WO2019167502A1 - 異材接合用アーク溶接法 - Google Patents

異材接合用アーク溶接法 Download PDF

Info

Publication number
WO2019167502A1
WO2019167502A1 PCT/JP2019/002577 JP2019002577W WO2019167502A1 WO 2019167502 A1 WO2019167502 A1 WO 2019167502A1 JP 2019002577 W JP2019002577 W JP 2019002577W WO 2019167502 A1 WO2019167502 A1 WO 2019167502A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
joining
auxiliary member
arc welding
diameter portion
Prior art date
Application number
PCT/JP2019/002577
Other languages
English (en)
French (fr)
Inventor
励一 鈴木
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201980015962.5A priority Critical patent/CN111801189B/zh
Priority to US16/971,481 priority patent/US20200384567A1/en
Priority to EP19760175.0A priority patent/EP3744465A4/en
Publication of WO2019167502A1 publication Critical patent/WO2019167502A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/0203Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/24Perforating, i.e. punching holes
    • B21D28/26Perforating, i.e. punching holes in sheets or flat parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0008Welding without shielding means against the influence of the surrounding atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/007Spot arc welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • B23K9/232Arc welding or cutting taking account of the properties of the materials to be welded of different metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/15Magnesium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/20Ferrous alloys and aluminium or alloys thereof

