WO2020100426A1 - 異材接合用溶接法、接合補助部材、及び、異材溶接継手 - Google Patents

異材接合用溶接法、接合補助部材、及び、異材溶接継手 Download PDF

Info

Publication number
WO2020100426A1
WO2020100426A1 PCT/JP2019/036838 JP2019036838W WO2020100426A1 WO 2020100426 A1 WO2020100426 A1 WO 2020100426A1 JP 2019036838 W JP2019036838 W JP 2019036838W WO 2020100426 A1 WO2020100426 A1 WO 2020100426A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
joining
diameter
hole
auxiliary member
Prior art date
Application number
PCT/JP2019/036838
Other languages
English (en)
French (fr)
Inventor
励一 鈴木
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP19883745.2A priority Critical patent/EP3868506A4/en
Priority to US17/291,759 priority patent/US20210387278A1/en
Priority to CN201980074157.XA priority patent/CN112996623B/zh
Publication of WO2020100426A1 publication Critical patent/WO2020100426A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K25/00Uniting components to form integral members, e.g. turbine wheels and shafts, caulks with inserts, with or without shaping of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • B23K10/022Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/22Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/323Bonding taking account of the properties of the material involved involving parts made of dissimilar metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/007Spot arc welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/14Arc welding or cutting making use of insulated electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • B23K9/232Arc welding or cutting taking account of the properties of the materials to be welded of different metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/235Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P11/00Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/15Magnesium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/20Ferrous alloys and aluminium or alloys thereof

Definitions

  • the present invention relates to a welding method for joining dissimilar materials, a joining auxiliary member, and a dissimilar material welded joint.
  • the purpose of vehicles, such as automobiles, is to control (a) petroleum fuel consumption, which is a limited resource, (b) CO 2 , which is a greenhouse gas generated by combustion, and (c) running costs.
  • One of the measures is to reduce the weight of the vehicle body, in addition to the improvement of the power system technology such as the use of electric drive.
  • steel which is the main material at present, with lightweight materials such as aluminum alloy, magnesium alloy, and carbon fiber.
  • replacing all of them with these lightweight materials poses problems such as high cost and insufficient strength, and as a solution, a so-called multi-material design method that combines steel and lightweight materials in the right places is attracting attention. Taking a bath.
  • the punching and joining members are temporarily restrained by pushing the joining member made of steel into the aluminum alloy material as a punch, then overlapped with the steel material, and sandwiched with copper electrodes from both above and below,
  • a means for resistance welding a steel material and a joining member by instantaneously applying pressure and high current has been proposed (for example, refer to Patent Document 2).
  • Patent Document 1 the joining method described in Patent Document 1 is a relatively easy method, but there is a problem that it cannot be inserted when the strength of steel is high, and the joining strength depends on the frictional force and the rigidity of the caulking member. Therefore, there is a problem that high bonding strength cannot be obtained. Further, there is a problem that it cannot be applied to a closed cross-section structure because the jig needs to be pressed from both front and back sides when inserting.
  • Patent Document 2 cannot be applied to the closed cross-section structure, and the resistance welding method has a problem that the equipment is very expensive.
  • Patent Document 3 applies pressure to the steel material surface while plastically flowing the aluminum alloy material in the low temperature region, so that the two materials do not melt each other and prevent the formation of intermetallic compounds. It is said that a metal bonding force can be obtained, and there is also a research result that steel and carbon fibers can be joined.
  • this joining method is also not applicable to a closed cross-section structure, and since it requires high pressure, it is mechanically large and expensive. Also, the joining force does not become so high. Furthermore, it is generally not applicable when steel with high strength and high melting point is placed on the front side.
  • the existing dissimilar material joining technology is (i) the members and the groove shape are limited to the open sectional structure, (ii) the joining strength is low, (iii) the equipment cost is expensive, and (iv) steel is the front side.
  • the present invention has been made in view of the above-described problems, and its object is to dissimilar materials other than steel and steel, using inexpensive welding equipment that has already been popularized in the world, and is robust and reliable.
  • a welding method for joining dissimilar materials, a joining assisting member, and a dissimilar material welded joint that can be joined with high quality and can be applied to open-section structures and closed-section structures without limitation.
  • the formation of the intermetallic compound (IMC) is unavoidable as described above.
  • IMC intermetallic compound
  • a welding method for joining dissimilar materials which joins a first plate made of a material other than steel and a second plate made of steel, Drilling holes in the first plate and the second plate, respectively, It has a stepped outer shape having a shaft portion and a flange portion, and has a maximum outer diameter P D1 of the shaft portion, a width P D2 of the flange portion, and a diameter B D1 of the hole of the first plate.
  • P D2 > P D1 > B D1 and the shaft portion has a constricted portion on the flange side, and is a solid joining support member made of steel, or a step having a shaft portion and a flange portion.
  • the outer peripheral surface of the shaft portion is provided with at least one protrusion for press-fitting, the width P D2 of the flange portion is larger than the diameter B D2 of the hole of the first plate, and maximum diameter circle P D1 in contact with the outermost diameter of at least two of said projections, or the diameter P D1 of a circle in contact with the outer peripheral surface of the outermost diameter portion of one of the projections and the shaft portion is the first
  • a gas shield arc welding method in which a welding wire that produces the above-mentioned weld metal of an iron alloy or a Ni alloy is used as a welding electrode.
  • B A non-gas arc welding method using the welding wire as a welding electrode.
  • C A gas tungsten arc welding method using the welding wire as a non-electrolytic electrode filler.
  • D A plasma arc welding method using the welding wire as a non-electrolytic electrode filler.
  • E A coated arc welding method in which a coated arc welding rod from which the above-mentioned weld metal of an iron alloy or a Ni alloy is obtained is used as a welding electrode.
  • F A laser welding method using the welding wire as a filler wire.
  • a dissimilar material welded joint comprising a first plate made of a material other than steel and a second plate made of steel, which is joined to the first plate,
  • the first plate and the second plate respectively have holes located coaxially with each other, It has a stepped outer shape having a shaft portion and a flange portion, and has a maximum outer diameter P D1 of the shaft portion, a width P D2 of the flange portion, and a diameter B D1 of the hole of the first plate.
  • Is P D2 > P D1 > B D1 and the shaft portion has a steel joint auxiliary member having a constricted portion on the flange side, or a stepped outer shape having a shaft portion and a flange portion.
  • At least one press-fitting protrusion is provided on the outer peripheral surface of the shaft portion, the width P D2 of the flange portion is larger than the diameter B D2 of the hole of the first plate, and at least two of the above maximum diameter circle P D1 in contact with the outermost diameter of projections or holes diameter P D1 of a circle in contact with the outer peripheral surface of the outermost diameter portion of one of the projections and the shaft portion of the first plate Of a solid and steel joining assisting member having a diameter larger than the diameter B D2 of At least the shaft portion of the joining assisting member is fixed in the hole of the first plate, The first plate and the second plate are overlapped so that the shaft portion of the joining assisting member faces the hole of the second plate, The hole of the second plate is filled with a weld metal of an iron alloy or a Ni alloy, and is melted by the weld metal and a part of the melted second plate and the joining auxiliary member. A dissimilar material welded joint is formed.
  • a material other than steel and a dissimilar material to steel can be joined with strong and reliable quality using inexpensive welding equipment, and there is no limitation on the open cross-section structure or the closed cross-section structure. It is to provide a welding method for joining dissimilar materials, a joining auxiliary member, and a dissimilar material welded joint which can be applied. Furthermore, it can be applied when the second steel plate is on the front side.
  • FIG. 1B is a cross-sectional view of the dissimilar material welded joint taken along line II of FIG. 1A. It is a side view of the joining auxiliary member of 1st Embodiment. It is a front view of the joining auxiliary member of 1st Embodiment. It is a side view of the 1st modification of the joining auxiliary member of 1st Embodiment. It is a side view of the 2nd modification of the joining auxiliary member of 1st Embodiment. It is sectional drawing corresponding to FIG. 1B of the dissimilar material welded joint which used the joining auxiliary member of the 1st modification.
  • 6B is a cross-sectional view taken along line VI-VI of FIG. 6A. It is a figure which shows the drilling operation
  • FIG. 16A It is a sectional view of a dissimilar material welding joint for explaining penetration of welding metal. It is a sectional view of a dissimilar material welding joint for explaining penetration of welding metal. It is a perspective view of the dissimilar material welding joint as a comparative example which carried out penetration welding of the lower plate made of aluminum and the upper plate made of steel. It is sectional drawing of the dissimilar material welded joint of FIG. 16A. It is a perspective view of the dissimilar material welded joint as another comparative example which carried out penetration welding of the lower plate made of aluminum and the upper plate made of steel which have a hole.
  • FIG. 16B is a cross-sectional view showing a state where shear tension acts on the dissimilar material welded joint of FIG. 16A.
  • FIG. 16B is a cross-sectional view showing a state where vertical peel tension acts on the dissimilar material welded joint of FIG. 16A. It is a perspective view which shows the dissimilar material welding joint of FIG. 18A. It is sectional drawing of the dissimilar material welded joint of 1st Embodiment.
  • FIG. 19B is a perspective view showing a state where vertical peel tension acts on the dissimilar material welded joint of FIG. 19A. It is a perspective view showing the state where the dissimilar material welding joint of a 1st embodiment was bending-deformed.
  • FIG. 23A It is sectional drawing which shows the state which the external stress of the board thickness direction (three-dimensional direction) acted on the dissimilar material welded joint of FIG. 23A. It is a perspective view of an upper plate and a lower plate for explaining the 1st modification of the welding method for dissimilar material joining of a 1st embodiment. It is sectional drawing of an upper plate and a lower plate for demonstrating the 1st modification of the welding method for different material joining of 1st Embodiment. It is a perspective view of an upper plate and a lower plate for explaining the 2nd modification of the welding method for dissimilar material joining of a 1st embodiment.
  • FIG. 28 is a view showing a state before the bulging portion is drawn on the upper plate of FIG. 27.
  • FIG. 28 is a view showing a state after the bulging portion is drawn on the upper plate of FIG. 27. It is a perspective view which shows the closed cross-section structure to which the dissimilar material welding joint of 1st Embodiment was applied. It is a perspective view showing an open section structure by an L character board and a flat plate to which the dissimilar material welding joint of a 1st embodiment was applied. It is a perspective view showing the open section structure by two flat plates to which the dissimilar material welding joint of a 1st embodiment was applied. It is a figure which shows the 4th modification of the welding method for different material joining of 1st Embodiment. It is a figure which shows the 5th modification of the welding method for different material joining of 1st Embodiment.
  • FIG. 32B is a cross-sectional view of the dissimilar material welded joint taken along the line XXXII-XXXII of FIG. 32A. It is a side view of the joining auxiliary member of 2nd Embodiment. It is a front view of the joining auxiliary member of 2nd Embodiment. It is a side view of the 1st modification of the joining auxiliary member of 2nd Embodiment. It is a side view of the 2nd modification of the joining auxiliary member of 2nd Embodiment. It is sectional drawing corresponding to FIG. 32B of the dissimilar material welded joint using the joining assistance member of a 1st modification.
  • FIG. 42B is a perspective view showing a state where vertical peel tension acts on the dissimilar material welded joint of FIG. 42A. It is a perspective view which shows the state which the dissimilar material welded joint of 2nd Embodiment bent and deformed. It is sectional drawing of an upper plate, a lower plate, and a joining auxiliary member for demonstrating the dimensional relationship of a joining auxiliary member. It is sectional drawing of a dissimilar material welded joint for demonstrating the unfilled height of weld metal.
  • FIG. 46B is a cross-sectional view showing a state where external stress in the plate thickness direction (three-dimensional direction) is applied to the dissimilar material welded joint of FIG. 46A. It is a perspective view of an upper plate and a lower plate for explaining the 1st modification of the welding method for dissimilar material joining of a 2nd embodiment.
  • FIG. 54B is a cross-sectional view of the dissimilar material welded joint taken along the line LIV-LIV of FIG. 54A.
  • FIG. 54B is a cross-sectional view of the dissimilar material welded joint taken along the line LIV-LIV of FIG. 54A.
  • It is a perspective view of the joining auxiliary member of 3rd Embodiment. It is the side view of the joining auxiliary member of a 3rd embodiment, and the sectional view which met the LV-LV line. It is a principal part side view of the 1st modification of the joining auxiliary member of 3rd Embodiment.
  • FIG. 65B is a perspective view showing a state where vertical peel tension acts on the dissimilar material welded joint of FIG. 65A. It is a perspective view showing the state where the dissimilar material welding joint of a 3rd embodiment was bending-deformed.
  • FIG. 1 It is sectional drawing of an upper plate, a lower plate, and a joining auxiliary member for demonstrating the dimensional relationship of a joining auxiliary member. It is sectional drawing of a dissimilar material welded joint for demonstrating the unfilled height of weld metal. It is sectional drawing of the dissimilar material welded joint in which the hole of the upper board was filled up and the surplus was formed. It is sectional drawing which shows the state which the external stress of the board thickness direction (three-dimensional direction) acted on the dissimilar material welded joint with which the hole of the upper board was filled. It is sectional drawing which shows a dissimilar material welded joint at the time of high unfilling height.
  • FIG. 1 It is sectional drawing of an upper plate, a lower plate, and a joining auxiliary member for demonstrating the dimensional relationship of a joining auxiliary member. It is sectional drawing of a dissimilar material welded joint for demonstrating the unfilled height of weld metal. It is sectional drawing of the dissimilar material welded joint in which the hole of
  • FIG. 69B is a cross-sectional view showing a state where external stress in the plate thickness direction (three-dimensional direction) is applied to the dissimilar material welded joint of FIG. 69A. It is sectional drawing of the dissimilar material welded joint of 3rd Embodiment.
  • FIG. 70B is a cross-sectional view taken along the line LXX A -LXX A of FIG. 70A. It is a side view showing the 24th modification of a joining auxiliary member. It is a perspective view of an upper plate and a lower plate for explaining the 1st modification of the welding method for dissimilar material joining. It is sectional drawing of an upper plate and a lower plate for demonstrating the 1st modification of the welding method for different material joining.
  • FIG. 56C It is a top view, a side view, and a bottom view showing a joining auxiliary member of the 3rd modification of Drawing 56C. It is a top view, a side view, and a bottom view showing the 25th modification of a joining auxiliary member. It is a top view, a side view, and a bottom view showing the 26th modification of a joining auxiliary member. It is a side view showing the 27th modification of a joining auxiliary member. It is sectional drawing of the dissimilar material welded joint after the welding which concerns on the 5th modification of the welding method for dissimilar material joining.
  • the welding method for joining dissimilar materials of the first embodiment includes a lower plate 10 (first plate) made of an aluminum alloy or a magnesium alloy and an upper plate 20 (second plate) made of steel, which are superposed on each other.
  • the welding of the dissimilar material welded joint 1 as shown in FIG. 1A and FIG. 1B is performed by joining it by the arc welding method or the laser welding method described later via the joining assisting member 30 made of steel.
  • the lower plate 10 and the upper plate 20 are provided with circular holes 11 and 21 penetrating in the plate thickness direction and located coaxially with each other (see FIG. 7A).
  • the entire joining assisting member 30 is inserted into the hole 11 of the lower plate 10 under pressure.
  • the joining assisting member 30 has a stepped outer shape having a shaft portion 31 and a flange portion 32 facing outward with respect to the shaft portion 31.
  • the shaft portion 31 and the flange portion 32 are formed solid.
  • the relationship between the maximum outer diameter P D1 of the shaft portion 31, the width P D2 of the flange portion 32, and the diameter B D1 of the hole 11 of the lower plate 10 is P D2. > P D1 > B D1 is satisfied, and the total thickness P H is designed to be equal to or less than the plate thickness B H1 of the lower plate 10 (see FIG. 20).
  • the diameter of the hole 21 of the upper plate 20 may be any size as long as it can be filled with the weld metal 40 described later, and may be the same as the diameter B D1 of the hole 11 of the lower plate 10 or larger than the diameter B D1. , May be small.
  • the outer shape of the shaft portion 31 is configured to have the constricted portion 39 on the flange portion side.
  • the shaft portion 31 the outer peripheral surface is gradually increased in diameter toward the flange portion 32 side from the tip, a tapered portion 35 that defines the maximum outer diameter P D1, the maximum outer diameter P D1 of the tapered portion 35 And a small-diameter cylindrical portion 36 having a smaller diameter. Therefore, due to the small-diameter cylindrical portion 36, the outer shape of the shaft portion 31 has a constricted portion 39 on the flange side.
  • the outer shape of the shaft portion 31 is not particularly limited as long as the shaft portion 31 has the constricted portion 39 on the side of the flange portion so as to fix the joining assisting member 30 to the lower plate 10 by crimping and restraining force.
  • the shaft portion 31 may be a reduced diameter tapered portion 37 whose outer peripheral surface gradually reduces in diameter from the tip to the flange portion 32.
  • the shaft portion 31 may be composed of a large-diameter cylindrical portion 38 provided on the tip side and a small-diameter cylindrical portion 36 provided on the flange side. Note that the function of the constricted portion 39 is substantially the same regardless of which of the joining auxiliary members 30 of FIG.
  • FIG. 4 is a cross-sectional view corresponding to FIG. 1B of the dissimilar material welded joint 1 when the joining assisting member 30 of FIG. 3A is used.
  • the outer shape of the flange portion 32 of the joining assisting member 30 is not limited to the hexagonal shape shown in FIG. 2B, and can be any shape as long as the hole 11 formed in the lower plate 10 is closed. That is, it may be a circle shown in FIG. 5A, an ellipse shown in FIG. 5B, or a polygon having a quadrangle or more shown in FIGS. 2B and 5C to 5F. Further, as shown in FIG. 5D, the corners of the polygon may be rounded. Further, in the present embodiment, the flange portion 32 is used by being press-fitted into the lower plate 10.
  • the lower plate 10 and the upper plate 20 are joined by only one joining assisting member 30, when the strong horizontal rotational force FR is applied to the lower plate 10 in the true circular flange portion 32, the joining is performed.
  • the lower plate 10 may rotate around the auxiliary member 30. Therefore, by making the outer diameter shape of the flange portion 32 an elliptical shape or a polygonal shape, as shown in FIG. 6B, the lower plate 10 is relatively relative to the upper plate 20 even when the rotational force FR is applied. It can be prevented from rotating.
  • the width P D2 of the flange portion 32 which will be described later, is defined by the shortest facing surface distance.
  • the hole 21 of the upper plate 20 is filled with the weld metal 40 of the iron alloy or the Ni alloy in which the filler material (welding material) is melted by the arc welding, and the weld metal 40 and the melted metal 40 are melted.
  • a fusion zone W is formed by the plate 20 and part of the joining auxiliary member 30. Therefore, the fusion zone W is also arranged in the hole 21 of the upper plate 20 to weld the joining assisting member 30 and the upper plate 20, whereby the joining assisting member 30 and the lower plate 10 are press-fitted.
  • the upper plate 20 is joined.
  • the lower plate 10 and the upper plate 20 are provided with circular holes 11 and holes 21, respectively, but if the shaft portion 31 of the joining auxiliary member 30 can be inserted,
  • the shapes of the hole 11 and the hole 21 are not limited to the circular shape, and can be provided in various other shapes. For example, a shape such as a triangle, a quadrangle, a polygon more than that, and an ellipse can be adopted.
  • the diameter B D1 of the hole is defined by the diameter of the inscribed circle of the hole.
  • FIG. 7A a punching operation is performed to make holes 11 and 21 in the lower plate 10 and the upper plate 20, respectively (step S1).
  • step S1 a punching operation is performed to make holes 11 and 21 in the lower plate 10 and the upper plate 20, respectively.
  • FIGS. 7B and 7C the entire joining assisting member 30 is removed from the surface of the lower plate 10 (the lower surface of the lower plate 10 joined to the upper plate 20) 10 a to the lower plate 10. It is pressed into the hole 11 (step S2). Further, as shown in FIG.
  • step S3 the shaft portion 31 of the joining auxiliary member 30 press-fitted into the lower plate 10 is located closer to the upper plate 20 side than the flange portion 32, and the hole 11 of the lower plate 10 and the hole 21 of the upper plate 20 are located. And are located on the same axis. Then, as shown in FIG. 7E or FIG.
  • step S4 (a) molten electrode gas shield arc welding method, (b) non-gas arc welding method, (c) gas tungsten arc welding method, and (d) plasma, which will be described in detail below.
  • the lower plate 10 and the upper plate 20 are joined by performing any one of the arc welding method, the (e) covered arc welding method, or the (f) laser welding operation (step S4).
  • FIG. 7E shows a case where (a) arc welding work is performed using the molten electrode gas shield arc welding method.
  • Specific methods of the punching work in step S1 include a) punching using a punch, b) press die cutting using a die, c) cutting using a laser, plasma, water jet method, or the like.
  • the joining assisting member 30 moves the surface of the lower plate 10 until the exposed surface 32a of the flange portion 32 becomes substantially flush with the surface 10a of the lower plate 10. It is pressed into the hole 11 from the 10a side. If the flange portion 32 overhangs the surface 10a of the lower plate 10, not only is it aesthetically unpleasant, but also when other members are combined on the lower plate 10, the protrusion of the joining auxiliary member 30 may be an obstacle. Is. Further, maintaining the flatness of the surface 10a of the lower plate 10 after welding is valuable in terms of design flexibility. However, as shown in FIG. 10, the indentation depth of the joining assisting member 30 is allowed even if it is depressed from the surface 10a of the lower plate 10 because it does not adversely affect the joint strength.
  • the position of the lower surface (the tip end surface of the shaft portion 31) of the joining auxiliary member 30 after press fitting is not limited.
  • the protrusion from the surface of the lower plate 10 becomes an obstacle.
  • the diameter (hole diameter) of the hole 21 of the upper plate 20 is smaller than the outer diameter of the shaft portion 31 of the joining auxiliary member 30 during joining, if the joining auxiliary member 30 projects from the surface of the lower plate 10, A gap is generated when the lower plate 10 and the upper plate 20 are superposed on each other, which deteriorates the assembling accuracy, which is not desirable.
  • the thickness P H of the joining auxiliary member 30 is designed to be equal to or less than the plate thickness B H1 of the lower plate 10.
  • the joining assisting member 30 has the back surface (the upper plate 20 and the upper plate 20 within the gap range). It does not matter even if it sticks out from the upper surface of the lower plate 10 in the joined state.
  • the diameter of the hole 21 of the upper plate 20 is larger than the outer diameter of the shaft portion 31 of the joining auxiliary member 30, as shown in FIG. 11D, rather, the protruding portion of the joining auxiliary member 30 is overlapped. This is preferable because it becomes easy as a guideline at that time, and the temporary fixing property increases during welding work.
  • the position of the press-fitting back surface of the joining assisting member 30 can be appropriately determined according to the design.
  • any means may be used for the press-fitting work, but a practical means such as hitting with a hammer or the like, or using a press machine using power such as hydraulic pressure, water pressure, air pressure, gas pressure, and electric drive can be mentioned. It is also possible to turn in while applying pressure. When using such means, it is possible to provide a screw-like regular undulation at the tip of the shaft portion 31 to facilitate turning in. For example, as shown in FIG. 12, a spiral groove 35a may be formed in the tapered portion 35 of the shaft portion 31.
  • the joining auxiliary member 30 is press-fitted from the vertically upper side to the lower side, the lower plate 10 is turned upside down, but the joining is performed from the vertically lower side to the upper side.
  • the auxiliary member 30 is press-fitted, it is apparent that the lower plate 10 does not need to be turned upside down.
  • the superposing work is performed before the press-fitting work, and after the joining auxiliary member 30 is press-fitted to the lower plate 10 located above the upper plate 20, the upper plate 20 and the lower plate 10 are put together. You may invert upside down. Further, the overlapping work may be performed before the drilling work, and the hole 11 of the lower plate 10 and the hole 21 of the upper plate 20 may be drilled at the same time.
  • step S4 the inside of the hole 21 of the upper plate 20 is filled, and the joining auxiliary member 30 and the upper plate 20 are joined via the weld metal 40 in the hole 21 of the upper plate 20. Needed. Therefore, it is indispensable to insert a filler material (welding material) as a filler in the welding work. Specifically, the filler material is melted and the weld metal 40 is formed by the following six arc welding methods or laser welding methods.
  • the melt electrode type gas shielded arc welding method is a welding method generally called MAG (mag) or MIG (MIG), in which a solid wire or a flux-cored wire is used as a filler / arc-generating electrode and CO 2 , Ar, He, O 2 is a method of forming a sound weld by shielding the weld from the atmosphere with a shield gas.
  • MAG mag
  • MIG MIG
  • the non-gas arc welding method is also called a self-shielded arc welding method. It uses a special flux-cored wire as a filler and arc generating molten electrode, and on the other hand, it is a means for forming a sound weld without the need for shield gas. is there.
  • the gas tungsten arc welding method is a kind of gas shielded arc welding method, but it is a non-electrode type and is generally called TIG.
  • An inert gas such as Ar or He is used as the shield gas.
  • An arc is generated between the tungsten electrode and the base material, and the filler wire is laterally fed to the arc.
  • the filler wire is not energized, but there is also a hot wire system TIG that energizes the filler wire to increase the melting rate. In this case, no arc is generated in the filler wire.
  • the plasma arc welding method has the same principle as TIG, but it is a welding method in which the arc is tightened by double gas systemization and high speed to enhance the arc force.
  • the coated arc welding method is an arc welding method that uses a coated arc welding rod in which flux is applied to a metal core wire as a filler, and does not require a shield gas.
  • a commonly used welding wire or welding rod can be applied as long as the welding metal 40 is an Fe alloy. It should be noted that even Ni alloys are applicable because they do not cause any problems in welding with iron.
  • JIS JIS, (a) Z3312, Z3313, Z3317, Z3318, Z3321, Z3323, Z3334, (b) Z3313, (c) Z3316, Z3321, Z3334, (d) Z3211, Z3221, Z3223, Z3224, AWS.
  • the holes 21 of the upper plate 20 are filled with a filler material by using these arc welding methods, but generally, it is not necessary to move the target position of the filler wire or the welding rod, and the arc is cut after an appropriate feeding time. To finish welding. However, when the area of the hole 21 of the upper plate 20 is large, the target position of the filler wire or the welding rod may be moved so as to draw a circle in the hole 21 of the upper plate 20.
  • the laser welding method since the laser has a higher heat concentration than the arc and a deep penetration can be obtained, by using the laser, a small hole area and an excellent penetration quality, which are difficult only by the arc, can be obtained. It is possible to achieve both at the same time, and it is possible to improve the construction efficiency. Further, by using the filler wire as the filler, the joining assisting member 30 press-fitted into the lower plate 10 and the upper plate 20, which cannot be joined only by the laser, can be joined. The above-mentioned (a) to (d) can be applied to the filler wire.
