なお、図3の縦軸の値は、時間0秒(測定開始時)での種結晶着液部温度との温度差であり、これを温度変動幅とした。
図3に示すように、種結晶着液部における温度変動幅は2℃程度であった。また、温度測定点においては種結晶着液部との温度差は5℃前後で比較的近い値であり、かつ、種結晶着液部での温度変動幅とほぼ同様で、2〜2.5℃程度の温度変動幅であった。
このように温度測定点と種結晶着液部とでは、温度やその安定性はほぼ同様であった。このような結果は、温度測定点での測定温度を基に種結晶着液部での融液表面温度を制御するにあたって好ましい。種結晶着液部での優れた温度制御性を図ることができる。
また、図4は、実施例1と後述する従来法での比較例1との、種結晶着液部における温度変動幅の値を比較したものである。
図4に示すように、種結晶着液部でのシリコン融液表面温度の変動幅は2.0℃で安定しており、比較例1の温度変動幅(5℃程度)の約0.4倍であった。
また、図5に、実施例1と比較例1における結晶1本当たりのトラブル(絞りのやり直しやコーンの有転位化)発生率を示した。
図5に示すように、実施例1では、絞りのやり直しとコーンの有転位化率は比較例1の0.4倍にまで低くなり、改善されたことがわかる。
(実施例2、比較例1−3)
ルツボの回転数を3rpmに変えたこと、放射温度計による温度測定点を常低温領域内であってルツボ中心を通る磁力線に垂直な方向にルツボの中心から40mm離れた位置に設定したこと以外は実施例1と同様にしてシリコン単結晶を製造した(実施例2)。
また、比較例1−3では、ルツボの回転数を0.5rpm(比較例1)、1.5rpm(比較例2)、2.5rpm(比較例3)にした。また放射温度計による温度測定点に関しては、低温領域となり得る範囲の外の位置(順に、ルツボ中心を通る磁力線に垂直な方向にルツボの中心から100mm、170mm、210mm離れた位置)に設定した。
実施例2、比較例1−3での二次元温度計による測定結果を表1にまとめた。なお、比較のため、実施例1(ルツボ回転数:4rpm)の場合についても併せてまとめた。
Figure 0005929825
また比較例1−3での二次元温度計によるシリコン融液の表面温度分布の模式図を図6に示す。前述したように温度測定点117はシード着液部121から離れており、低温領域118になり得る範囲119の外の位置(最大限移動したときの低温領域の位置118’よりも外側)に設定されている。
表1や図6から分かるように、比較例1−3のようにルツボ回転数が3rpm未満の場合では、低温領域の幅(ルツボ中心を通る磁力線と垂直方向の幅)が、ルツボの回転等による不規則に移動する低温領域の移動範囲(ルツボ中心を通る磁力線と垂直方向でルツボ中心からの移動範囲)より狭いため、種結晶着液部は低温領域に入ったり外れたりを繰り返した。測定中、融液表面温度が他の領域より低温であり続ける常低温領域は存在しなかった。
一方、実施例1、2のようにルツボ回転数を3rpm以上にした場合は、低温領域の幅(ルツボ中心を通る磁力線と垂直方向の幅)が広がり、ルツボの回転等による不規則に移動する低温領域の移動範囲(ルツボ中心を通る磁力線と垂直方向でルツボ中心からの移動範囲)より広くなるため、常低温領域が存在した。すなわち、実施例2においても実施例1と同様に図2のような表面温度分布が得られた。実施例2での常低温領域の幅(ルツボ中心を通る磁力線と垂直方向の幅)は約±6cmであった。
また、比較例1に関して、放射温度計による温度測定点でのシリコン融液表面の温度と、種結晶着液部との温度差との関係を評価した。その結果を図7に示す。なお、図7の縦軸は、時間0秒(測定開始時)での種結晶着液部温度との温度差(温度変動幅)である。
図7に示すように、種結晶着液部における温度変動幅は5℃程度であった。また、温度測定点においては種結晶着液部との温度差は15〜20℃で差があり、かつ、種結晶着液部での温度変動幅とは差があり3℃程度の温度変動幅であった。
このように温度測定点と種結晶着液部とでは、温度やその安定性には差があった。温度測定点では低温領域になることはなく、一方種結晶着液部では低温領域になったりならなかったりしたためと考えられる。このような場合、温度測定点での測定温度を基に種結晶着液部での融液表面温度を制御する際、適正な制御が難しくなってしまう。例えば図5に示したように、実施例1よりも結晶1本当たりのトラブル発生率が高くなる。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
1a…石英ルツボ、 1b…黒鉛ルツボ、 2…ヒーター、 3…シリコン融液、
4…引き上げ軸、 5…種結晶、 6…種ホルダー、 7…支持軸、
8a…保温筒、 8b…保温板、 9a…メインチャンバー、
9b…プルチャンバー、 10…パージチューブ、 11…カラー、
12…水平磁場用電磁石、 13…磁力線、 14…磁場中心、
15a…放射温度計、 15b…二次元温度計、 16…ガラス窓、
17,117…放射温度計による温度測定点、
18、118…低温領域、 19…低温領域になり得る領域、
20…常低温領域、 21…種結晶着液部、 22…単結晶製造装置、
118’…最大限移動したときの低温領域の位置、
119…低温領域になり得る範囲。