Definitions

  • the present invention relates to an arc welding method for joining dissimilar materials.
  • An example of a conventional dissimilar material joining technique is a method in which through holes are provided in both a steel material and a lightweight material and restrained from above and below with bolts and nuts.
  • a means is known in which a caulking member is inserted from one side under a strong pressure and restrained by a caulking effect (see, for example, Patent Document 1).
  • the steel joint member is pushed into the aluminum alloy material as a punch, and the hole and the joint member are temporarily restrained, then overlapped with the steel material, and sandwiched with both copper electrodes from above and below, Means for resistance-welding a steel material and a joining member by momentarily applying pressure and high current have been proposed (see, for example, Patent Document 2).
  • Patent Document 1 Although the joining method described in Patent Document 1 is a relatively easy method, there is a problem that it cannot be inserted when the strength of the steel is high, and the joining strength depends on the frictional force and the rigidity of the caulking member. Therefore, there is a problem that high joint strength cannot be obtained. In addition, there is a problem that it cannot be applied to a closed cross-sectional structure because it is necessary to press down from both the front and back sides with a jig when inserting.
  • Patent Document 2 cannot be applied to a closed cross-sectional structure, and the resistance welding method has a problem that the equipment is very expensive.
  • Patent Document 3 applies pressure to the steel material surface while causing the aluminum alloy material to plastically flow in a low temperature region, while preventing both materials from melting and preventing the formation of intermetallic compounds.
  • steel and carbon fiber can be joined, because it is said that metal bond strength is obtained.
  • this joining method cannot be applied to a closed cross-sectional structure, and requires a high pressure, so that there is a problem that it is mechanically large and expensive. Also, the bonding force is not so high.
  • the existing dissimilar material joining technology has one or more problems such as (i) the member or groove shape is limited to an open cross-sectional structure, (ii) low joint strength, (iii) high equipment cost. have. For this reason, in order to spread multi-material design combining various materials, (i ′) applicable to both open and closed section structures, (ii ′) sufficiently high joint strength and reliability However, there is a need for a new technology that is easy to use and has all the elements of (iii ') low cost.
  • the present invention has been made in view of the above-mentioned problems, and its purpose is to use an aluminum alloy (hereinafter also referred to as “Al alloy”) or a magnesium alloy (hereinafter also referred to as “Mg alloy”) and a dissimilar steel material.
  • Al alloy aluminum alloy
  • Mg alloy magnesium alloy
  • Provided arc welding method for joining dissimilar materials that can be used with low-cost arc welding equipment that is already popular in the world, and can be joined with strong and reliable quality, and can be applied to both open and closed cross-section structures without restrictions. There is to do.
  • B Non-gas arc welding method using the welding wire as a melting electrode.
  • C Gas tungsten arc welding method using the welding wire as a non-melting electrode filler.
  • D A plasma arc welding method using the welding wire as a non-melting electrode filler.
  • E A coated arc welding method in which a coated arc welding rod from which the weld metal of an iron alloy or Ni alloy is obtained is used as a melting electrode.
  • preferred embodiments of the present invention relate to the following (2) to (11).
  • the arc welding method for joining different materials according to any one of the above (1) to (3) further comprising a step of applying an adhesive over the entire circumference.
  • an adhesive is applied to at least one opposing surface between the joining auxiliary member and the first plate facing the joining auxiliary member, (1) to (4)
  • the arc welding method for joining dissimilar materials according to any one of the above.
  • An adhesive is applied to at least a boundary portion between the joining auxiliary member and the surface of the first plate during the punching step or after the filling welding step. The arc welding method for joining different materials according to any one of the above.
  • the first plate and the second plate have a pressurizing mechanism capable of pressing in a direction in which the first plate and the second plate are in close contact with each other; Any of (1) to (7) above, wherein the pressurizing mechanism welds the second plate and the joining auxiliary member while pressing the first plate and the second plate so that they are in close contact with each other.
  • the arc welding method for joining different materials according to any one of the above.
  • the said pressurization mechanism is provided in the welding torch used in the said filling welding process, and has a pressing part contact
  • the arc welding method for joining different materials according to any one of the above.
  • a dissimilar material of an aluminum alloy or a magnesium alloy and steel can be joined with an inexpensive arc welding equipment with a strong and reliable quality, and both an open sectional structure and a closed sectional structure can be used. Applicable without limitation.
  • FIG. 1A is a perspective view of a dissimilar weld joint according to an embodiment of the present invention.
  • FIG. 1B is a cross-sectional view of the dissimilar weld joint taken along line II in FIG. 1A.
  • FIG. 2 is a perspective view and a cross-sectional view of the joining auxiliary member of the present embodiment.
  • FIG. 3A is a diagram showing a punching operation (step S1) of the arc welding method for dissimilar material joining according to the present embodiment.
  • FIG. 3B is a diagram illustrating a first step of an example of the punching operation.
  • FIG. 3C is a diagram illustrating a second step of an example of the punching operation.
  • FIG. 3D is a diagram illustrating a third step of an example of the punching operation.
  • FIG. 1A is a perspective view of a dissimilar weld joint according to an embodiment of the present invention.
  • FIG. 1B is a cross-sectional view of the dissimilar weld joint taken along line
  • FIG. 3E is a diagram illustrating a fourth step of an example of the punching operation.
  • FIG. 3F is a diagram showing a superposition operation (step S2) of the arc welding method for dissimilar material joining according to the present embodiment.
  • FIG. 3G is a diagram illustrating a welding operation (step S3) of the arc welding method for joining different materials according to the present embodiment.
  • FIG. 4A is a perspective view of a dissimilar material welded joint as a comparative example in which an aluminum upper plate and a steel lower plate are overlapped and welded through.
  • 4B is a cross-sectional view of the dissimilar material welded joint of FIG. 4A.
  • FIG. 5A is a cross-sectional view showing a state in which shear tension is applied to the dissimilar weld joint of FIG.
  • FIG. 5B is a perspective view showing the dissimilar material welded joint of FIG. 5A.
  • 6A is a cross-sectional view showing a state in which vertical peel tension is applied to the dissimilar weld joint of FIG. 4A.
  • 6B is a perspective view showing the dissimilar material welded joint of FIG. 6A.
  • FIG. 7A is a perspective view of a dissimilar material welded joint as a comparative example in which an aluminum upper plate having holes and a steel lower plate are overlapped and welded through.
  • 7B is a cross-sectional view of the dissimilar material welded joint of FIG. 7A.
  • 8A is a cross-sectional view showing a state in which shear tension is applied to the dissimilar material welded joint in FIG. 7A.
  • FIG. 8B is a perspective view showing a state in which shear tension acts on the dissimilar material welded joint in FIG. 7A and the joint is displaced by nearly 90 °.
  • FIG. 9A is a cross-sectional view showing a state in which vertical peel tension is applied to the dissimilar weld joint of FIG. 7A.
  • FIG. 9B is a perspective view showing the dissimilar material welded joint of FIG. 9A.
  • FIG. 10A is a diagram illustrating an example of a punching operation using a press-fitting device including an upper pedestal, a lower pedestal, and a pressure mechanism.
  • FIG. 10B is a diagram illustrating another example of a punching operation using a press-fitting device including an upper pedestal, a lower pedestal, and a pressurizing mechanism.
  • FIG. 10A is a diagram illustrating an example of a punching operation using a press-fitting device including an upper pedestal, a lower pedestal, and a pressurizing mechanism.
  • FIG. 10C is a view showing the aluminum upper plate in a state where the joining auxiliary member is press-fitted by the punching operation.
  • FIG. 11 is a cross-sectional view for explaining the gap G in a state where the upper plate on which the joining auxiliary member is press-fitted is superimposed on the lower plate.
  • FIG. 12A is a perspective view showing a first example of a pressurizing mechanism for pressurizing an upper plate and a lower plate in a filling welding process.
  • FIG. 12B is a perspective view showing a second example of a pressurizing mechanism for pressurizing the upper plate and the lower plate in the filling welding step.
  • FIG. 12C is a perspective view showing a third example of a pressurizing mechanism for pressurizing the upper plate and the lower plate in the filling welding step.
  • FIG. 12D is a perspective view showing a fourth example of the pressurizing mechanism for pressurizing the upper plate and the lower plate in the filling welding step.
  • FIG. 13 is a cross-sectional view for explaining the overhang amount P in a state where the upper plate on which the joining auxiliary member is press-fitted is superimposed on the lower plate.
  • FIG. 14A is a cross-sectional view of the dissimilar material welded joint according to the present embodiment.
  • FIG. 14B is a perspective view illustrating a state in which vertical peel tension is applied to the dissimilar material welded joint in FIG. 14A.
  • FIG. 15A is a front view of the joining auxiliary member of the present embodiment.
  • FIG. 15B is a front view showing a first modification of the joining auxiliary member.
  • FIG. 15C is a front view showing a second modification of the joining auxiliary member.
  • FIG. 15D is a front view showing a third modification of the joining auxiliary member.
  • FIG. 15E is a front view showing a fourth modification of the joining auxiliary member.
  • FIG. 16A is a side view showing a fifth modification of the joining auxiliary member.
  • FIG. 16B is a side view showing a sixth modification of the joining auxiliary member.
  • FIG. 16C is a side view showing a seventh modification of the joining auxiliary member.
  • FIG. 16A is a side view showing a fifth modification of the joining auxiliary member.
  • FIG. 16B is a side view showing a sixth modification of the joining auxiliary member.
  • FIG. 16C is a side view showing a seventh modification of the joining auxiliary member.
  • FIG. 17 is a cross-sectional view of the dissimilar material welded joint according to this embodiment for explaining another role of the joining auxiliary member.
  • FIG. 18A is a diagram illustrating a first example for explaining the pressing amount of the joining auxiliary member into the upper plate.
  • FIG. 18B is a diagram illustrating a second example for explaining the pressing amount of the joining auxiliary member into the upper plate.
  • FIG. 18C is a diagram illustrating a third example for explaining the pressing amount of the joining auxiliary member into the upper plate.
  • FIG. 18D is a diagram illustrating a fourth example for explaining the pressing amount of the joining auxiliary member into the upper plate.
  • FIG. 19A is a front view showing an eighth modification of the joining auxiliary member.
  • FIG. 19A is a front view showing an eighth modification of the joining auxiliary member.
  • FIG. 19B is a front view showing a ninth modification of the joining auxiliary member.
  • FIG. 19C is a front view showing a tenth modification of the joining auxiliary member.
  • FIG. 19D is a front view showing an eleventh modification of the joining auxiliary member.
  • FIG. 19E is a front view showing a twelfth modification of the joining auxiliary member.
  • FIG. 19F is a front view showing a thirteenth modification of the joining auxiliary member.
  • FIG. 19G is a front view showing a fourteenth modification of the joining auxiliary member.
  • FIG. 20 is a perspective view showing a fifteenth modification of the joining auxiliary member.
  • FIG. 21 is a side view showing a sixteenth modification of the joining auxiliary member.
  • 22A is a cross-sectional view showing a dissimilar material welded joint in which no surplus is formed.
  • 22B is a cross-sectional view showing a state in which an external stress in the plate thickness direction (three-dimensional direction) is applied to the dissimilar material welded joint in FIG. 22A.
  • FIG. 23 is a cross-sectional view showing a state in which external stress in the plate thickness direction (three-dimensional direction) is applied to the dissimilar material welded joint in which the surplus is formed.
  • FIG. 24A is a cross-sectional view of the dissimilar material welded joint for explaining the penetration of the weld metal (in the case of having a back wave).
  • FIG. 24B is a cross-sectional view of the dissimilar material welded joint for explaining the penetration of the weld metal (when there is no back wave).
  • FIG. 25 is a diagram illustrating a state in which arc welding is performed in a horizontal posture.
  • FIG. 26A is a perspective view showing a joining auxiliary member having a press-fitting protrusion of this embodiment.
  • FIG. 26B is a side view of a joining auxiliary member having a press-fitting protrusion, and a cross-sectional view taken along the line II-II.
  • FIG. 27 is a view for explaining a holding mechanism when a joining auxiliary member having a press-fitting protrusion is press-fitted into the upper plate.
  • FIG. 28A is a side view of a main part of a first modification of the joining auxiliary member having a press-fitting protrusion.
  • FIG. 28B is a side view of a main part of a second modified example of the joining auxiliary member having a press-fitting protrusion.
  • FIG. 28C is a side view of a principal part of a third modification of the joining auxiliary member having a press-fitting protrusion.
  • FIG. 28D is a side view of a main part of a fourth modified example of the joining auxiliary member having a press-fitting protrusion.
  • FIG. 28E is a side view of a principal part of a fifth modification of the joining auxiliary member having a press-fitting protrusion.
  • FIG. 28F is a side view of a principal part of a sixth modified example of the joining auxiliary member having a press-fitting protrusion.
  • FIG. 28G is a side view of a principal part of a seventh modification of the joining auxiliary member having a press-fitting protrusion.
  • FIG. 28H is a side view of a principal part of an eighth modified example of the joining auxiliary member having a press-fitting protrusion.
  • FIG. 28I is a side view of a main part of a ninth modification of the joining auxiliary member having a press-fitting protrusion.
  • FIG. 28J is a side view of a principal part of a tenth modification of the joining auxiliary member having a press-fitting protrusion.
  • FIG. 28K is a side view of a principal part of an eleventh modification of the joining auxiliary member having a press-fitting protrusion.
  • FIG. 29A is a perspective view of a twelfth modification of the joining auxiliary member having a press-fitting protrusion.
  • FIG. 29B is a perspective view of a thirteenth modification of the joining auxiliary member having the press-fitting protrusions.
  • FIG. 29C is a perspective view of a fourteenth modification of the joining auxiliary member having the press-fitting protrusions.
  • FIG. 30A is a side view of a fourteenth modified example of the joining auxiliary member having a press-fitting protrusion, and a cross-sectional view taken along the line XXXa-XXXa.
  • FIG. 30B is a side view of a fifteenth modification of the joining auxiliary member having the press-fitting protrusions, and a cross-sectional view taken along the line XXXb-XXXb.
  • FIG. 30C is a side view of the sixteenth modification of the joining auxiliary member having the press-fitting protrusions, and a cross-sectional view taken along the line XXXc-XXXc.
  • FIG. 30D is a side view of the seventeenth modified example of the joining auxiliary member having the press-fitting protrusions, and a cross-sectional view taken along the line XXXd-XXXd.
  • FIG. 30E is a side view of an eighteenth modification of the joining auxiliary member having a press-fitting protrusion, and a cross-sectional view taken along the line XXXe-XXXe.
  • FIG. 31A is a cross-sectional view of the dissimilar material welded joint according to the present embodiment.
  • FIG. 31B is a cross-sectional view along the line XXXI-XXXI in FIG. 31A.
  • FIG. 32A is a side view of a main part of a nineteenth modified example of the joining auxiliary member having a press-fitting protrusion.
  • FIG. 32B is a side view of the principal part of the twentieth modification of the joining auxiliary member having the press-fitting protrusion.
  • FIG. 32C is a side view of the principal part of the twenty-first modified example of the joining auxiliary member having the press-fitting protrusion.
  • FIG. 32D is a side view of a principal part of a twenty-second modified example of the joining auxiliary member having a press-fitting protrusion.
  • FIG. 32E is a side view of the principal part of the twenty-third modified example of the joining auxiliary member having the press-fitting protrusion.
  • FIG. 33A is a perspective view and a side view of a joining auxiliary member having a medium diameter portion of the present embodiment.
  • FIG. 33B is a perspective view and a side view of a first modification of the joining auxiliary member having a medium diameter portion.
  • FIG. 33C is a perspective view and a side view of a second modification of the joining auxiliary member having a medium diameter portion.
  • FIG. 33D is a perspective view and a side view of a third modification of the joining auxiliary member having a medium diameter portion.
  • FIG. 33E is a perspective view and a side view of a fourth modification of the joining auxiliary member having a medium diameter portion.
  • FIG. 33F is a perspective view and a side view of a fifth modified example of the joining auxiliary member having a medium diameter portion.
  • FIG. 33G is a perspective view and a side view of a sixth modification of the joining auxiliary member having a medium diameter portion.