  • a so-called laser-arc hybrid method in which a laser is added as a heat source to the arc welding methods (a) to (e) as a heat source and welding wire supply method can be used.
  • the efficiency can be further improved as compared with the case where it is used alone.
  • lasers for welding there are various types of lasers for welding, such as carbon dioxide gas lasers, semiconductor lasers (also called diode lasers), YAG lasers, disk lasers, and fiber lasers, all of which are applicable to this construction method.
  • a screw that moves the target position spirally at high speed as shown in FIG. 14A by a lens system operation called a galvano scanner and mechanical movement of the welding robot in addition to fixing the target position, a screw that moves the target position spirally at high speed as shown in FIG. 14A by a lens system operation called a galvano scanner and mechanical movement of the welding robot. It is also possible to use a method of obtaining a penetration range of an appropriate area by performing movement or reciprocating movement as shown in FIG. 14B.
  • the joining auxiliary member 30 is appropriately melted, as shown in FIG. 15A.
  • FIG. 15B there is no problem even if the welding metal 40 is formed so as to exceed the plate thickness of the joining assisting member 30, that is, the so-called back wave appears.
  • the welding auxiliary member 30 does not melt and only the weld metal 40 is placed on it, the metal bonding is incomplete, so that high strength as a joint cannot be obtained.
  • the overhang of the weld metal 40, which is the back wave becomes an obstacle, and it is, of course, necessary to avoid such an excessive melted state.
  • the lower plate 10 made of a material other than steel and the upper plate 20 made of steel are joined with high strength.
  • the lower plate 10 made of aluminum and the upper plate 20 made of steel are simply overlapped, and arc welding using a welding wire made of steel or nickel alloy is performed from the upper plate side.
  • the weld metal 40a formed is an alloy of aluminum and steel or an alloy of aluminum, steel and nickel on the lower plate 10 side, as shown in FIG. 16B.
  • This alloy exhibits an intermetallic compound (IMC), which is a brittle property due to its high aluminum content.
  • IMC intermetallic compound
  • Such a dissimilar material welded joint 100a even if it seems to be joined at first glance, is subjected to a tensile stress in the lateral direction (shear tension), and as shown in FIGS. 17A and 17B, the weld metal 40a is easily broken. Then, it comes off. Further, even when a tensile stress is applied in the longitudinal direction (peeling tension), as shown in FIGS. 18A and 18B, the weld metal 40a is broken, or the boundary portion between the weld metal 40a and the lower plate 10 is broken, and The plate 10 is pulled out and the joint is broken. Further, as shown in FIG.
  • the melting point of the aluminum alloy is significantly lower than that of steel, so the upper plate 20 is not melted so much, It is possible to avoid the formation of compounds and form the joint.
  • the weld metal of aluminum alloy has a characteristic that the strength is significantly lower than that of the weld metal made of steel or nickel alloy, and even if soundness is obtained, high joint strength cannot be obtained.
  • the weld metal is made of steel or nickel alloy, but aluminum is prevented from melting and an intermetallic compound is not generated. That is, as shown in FIGS. 7A to 7E, the lower plate 10 made of aluminum is perforated, and the joining assisting member 30 made of solid steel is press-fitted and fixed in the hole 11. Then, the lower plate 10 is turned upside down and overlapped with the upper plate 20 to be joined, and the weld metal 40 is formed by arc welding from the hole 21 opened on the upper plate 20 side so as to fill the hole 21.
  • the upper plate 20 made of steel, the weld metal 40, and the joining auxiliary member 30 made of steel are welded and joined together by a strong metallurgical joint without the aluminum and the steel being mixed together. Since the lower plate 10 made of aluminum alloy is constrained by the joining auxiliary member 30 made of steel, the upper plate 20 and the lower plate 10 cannot move relative to each other.
  • the joining auxiliary member 30 having an appropriate size, it is possible to prevent the phenomenon that the interface between the lower plate 10 and the joining auxiliary member 30 peels off and comes off.
  • the weld metal 40 is sufficiently plastically deformed and then fractured. Since the weld metal 40 also has a strong bonding force against the tensile stress in the shearing direction, the base metal first undergoes bending deformation without causing brittle fracture (see FIG. 19C), and the upper and lower parts A stress action state similar to peel tension (see FIG. 19B) is obtained. That is, after sufficient deformation, ductile fracture occurs with high strength.
  • the flange portion 32 of the joining assisting member 30 has a larger area and a larger thickness PH2 , and thus the strength against external stress in the plate thickness direction (three-dimensional direction) increases, which is desirable.
  • the area and the thickness are excessively large, the pressure required for press-fitting becomes high, which requires not only a powerful pressing device but also an excessive strain on the lower plate 10 as a result.
  • the joining auxiliary member 30 may be cracked or deformed. Therefore, the size of the lower plate 10 is appropriately determined in consideration of the material, the plate thickness, and the diameter of the hole.
  • the joining assisting member 30 has (1) prevention of IMC generation due to melting of the aluminum alloy or magnesium alloy, which is the material of the lower plate 10 during welding, and (2) lower plate 10 and upper plate 20 after welding. Has a role of strongly binding.
  • the lower plate 10 when the lower plate 10 is set on the lower plate 10 before the welding process, if it is simply press-fitted, the lower plate 10 may easily come out of the lower plate 10 when inverted, or may be pushed back by a reaction force during the press-fitting process. It may end up. In order to prevent such a situation, it is necessary to temporarily temporarily fix the joining auxiliary member 30 to the lower plate 10 until welding.
  • the joining assisting member 30 is provided with the function of "caulking" utilizing the elasto-plastic deformation of the metal which is the material of the lower plate 10.
  • the shaft portion 31 is larger than the diameter B D1 of the hole 11 provided in the lower plate 10, and the shaft portion 31 This is achieved by providing a constricted portion 39 having a small diameter at the boundary with the flange portion 32.
  • the maximum outer diameter P D1 of the shaft portion 31 of the joining assisting member 30 By designing the maximum outer diameter P D1 of the shaft portion 31 of the joining assisting member 30 to be slightly larger than the diameter B D1 of the hole 11 of the lower plate 10 and inserting it under pressure, the material of the lower plate 10 is elastically plastically deformed. And then spread. After that, when the constricted portion 39 having a small diameter is inserted, the pressure for pushing it out is reduced, so that the elastically deformed portion flows into the metal, and a geometrical caulking effect is obtained. In this way, the joining assisting member 30 can be prevented from easily coming off by utilizing the elastic force of the material itself. Further, it is desirable that the axial section of the shaft portion 31 has a sectional shape similar to the hole 11 of the lower plate 10 so as to facilitate press fitting. For example, when the hole 11 has a polygonal shape, the axial section of the shaft portion 31 has the same shape as the hole 11 to prevent the lower plate 10 from rotating relative to the upper plate 20. You can
  • the width P D2 of the flange portion 32 is relatively larger than the maximum outer diameter P D1 of the shaft portion 31 because the flange portion 32 exerts a resistance action against the peeling stress in the plate thickness direction of the lower plate 10. Need to be bigger. If the maximum outer diameter P D1 of the shaft portion 31 is large, the shaft portion 31 may be pushed wide at the time of insertion and, even if the elastic deformation amount is slightly reduced thereafter, it may become larger than the width P D2 of the flange portion 32. In this case, the flange portion 32 loses the function of resisting the peeling stress of the lower plate 10.
  • the joining assisting member 30 is press-fitted into the aluminum alloy or the magnesium alloy which is the lower plate 10 before the joining process, for example, in a factory different from the joining. If this is done, it will not come off easily, so it can be transported to the joining factory and the joining step performed easily.
  • the joining auxiliary member 30 is made of steel and has a stepped outer shape having the shaft portion 31 and the flange portion 32, and the maximum outer diameter P D1 of the shaft portion 31 and the flange portion 32.
  • the relationship between the width P D2 and the diameter B D1 of the hole 11 of the lower plate 10 is P D2 > P D1 > B D1 , and the shaft portion 31 having the constricted portion 39 on the flange portion side is used.
  • the material of the joining auxiliary member 30 made of steel is not particularly limited as long as it is pure iron or an iron alloy, and examples thereof include mild steel, carbon steel, stainless steel and the like.
  • the material of the lower plate 10 is not limited to the aluminum alloy or the magnesium alloy, and members made of various materials can be applied as long as it is made of a material other than steel. Examples of materials other than steel include CFRP (Carbon Fiber Reinforced Plastics), non-ferrous metals, resins, composite materials of resins and metals, and ultra-high-strength steel of 1700 MPa or more.
  • FIG. 20 shows various dimensions of the joining assisting member 30. That is, in the present embodiment, the relationship between the maximum outer diameter P D1 of the shaft portion 31, the width P D2 of the flange portion 32, and the diameter B D1 of the hole 11 of the lower plate 10 is P D2 > P D1 > B D1 .
  • the dimensions of the joining auxiliary member 30 are prescribed as follows.
  • the height P H2 of the flange portion 32 is designed to be 20% or more and 80% or less of the plate thickness B H1 of the lower plate 10.
  • the flange portion 32 of the joining auxiliary member 30 plays a main role as a resistance force against external stress in the plate thickness direction, in other words, when peeling stress acts.
  • the shaft portion 31 and the constricted portion 39 also have a resistance to peeling stress to some extent due to the caulking effect on the lower plate 10, but the flange portion 32 has a relatively large role.
  • the larger the area of the flange portion 32 and the larger the height P H2 the more the strength against the external stress in the plate thickness direction (three-dimensional direction) is increased.
  • the flange portion 32 of the joining auxiliary member 30 When the height P H2 is less than 20% of the plate thickness B H1 of the lower plate 10, the flange portion 32 of the joining auxiliary member 30 easily undergoes elastic-plastic deformation against external stress in the plate thickness direction, and the lower plate 10 is The joining assisting member 30 is likely to come off. In other words, it does not show high resistance. Therefore, it is desirable that the lower limit of the height P H2 of the flange portion 32 be 20% of the plate thickness B H1 of the lower plate 10. On the other hand, when the height P H2 of the flange portion 32 is increased to more than 80% of the plate thickness B H1 of the lower plate 10, the height P H2 becomes a constricted portion 39 that has a function of temporarily caulking the lower plate 10 and the joining auxiliary member 30.
  • the total height of the shaft portion 31 is less than 20%, and the caulking force becomes weak. Further, since the flange portion 32 has a larger cross-sectional area than the shaft portion 31, a large force is required for press-fitting and a large strain is applied to the lower plate 10. Therefore, when the flange portion 32 is deeply press-fitted, the lower plate 10 may be cracked or broken. It may end up. Therefore, it is desirable that the height P H2 of the flange portion 32 be 80% or less of the plate thickness B H1 of the lower plate 10.
  • the width P D2 of the flange portion 32 is designed to be 110% or more and 200% or less with respect to the diameter B D1 of the hole 11 of the lower plate 10. As described above, the larger the area of the flange portion 32 and the larger the height P H2 , the more the strength against the external stress in the plate thickness direction (three-dimensional direction) is increased, which is desirable.
  • the width P D2 of the flange portion 32 is less than 110% of the diameter B D1 of the hole 11 of the lower plate 10, when the flange portion 32 is elastically plastically deformed by external stress in the plate thickness direction, The apparent diameter is less than the size of the hole 11, and the lower plate 10 is likely to come off.
  • the flange portion 32 does not exhibit high resistance. Therefore, the lower limit of the width P D2 of the flange portion 32 is 110% of the diameter B D1 of the hole 11 of the lower plate 10. More preferably, the lower limit is 120%.
  • the flange portion 32 has a larger cross-sectional area than the shaft portion 31, a large force is required for press fitting and a large strain is applied to the lower plate 10. Therefore, if a large area is pressed in, the lower plate 10 may crack. It may break. Therefore, it is desirable that the diameter P D2 of the flange portion 32 be 200% or less.
  • the width P D2 of the flange 32 is equal to the width of the hole of the lower plate 10 so that the flange 32 completely closes the hole 11.
  • the diameter of the circumscribed circle 11 is preferably 110% or more.
  • unfilled height P H3 of the weld metal 40 from the surface of the upper plate 20 is set to 30% or less of the thickness B H2 of the upper plate 20. It is desirable that the weld metal 40 fill the inside of the hole 21 of the upper plate 20 so that the surface position thereof is at the same height as the surface of the upper plate 20. As a result, as shown in FIG. 22, deformation of the joining auxiliary member 30 is suppressed against external stress in the plate thickness direction (three-dimensional direction), and high strength is obtained. On the other hand, as shown in FIG. 23A, when the unfilled height PH3 is excessively large, the joint area between the joining assisting member 30 and the weld metal 40 becomes small, so the joining strength becomes low.
  • the joint bonding strength is significantly reduced, and as shown in FIG. 23B, the bonding auxiliary member 30 is deformed and the lower plate 10 is pulled out. It will be easier. Therefore, the unfilled height PH3 is set to 30% or less of the thickness BH2 of the upper plate 20.
  • the weld metal 40 should be filled at the same height as the surface of the lower plate 10 as described above. However, when the dissimilar material welded joint 1 after joining is assembled into a larger structure and there is a margin in the upper space of the joined portion, as shown in FIG. It may be filled with, and a surplus may be further formed.
  • the plate thicknesses of the lower plate 10 and the upper plate 20 are not necessarily limited, but considering the work efficiency and the shape as lap welding, the plate thickness of the upper plate 20 is 4.0 mm or less. Is desirable. On the other hand, considering the heat input of arc welding, if the plate thickness is too thin, it will melt down during welding and welding will be difficult. Therefore, it is desirable that both the lower plate 10 and the upper plate 20 be 0.5 mm or more. ..
  • the present joining method for example, when a metal material other than steel such as an Al alloy or a Mg alloy is used as the first plate, a plurality of surfaces where different metals are in contact with each other are formed, and therefore resin-based bonding is performed.
  • the agent is preferably used not only for the purpose of further improving the joint strength but also as a sealing material.
  • the adhesive 60 may be annularly applied around the welded portion at the joint surface between the lower plate 10 and the upper plate 20.
  • the adhesive agent 60 may be applied on the joint surfaces of the lower plate 10 and the upper plate 20 over the entire circumference of the welded portion, as in the second modified example shown in FIGS. This also includes the case of applying it to the entire joint surface except for the above. By this, the electrolytic corrosion rate of the lower plate 10, the upper plate 20, and the weld metal 40 can be reduced.
  • the bulging portion 22 may be provided on the upper plate 20.
  • the upper plate 20 can be welded well simply by making a hole as described above.
  • the plate thickness of the lower plate 10 is large, it takes time to fill the holes 11 of the lower plate 10 in the welding process, resulting in poor efficiency.
  • the amount of heat becomes excessive, and the joining auxiliary member 30 is likely to melt down before the completion of filling. Therefore, if the bulging portion 22 is provided in the upper plate 20 by drawing, the volume of the hole 11 becomes small as shown in FIG. 27B, and therefore the filling can be performed while preventing the burn-through defect.
  • the bulging portion 22 of the upper plate 20 serves as a mark for aligning the lower plate 10 and the upper plate 20, and the bulging portion 22 of the upper plate 20 and the hole 11 of the lower plate 10 are arranged. Can be easily aligned, which improves the efficiency of overlaying work.
  • the peripheral portion of the portion of the upper plate 20 where the bulging portion 22 is formed is restrained by the die 50. Then, as shown in FIG. 28B, the bulging portion 22 is formed by pressing the punch 51 by applying pressure to the portion where the bulging portion 22 is formed.
  • the welding method of the present embodiment can be said to be spot welding having a small joint area. Therefore, when joining the overlapping portions J of the practical members having a certain joint area, the main welding method is as shown in FIGS. 29A to 29C. As shown, multiple implementations may be performed. As a result, strong joining is performed at the overlapping portion J.
  • the present embodiment can be used for an open cross-section structure as shown in FIGS. 29B and 29C, but can be particularly preferably used for a closed cross-section structure as shown in FIG. 29A.
  • the joining auxiliary member 30 embedded in the lower plate 10 does not project from the front and back surfaces of the lower plate 10, as a pre-process of the welding process, It is easy to press-mold the lower plate 10 (the lower plate 10 with the joining auxiliary member) in which the joining auxiliary member 30 is embedded using the mold 70 or the like. Further, as a subsequent step, the press-formed lower plate 10 with a joining auxiliary member and the upper plate 20 are overlapped and welded. This welding method can of course be manufactured without separating the open cross-section structure and the closed cross-section structure. In addition, in FIG. 31, the upper plate 20 is also press-molded using the mold 70a. The lower plate 10 with the joining assisting member as described above is formed to be substantially flat before the press molding step, and thus is easy to handle.
  • the welding method for joining dissimilar materials of the present embodiment includes the step of making holes 11 and 21 in the lower plate 10 and the upper plate 20 made of a material other than steel, and the shaft portion 31 and the flange portion 32, respectively. It has a stepped outer shape, and the relationship between the maximum outer diameter P D1 of the shaft portion 31, the width P D2 of the flange portion 32, and the diameter B D1 of the hole 11 of the lower plate 10 is P D2 > P D1 > B D1 and the shaft portion 31 has the joining auxiliary member 30 made of steel having the constricted portion 39 on the flange portion side, and the exposed surface of the flange portion 32 is positioned substantially flush with or inside the surface of the lower plate 10.
  • a gas shield arc welding method in which a welding wire that produces a weld metal 40 of an iron alloy or a Ni alloy is used as a welding electrode.
  • B A non-gas arc welding method using the welding wire as a welding electrode.
  • C A gas tungsten arc welding method using the welding wire as a non-electrolytic electrode filler.
  • D A plasma arc welding method using the welding wire as a non-electrolytic electrode filler.
  • E A covered arc welding method using a covered arc welding rod, which can obtain a weld metal 40 of an iron alloy or a Ni alloy, as a welding electrode.
  • F A laser welding method using the welding wire as a non-electrolytic electrode filler.
  • first plate lower plate 10
  • second plate upper plate 20
  • the adhesive 60 is formed on the superposing surfaces of at least one of the lower plate 10 and the upper plate 20 around the holes 11 and 21 of the lower plate 10 and the upper plate 20 all around. Is further provided. Thereby, the adhesive acts as a sealing material in addition to improving joint strength, and can reduce the electrolytic corrosion rate of the lower plate 10, the upper plate 20, and the weld metal 40.
  • the thickness P H of the auxiliary bonding member 30 is less than the thickness B H1 of the lower plate 10, after press-fitting step, the lower plate 10 is press-molded. That is, since the joining auxiliary member 30 does not protrude from the surface of the lower plate 10, the lower plate 10 into which the joining auxiliary member 30 is press-fitted can be easily press-molded into a desired shape using a mold or the like. .
  • the thickness P H2 of the flange portion 32 of the joining auxiliary member 30 is 20% or more and 80% or less of the plate thickness B H1 of the lower plate 10, the joining auxiliary member 30 of the shaft portion 31 that gives the caulking action. It can function as a resistance force to external stress in the plate thickness direction while ensuring the length.
  • the width P D2 of the flange portion 32 of the joining auxiliary member 30 is 110% or more and 200% or less with respect to the diameter B D1 of the hole 11 of the lower plate 10, the press-fitting property of the joining auxiliary member 30 into the lower plate 10 is good.
  • the joining assisting member 30 can function as a resistance force to external stress in the plate thickness direction.
  • the unfilled height PH3 of the weld metal 40 from the surface of the upper plate 20 is 30% or less of the plate thickness BH2 of the upper plate 20, or inside the hole 21 of the upper plate 20. Since the surplus is formed on the surface of the upper plate while completely filling the joint, it is possible to secure the joint strength of the dissimilar material welded joint 1.
  • the joining auxiliary member 30 of the present embodiment is made of steel and has a stepped outer shape having a shaft portion 31 and a flange portion 32, and has a maximum outer diameter P D1 of the shaft portion 31 and the flange portion 32.
  • P D2 and the diameter B D1 of the hole 11 of the lower plate 10 are P D2 > P D1 > B D1 , and the shaft portion 31 has a constricted portion 39 on the flange portion side.
  • the joining auxiliary member 30 is suitably used in the above-described welding method for joining dissimilar materials.
  • the dissimilar material welded joint 1 of the present embodiment includes a lower plate 10 made of a material other than steel, and a steel upper plate 20 joined to the lower plate 10, and the lower plate 10 and the upper plate 20 are , Has a hole 11 and a hole 21 located coaxially with each other, and has a stepped outer shape having a shaft portion 31 and a flange portion 32, and has a maximum outer diameter P D1 of the shaft portion 31 and a flange portion 32.
  • P D2 of the hole and the diameter B D1 of the hole 11 of the lower plate 10 is P D2 > P D1 > B D1
  • the shaft portion 31 has a constriction portion 39 on the flange side.
  • the joining assisting member 30 is fixed in the hole 11 of the lower plate 10 such that the exposed surface 32a of the flange portion 32 is located substantially flush with or inside the surface 10a of the lower plate 10,
  • the lower plate 10 and the upper plate 20 are laminated so that the shaft portion 31 of the joining auxiliary member 30 faces the hole 21 of the upper plate 20, and the hole 21 of the upper plate 20 is made of an iron alloy or a Ni alloy. While being filled with the weld metal 40, the weld metal 40 and a part of the melted upper plate 20 and the joining auxiliary member 30 form a melted portion W.
  • a dissimilar material welded joint 1 including a first plate (lower plate 10) made of a material other than steel and a second plate (upper plate 20) made of steel, such as an Al alloy or a Mg alloy. Is joined with strong and reliable quality using inexpensive welding equipment, can be applied to open cross-section structures and closed cross-section structures without restriction, and when the steel upper plate 20 is on the front side. Applicable.
  • the lower plate 10 (first plate) made of an aluminum alloy or magnesium alloy and the upper plate 20 made of steel (which are superposed on each other, as in the first embodiment).
  • the second plate) and the second plate) are joined by a solid and steel joining auxiliary member 130 by an arc welding method or a laser welding method, which will be described later, so that a dissimilar material welded joint as shown in FIGS. 32A and 32B. 1a is obtained.
  • the lower plate 10 and the upper plate 20 are provided with circular holes 11 and 21 penetrating in the plate thickness direction and located coaxially with each other (see FIG. 37A).
  • the insertion portion 131 of the joining auxiliary member 130 is inserted into the hole 11 of the lower plate 10 under pressure.
  • the joining assisting member 130 has a stepped outer shape having a shaft-shaped insertion portion 131 and an outward flange-shaped non-insertion portion 132 with respect to the insertion portion 131.
  • the joining assisting member 130 has the shaft portion forming the insertion portion 131 and the flange portion forming the non-insertion portion 132.
  • the insertion part 131 and the non-insertion part 132 are formed solid.
  • the non-insertion portion 132 abuts on the surface (the lower surface of the lower plate 10 when joined to the upper plate 20) 10a of the lower plate 10 with the insertion portion 131 inserted into the hole 11 of the lower plate 10. .
  • the relationship between the maximum outer diameter P D1 of the insertion portion 131, the width P D2 of the non-insertion portion 132, and the diameter B D1 of the hole 11 of the lower plate 10 is P D2 >, as described later.
  • P D1 > B D1 is satisfied (see FIG. 43).
  • the diameter of the hole 21 of the upper plate 20 may be any size as long as it can be filled with the weld metal 40 described later, and may be the same as the diameter B D1 of the hole 11 of the lower plate 10 or larger than the diameter B D1. , May be small.
  • the outer shape of the insertion portion 131 is configured to have the constricted portion 139 on the non-insertion portion side.
  • the outer peripheral surface of the insertion portion 131 gradually increases from the tip end toward the non-insertion portion 132 side, and the tapered portion 135 that defines the maximum outer diameter P D1 and the maximum outer diameter P of the tapered portion 135.
  • a small-diameter cylindrical portion 136 having a smaller diameter than D1 . Therefore, due to the small diameter cylindrical portion 136, the outer shape of the insertion portion 131 has a constricted portion 139 on the non-insertion portion side.
  • the outer shape of the insertion portion 131 is not particularly limited as long as the insertion portion 131 has the constricted portion 139 on the non-insertion portion side, and the joining assisting member 130 can be fixed to the lower plate 10 by crimping and restraining force.
  • the insertion portion 131 may be a reduced diameter taper portion 137 whose outer peripheral surface gradually reduces in diameter from the tip to the non-insertion portion 132.
  • the insertion portion 131 may be configured by a large diameter cylindrical portion 138 provided on the distal end side and a small diameter cylindrical portion 136 provided on the non-insertion portion side.
  • FIG. 35 is a cross-sectional view corresponding to FIG. 32B of the dissimilar material welded joint 1a when the joining auxiliary member 130 of FIG. 34A is used.
  • the outer shape of the non-insertion portion 132 of the joining auxiliary member 130 is not limited to the circular shape shown in FIG. 33B, and can be any shape as long as the hole 11 formed in the lower plate 10 is closed. That is, similar to the joining assisting member 30 of the first embodiment, the ellipse shown in FIG. 5B and the polygons having a quadrangle or more shown in FIGS. 2B and 5C to 5F may be used. Further, as shown in FIG. 5D, the corners of the polygon may be rounded.
  • the width P D2 of the non-insertion portion 132 described later is defined by the shortest distance between the facing surfaces.
  • the insertion portion 131 of the joining auxiliary member 130 is press-fitted into the lower plate 10, so that the insertion portion 131 is located coaxially with the hole 11 of the lower plate 10.
  • the hole 21 of the upper plate 20 is filled with the weld metal 40 of the iron alloy or the Ni alloy in which the filler material (welding material) is melted by the arc welding, and the weld metal 40 and the melted metal 40 are melted.
  • the plate 20 and a part of the joining auxiliary member 130 form a fusion zone W. Therefore, the fusion zone W is also arranged in the hole 21 of the upper plate 20 and welds the joining assisting member 130 and the upper plate 20, whereby the joining assisting member 130 and the lower plate 10 are press-fitted.
  • the upper plate 20 is joined.
  • the lower plate 10 and the upper plate 20 are provided with the circular holes 11 and the holes 21, respectively, but as long as the insertion portion 131 of the joining assisting member 130 can be inserted.
  • the shapes of the hole 11 and the hole 21 are not limited to the circular shape, and can be provided in various other shapes. For example, a shape such as a triangle, a quadrangle, a polygon more than that, and an ellipse can be adopted.
  • the diameter B D1 of the hole is defined by the diameter of the inscribed circle of the hole.
  • the axial cross section of the insertion portion 131 has a cross sectional shape similar to the hole 11 of the lower plate 10 so as to facilitate press fitting.