Claims (2)

  1. 単結晶製造装置内のルツボに多結晶シリコン原料を充填し、ヒーターで加熱して前記多結晶シリコン原料を融解した後に該シリコン融液に種結晶を着液して該種結晶の下方にシリコン単結晶を育成する際に、前記ヒーターの外側に磁場印加装置を前記ルツボを挟んで対向配備して、前記原料融液に水平磁場を印加する、水平磁場印加チョクラルスキー法を用いたシリコン単結晶の製造方法であって、
    前記ルツボを3rpm以上で回転させつつ、前記種結晶を前記シリコン融液に着液する前に、予め二次元温度計により前記シリコン融液の表面温度分布を測定して、該測定中に、融液表面温度が他の領域より低温であり続ける常低温領域を特定し、その後、放射温度計によって前記シリコン融液の融液表面温度を測定して該測定温度に基づき前記シリコン融液への前記種結晶の着液時の融液表面温度を調節する際に、前記放射温度計による温度測定点を前記常低温領域内に設定し、かつ、前記常低温領域内に前記種結晶を着液させることを特徴とするシリコン単結晶の製造方法。
  2. 前記常低温領域を特定した後に前記二次元温度計を取り外し、該二次元温度計を取り外した位置に前記放射温度計を取り付けることを特徴とする請求項1に記載のシリコン単結晶の製造方法。
JP2013099020A 2013-05-09 2013-05-09 シリコン単結晶の製造方法 Active JP5929825B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013099020A JP5929825B2 (ja) 2013-05-09 2013-05-09 シリコン単結晶の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013099020A JP5929825B2 (ja) 2013-05-09 2013-05-09 シリコン単結晶の製造方法

Publications (2)

Publication Number Publication Date
JP2014218402A JP2014218402A (ja) 2014-11-20
JP5929825B2 true JP5929825B2 (ja) 2016-06-08

Family

ID=51937231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013099020A Active JP5929825B2 (ja) 2013-05-09 2013-05-09 シリコン単結晶の製造方法

Country Status (1)

Country Link
JP (1) JP5929825B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672874A (zh) * 2022-05-18 2022-06-28 宁夏中晶半导体材料有限公司 一种改善小角晶界缺陷的新型引晶方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002104896A (ja) * 2000-09-27 2002-04-10 Shin Etsu Handotai Co Ltd 単結晶の成長方法および成長装置
JP5482547B2 (ja) * 2010-07-30 2014-05-07 信越半導体株式会社 シリコン単結晶の製造方法

Also Published As

Publication number Publication date
JP2014218402A (ja) 2014-11-20

Similar Documents

Publication Publication Date Title
US8123855B2 (en) Device and process for growing Ga-doped single silicon crystals suitable for making solar cells
JP5664573B2 (ja) シリコン融液面の高さ位置の算出方法およびシリコン単結晶の引上げ方法ならびにシリコン単結晶引上げ装置
JP6583142B2 (ja) シリコン単結晶の製造方法及び装置
WO2015075864A1 (ja) シリコン単結晶の製造方法
JP4862826B2 (ja) シリコン単結晶の製造方法及びシリコン単結晶製造装置
TWI694182B (zh) 矽單結晶的氧濃度推測方法及矽單結晶的製造方法
JP6248816B2 (ja) 単結晶の製造方法
JP5482547B2 (ja) シリコン単結晶の製造方法
JP6939714B2 (ja) 融液面と種結晶の間隔測定方法、種結晶の予熱方法、及び単結晶の製造方法
JP5929825B2 (ja) シリコン単結晶の製造方法
TWI635199B (zh) 單晶矽的製造方法
JP5088338B2 (ja) シリコン単結晶の引き上げ方法
JP6395302B2 (ja) 単結晶シリコン引上装置、および単結晶シリコン引上方法
JP2011184227A (ja) シリコン単結晶の製造方法
JP4725752B2 (ja) 単結晶の製造方法
CN210711819U (zh) 一种大尺寸晶体生长单晶炉
JP2012006802A (ja) シリコン単結晶の製造方法及び製造装置
JP2018043904A (ja) シリコン単結晶の製造方法
JP6217514B2 (ja) サファイア単結晶の製造方法
CN109666968A (zh) 硅单晶的制造方法
JP2014214067A (ja) シリコン単結晶の製造方法
JP2020037499A (ja) 熱遮蔽部材、単結晶引き上げ装置及び単結晶の製造方法
WO2022254885A1 (ja) シリコン単結晶の製造方法
KR20100071507A (ko) 실리콘 단결정 제조 장치, 제조 방법 및 실리콘 단결정의 산소 농도 조절 방법
JP2004203634A (ja) 半導体単結晶製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R150 Certificate of patent or registration of utility model

Ref document number: 5929825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250