  • FIG. 33H is a perspective view and a side view of a seventh modification of the joining auxiliary member having a medium diameter portion.
  • FIG. 34A is a perspective view and a side view of an eighth modification of the joining auxiliary member having a medium diameter portion.
  • FIG. 34B is a perspective view and a side view of a ninth modified example of the joining auxiliary member having a medium diameter portion.
  • FIG. 34C is a perspective view and a side view of a tenth modified example of the joining auxiliary member having a medium diameter portion.
  • FIG. 34D is a perspective view and a side view of an eleventh modification of the joining auxiliary member having a medium diameter portion.
  • FIG. 35A is a side view showing a twenty-fourth modification of the joining auxiliary member.
  • FIG. 35B is a diagram illustrating a first example for explaining a protruding portion of the joining auxiliary member that does not affect the joint strength.
  • FIG. 35C is a diagram illustrating a second example for explaining a protruding portion of the joining auxiliary member that does not affect the joint strength.
  • FIG. 35D is a diagram illustrating a third example for describing a protruding portion of the joining auxiliary member that does not affect the joint strength.
  • FIG. 35E is a diagram illustrating a fourth example for describing a protruding portion of the joining auxiliary member that does not affect the joint strength.
  • FIG. 35F is a diagram illustrating a fifth example for describing a protruding portion of the joining auxiliary member that does not affect the joint strength.
  • FIG. 35G is a diagram illustrating a sixth example for describing a protruding portion of the joining auxiliary member that does not affect the joint strength.
  • FIG. 36A is a perspective view of an upper plate and a lower plate for explaining a first modification of the arc welding method for dissimilar material joining.
  • FIG. 36B is a cross-sectional view of an upper plate and a lower plate for explaining a first modification of the arc welding method for joining different materials.
  • FIG. 37A is a perspective view of an upper plate and a lower plate for explaining a second modification of the arc welding method for joining different materials.
  • FIG. 37B is a cross-sectional view of an upper plate and a lower plate for explaining a second modification of the arc welding method for dissimilar material joining.
  • FIG. 38A is a perspective view of a dissimilar material weld joint for explaining a third modification of the arc welding method for dissimilar material joining.
  • FIG. 38A is a perspective view of a dissimilar material weld joint for explaining a third modification of the arc welding method for dissimilar material joining.
  • FIG. 38B is a cross-sectional view of the dissimilar material welded joint for explaining a third modification of the arc welding method for dissimilar material joining.
  • FIG. 38C is a cross-sectional view of the dissimilar material welded joint for explaining a fourth modification of the dissimilar material joining arc welding method.
  • FIG. 39A is a perspective view showing a closed cross-sectional structure to which the dissimilar material welded joint according to this embodiment is applied.
  • FIG. 39B is a perspective view showing an open cross-sectional structure with an L-shaped plate and a flat plate to which the dissimilar material welded joint according to this embodiment is applied.
  • FIG. 39C is a perspective view showing an open cross-sectional structure of two flat plates to which the dissimilar material welded joint of this embodiment is applied.
  • FIG. 39A is a perspective view showing a closed cross-sectional structure to which the dissimilar material welded joint according to this embodiment is applied.
  • FIG. 39B is a perspective view showing an open cross-sectional structure with an
  • FIG. 40 is a diagram showing a fifth modification (a method for manufacturing an open-section member) of the arc welding method for joining different materials.
  • FIG. 41 is a diagram showing a sixth modification of the arc welding method for dissimilar material joining (a method for producing a closed cross-section member).
  • the arc welding method for joining dissimilar materials of this embodiment includes an upper plate 10 (first plate) made of Al alloy or Mg alloy and a lower plate 20 (second plate) made of steel, which are superposed on each other.
  • the dissimilar material welded joint 1 as shown in FIG. 1A and FIG. 1B is obtained by joining by the arc welding method mentioned later through the steel joining auxiliary member 30.
  • a hole 11 is formed in the upper plate 10 by placing the auxiliary bonding member 30 having a height equal to or greater than the thickness of the upper plate 10 on the upper plate 10 and punching the upper plate 10 by applying pressure to the auxiliary bonding member 30. To do.
  • the joining auxiliary member 30 press-fitted by the punching process receives pressure from the Al alloy or Mg alloy material around the hole 11 and is fixed in a lightly constrained state.
  • the joining auxiliary member 30 has a stepped outer shape having a large diameter portion 32 and a small diameter portion 31 having a smaller maximum outer diameter than the large diameter portion 32.
  • a hollow portion 33 that penetrates the small diameter portion 31 and the large diameter portion 32 is formed in the joining auxiliary member 30.
  • the outer shape of the large-diameter portion 32 is not limited to the circular shape as shown in FIG. 2 or FIG. 15A, as long as the penetration portion (hole 11) formed by press-fitting the joining auxiliary member 30 is closed after arc welding.
  • the hollow portion 33 of the joining auxiliary member 30 is filled with a weld metal 40 of an iron alloy or Ni alloy in which a filler material (welding material) is melted by arc welding, and is melted with the weld metal 40.
  • the molten plate W is formed by the lower plate 20 and a part of the joining auxiliary member 30.
  • a joining auxiliary member 30 having a height equal to or greater than the thickness of the upper plate (first plate) 10 is disposed on the upper plate 10, and pressure is applied to the joining auxiliary member 30 to increase the thickness.
  • the joining auxiliary member 30 is press-fitted into the upper plate 10 while forming the holes 11 in the upper plate 10 (step S1).
  • a superposition operation for superposing the upper plate 10 into which the joining auxiliary member 30 is press-fitted and the lower plate 20 is performed (step S2).
  • FIG. 3G shows the case where (a) the arc welding work is performed using the melting electrode type gas shielded arc welding method.
  • the joining auxiliary member 30 has a large diameter portion 32 and a small diameter portion 31, and the total height of the large diameter portion 32 and the small diameter portion 31 is equal to or greater than the plate thickness of the upper plate 10. ing. Further, the small-diameter portion 31 in the joining auxiliary member 30 is disposed so as to face the upper plate 10.
  • the joining assisting member 30 is used with respect to the lower pedestal 50 on which the upper plate 10 is disposed by using the joining assisting member 30 itself as a punch.
  • the upper pedestal 51 to which is fixed is brought close to each other and punching is performed. In this case, the base material piece M is rarely left in the hollow portion 33, which is an obstacle during arc welding. In this case, it is necessary to remove the base material piece M.
  • step S3 joins the joining auxiliary member 30 and the lower plate 20 via the weld metal 40 in the hole 11 of the upper plate 10, and fills the hollow portion 33 provided in the joining auxiliary member 30. Is needed to do. Therefore, it is indispensable to insert a filler material (welding material) serving as a filler for arc welding. Specifically, the filler metal is melted and the weld metal 40 is formed by the following four arc welding methods.
  • the melting electrode type gas shielded arc welding method is a welding method generally referred to as MAG (Mig) or MIG (Mig), and uses a solid wire or a flux-cored wire as a filler and arc generating melting electrode, and CO 2.
  • MAG Mog
  • MIG MIG
  • Ar, and He are used to form a sound weld by shielding the weld from the atmosphere with a shielding gas such as Ar, He.
  • the non-gas arc welding method is also called a self-shielded arc welding method, which uses a special flux-cored wire as a filler and arc-generating electrode, and on the other hand, eliminates the need for shielding gas and forms a sound weld. is there.
  • the gas tungsten arc welding method is a kind of gas shielded arc welding method but is a non-melting electrode type and is generally called TIG (tig).
  • TIG tig
  • an inert gas of Ar or He is used as the shielding gas.
  • An arc is generated between the tungsten electrode and the base material, and the filler wire is fed to the arc from the side.
  • the filler wire is not energized, but there is also a hot wire type TIG that energizes to increase the melting rate. In this case, no arc is generated in the filler wire.
  • the plasma arc welding method has the same principle as TIG, it is a welding method in which the arc is contracted and the arc force is increased by the dual system and high speed of gas.
  • the coated arc welding method is an arc welding method in which a coated arc welding rod in which a flux is applied to a metal core wire is used as a filler, and does not require a shielding gas.
  • the material of the filler material (welding material), as long as the weld metal 40 is an Fe alloy, a commonly used welding wire or welding rod can be applied. Note that a Ni alloy is applicable because it does not cause a problem in welding with iron.
  • JIS JIS
  • the hollow portion 33 of the auxiliary joining member 30 is filled with a filler material.
  • the target position of the filler wire or the welding rod it is not necessary to move the target position of the filler wire or the welding rod, and the arc is passed through an appropriate feeding time. It is sufficient to end the welding after cutting.
  • the target position of the filler wire or the welding rod may be moved so as to draw a circle in the hollow portion 33.
  • the upper plate 10 made of Al alloy or Mg alloy and the lower plate 20 made of steel are joined with high strength.
  • an aluminum upper plate 10 and a steel lower plate 20 are simply overlapped, and a steel or nickel alloy welding wire is formed from the upper plate side.
  • the formed weld metal 40a is aluminum and steel, or an alloy of aluminum, steel and nickel. This alloy exhibits an intermetallic compound (IMC) that is brittle because of its high aluminum content.
  • a method is conceivable in which a hole 11 having an appropriate size is formed in the upper plate 10 and a welding material of steel or nickel alloy is melted so as to fill the hole 11.
  • a welding material of steel or nickel alloy is melted so as to fill the hole 11.
  • the weld metal 40b formed of the steel and the welding material which is the lower plate 20 formed at the initial stage of welding does not melt aluminum, an intermetallic compound is not generated, and it has high strength and toughness. And is firmly coupled to the lower plate 20.
  • the weld metal 40b formed in the hole 11 formed in the upper plate 10 has a very small proportion of aluminum melting, and the generation of intermetallic compounds is greatly suppressed, particularly in the central portion. Have.
  • a steel joining auxiliary member 30 having a hole in the center is press-fitted into the aluminum plate serving as the upper plate 10. Since the joining auxiliary member 30 has a height equal to or greater than the plate thickness of the upper plate 10, the aluminum plate at the location where the joining auxiliary member 30 is press-fitted falls off (step S1: punching step). Furthermore, the joining auxiliary member 30 receives a pressure from the surrounding aluminum plate and is fixed in a lightly restrained state (see FIG. 10C).
  • FIG. 10A shows a press-fitting device for press-fitting the joining auxiliary members 30 one by one
  • FIG. 10B shows a press-fitting device for press-fitting a plurality of joining auxiliary members 30 simultaneously.
  • the upper pedestal 51 and the joining auxiliary member 30 are temporarily held by, for example, a magnetic force or a mechanical mechanism, and after the press-fitting is completed, the upper pedestal 51 is pulled up in a direction opposite to the pressurizing direction (arrow in FIG. 10A or 10B). Thereby, the joining auxiliary member 30 can be detached.
  • the lower pedestal 50 has a hollow portion that is equal to or larger than the insertion diameter of the joining auxiliary member 30, and accumulates unnecessary portions of the Al alloy or Mg alloy that are punched out by press-fitting, Alternatively, it can be eliminated.
  • a suction mechanism using negative pressure may be provided.
  • the pair of mechanisms (upper pedestal 51 and lower pedestal 50) may be a single device or a device having a mechanism for driving a plurality of them simultaneously. These may be stationary, or may be provided to an industrial articulated robot so that the location can be moved freely.
  • step S2 superposition step
  • the upper plate 10 made of Al alloy or Mg alloy to which the joining auxiliary member 30 is temporarily fixed and the lower plate 20 made of steel are superposed in accordance with the position to be joined.
  • it is preferable that the upper plate 10 and the lower plate 20 to which the joining auxiliary member 30 is temporarily fixed are in close contact with each other as much as possible.
  • the gap G exists between the upper plate 10 and the lower plate 20
  • the upper plate 10 This is because free movement is possible by the gap between the lower plate 20 and the joining system is deteriorated (rattle).
  • a pressurizing mechanism in the filling welding process is not necessarily required, but the upper plate 10 and the lower plate 20 are not used in the filling welding process. It is preferable that the pressure is applied in the direction in which they are in close contact with each other. Specifically, examples include a case where pressure is applied from above and below using a clamping mechanism which is the pressure mechanism 80 (see FIG. 12A) or a case where pressure is applied from one side (see FIG. 12B). Moreover, the case where the pressurization leg 92 is provided in the welding torch 90 and pressurizes with the force of a robot etc. (refer FIG. 12C or FIG. 12D) is mentioned as an example.
  • the bonding auxiliary member 30 when the upper plate 10 is punched with the bonding auxiliary member 30 From the same viewpoint as the case where the gap G exists between the upper plate 10 and the lower plate 20, as shown in FIG. 13, the bonding auxiliary member 30 when the upper plate 10 is punched with the bonding auxiliary member 30.
  • the overhang amount P is preferably 25% or less with respect to the plate thickness B H of the upper plate 10 (however, in order to punch the upper plate 10 reliably, it should be 0% or more). In addition, More preferably, it is 10% or less, More preferably, it is 5% or less.
  • the weld metal 40 is formed by arc welding so that the inside of the hollow part 33 in the joining auxiliary member 30 is filled.
  • the target position of the arc welding wire or the welding rod tip is not the joining auxiliary member 30 but the steel lower plate 20 that contacts the lower surface of the hole 11 of the upper plate 10.
  • the wall in the hollow portion 33 in the joining auxiliary member 30 and the “crucible” space surrounded by the lower plate 20 are cast by arc welding. If it does in this way, it will be in the state where the joining auxiliary member 30, the weld metal 40, and the lower board 20 are weld-joined by the strong metal bond as a cross section.
  • the large-diameter portion 32 of the joining auxiliary member 30 that is wider than the hole diameter formed by punching by the tip portion (small-diameter portion 31) of the joining auxiliary member 30 is disposed flush with or on the outer surface of the upper plate 10.
  • the largest role of the large-diameter portion 32 is resistance to vertical peeling stress.
  • FIG. 14A by applying the joining auxiliary member 30 having the large-diameter portion 32 on the outside, it is possible to prevent the phenomenon in which the interface between the upper plate 10 and the weld metal 40 is peeled off. Become. In general, as shown in FIG. 14B, the weld metal 40 is sufficiently plastically deformed and then fractured. It is obvious that the joining auxiliary member 30 does not have any adverse effect on the initial stress even with respect to the tensile stress in the shear direction.
  • the outer shape of the large-diameter portion 32 in the joining auxiliary member 30 can be any shape as long as the hole 11 formed by press-fitting is closed after welding due to its mechanism.
  • the most common shape is a circle as shown in FIG. 15A, but it may be a polygon more than a square as shown in FIGS. 15B to 15E. Further, as shown in FIG. 15C, the corners of the polygon may be rounded.
  • the cross-sectional shape of the large-diameter portion 32 in the joining auxiliary member 30 is not only a flat columnar shape as shown in FIG. 16A, but also taper upward (as opposed to the small-diameter portion 31 side) as shown in FIG. 16B. There is no particular limitation on the shape with, or the shape with the upper side rounded as shown in FIG. 16C.
  • the joining auxiliary member 30 has a larger area and a larger thickness because the strength increases against external stress in the plate thickness direction (three-dimensional direction). However, if it is larger than necessary, the factor of weight increase and the amount of overhang from the surface of the upper plate 10 become excessive, resulting in aesthetic appearance deterioration and interference with other adjacent members. It is preferable to determine the size accordingly.
  • the joining auxiliary member 30 has several other roles. One of them is a protective wall action for avoiding melting of an Al alloy or Mg alloy that is a material of the upper plate 10. An Al alloy or Mg alloy having a low melting point is melted by its high heat when hit by an arc. However, by interposing the joining auxiliary member 30, it is possible to physically prevent the arc from hitting the Al alloy or Mg alloy, and to prevent melting. Moreover, since the molten metal 40 formed by the arc is high temperature and may erode the Al alloy and Mg alloy that are in contact therewith, it is preferable that the joining auxiliary member 30 is interposed even during arc welding.