  • the hole 11 has a polygonal shape
  • the axial section of the shaft portion 31 has the same shape as the hole 11 to prevent the lower plate 10 from rotating relative to the upper plate 20.
  • FIG. 36A a punching operation is performed to make holes 11 and 21 in the lower plate 10 and the upper plate 20, respectively (step S1).
  • step S1 a punching operation is performed to make holes 11 and 21 in the lower plate 10 and the upper plate 20, respectively.
  • the insertion portion 131 of the joining auxiliary member 130 is press-fitted into the hole 11 of the lower plate 10 from the surface 10a of the lower plate 10 (step S2).
  • step S2 the lower plate 10 to which the joining auxiliary member 130 is attached is turned over so that the insertion portion 131 of the joining auxiliary member 130 is exposed from the hole 21 of the upper plate 20.
  • a superposition operation for superposing the upper plate 20 is performed (step S3). That is, in this state, the insertion portion 131 of the joining auxiliary member 130 press-fitted into the lower plate 10 is located closer to the upper plate 20 side than the non-insertion portion 132, and the holes 11 of the lower plate 10 and the holes of the upper plate 20 are located. 21 is coaxially located.
  • (a) molten electrode gas shield arc welding method, (b) non-gas arc welding method, (c) gas tungsten arc welding method, and (d) plasma which will be described in detail below.
  • the lower plate 10 and the upper plate 20 are joined by performing any one of the arc welding method, the (e) covered arc welding method, or the (f) laser welding operation (step S4).
  • FIG. 36E shows the case where (a) arc welding work is performed using the molten electrode gas shield arc welding method.
  • step S1 The steps described in the first embodiment are applied to the drilling work in step S1, the overlaying work in step S3, and the welding work in step S4.
  • step S2 in the press-fitting operation of step S2, as shown in FIG. 38, the insertion portion 131 of the joining assisting member 130 moves from the surface 10a side of the lower plate 10 until the non-insertion portion 132 contacts the surface 10a of the lower plate 10. It is pressed into the hole 11.
  • the position of the lower surface (the tip surface of the insertion portion 131) of the joining auxiliary member 130 after press fitting can be selected according to the application.
  • the diameter of the hole 21 of the upper plate 20 is smaller than the outer diameter of the insertion portion 131 of the joining auxiliary member 130 at the time of joining, if the joining auxiliary member 130 projects from the surface of the lower plate 10, the lower plate 10 and A gap is generated when the upper plates 20 are overlapped with each other, and the assembling accuracy is deteriorated, which is not desirable. Therefore, as shown in FIGS. 39A and 39B, the height P H1 of the insertion portion 131 of the joining auxiliary member 130 is preferably designed to be equal to or less than the plate thickness B H of the lower plate 10.
  • the joining auxiliary member 130 has the back surface (the upper plate 20 and the upper plate 20 within the gap range). It does not matter even if it sticks out from the upper surface of the lower plate 10 in the joined state.
  • the diameter of the hole 21 of the upper plate 20 is larger than the outer diameter of the insertion portion 131 of the joining auxiliary member 130, as shown in FIG. 39D, when the protruding portion of the joining auxiliary member 130 is superposed. This is preferable because the overlapping work becomes easy as a guide and the temporary fixing property during the welding work increases.
  • any means may be used for the press-fitting work, but a practical means such as hitting with a hammer or the like, or using a press machine using power such as hydraulic pressure, water pressure, air pressure, gas pressure, and electric drive can be mentioned. It is also possible to turn in while applying pressure. When using such a means, it is possible to provide a regular screw-like undulation at the tip of the insertion part 131 to facilitate turning in. For example, as shown in FIG. 40, a spiral groove 135a may be formed in the tapered portion 135 of the insertion portion 131.
  • the pushing pressure is strong, not only the insertion portion 131 but also a part of the non-insertion portion 132 may be inevitably pushed into the base material of the lower plate 10, but the base material of the lower plate 10 may crack. If you don't, there is no particular problem.
  • the joining auxiliary member 130 is appropriately melted as shown in FIG. 41A. As shown in FIG. 41B, there is no problem even if the welding metal 40 is formed so as to exceed the plate thickness of the joining assisting member 130, that is, melts to a state where a so-called back wave appears. However, if the welding auxiliary member 130 does not melt and only the weld metal 40 is placed on it, the metal bonding is incomplete, so that high strength as a joint cannot be obtained.
  • the overhang of the weld metal 40 which is the back wave, becomes an obstacle, and it is, of course, necessary to avoid such an excessive melted state. Furthermore, it is necessary to weld the weld metal 40 so that the weld metal 40 does not melt too deeply and the weld metal 40 melts down.
  • the role of the joining auxiliary member 130 made of steel used in the above welding method is almost the same as that of the joining auxiliary member described in the first embodiment.
  • the maximum role of the non-insertion portion 132 of the joining assisting member 130, which is not embedded inside the lower plate 10, is also resistance to vertical peel stress.
  • the joining auxiliary member 130 having an appropriate size, it is possible to prevent the phenomenon that the interface between the lower plate 10 and the joining auxiliary member 130 peels off and comes off.
  • the weld metal 40 is sufficiently plastically deformed and then fractured. Since the weld metal 40 also has a strong bonding force against the tensile stress in the shearing direction, the base metal first undergoes bending deformation without brittle fracture (see FIG. 42C), and the upper and lower parts A stress action state similar to peel tension (see FIG. 42B) is obtained. That is, after sufficient deformation, ductile fracture occurs with high strength.
  • the non-insertion portion 132 of the auxiliary bonding member 130 also to increase the strength against external stress area is large and the height P as H2 is larger thickness direction (three dimensional directions), desirable. However, if the area or height is unnecessarily large, the aesthetic appearance may be deteriorated or interference with other nearby members may occur due to a weight increase factor or an excessive protrusion from the surface of the upper plate 20, so that it may be required according to the required design. Use an appropriate size.
  • FIG. 43 shows various dimensions of the joining auxiliary member 130. That is, in the present embodiment, the relationship between the maximum outer diameter P D1 of the insertion portion 131, the width P D2 of the non-insertion portion 132, and the diameter B D1 of the hole 11 of the lower plate 10 is P D2 > P D1 > B D1.
  • the dimensions of the joining assisting member 130 are specified as follows.
  • the height P H1 of the insertion portion 131 is set to 10% or more of the plate thickness B H of the lower plate 10 and less than the total plate thickness B H + F H of the lower plate 10 and the upper plate 20.
  • the insertion portion 131 of the joining assisting member 130 has a temporary restraining effect by caulking by press fitting into the lower plate 10 described above. Squeezing effect as the height P H1 of the insertion portion 131 is large becomes easily disengaged increases.
  • the height P H1 of the insertion portion 131 is less than 10% of the plate thickness, the caulking effect is hardly obtained and it is unstable, so that it is desirable to be 10% or more.
  • the upper limit of the height P H1 of the insertion portion 131 is not necessarily equal to the plate thickness B H of the lower plate 10, that is, not 100%, and as described above, it is preferable that the height P H1 be positively projected to the upper plate side. In some cases.
  • the height P H1 of the insertion portion 131 is the height that fills all the holes 21 of the upper plate 20, the space filled with the weld metal is not formed, and the upper plate 20 and the joining auxiliary member 130 are welded. Since it is difficult to do so, it is desirable that the back surface position of the joining assisting member 130 be inside the front surface of the upper plate 20. That is, it means that the height P H1 of the insertion portion 131 is smaller than the total plate thickness B H + F H of the lower plate 10 and the upper plate 20.
  • the maximum diameter P D1 of the insertion portion 131 is set to 102% or more and 125% or less with respect to the diameter B D1 of the hole 11 formed in the lower plate 10.
  • the insertion portion 131 of the joining assisting member 130 has a function of press-fitting into the lower plate 10 to restrain the caulking. In order to exert its effect, it must be larger than the diameter B D1 of the lower plate 10. If the diameter B D1 is not smaller than at least 2%, an appropriate pressure cannot be applied to the vicinity of the hole 11 of the lower plate 10. Therefore, the maximum diameter P D1 of the insertion portion 131 is 102% or more of the diameter B D1 .
  • the upper limit of the maximum diameter P D1 of the insertion portion 131 is determined, and is specifically 125%.
  • the width P D2 of the non-insertion portion 132 is designed to be 105% or more of the diameter B D1 of the hole 11 of the lower plate 10.
  • the joining auxiliary member 130 has a main role of exerting a resistance force when an external stress in the plate thickness direction, in other words, a peeling stress acts.
  • the insertion portion 131 also has a resistance to peeling stress to some extent due to the caulking effect on the lower plate 10, but the non-insertion portion 132 has a relatively larger role. The larger the non-insertion portion 132 and the larger the height, the more the strength against the external stress in the plate thickness direction (three-dimensional direction) is increased, which is desirable.
  • the width P D2 of the non-insertion portion 132 When the width P D2 of the non-insertion portion 132 is less than 105% of the diameter B D1 , the hole 11 formed in the lower plate 10 when the non-insertion portion 132 is elastically plastically deformed by external stress in the plate thickness direction.
  • the following apparent diameters are likely to be easy, and are likely to come off. That is, it does not exhibit high resistance. Therefore, the width P D2 of the non-insertion portion 132 has a lower limit of 105% with respect to the diameter B D1 . More preferably, the width P D2 of the non-insertion portion 132 may have a lower limit of 120% with respect to the diameter B D1 or. On the other hand, there is no need to set an upper limit from the viewpoint of the strength of the bonded portion.
  • the width P D2 of the non-insertion portion 132 is set to the lower plate 10 in order to make the non-insertion portion 132 completely close the hole 11.
  • the diameter of the circumscribed circle of the hole 11 is preferably 105% or more.
  • the height P H2 of the non-insertion portion 132 is designed to be 50% or more and 150% or less of the plate thickness B H of the lower plate 10. As described above, the larger the width P D2 and the larger the height P H2 of the non-insertion portion 132 of the joining auxiliary member 130, the more the strength against external stress in the plate thickness direction (three-dimensional direction) is increased, which is desirable. Its height P H2 of non inserting portion 132 exhibits high resistance by increasing in accordance with the thickness B H of the lower plate 10.
  • the non-insertion portion 132 of the joining auxiliary member 130 When the height P H2 of the non-insertion portion 132 is less than 50% of the plate thickness B H of the lower plate 10, the non-insertion portion 132 of the joining auxiliary member 130 easily undergoes elastic-plastic deformation against external stress in the plate thickness direction. As a result, the apparent width becomes smaller than that of the hole 11 formed in the lower plate 10, so that the lower plate 10 easily comes off. That is, it does not exhibit high resistance. Therefore, it is desirable that the lower limit of the height P H2 of the non-insertion portion 132 be 50% of the plate thickness B H of the lower plate 10.
  • the height P H2 of the non-insertion portion 132 exceeds 150% of the plate thickness B H of the lower plate 10 and the height of the non-insertion portion 132 is increased, there is no problem in terms of joint strength, but it overhangs. Not only has a bad shape, but also has a bad appearance, and the weight is meaninglessly heavy. Therefore, it is desirable to set it to 150% or less.
  • unfilled height P H3 of the weld metal 40 from the surface of the upper plate 20 is set to 30% or less of the thickness F H of the upper plate 20. It is desirable that the weld metal 40 fill the inside of the hole 21 of the upper plate 20 so that the surface position thereof is at the same height as the surface of the upper plate 20.
  • FIG. 45 deformation of the joining auxiliary member 130 is suppressed with respect to external stress in the plate thickness direction (three-dimensional direction), and high strength is obtained.
  • FIG. 46A if the unfilled height PH3 is excessively large, the joint area between the joining assisting member 130 and the weld metal 40 becomes small, so the joining strength becomes low.
  • the joint bonding strength is significantly reduced, and as shown in FIG. 46B, the bonding auxiliary member 130 deforms and the lower plate 10 comes off. It will be easier. Therefore, the unfilled height is set to 30% or less of the thickness F H of the upper plate 20.
  • the weld metal 40 should be filled at the same height as the surface of the lower plate 10 as described above. However, when the dissimilar material welded joint 1a after joining is assembled into a larger structure and there is a margin in the upper space of the joining portion, as shown in FIG. It may be filled with, and a surplus may be further formed.
  • the plate thicknesses of the lower plate 10 and the upper plate 20 are not necessarily limited, but considering the work efficiency and the shape as lap welding, the plate thickness of the upper plate 20 is 4.0 mm or less. Is desirable. On the other hand, considering the heat input of arc welding, if the plate thickness is too thin, it will melt down during welding and welding will be difficult. Therefore, it is desirable that both the lower plate 10 and the upper plate 20 be 0.5 mm or more. ..
  • the lower plate 10 and the upper plate 20 can be firmly joined to each other with aluminum alloy or magnesium alloy and steel, respectively.
  • the method of joining the aluminum alloy or magnesium alloy and the steel material has been described.
  • the first plate (lower plate) 10 is made of a material other than steel.
  • CFRP Carbon Fiber Reinforced Plastics
  • non-ferrous metal resin
  • composite material of resin and metal and member made of ultra-high tensile steel of 1700 MPa or more. it can.
  • the first plate for example, when a metal material other than steel, such as an Al alloy or a Mg alloy, is used as the first plate, a plurality of surfaces where dissimilar metals come into contact with each other are formed, so resin-based bonding is performed. It is preferable to use the agent as a sealing material as well as for the purpose of further improving the joint strength.
  • a metal material other than steel such as an Al alloy or a Mg alloy
  • the adhesive 60 may be annularly applied around the welded portion at the joint surface between the lower plate 10 and the upper plate 20.
  • the adhesive agent 60 on the joint surface of the lower plate 10 and the upper plate 20 over the entire circumference around the welded portion, as in the second modification shown in FIGS. 48A and 48B, This also includes the case of applying it to the entire joint surface except for the above. By this, the electrolytic corrosion rate of the lower plate 10, the upper plate 20, and the weld metal 40 can be reduced.
  • the adhesive 60 may be applied to the facing surface. Further, as in the fourth modification shown in FIGS. 50A and 50B, the adhesive 60 may be applied to the boundary between the non-insertion portion 132 of the joining auxiliary member 130 and the surface of the lower plate 10.
  • the contact surface with the lower plate 10 of the joining assisting member 130 does not necessarily have to be a flat surface, as shown in FIG. 33A. That is, the contact surface of the joining assisting member 130 with the lower plate 10 may be provided with slits 134a and 134b as necessary, as shown in FIGS. 51A and 51B.
  • the adhesive 60 is applied to the gap between the slits 134a and 134b. Since it enters and does not escape, stable adhesion is achieved and the sealing effect is also secured. Defining the thickness P H2 of non insertion portion 132 of the joining auxiliary member 130 in the case of such a non-planar surface is the largest part of the height.
  • the bulging portion 22 may be provided on the upper plate 20.
  • the height P H1 of the insertion portion 131 is designed to be less than the plate thickness B H of the lower plate 10 (see FIG. 43).
  • the upper plate 20 can be welded well simply by making a hole as described above.
  • the plate thickness of the lower plate 10 is large, it takes time to fill the holes 11 of the lower plate 10 in the welding process, resulting in poor efficiency.
  • the amount of heat becomes excessive, and the joining auxiliary member 130 easily melts down before the completion of filling. For this reason, if the bulging portion 22 is provided in the upper plate 20 by drawing, the volume of the hole 11 becomes small as shown in FIG.
  • the bulging portion 22 at the welded portion of the upper plate 20, it is possible to easily align with the hole 11 provided in the lower plate 10, and to superpose the lower plate 10 and the upper plate 20. Will be easier. Since this effect is obtained regardless of the plate thickness, it is effective to perform the drawing process on the upper plate 20 regardless of the plate thickness.
  • the drawing process of the bulging portion 22 is the same as that described in the first embodiment.
  • the welding method of the present embodiment can also be said to be spot welding with a small joint area. Therefore, in the case of joining overlapping portions J of practical members having a certain joint area, the present welding method is shown in FIGS. 29A to 29C. As shown, multiple implementations may be performed. As a result, strong joining is performed at the overlapping portion J.
  • the present embodiment can be used for an open cross-section structure as shown in FIGS. 29B and 29C, but can be particularly preferably used for a closed cross-section structure as shown in FIG. 29A.
  • the welding method for joining dissimilar materials of the present embodiment has a step of forming holes 11 and 21 in the lower plate 10 and the upper plate 20, respectively, and a stepped process having the insertion portion 131 and the non-insertion portion 132. It has an outer shape, and the relationship between the maximum outer diameter P D1 of the insertion part 131, the width P D2 of the non-insertion part 132, and the diameter B D1 of the hole 11 of the lower plate 10 is P D2 > P D1 > B D1
  • a solid and steel joining auxiliary member 130 having the constricted portion 139 on the non-insertion portion side of the insertion portion 131 is placed on the surface of the lower plate 10, and the insertion portion 131 is attached to the lower plate 10.
  • a gas shield arc welding method in which a welding wire that produces a weld metal 40 of an iron alloy or a Ni alloy is used as a welding electrode.
  • B A non-gas arc welding method using the welding wire as a welding electrode.
  • C A gas tungsten arc welding method using the welding wire as a non-electrolytic electrode filler.
  • D A plasma arc welding method using the welding wire as a non-electrolytic electrode filler.
  • E A covered arc welding method using a covered arc welding rod, which can obtain a weld metal 40 of an iron alloy or a Ni alloy, as a welding electrode.
  • F A laser welding method using the welding wire as a non-electrolytic electrode filler.
  • an inexpensive welding facility is used to attach the first plate (lower plate 10) made of a material other than steel and the second plate (upper plate 20) made of steel, such as Al alloy or Mg alloy, to each other.
  • the first plate lower plate 10
  • the second plate upper plate 20
  • steel such as Al alloy or Mg alloy
  • the height P H1 of the insertion portion 131 of the joining auxiliary member 130 is less than the plate thickness B H of the lower plate 10, and the bulging portion 22 is formed on the upper plate 20 by drawing, and the superposition process is performed.
  • the bulging portion 22 of the upper plate 20 is arranged in the hole 11 of the lower plate 10.
  • the adhesive 60 is formed on the superposing surfaces of at least one of the lower plate 10 and the upper plate 20 around the holes 11 and 21 of the lower plate 10 and the upper plate 20 all around. Is further provided. Thereby, the adhesive acts as a sealing material in addition to improving joint strength, and can reduce the electrolytic corrosion rate of the lower plate 10, the upper plate 20, and the weld metal 40.
  • the adhesive 60 is applied to at least one of the facing surfaces of the non-inserting portion 132 of the joining auxiliary member 130 and the lower plate 10 facing the non-inserting portion 132. Also in this case, the adhesive 60 not only improves the joint strength but also acts as a sealing material and can reduce the electrolytic corrosion rate of the lower plate 10, the upper plate 20, and the weld metal 40.
  • the adhesive 60 is applied to the boundary between the non-insertion portion 132 of the joining auxiliary member 130 and the surface of the lower plate 10. Also in this case, the adhesive 60 not only improves the joint strength but also acts as a sealing material and can reduce the electrolytic corrosion rate of the lower plate 10, the upper plate 20, and the weld metal 40.
  • the height P H1 of the insertion portion 131 of the joining auxiliary member 130 is 10% or more of the plate thickness B H of the lower plate 10 and less than the total plate thickness B H + F H of the lower plate 10 and the upper plate 20,
  • the insertion part 131 provides a temporary restraining effect by caulking and secures a space filled with the weld metal 40.
  • the maximum diameter P D1 of the insertion portion 131 of the joining auxiliary member 130 is 102% or more and 125% or less with respect to the diameter B D1 or the diameter B D2 of the hole 11 of the lower plate 10, so the insertion portion 131 is caulked. It is possible to provide a temporary restraining effect and suppress damage to the hole 11 of the lower plate 10.
  • the joining auxiliary member 130 since the width P D2 of the non-insertion portion 132 of the joining auxiliary member 130 is 105% or more of the diameter B D1 or the diameter B D2 of the hole 11 of the lower plate 10, the joining auxiliary member 130 is outside in the plate thickness direction. It can function as a resistance to stress.
  • the height P H2 of non insertion portion 132 of the auxiliary bonding member 130 since it is 150% or less than 50% of the thickness B H of the lower plate 10, the auxiliary bonding member 130, the thickness of the auxiliary bonding member 130 It can function as a resistance force to external stress in the direction, and can suppress an increase in weight.
  • unfilled height P H3 of the weld metal 40 from the surface of the upper plate 20 is 30% or less of the plate thickness F H of the upper plate 20, or, bore 21 of the upper plate 20 Since the surplus is formed on the surface of the upper plate while completely filling the joint, it is possible to secure the joint strength of the dissimilar material welded joint 1a.
  • the joining auxiliary member 130 of the present embodiment is solid and made of steel, has a stepped outer shape having an insertion portion 131 and a non-insertion portion 132, and has a maximum outer diameter P D1 of the insertion portion 131. And the relationship between the width P D2 of the non-insertion part 132 and the diameter B D1 of the hole 11 of the lower plate 10 is P D2 > P D1 > B D1 , and the insertion part 131 forms the constricted part 139 on the non-insertion part side.
  • the joining auxiliary member 130 is suitably used in the above-described welding method for joining dissimilar materials.
  • the dissimilar material welded joint 1a of the present embodiment includes a lower plate 10 made of a material other than steel, and an upper plate 20 made of steel joined to the lower plate 10, and the lower plate 10 and the upper plate 20 are , Has a hole 11 and a hole 21 located coaxially with each other, and has a stepped outer shape having an insertion portion 131 and a non-insertion portion 132, a maximum outer diameter P D1 of the insertion portion 131, and a non-insertion
  • the relationship between the width P D2 of the portion 132 and the diameter B D1 of the hole 11 of the lower plate 10 is P D2 > P D1 > B D1 , and the insertion portion 131 has a constricted portion 139 on the non-insertion portion side.
  • the joining assisting member 130 made of steel is further provided, the insertion portion 131 of the joining assisting member 130 is fixed in the hole 11 of the lower plate 10, and the lower plate 10 and the upper plate 20 are the holes of the upper plate 20.
  • the insertion portion 131 of the joining assisting member 130 is overlapped from 21 so that the hole 21 of the upper plate 20 is filled with the weld metal 40 of the iron alloy or the Ni alloy, and the weld metal 40, The melted portion W is formed by the melted upper plate 20 and a part of the joining auxiliary member 130.
  • a dissimilar material welded joint 1a including a first plate (lower plate 10) made of a material other than steel and a second plate (upper plate 20) made of steel, such as an Al alloy or a Mg alloy. Is joined with strong and reliable quality using inexpensive welding equipment, can be applied to open cross-section structures and closed cross-section structures without restriction, and when the steel upper plate 20 is on the front side. Applicable.
  • the present embodiment differs from the first and second embodiments in that at least one press-fitting protrusion is provided on the outer peripheral surface of the shaft portion of the joining assisting member.
  • the welding method for joining dissimilar materials of the present embodiment includes a lower plate 10 (first plate) made of an aluminum alloy or a magnesium alloy, and an upper plate made of steel, which are superposed on each other.
  • the plate 20 (second plate) is joined by an arc welding method or a laser welding method, which will be described later, via a solid and steel joining auxiliary member 230.
  • the dissimilar material welded joint 1b is obtained.
  • the lower plate 10 and the upper plate 20 are provided with circular holes 11 and 21 penetrating in the plate thickness direction and located coaxially with each other (see FIG. 60A).
  • the insertion portion 231 of the joining auxiliary member 230 is inserted into the hole 11 of the lower plate 10 under pressure.
  • the joining assisting member 230 is disposed on the upper portion of the lower plate 10 and the insertion portion 231 that is disposed in the hole 11 of the lower plate 10, and is directed outward with respect to the insertion portion 231.
  • the non-insertion portion 232 has a stepped outer shape with. That is, also in the third embodiment, the joining assisting member 230 has the shaft portion forming the insertion portion 231 and the flange portion forming the non-insertion portion 232. Further, at least one (four in the present embodiment) press-fitting protrusions 239 are provided on the outer peripheral surface of the insertion portion 231.
  • the width P D2 of the non-insertion portion 232 is set larger than the diameter B D2 of the hole 11 of the lower plate 10 (see FIG. 66). Further, the diameter P D1 of the largest circle that is in contact with the outermost diameter portion of the plurality of press-fitting projections 239 is also set to be larger than the diameter B D2 of the hole 11 of the lower plate 10 (see FIGS. 58A to 58E).
  • the diameter of the hole 21 of the upper plate 20 may be any size as long as it can be filled with the weld metal 40 described later, and may be the same as the diameter B D1 of the hole 11 of the lower plate 10 or larger than the diameter B D1. , May be small.
  • the lower plate 10 and the upper plate 20 are provided with circular holes 11 and holes 21, respectively, but as long as the insertion portion 231 of the joining auxiliary member 230 can be inserted.
  • the shape of the hole 11 is not limited to the circular shape, and can be provided in various other shapes. For example, a shape such as a triangle, a quadrangle, a polygon more than that, and an ellipse can be adopted.
  • the protrusion 239 is partially provided on the outer peripheral surface of the insertion portion 231, the hole 11 or the hole 21 is not a circular hole.
  • the diameter B D1 of the hole is defined by the diameter of the circumscribed circle of the hole.
  • the axial cross section of the portion of the insertion portion 231 excluding the projection portion 239 has a cross sectional shape similar to the hole 11 of the lower plate 10 so as to facilitate press fitting.
  • the hole 11 has a polygonal shape
  • the axial section of the insertion portion 231 has the same shape as the hole 11 to prevent the lower plate 10 from rotating relative to the upper plate 20.
  • the protrusion 239 fixes the insertion portion 231 of the joining assisting member 230 in the hole 11 of the lower plate 10 by caulking and restraining force, so that there is no gap between the insertion portion 231 and the hole 11 of the lower plate 10, and It is formed in a blade shape in consideration of insertability of the insertion portion 231. That is, the maximum outer diameter P D0 of the insertion portion 231 is made smaller than the diameter B D2 of the hole 11 of the lower plate 10, while the protrusion 239 is made to bite into the wall surface of the hole 11 of the lower plate 10 to partially Eliminate the gap.
  • the shape of the protruding portion 239 gradually increase in radial width from the distal end portion of the insertion portion 231 toward the non-insertion portion 232. Further, since the thickness of the protrusion 239 in the circumferential direction is thin, the state becomes close to line contact with the hole 11 of the lower plate 10, and the pushing pressure is not increased so much.