  • the small diameter portion 31 of the auxiliary joining member 30 remains between the weld metal 40 and the upper plate 10 after the arc welding is finished. If the welding range of arc welding is only the joining auxiliary member 30 and the lower plate 20, the dilution of Al or Mg into the weld metal 40 becomes zero, and IMC is completely prevented. As shown in FIG. 17, if the thickness of the joining auxiliary member 30 in the radial direction is too thin, the joining auxiliary member 30 may reach the melting point and melt due to heat input during arc welding. In this case, since there is a possibility of further melting an Al alloy or Mg alloy, it is necessary to design an appropriate thickness in view of welding heat input.
  • the amount of pushing into the upper plate 10 in the joining auxiliary member 30 is not particularly limited.
  • FIG. 18A when the joint portion is recessed with respect to the surface of the upper plate 10, when stress is applied to the joint after welding, the weld metal 40 becomes a stress concentration portion and has low strength. There is a risk of destruction. Therefore, as shown in FIG. 18B, at least the surface of the upper plate 10 and the surface of the joining auxiliary member 30 are flush with each other, or as shown in FIG. A state of partially protruding from the surface is preferable. Furthermore, as shown in FIG. 18D, it is most preferable that the large-diameter portion 32 of the joining auxiliary member 30 protrudes completely from the surface of the upper plate 10.
  • the cross-sectional shape of the small-diameter portion 31 of the joining auxiliary member 30 is a perfect circle, but is not particularly limited, and can be any shape.
  • it may be a polygon that is equal to or larger than the quadrangle shown in FIGS. 19A to 19F.
  • the corners of the polygon may be rounded.
  • the inner surface shape of the hollow portion 33 in the joining auxiliary member 30 does not need to be a perfect circle as described above, and can be an arbitrary shape as shown in FIGS. 19A to 19E or 19G.
  • the cross-sectional shape of the small diameter portion 31 and the inner surface shape of the hollow portion do not have to be the same, and may be different as shown in FIGS. 19F and 19G.
  • auxiliary joining member 30 when the auxiliary joining member 30 is press-fitted into the upper plate 10 and punched out, it is possible to apply pressure while turning the auxiliary joining member 30.
  • a means as shown in FIG. 20, if a notch 37 is provided on the upper surface of the large-diameter portion 32 so that the screwdriver fits, the joining auxiliary member 30 is turned into the upper plate 10. It can be made easier.
  • the surface of the hollow portion 33 opened in the joining auxiliary member 30 may be flat, but a screw groove 33a may be formed as shown in FIG. Although a male screw is not used in this construction method, the presence of the screw groove 33a increases the surface area of contact with the molten pool during arc welding, and the weld metal 40 and the joining auxiliary member 30 are more firmly coupled.
  • the diameter P S of the hole when the cylindrical surface such as the thread groove 33a is not defined is defined as the widest distance between the faces.
  • the material of the joining auxiliary member 30 is not particularly limited as long as it is pure iron or an iron alloy, and specifically includes mild steel, carbon steel, stainless steel, and the like.
  • the weld metal 40 fills the hollow portion 33 of the joining auxiliary member 30 and further forms surplus Wa on the surface of the joining auxiliary member 30, more specifically on the surface of the large diameter portion 32 (see FIG. 1B).
  • the surplus Wa is not formed, that is, as shown in FIG. 22A, the hollow portion 33 remains in appearance after welding, the bonding strength is particularly strong against external stress in the plate thickness direction (three-dimensional direction).
  • There is a possibility of shortage see FIG. 22B). Therefore, by forming the surplus Wa, as shown in FIG. 23, the deformation of the auxiliary joining member 30 is suppressed against the external stress in the plate thickness direction (three-dimensional direction), and high joint strength is obtained. It is done.
  • the excess Wa when the surplus Wa is viewed from the upper side in the plate thickness direction (upper plate 10 side).
  • the maximum outer diameter is preferably larger than the maximum outer diameter of the hole 11 provided in the upper plate 10.
  • the penetration on the side opposite to the surplus side needs to be in a state where a so-called back wave is generated in which the weld metal 40 is formed beyond the thickness of the lower plate 20.
  • the reason is as follows.
  • the lower plate 20 does not melt despite the fact that the penetration becomes shallow due to poor setting of welding conditions or malfunction of the welding equipment, and the surplus Wa on the front side formed on the joining auxiliary member 30 is normal in appearance.
  • the weld metal 40 may only be on top. In such a case, the joining auxiliary member 30 and the lower plate 20 are not joined, that is, the lower plate 20 and the upper plate 10 are not joined.
  • a back wave when a back wave is generated in the lower plate 20, it means that the weld metal 40 has passed from the upper plate 10 side to the lower plate 20 side through the meeting surface. It will ensure that the lower plate 20 is metal bonded. In addition, it indirectly ensures that the upper plate 10 and the lower plate 20 are joined. That is, if a back wave is generated in the lower plate 20, it can be easily confirmed visually or with a sensor or the like immediately after the welding process, and it is possible to prevent proceeding to the subsequent process while leaving the bonding failure as it is. . Furthermore, the joining strength between the joining auxiliary member 30 and the lower plate 20 can be roughly estimated from the size of the back wave formed on the lower plate 20.
  • the bonding strength between them is proportional to the cross-sectional area of the weld metal 40 formed at the interface between the upper plate 10 and the lower plate 20, that is, the so-called nugget diameter, when the material used is constant.
  • the nugget diameter is the diameter of the weld metal 40 formed on the upper surface side (large diameter portion 32 side) of the hollow portion 33 ( It can be estimated as a symmetrical trapezoidal section with the maximum outer diameter as the upper base and the back wave diameter (maximum outer diameter) as the lower base. That is, the nugget diameter is approximately proportional to the diameter of the back wave.
  • the back wave size of the lower plate 20 is measured with a high level of quality assurance as to whether or not it is joined to meet the required strength, rather than just two choices of whether or not it is joined. Can be implemented from.
  • quality assurance it is essential to weld the lower plate 20 and the joining auxiliary member 30 by melting the weld metal 40 to a state where a back wave appears outside the lower plate 20.
  • it is necessary to perform welding so that the weld metal 40 does not melt too deeply and the weld metal 40 and the lower plate 20 melt.
  • the weld metal 40 is appropriately dissolved in the lower plate 20, but when the lower plate 20 has no back wave, the above-described detection for quality assurance may be performed. It is not preferable because it cannot be done.
  • step S ⁇ b> 1 it is possible to press and restrain the joining auxiliary member 30 and punch the upper plate 10, and at the same time temporarily hold the joining auxiliary member 30 on the upper plate 10. is there.
  • step S ⁇ b> 1 it is possible to press and restrain the joining auxiliary member 30 and punch the upper plate 10, and at the same time temporarily hold the joining auxiliary member 30 on the upper plate 10. is there.
  • vibration is applied before the welding process or when the robot is in an upward posture (see FIG. 25), it may fall off due to the weak restraint holding force.
  • the joining auxiliary member 30 is realized by adopting an external shape capable of exhibiting a caulking mechanism after press-fitting.
  • the means as shown in FIGS. 26A and 26B, at least one (four in this embodiment) formed in a blade shape on the outer peripheral surface of the small-diameter portion 31 of the joining auxiliary member 30.
  • a press-fitting protrusion 39 is provided.
  • FIG. 27 is a view for explaining a holding mechanism when the joining auxiliary member 30 having the press-fitting protrusion 39 is press-fitted into the upper plate 10.
  • the auxiliary joining member 30 when the auxiliary joining member 30 is press-fitted into the upper plate 10, it is elastically deformed in the direction in which the upper plate 10 in contact with the auxiliary joining member 30 is spread and further plastically deformed. After the tip of the press-fitting protrusion 39 has passed, the elastic deformation returns to its original position, that is, the inflow of Al alloy or Mg alloy as the material of the upper plate 10 occurs, and the force that pushes back the joining auxiliary member 30 It becomes a barrier factor against. Therefore, the joining auxiliary member 30 is not easily detached.
  • the shape of the press-fitting protrusion 39 may be an isosceles triangle as shown in FIG. 28A, but as shown in FIGS. A quarter circle, a symmetric trapezoid, an asymmetric trapezoid, a crochet shape, and the like are typical, and the shape is not limited. Further, the press-fitting projection 39 is also connected to the lower surface of the large-diameter portion 32, whereby the strength of the press-fitting projection 39 can be improved. Furthermore, the press-fitting protrusion 39 may be parallel to the axial direction of the small-diameter portion 31 as shown in FIG. 29A, or may be inclined with respect to the axial direction as shown in FIG. 29B.
  • the press-fitting protrusion 39 may have a mountain shape whose width in the circumferential direction becomes narrower from the base toward the tip. Furthermore, it is preferable that the position of the press-fitting protrusion 39 is separated from the large-diameter portion 32 in order to provide a space for allowing metal to flow in.
  • the number of the press-fitting protrusions 39 is not limited to four as shown in FIG. 26B, and it is sufficient that there is at least one, and there is no need to provide an upper limit. That is, as shown in FIGS. 30A to 30E, it may have one, two, three, six, or eight press-fitting protrusions 39. However, as the number of the press-fitting protrusions 39 increases, the pressure necessary for punching the upper plate 10 using the joining auxiliary member 30 increases, so the number of press-fitting protrusions 39 should not be increased more than necessary. .
  • the number of press-fitting protrusions 39 is preferably 8 or less. Further, as shown in FIG. 26B and FIGS.
  • the second effect is that the upper plate 10 and the lower plate 20 to be joined are difficult to rotate with each other.
  • the cross-sectional shape of the small-diameter portion 31 of the auxiliary joining member 30 is a perfect circle, when the joint member (the upper plate 10 and the lower plate 20) is joined only by the main joining method, for example, a strong horizontal rotational force is exerted on the upper plate 10. If F R is applied, the top plate 10 so turn about the joint auxiliary member 30 there is a possibility that the rotation.
  • the joining auxiliary member 30 is provided with a press-fitting protrusion 39, and the press-fitting protrusion 39 can be easily cut into the periphery of the hole 11 of the upper plate 10. Rotation can be prevented.
  • the press-fitting protrusion 39 is continuous with the large-diameter portion 32, such as the right-angled triangle, rectangle, quarter circle, concave, and asymmetric trapezoidal press-fitting protrusions 39, respectively. Even if it does not have a constricted part, it is allowed to be applied. However, since the metal inflow portion cannot be secured when the joining auxiliary member 30 is press-fitted into the upper plate 10 as described above, the effect of improving the temporary restraint property cannot be expected so much. However, since the rotation suppression effect described above can be expected, it is preferable to have the press-fitting protrusion 39 on the outer peripheral surface of the small-diameter portion 31 even in such a form.
  • the press-fitting protrusion 39 is not provided in the small diameter portion 31. It is also effective to make the body diameter of the small-diameter portion 31 multi-stage and partially provide a “neck”. Specifically, as shown in FIGS. 33A to 33H, a medium diameter portion 34 smaller than the maximum outer diameter of the large diameter portion 32 is provided on the outer peripheral surface of the small diameter portion 31 in the joining auxiliary member 30. The medium diameter portion 34 is not in contact with the large diameter portion 32 and is continuous (FIGS.
  • the joining assisting member 30 is not easily detached according to the same principle as described in the embodiment in which the press-fitting protrusion 39 is provided on the joining assisting member 30. That is, the Al alloy or Mg alloy undergoes elastic deformation and further plastic deformation when the medium diameter portion 34 passes during the press-fitting of the joining auxiliary member 30, and the elastic deformation returns when the press-fitting progresses to the small diameter portion 31. Thereby, metal inflow occurs and becomes a barrier factor against the force by which the joining auxiliary member 30 is pushed back.
  • the intermediate diameter portion 34 may be provided only partially, that is, intermittently as shown in FIGS. 33B and 33D.
  • the intermittent shape as in the case where the press-fitting protrusion 39 is provided, when the small-diameter portion 31 as the insertion portion of the joining auxiliary member 30 has a perfect circle shape, the upper plate 10 and the lower plate 20 are relatively relative after welding. This is expected to prevent rotation easily.
  • the large-diameter portion 32 and the medium-diameter portion 34 are the joining auxiliary member 30 that is continuous when viewed from the longitudinal direction (insertion direction) of the joining auxiliary member 30. Is also acceptable to apply. However, since the metal inflow portion cannot be secured when the joining auxiliary member 30 is press-fitted into the upper plate 10 as described above, the effect of improving the temporary restraint and the effect of suppressing the rotation cannot be expected. However, if the middle diameter portion 34 is intermittent, only the rotation suppression effect is obtained.
  • the joining auxiliary member 30 in the present embodiment can also have a shape in which the small diameter portion 31 is stacked on the upper side of the large diameter portion 32.
  • the side opposite to the insertion direction that is driven into the Al alloy or Mg alloy is at a position higher than the surface of the upper plate 10 (in FIG. 35B and FIG. 35C, defined as the protruding portion 35). Does not affect the joint strength.
  • the board thickness of the upper board 10 and the lower board 20 is 5.0 mm or less. It is desirable to be. On the other hand, considering the heat input of arc welding, if the plate thickness is excessively thin, it will melt during welding and welding is difficult, so it is desirable that both the upper plate 10 and the lower plate 20 be 0.5 mm or more. .
  • the upper plate 10 can firmly join the Al alloy or Mg alloy, and the lower plate 20 can firmly join the steel material.
  • the adhesive 60 around the welded portion at the joint surface of the upper plate 10 and the lower plate 20 may be applied annularly over the entire circumference.
  • it may be applied to the entire joint surface. Thereby, the electrolytic corrosion rate of the upper plate 10, the lower plate 20, and the weld metal 40 can be lowered.
  • the adhesive 60 may be applied to at least one opposing surface between the joining auxiliary member 30 and the upper plate 10 facing the joining auxiliary member 30.
  • the electrolytic corrosion rate of the upper board 10, the joining auxiliary member 30, and the weld metal 40 can be lowered.
  • FIG. 25 when the arc welding is in a horizontal or upward posture, it is possible to prevent the joining auxiliary member 30 from falling due to gravity by applying the adhesive 60, and welding. Can be constructed properly.
  • an adhesive 60 may be applied to a boundary portion between the large diameter portion 32 of the joining auxiliary member 30 and the surface of the upper plate 10 as in the modification shown in FIGS. 38A and 38B. Further, as shown in FIG. 38C, an adhesive 60 may be applied so as to cover and hide the entire large diameter portion 32. Thereby, the joining auxiliary member 30 and the surface on the exposed surface side where the Al alloy or Mg alloy contacts, the hidden surface under the large-diameter portion 32 in the joining auxiliary member 30, and the punched end face by the joining auxiliary member 30 The effect of reducing the rate of electrolytic corrosion can be obtained. Further, if the adhesive application is performed before arc welding, an effect of temporarily fixing the joining auxiliary member 30 to the upper plate 10 can be obtained.
  • the adhesive can be applied before the welding process (in the punching process) or after the filling welding process.
  • the joining auxiliary member 30 is not limited to means for suppressing electrolytic corrosion by an adhesive or a sealing material, but is also used as an electrical base element or processed product in order to prevent its own rusting or electrolytic corrosion occurring between the aluminum plate and the like. It is even better to perform a surface treatment to form a film such as an insulating material or a passive material. Examples include zinc plating, chromium plating, nickel plating, aluminum plating, tin (tin) plating, resin coating, and ceramic coating.
  • the upper plate 10 and the lower plate 20 can be firmly joined to each other regardless of the open cross-section structure or the closed cross-section structure. Furthermore, by using an adhesive in combination, it is possible to improve the bonding strength and prevent corrosion. Further, since the welding method of this embodiment can be said to be spot welding with a small joining area, this joining method is shown in FIGS. 39A to 39C when joining the overlapping portions J of practical members having a certain joining area. As shown, multiple implementations may be performed. Thereby, strong joining is performed in the overlapping portion J. Although this embodiment can be used for an open cross-sectional structure as shown in FIGS. 39B and 39C, it can be suitably used particularly for a closed cross-sectional structure as shown in FIG. 39A.
  • the joining auxiliary member 30 is embedded in the upper plate 10 as a pre-welding process in this joining method. It is also possible. Since the joining auxiliary member 30 embedded in the upper plate 10 does not protrude on the surface of the upper plate 10, it is easy to press-mold Al or Mg base material using a mold after embedding, and thereafter As a process, it is possible to join together with the lower plate 20. Of course, this welding method can be manufactured without separating the open cross-section member and the closed cross-section member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

アルミニウム合金もしくはマグネシウム合金と、鋼の異材を、安価なアーク溶接設備を用いて、強固かつ信頼性の高い品質で接合でき、かつ開断面構造にも閉断面構造にも制限無く適用できる、異材接合用アーク溶接法を提供する。異材溶接継手(1)は、アルミニウム合金もしくはマグネシウム合金製の上板(10)と、上板(10)にアーク溶接された、鋼製の下板(20)と、鋼製の接合補助部材(30)と、を備える。接合補助部材(30)は、大径部(32)と小径部(31)とを持った段付きの外形形状を有し、大径部(32)及び小径部(31)を貫通する中空部(33)が形成される。接合補助部材(30)は、上板(10)を打ち抜くことにより形成される穴(11)に圧入され、中空部(33)は、鉄合金、または、Ni合金の溶接金属(40)で充填される。

Description

異材接合用アーク溶接法
 本発明は、異材接合用アーク溶接法に関する。
 自動車を代表とする輸送機器には、(a)有限資源である石油燃料消費、(b)燃焼に伴って発生する地球温暖化ガスであるCO、(c)走行コストといった各種の抑制を目的として、走行燃費の向上が常に求められている。その手段としては、電気駆動の利用など動力系技術の改善の他に、車体重量の軽量化も改善策の一つである。軽量化には現在の主要材料となっている鋼を、軽量素材であるアルミニウム合金、マグネシウム合金、炭素繊維などに置換する手段がある。しかし、全てをこれら軽量素材に置換するには、高コスト化や強度不足になる、といった課題があり、解決策として鋼と軽量素材を適材適所に組み合わせた、いわゆるマルチマテリアルと呼ばれる設計手法が注目を浴びている。
 鋼と上記軽量素材を組み合わせるには、必然的にこれらを接合する箇所が出てくる。鋼同士やアルミニウム合金同士、マグネシウム合金同士では容易である溶接が、異材では極めて困難であることが知られている。この理由として、鋼とアルミニウムあるいはマグネシウムの溶融混合部には極めて脆い性質である金属間化合物(IMC)が生成し、引張や衝撃といった外部応力で溶融混合部が容易に破壊してしまうことにある。このため、抵抗スポット溶接法やアーク溶接法といった溶接法が異材接合には採用できず、他の接合法を用いるのが一般的である。鋼と炭素繊維の接合も、後者が金属ではないことから溶接を用いることができない。
 従来の異材接合技術の例としては、鋼素材と軽量素材の両方に貫通穴を設けてボルトとナットで上下から拘束する手段があげられる。また、他の例としては、かしめ部材を強力な圧力をかけて片側から挿入し、かしめ効果によって拘束する手段が知られている(例えば、特許文献1参照)。
 さらに、他の例としては、アルミ合金素材に鋼製の接合部材をポンチとして押し込むことで穴あけと接合部材を仮拘束し、次に鋼素材と重ね合わせ、上下両方から銅電極にて挟み込んで、圧力と高電流を瞬間的に与えて鋼素材と接合部材を抵抗溶接する手段が提案されている(例えば、特許文献2参照)。
 また、他の例としては、摩擦攪拌接合ツールを用いてアルミ合金と鋼の素材同士を直接接合する手段も開発されている(例えば、特許文献3参照)。
日本国特開2002-174219号公報 日本国特開2009-285678号公報 日本国特許第5044128号公報
 しかしながら、ボルトとナットによる接合法は、鋼素材と軽量素材が閉断面構造を構成するような場合(図39A参照)、ナットを入れることができず適用できない。また、適用可能な開断面構造の継手の場合(図39B、図39C参照)でも、ナットを回し入れるのに時間を要し能率が悪いという課題がある。
 また、特許文献1に記載の接合法は、比較的容易な方法ではあるが、鋼の強度が高い場合には挿入できない問題があり、且つ、接合強度は摩擦力とかしめ部材の剛性に依存するので、高い接合強度が得られないという問題がある。また、挿入に際しては表・裏両側から治具で押さえ込む必要があるため、閉断面構造には適用できないという課題もある。
 さらに、特許文献2に記載の接合法も、閉断面構造には適用できず、また、抵抗溶接法は設備が非常に高価であるという課題がある。
 特許文献3に記載の接合法は、アルミ合金素材を低温領域で塑性流動させながら鋼素材面に圧力をかけることで、両素材が溶融し合うことがなく、金属間化合物の生成を防止しながら金属結合力が得られるとされ、鋼と炭素繊維も接合可能という研究成果もある。しかしながら、本接合法も閉断面構造には適用できず、また高い圧力を必要とするので機械的に大型となり、高価であるという問題がある。また、接合力としてもそれほど高くならない。
 したがって、既存の異材接合技術は、(i)部材や開先形状が開断面構造に限定される、(ii)接合強度が低い、(iii)設備コストが高価であるといった一つ以上の問題を持っている。このため、種々の素材を組み合わせたマルチマテリアル設計を普及させるためには、(i’)開断面構造と閉断面構造の両方に適用できる、(ii’)接合強度が十分に高く、かつ信頼性も高い、(iii’)低コストであるという全ての要素を兼ね備えた、使いやすい新技術が求められている。
 本発明は、前述した課題に鑑みてなされたものであり、その目的は、アルミニウム合金(以下「Al合金」とも言う)もしくはマグネシウム合金(以下、「Mg合金」とも言う)と鋼の異材を、既に世に普及している安価なアーク溶接設備を用いて、強固かつ信頼性の高い品質で接合でき、かつ開断面構造にも閉断面構造にも制限無く適用できる、異材接合用アーク溶接法を提供することにある。
 ここで、Al合金もしくはMg合金と鋼を溶融接合させようとすると、上述したように金属間化合物(IMC)の生成が避けられない。一方、鋼同士の溶接は最も高い接合強度と信頼性を示すことは、科学的にも実績的にも自明である。
 そこで、本発明者は、鋼同士の溶接を結合力として用い、さらに拘束力を利用して異材の接合を達成する手段を考案した。
 従って、本発明の上記目的は、下記(1)の構成により達成される。
(1) アルミニウム合金もしくはマグネシウム合金製の第1の板と、鋼製の第2の板と、を接合する異材接合用アーク溶接法であって、
 大径部と、該大径部よりも最大外径が小さい小径部とを持った段付きの外形形状を有し、且つ、該大径部及び該小径部を貫通する中空部が形成され、該大径部及び該小径部の合計高さが前記第1の板の板厚以上である鋼製の接合補助部材を、前記小径部が前記第1の板に面するように配置し、前記接合補助部材に圧力をかけて前記第1の板を打ち抜く工程と、
 前記第1の板と前記第2の板を重ね合わせる工程と、
 以下の(a)~(e)のいずれかの手法によって、前記接合補助部材の中空部を溶接金属で充填すると共に、前記溶接金属を前記第2の板に裏波が出る状態まで溶け込ませて、前記第2の板及び前記接合補助部材を溶接する工程と、
を備える異材接合用アーク溶接法。
(a)鉄合金、または、Ni合金の前記溶接金属が得られる溶接ワイヤを溶極として用いるガスシールドアーク溶接法。
(b)前記溶接ワイヤを溶極として用いるノンガスアーク溶接法。
(c)前記溶接ワイヤを非溶極フィラーとして用いるガスタングステンアーク溶接法。
(d)前記溶接ワイヤを非溶極フィラーとして用いるプラズマアーク溶接法。
(e)鉄合金、または、Ni合金の前記溶接金属が得られる被覆アーク溶接棒を溶極として用いる被覆アーク溶接法。
 また、本発明の好ましい実施形態は、以下の(2)~(11)に関するものである。
(2) 前記小径部の外周面には、少なくとも1つの圧入用突起部が設けられる、上記(1)に記載の異材接合用アーク溶接法。
(3) 前記小径部の外周面には、前記大径部の最大外径よりも小さい中径部が、該大径部と接触することなく、且つ、該外周面に沿って連続的または断続的に設けられる、上記(1)に記載の異材接合用アーク溶接法。
(4) 前記重ね合わせ工程の前に、前記第1の板と前記第2の板の少なくとも一方の重ね合わせ面に対し、前記打ち抜き工程により形成された前記第1の板における穴の周囲に、全周に亘って接着剤を塗布する工程を、さらに備える、上記(1)~(3)のいずれか1つに記載の異材接合用アーク溶接法。
(5) 前記打ち抜き工程において、前記接合補助部材と、該接合補助部材と対向する前記第1の板との間の少なくとも一方の対向面に、接着剤を塗布する、上記(1)~(4)のいずれか1つに記載の異材接合用アーク溶接法。
(6) 前記打ち抜き工程の際、または、前記充填溶接工程後に、少なくとも前記接合補助部材と前記第1の板の表面との境界部に接着剤を塗布する、上記(1)~(5)のいずれか1つに記載の異材接合用アーク溶接法。
(7) 前記接合補助部材の小径部における前記第1の板からの張り出し量が、前記第1の板の板厚に対し25%以下である、上記(1)~(6)のいずれか1つに記載の異材接合用アーク溶接法。
(8) 前記充填溶接工程において、前記第1の板及び前記第2の板が互いに密着する方向に押圧可能な加圧機構を有し、
 前記加圧機構が前記第1の板及び前記第2の板が互いに密着するように押圧しながら、前記第2の板及び前記接合補助部材を溶接する、上記(1)~(7)のいずれか1つに記載の異材接合用アーク溶接法。
(9) 前記加圧機構は、前記充填溶接工程において使用する溶接トーチに備えられ、前記第1の板及び前記接合補助部材の少なくとも一方と当接する押し付け部を有する、上記(8)に記載の異材接合用アーク溶接法。
(10) 前記接合補助部材の大径部の露出面が、前記第1の板の表面と略同一または外側に位置するようにして前記第1の板を打ち抜く、上記(1)~(9)のいずれか1つに記載の異材接合用アーク溶接法。
(11) 前記充填溶接工程において、前記接合補助部材の中空部を溶接金属で充填するに際し、前記接合補助部材の表面上に余盛りを形成する、上記(1)~(10)のいずれか1つに記載の異材接合用アーク溶接法。
 本発明によれば、アルミニウム合金もしくはマグネシウム合金と、鋼との異材を、安価なアーク溶接設備を用いて、強固かつ信頼性の高い品質で接合でき、かつ開断面構造にも閉断面構造にも制限無く適用できる。
図1Aは、本発明の一実施形態に係る異材溶接継手の斜視図である。 図1Bは、図1AのI-I線に沿った異材溶接継手の断面図である。 図2は、本実施形態の接合補助部材の斜視図及び断面図である。 図3Aは、本実施形態の異材接合用アーク溶接法の打ち抜き作業(ステップS1)を示す図である。 図3Bは、打ち抜き作業の一例の第1工程を示す図である。 図3Cは、打ち抜き作業の一例の第2工程を示す図である。 図3Dは、打ち抜き作業の一例の第3工程を示す図である。 図3Eは、打ち抜き作業の一例の第4工程を示す図である。 図3Fは、本実施形態の異材接合用アーク溶接法の重ね合わせ作業(ステップS2)を示す図である。 図3Gは、本実施形態の異材接合用アーク溶接法の溶接作業(ステップS3)を示す図である。 図4Aは、アルミ製の上板と鋼製の下板を重ねて貫通溶接した比較例としての異材溶接継手の斜視図である。 図4Bは、図4Aの異材溶接継手の断面図である。 図5Aは、図4Aの異材溶接継手にせん断引張が作用した状態を示す断面図である。 図5Bは、図5Aの異材溶接継手を示す斜視図である。 図6Aは、図4Aの異材溶接継手に上下剥離引張が作用した状態を示す断面図である。 図6Bは、図6Aの異材溶接継手を示す斜視図である。 図7Aは、穴を有するアルミ製の上板と鋼製の下板を重ねて貫通溶接した比較例としての異材溶接継手の斜視図である。 図7Bは、図7Aの異材溶接継手の断面図である。 図8Aは、図7Aの異材溶接継手にせん断引張が作用した状態を示す断面図である。 図8Bは、図7Aの異材溶接継手にせん断引張が作用し、接合部が90°近くずれた状態を示す斜視図である。 図9Aは、図7Aの異材溶接継手に上下剥離引張が作用した状態を示す断面図である。 図9Bは、図9Aの異材溶接継手を示す斜視図である。 図10Aは、上台座、下台座及び加圧機構により構成される圧入装置を用いた打ち抜き作業の一例を示す図である。 図10Bは、上台座、下台座及び加圧機構により構成される圧入装置を用いた打ち抜き作業の別例を示す図である。 図10Cは、打ち抜き作業により接合補助部材が圧入された状態のアルミ製の上板を示す図である。 図11は、下板に、接合補助部材が圧入された上板を重ね合わせた状態における、ギャップGを説明するための断面図である。 図12Aは、充填溶接工程において、上板及び下板を加圧するための加圧機構の第1例を示す斜視図である。 図12Bは、充填溶接工程において、上板及び下板を加圧するための加圧機構の第2例を示す斜視図である。 図12Cは、充填溶接工程において、上板及び下板を加圧するための加圧機構の第3例を示す斜視図である。 図12Dは、充填溶接工程において、上板及び下板を加圧するための加圧機構の第4例を示す斜視図である。 図13は、下板に、接合補助部材が圧入された上板を重ね合わせた状態における張り出し量Pを説明するための断面図である。 図14Aは、本実施形態の異材溶接継手の断面図である。 図14Bは、図14Aの異材溶接継手に上下剥離引張が作用した状態を示す斜視図である。 図15Aは、本実施形態の接合補助部材の正面図である。 図15Bは、接合補助部材の第1変形例を示す正面図である。 図15Cは、接合補助部材の第2変形例を示す正面図である。 図15Dは、接合補助部材の第3変形例を示す正面図である。 図15Eは、接合補助部材の第4変形例を示す正面図である。 図16Aは、接合補助部材の第5変形例を示す側面図である。 図16Bは、接合補助部材の第6変形例を示す側面図である。 図16Cは、接合補助部材の第7変形例を示す側面図である。 図17は、接合補助部材の他の役割を説明するための本実施形態の異材溶接継手の断面図である。 図18Aは、接合補助部材の上板への押込み量を説明するための第1例を示す図である。 図18Bは、接合補助部材の上板への押込み量を説明するための第2例を示す図である。 図18Cは、接合補助部材の上板への押込み量を説明するための第3例を示す図である。 図18Dは、接合補助部材の上板への押込み量を説明するための第4例を示す図である。 図19Aは、接合補助部材の第8変形例を示す正面図である。 図19Bは、接合補助部材の第9変形例を示す正面図である。 図19Cは、接合補助部材の第10変形例を示す正面図である。 図19Dは、接合補助部材の第11変形例を示す正面図である。 図19Eは、接合補助部材の第12変形例を示す正面図である。 図19Fは、接合補助部材の第13変形例を示す正面図である。 図19Gは、接合補助部材の第14変形例を示す正面図である。 図20は、接合補助部材の第15変形例を示す斜視図である。 図21は、接合補助部材の第16変形例を示す側面図である。 図22Aは、余盛りが形成されない異材溶接継手を示す断面図である。 図22Bは、図22Aの異材溶接継手に板厚方向(3次元方向)の外部応力が作用した状態を示す断面図である。 図23は、余盛りが形成された異材溶接継手に板厚方向(3次元方向)の外部応力が作用した状態を示す断面図である。 図24Aは、溶接金属の溶込みを説明するための異材溶接継手の断面図(裏波を有する場合)である。 図24Bは、溶接金属の溶込みを説明するための異材溶接継手の断面図(裏波を有さない場合)である。 図25は、横向き姿勢でアーク溶接が施されている状態を示す図である。 図26Aは、本実施形態の圧入用突起部を有する接合補助部材を示す斜視図である。 図26Bは、圧入用突起部を有する接合補助部材の側面図、及びII-II線に沿った断面図である。 図27は、圧入用突起部を有する接合補助部材が上板に圧入される場合の保持機構を説明するための図である。 図28Aは、圧入用突起部を有する接合補助部材の第1変形例の要部側面図である。 図28Bは、圧入用突起部を有する接合補助部材の第2変形例の要部側面図である。 図28Cは、圧入用突起部を有する接合補助部材の第3変形例の要部側面図である。 図28Dは、圧入用突起部を有する接合補助部材の第4変形例の要部側面図である。 図28Eは、圧入用突起部を有する接合補助部材の第5変形例の要部側面図である。 図28Fは、圧入用突起部を有する接合補助部材の第6変形例の要部側面図である。 図28Gは、圧入用突起部を有する接合補助部材の第7変形例の要部側面図である。 図28Hは、圧入用突起部を有する接合補助部材の第8変形例の要部側面図である。 図28Iは、圧入用突起部を有する接合補助部材の第9変形例の要部側面図である。 図28Jは、圧入用突起部を有する接合補助部材の第10変形例の要部側面図である。 図28Kは、圧入用突起部を有する接合補助部材の第11変形例の要部側面図である。 図29Aは、圧入用突起部を有する接合補助部材の第12変形例の斜視図である。 図29Bは、圧入用突起部を有する接合補助部材の第13変形例の斜視図である。 図29Cは、圧入用突起部を有する接合補助部材の第14変形例の斜視図である。 図30Aは、圧入用突起部を有する接合補助部材の第14変形例の側面図、及びXXXa-XXXa線に沿った断面図である。 図30Bは、圧入用突起部を有する接合補助部材の第15変形例の側面図、及びXXXb-XXXb線に沿った断面図である。 図30Cは、圧入用突起部を有する接合補助部材の第16変形例の側面図、及びXXXc-XXXc線に沿った断面図である。 図30Dは、圧入用突起部を有する接合補助部材の第17変形例の側面図、及びXXXd-XXXd線に沿った断面図である。 図30Eは、圧入用突起部を有する接合補助部材の第18変形例の側面図、及びXXXe-XXXe線に沿った断面図である。 図31Aは、本実施形態の異材溶接継手の断面図である。 図31Bは、図31AのXXXI-XXXI線に沿った断面図である。 図32Aは、圧入用突起部を有する接合補助部材の第19変形例の要部側面図である。 図32Bは、圧入用突起部を有する接合補助部材の第20変形例の要部側面図である。 図32Cは、圧入用突起部を有する接合補助部材の第21変形例の要部側面図である。 図32Dは、圧入用突起部を有する接合補助部材の第22変形例の要部側面図である。 図32Eは、圧入用突起部を有する接合補助部材の第23変形例の要部側面図である。 図33Aは、本実施形態の中径部を有する接合補助部材の斜視図及び側面図である。 図33Bは、中径部を有する接合補助部材の第1変形例の斜視図及び側面図である。 図33Cは、中径部を有する接合補助部材の第2変形例の斜視図及び側面図である。 図33Dは、中径部を有する接合補助部材の第3変形例の斜視図及び側面図である。 図33Eは、中径部を有する接合補助部材の第4変形例の斜視図及び側面図である。 図33Fは、中径部を有する接合補助部材の第5変形例の斜視図及び側面図である。 図33Gは、中径部を有する接合補助部材の第6変形例の斜視図及び側面図である。 図33Hは、中径部を有する接合補助部材の第7変形例の斜視図及び側面図である。 図34Aは、中径部を有する接合補助部材の第8変形例の斜視図及び側面図である。 図34Bは、中径部を有する接合補助部材の第9変形例の斜視図及び側面図である。 図34Cは、中径部を有する接合補助部材の第10変形例の斜視図及び側面図である。 図34Dは、中径部を有する接合補助部材の第11変形例の斜視図及び側面図である。 図35Aは、接合補助部材の第24変形例を示す側面図である。 図35Bは、継手強度に影響を及ぼさない、接合補助部材における突出部を説明するための第1例を示す図である。 図35Cは、継手強度に影響を及ぼさない、接合補助部材における突出部を説明するための第2例を示す図である。 図35Dは、継手強度に影響を及ぼさない、接合補助部材における突出部を説明するための第3例を示す図である。 図35Eは、継手強度に影響を及ぼさない、接合補助部材における突出部を説明するための第4例を示す図である。 図35Fは、継手強度に影響を及ぼさない、接合補助部材における突出部を説明するための第5例を示す図である。 図35Gは、継手強度に影響を及ぼさない、接合補助部材における突出部を説明するための第6例を示す図である。 図36Aは、異材接合用アーク溶接法の第1変形例を説明するための上板と下板の斜視図である。 図36Bは、異材接合用アーク溶接法の第1変形例を説明するための上板と下板の断面図である。 図37Aは、異材接合用アーク溶接法の第2変形例を説明するための上板と下板の斜視図である。 図37Bは、異材接合用アーク溶接法の第2変形例を説明するための上板と下板の断面図である。 図38Aは、異材接合用アーク溶接法の第3変形例を説明するための異材溶接継手の斜視図である。 図38Bは、異材接合用アーク溶接法の第3変形例を説明するための異材溶接継手の断面図である。 図38Cは、異材接合用アーク溶接法の第4変形例を説明するための異材溶接継手の断面図である。 図39Aは、本実施形態の異材溶接継手が適用された閉断面構造を示す斜視図である。 図39Bは、本実施形態の異材溶接継手が適用された、L字板と平板による開断面構造を示す斜視図である。 図39Cは、本実施形態の異材溶接継手が適用された、2枚の平板による開断面構造を示す斜視図である。 図40は、異材接合用アーク溶接法の第5変形例(開断面部材の製造方法)を示す図である。 図41は、異材接合用アーク溶接法の第6変形例(閉断面部材の製造方法を示す図である。