  • the shape of the protrusion 239 may be an isosceles triangle as shown in FIGS. 55A and 55B, but as shown in FIGS. 56A to 56I, other shapes such as a triangle, a rectangle, a partial circle, and a trapezoid are typical. And there is no limit to the shape. Further, since the protrusion 239 is also connected to the lower surface of the non-insertion portion 232, the strength of the protrusion 239 can be improved. Furthermore, the protrusion 239 may be parallel to the axial direction of the insertion portion 231 as shown in FIG. 55A, or may be inclined with respect to the axial direction as shown in FIG. 57A. In this case, it is suitable to press-fit the joining auxiliary member 230 while rotating it. Also, as shown in FIG. 57B, the protrusion 239 may have a mountain shape in which the width in the circumferential direction becomes narrower from the base toward the tip.
  • the number of the protrusions 239 is not limited to four as shown in FIG. 55B, and may be at least one, and the upper limit need not be set in particular. That is, as shown in FIGS. 58A to 58E, it may have one, two, three, six, or eight protrusions 239. However, if the number of protrusions 239 increases, the contact area with the hole 11 of the lower plate 10 increases and the pressure required for insertion increases, so the number of protrusions 239 should not be increased more than necessary. It is desirable that the number of the protrusions 239 is 8 or less. As shown in FIG.
  • the diameter P D1 of the circle C that contacts the outermost diameter portion of one protrusion 239 and the outer peripheral surface of the insertion portion 231 also has It is set larger than the diameter B D2 of the hole 11.
  • the joining auxiliary member 230 can be designed by arbitrarily combining the number and shape of the above-mentioned protrusions 239.
  • a joining assisting member 230 having three right-angled triangular protrusions 239 may be configured.
  • 59B is a cross-sectional view corresponding to FIG. 54B of the dissimilar material welded joint 1b in the case of using the joining auxiliary member 230 of FIG. 59A.
  • the function of the protrusion 239 is substantially the same in any of the above-mentioned joining auxiliary members 230, the following description will be given using any joining auxiliary member 230.
  • the outer shape of the non-insertion portion 232 of the joining auxiliary member 230 is not limited to a circular shape as shown in FIGS. You can That is, it may be an ellipse shown in FIG. 5B or a polygon having a quadrangle or more shown in FIGS. 5C to 5F. Further, as shown in FIG. 5D, the corners of the polygon may be rounded.
  • the width P D2 of the non-insertion portion 232 described below is defined by the shortest distance between the facing surfaces.
  • the insertion portion 231 of the joining auxiliary member 230 is press-fitted into the lower plate 10, so that the insertion portion 231 is positioned coaxially with the hole 11 of the lower plate 10.
  • the hole 21 of the upper plate 20 is filled with the weld metal 40 of the iron alloy or the Ni alloy in which the filler material (welding material) is melted by the arc welding, and the weld metal 40 and the melted metal 40 are melted.
  • a fusion zone W is formed by the plate 20 and a part of the joining auxiliary member 230. Therefore, the fusion zone W is also arranged in the hole 21 of the upper plate 20 and welds the joining assisting member 230 and the upper plate 20, whereby the joining assisting member 230 and the lower plate 10 are press-fitted.
  • the upper plate 20 is joined.
  • FIG. 60A a punching operation is performed to make holes 11 and 21 in the lower plate 10 and the upper plate 20 (step S1).
  • step S1 a punching operation is performed to make holes 11 and 21 in the lower plate 10 and the upper plate 20 (step S1).
  • step S2 the insertion portion 231 of the joining auxiliary member 230 is press-fitted into the hole 11 of the lower plate 10 from the surface 10a of the lower plate 10 (step S2).
  • step S2 the lower plate 10 to which the joining auxiliary member 230 is attached is turned over so that the insertion portion 231 of the joining auxiliary member 230 faces through the hole 21 of the upper plate 20.
  • the upper plate 20 is overlaid, and an overlaying operation is performed (step S3). That is, in this state, the insertion portion 231 of the joining auxiliary member 230 press-fitted into the lower plate 10 is located closer to the upper plate 20 side than the non-insertion portion 232, and the holes 11 of the lower plate 10 and the holes of the upper plate 20 are located. 21 is coaxially located.
  • (a) molten electrode gas shield arc welding method, (b) non-gas arc welding method, (c) gas tungsten arc welding method, and (d) plasma which will be described in detail below.
  • FIG. 60E shows the case where (a) arc welding work is performed using the molten electrode gas shield arc welding method.
  • step S1 The steps described in the first embodiment are applied to the drilling work in step S1, the overlaying work in step S3, and the welding work in step S4.
  • step S2 As shown in FIG. 62, the insertion portion 231 of the joining auxiliary member 230 is inserted into the hole 11 from the surface 10a side of the lower plate 10 until the non-insertion portion 232 contacts the surface 10a of the lower plate 10. Is pressed into.
  • the position of the lower surface (the distal end surface of the insertion portion 231) of the joining auxiliary member 230 after press fitting can be selected according to the application.
  • the diameter of the hole 21 of the upper plate 20 is smaller than the outer diameter of the insertion portion 231 of the joining auxiliary member 230 at the time of joining, if the joining auxiliary member 230 projects from the surface of the lower plate 10, the lower plate 10 and A gap is generated when the upper plates 20 are overlapped with each other, and the assembling accuracy is deteriorated, which is not desirable. Therefore, as shown in FIGS. 63A and 63B, the height P H1 of the insertion portion 231 of the joining auxiliary member 230 is preferably designed to be equal to or less than the plate thickness B H of the lower plate 10.
  • the joining auxiliary member 230 has the back surface (the upper plate 20 and the upper plate 20 within the gap range). It does not matter if it sticks out from the upper surface of the lower plate 10 in the joined state.
  • the diameter of the hole 21 of the upper plate 20 is larger than the outer diameter of the insertion portion 231 of the joining auxiliary member 230, as shown in FIG. 63D, the protruding portion of the joining auxiliary member 230 is overlapped during superposition. It is rather preferable because the overlapping work becomes easy as a guide and the temporary fixing property increases during the welding work.
  • the joining auxiliary member 230 is protruding from the back surface, as shown in FIG. 63E, by providing the protrusion 239 also on the protruding portion of the joining auxiliary member 230, the lower plate 10 and the joining auxiliary member 230 are provided. It is more preferable because the temporary restraint property with can be further enhanced.
  • the joining auxiliary member 230 is appropriately melted as shown in FIG. 64A. As shown in FIG. 64B, there is no problem even if the welding metal 40 is formed so as to exceed the plate thickness of the joining auxiliary member 230, that is, the so-called back wave appears. However, if the welding auxiliary member 230 does not melt and only the weld metal 40 is placed on it, the metal bonding is incomplete, so that high strength as a joint cannot be obtained.
  • the overhang of the weld metal 40 which is the back wave, becomes an obstacle, and it is, of course, necessary to avoid such an excessive melted state. Furthermore, it is necessary to weld the weld metal 40 so that the weld metal 40 does not melt too deeply and the weld metal 40 melts down.
  • the role of the joining auxiliary member 230 made of steel used in the above welding method is substantially the same as that of the joining auxiliary member described in the first embodiment.
  • the maximum role of the non-insertion portion 232 of the joining auxiliary member 230, which is wider than the hole 11 provided in the lower plate 10, is the resistance to vertical peel stress.
  • FIG. 65A by applying the joining auxiliary member 230 having an appropriate size, it is possible to prevent a phenomenon in which the interface between the lower plate 10 and the joining auxiliary member 230 is separated and comes off.
  • the weld metal 40 is sufficiently plastically deformed and then fractured. Since the weld metal 40 also has a strong bonding force against tensile stress in the shearing direction, the base metal first undergoes bending deformation without brittle fracture (see FIG. 65C), and the upper and lower parts A stress action state similar to peel tension (see FIG. 65B) is obtained. That is, after sufficient deformation, ductile fracture occurs with high strength.
  • the non-insertion portion 232 of the auxiliary bonding member 230 to increase the strength against external stress area is large and the height P as H2 is larger thickness direction (three dimensional directions), desirable. However, if the area or height is unnecessarily large, the aesthetic appearance may be deteriorated or interference with other nearby members may occur due to a weight increase factor or an excessive protrusion from the surface of the upper plate 20, so that it may be required according to the required design. Use an appropriate size.
  • the joining assisting member 230 (1) at the time of welding, IMC generation due to melting of the aluminum alloy or magnesium alloy that is the material of the lower plate 10 is prevented, and (2) after welding, the lower plate 10 and the upper plate 20 are welded. Has a role of firmly binding.
  • the gap formed between the hole 11 provided in the lower plate 10 and the insertion portion 231 of the joining auxiliary member 230 should be close to each other between the upper plate 20 and the lower plate 10 to be joined. It will cause a gap.
  • the outer diameter P D0 of the insertion portion 231 of the joining auxiliary member 230 is designed to be larger than the diameter B D2 of the hole 11 of the lower plate 10, and pressure is applied for insertion.
  • simply increasing the diameter not only makes it difficult to set the target position, but also significantly deteriorates the insertability, and even if the target position is coaxially set, a very high pressure is required.
  • the joining auxiliary member 230 is set on the lower plate 10 before the welding process, if the lower plate 10 is turned upside down, it may easily come off and fall off by simply press fitting. In order to prevent such a situation, it is necessary to temporarily temporarily fix the joining auxiliary member 230 to the lower plate 10 until welding.
  • the joining assisting member 230 is provided with the function of “caulking” utilizing the elasto-plastic deformation of the metal that is the material of the lower plate 10.
  • the press-fitting protrusion 239 on the outer peripheral surface of the insertion portion 231, the drop-out prevention at the time of upside-down reversal and the gap between the insertion portion 231 and the hole 11 of the lower plate 10 are provided. It is possible to achieve both elimination and ensuring insertability. That is, the outer diameter P D0 of the insertion portion 231 is made smaller than the diameter B D2 of the hole of the lower plate 10, while the protrusion 239 causes it to bite into the wall surface of the hole 11 of the lower plate 10 to partially eliminate the gap.
  • the joining auxiliary member 230 has a diameter P D1 of the largest circle C that is in contact with the outermost diameter portions of at least two protrusions 239, or the outermost diameter portion of one protrusion 239 and the outer peripheral surface of the insertion portion 231.
  • the diameter P D1 of the contacting circle C is larger than the diameter B D2 of the hole 11 of the lower plate 10.
  • the insertability can be further improved. .
  • the joining assisting member 230 having the protrusion 239 into the lower plate 10 into the insertion portion 231 By press-fitting the joining assisting member 230 having the protrusion 239 into the lower plate 10 into the insertion portion 231, some secondary effects can be obtained.
  • the first is that it becomes difficult for the lower plate 10 and the upper plate 20, which are the joining targets, to rotate relative to each other.
  • the cross-sectional shape of the insertion portion 231 of the joining auxiliary member 230 is a perfect circle
  • the joining auxiliary member 230 is joined by press fitting of the insertion portion 231, for example, when a strong horizontal rotational force F R is applied to the lower plate 10, the joining is performed.
  • the lower plate 10 may rotate around the auxiliary member 230.
  • the joining assisting member 230 is provided with a protrusion 239, and the protrusion 239 bites into the periphery of the hole 11 of the lower plate 10 to easily prevent rotation. be able to.
  • the joining auxiliary members 230 are collectively press-fitted into the aluminum or magnesium alloy that is the lower plate 10 at a factory different from the joining.
  • the joining step may be carried out after being transported to the joining factory, and the degree of freedom in the manufacturing process can be increased.
  • any method may be used for the press-fitting method of the joining assisting member 230, but it may be pushed in by a person's hand, hit with a hammer or the like, or using a press machine that uses power such as hydraulic pressure, water pressure, air pressure, gas pressure, or electric drive. Practical means such as using the power of an industrial robot arm can be given.
  • the joining auxiliary member 230 can be press-fitted by turning it into the hole 11. When such a means is used, as shown in FIG. 71, a screwdriver for screwing fits on the upper surface of the insertion portion 231. Providing the notch 238 makes it easier to rotate the joining auxiliary member 230 into the lower plate 10.
  • the pushing pressure is strong, not only the insertion portion 231 but also a part of the non-insertion portion 232 may be pushed into the base material of the lower plate 10, but there is no problem. Rather, when the outer diameter of the non-insertion portion 232 is non-circular (see FIGS. 5B to 5F), a part of the non-insertion portion 232 is pushed into the base material of the lower plate 10 so that the lower plate 10 becomes the upper plate.
  • a horizontal rotational force is applied to 20
  • a comparatively weak force has the effect of preventing the phenomenon that the caulking effect deviates from causing the rotation, which is desirable.
  • the joining assisting member 230 is made of steel and has a stepped outer shape having the insertion portion 231 and the non-insertion portion 232, and at least 1 is formed on the outer peripheral surface of the insertion portion 231.
  • One press-fitting protrusion 239 is provided, the width P D2 of the non-insertion portion 232 is larger than the hole 11 of the lower plate 10, and the diameter P of the maximum circle C that contacts the outermost diameter portion of at least two protrusions 239.
  • the diameter P D1 of the circle C that contacts D1 or the outermost diameter portion of one protrusion 239 and the outer peripheral surface of the insertion portion 231 is larger than the diameter B D2 of the hole 11 of the lower plate 10.
  • the material of the joining auxiliary member 230 made of steel is not particularly limited as long as it is pure iron or an iron alloy, and examples thereof include mild steel, carbon steel, and stainless steel. Further, the material of the lower plate 10 is not limited to the aluminum alloy or the magnesium alloy, and members made of various materials can be applied as long as it is made of a material other than steel. Examples of materials other than steel include CFRP (Carbon Fiber Reinforced Plastics), non-ferrous metals, resins, composite materials of resins and metals, and ultra-high-strength steel of 1700 MPa or more.
  • CFRP Carbon Fiber Reinforced Plastics
  • non-ferrous metals resins
  • composite materials of resins and metals and ultra-high-strength steel of 1700 MPa or more.
  • the joining auxiliary member 230 has a surface treatment for forming a film such as an electrically base element, a processed product, an insulating substance, or a passivation in order to prevent rust of itself and electrolytic corrosion between the aluminum and the aluminum plate. Can also be applied. Examples thereof include zinc plating, chrome plating, nickel plating, aluminum plating, tin (tin) plating, resin coating, and ceramic coating.
  • various dimensions of the joining auxiliary member 230 are set as follows in relation to the lower plate 10 and the upper plate 20, as shown in FIG. 66.
  • the height P H1 of the insertion portion 231 is set to 10% or more of the plate thickness B H of the lower plate 10 and less than the total plate thickness B H + F H of the lower plate 10 and the upper plate 20.
  • the insertion portion 231 of the joining assisting member 230 has a temporary restraining effect by caulking by press-fitting into the lower plate 10 described above. Squeezing effect as the height P H1 of the insertion portion 231 is large becomes easily disengaged increases. If the height P H1 of the insertion portion 231 is less than 10% of the plate thickness, the caulking effect is hardly obtained and it is unstable, so that it is desirable to be 10% or more.
  • the upper limit of the height P H1 of the insertion portion 231 is not necessarily equal to the plate thickness B H of the lower plate 10, that is, not 100%, and as described above, it is desirable that the height P H1 be positively projected to the upper plate side. In some cases.
  • the height P H1 of the insertion portion 231 is the height that fills all the holes 21 of the upper plate 20, the space filled with the weld metal is not formed, and the upper plate 20 and the joining auxiliary member 230 are welded. Since it is difficult to do so, it is desirable that the back surface position of the joining assisting member 230 be inside the front surface of the upper plate 20. That is, it means that the height P H1 of the insertion portion 231 is smaller than the total plate thickness B H + F H of the lower plate 10 and the upper plate 20.
  • the diameter P D1 of the largest circle C in contact with the outermost diameter portion of the plurality of protrusions 239 provided in the insertion portion 231 is designed to be 105% or more and 125% or less with respect to the diameter B D2 of the hole 11 of the lower plate 10.
  • the protrusion 239 provided on the insertion portion 231 of the joining assisting member 230 has a function of restraining the caulking by press fitting into the lower plate 10. In order to exert the effect, the diameter P D1 of the maximum circle C must be larger than the diameter B D2 of the lower plate 10.
  • the diameter P D1 of the maximum circle C is at least 5% or more larger than the diameter B D2 , an appropriate pressure cannot be applied near the lower plate hole. Therefore, the diameter P D1 of the largest circle C is at least 105% or more of the diameter B D2 .
  • the larger the diameter P D1 of the largest circle C that is in contact with the outermost diameter portion of the plurality of protrusions 239 the stronger the caulking force, but the greater the force required for press-fitting, which impairs the convenience and further It may not be able to withstand the pressure around the lower plate hole and may cause cracks.
  • the upper limit of the diameter P D1 of the maximum circle C is determined, and is specifically 125%.
  • the diameter P D1 of the circle C contacting the outermost diameter portion of one protrusion 239 and the outer peripheral surface of the insertion portion 231 is the lower plate. It is designed to be 105% or more and 125% or less with respect to the diameter B D2 of the ten holes 11.
  • Outer diameter P D0 of insertion part The outer diameter P D0 of the insertion portion 231 is designed to be 80% or more and 104% or less with respect to the diameter B D2 of the hole 11 of the lower plate 10.
  • the caulking restraint action on the lower plate 10 by the insertion portion 231 of the joining assisting member 230 is achieved by the protrusion 239. If the outer diameter P D0 of the insertion portion 231 is smaller than the diameter B D2 of the lower plate 10, it is preferable because it does not become a resistance factor for insertion.
  • the outer diameter P D0 of the insertion portion 231 is excessively small, when the external stress acts on the dissimilar material welded joint 1b after joining, the insertion portion of the joining auxiliary member 230 is relatively weakly applied in the plate surface direction. Since a gap is generated between 231 and the hole 11 of the lower plate 10, a smaller gap is preferable. Due to these contradictory properties, it is more desirable that the outer diameter P D0 of the insertion portion 231 is less than 100% and closer to 100% of the diameter B D2 of the hole 11 of the lower plate 10. However, from an industrial point of view, it is necessary to allow some variation, and if the lower limit of the outer diameter P D0 of the insertion portion 231 is up to 80%, there is no practical problem as joint performance.
  • the upper limit of the outer diameter P D0 of the insertion portion 231 is allowed to be 104%, which is larger than the diameter B D2 of the lower plate 10. If the outer diameter P D0 of the insertion portion 231 is larger than the diameter B D2 of the lower plate 10, not only the protrusion 239 but also the insertion portion 231 becomes a resistance factor for press-fitting.
  • aluminum alloy or magnesium alloy is elastic. Since the plastic deformation resistance is small, if it is up to 104%, there is practically no problem in insertion work.
  • the width P D2 of the non-insertion portion 232 is designed to be 105% or more of the diameter B D2 of the hole 11 of the lower plate 10.
  • the joining auxiliary member 230 has a main role of exerting a resistance force when an external stress in the plate thickness direction, in other words, a peeling stress acts.
  • the insertion portion 231 also has a resistance to peeling stress to some extent due to the caulking effect on the lower plate 10, but the non-insertion portion 232 has a relatively larger role. The larger the non-insertion portion 232 and the larger the height, the more the strength against the external stress in the plate thickness direction (three-dimensional direction) is increased, which is desirable.
  • the width P D2 of the non-insertion portion 232 When the width P D2 of the non-insertion portion 232 is less than 105% of the diameter B D2 , the holes 11 formed in the lower plate 10 when the non-insertion portion 232 is elastically deformed by the external stress in the plate thickness direction.
  • the following apparent diameters are likely to be easy, and they are likely to come off. That is, it does not exhibit high resistance. Therefore, the width P D2 of the non-insertion portion 232 has a lower limit of 105% with respect to the diameter B D2 . More preferably, the width P D2 of the non-insertion portion 232 may have a lower limit of 120% with respect to the diameter B D2 . On the other hand, there is no need to set an upper limit from the viewpoint of the strength of the bonded portion.
  • the height P H2 of the non-insertion portion 232 is designed to be 50% or more and 150% or less of the plate thickness B H of the lower plate 10. As described above, the larger the width P D2 and the larger the height P H2 of the non-insertion portion 232 of the joining auxiliary member 230, the more the strength against external stress in the plate thickness direction (three-dimensional direction) is increased, which is desirable. Its height P H2 of non inserting portion 232 exhibits high resistance by increasing in accordance with the thickness B H of the lower plate 10.
  • the non-insertion portion 232 of the joining auxiliary member 230 When the height P H2 of the non-insertion portion 232 is less than 50% of the plate thickness B H of the lower plate 10, the non-insertion portion 232 of the joining auxiliary member 230 easily undergoes elastic-plastic deformation against external stress in the plate thickness direction. As a result, the apparent width becomes smaller than that of the hole 11 formed in the lower plate 10, so that the lower plate 10 easily comes off. That is, it does not exhibit high resistance. Therefore, it is desirable that the lower limit of the height P H2 of the non-insertion portion 232 is 50% of the plate thickness B H of the lower plate 10.
  • the height P H2 of the non-insertion portion 232 exceeds 150% of the plate thickness B H of the lower plate 10 and the height of the non-insertion portion 232 is increased, there is no problem in terms of joint strength, but it overhangs. Not only has a bad shape, but also has a bad appearance, and the weight is meaninglessly heavy. Therefore, it is desirable to set it to 150% or less.
  • unfilled height P H3 of the weld metal 40 from the surface of the upper plate 20 is set to 30% or less of the thickness F H of the upper plate 20. It is desirable that the weld metal 40 fill the inside of the hole 21 of the upper plate 20 so that the surface position thereof is at the same height as the surface of the upper plate 20.
  • deformation of the joining auxiliary member 230 is suppressed against external stress in the plate thickness direction (three-dimensional direction), and high strength is obtained.
  • FIG. 68 deformation of the joining auxiliary member 230 is suppressed against external stress in the plate thickness direction (three-dimensional direction), and high strength is obtained.
  • the joint area between the joining assisting member 230 and the weld metal 40 becomes small, so the joining strength becomes low. If less than 70% of the thickness F H of the upper plate 20 is filled, the joint bonding strength is significantly reduced, and as shown in FIG. 69B, the bonding auxiliary member 230 deforms and the lower plate 10 comes off. It will be easier. Therefore, the lower limit of the unfilled height is 30% of the thickness F H of the upper plate 20.
  • the weld metal 40 should be filled at the same height as the surface of the lower plate 10 as described above. However, when the dissimilar material welded joint 1b after joining is assembled into a larger structure and there is a margin in the upper space of the joining portion, as shown in FIG. It may be filled with, and a surplus may be further formed.
  • the plate thicknesses of the lower plate 10 and the upper plate 20 are not necessarily limited, but considering the work efficiency and the shape as lap welding, the plate thickness of the upper plate 20 is 5.0 mm or less. It is desirable that the thickness be 4.0 mm or less. On the other hand, considering the heat input of arc welding, if the plate thickness is too thin, it will melt down during welding and welding will be difficult. Therefore, it is desirable that both the lower plate 10 and the upper plate 20 be 0.5 mm or more. ..
  • the present joining method for example, when a metal material other than steel, such as an Al alloy or a Mg alloy, is used as the first plate, a plurality of surfaces where dissimilar metals come into contact with each other are formed, so resin-based bonding is performed.
  • the agent is preferably used not only for the purpose of further improving the joint strength but also as a sealing material.
  • the adhesive 60 may be annularly applied around the welded portion at the joint surface between the lower plate 10 and the upper plate 20.
  • the adhesive agent 60 may be applied on the joint surfaces of the lower plate 10 and the upper plate 20 over the entire circumference around the welded portion, as in the second modified example shown in FIGS. This also includes the case of applying it to the entire joint surface except for the above. By this, the electrolytic corrosion rate of the lower plate 10, the upper plate 20, and the weld metal 40 can be reduced.
  • the adhesive 60 may be applied to the facing surface.
  • the adhesive 60 may be applied to the boundary between the non-insertion portion 232 of the joining auxiliary member 230 and the surface of the lower plate 10.
  • any of these third and fourth modified examples it is possible to prevent water from entering from the boundary portion between the non-insertion portion 232 of the joining auxiliary member 230 and the surface of the lower plate 10 and suppress electrolytic corrosion. ..
  • the application can be performed only during the insertion step, but in the fourth modification shown in FIGS. 75A and 75B, the application is performed during the insertion step or filling. It is possible even after the welding process.
  • the contact surface of the joining auxiliary member 230 with the lower plate 10 does not necessarily have to be a flat surface, as shown in FIG. 76A. That is, the contact surface of the joining auxiliary member 230 with the lower plate 10 may be provided with slits 234a and 234b as necessary, as shown in FIGS. 76B and 76C.
  • the adhesive 60 is applied to the gaps between the slits 234a and 234b. Since it enters and does not escape, stable adhesion is achieved and the sealing effect is also secured. Defining the thickness P H2 of non insertion portion 232 of the joining auxiliary member 230 in the case of such a non-planar surface is the largest part of the height.
  • the bulging portion 22 may be provided on the upper plate 20.
  • the height P H1 of the insertion portion 231 is designed to be less than the plate thickness B H of the lower plate 10 (see FIG. 66).
  • the upper plate 20 can be welded well simply by making a hole as described above.
  • the plate thickness of the lower plate 10 is large, it takes time to fill the holes 11 of the lower plate 10 in the welding process, resulting in poor efficiency.
  • the amount of heat becomes excessive, and the joining auxiliary member 230 is likely to melt down before the completion of filling. For this reason, if the bulging portion 22 is provided in the upper plate 20 by drawing, the volume of the hole 11 becomes small as shown in FIG. 78, so that the filling can be performed while preventing the burn-through defect.
  • the bulging portion 22 at the welded portion of the upper plate 20 the position can be easily aligned with the hole 11 provided in the lower plate 10, and the lower plate 10 and the upper plate 20 can be superposed. Will be easier. Since this effect is obtained regardless of the plate thickness, it is effective to perform the drawing process on the upper plate 20 regardless of the plate thickness.
  • the peripheral portion of the portion of the upper plate 20 where the bulging portion 22 is formed is restrained by the die 50. Then, as shown in FIG. 28B, the bulging portion 22 is formed by pressing the punch 51 by applying pressure to the portion where the bulging portion 22 is formed. Further, the drilling process of the lower plate 10 may be performed before or after the deep drawing process.
  • the welding method of the present embodiment can be said to be spot welding having a small joint area. Therefore, when joining the overlapping portions J of the practical members having a certain joint area, the main welding method is as shown in FIGS. 29A to 29C. As shown, multiple implementations may be performed. As a result, strong joining is performed at the overlapping portion J.
  • the present embodiment can be used for an open cross-section structure as shown in FIGS. 29B and 29C, but can be particularly preferably used for a closed cross-section structure as shown in FIG. 29A.