 以下、本発明の一実施形態に係る異材接合用アーク溶接法を図面に基づいて詳細に説明する。
 本実施形態の異材接合用アーク溶接法は、互いに重ね合わせされる、Al合金もしくはMg合金製の上板10(第1の板)と、鋼製の下板20(第2の板)とを、鋼製の接合補助部材30を介して、後述するアーク溶接法によって接合することで、図1A及び図1Bに示すような異材溶接継手1を得るものである。
 上板10の板厚以上の高さを有する接合補助部材30を上板10上に配置し、接合補助部材30に圧力をかけて上板10を打ち抜くことにより、上板10に穴11を形成する。打ち抜き加工により圧入された接合補助部材30は、穴11の周囲のAl合金もしくはMg合金材料から圧力を受けて、軽く拘束された状態となって固定される。
 図2に示すように、接合補助部材30は、大径部32と、大径部32よりも最大外径が小さい小径部31とを持った段付きの外形形状を有する。また、接合補助部材30には、小径部31及び大径部32を貫通する中空部33が形成される。なお、大径部32の外形形状は、図2や図15Aに示すような円形に限定されず、接合補助部材30の圧入により形成された貫通部(穴11)をアーク溶接後に塞いでいれば、任意の形状とすることができる。つまり、図15B~図15Eに示す四角形以上の多角形でもよい。また、図15Cに示すように、多角形の角部を丸くしてもよい。
 さらに、接合補助部材30の中空部33には、アーク溶接によってフィラー材(溶接材料)が溶融した、鉄合金、または、Ni合金の溶接金属40が充填されると共に、溶接金属40と、溶融された下板20及び接合補助部材30の一部とによって溶融部Wが形成される。
 以下、異材溶接継手1を構成する異材接合用アーク溶接法について、図3A~図3Gを参照して説明する。
 まず、図3Aに示すように、上板(第1の板)10の板厚以上の高さを有する接合補助部材30を上板10上に配置し、接合補助部材30に圧力をかけて上板10を打ち抜くことにより、上板10に穴11を形成しつつ、接合補助部材30を上板10に圧入する(ステップS1)。
 次に、図3Fに示すように、接合補助部材30が圧入された上板10と、下板20を重ね合わせる重ね合わせ作業を行う(ステップS2)。そして、図3Gに示すように、以下に詳述する(a)溶極式ガスシールドアーク溶接法、(b)ノンガスアーク溶接法、(c)ガスタングステンアーク溶接法、(d)プラズマアーク溶接法、(e)被覆アーク溶接法のいずれかのアーク溶接作業を行うことで、上板10と下板20とを接合する(ステップS3)。なお、図3Gは、(a)溶極式ガスシールドアーク溶接法を用いてアーク溶接作業が行われた場合を示している。
 ステップS1の打ち抜き作業を行うにあたり、接合補助部材30は大径部32及び小径部31を有しており、大径部32及び小径部31の合計高さが上板10の板厚以上となっている。また、接合補助部材30における小径部31が上板10に面するように配置される。
 ステップS1の打ち抜き作業の具体的な手法としては、図3B~図3Eに示すように、接合補助部材30自体をポンチとして、上板10が配置された下台座50に対して、接合補助部材30が固定された上台座51を接近させ、打抜き加工を施すことが挙げられる。この場合、中空部33に母材片Mが入り込んだままとなることが希にあり、アーク溶接時の邪魔になるので、その場合には母材片Mを取り除くことが必要である。
 また、ステップS3のアーク溶接作業は、上板10の穴11内の溶接金属40を介して接合補助部材30と下板20を接合し、かつ接合補助部材30に設けられた中空部33を充填するために必要とされる。したがって、アーク溶接には充填材となるフィラー材(溶接材料)の挿入が不可欠となる。具体的に、以下の4つのアーク溶接法により、フィラー材が溶融して溶接金属40が形成される。
 (a) 溶極式ガスシールドアーク溶接法は、一般的にMAG(マグ)やMIG(ミグ)と呼ばれる溶接法であり、ソリッドワイヤもしくはフラックス入りワイヤをフィラー兼アーク発生溶極として用い、CO,Ar,Heといったシールドガスで溶接部を大気から遮断して健全な溶接部を形成する手法である。
 (b)ノンガスアーク溶接法は、セルフシールドアーク溶接法とも呼ばれ、特殊なフラックス入りワイヤをフィラー兼アーク発生溶極として用い、一方、シールドガスを不要として、健全な溶接部を形成する手段である。
 (c)ガスタングステンアーク溶接法は、ガスシールドアーク溶接法の一種であるが非溶極式であり、一般的にTIG(ティグ)とも呼ばれる。シールドガスは、ArまたはHeの不活性ガスが用いられる。タングステン電極と母材との間にはアークが発生し、フィラーワイヤはアークに横から送給される。
 一般的に、フィラーワイヤは通電されないが、通電させて溶融速度を高めるホットワイヤ方式TIGもある。この場合、フィラーワイヤにはアークは発生しない。
 (d)プラズマアーク溶接法はTIGと原理は同じであるが、ガスの2重系統化と高速化によってアークを緊縮させ、アーク力を高めた溶接法である。
 (e)被覆アーク溶接法は、金属の芯線にフラックスを塗布した被覆アーク溶接棒をフィラーとして用いるアーク溶接法であり、シールドガスは不要である。
 フィラー材(溶接材料)の材質については、溶接金属40がFe合金となるものであれば、一般的に用いられる溶接用ワイヤまたは溶接棒が適用可能である。なお、Ni合金でも鉄との溶接には不具合を生じないので適用可能である。
 具体的には、JISとして(a)Z3312,Z3313,Z3317,Z3318,Z3321,Z3323,Z3334、(b)Z3313、(c)Z3316,Z3321,Z3334,(d)Z3211,Z3221,Z3223,Z3224、AWS(American Welding Society)として、(a)A5.9,A5.14,A5.18,A5.20,A5.22,A5.28,A5.29,A5.34、(b)A5.20、(c)A5.9,A5.14,A5.18,A5.28,(d)A5.1,A5.4,A5.5,A5.11といった規格材が流通している。
 これらのアーク溶接法を用いて接合補助部材30の中空部33をフィラー材で充填するが、一般的にフィラーワイヤもしくは溶接棒の狙い位置は移動させる必要がなく、適切な送給時間を経てアークを切って溶接終了させれば良い。ただし、中空部33の面積が大きい場合は、フィラーワイヤもしくは溶接棒の狙い位置を中空部33内で円を描くように移動させても良い。
 以上の作業によって、Al合金やMg合金製の上板10と鋼製の下板20は高い強度で接合される。
 以下、上記アーク溶接法において使用される鋼製の接合補助部材30の役割について説明する。
 まず、接合補助部材を使用せず、図4A及び図4Bに示すように、単純にアルミ製の上板10と鋼製の下板20とを重ね、上板側から鋼もしくはニッケル合金製溶接ワイヤを用いたアーク溶接を定点で一定時間保持したアークスポット溶接を行った場合、形成される溶接金属40aはアルミと鋼、もしくはアルミと鋼とニッケルの合金となる。この合金は、アルミ含有量が多いので脆性的特性である金属間化合物(IMC)を呈している。
 このような異材溶接継手100aは、一見接合されている様に見えても、横方向に引張応力がかかる(せん断引張)と、図5A及び図5Bに示すように、溶接金属40aが容易に破壊して、外れてしまう。また、縦方向に引張応力がかかる(剥離引張)場合でも、図6A及び図6Bに示すように、溶接金属40aが破断するか、もしくは溶接金属40aと上板10の境界部あるいは溶接金属40aと下板20の境界部が破断し、上板10が抜けるようにして接合が外れてしまう。
 このように単にアルミ製の上板10と鋼製の下板20を重ねて、貫通溶接しようとしても、溶接金属40aは全部分が金属間化合物になってしまうので、せん断引張にも剥離引張にも弱く、溶接継手としては実用にならない。
 また、図7A及び図7Bに示すように、上板10に適当なサイズの穴11を開けておき、その穴11を埋めるように鋼もしくはニッケル合金の溶接材料を溶かし込む手法が考えられる。
 この場合、溶接初期に形成される下板20となっている鋼と溶接材料で形成される溶接金属40bはアルミを溶かしていないので、金属間化合物は生成せず、高い強度と靱性を有しており、下板20と強固に結合されている。また、上板10に開けられた穴11の内部に形成された溶接金属40bは、アルミが溶融する割合が非常に少なく、金属間化合物の生成は大幅に抑制され、特に中心部は健全性を有している。
 ただし、上板10に設けられた穴11の近傍に限れば、アルミと鋼、あるいはアルミとニッケルの金属化合物層を形成する。このような異材溶接継手100bに対し、図8Aに示すように、せん断引張応力がかかった場合、下板側は強固に金属結合しているため、高い応力に耐える。一方、上板側は金属間化合物が穴周囲に形成されてはいるが、それが剥離して動くことは形状的にできないため、初期には上板10、下板20の母材が変形する。
 このため、ほぼ変形せずに脆性破断する図5A及び図5Bの異材溶接継手100aと比較すると、変形能力の向上が見られる。しかし、母材の変形が進み、図8Bに示すように、接合部が90°近く傾斜すると上下剥離引張と同じ状態になる。このようになると穴11の周囲部に形成された金属間化合物が剥離し、上板10が溶接部から容易に抜けてしまう。つまり、改善が不十分である。
 この結果は、図9A及び図9Bに示すように、上下引張方向試験でも無論同じである。
 上記2つの異材溶接継手100a、100bにおける課題から、せん断方向及び上下剥離方向の応力にも耐えるように、さらなる改良を施したのが本実施形態である。
 すなわち、図3A~図3Dに示すように、上板10となるアルミ板に対して、中心に穴が空いている鋼製の接合補助部材30を圧入する。接合補助部材30は上板10の板厚以上の高さを有するため、接合補助部材30が圧入された個所のその箇所のアルミ板は抜け落ちる(ステップS1:打ち抜き工程)。さらに、接合補助部材30は周囲のアルミ板から圧力を受けて、軽く拘束された状態となって固定される(図10C参照)。
 接合補助部材30を上板10に圧入するための圧入装置としては、例えば、図10Aまたは図10Bに示すように、接合補助部材30を上板10に押し込むための上台座51と、それを動かすための加圧機構80、及び上板10の裏側を受け止めるための下台座50で構成される。なお、図10Aは接合補助部材30を1個ずつ圧入するための圧入装置を示しており、図10Bは接合補助部材30を複数同時に圧入するための圧入装置を示している。
 上台座51と接合補助部材30は、例えば、磁力や機械的機構によって一時的に保持され、圧入完了後は加圧方向(図10Aまたは図10B中の矢印)と逆方向に上台座51を引き上げることで、接合補助部材30を離脱させることができる。ここで、図3B及び図3Cに示すように、下台座50は接合補助部材30の挿入径以上の中空部を有しており、圧入によって抜き打ちされたAl合金もしくはMg合金の不要部を蓄積、あるいは排除することができる。なお、負圧による吸引機構を設けても良い。
 また、これら一対の機構(上台座51,下台座50)は単独で装置としても良いし、複数を同時に駆動させる機構を持った装置としても良い。また、これらは定置式としても良いし、産業用多関節ロボットに持たせ、自由に場所を移動出来るようにしても良い。
 次のステップとして、接合補助部材30が仮固定されたAl合金もしくはMg合金製の上板10と鋼製の下板20を、接合すべき位置に合わせて重ね合わせる(ステップS2:重ね合わせ工程)。このとき、接合補助部材30が仮固定された上板10と下板20とは出来る限り互いに密着している方が好ましい。
 図11に示すように、上板10と下板20との間にギャップGが存在している場合、後の工程において上板10と下板20とが溶接されたとしても、上板10は下板20との隙間分だけ自由移動が可能な状態となってしまい、接合制度が悪くなる(がたつきが生じてしまう)からである。
 加圧せずとも、上板10及び下板20の密着性が確保される場合には必ずしも充填溶接工程時における加圧機構は必要ないが、上板10及び下板20は充填溶接工程時において、互いに密着する方向に加圧されていることが好ましい。
 具体的には、加圧機構80であるクランプ機構を使って上下から加圧する場合(図12Aを参照)、あるいは片側から加圧する場合(図12Bを参照)が例として挙げられる。また、溶接トーチ90に加圧用脚92を設けて、ロボットなどの力で加圧する場合(図12Cまたは図12Dを参照)が例として挙げられる。
 上板10と下板20との間にギャップGが存在している場合と同様の観点より、図13に示すように、接合補助部材30で上板10を打ち抜いたときの、接合補助部材30の小径部31における上板10からの張り出し量Pは少ないほど良い。張り出し量Pが多いほど、充填溶接後において、がたつきが生じる原因となり得る。具体的には、張り出し量Pは上板10の板厚Bに対し25%以下とするのが良い(ただし、上板10を確実に打ち抜くために、0%以上とする)。なお、より好ましくは10%以下、さらに好ましくは5%以下である。
 このように溶接前準備が整ったら、接合補助部材30における中空部33内を充填するようにアーク溶接にて溶接金属40を形成する。なお、アーク溶接用ワイヤや溶接棒先端の狙い位置は接合補助部材30ではなく、上板10の穴11における下面と接する、鋼製の下板20である。言い換えれば、接合補助部材30における中空部33内の壁と、下板20に囲われた”るつぼ”状の空間は、アーク溶接によって鋳造された状態になる。
 このようにすると、断面としては接合補助部材30、溶接金属40、下板20が強固な金属結合によって溶接接合されている状態になる。
 接合補助部材30における先端部(小径部31)による打ち抜き加工によって形成された穴径よりも幅広である接合補助部材30の大径部32は、上板10表面と面一、もしくは外側に配置される。この大径部32の最大の役割は、上下剥離応力に対する抵抗である。図14Aに示したように、外側に大径部32を有する接合補助部材30を適用することにより、上板10と溶接金属40の界面が剥離して抜けてしまう現象を防止することが可能となる。一般的には、図14Bに示したように、溶接金属40は、十分に塑性変形した後、破断する。なお、接合補助部材30は、せん断方向の引張応力に対しても、初期応力に対して何ら悪影響を及ぼさないことは自明である。
 接合補助部材30における大径部32の外形形状は、そのメカニズム上、圧入による打ち抜きにより形成された穴11を溶接後に塞いでいれば、任意の形状とすることができる。例えば、最も一般的な形状は図15Aに示すような円形であるが、図15B~図15Eに示す四角形以上の多角形でもよい。また、図15Cに示すように、多角形の角部を丸くしてもよい。
 また、接合補助部材30における大径部32の断面形状は、図16Aに示すような、平たい円柱状だけでなく、図16Bに示すような、上側(小径部31側とは反対側)にテーパーが付いた形状、あるいは図16Cに示すような、上側に丸みを持たせた形状など特に問わない。
 接合補助部材30は面積が大きく、かつ厚さが大きいほど板厚方向(3次元方向)の外部応力に対して強度を増すため、好ましい。しかし、必要以上に大きいと重量増の要因や、上板10表面からの張り出し量が過剰となることにより、美的外観劣化や近接する他の部材との干渉が生じるため、必要とされる設計に応じてサイズを決めることが好ましい。
 接合補助部材30には、他にもいくつかの役割がある。その一つが上板10の材料であるAl合金やMg合金の溶融を避けるための防護壁作用である。融点が低いAl合金やMg合金は、アークが当たることにより、その高熱で溶融してしまう。しかし、接合補助部材30を介在させることで、アークがAl合金やMg合金に当たるのを物理的に防ぎ、溶融することを防止することができる。
 また、アークにより形成される溶融金属40は高温であり、接触したAl合金やMg合金を侵食する場合があるため、アーク溶接中も接合補助部材30が介在していることが好ましい。すなわち、アーク溶接の終了後に、接合補助部材30の小径部31が溶接金属40と上板10の間に残っていることが好ましい。
 アーク溶接の溶込み範囲が接合補助部材30と下板20のみとなれば、AlやMgの溶接金属40への希釈はゼロとなり、IMCは完全に防止される。なお、図17に示すように、接合補助部材30の半径方向における厚みが薄すぎると、アーク溶接時の入熱により、接合補助部材30が融点に達して溶けてしまうおそれがある。この場合、さらにAl合金やMg合金まで溶かす可能性があることから、溶接入熱を鑑みて、適切な厚みの設計とする必要がある。
 接合補助部材30における、上板10への押込み量は特に制限されない。しかし、図18Aに示すように、接合部が上板10の表面に対して凹んでしまうと、溶接後の継手に応力がかかった際、溶接金属40が応力集中部となって、低強度で破壊するおそれがある。よって、図18Bに示すように、少なくとも上板10の表面と接合補助部材30の表面が面一であるか、図18Cに示すように、接合補助部材30の大径部32が上板10の表面に対し、部分的に飛び出している状態が好ましい。さらには、図18Dに示すように、接合補助部材30の大径部32が上板10の表面に対し、完全に飛び出していることが最も好ましい。
 接合補助部材30の小径部31の断面形状は、図2に示すように、最も一般的な形状として真円形が使われるが、特に限定されず、任意の形状とすることができる。例えば、図19A~図19Fに示す四角形以上の多角形でもよい。また、図19Bに示すように、多角形の角部を丸くしてもよい。さらに、接合補助部材30における中空部33の内面形状についても、上記と同様、真円形である必要はなく、19A~図19Eまたは図19Gに示すように、任意の形状とすることができる。なお、図19A~図19Dに示すように、小径部31の断面形状と中空部の内面形状とが同一である必要はなく、図19Fや図19Gのように、異なっていても良い。
 また、接合補助部材30を上板10に対して圧入して打ち抜く際には、接合補助部材30を回しながら圧力をかけることも可能である。そのような手段を用いる場合は、図20に示すように、大径部32の上面にネジ回し用ドライバーがフィットするような切り欠き37を設けると、接合補助部材30を上板10に回し入れやすくすることができる。
 接合補助部材30に空けられる中空部33の面は平坦でかまわないが、図21に示すように、ネジ溝33aを形成していてもかまわない。本工法において雄ネジは用いられないが、ネジ溝33aがあることで、アーク溶接時に溶融池との接触表面積が増え、より強固に溶接金属40と接合補助部材30が結合される。ネジ溝33aなど円筒面でない場合の穴の直径Pは、最も広い対面間距離と定義する。
 接合補助部材30の材質は、純鉄及び鉄合金であれば制限は無く、詳しくは軟鋼、炭素鋼、ステンレス鋼などがあげられる。
 溶接金属40は接合補助部材30の中空部33を充填し、さらに接合補助部材30の表面、より具体的には大径部32の表面に余盛りWaを形成するのが望ましい(図1B参照)。余盛りWaを形成しない、すなわち、図22Aに示すように、中空部33が溶接後に外観上残る状態だと、特に、板厚方向(3次元方向)の外部応力に対しては、接合強度が不足となる可能性がある(図22B参照)。このため、余盛りWaを形成することで、図23に示すように、板厚方向(3次元方向)の外部応力に対しては、接合補助部材30の変形が抑えられ、高い接合強度が得られる。なお、板厚方向の引張応力に対して接合補助部材30を上板10に確実に固定するため、余盛りWaを板厚方向上側(上板10側)から見た場合の、余盛りWaの最大外径は、上板10に設けられる穴11の最大外径よりも大きくすることが好ましい。
 一方、余盛り側と反対側の溶込みについては、図24Aに示すように、下板20の板厚を超えて溶接金属40が形成される、いわゆる裏波が出る状態にする必要がある。その理由は以下のとおりである。
 溶接条件の設定不良あるいは溶接機器の動作不良等により溶込みが浅くなり、接合補助部材30に形成される表側の余盛りWaが外観的に正常であるにもかかわらず、下板20が溶けずに、溶接金属40が乗りかかっているだけという状態になることがある。このような場合、接合補助部材30と下板20は接合されていないことになり、つまり下板20と上板10も接合されていないことになる。
 一方、下板20に裏波が生じている場合、それは溶接金属40が上板10側から会合面を通過して下板20側まで到達したことを意味しているので、接合補助部材30と下板20が金属結合されていることを保証することになる。さらに、それは間接的に上板10と下板20が接合されていることを保証することになる。すなわち、下板20に裏波が生じていれば、溶接工程直後にそれを目視あるいはセンサー等で容易に確認することが出来、接合不良をそのままにして後工程に進むことを防止することができる。
 さらには、下板20に形成された裏波のサイズから、接合補助部材30と下板20の接合強度をおおよそ予想することができる。これらの間の接合強度は、用いられる材質を一定とした場合、上板10と下板20の界面に形成される溶接金属40の断面積、いわゆるナゲット径の大きさに比例する。ナゲット径は、接合補助部材30に設けられた中空部33が溶接金属40で満たされているとすると、中空部33の上面側(大径部32側)に形成された溶接金属40の直径(最大外径)を上底、裏波の直径(最大外径)を下底とした左右対称の台形断面として推定することができる。すなわち、ナゲット径は裏波の直径とおおよそ比例する。この関係性を利用して、単に接合されているか否かという2択論ではなく、必要強度を満たして接合されているか否かというレベルの高い品質保証を、下板20の裏波サイズの測定から実施することができる。このような品質保証性の点から、溶接金属40を下板20の外側に裏波が出る状態まで溶け込ませて、下板20と接合補助部材30を溶接することが必須である。
 ただし、溶接金属40が深く溶け込みすぎて、溶接金属40と下板20が溶け落ちてしまわないように溶接する必要がある。
 なお、図24Bに示すように、溶接金属40が下板20に適度に溶け込んでいるが、下板20に裏波が生じていない場合には、上記した品質保証のための検出を行うことができないため好ましくない。
 続いて、上記アーク溶接法において使用される接合補助部材30についての好ましい実施形態について説明する。
 上述のように、上記打ち抜き工程(ステップS1)において、接合補助部材30を加圧して、上板10を打ち抜くと同時に、接合補助部材30を上板10に一時的に拘束保持することが可能である。しかし、稀に、溶接工程前に振動がかかる、あるいは上向姿勢になった際(図25を参照)に、拘束保持力の弱さが原因で脱落してしまうことがある。
 この問題を防ぎ、確実にアーク溶接工程(ステップS3)まで接合補助部材30を上板10に保持させるためには、接合補助部材30の保持力を高める手段が有効である。具体的には、接合補助部材30において、圧入後にかしめ機構を発揮させることのできる外観形状とすることで実現される。その手段の一つとして、図26A及び図26Bに示すように、接合補助部材30における小径部31の外周面には、羽根状に形成された、少なくとも1つ(本実施形態では4つ)の圧入用突起部39が設けられている。
 図27は、圧入用突起部39を有する接合補助部材30が上板10に圧入される場合の保持機構を説明するための図である。図27に示すように、接合補助部材30を上板10へ圧入する際は、接合補助部材30と接する上板10が押し広げられる方向に弾性変形し、さらには塑性変形する。圧入用突起部39の先端部が通過した後は、弾性変形分が元の位置に戻る、すなわち上板10の材料であるAl合金もしくはMg合金の流入が起こり、接合補助部材30が押し戻される力に対して障壁要因となる。したがって、容易に接合補助部材30が外れることはない。
 圧入用突起部39の形状は、図28Aに示すような二等辺三角形でもよいが、図28B~図28Kに示すように、変形三角形、直角三角形、長方形、不定形状、ノコ刃状、半円、1/4円、対称台形、非対称台形、かぎ針状などが典型的で、その形状に制限はない。また、圧入用突起部39は、大径部32の下面とも接続されていることで、圧入用突起部39の強度を向上できる。さらに、圧入用突起部39は、図29Aに示すように、小径部31の軸方向に平行でもよいし、図29Bに示すように軸方向に対して傾きを持たせてもよい。この場合、接合補助部材30を回転させながら圧入するのに好適である。また、図29Cに示すように、圧入用突起部39は、基部から先端部に向けて円周方向幅が狭くなるような山形状であってもよい。さらに、圧入用突起部39の位置は、金属流入させる空間を設けるために大径部32から離れていることが好ましい。
 圧入用突起部39の数は、図26Bに示すような4枚に限定されず、少なくとも1枚あればよく、上限は特に設ける必要はない。すなわち、図30A~図30Eに示すように、1枚、2枚、3枚、6枚、8枚の圧入用突起部39を有するものであってもよい。ただし、圧入用突起部39の枚数が増えると、接合補助部材30を用いて上板10を打ち抜くために必要な圧力が上がるので、圧入用突起部39の数を、必要以上に増やすべきではない。圧入用突起部39の数は、8枚以下とするのが好ましい。
 また、図26Bや図30B~図30Eに示すように、少なくとも2つの圧入用突起部39の最大外径部と接する最大円Cの直径、あるいは、図30Aに示すように、1つの圧入用突起部39の最大外径部と小径部31の外周面と接する円Cの直径が大きすぎる場合にも、上板10を打ち抜くために必要な圧力が上がるので、小径部31の外周面からの圧入用突起部39の突出量を、必要以上に増やすべきではない。
 接合補助部材30の小径部31に圧入用突起部39を設けることには、他にも長所がある。第二の効果は接合対象である上板10と下板20が相互に回転しにくくなることである。接合補助部材30の小径部31の断面形状が真円形では、披接合部材(上板10及び下板20)が本接合法のみで接合される場合、例えば上板10に強い水平方向の回転力Fが加わると、接合補助部材30を中心に回るように上板10が回転してしまう可能性がある。しかしながら、図31A及び図31Bに示すように、接合補助部材30には圧入用突起部39が設けられていて、圧入用突起部39が上板10の穴11の周囲に食い込むことで、容易に回転を防止することができる。
 なお、図32A~図32Eにそれぞれ示される、直角三角形、長方形、1/4円、凹、非対称台形の圧入用突起部39のように、圧入用突起部39が大径部32と連続的となっていて、くびれ箇所を持たないものであっても、適用することは許容される。しかし、上述したような、接合補助部材30を上板10に圧入する際における、金属流入箇所が確保できないため、一時拘束性向上の効果はあまり期待できない。ただし、上記した回転抑制効果は期待できるため、このような形態であっても、小径部31の外周面には圧入用突起部39を有していることが好ましい。
 さらに、上記アーク溶接法において使用される接合補助部材30についての別の好ましい実施形態について説明する。
 上記で説明したのと同様に、確実にアーク溶接工程(ステップS3)まで接合補助部材30を上板10に保持させるための別の手段として、小径部31に圧入用突起部39を設けるのではなく、小径部31の胴径を多段化し、部分的に”くびれ”を設ける策も有効である。
 具体的には、図33A~図33Hに示すように、接合補助部材30における小径部31の外周面に、大径部32の最大外径よりも小さい中径部34を設ける。なお、中径部34は、大径部32とは接触することなく、かつ、小径部31の外周面に沿って連続的(図33A、図33C、図33E~図33H)または断続的(図33Bまたは図33D)に設けられる。
 上記要件を満足する中径部34を小径部31の外周面に設けることにより、上板10に圧入される接合補助部材30の一部にくびれ部38が存在することとなる。
 これらの例に共通することは、[1]小径部31の先端側に中径部34を有すること、[2]中径部34と大径部32の間に小径部31を有すること、[3]非挿入側に大径部32を有すること、の相対関係が成立していることである。なお、図33Fに示すように、中径部34と小径部31がそれぞれ複数存在する場合も考えられるが、このことは上記各要件から無視して問題はなく、あくまで接合補助部材30の長手方向(挿入方向)に大径-小径-中径の関係が成立している並びが1箇所以上存在していれば、上記要件を満足する。
 このような状態となれば、接合補助部材30に圧入用突起部39を設ける場合の実施形態で説明したと同じ原理により、容易に接合補助部材30が外れることはない。すなわち、接合補助部材30の圧入時に中径部34が通過する際にAl合金もしくはMg合金が弾性変形、さらには塑性変形し、さらに圧入が進み小径部31になると弾性変形分が戻る。これにより、金属流入が起きて、接合補助部材30が押し戻される力に対して障壁要因となる。
 なお、小径部31の全周に渡って中径部34を設けるのではなく、図33Bや図33Dに示すように、部分的にのみ中径部34を設けること、すなわち断続状にしてもよい。断続状にすると、圧入用突起部39を設けた場合と同様、接合補助部材30の挿入部分である小径部31が真円形状の場合に、上板10と下板20が溶接後にも相対的に容易に回転することを防ぐ効果が期待される。
 なお、図34A~図34Dに示すように、大径部32と中径部34が、接合補助部材30の長手方向(挿入方向)から見て連続的となっている接合補助部材30であっても、適用することは許容される。しかし、上述したような、接合補助部材30を上板10に圧入する際における、金属流入箇所が確保できないため、一時拘束性向上の効果や回転抑制効果は期待できない。ただし、中径部34が断続状であれば、回転抑制効果のみ得られる。
 ところで、本実施形態における接合補助部材30は、図35Aに示すように、大径部32の上側に小径部31を積み重ねた形状とすることもできる。しかし、大径部32から見てAl合金やMg合金に打ち込まれる挿入方向反対側は、それが上板10の表面よりも高い位置にある場合(図35Bや図35Cにおいて、突出部35と定義する)は、継手強度には影響を及ぼさない。
 一方、図35D~図35Gに示すように、大径部32の上側に設けられた小径部31または中径部34の少なくとも一部が、上板10の表面よりも低い位置にある場合には、その部位が少なからず継手強度に影響を及ぼす。
 なお、上板10及び下板20の板厚については、限定される必要は必ずしもないが、施工能率と、重ね溶接としての形状を考慮すると、上板10の板厚は、5.0mm以下であることが望ましい。一方、アーク溶接の入熱を考慮すると、板厚が過度に薄いと溶接時に溶け落ちてしまい、溶接が困難であることから、上板10、下板20共に0.5mm以上とすることが望ましい。
 以上の構成により、上板10がAl合金もしくはMg合金、下板20が鋼の素材を強固に接合することができる。
 ここで、異種金属同士を直接接合する場合の課題としては、IMCの形成という課題以外に、もう一つの課題が知られている。それは、異種金属同士が接すると、ガルバニ電池を形成する為に腐食を加速する原因になる。この原因(電池の陽極反応)による腐食は電食と呼ばれている。異種金属同士が接する面に水があると腐食が進むので、接合箇所として水が入りやすい場所に本実施形態が適用される場合は、電食防止を目的として、水の浸入を防ぐためのシーリング処理を施す必要がある。本接合法でもAl合金やMg合金と鋼が接する面は複数形成されるので、樹脂系の接着剤をさらなる継手強度向上の目的のみならず、シーリング材として用いることが好ましい。
 例えば、図36A及び図36Bに示す変形例のように、上板10と下板20との重ね合わせ工程の前に、上板10及び下板20の接合面で、溶接部周囲に接着剤60を全周に亘って環状に塗布してもよい。なお、接着剤60を上板10及び下板20の接合面で、溶接部周囲に全周に亘って塗布する方法としては、図37A及び図37Bに示す変形例のように、溶接箇所を除いた接合面の全面に塗布する場合も含まれる。これにより、上板10、下板20、及び溶接金属40の電食速度を下げることができる。
 また、上述の打ち抜き工程において、接合補助部材30と、接合補助部材30と対向する上板10との間の少なくとも一方の対向面に、接着剤60を塗布してもよい。これにより、上板10、接合補助部材30、及び溶接金属40の電食速度を下げることができる。
 この場合、副次的効果として、アーク溶接前に接合補助部材30を上板10に仮止めしておく作用がある。特に、図25に示すように、アーク溶接が、横向や上向姿勢になる場合、接着剤60を塗布しておくことで、接合補助部材30が重力によって落下するのを防ぐことができ、溶接を適切に施工することができる。
 さらに、図38A及び図38Bに示す変形例のように、接合補助部材30の大径部32と上板10の表面との境界部に接着剤60を塗布してもよい。また、図38Cに示すように、大径部32全体を覆い隠してしまうように接着剤60を塗布してもよい。これにより、接合補助部材30と、Al合金もしくはMg合金の接する露出面側の表面、接合補助部材30における大径部32の下になっている隠れ面、さらに接合補助部材30による打ち抜き端面における、電食速度低下の効果が得られる。また、接着剤塗布をアーク溶接前に行えば、接合補助部材30を上板10に仮止めしておく効果も得られる。なお、本変形例では、接着剤の塗布は、溶接工程前(打ち抜き工程の際)でも充填溶接工程後でも可能である。
 なお、接合補助部材30には、接着剤やシーリング材による電食抑制手段だけではなく、自身の錆防止や、アルミニウム板との間に生じる電食を防ぐために、電気的卑の元素や加工物、絶縁性物質、不動態といった皮膜を形成する表面処理を施すことが、さらに良い。例えば、亜鉛めっき、クロムめっき、ニッケルめっき、アルミめっき、錫(すず)めっき、樹脂塗装、セラミックコーティングなどがあげられる。
 以上の構成により、上板10がAl合金もしくはMg合金、下板20が鋼の素材を開断面構造、閉断面構造にかかわらず強固に接合することができる。さらには接着剤を併用することにより、接合強度の向上と共に腐食を防ぐことも出来る。
 また、本実施形態の溶接法は、接合面積が小さい点溶接と言えるので、ある程度の接合面積を有する実用部材同士の重ね合わせ部分Jを接合する場合は、本溶接法を図39A~図39Cに示すように、複数実施すればよい。これにより、重ね合わせ部分Jにおいて強固な接合が行われる。本実施形態は、図39B及び図39Cに示すような開断面構造にも使用できるが、特に、図39Aに示すような閉断面構造において好適に使用することができる。
 また、図40に示される開断面部材の製造プロセス及び図41に示される閉断面部材の製造プロセスのように、本接合法では溶接前工程として、接合補助部材30を上板10内に埋め込んでしまうことも可能である。上板10内に埋め込まれた接合補助部材30は、上板10の表面上に突き出ないことから、埋め込み後に金型等を用いてAlやMg母材をプレス成形することが容易であり、その後工程として、下板20と合わせて接合することが可能である。本溶接法は、無論、開断面部材、閉断面部材を分け隔てることなく、いずれも製造可能である。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2018年2月28日出願の日本特許出願(特願2018-035397)に基づくものであり、その内容は本出願の中に参照として援用される。
1    異材溶接継手
10   上板(第1の板)
11   穴
20   下板(第2の板)
30   接合補助部材
31   小径部
32   大径部
33   中空部
34   中径部
35   突出部
37   切り欠き
38   くびれ部
39   圧入用突起部
40   溶接金属
50   下台座
51   上台座
60   接着剤
80   加圧機構
90   溶接トーチ
92   加圧用脚
W    溶融部
Wa   余盛り
M    母材片
G    ギャップ
P    張り出し量
J    重ね合わせ部分