  • the outer peripheral surface of the insertion portion 231 is provided with at least one press-fitting projection 239, the width P D2 of the non-insertion portion 232 is larger than the diameter B D2 of the hole of the lower plate 10, and maximum diameter circle P D1 in contact with the outermost diameter of the at least two protrusions 239, or one of the lower plate diameter P D1 of a circle in contact with the outer peripheral surface of the outermost diameter portion and the insertion portion 231 of the protrusion 239
  • (C) A gas tungsten arc welding method using the welding wire as a non-electrolytic electrode filler.
  • (D) A plasma arc welding method using the welding wire as a non-electrolytic electrode filler.
  • (E) A covered arc welding method using a covered arc welding rod, which can obtain a weld metal 40 of an iron alloy or a Ni alloy, as a welding electrode.
  • (F) A laser welding method using the welding wire as a filler wire.
  • an inexpensive welding facility is used to attach the first plate (lower plate 10) made of a material other than steel and the second plate (upper plate 20) made of steel, such as Al alloy or Mg alloy, to each other. By using this, it is possible to join with strong and reliable quality, and it can be applied to an open cross-section structure and a closed cross-section structure without any limitation, and further, when the steel upper plate 20 is on the front side.
  • the height P H1 of the insertion portion 231 of the joining auxiliary member 230 is less than the plate thickness B H of the lower plate 10, and the bulging portion 22 is formed on the upper plate 20 by drawing, and the superposition process is performed.
  • the bulging portion 22 of the upper plate 20 is arranged in the hole 11 of the lower plate 10.
  • the adhesive 60 is formed on the superposing surfaces of at least one of the lower plate 10 and the upper plate 20 around the holes 11 and 21 of the lower plate 10 and the upper plate 20 all around. Is further provided. Thereby, the adhesive acts as a sealing material in addition to improving joint strength, and can reduce the electrolytic corrosion rate of the lower plate 10, the upper plate 20, and the weld metal 40.
  • the adhesive 60 is applied to at least one opposing surface between the non-inserting portion 232 of the joining auxiliary member 230 and the lower plate 10 facing the non-inserting portion 232. Also in this case, the adhesive 60 not only improves the joint strength but also acts as a sealing material and can reduce the electrolytic corrosion rate of the lower plate 10, the upper plate 20, and the weld metal 40.
  • the adhesive 60 is applied to the boundary between the non-insertion part 232 of the joining auxiliary member 230 and the surface of the lower plate 10. Also in this case, the adhesive 60 not only improves the joint strength but also acts as a sealing material and can reduce the electrolytic corrosion rate of the lower plate 10, the upper plate 20, and the weld metal 40.
  • the height P H1 of the insertion portion 231 of the joining auxiliary member 230 is 10% or more of the plate thickness B H of the lower plate 10 and less than the total plate thickness B H + F H of the lower plate 10 and the upper plate 20,
  • the insertion portion 231 provides a temporary restraining effect by caulking and secures a space filled with the weld metal 40.
  • the maximum circle C of diameter P D1 in contact with the outermost diameter of the at least two protrusions 239, or, a circle C of diameter P D1 in contact with the outer peripheral surface of the outermost diameter portion and the insertion portion 231 of the protrusion 239 Is 105% or more and 125% or less with respect to the diameter BD2 of the hole 11 of the lower plate 10, so that the joining assisting member 230 can be caulked and restrained in the hole 11 of the lower plate 10 with an appropriate caulking force.
  • the maximum outer diameter P D0 of the insertion portion 231 of the joining auxiliary member 230 is 80% or more and 104% or less with respect to the diameter B D2 of the hole 11 of the lower plate 10, it is It is possible to suppress the displacement of the plate 10 and ensure insertability.
  • the joining auxiliary member 230 is resistant to external stress in the plate thickness direction. Can act as a force.
  • the height P H2 of non insertion portion 232 of the auxiliary bonding member 230 since it is 150% or less than 50% of the thickness B H of the lower plate 10, the auxiliary bonding member 230, the thickness of the bonding auxiliary member 230 It can function as a resistance force to external stress in the direction, and can suppress an increase in weight.
  • unfilled height P H3 of the weld metal 40 from the surface of the upper plate 20 is 30% or less of the plate thickness F H of the upper plate 20, or, bore 21 of the upper plate 20 Since the surplus is formed on the surface of the upper plate while completely filling the joint, it is possible to secure the joint strength of the dissimilar material welded joint 1b.
  • the joining auxiliary member 230 of the present embodiment is solid and made of steel, and has a stepped outer shape having an insertion portion 231 and a non-insertion portion 232, and at least the outer peripheral surface of the insertion portion 231 has at least an outer peripheral surface.
  • One press-fitting protrusion 239 is provided, the width P D2 of the non-insertion portion 232 is larger than the diameter B D2 of the hole of the lower plate 10, and the maximum circle that is in contact with the outermost diameter portion of at least two protrusions 239 is formed.
  • the joining auxiliary member 230 is preferably used in the above-described welding method for joining dissimilar materials.
  • the dissimilar material welded joint 1b of the present embodiment includes a lower plate 10 made of a material other than steel, and a steel upper plate 20 joined to the lower plate 10, and the lower plate 10 and the upper plate 20 are , Has holes 11 and 21, respectively, and has a stepped outer shape having an insertion portion 231 and a non-insertion portion 232. At least one press-fitting protrusion 239 is provided on the outer peripheral surface of the insertion portion 231.
  • the width P D2 of the non-insertion portion 232 is larger than the diameter B D2 of the hole of the lower plate 10, and the diameter P D1 of the largest circle that is in contact with the outermost diameter portion of at least two protrusions 239, or one protrusion
  • the outer diameter portion of 239 and the outer peripheral surface of the insertion portion 231, the diameter of the circle P D1 is larger than the diameter B D2 of the hole of the lower plate 10 is further provided with a solid and steel joining auxiliary member 230,
  • the insertion portion 231 of the auxiliary member 230 is fixed in the hole of the lower plate 10, and the lower plate 10 and the upper plate 20 are stacked so that the hole of the lower plate 10 and the hole of the upper plate 20 are located coaxially with each other.
  • the holes of the upper plate 20 are filled with the weld metal of the iron alloy or the Ni alloy, and are melted by the weld metal 40 and the part of the melted upper plate 20 and the joining auxiliary member 230. Part W is formed.
  • the dissimilar material welded joint 1b including the first plate (lower plate 10) made of a material other than steel and the second plate (upper plate 20) made of steel is made strong by using inexpensive welding equipment.
  • they can be joined with high reliability and can be applied to open cross-section structures and closed cross-section structures without restriction, and can be applied when the steel upper plate 20 is on the front side.
  • a welding method for joining dissimilar materials which joins a first plate made of a material other than steel and a second plate made of steel, Drilling holes in the first plate and the second plate, respectively, It has a stepped outer shape having a shaft portion and a flange portion, and has a maximum outer diameter P D1 of the shaft portion, a width P D2 of the flange portion, and a diameter B D1 of the hole of the first plate.
  • P D2 > P D1 > B D1 and the shaft portion has a constricted portion on the flange side, and is a solid joining support member made of steel, or a step having a shaft portion and a flange portion.
  • the outer peripheral surface of the shaft portion is provided with at least one protrusion for press-fitting, the width P D2 of the flange portion is larger than the diameter B D2 of the hole of the first plate, and maximum diameter circle P D1 in contact with the outermost diameter of at least two of said projections, or the diameter P D1 of a circle in contact with the outer peripheral surface of the outermost diameter portion of one of the projections and the shaft portion is the first
  • a gas shield arc welding method in which a welding wire that produces the above-mentioned weld metal of an iron alloy or a Ni alloy is used as a welding electrode.
  • B A non-gas arc welding method using the welding wire as a welding electrode.
  • C A gas tungsten arc welding method using the welding wire as a non-electrolytic electrode filler.
  • D A plasma arc welding method using the welding wire as a non-electrolytic electrode filler.
  • E A coated arc welding method in which a coated arc welding rod from which the above-mentioned weld metal of an iron alloy or a Ni alloy is obtained is used as a welding electrode.
  • F A laser welding method using the welding wire as a filler wire.
  • the joining assisting member is press-fitted into the hole of the first plate such that the exposed surface of the flange portion is located substantially flush with or inside the surface of the first plate.
  • the welding method for joining dissimilar materials according to 1. (3) The welding method for joining dissimilar materials according to (2), wherein in the filling welding step, a laser is added to an arc as a heat source to perform welding in the method according to any one of (a) to (e).
  • the thickness P H of the auxiliary bonding member is not less less thickness B H1 of the first plate, A bulging portion is formed on the second plate by drawing,
  • the welding method for dissimilar material joining according to (2) or (3) wherein in the superposing step, the bulging portion of the second plate is arranged in the hole of the first plate.
  • the thickness P H of the auxiliary bonding member is not less less thickness B H1 of the first plate,
  • the thickness P H2 of the flange portion of the auxiliary bonding member wherein at first 20% to 80% of the thickness B H1 of the plate, to any one of (2) - (6)
  • One of (2) to (7), wherein the flange portion has a width P D2 of 110% or more and 200% or less with respect to the diameter B D1 of the hole of the first plate.
  • the unfilled height PH3 of the welding metal from the surface of the second plate is 30% or less of the plate thickness BH2 of the second plate.
  • the joining auxiliary member is placed on the hole of the first plate, and the shaft portion is press-fitted into the hole of the first plate,
  • the welding method for joining dissimilar materials according to (1) wherein the shaft portion constitutes an insertion portion and the flange portion constitutes a non-insertion portion.
  • (11) The welding method for joining dissimilar materials according to (10), wherein in the filling welding step, a laser is added to an arc as a heat source to perform welding in the method according to any one of (a) to (e).
  • the height P H1 of the insertion portion of the joining auxiliary member is less than the plate thickness B H of the first plate, A bulging portion is formed on the second plate by drawing,
  • the welding method for joining dissimilar materials according to any one of (10) to (12), further including a step of applying an adhesive throughout.
  • an adhesive is applied to at least one opposing surface between the non-inserting portion of the joining auxiliary member and the first plate facing the non-inserting portion, (10) to The welding method for joining dissimilar materials according to any one of (13).
  • an adhesive is applied to the boundary between the non-inserting portion of the joining auxiliary member and the surface of the first plate, (10) to (14) ) The welding method for joining dissimilar materials according to any one of 1).
  • the height P H1 of the insertion portion of the joining auxiliary member is 10% or more of the plate thickness B H of the first plate, and the total plate thickness B H + F of the first plate and the second plate.
  • the maximum diameter P D1 of the insertion portion of the joining auxiliary member is 102% or more and 125% or less with respect to the diameter B D1 or the diameter B D2 of the hole of the first plate, (10) to (16)
  • the width P D2 of the non-insertion portion of the joining auxiliary member is 105% or more of the diameter B D1 or the diameter B D2 of the hole of the first plate, or (10) to (17) The welding method for joining dissimilar materials according to one.
  • the height P H2 of the non-insertion portion of the joining auxiliary member is 50% or more and 150% or less of the plate thickness B H of the first plate, any one of (10) to (18)
  • the welding method for joining dissimilar materials described in.
  • the weld metal, the second unfilled height P H3 of the weld metal from the surface of the plate is 30% or less of the plate thickness F H of the second plate
  • a dissimilar material welded joint provided with a first plate made of a material other than steel and a second plate made of steel, which is joined to the first plate,
  • the first plate and the second plate respectively have holes located coaxially with each other, It has a stepped outer shape having a shaft portion and a flange portion, and has a maximum outer diameter P D1 of the shaft portion, a width P D2 of the flange portion, and a diameter B D1 of the hole of the first plate.
  • Is P D2 > P D1 > B D1 and the shaft portion has a steel joint auxiliary member having a constricted portion on the flange side, or a stepped outer shape having a shaft portion and a flange portion.
  • At least one press-fitting protrusion is provided on the outer peripheral surface of the shaft portion, the width P D2 of the flange portion is larger than the diameter B D2 of the hole of the first plate, and at least two of the above maximum diameter circle P D1 in contact with the outermost diameter of projections or holes diameter P D1 of a circle in contact with the outer peripheral surface of the outermost diameter portion of one of the projections and the shaft portion of the first plate Of a solid and steel joining assisting member having a diameter larger than the diameter B D2 of At least the shaft portion of the joining assisting member is fixed in the hole of the first plate, The first plate and the second plate are overlapped so that the shaft portion of the joining assisting member faces the hole of the second plate, The hole of the second plate is filled with a weld metal of an iron alloy or a Ni alloy, and is melted by the weld metal and a part of the melted second plate and the joining auxiliary member. A dissimilar material welded joint is formed.
  • the joining assisting member is fixed in the hole of the first plate such that the exposed surface of the flange portion is located substantially flush with or inside the surface of the first plate.
  • Dissimilar material welded joint (27) The dissimilar material welded joint according to (26), in which the bulging portion formed on the second plate is arranged in the hole of the first plate.
  • An adhesive agent provided on the overlapping surface of at least one of the first plate and the second plate around the holes of the first and second plates over the entire circumference.
  • the insertion portion of the joining auxiliary member is fixed in the hole of the first plate,
  • an adhesive is provided on a facing surface between the non-insertion portion of the joining auxiliary member and the first plate facing the non-insertion portion.
  • Dissimilar material welded joint described.
  • the height P H1 of the insertion portion of the joining auxiliary member is 10% or more of the plate thickness B H of the first plate, the total of the plate thickness of the first plate and the plate thickness of the second plate. Less than B H + F H , (34)- The dissimilar material welded joint according to any one of (38).
  • the maximum diameter P D1 of the insertion portion of the joining auxiliary member is 102% or more and 125% or less with respect to the diameter B D1 or the diameter B D2 of the hole of the first plate, (34) to (39)
  • the width P D2 of the non-insertion portion of the joining auxiliary member is 105% or more of the diameter B D1 or the diameter B D2 of the hole of the first plate, or (34) to (40) Dissimilar material welded joint according to one.
  • the height P H2 of the non-insertion portion of the joining auxiliary member is 50% or more and 150% or less of the plate thickness B H of the first plate, (34) to (41) Dissimilar material welded joint described in.
  • the second unfilled height P H3 of the weld metal from the surface of the plate is not more than 30% of the thickness F H of the second plate, one of (34) - (42) Dissimilar material welded joint according to any one of the above. (44) Any one of (34) to (42), wherein the weld metal completely fills the inside of the hole of the second plate and forms a swell on the surface of the second plate. Dissimilar material welded joint described in. (45) The dissimilar material welded joint according to any one of (34) to (44), wherein the joining assisting member is press-fitted and fixed in the hole of the first plate.

Abstract

鋼以外の材料と、鋼との異材を、安価な溶接設備を用いて、強固かつ信頼性の高い品質で接合でき、かつ開断面構造にも閉断面構造にも制限無く適用できる、異材接合用溶接法を提供する。鋼以外の材料からなる下板(10)と鋼製の上板(20)は、円形の穴(11、21)をそれぞれ有する。異材溶接継手(1)は、軸部(31)とフランジ部(32)とを持った段付きの外形形状を有し、軸部(31)がフランジ部側でくびれ部を有する、又は、軸部(31)の外周面に少なくとも1つの圧入用突起部を有する、中実、かつ鋼製の接合補助部材(30)を備える。接合補助部材(30)は、下板(10)に設けられた穴(11)に圧入され、下板(10)及び上板(20)は、上板(20)の穴(21)から接合補助部材(30)の軸部(31)が臨むように重ね合される。上板(20)の穴(21)は、鉄合金、又は、Ni合金の溶接金属(40)で充填される。

Description

異材接合用溶接法、接合補助部材、及び、異材溶接継手
 本発明は、異材接合用溶接法、接合補助部材、及び、異材溶接継手に関する。
 自動車を代表とする輸送機器には、(a)有限資源である石油燃料消費、(b)燃焼に伴って発生する地球温暖化ガスであるCO、(c)走行コストといった各種の抑制を目的として、走行燃費の向上が常に求められている。その手段としては、電気駆動の利用など動力系技術の改善の他に、車体重量の軽量化も改善策の一つである。軽量化には現在の主要材料となっている鋼を、軽量素材であるアルミニウム合金、マグネシウム合金、炭素繊維などに置換する手段がある。しかし、全てをこれら軽量素材に置換するには、高コスト化や強度不足になる、といった課題があり、解決策として鋼と軽量素材を適材適所に組み合わせた、いわゆるマルチマテリアルと呼ばれる設計手法が注目を浴びている。
 鋼と上記軽量素材を組み合わせるには、必然的にこれらを接合する箇所が出てくる。鋼同士やアルミニウム合金同士、マグネシウム合金同士では容易である溶接が、異材では極めて困難であることが知られている。この理由として、鋼とアルミニウムあるいはマグネシウムの溶融混合部には極めて脆い性質である金属間化合物(IMC)が生成し、引張や衝撃といった外部応力で溶融混合部が容易に破壊してしまうことにある。このため、抵抗スポット溶接法やアーク溶接法といった溶接法が異材接合には採用できず、他の接合法を用いるのが一般的である。鋼と炭素繊維の接合も、後者が金属ではないことから溶接を用いることができない。
 従来の異材接合技術の例としては、鋼素材と軽量素材の両方に貫通穴を設けてボルトとナットで上下から拘束する手段があげられる。また、他の例としては、かしめ部材を強力な圧力をかけて片側から挿入し、かしめ効果によって拘束する手段が知られている(例えば、特許文献1参照)。
 さらに、他の例としては、アルミ合金素材に鋼製の接合部材をポンチとして押し込むことで穴あけと接合部材を仮拘束し、次に鋼素材と重ね合わせ、上下両方から銅電極にて挟み込んで、圧力と高電流を瞬間的に与えて鋼素材と接合部材を抵抗溶接する手段が提案されている(例えば、特許文献2参照)。
 また、他の例としては、摩擦攪拌接合ツールを用いてアルミ合金と鋼の素材同士を直接接合する手段も開発されている。(例えば、特許文献3参照)。
日本国特開2002-174219号公報 日本国特開2009-285678号公報 日本国特許第5044128号公報
 しかしながら、ボルトとナットによる接合法は、鋼素材と軽量素材が閉断面構造を構成するような場合(図29A参照)、ナットを入れることができず適用できない。また、適用可能な開断面構造の継手の場合(図29B、図29C参照)でも、ナットを回し入れるのに時間を要し能率が悪いという課題がある。
 また、特許文献1に記載の接合法は、比較的容易な方法ではあるが、鋼の強度が高い場合には挿入できない問題があり、かつ、接合強度は摩擦力とかしめ部材の剛性に依存するので、高い接合強度が得られないという問題がある。また、挿入に際しては表・裏両側から治具で押さえ込む必要があるため、閉断面構造には適用できないという課題もある。
 さらに、特許文献2に記載の接合法も、閉断面構造には適用できず、また、抵抗溶接法は設備が非常に高価であるという課題がある。
 特許文献3に記載の接合法は、アルミ合金素材を低温領域で塑性流動させながら鋼素材面に圧力をかけることで、両素材が溶融し合うことがなく、金属間化合物の生成を防止しながら金属結合力が得られるとされ、鋼と炭素繊維も接合可能という研究成果もある。しかしながら、本接合法も閉断面構造には適用できず、また高い圧力を必要とするので機械的に大型となり、高価であるという問題がある。また、接合力としてもそれほど高くならない。さらに、一般的に強度と融点が高い鋼が表側に配置される場合には適用できない。
 したがって、既存の異材接合技術は、(i)部材や開先形状が開断面構造に限定される、(ii)接合強度が低い、(iii)設備コストが高価である、(iv)鋼が表側の場合に適用できないといった一つ以上の問題を持っている。このため、種々の素材を組み合わせたマルチマテリアル設計を普及させるためには、(i’)開断面構造と閉断面構造の両方に適用できる、(ii’)接合強度が十分に高く、かつ信頼性も高い、(iii’)低コストである、(iv’)鋼が表側の場合に適用できるという全ての要素を兼ね備えた、使いやすい新技術が求められている。
 本発明は、前述した課題に鑑みてなされたものであり、その目的は、鋼以外の材料と鋼との異材を、既に世に普及している安価な溶接設備を用いて、強固かつ信頼性の高い品質で接合でき、かつ開断面構造にも閉断面構造にも制限無く適用できる、異材接合用溶接法、接合補助部材、及び、異材溶接継手を提供することにある。
 ここで、例えば、Al合金若しくはMg合金のような鋼以外の材料と、鋼とを溶融接合させようとすると、上述したように金属間化合物(IMC)の生成が避けられない。一方、鋼同士の溶接は最も高い接合強度と信頼性を示すことは、科学的にも実績的にも自明である。
 そこで、本発明者らは、鋼同士の溶接を結合力として用い、さらに拘束力を利用して異材の接合を達成する手段を考案した。
 したがって、本発明の上記目的は、下記の構成により達成される。
(1) 鋼以外の材料からなる第1の板と、鋼製の第2の板と、を接合する異材接合用溶接法であって、
 前記第1の板及び前記第2の板に穴をそれぞれ開ける工程と、
 軸部とフランジ部とを持った段付きの外形形状を有し、前記軸部の最大外径PD1と、前記フランジ部の幅PD2と、前記第1の板の穴の直径BD1との関係がPD2>PD1>BD1であり、前記軸部がフランジ部側でくびれ部を有する、中実、かつ鋼製の接合補助部材、又は、軸部とフランジ部とを持った段付きの外形形状を有し、前記軸部の外周面には少なくとも1つの圧入用突起部が設けられ、前記フランジ部の幅PD2が前記第1の板の穴の直径BD2より大きく、かつ、少なくとも2つの前記突起部の最外径部と接する最大円の直径PD1、若しくは、1つの前記突起部の最外径部と前記軸部の外周面と接する円の直径PD1が前記第1の板の穴の直径BD2よりも大きい、中実、かつ鋼製の接合補助部材における、少なくとも前記軸部を前記第1の板の穴に圧入する工程と、
 前記第2の板の穴から前記接合補助部材の軸部が臨むように、前記第1の板と前記第2の板を重ね合わせる工程と、
 以下の(a)~(f)のいずれかの手法によって、前記第2の板の穴内を溶接金属で充填すると共に、前記第2の板及び前記接合補助部材を溶接する工程と、
を備える異材接合用溶接法。
(a)鉄合金、又は、Ni合金の前記溶接金属が得られる溶接ワイヤを溶極として用いるガスシールドアーク溶接法。
(b)前記溶接ワイヤを溶極として用いるノンガスアーク溶接法。
(c)前記溶接ワイヤを非溶極フィラーとして用いるガスタングステンアーク溶接法。
(d)前記溶接ワイヤを非溶極フィラーとして用いるプラズマアーク溶接法。
(e)鉄合金、又は、Ni合金の前記溶接金属が得られる被覆アーク溶接棒を溶極として用いる被覆アーク溶接法。
(f)前記溶接ワイヤをフィラーワイヤとして用いるレーザ溶接法。
(2) (1)に記載の異材接合用溶接法に用いられ、
 中実、かつ鋼製で、軸部とフランジ部とを持った段付きの外形形状を有し、前記軸部の最大外径PD1と、前記フランジ部の幅PD2と、前記第1の板の穴の直径BD1との関係がPD2>PD1>BD1であり、前記軸部がフランジ部側でくびれ部を有する、接合補助部材。
(3) (1)に記載の異材接合用溶接法に用いられ、
 中実、かつ鋼製で、軸部とフランジ部とを持った段付きの外形形状を有し、前記軸部の外周面には少なくとも1つの圧入用突起部が設けられ、前記フランジ部の幅PD2が前記第1の板の穴の直径BD2より大きく、かつ、少なくとも2つの前記突起部の最外径部と接する最大円の直径PD1、又は、1つの前記突起部の最外径部と前記軸部の外周面と接する円の直径PD1が前記第1の板の穴の直径BD2よりも大きい、接合補助部材。
(4) 鋼以外の材料からなる第1の板と、該第1の板に接合される、鋼製の第2の板と、を備える異材溶接継手であって、
 前記第1の板及び前記第2の板は、互いに同軸上に位置する穴をそれぞれ有し、
 軸部とフランジ部とを持った段付きの外形形状を有し、前記軸部の最大外径PD1と、前記フランジ部の幅PD2と、前記第1の板の穴の直径BD1との関係がPD2>PD1>BD1であり、前記軸部がフランジ部側でくびれ部を有する鋼製の接合補助部材、又は、軸部とフランジ部とを持った段付きの外形形状を有し、前記軸部の外周面には少なくとも1つの圧入用突起部が設けられ、前記フランジ部の幅PD2が前記第1の板の穴の直径BD2より大きく、かつ、少なくとも2つの前記突起部の最外径部と接する最大円の直径PD1、又は、1つの前記突起部の最外径部と前記軸部の外周面と接する円の直径PD1が前記第1の板の穴の直径BD2よりも大きい、中実、かつ鋼製の接合補助部材をさらに備え、
 前記接合補助部材の少なくとも前記軸部は、前記第1の板の穴内に固定されており、
 前記第1の板及び前記第2の板は、前記第2の板の穴から前記接合補助部材の軸部が臨むように重ね合されており、
 前記第2の板の穴は、鉄合金、又は、Ni合金の溶接金属で充填されると共に、前記溶接金属と、溶融された前記第2の板及び前記接合補助部材の一部とによって溶融部が形成される、異材溶接継手。
 本発明によれば、鋼以外の材料と、鋼との異材を、安価な溶接設備を用いて、強固かつ信頼性の高い品質で接合でき、かつ開断面構造にも閉断面構造にも制限無く適用できる、異材接合用溶接法、接合補助部材、及び、異材溶接継手を提供することにある。さらに、鋼製の第2の板が表側の場合に適用できる。
本発明の第1実施形態に係る異材溶接継手の斜視図である。 図1AのI-I線に沿った異材溶接継手の断面図である。 第1実施形態の接合補助部材の側面図である。 第1実施形態の接合補助部材の正面図である。 第1実施形態の接合補助部材の第1変形例の側面図である。 第1実施形態の接合補助部材の第2変形例の側面図である。 第1変形例の接合補助部材を用いた異材溶接継手の図1Bに対応する断面図である。 第1実施形態の接合補助部材の第3変形例の正面図である。 第1実施形態の接合補助部材の第4変形例の正面図である。 第1実施形態の接合補助部材の第5変形例の正面図である。 第1実施形態の接合補助部材の第6変形例の正面図である。 第1実施形態の接合補助部材の第7変形例の正面図である。 第1実施形態の接合補助部材の第8変形例の正面図である。 第1実施形態の異材溶接継手の断面図である。 図6AのVI-VI線に沿った断面図である。 第1実施形態の異材接合用溶接法の穴開け作業を示す図である。 第1実施形態の異材接合用溶接法の圧入作業を示す図である。 第1実施形態の異材接合用溶接法の圧入作業後の下板の状態を示す図である。 第1実施形態の異材接合用溶接法の重ね合わせ作業を示す図である。 第1実施形態の異材接合用溶接法の溶接作業を示す図である。 第1実施形態の異材接合用溶接法の他の溶接作業を示す図である。 圧入作業の過程を説明するための断面図である。 圧入作業の過程において、フランジ部の露出面が下板の表面よりも内側に位置するまで圧入される場合を説明するための断面図である。 接合補助部材が圧入された下板に上板を重ね合わせた状態の第1例を示す断面図である。 接合補助部材が圧入された下板に上板を重ね合わせた状態の第2例を示す断面図である。 接合補助部材が圧入された下板に上板を重ね合わせた状態の第3例を示す断面図である。 接合補助部材が圧入された下板に上板を重ね合わせた状態の第4例を示す断面図である。 第1実施形態の接合補助部材の第9変形例を示す側面図である。 第1実施形態の異材接合用溶接法のさらに他の溶接作業を示す図である。 レーザ溶接時に、スクリュー運動によるレーザの移動を示す図である。 レーザ溶接時に、往復運動によるレーザの移動を示す図である。 溶接金属の溶込みを説明するための異材溶接継手の断面図である。 溶接金属の溶込みを説明するための異材溶接継手の断面図である。 アルミ製の下板と鋼製の上板を重ねて貫通溶接した比較例としての異材溶接継手の斜視図である。 図16Aの異材溶接継手の断面図である。 アルミ製の下板と穴を有する鋼製の上板を重ねて貫通溶接した他の比較例としての異材溶接継手の斜視図である。 図16Aの異材溶接継手にせん断引張が作用した状態を示す断面図である。 図17Aの異材溶接継手を示す斜視図である。 図16Aの異材溶接継手に上下剥離引張が作用した状態を示す断面図である。 図18Aの異材溶接継手を示す斜視図である。 第1実施形態の異材溶接継手の断面図である。 図19Aの異材溶接継手に上下剥離引張が作用した状態を示す斜視図である。 第1実施形態の異材溶接継手が曲げ変形した状態を示す斜視図である。 接合補助部材の寸法関係を説明するための上板、下板、及び接合補助部材の断面図である。 溶接金属の未充填高さを説明するための異材溶接継手の断面図である。 上板の穴が充填され余盛りが形成された異材溶接継手の断面図である。 上板の穴が充填された異材溶接継手に板厚方向(3次元方向)の外部応力が作用した状態を示す断面図である。 未充填高さが高い場合の異材溶接継手を示す断面図である。 図23Aの異材溶接継手に板厚方向(3次元方向)の外部応力が作用した状態を示す断面図である。 第1実施形態の異材接合用溶接法の第1変形例を説明するための上板と下板の斜視図である。 第1実施形態の異材接合用溶接法の第1変形例を説明するための上板と下板の断面図である。 第1実施形態の異材接合用溶接法の第2変形例を説明するための上板と下板の斜視図である。 第1実施形態の異材接合用溶接法の第2変形例を説明するための上板と下板の断面図である。 第1実施形態の接合補助部材の第10変形例を示す側面図である。 第1実施形態の異材接合用溶接法の第3変形例に係る上板の絞り加工を説明するための断面図である。 第1実施形態の異材接合用溶接法の第3変形例に係る溶接後の異材溶接継手の断面図である。 図27の上板に膨出部を絞り加工する前の状態を示す図である。 図27の上板に膨出部が絞り加工された後の状態を示す図である。 第1実施形態の異材溶接継手が適用された閉断面構造を示す斜視図である。 第1実施形態の異材溶接継手が適用された、L字板と平板による開断面構造を示す斜視図である。 第1実施形態の異材溶接継手が適用された、2枚の平板による開断面構造を示す斜視図である。 第1実施形態の異材接合用溶接法の第4変形例を示す図である。 第1実施形態の異材接合用溶接法の第5変形例を示す図である。 本発明の第2実施形態に係る異材溶接継手の斜視図である。 図32AのXXXII-XXXII線に沿った異材溶接継手の断面図である。 第2実施形態の接合補助部材の側面図である。 第2実施形態の接合補助部材の正面図である。 第2実施形態の接合補助部材の第1変形例の側面図である。 第2実施形態の接合補助部材の第2変形例の側面図である。 第1変形例の接合補助部材を用いた異材溶接継手の図32Bに対応する断面図である。 第2実施形態の異材接合用溶接法の穴開け作業を示す図である。 第2実施形態の異材接合用溶接法の圧入作業を示す図である。 第2実施形態の異材接合用溶接法の圧入作業後の下板の状態を示す図である。 第2実施形態の異材接合用溶接法の重ね合わせ作業を示す図である。 第2実施形態の異材接合用溶接法の溶接作業を示す図である。 第2実施形態の異材接合用溶接法の他の溶接作業を示す図である。 圧入作業の過程を説明するための断面図である。 接合補助部材が圧入された下板に上板を重ね合わせた状態の第1例を示す断面図である。 接合補助部材が圧入された下板に上板を重ね合わせた状態の第2例を示す断面図である。 接合補助部材が圧入された下板に上板を重ね合わせた状態の第3例を示す断面図である。 接合補助部材が圧入された下板に上板を重ね合わせた状態の第4例を示す断面図である。 第2実施形態の接合補助部材の第3変形例を示す側面図である。 溶接金属の溶込みを説明するための異材溶接継手の断面図である。 溶接金属の溶込みを説明するための異材溶接継手の断面図である。 第2実施形態の異材溶接継手の断面図である。 図42Aの異材溶接継手に上下剥離引張が作用した状態を示す斜視図である。 第2実施形態の異材溶接継手が曲げ変形した状態を示す斜視図である。 接合補助部材の寸法関係を説明するための上板、下板、及び接合補助部材の断面図である。 溶接金属の未充填高さを説明するための異材溶接継手の断面図である。 上板の穴が充填され余盛りが形成された異材溶接継手の断面図である。 上板の穴が充填された異材溶接継手に板厚方向(3次元方向)の外部応力が作用した状態を示す断面図である。 未充填高さが高い場合の異材溶接継手を示す断面図である。 図46Aの異材溶接継手に板厚方向(3次元方向)の外部応力が作用した状態を示す断面図である。 第2実施形態の異材接合用溶接法の第1変形例を説明するための上板と下板の斜視図である。 第2実施形態の異材接合用溶接法の第1変形例を説明するための上板と下板の断面図である。 第2実施形態の異材接合用溶接法の第2変形例を説明するための上板と下板の斜視図である。 第2実施形態の異材接合用溶接法の第2変形例を説明するための上板と下板の断面図である。 第2実施形態の異材接合用溶接法の第3変形例を説明するための上板と下板の斜視図である。 第2実施形態の異材接合用溶接法の第3変形例を説明するための上板と下板の断面図である。 第2実施形態の異材接合用溶接法の第4変形例を説明するための上板と下板の斜視図である。 第2実施形態の異材接合用溶接法の第4変形例を説明するための上板と下板の断面図である。 第2実施形態の接合補助部材の第4変形例を示す、上面図、側面図、及び下面図である。 第2実施形態の接合補助部材の第5変形例を示す、上面図、側面図、及び下面図である。 第2実施形態の接合補助部材の第6変形例を示す側面図である。 第2実施形態の異材接合用溶接法の第5変形例に係る溶接後の異材溶接継手の断面図である。 本発明の第3実施形態に係る異材溶接継手の斜視図である。 図54AのLIV-LIV線に沿った異材溶接継手の断面図である。 第3実施形態の接合補助部材の斜視図である。 第3実施形態の接合補助部材の側面図、及びLV-LV線に沿った断面図である。 第3実施形態の接合補助部材の第1変形例の要部側面図である。 第3実施形態の接合補助部材の第2変形例の要部側面図である。 第3実施形態の接合補助部材の第3変形例の要部側面図である。 第3実施形態の接合補助部材の第4変形例の要部側面図である。 第3実施形態の接合補助部材の第5変形例の要部側面図である。 第3実施形態の接合補助部材の第6変形例の要部側面図である。 第3実施形態の接合補助部材の第7変形例の要部側面図である。 第3実施形態の接合補助部材の第8変形例の要部側面図である。 第3実施形態の接合補助部材の第9変形例の要部側面図である。 第3実施形態の接合補助部材の第10変形例の斜視図である。 第3実施形態の接合補助部材の第11変形例の斜視図である。 第3実施形態の接合補助部材の第12変形例の側面図、及びLVIII-LVIII線に沿った断面図である。 第3実施形態の接合補助部材の第13変形例の側面図、及びLVIII-LVIII線に沿った断面図である。 第3実施形態の接合補助部材の第14変形例の側面図、及びLVIII-LVIII線に沿った断面図である。 第3実施形態の接合補助部材の第15変形例の側面図、及びLVIII-LVIII線に沿った断面図である。 第3実施形態の接合補助部材の第16変形例の側面図、及びLVIII-LVIII線に沿った断面図である。 第3実施形態の接合補助部材の第17変形例の斜視図である。 第17変形例の接合補助部材を用いた異材溶接継手の図54Bに対応する断面図である。 第3実施形態の異材接合用溶接法の穴開け作業を示す図である。 第3実施形態の異材接合用溶接法の圧入作業を示す図である。 第3実施形態の異材接合用溶接法の圧入作業後の下板の状態を示す図である。 第3実施形態の異材接合用溶接法の重ね合わせ作業を示す図である。 第3実施形態の異材接合用溶接法の溶接作業を示す図である。 第3実施形態の異材接合用溶接法の他の溶接作業を示す図である。 圧入作業の過程を説明するための断面図である。 接合補助部材が圧入された下板に上板を重ね合わせた状態の第1例を示す断面図である。 接合補助部材が圧入された下板に上板を重ね合わせた状態の第2例を示す断面図である。 接合補助部材が圧入された下板に上板を重ね合わせた状態の第3例を示す断面図である。 接合補助部材が圧入された下板に上板を重ね合わせた状態の第4例を示す断面図である。 接合補助部材が圧入された下板に上板を重ね合わせた状態の第5例を示す断面図である。 溶接金属の溶込みを説明するための異材溶接継手の断面図である。 溶接金属の溶込みを説明するための異材溶接継手の断面図である。 第3実施形態の異材溶接継手の断面図である。 図65Aの異材溶接継手に上下剥離引張が作用した状態を示す斜視図である。 第3実施形態の異材溶接継手が曲げ変形した状態を示す斜視図である。 接合補助部材の寸法関係を説明するための上板、下板、及び接合補助部材の断面図である。 溶接金属の未充填高さを説明するための異材溶接継手の断面図である。 上板の穴が充填され余盛りが形成された異材溶接継手の断面図である。 上板の穴が充填された異材溶接継手に板厚方向(3次元方向)の外部応力が作用した状態を示す断面図である。 未充填高さが高い場合の異材溶接継手を示す断面図である。 図69Aの異材溶接継手に板厚方向(3次元方向)の外部応力が作用した状態を示す断面図である。 第3実施形態の異材溶接継手の断面図である。 図70AのLXX-LXX線に沿った断面図である。 接合補助部材の第24変形例を示す側面図である。 異材接合用溶接法の第1変形例を説明するための上板と下板の斜視図ある。 異材接合用溶接法の第1変形例を説明するための上板と下板の断面図である。 異材接合用溶接法の第2変形例を説明するための上板と下板の斜視図である。 異材接合用溶接法の第2変形例を説明するための上板と下板の断面図である。 異材接合用溶接法の第3変形例を説明するための上板と下板の斜視図である。 異材接合用溶接法の第3変形例を説明するための上板と下板の断面図である。 異材接合用溶接法の第4変形例を説明するための上板と下板の斜視図である。 異材接合用溶接法の第4変形例を説明するための上板と下板の断面図である。 図56Cの第3変形例の接合補助部材を示す上面図、側面図、及び下面図である。 接合補助部材の第25変形例を示す上面図、側面図、及び下面図である。 接合補助部材の第26変形例を示す上面図、側面図、及び下面図である。 接合補助部材の第27変形例を示す側面図である。 異材接合用溶接法の第5変形例に係る溶接後の異材溶接継手の断面図である。
 以下、本発明の各実施形態に係る異材接合用溶接法、接合補助部材、及び、異材溶接継手を図面に基づいて詳細に説明する。
[第1実施形態]
 第1実施形態の異材接合用溶接法は、互いに重ね合わせされる、アルミニウム合金又はマグネシウム合金製の下板10(第1の板)と、鋼製の上板20(第2の板)とを、鋼製の接合補助部材30を介して、後述するアーク溶接法又はレーザ溶接法によって接合することで、図1A及び図1Bに示すような異材溶接継手1を得るものである。
 下板10及び上板20には、板厚方向に貫通して、互いに同軸上に位置する円形の穴11、21がそれぞれ設けられている(図7A参照)。下板10の穴11には、接合補助部材30全体が圧力をかけて挿入される。
 図2A及び図2Bに示すように、接合補助部材30は、軸部31と、該軸部31に対して外向きのフランジ部32と、を持った段付きの外形形状を有する。軸部31及びフランジ部32は、中実に形成されている。
 また、接合補助部材30は、後述するように、軸部31の最大外径PD1と、フランジ部32の幅PD2と、下板10の穴11の直径BD1との関係が、PD2>PD1>BD1を満たすと共に、全体の厚さPが下板10の板厚BH1以下に設計される(図20参照)。
 なお、上板20の穴21の直径は、後述する溶接金属40で充填できる大きさであればよく、下板10の穴11の直径BD1と同じでもよいし、直径BD1より大きくても、小さくてもよい。
 さらに、本実施形態では、軸部31の外形形状は、フランジ部側でくびれ部39を有する構成としている。具体的に、軸部31は、外周面が先端からフランジ部32側に向かって徐々に拡径し、最大外径PD1を規定するテーパ部35と、該テーパ部35の最大外径PD1よりも小径の小径円筒部36と、を有する。したがって、小径円筒部36によって、軸部31の外形形状は、フランジ部側でくびれ部39を有する。
 軸部31の外形形状は、フランジ部側でくびれ部39を有することで、下板10にかしめ拘束力を持って接合補助部材30を固定するものであれば、特に限定されない。例えば、図3Aに示すように、軸部31は、外周面が先端からフランジ部32まで徐々に縮径する縮径テーパ部37としてもよい。また、図3Bに示すように、軸部31は、先端側に設けられた大径円筒部38と、フランジ部側に設けられた小径円筒部36と、で構成してもよい。