Claims (11)

  1.  アルミニウム合金もしくはマグネシウム合金製の第1の板と、鋼製の第2の板と、を接合する異材接合用アーク溶接法であって、
     大径部と、該大径部よりも最大外径が小さい小径部とを持った段付きの外形形状を有し、且つ、該大径部及び該小径部を貫通する中空部が形成され、該大径部及び該小径部の合計高さが前記第1の板の板厚以上である鋼製の接合補助部材を、前記小径部が前記第1の板に面するように配置し、前記接合補助部材に圧力をかけて前記第1の板を打ち抜く工程と、
     前記第1の板と前記第2の板を重ね合わせる工程と、
     以下の(a)~(e)のいずれかの手法によって、前記接合補助部材の中空部を溶接金属で充填すると共に、前記溶接金属を前記第2の板に裏波が出る状態まで溶け込ませて、前記第2の板及び前記接合補助部材を溶接する工程と、
    を備える異材接合用アーク溶接法。
    (a)鉄合金、または、Ni合金の前記溶接金属が得られる溶接ワイヤを溶極として用いるガスシールドアーク溶接法。
    (b)前記溶接ワイヤを溶極として用いるノンガスアーク溶接法。
    (c)前記溶接ワイヤを非溶極フィラーとして用いるガスタングステンアーク溶接法。
    (d)前記溶接ワイヤを非溶極フィラーとして用いるプラズマアーク溶接法。
    (e)鉄合金、または、Ni合金の前記溶接金属が得られる被覆アーク溶接棒を溶極として用いる被覆アーク溶接法。
  2.  前記小径部の外周面には、少なくとも1つの圧入用突起部が設けられる、請求項1に記載の異材接合用アーク溶接法。
  3.  前記小径部の外周面には、前記大径部の最大外径よりも小さい中径部が、該大径部と接触することなく、且つ、該外周面に沿って連続的または断続的に設けられる、請求項1に記載の異材接合用アーク溶接法。
  4.  前記重ね合わせ工程の前に、前記第1の板と前記第2の板の少なくとも一方の重ね合わせ面に対し、前記打ち抜き工程により形成された前記第1の板における穴の周囲に、全周に亘って接着剤を塗布する工程を、さらに備える、請求項1~3のいずれか1項に記載の異材接合用アーク溶接法。
  5.  前記打ち抜き工程において、前記接合補助部材と、該接合補助部材と対向する前記第1の板との間の少なくとも一方の対向面に、接着剤を塗布する、請求項1~3のいずれか1項に記載の異材接合用アーク溶接法。
  6.  前記打ち抜き工程の際、または、前記充填溶接工程後に、少なくとも前記接合補助部材と前記第1の板の表面との境界部に接着剤を塗布する、請求項1~3のいずれか1項に記載の異材接合用アーク溶接法。
  7.  前記接合補助部材の小径部における前記第1の板からの張り出し量が、前記第1の板の板厚に対し25%以下である、請求項1~3のいずれか1項に記載の異材接合用アーク溶接法。
  8.  前記充填溶接工程において、前記第1の板及び前記第2の板が互いに密着する方向に押圧可能な加圧機構を有し、
     前記加圧機構が前記第1の板及び前記第2の板が互いに密着するように押圧しながら、前記第2の板及び前記接合補助部材を溶接する、請求項1~3のいずれか1項に記載の異材接合用アーク溶接法。
  9.  前記加圧機構は、前記充填溶接工程において使用する溶接トーチに備えられ、前記第1の板及び前記接合補助部材の少なくとも一方と当接する押し付け部を有する、請求項8に記載の異材接合用アーク溶接法。
  10.  前記接合補助部材の大径部の露出面が、前記第1の板の表面と略同一または外側に位置するようにして前記第1の板を打ち抜く、請求項1~3のいずれか1項に記載の異材接合用アーク溶接法。
  11.  前記充填溶接工程において、前記接合補助部材の中空部を溶接金属で充填するに際し、前記接合補助部材の表面上に余盛りを形成する、請求項1~3のいずれか1項に記載の異材接合用アーク溶接法。
PCT/JP2019/002577 2018-02-28 2019-01-25 異材接合用アーク溶接法 WO2019167502A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980015962.5A CN111801189B (zh) 2018-02-28 2019-01-25 异种材料接合用电弧焊接法
US16/971,481 US20200384567A1 (en) 2018-02-28 2019-01-25 Arc welding method for dissimilar material bonding
EP19760175.0A EP3744465A4 (en) 2018-02-28 2019-01-25 ARC WELDING PROCESS FOR BONDING DISSEMBLE MATERIALS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018035397A JP6829218B2 (ja) 2018-02-28 2018-02-28 異材接合用アーク溶接法
JP2018-035397 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019167502A1 true WO2019167502A1 (ja) 2019-09-06

Family

ID=67808835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002577 WO2019167502A1 (ja) 2018-02-28 2019-01-25 異材接合用アーク溶接法

Country Status (5)

Country Link
US (1) US20200384567A1 (ja)
EP (1) EP3744465A4 (ja)
JP (1) JP6829218B2 (ja)
CN (1) CN111801189B (ja)
WO (1) WO2019167502A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050147A1 (ja) * 2020-09-01 2022-03-10 パナソニックIpマネジメント株式会社 接合方法
EP4005721A4 (en) * 2019-09-18 2022-10-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) JUNCTION PROCESS AND JOINT BODY

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020084971A1 (ja) * 2018-10-23 2020-04-30 株式会社神戸製鋼所 異材接合用アーク溶接法、接合補助部材、異材溶接継手、及び、接合補助部材付き板材
WO2020213491A1 (ja) * 2019-04-19 2020-10-22 パナソニックIpマネジメント株式会社 接合構造
JP7290521B2 (ja) * 2019-09-18 2023-06-13 ファナック株式会社 ロボット用溶接ツールおよびロボット
JP7319223B2 (ja) * 2020-04-17 2023-08-01 株式会社神戸製鋼所 異材接合用アークスポット溶接法
WO2022050161A1 (ja) * 2020-09-01 2022-03-10 パナソニックIpマネジメント株式会社 接合構造
CN113146039B (zh) * 2021-04-28 2022-10-28 南昌大学 镁合金钢激光焊接的中间层复合粉末的制备及其焊接方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3095951A (en) * 1960-01-11 1963-07-02 Gen Electric Article and method for joining dissimilar materials
JPS52114446A (en) * 1976-03-22 1977-09-26 Fuji Heavy Ind Ltd Method of joining members of different materials
JPS54100946A (en) * 1978-01-26 1979-08-09 Hitachi Metals Ltd Line welding method
JP2002174219A (ja) 2000-12-06 2002-06-21 Toyota Motor Corp セルフピアスリベットおよび締結方法
JP2009285678A (ja) 2008-05-28 2009-12-10 Kobe Steel Ltd 鋼材と軽合金材との異材接合方法および異材接合体、鋼材との異材接合用軽合金材、鋼材と軽合金材との異材接合用リベット。
JP5044128B2 (ja) 2006-03-22 2012-10-10 本田技研工業株式会社 アルミ合金と鋼板との摩擦攪拌接合方法および摩擦攪拌接合部材
WO2017170213A1 (ja) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 接合構造
WO2018030272A1 (ja) * 2016-08-09 2018-02-15 パナソニックIpマネジメント株式会社 接合構造
WO2018042679A1 (ja) * 2016-08-29 2018-03-08 株式会社神戸製鋼所 異材接合用アークスポット溶接法、接合補助部材、及び、異材溶接継手
JP2018035397A (ja) 2016-08-31 2018-03-08 株式会社神戸製鋼所 水素吸蔵合金および水素精製装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2860230A (en) * 1955-01-04 1958-11-11 Kellogg M W Co Fastening means and method
US3624344A (en) * 1968-08-02 1971-11-30 Carborundum Co Attachment of nonmetallic articles to metallic substrates
US4359599A (en) * 1980-02-13 1982-11-16 Westinghouse Electric Corp. Electrical conductor connection and method of making same
CN201087750Y (zh) * 2007-05-17 2008-07-16 东风汽车公司 耐腐蚀的不同金属被连接件的铆接结构
US7819452B2 (en) * 2008-05-12 2010-10-26 United States Council For Automotive Research Automotive structural joint and method of making same
DE102012102286A1 (de) * 2012-03-19 2013-09-19 Thyssenkrupp Steel Europe Ag Verfahren zum Verbinden eines Verbundblechs mit einem metallischen Substrat
JP6022402B2 (ja) * 2013-05-22 2016-11-09 株式会社神戸製鋼所 リベット接合構造体及びその製造方法
JP5722479B2 (ja) * 2013-07-22 2015-05-20 株式会社神戸製鋼所 異材接合用リベット、異材接合用部材、異材接合体の製造方法及び異材接合体
JP6148136B2 (ja) * 2013-09-24 2017-06-14 株式会社神戸製鋼所 異材接合体の製造方法
EP3233360B1 (en) * 2014-12-15 2022-09-28 Howmet Aerospace Inc. Resistance welding fastener, apparatus and methods for joining similar and dissimilar materials
JP6740287B2 (ja) * 2018-07-05 2020-08-12 ファナック株式会社 異種金属接合用ツール

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3095951A (en) * 1960-01-11 1963-07-02 Gen Electric Article and method for joining dissimilar materials
JPS52114446A (en) * 1976-03-22 1977-09-26 Fuji Heavy Ind Ltd Method of joining members of different materials
JPS54100946A (en) * 1978-01-26 1979-08-09 Hitachi Metals Ltd Line welding method
JP2002174219A (ja) 2000-12-06 2002-06-21 Toyota Motor Corp セルフピアスリベットおよび締結方法
JP5044128B2 (ja) 2006-03-22 2012-10-10 本田技研工業株式会社 アルミ合金と鋼板との摩擦攪拌接合方法および摩擦攪拌接合部材
JP2009285678A (ja) 2008-05-28 2009-12-10 Kobe Steel Ltd 鋼材と軽合金材との異材接合方法および異材接合体、鋼材との異材接合用軽合金材、鋼材と軽合金材との異材接合用リベット。
WO2017170213A1 (ja) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 接合構造
WO2018030272A1 (ja) * 2016-08-09 2018-02-15 パナソニックIpマネジメント株式会社 接合構造
WO2018042679A1 (ja) * 2016-08-29 2018-03-08 株式会社神戸製鋼所 異材接合用アークスポット溶接法、接合補助部材、及び、異材溶接継手
JP2018035397A (ja) 2016-08-31 2018-03-08 株式会社神戸製鋼所 水素吸蔵合金および水素精製装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3744465A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4005721A4 (en) * 2019-09-18 2022-10-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) JUNCTION PROCESS AND JOINT BODY
WO2022050147A1 (ja) * 2020-09-01 2022-03-10 パナソニックIpマネジメント株式会社 接合方法
JP7466161B2 (ja) 2020-09-01 2024-04-12 パナソニックIpマネジメント株式会社 接合方法

Also Published As

Publication number Publication date
JP6829218B2 (ja) 2021-02-10
CN111801189B (zh) 2022-03-18
EP3744465A4 (en) 2021-04-28
EP3744465A1 (en) 2020-12-02
CN111801189A (zh) 2020-10-20
US20200384567A1 (en) 2020-12-10
JP2019150831A (ja) 2019-09-12

Similar Documents

Publication Publication Date Title
WO2019167502A1 (ja) 異材接合用アーク溶接法
WO2018123716A1 (ja) 異材接合用アーク溶接法、接合補助部材、異材溶接継手、及び、接合補助部材付き板材
WO2018056172A1 (ja) 異材接合用スポット溶接法、接合補助部材、及び、異材溶接継手
JP6461056B2 (ja) 異材接合用アークスポット溶接法、接合補助部材、及び、異材溶接継手
WO2020100426A1 (ja) 異材接合用溶接法、接合補助部材、及び、異材溶接継手
WO2018042680A1 (ja) 異材接合用アークスポット溶接法、接合補助部材、及び、異材溶接継手
JP2018103240A (ja) 異材接合用アーク溶接法、接合補助部材、異材溶接継手、及び、接合補助部材付き板材
EP3517240A1 (en) Arc welding method for joining different materials, joining assistance member, and different material welded joint
WO2018042681A1 (ja) 異材接合用アークスポット溶接法、接合補助部材、及び、異材溶接継手
WO2018042682A1 (ja) 異材接合用アーク溶接法、接合補助部材、及び、異材溶接継手
JP6999015B2 (ja) 異材接合用アーク溶接法
JP7160625B2 (ja) 異材接合用アークスタッド溶接法及び接合補助部材
JP2018103241A (ja) 異材接合用アーク溶接法、接合補助部材、異材溶接継手、及び、接合補助部材付き板材
JP7131927B2 (ja) 異材接合法、接合補助部材、及び、異材接合継手
JP7025489B2 (ja) 異材接合用アーク溶接法、接合補助部材、及び、異材溶接継手
WO2020084971A1 (ja) 異材接合用アーク溶接法、接合補助部材、異材溶接継手、及び、接合補助部材付き板材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019760175

Country of ref document: EP

Effective date: 20200827