 なお、くびれ部39における機能は、図2A、図3A、図3Bの接合補助部材30のいずれであっても実質的に変わらないため、任意の接合補助部材30を用いて以降の説明を行っている。また、図4は、図3Aの接合補助部材30を用いた場合の異材溶接継手1の図1Bに対応する断面図である。
 接合補助部材30のフランジ部32の外形形状は、図2Bに示すような六角形に限定されず、下板10に開けられた穴11を塞いでいれば、任意の形状とすることができる。つまり、図5Aに示す円形や、図5Bに示す楕円形、図2B、図5C~図5Fに示す四角形以上の多角形でもよい。また、図5Dに示すように、多角形の角部を丸くしてもよい。
 また、本実施形態では、フランジ部32は下板10内に圧入されて用いられる。このため、下板10と上板20とが1個のみの接合補助部材30で接合される場合、真円形のフランジ部32では、下板10に強い水平方向の回転力FRが加わると、接合補助部材30を中心に回るように下板10が回転してしまう可能性がある。このため、フランジ部32の外径形状を、楕円形や多角形とすることで、図6Bに示すように、回転力FRが加わっても、下板10が上板20に対して相対的に回転するのを防止することができる。
 なお、これらの接合補助部材30では、後述するフランジ部32の幅PD2は、最も短い対向面間距離で規定される。
 このように、接合補助部材30全体が下板10に圧入されることで、軸部31は下板10の穴11と同軸上に位置している。
 また、上板20の穴21には、アーク溶接によってフィラー材(溶接材料)が溶融した、鉄合金、又は、Ni合金の溶接金属40が充填されると共に、溶接金属40と、溶融された上板20及び接合補助部材30の一部とによって溶融部Wが形成される。したがって、溶融部Wは、上板20の穴21内にも配置されて、接合補助部材30と上板20とを溶接しており、これによって、接合補助部材30が圧入された下板10と上板20とが接合される。
 なお、上述の第1実施形態では、下板10及び上板20にそれぞれ円形の穴11及び穴21が設けられているが、接合補助部材30の軸部31を挿入することが可能であれば、穴11及び穴21の形状は円形に限定されず、他の種々の形状で設けることができる。例えば、三角形、四角形、それ以上の多角形、及び楕円等の形状を採用することができる。穴11又は穴21が円形以外の穴の場合における、穴の直径BD1は、穴の内接円の直径により定義される。
 以下、異材溶接継手1を構成する異材接合用溶接法について、図7A~図7Eを参照して説明する。
 まず、図7Aに示すように、下板10及び上板20に穴11,21をそれぞれ開ける穴開け作業を行う(ステップS1)。
 次に、図7B及び図7Cに示すように、接合補助部材30全体を、下板10の表面(上板20と接合された状態での、下板10の下面)10aから、下板10の穴11に圧入する(ステップS2)。
 さらに、図7Dに示すように、接合補助部材30が取り付けられた下板10を反転させ、上板20の穴21から接合補助部材30の軸部31が臨むように、下板10の上に上板20を重ね合わせる重ね合わせ作業を行う(ステップS3)。すなわち、この状態では、下板10に圧入された接合補助部材30の軸部31がフランジ部32よりも上板20側に位置し、かつ、下板10の穴11と上板20の穴21とが同軸上に位置する。
 そして、図7E又は図8に示すように、以下に詳述する(a)溶極式ガスシールドアーク溶接法、(b)ノンガスアーク溶接法、(c)ガスタングステンアーク溶接法、(d)プラズマアーク溶接法、(e)被覆アーク溶接法のいずれかのアーク溶接作業、又は、(f)レーザ溶接作業を行うことで、下板10と上板20とを接合する(ステップS4)。
 なお、図7Eは、(a)溶極式ガスシールドアーク溶接法を用いてアーク溶接作業が行われた場合を示している。
 ステップS1の穴開け作業の具体的な手法としては、a)ポンチを用いた打抜き、b)金型を用いたプレス型抜き、c)レーザ、プラズマ、ウォータージェット法などによる切断があげられる。
 ステップS2の圧入作業では、図9に示すように、フランジ部32の露出面32aが下板10の表面10aと略面一な同一面となるまで、接合補助部材30が、下板10の表面10a側から穴11に圧入される。フランジ部32が下板10の表面10aより張り出していると美観が悪いだけでなく、下板10の上に他の部材が組み合わさる場合、接合補助部材30の張り出しが邪魔になる虞があるからである。また、下板10の表面10aが溶接後も平坦性を維持することは設計自由度の面で価値がある。
 ただし、接合補助部材30の押し込み深さについては、図10に示すように、下板10の表面10aより陥没していても、継手強度にはさほど悪影響を与えないことから、許容される。
 一方、下板10に対して、圧入後の接合補助部材30の下面(軸部31の先端面)の位置は制限されない。ただし、圧入後にすぐに溶接せず、接合補助部材30が圧入された下板10をプレス成形する場合には、下板10の表面からの飛び出しが邪魔になる。また、接合時に上板20の穴21の直径(穴径)が接合補助部材30の軸部31の外径よりも小さい場合は、接合補助部材30が下板10の表面から飛び出していると、下板10及び上板20を重ね合わせた際にギャップが生じてしまい、組立て精度が悪くなるので望ましくない。
 このため、これらの場合には、図11A及び図11Bに示すように、接合補助部材30の下面の位置は、下板10の表面から飛び出さないことが望ましい。例えば、接合補助部材30の厚さPは、下板10の板厚BH1以下に設計される。
 しかしながら、設計状態で上板20と下板10間にギャップが発生することが判っている場合には、図11Cに示すように、接合補助部材30はそのギャップ範囲内で裏面(上板20と接合された状態での、下板10の上面)から飛び出していても差し支えない。あるいは、上板20の穴21の直径が接合補助部材30の軸部31の外径よりも大きい場合には、図11Dに示すように、むしろ、接合補助部材30の飛び出した部分が重ね合わせの際に目安となって容易になり、さらに、溶接作業時に仮固定性が増すので、好ましい。これらのように、接合補助部材30の圧入裏面位置は設計に応じて適時決定することができる。
 なお、圧入作業については、その手段を問わないが、ハンマー等で叩いたり、油圧、水圧、空気圧、ガス圧、電気駆動などの動力を用いるプレス機を用いるといった実用的手段が挙げられる。
 また、圧力を加えながら回し入れる事も可能で、そのような手段を用いる場合は、軸部31の先端にネジ状の規則的な起伏を設けて回し入れやすくすることができる。例えば、図12に示すように、軸部31のテーパ部35には、螺旋状の溝35aが形成されてもよい。
 また、重ね合わせ作業において、本実施形態では、鉛直上側から下側に向けて接合補助部材30を圧入するため、下板10を上下反転することになるが、鉛直下側から上側に向けて接合補助部材30を圧入する場合には、下板10を上下反転の必要が無いのは明らかである。
 なお、重ね合わせ作業は、圧入作業前に行い、上板20に対して上側に位置している下板10に対して接合補助部材30を圧入した後、上板20及び下板10を一緒に上下反転してもよい。さらに、重ね合わせ作業は、穴開け作業前に行い、下板10の穴11及び上板20の穴21を同時に穴開けしてもよい。
 また、ステップS4の溶接作業は、上板20の穴21内を充填し、かつ、この上板20の穴21内の溶接金属40を介して接合補助部材30と上板20を接合するために必要とされる。したがって、当該溶接作業には充填材となるフィラー材(溶接材料)の挿入が不可欠となる。具体的に、以下の6つのアーク溶接法又はレーザ溶接法により、フィラー材が溶融して溶接金属40が形成される。
 (a)溶極式ガスシールドアーク溶接法は、一般的にMAG(マグ)やMIG(ミグ)と呼ばれる溶接法であり、ソリッドワイヤ又はフラックス入りワイヤをフィラー兼アーク発生溶極として用い、CO,Ar,He,Oといったシールドガスで溶接部を大気から遮断して健全な溶接部を形成する手法である。
 (b)ノンガスアーク溶接法は、セルフシールドアーク溶接法とも呼ばれ、特殊なフラックス入りワイヤをフィラー兼アーク発生溶極として用い、一方、シールドガスを不要として、健全な溶接部を形成する手段である。
 (c)ガスタングステンアーク溶接法は、ガスシールドアーク溶接法の一種であるが非溶極式であり、一般的にTIG(ティグ)とも呼ばれる。シールドガスは、Ar又はHeの不活性ガスが用いられる。タングステン電極と母材との間にはアークが発生し、フィラーワイヤはアークに横から送給される。
 一般的に、フィラーワイヤは通電されないが、通電させて溶融速度を高めるホットワイヤ方式TIGもある。この場合、フィラーワイヤにはアークは発生しない。
 (d)プラズマアーク溶接法はTIGと原理は同じであるが、ガスの2重系統化と高速化によってアークを緊縮させ、アーク力を高めた溶接法である。
 (e)被覆アーク溶接法は、金属の芯線にフラックスを塗布した被覆アーク溶接棒をフィラーとして用いるアーク溶接法であり、シールドガスは不要である。
 (f)レーザ溶接法は、熱源として、上記アークの代わりにレーザを使用し、溶接ワイヤをフィラーワイヤとして用いる。
 フィラー材(溶接材料)の材質については、溶接金属40がFe合金となるものであれば、一般的に用いられる溶接用ワイヤ又は溶接棒が適用可能である。なお、Ni合金でも鉄との溶接には不具合を生じないので適用可能である。
 具体的には、JISとして(a)Z3312,Z3313,Z3317,Z3318,Z3321,Z3323,Z3334、(b)Z3313、(c)Z3316,Z3321,Z3334,(d)Z3211,Z3221,Z3223,Z3224、AWS(American Welding Society)として、(a)A5.9,A5.14,A5.18,A5.20,A5.22,A5.28,A5.29,A5.34、(b)A5.20、(c)A5.9,A5.14,A5.18,A5.28,(d)A5.1,A5.4,A5.5,A5.11といった規格材が流通している。
 これらのアーク溶接法を用いて上板20の穴21をフィラー材で充填するが、一般的にフィラーワイヤ又は溶接棒の狙い位置は移動させる必要がなく、適切な送給時間を経てアークを切って溶接終了させれば良い。ただし、上板20の穴21の面積が大きい場合は、フィラーワイヤ又は溶接棒の狙い位置を上板20の穴21内で円を描くように移動させても良い。
 また、レーザ溶接法においては、レーザは、アークよりも熱の集中性が高く、深い溶込みが得られるため、レーザを用いることにより、アークだけでは難しい、小さい穴面積と優れた溶込み品質を両立させることができ、施工能率を高めることが可能となる。さらに、フィラーワイヤを充填材とすることで、レーザだけでは接合することができない、下板10に圧入された接合補助部材30と上板20とを接合することができる。なお、フィラーワイヤは上記の(a)~(d)が適用可能である。
 また、図13に示すように、熱源兼溶接ワイヤ供給法としての(a)~(e)のアーク溶接法に、熱源としてレーザを加えた、いわゆるレーザ・アークハイブリッド法とすることもでき、それぞれ単独に用いるよりも能率をさらに高めることができる。
 溶接用レーザには、発振器として、炭酸ガスレーザ、半導体レーザ(ダイオードレーザとも言う)、YAGレーザ、ディスクレーザ、ファイバーレーザといった種類があるが、いずれも本施工法に適用可能である。また、レーザ照射の方法については、狙い位置固定だけではなく、ガルバノスキャナと呼ばれるレンズ系動作や、溶接ロボットの機械的移動により、図14Aに示すような、渦巻き状に狙い位置を高速移動させるスクリュー運動や、図14Bに示すような、往復運動などをさせて適当な面積の溶込み範囲を得る方法を用いることもできる。
 溶接金属40の溶込みについては、図15Aに示すように、接合補助部材30を適度に溶融していることが必要である。なお、図15Bに示すように、接合補助部材30の板厚を超えて溶接金属40が形成される、いわゆる裏波が出る状態にまで溶けても問題はない。
 ただし、接合補助部材30が溶けずに、溶接金属40が乗っかっているだけであると、金属結合が不完全であるので、継手として高い強度は得られない。また、下板10の表面10aに接して他の部材が組み合わされる場合には、裏波である溶接金属40の張出しが邪魔になるので、無論このような過剰な溶け込み状態は避ける必要がある。さらに、溶接金属40が深く溶け込みすぎて、溶接金属40が溶け落ちてしまわないように溶接する必要がある。
 以上の作業によって、鋼以外の材料からなる下板10と鋼製の上板20は高い強度で接合される。
 以下、上記溶接法において使用される鋼製の接合補助部材30の役割について説明する。
 接合補助部材を使用せず、図16Aに示すように、単純にアルミ製の下板10と鋼製の上板20とを重ね、上板側から鋼又はニッケル合金製溶接ワイヤを用いたアーク溶接を定点で一定時間保持したアークスポット溶接を行った場合、形成される溶接金属40aは、図16Bに示すように、下板10側では、アルミと鋼、又はアルミと鋼とニッケルの合金となる。この合金は、アルミ含有量が多いので脆性的特性である金属間化合物(IMC)を呈している。このような異材溶接継手100aは、一見接合されている様に見えても、横方向に引張応力がかかる(せん断引張)と、図17A及び図17Bに示すように、溶接金属40aが容易に破壊して、外れてしまう。また、縦方向に引張応力がかかる(剥離引張)場合でも、図18A及び図18Bに示すように、溶接金属40aが破断するか、又は溶接金属40aと下板10の境界部が破断し、下板10が抜けるようにして接合が外れてしまう。また、図16Cに示すように、上板20に穴開けを施しても、アルミ製の下板10を溶融することには変わりがないので、上述した容易な破断現象の改善策にはならない。
 このように単にアルミ製の下板10と鋼製の上板20を重ねて、貫通溶接しようとしても、溶接金属40aの大部分は金属間化合物になってしまうので、せん断引張にも剥離引張にも弱く、溶接継手としては実用にならない。
 また、図16Cにおいて、鋼又はニッケル合金製溶接ワイヤの代わりに、アルミ合金製溶接ワイヤを用いると、アルミ合金の融点は鋼よりも大幅に低いので、上板20をあまり溶かさず、すなわち金属間化合物の生成を回避して接合部を形成することが可能である。しかしながら、アルミ合金の溶接金属は、鋼製やニッケル合金製の溶接金属に比べて大幅に強度が低い特性があり、健全性は得られても、高い継手強度を得ることができない。
 上記の異材溶接継手100aにおける課題から、本実施形態の異材溶接継手1では、溶接金属は鋼製又はニッケル合金製としながら、アルミの溶融を防ぎ、金属間化合物を生成させないようにしている。
 つまり、図7A~図7Eに示すように、アルミ製の下板10に穴開けを施し、さらに、中実で鋼製の接合補助部材30をその穴11に圧入して固定する。その後、下板10を上下反転させて接合すべき上板20と重ね、上板20側に開けた穴21からアーク溶接にて当該穴21を充填するように溶接金属40を形成する。このようにすると、アルミと鋼が混ざりあうことなく、鋼製の上板20、溶接金属40、鋼製の接合補助部材30が強固な金属結合によって溶接接合されている状態になる。アルミ合金製の下板10は鋼製の接合補助部材30によって拘束されていることから、上板20と下板10は相対的に動くことができない。
 下板10に設けられた穴11よりも幅広である接合補助部材30のフランジ部32の最大の役割は、上下剥離応力に対する抵抗である。図19Aに示すように、適切なサイズの接合補助部材30を適用することにより、下板10と接合補助部材30の界面が剥離して抜けてしまう現象を防止することが可能となる。一般的には、溶接金属40は、十分に塑性変形した後、破断する。
 なお、溶接金属40は、せん断方向の引張応力に対しても、強固な結合力を持っているため、脆性的破断をすることなく、はじめに母材が曲げ変形を呈し(図19C参照)、上下剥離引張(図19B参照)と似たような応力作用状態になる。すなわち十分変形した後、高い強度で延性破壊する。
 また、接合補助部材30のフランジ部32は、面積が大きく、かつ厚さPH2が大きいほど板厚方向(3次元方向)の外部応力に対して強度を増すため、望ましい。だが、面積や厚さが過剰に大きいと、圧入に必要な圧力が高くなり、強力なプレス装置が必要になるだけでなく、下板10に対して過度な歪みを発生させる結果、下板10あるいは接合補助部材30に亀裂が入ったり、変形してしまう。したがって、下板10の材質、板厚、穴の直径を考慮して適切なサイズにする。
 以上述べたとおり、接合補助部材30には、(1)溶接時に下板10の素材であるアルミ合金やマグネシウム合金の溶融によるIMC生成を防止し、(2)溶接後に下板10と上板20を強固に結合させる役割を有する。しかし、溶接工程前に下板10にセットする際、単に圧入するだけでは、下板10を上下反転した際に容易に下板10から抜けてしまう、あるいは、圧入工程時に反力で押し戻されてしまう場合がある。このような事態を防ぐために、溶接するまで接合補助部材30を下板10に一時的に仮固定しておく必要がある。その策として、下板10の素材である金属の弾塑性変形を利用した”かしめ”の機能を接合補助部材30に付与する。
 具体的には、接合補助部材30のフランジ部32だけでなく、軸部31の最大外径PD1も下板10に設けた穴11の直径BD1よりも大径とし、かつ軸部31のフランジ部32との境界部分に径が小さなくびれ部39を設けることで達成される。
 接合補助部材30の軸部31の最大外径PD1を下板10の穴11の直径BD1よりも若干大きく設計し、圧力をかけて挿入することで、下板10の素材は弾塑性変形して押し広がる。この後、径が小さなくびれ部39が挿入されると、押し広げる圧力が下がるため、弾性変形分は金属流入して、形状的なかしめ効果が得られる。このように素材自身の弾性力を利用して接合補助部材30が容易には外れないようすることができる。
 また、軸部31の軸方向断面は、圧入しやすいように、下板10の穴11と相似である断面形状とするのが望ましい。例えば、穴11を多角形状としたとき、軸部31の軸方向断面も穴11と同様の形状とすることにより、下板10が上板20に対して相対的に回転するのを防止することができる。
 また、フランジ部32の幅PD2は、下板10の板厚方向への剥離応力に対してフランジ部32が抵抗作用を発揮するため、軸部31の最大外径PD1よりも相対的に大きくする必要がある。軸部31の最大外径PD1が大きいと、挿入時に押し広げられ、その後弾性変形分を多少縮径したとしても、フランジ部32の幅PD2よりも大きくなってしまう可能性がある。この場合、フランジ部32は下板10の剥離応力への抵抗機能を失ってしまう。
 また、接合補助部材30に、仮固定手段としてかしめ機能を付与することにより、接合工程の前、例えば接合とは別の工場で接合補助部材30を下板10であるアルミニウム合金やマグネシウム合金に圧入しておけば、容易には外れないことから、これを接合工場に搬送して、容易に接合工程を行うことができる。
 以上の理由から、接合補助部材30は、鋼製で、軸部31とフランジ部32とを持った段付きの外形形状を有し、軸部31の最大外径PD1と、フランジ部32の幅PD2と、下板10の穴11の直径BD1との関係がPD2>PD1>BD1であり、軸部31がフランジ部側でくびれ部39を有するものが使用される。
 なお、鋼製の接合補助部材30の材質は、純鉄及び鉄合金であれば、特に制限されるものでなく、例えば、軟鋼、炭素鋼、ステンレス鋼などがあげられる。
 また、下板10の材質についても、アルミニウム合金又はマグネシウム合金に限定されず、鋼以外の材料からなるものであれば種々の材料からなる部材を適用することができる。鋼以外の材料としては、例えば、CFRP(Carbon Fiber Reinforced Plastics;炭素繊維強化プラスチック)、非鉄金属、樹脂、樹脂と金属とのコンポジット材料、及び1700MPa以上の超高張力鋼等を挙げることができる。
 また、図20は、接合補助部材30の各種寸法を示している。すなわち、本実施形態では、軸部31の最大外径PD1と、フランジ部32の幅PD2と、下板10の穴11の直径BD1との関係をPD2>PD1>BD1とする規定の他に、以下のように接合補助部材30の寸法が規定される。
・フランジ部の高さPH2
 フランジ部32の高さPH2は、下板10の板厚BH1の20%以上80%以下に設計される。接合補助部材30のフランジ部32は、板厚方向への外部応力、言い換えれば引き剥がす応力が働いた際への抵抗力としての主体的役割を担う。部材構成の中では、軸部31とくびれ部39も下板10に対するかしめ効果である程度、剥離応力に対する抵抗力を持つが、相対的にはフランジ部32の役割が大きい。フランジ部32は面積が大きく、かつ高さPH2が大きいほど板厚方向(3次元方向)の外部応力に対して強度を増すため、望ましい。高さPH2が下板10の板厚BH1の20%未満では、接合補助部材30のフランジ部32が板厚方向への外部応力に対して容易に弾塑性変形を生じ、下板10が接合補助部材30から抜けてしまいやすくなる。つまり高い抵抗力を示さない。したがって、フランジ部32の高さPH2は、下板10の板厚BH1の20%を下限とするのが望ましい。
 一方、フランジ部32の高さPH2は、下板10の板厚BH1の80%を超えて大きくすると、下板10と接合補助部材30を一時的にかしめる作用のあるくびれ部39と軸部31の高さが合計で20%未満となり、かしめ力が弱くなる。また、フランジ部32は軸部31よりも断面積が大きいため、圧入により大きな力を必要し、下板10に大きな歪みを与えるので、深く圧入すると下板10に亀裂が入るなどして壊してしまう場合がある。したがって、フランジ部32の高さPH2は、下板10の板厚BH1の80%以下にすることが望ましい。
 ・フランジ部の幅PD2
 フランジ部32の幅PD2は、下板10の穴11の直径BD1に対し110%以上200%以下に設計される。上述の通り、フランジ部32は面積が大きく、かつ高さPH2が大きいほど板厚方向(3次元方向)の外部応力に対して強度を増すため、望ましい。フランジ部32の幅PD2が下板10の穴11の直径BD1に対し110%未満では、フランジ部32が板厚方向への外部応力に対して弾塑性変形した場合に、下板10の穴11の大きさ以下の見かけ直径に容易になりやすく、さすれば下板10が抜けてしまいやすくなる。つまり、フランジ部32が高い抵抗力を示さない。したがって、フランジ部32の幅PD2は、下板10の穴11の直径BD1の110%を下限とする。より好ましくは、120%を下限とするとよい。
 一方、フランジ部32は軸部31よりも断面積が大きいため、圧入により大きな力を必要し、下板10に大きな歪みを与えるので、広い面積を圧入すると下板10に亀裂が入るなどして壊してしまう場合がある。したがって、フランジ部32の直径PD2は200%以下にすることが望ましい。
 なお、上述の通り、穴11の形状を円形以外の形状とした場合、フランジ部32が穴11を完全に塞ぐ状態とするためには、フランジ部32の幅PD2は、下板10の穴11の外接円の直径に対し110%以上とすることが好ましい。
 また、図21Aに示すように、上板20の表面からの溶接金属40の未充填高さPH3は、上板20の厚さBH2の30%以下に設定される。溶接金属40は上板20の穴21内を充填し、その表面位置が上板20の表面と同じ高さになるのが望ましい。これにより、図22に示すように、板厚方向(3次元方向)の外部応力に対して、接合補助部材30の変形が抑えられ、高い強度が得られる。一方、図23Aに示すように、未充填高さPH3が過度に大きいと、接合補助部材30と溶接金属40の結合面積が小さくなるので、接合強度が低くなる。上板20の厚さBH2の70%未満しか充填されていないと、継手接合強度の低下が顕著であり、図23Bに示すように、接合補助部材30が変形して、下板10が抜けやすくなる。このため、未充填高さPH3を上板20の厚さBH2の30%以下とする。
 一方、理想的には、上述の通り、溶接金属40は、下板10の表面と同じ高さに充填されるのがよい。ただし、接合後の異材溶接継手1がさらに大きな構造体に組み上げられる際、接合部の上部空間に余裕がある場合には、図21Bに示すように、上板20の穴21全面を溶接金属40で充填し、さらに余盛りが形成されても良い。
 なお、下板10及び上板20の板厚については、限定される必要は必ずしもないが、施工能率と、重ね溶接としての形状を考慮すると、上板20の板厚は、4.0mm以下であることが望ましい。一方、アーク溶接の入熱を考慮すると、板厚が過度に薄いと溶接時に溶け落ちてしまい、溶接が困難であることから、下板10、上板20共に0.5mm以上とすることが望ましい。
 以上の構成により、下板10がアルミニウム合金又はマグネシウム合金、上板20が鋼の素材を強固に接合することができる。
 ここで、異種金属同士を直接接合する場合の課題としては、IMCの形成という課題以外に、もう一つの課題が知られている。それは、異種金属同士が接すると、ガルバニ電池を形成する為に腐食を加速する原因になる。この原因(電池の陽極反応)による腐食は電食と呼ばれている。異種金属同士が接する面に水があると腐食が進むので、接合箇所として水が入りやすい場所に本実施形態が適用される場合は、電食防止を目的として、水の浸入を防ぐためのシーリング処理を施す必要がある。本接合法でも、例えば、第1の板として、Al合金やMg合金のような鋼以外の金属材料を用いた場合には、異種金属同士が接する面は複数形成されるので、樹脂系の接着剤をさらなる継手強度向上の目的のみならず、シーリング材として用いることが好ましい。
 例えば、図24A及び図24Bに示す第1変形例のように、下板10及び上板20の接合面で、溶接部周囲に接着剤60を全周に亘って環状に塗布してもよい。なお、接着剤60を下板10及び上板20の接合面で、溶接部周囲に全周に亘って塗布する方法としては、図25A及び図25Bに示す第2変形例のように、溶接箇所を除いた接合面の全面に塗布する場合も含まれる、これにより、下板10、上板20、及び溶接金属40の電食速度を下げることができる。
 また、図26に示すように、接合補助部材30の辺に当たる箇所には、使用時の安全性や鍛造時の制限などの点から、丸みRを持たせることには何ら問題がない。
 さらに、図27Aに示す変形例のように、上板20に膨出部22を設けてもよい。
 下板10の板厚が比較的薄い場合には、上述したように、上板20は穴開けするだけで良好な溶接が可能となる。しかし、下板10の板厚が大きいと、溶接工程で、下板10の穴11を充填するのに時間がかかり、能率が悪くなる。また、熱量が過大となって、充填完了するより先に接合補助部材30が溶け落ちしてしまいやすくなる。このため、上板20について絞り加工で膨出部22を設ければ、図27Bに示すように、穴11の体積が小さくなるので溶け落ち欠陥を防ぎながら、充填することができる。
 また、この変形例では、上板20の膨出部22は、下板10と上板20とを位置合わせをするための目印となり、上板20の膨出部22と下板10の穴11を容易に合わせることができ、重ね合わせ作業の効率向上につながる。
 なお、膨出部22の絞り加工は、図28Aに示すように、上板20の膨出部22が形成される部分の周辺部をダイ50で拘束する。そして、図28Bに示すように、膨出部22が形成される部分に圧力をかけてポンチ51を押し込むことで、膨出部22が成形される。
 また、本実施形態の溶接法は、接合面積が小さい点溶接と言えるので、ある程度の接合面積を有する実用部材同士の重ね合わせ部分Jを接合する場合は、本溶接法を図29A~図29Cに示すように、複数実施すればよい。これにより、重ね合わせ部分Jにおいて強固な接合が行われる。本実施形態は、図29B及び図29Cに示すような開断面構造にも使用できるが、特に、図29Aに示すような閉断面構造において好適に使用することができる。
 また、図30及び図31に示すように、本接合法では、下板10内に埋め込まれた接合補助部材30は下板10の表裏面から突き出ないことから、溶接工程の前工程として、金型70等を用いて、接合補助部材30が埋め込まれた下板10(接合補助部材付き下板10)をプレス成形することが容易である。また、その後工程として、プレス成形された接合補助部材付き下板10と、上板20とが重ね合わされて、溶接される。本溶接法は、無論、開断面構造、閉断面構造を分け隔てることなく、いずれも製造可能である。なお、図31では、上板20も金型70aを用いてプレス成形されている。
 このような接合補助部材付き下板10は、プレス成形工程前は、いずれも略平坦に形成されることから、取り扱い性がよい。
 以上説明したように、本実施形態の異材接合用溶接法は、鋼以外の材料からなる下板10及び上板20に穴11、21をそれぞれ開ける工程と、軸部31とフランジ部32とを持った段付きの外形形状を有し、軸部31の最大外径PD1と、フランジ部32の幅PD2と、下板10の穴11の直径BD1との関係が、PD2>PD1>BD1であり、軸部31がフランジ部側でくびれ部39を有する鋼製の接合補助部材30を、フランジ部32の露出面が下板10の表面と略面一又は内側に位置するように、下板10に設けられた穴11に圧入する工程と、上板20の穴21から接合補助部材30の軸部31が臨むように、下板10と上板20を重ね合わせる工程と、以下の(a)~(f)のいずれかの手法によって、上板20の穴21内を溶接金属40で充填すると共に、上板20及び接合補助部材30を溶接する工程と、を備える。
(a)鉄合金、又は、Ni合金の溶接金属40が得られる溶接ワイヤを溶極として用いるガスシールドアーク溶接法。
(b)前記溶接ワイヤを溶極として用いるノンガスアーク溶接法。
(c)前記溶接ワイヤを非溶極フィラーとして用いるガスタングステンアーク溶接法。
(d)前記溶接ワイヤを非溶極フィラーとして用いるプラズマアーク溶接法。
(e)鉄合金、又は、Ni合金の溶接金属40が得られる被覆アーク溶接棒を溶極として用いる被覆アーク溶接法。
(f)前記溶接ワイヤを非溶極フィラーとして用いるレーザ溶接法。
 これにより、例えば、Al合金又はMg合金のように、鋼以外の材料からなる第1の板(下板10)と鋼製の第2の板(上板20)を、安価な溶接設備を用いて、強固かつ信頼性の高い品質で接合でき、かつ開断面構造にも閉断面構造にも制限無く適用でき、さらに、鋼製の上板20が表側の場合に適用できる。
 また、充填溶接工程において、上記(a)~(e)のいずれかのアーク溶接法において、熱源としてアークにレーザを加えて溶接する。これにより、施工能率をより高めることができる。
 また、接合補助部材30の厚さPが下板10の板厚BH1以下であり、上板20には、絞り加工により膨出部22が形成されており、重ね合わせ工程において、上板20の膨出部22が、下板10の穴11内に配置される。これにより、下板10の板厚が大きな場合でも溶接効率を向上し、溶け落ち欠陥を防止して溶接することができ、また、下板10と上板20を容易に位置決めすることができる。
 また、重ね合わせ工程の前に、下板10と上板20の少なくとも一方の重ね合せ面には、下板10及び上板20の穴11、21の周囲に、全周に亘って接着剤60を塗布する工程を、さらに備える。これにより、接着剤は、継手強度向上の他、シーリング材として作用し、下板10、上板20及び溶接金属40の電食速度を下げることができる。
 また、接合補助部材30の厚さPが下板10の板厚BH1以下であり、圧入工程後、下板10は、プレス成形される。つまり、接合補助部材30は、下板10の表面から突き出さないので、接合補助部材30が圧入された下板10を、金型等を用いて所望の形状に容易にプレス成形することができる。
 また、接合補助部材30のフランジ部32の厚さPH2は、下板10の板厚BH1の20%以上80%以下であるので、接合補助部材30は、かしめ作用を与える軸部31の長さを確保しつつ、板厚方向の外部応力への抵抗力として機能することができる。
 また、接合補助部材30のフランジ部32の幅PD2は、下板10の穴11の直径BD1に対し110%以上200%以下であるので、接合補助部材30の下板10への圧入性を考慮しつつ、接合補助部材30が板厚方向の外部応力への抵抗力として機能することができる。
 また、充填溶接工程において、上板20の表面からの溶接金属40の未充填高さPH3が、上板20の板厚BH2の30%以下である、又は、上板20の穴21内を完全に充填しつつ、上板の表面に対して余盛りを形成するので、異材溶接継手1の接合強度を確保することができる。
 また、本実施形態の接合補助部材30は、鋼製で、軸部31とフランジ部32とを持った段付きの外形形状を有し、軸部31の最大外径PD1と、フランジ部32の幅PD2と、下板10の穴11の直径BD1との関係がPD2>PD1>BD1であり、軸部31がフランジ部側でくびれ部39を有する。これにより、接合補助部材30は、上述した異材接合用溶接法に好適に用いられる。
 また、本実施形態の異材溶接継手1は、鋼以外の材料からなる下板10と、下板10に接合される、鋼製の上板20と、を備え、下板10及び上板20は、互いに同軸上に位置する穴11、21をそれぞれ有し、軸部31とフランジ部32とを持った段付きの外形形状を有し、軸部31の最大外径PD1と、フランジ部32の幅PD2と、下板10の穴11の直径BD1との関係がPD2>PD1>BD1であり、軸部31がフランジ部側でくびれ部39を有する鋼製の接合補助部材30をさらに備え、接合補助部材30は、フランジ部32の露出面32aが下板10の表面10aと略面一又は内側に位置するように、下板10の穴11内に固定されており、下板10及び上板20は、上板20の穴21から接合補助部材30の軸部31が臨むように重ね合されており、上板20の穴21は、鉄合金、又は、Ni合金の溶接金属40で充填されると共に、溶接金属40と、溶融された上板20及び接合補助部材30の一部とによって溶融部Wが形成される。
 これにより、例えば、Al合金又はMg合金のように、鋼以外の材料からなる第1の板(下板10)と鋼製の第2の板(上板20)とを備えた異材溶接継手1は、安価な溶接設備を用いて、強固かつ信頼性の高い品質で接合され、かつ開断面構造にも閉断面構造にも制限無く適用でき、さらに、鋼製の上板20が表側の場合に適用できる。
[第2実施形態]
 次に、本発明の第2実施形態に係る異材接合用溶接法、接合補助部材、及び、異材溶接継手を図面に基づいて詳細に説明する。本実施形態では、接合補助部材のフランジ部を下板の内部に埋め込まず、下板の表面と当接させるようにした点において、第1実施形態のものと異なる。
 本実施形態の異材接合用溶接法は、第1実施形態と同様に、互いに重ね合わせされる、アルミニウム合金又はマグネシウム合金製の下板10(第1の板)と、鋼製の上板20(第2の板)とを、中実、かつ鋼製の接合補助部材130を介して、後述するアーク溶接法又はレーザ溶接法によって接合することで、図32A及び図32Bに示すような異材溶接継手1aを得るものである。
 下板10及び上板20には、板厚方向に貫通して、互いに同軸上に位置する円形の穴11、21がそれぞれ設けられている(図37A参照)。下板10の穴11には、接合補助部材130の挿入部131が圧力をかけて挿入される。
 図33A及び図33Bに示すように、接合補助部材130は、軸状の挿入部131と、該挿入部131に対して外向きフランジ状の非挿入部132と、を持った段付きの外形形状を有する。すなわち、第2実施形態においても、接合補助部材130は、挿入部131を構成する軸部と、非挿入部132を構成するフランジ部と、を有する。
 挿入部131及び非挿入部132は、中実に形成されている。非挿入部132は、挿入部131が下板10の穴11に挿入された状態で、下板10の表面(上板20と接合された状態での、下板10の下面)10aと当接する。
 また、接合補助部材130は、後述するように、挿入部131の最大外径PD1と非挿入部132の幅PD2と下板10の穴11の直径BD1との関係が、PD2>PD1>BD1を満たす(図43を参照)。
 なお、上板20の穴21の直径は、後述する溶接金属40で充填できる大きさであればよく、下板10の穴11の直径BD1と同じでもよいし、直径BD1より大きくても、小さくてもよい。
 さらに、本実施形態では、挿入部131の外形形状は、非挿入部側でくびれ部139を有する構成としている。具体的に、挿入部131は、外周面が先端から非挿入部132側に向かって徐々に拡径し、最大外径PD1を規定するテーパ部135と、該テーパ部135の最大外径PD1よりも小径の小径円筒部136と、を有する。したがって、小径円筒部136によって、挿入部131の外形形状は、非挿入部側でくびれ部139を有する。
 挿入部131の外形形状は、非挿入部側でくびれ部139を有することで、下板10にかしめ拘束力を持って接合補助部材130を固定するものであれば、特に限定されない。例えば、図34Aに示すように、挿入部131は、外周面が先端から非挿入部132まで徐々に縮径する縮径テーパ部137としてもよい。また、図34Bに示すように、挿入部131は、先端側に設けられた大径円筒部138と、非挿入部側に設けられた小径円筒部136と、で構成してもよい。
 なお、くびれ部139における機能は、図33A、図34A、図34Bの接合補助部材130のいずれであっても実質的に変わらないため、任意の接合補助部材130を用いて以降の説明を行っている。また、図35は、図34Aの接合補助部材130を用いた場合の異材溶接継手1aの図32Bに対応する断面図である。
 接合補助部材130の非挿入部132の外形形状は、図33Bに示すような円形に限定されず、下板10に開けられた穴11を塞いでいれば、任意の形状とすることができる。つまり、第1実施形態の接合補助部材30と同様に、図5Bに示す楕円形や、図2B、図5C~図5Fに示す四角形以上の多角形でもよい。また、図5Dに示すように、多角形の角部を丸くしてもよい。
 なお、これらの接合補助部材130では、後述する非挿入部132の幅PD2は、最も短い対向面間距離で規定される。
 このように、接合補助部材130の挿入部131が下板10に圧入されることで、挿入部131は下板10の穴11と同軸上に位置している。
 また、上板20の穴21には、アーク溶接によってフィラー材(溶接材料)が溶融した、鉄合金、又は、Ni合金の溶接金属40が充填されると共に、溶接金属40と、溶融された上板20及び接合補助部材130の一部とによって溶融部Wが形成される。したがって、溶融部Wは、上板20の穴21内にも配置されて、接合補助部材130と上板20とを溶接しており、これによって、接合補助部材130が圧入された下板10と上板20とが接合される。
 なお、上述の第2実施形態では、下板10及び上板20にそれぞれ円形の穴11及び穴21が設けられているが、接合補助部材130の挿入部131を挿入することが可能であれば、穴11及び穴21の形状は円形に限定されず、他の種々の形状で設けることができる。例えば、三角形、四角形、それ以上の多角形、及び楕円等の形状を採用することができる。穴11又は穴21が円形以外の穴の場合における、穴の直径BD1は、穴の内接円の直径により定義される。
 また、挿入部131の軸方向断面は、圧入しやすいように、下板10の穴11と相似である断面形状とするのが望ましい。例えば、穴11を多角形状としたとき、軸部31の軸方向断面も穴11と同様の形状とすることにより、下板10が上板20に対して相対的に回転するのを防止することができる。
 以下、異材溶接継手1aを構成する異材接合用溶接法について、図36A~図36Eを参照して説明する。
 まず、図36Aに示すように、下板10及び上板20に穴11,21をそれぞれ開ける穴開け作業を行う(ステップS1)。
 次に、図36B及び図6Cに示すように、接合補助部材130の挿入部131を、下板10の表面10aから、下板10の穴11に圧入する(ステップS2)。
 さらに、図36Dに示すように、接合補助部材130が取り付けられた下板10を反転させ、上板20の穴21から接合補助部材130の挿入部131が臨むように、下板10の上に上板20を重ね合わせる重ね合わせ作業を行う(ステップS3)。すなわち、この状態では、下板10に圧入された接合補助部材130の挿入部131が非挿入部132よりも上板20側に位置し、かつ、下板10の穴11と上板20の穴21とが同軸上に位置する。
 そして、図36E又は図37に示すように、以下に詳述する(a)溶極式ガスシールドアーク溶接法、(b)ノンガスアーク溶接法、(c)ガスタングステンアーク溶接法、(d)プラズマアーク溶接法、(e)被覆アーク溶接法のいずれかのアーク溶接作業、又は、(f)レーザ溶接作業を行うことで、下板10と上板20とを接合する(ステップS4)。
 なお、図36Eは、(a)溶極式ガスシールドアーク溶接法を用いてアーク溶接作業が行われた場合を示している。
 ステップS1の穴開け作業、ステップS3の重ね合わせ作業、及び、ステップS4の溶接作業については、第1実施形態で説明したものが適用される。
 一方、ステップS2の圧入作業では、図38に示すように、非挿入部132が下板10の表面10aと当接するまで、接合補助部材130の挿入部131が、下板10の表面10a側から穴11に圧入される。
 一方、下板10に対して、圧入後の接合補助部材130の下面(挿入部131の先端面)の位置は用途により選択することができる。例えば、接合時に上板20の穴21の直径が接合補助部材130の挿入部131の外径よりも小さい場合は、接合補助部材130が下板10の表面から飛び出していると、下板10及び上板20を重ね合わせた際にギャップが生じてしまい、組立て精度が悪くなるので望ましくない。このため、図39A及び図39Bに示すように、接合補助部材130の挿入部131の高さPH1は、下板10の板厚B以下に設計されるのが好ましい。
 しかしながら、設計状態で上板20と下板10間にギャップが発生することが判っている場合には、図39Cに示すように、接合補助部材130はそのギャップ範囲内で裏面(上板20と接合された状態での、下板10の上面)から飛び出していても差し支えない。あるいは、上板20の穴21の直径が接合補助部材130の挿入部131の外径よりも大きい場合には、図39Dに示すように、接合補助部材130の飛び出した部分が重ね合わせの際に目安となって重ね合わせ作業が容易になり、さらに、溶接作業時に仮固定性が増すので、好ましい。
 なお、圧入作業については、その手段を問わないが、ハンマー等で叩いたり、油圧、水圧、空気圧、ガス圧、電気駆動などの動力を用いるプレス機を用いるといった実用的手段が挙げられる。
 また、圧力を加えながら回し入れる事も可能で、そのような手段を用いる場合は、挿入部131の先端にネジ状の規則的な起伏を設けて回し入れやすくすることができる。例えば、図40に示すように、挿入部131のテーパ部135には、螺旋状の溝135aが形成されてもよい。
 なお、押込み圧力が強いと挿入部131だけでなく、非挿入部132の一部まで下板10の母材に不可避的に押し込まれることがあるが、下板10の母材に亀裂が入ったりしなければ、特段問題は無い。
 また、本実施形態においても、溶接金属40の溶込みについては、図41Aに示すように、接合補助部材130を適度に溶融していることが必要である。なお、図41Bに示すように、接合補助部材130の板厚を超えて溶接金属40が形成される、いわゆる裏波が出る状態にまで溶けても問題はない。
 ただし、接合補助部材130が溶けずに、溶接金属40が乗っかっているだけであると、金属結合が不完全であるので、継手として高い強度は得られない。また、下板10の表面10aに接して他の部材が組み合わされる場合には、裏波である溶接金属40の張出しが邪魔になるので、無論このような過剰な溶け込み状態は避ける必要がある。さらに、溶接金属40が深く溶け込みすぎて、溶接金属40が溶け落ちてしまわないように溶接する必要がある。
 以上の作業によって、鋼以外の材料からなる第1の板(下板10)と鋼製の第2の板(上板20)は高い強度で接合される。
 また、上記溶接法において使用される鋼製の接合補助部材130の役割については、第1実施形態で説明した接合補助部材と概ね同様である。
 すなわち、第1実施形態と異なり、下板10の内部に埋め込まれない、接合補助部材130の非挿入部132の最大の役割も、上下剥離応力に対する抵抗である。図42Aに示すように、適切なサイズの接合補助部材130を適用することにより、下板10と接合補助部材130の界面が剥離して抜けてしまう現象を防止することが可能となる。一般的には、溶接金属40は、十分に塑性変形した後、破断する。なお、溶接金属40は、せん断方向の引張応力に対しても、強固な結合力を持っているため、脆性的破断をすることなく、はじめに母材が曲げ変形を呈し(図42C参照)、上下剥離引張(図42B参照)と似たような応力作用状態になる。すなわち十分変形した後、高い強度で延性破壊する。
 また、接合補助部材130の非挿入部132も、面積が大きく、かつ高さPH2が大きいほど板厚方向(3次元方向)の外部応力に対して強度を増すため、望ましい。だが、面積や高さが必要以上に大きいと、重量増要因や、上板20の表面からの出っ張り過剰により、美的外観劣化や近接する他の部材との干渉が生じるので、必要設計に応じて適切なサイズとする。
 ここで、図43は、接合補助部材130の各種寸法を示している。すなわち、本実施形態では、挿入部131の最大外径PD1と、非挿入部132の幅PD2と、下板10の穴11の直径BD1との関係をPD2>PD1>BD1とする規定の他に、以下のように接合補助部材130の寸法が規定される。
・挿入部の高さPH1
 挿入部131の高さPH1は、下板10の板厚Bの10%以上、下板10及び上板20の板厚の合計B+F未満に設定される。接合補助部材130の挿入部131には、上述した下板10への圧入によって、かしめによる一時的な拘束効果がある。挿入部131の高さPH1が大きいほどかしめ効果は大きくなって外れにくくなる。挿入部131の高さPH1が板厚の10%未満ではかしめ効果がほとんど得られず不安定なため、10%以上とすることが望ましい。
 一方、挿入部131の高さPH1の上限は、下板10の板厚Bと等しい、すなわち100%とは限らず、先述の通り、上板側に積極的に飛び出している方が望ましい場合もある。しかしながら、挿入部131の高さPH1が上板20の穴21を全て充填する高さになっては、溶接金属が充填される空間が形成されず、上板20と接合補助部材130を溶接することが困難となるため、接合補助部材130の裏面位置は上板20の表面より内側になるのが望ましい。すなわち、挿入部131の高さPH1が下板10及び上板20の板厚の合計B+Fより小さいことを意味する。
・挿入部の最大直径PD1
 挿入部131の最大直径PD1は、下板10に空けられる穴11の直径BD1に対し102%以上125%以下に設定される。接合補助部材130の挿入部131には、下板10への圧入によるかしめ拘束をさせる働きがある。その効果を発揮させるには、下板10の直径BD1よりも大きくなければならない。直径BD1に対し、最低2%以上大きくなければ、下板10の穴11近傍に適切な圧力をかけることができない。ゆえに、挿入部131の最大直径PD1は、直径BD1の102%以上である。
 一方、挿入部131の最大直径PD1が大きくなるほど、かしめ力は強くなるが、圧入に必要な力が大きくなって、簡便性が損なわれ、さらには下板10の穴11周辺の圧力に耐えられず、亀裂発生してしまうことにもなりかねない。これらの理由から挿入部131の最大直径PD1の上限が決定され、具体的には125%とする。
・非挿入部の幅PD2
 非挿入部132の幅PD2は、下板10の穴11の直径BD1に対し105%以上に設計される。接合補助部材130は、板厚方向への外部応力、言い換えれば引き剥がす応力が働いた際の抵抗力を発揮する主体的役割を有する。接合補助部材130の構成では、挿入部131も下板10に対するかしめ効果によりある程度、剥離応力に対する抵抗力を持つが、非挿入部132のほうが相対的にその役割は大きい。非挿入部132は大きく、かつ高さが大きいほど板厚方向(3次元方向)の外部応力に対して強度を増すため、望ましい。
 非挿入部132の幅PD2が直径BD1に対し105%未満では、非挿入部132が板厚方向への外部応力に対して弾塑性変形した場合に、下板10に空けられた穴11以下の見かけ直径に容易になりやすく、さすれば抜けてしまいやすくなる。つまり、高い抵抗力を示さない。したがって、非挿入部132の幅PD2は直径BD1に対して105%を下限とする。より好ましくは、非挿入部132の幅PD2は直径BD1又に対して120%を下限とするとよい。一方、接合部強度の観点では上限を設ける必要は無い。
 なお、上述の通り、穴11の形状を円形以外の形状とした場合、非挿入部132が穴11を完全に塞ぐ状態とするためには、非挿入部132の幅PD2は、下板10の穴11の外接円の直径に対し105%以上とすることが好ましい。
・非挿入部の高さPH2
 非挿入部132の高さPH2は、下板10の板厚Bの50%以上150%以下に設計される。上述したように、接合補助部材130の非挿入部132は幅PD2が大きく、かつ高さPH2が大きいほど板厚方向(3次元方向)の外部応力に対して強度を増すため、望ましい。その非挿入部132の高さPH2は、下板10の板厚Bに応じて大きくすることで高い抵抗力を発揮する。非挿入部132の高さPH2が下板10の板厚Bの50%未満では、接合補助部材130の非挿入部132が板厚方向への外部応力に対して容易に弾塑性変形を生じ、下板10に空けられた穴11以下の見かけ幅になって、抜けてしまいやすくなる。つまり、高い抵抗力を示さない。したがって、非挿入部132の高さPH2は、下板10の板厚Bの50%を下限とするのが望ましい。
 一方、非挿入部132の高さPH2は、下板10の板厚Bの150%を超えて非挿入部132の高さを大きくすると、継手強度的には問題ないが、過剰に張り出した形状となって外観が悪いだけでなく、重量も無意味に重くなる。したがって、150%以下にすることが望ましい。
 また、図44Aに示すように、上板20の表面からの溶接金属40の未充填高さPH3は、上板20の厚さFの30%以下に設定される。溶接金属40は上板20の穴21内を充填し、その表面位置が上板20の表面と同じ高さになるのが望ましい。これにより、図45に示すように、板厚方向(3次元方向)の外部応力に対して、接合補助部材130の変形が抑えられ、高い強度が得られる。一方、図46Aに示すように、未充填高さPH3が過度に大きいと、接合補助部材130と溶接金属40の結合面積が小さくなるので、接合強度が低くなる。上板20の厚さFの70%未満しか充填されていないと、継手接合強度の低下が顕著であり、図46Bに示すように、接合補助部材130が変形して、下板10が抜けやすくなる。このため、未充填高さを上板20の厚さFの30%以下とする。
 一方、理想的には、上述の通り、溶接金属40は、下板10の表面と同じ高さに充填されるのがよい。ただし、接合後の異材溶接継手1aがさらに大きな構造体に組み上げられる際、接合部の上部空間に余裕がある場合には、図44Bに示すように、上板20の穴21全面を溶接金属40で充填し、さらに余盛りが形成されても良い。
 なお、下板10及び上板20の板厚については、限定される必要は必ずしもないが、施工能率と、重ね溶接としての形状を考慮すると、上板20の板厚は、4.0mm以下であることが望ましい。一方、アーク溶接の入熱を考慮すると、板厚が過度に薄いと溶接時に溶け落ちてしまい、溶接が困難であることから、下板10、上板20共に0.5mm以上とすることが望ましい。
 以上の構成により、下板10がアルミニウム合金又はマグネシウム合金、上板20が鋼の素材を強固に接合することができる。
 なお、上記第2実施形態においても、アルミニウム合金又はマグネシウム合金と鋼の素材を結合する方法等について説明したが、本発明において第1の板(下板)10は鋼以外の材料からなるものであれば何ら限定されず、CFRP(Carbon Fiber Reinforced Plastics;炭素繊維強化プラスチック)、非鉄金属、樹脂、樹脂と金属とのコンポジット材料、及び1700MPa以上の超高張力鋼等からなる部材を適用することができる。
 ここで、異種金属同士を直接接合する場合の課題としては、IMCの形成という課題以外に、もう一つの課題が知られている。それは、異種金属同士が接すると、ガルバニ電池を形成する為に腐食を加速する原因になる。この原因(電池の陽極反応)による腐食は電食と呼ばれている。異種金属同士が接する面に水があると腐食が進むので、接合箇所として水が入りやすい場所に本実施形態が適用される場合は、電食防止を目的として、水の浸入を防ぐためのシーリング処理を施す必要がある。本接合法でも、例えば、第1の板として、Al合金やMg合金のような鋼以外の金属材料を用いた場合には、異種金属同士が接する面は複数形成されるので、樹脂系の接着剤をさらなる継手強度向上の目的のみならず、シーリング材として用いることが好ましい。
 例えば、図47A及び図47Bに示す第1変形例のように、下板10及び上板20の接合面で、溶接部周囲に接着剤60を全周に亘って環状に塗布してもよい。なお、接着剤60を下板10及び上板20の接合面で、溶接部周囲に全周に亘って塗布する方法としては、図48A及び図48Bに示す第2変形例のように、溶接箇所を除いた接合面の全面に塗布する場合も含まれる、これにより、下板10、上板20、及び溶接金属40の電食速度を下げることができる。
 また、図49A及び図49Bに示す第3変形例のように、接合補助部材130の非挿入部132と、該非挿入部132と対向する下板10の穴11の周囲との間の少なくとも一方の対向面に、接着剤60を塗布してもよい。さらに、図50A及び図50Bに示す第4変形例のように、接合補助部材130の非挿入部132と下板10の表面との境界部に接着剤60を塗布してもよい。
 これら第3及び第4変形例はいずれも、接合補助部材130の非挿入部132と下板10の表面との境界部からの水の浸入を防ぐことができ、電食を抑制することができる。
 なお、図49A及び図49Bに示す第3変形例では、塗布は挿入工程の際にしか実施できないが、図50A及び図50Bに示す第4変形例では、塗布は挿入工程の際、又は、充填溶接工程後でも可能である。
 なお、接合補助部材130の下板10との接触面は、図33Aに示すように、必ずしも平坦な面である必要はない。すなわち、接合補助部材130の下板10との接触面は、図51A及び図51Bに示すように、必要に応じてスリット134a、134bを設けて良い。特に、下板10との接触面側に円周状のスリット134aや、放射状のスリット134b、あるいは不図示の碁盤目状のスリットを設けると、接着剤60の塗布がスリット134a、134bの隙間に入り込んで逃げなくなるため、安定した接着が行なわれ、シーリングの効果も確実となる。このような平坦ではない面の場合の接合補助部材130の非挿入部132の厚さPH2の定義は、高さの最も大きな部分とする。
 また、図52に示すように、接合補助部材130の辺に当たる箇所には、使用時の安全性や鍛造時の制限などの点から、丸みRを持たせることには何ら問題がない。
 さらに、図27Aに示す変形例のように、上板20に膨出部22を設けてもよい。この場合、挿入部131の高さPH1が下板10の板厚B未満に設計されている(図43参照)。
 下板10の板厚が比較的薄い場合には、上述したように、上板20は穴開けするだけで良好な溶接が可能となる。しかし、下板10の板厚が大きいと、溶接工程で、下板10の穴11を充填するのに時間がかかり、能率が悪くなる。また、熱量が過大となって、充填完了するより先に接合補助部材130が溶け落ちしてしまいやすくなる。このため、上板20について絞り加工で膨出部22を設ければ、図53に示すように、穴11の体積が小さくなるので溶け落ち欠陥を防ぎながら、充填することができる。
 また、上板20の表面から溶接金属40の余盛りが突出することを防ぎ、外観が向上する、あるいは他の部材との干渉が避けられる効果も得られる。さらにまた、上板20の溶接箇所に膨出部22を設けることで、下板10に設けられた穴11と容易に位置合わせをすることができ、下板10と上板20との重ね合わせが容易になる。この効果は、板厚によらずに得られるので、上板20に絞り加工を施すことは、板厚に関係なく効果的である。
 なお、膨出部22の絞り加工は、第1実施形態で説明したものと同様である。
 また、本実施形態の溶接法も、接合面積が小さい点溶接と言えるので、ある程度の接合面積を有する実用部材同士の重ね合わせ部分Jを接合する場合は、本溶接法を図29A~図29Cに示すように、複数実施すればよい。これにより、重ね合わせ部分Jにおいて強固な接合が行われる。本実施形態は、図29B及び図29Cに示すような開断面構造にも使用できるが、特に、図29Aに示すような閉断面構造において好適に使用することができる。
 以上説明したように、本実施形態の異材接合用溶接法は、下板10及び上板20に穴11、21をそれぞれ開ける工程と、挿入部131と非挿入部132とを持った段付きの外形形状を有し、挿入部131の最大外径PD1と、非挿入部132の幅PD2と、下板10の穴11の直径BD1との関係が、PD2>PD1>BD1であり、挿入部131が非挿入部側でくびれ部139を有する、中実、かつ鋼製の接合補助部材130を、下板10の表面に載置して、前記挿入部131を下板10に設けられた穴11に圧入する工程と、上板20の穴21から接合補助部材130の挿入部131が臨むように、下板10と上板20を重ね合わせる工程と、以下の(a)~(f)のいずれかの手法によって、上板20の穴21内を溶接金属40で充填すると共に、上板20及び接合補助部材130を溶接する工程と、を備える。
(a)鉄合金、又は、Ni合金の溶接金属40が得られる溶接ワイヤを溶極として用いるガスシールドアーク溶接法。
(b)前記溶接ワイヤを溶極として用いるノンガスアーク溶接法。
(c)前記溶接ワイヤを非溶極フィラーとして用いるガスタングステンアーク溶接法。
(d)前記溶接ワイヤを非溶極フィラーとして用いるプラズマアーク溶接法。
(e)鉄合金、又は、Ni合金の溶接金属40が得られる被覆アーク溶接棒を溶極として用いる被覆アーク溶接法。
(f)前記溶接ワイヤを非溶極フィラーとして用いるレーザ溶接法。
 これにより、例えば、Al合金又はMg合金のように、鋼以外の材料からなる第1の板(下板10)と鋼製の第2の板(上板20)とを、安価な溶接設備を用いて、強固かつ信頼性の高い品質で接合でき、かつ開断面構造にも閉断面構造にも制限無く適用でき、さらに、鋼製の上板20が表側の場合に適用できる。
 また、充填溶接工程において、上記(a)~(e)のいずれかのアーク溶接法において、熱源としてアークにレーザを加えて溶接する。これにより、施工能率をより高めることができる。
 また、接合補助部材130の挿入部131の高さPH1が下板10の板厚B未満であり、上板20には、絞り加工により膨出部22が形成されており、重ね合わせ工程において、上板20の膨出部22が、下板10の穴11内に配置される。これにより、下板10の板厚が大きな場合でも溶接効率を向上し、溶け落ち欠陥を防止して溶接することができ、また、下板10と上板20を容易に位置決めすることができる。
 また、重ね合わせ工程の前に、下板10と上板20の少なくとも一方の重ね合せ面には、下板10及び上板20の穴11、21の周囲に、全周に亘って接着剤60を塗布する工程を、さらに備える。これにより、接着剤は、継手強度向上の他、シーリング材として作用し、下板10、上板20及び溶接金属40の電食速度を下げることができる。
 また、挿入工程において、接合補助部材130の非挿入部132と、該非挿入部132と対向する下板10との間の少なくとも一方の対向面に、接着剤60を塗布する。この場合も、接着剤60は、継手強度向上の他、シーリング材として作用し、下板10、上板20及び溶接金属40の電食速度を下げることができる。
 さらに、挿入工程において、又は、充填溶接工程後に、接合補助部材130の非挿入部132と、下板10の表面との境界部に接着剤60を塗布する。この場合も、接着剤60は、継手強度向上の他、シーリング材として作用し、下板10、上板20及び溶接金属40の電食速度を下げることができる。
 また、接合補助部材130の挿入部131の高さPH1が下板10の板厚Bの10%以上、下板10及び上板20の板厚の合計B+F未満であるので、挿入部131は、かしめによる一時的な拘束効果を与えると共に、溶接金属40が充填される空間を確保している。
 また、接合補助部材130の挿入部131の最大直径PD1は、下板10の穴11の直径BD1又は直径BD2に対し102%以上125%以下であるので、挿入部131は、かしめによる一時的な拘束効果を与えると共に、下板10の穴11の破損を抑制することができる。
 また、接合補助部材130の非挿入部132の幅PD2は、下板10の穴11の直径BD1又は直径BD2に対し105%以上であるので、接合補助部材130が板厚方向の外部応力への抵抗力として機能することができる。
 また、接合補助部材130の非挿入部132の高さPH2は、下板10の板厚Bの50%以上150%以下であるので、接合補助部材130は、接合補助部材130の板厚方向の外部応力への抵抗力として機能することができ、また、重量増加を抑えることができる。
 また、充填溶接工程において、上板20の表面からの溶接金属40の未充填高さPH3が、上板20の板厚Fの30%以下である、又は、上板20の穴21内を完全に充填しつつ、上板の表面に対して余盛りを形成するので、異材溶接継手1aの接合強度を確保することができる。
 また、本実施形態の接合補助部材130は、中実、かつ鋼製で、挿入部131と非挿入部132とを持った段付きの外形形状を有し、挿入部131の最大外径PD1と、非挿入部132の幅PD2と、下板10の穴11の直径BD1との関係がPD2>PD1>BD1であり、挿入部131が非挿入部側でくびれ部139を有する。これにより、接合補助部材130は、上述した異材接合用溶接法に好適に用いられる。
 また、本実施形態の異材溶接継手1aは、鋼以外の材料からなる下板10と、下板10に接合される、鋼製の上板20と、を備え、下板10及び上板20は、互いに同軸上に位置する穴11、21をそれぞれ有し、挿入部131と非挿入部132とを持った段付きの外形形状を有し、挿入部131の最大外径PD1と、非挿入部132の幅PD2と、下板10の穴11の直径BD1との関係がPD2>PD1>BD1であり、挿入部131が非挿入部側でくびれ部139を有する、中実、かつ鋼製の接合補助部材130をさらに備え、接合補助部材130の挿入部131は、下板10の穴11内に固定されており、下板10及び上板20は、上板20の穴21から接合補助部材130の挿入部131が臨むように重ね合されており、上板20の穴21は、鉄合金、又は、Ni合金の溶接金属40で充填されると共に、溶接金属40と、溶融された上板20及び接合補助部材130の一部とによって溶融部Wが形成される。
 これにより、例えば、Al合金又はMg合金のように、鋼以外の材料からなる第1の板(下板10)と鋼製の第2の板(上板20)とを備えた異材溶接継手1aは、安価な溶接設備を用いて、強固かつ信頼性の高い品質で接合され、かつ開断面構造にも閉断面構造にも制限無く適用でき、さらに、鋼製の上板20が表側の場合に適用できる。
[第3実施形態]
 次に、本発明の第3実施形態に係る異材接合用溶接法、接合補助部材、及び、異材溶接継手を図面に基づいて詳細に説明する。本実施形態では、接合補助部材の軸部の外周面に少なくとも1つの圧入用突起部を設けた点において、第1及び第2実施形態のものと異なる。
 本実施形態の異材接合用溶接法は、第1及び第2実施形態と同様に、互いに重ね合わせされる、アルミニウム合金又はマグネシウム合金製の下板10(第1の板)と、鋼製の上板20(第2の板)とを、中実、かつ鋼製の接合補助部材230を介して、後述するアーク溶接法又はレーザ溶接法によって接合することで、図54A及び図54Bに示すような異材溶接継手1bを得るものである。
 下板10及び上板20には、板厚方向に貫通して、互いに同軸上に位置する円形の穴11、21がそれぞれ設けられている(図60A参照)。下板10の穴11には、接合補助部材230の挿入部231が圧力をかけて挿入される。
 図55A及び図55Bに示すように、接合補助部材230は、下板10の穴11内に配置される挿入部231と、下板10の上面に配置され、挿入部231に対して外向きの非挿入部232と、を持った段付きの外形形状を有する。すなわち、第3実施形態においても、接合補助部材230は、挿入部231を構成する軸部と、非挿入部232を構成するフランジ部と、を有する。また、挿入部231の外周面には、少なくとも1つ(本実施形態では、4つ)の圧入用突起部239が設けられている。
 また、後述するように、非挿入部232の幅PD2は、下板10の穴11の直径BD2より大きく設定されている(図66参照)。また、複数の圧入用突起部239の最外径部と接する最大円の直径PD1も、下板10の穴11の直径BD2より大きく設定されている(図58A~図58E参照)。
 なお、上板20の穴21の直径は、後述する溶接金属40で充填できる大きさであればよく、下板10の穴11の直径BD1と同じでもよいし、直径BD1より大きくても、小さくてもよい。
 なお、上述の第3実施形態でも、下板10及び上板20はそれぞれ円形の穴11及び穴21が設けられているが、接合補助部材230の挿入部231を挿入することが可能であれば、穴11の形状は円形に限定されず、他の種々の形状で設けることができる。例えば、三角形、四角形、それ以上の多角形、及び楕円等の形状を採用することができる。ただし、第1及び第2実施形態と異なり、第3実施形態は挿入部231の外周面に部分的に突起部239が設けられているため、穴11又は穴21が円形以外の穴の場合における、穴の直径BD1は、穴の外接円の直径により定義される。
 また、挿入部231の突起部239を除く部分の軸方向断面は、圧入しやすいように、下板10の穴11と相似である断面形状とするのが望ましい。例えば、穴11を多角形状としたとき、挿入部231の軸方向断面も穴11と同様の形状とすることにより、下板10が上板20に対して相対的に回転するのを防止することができる。
 突起部239は、接合補助部材230の挿入部231を下板10の穴11内にかしめ拘束力をもって固定するため、挿入部231と下板10の穴11との間の隙間を無くすこと、及び挿入部231の挿入性を考慮して羽根状に形成される。すなわち、挿入部231の最大外径PD0は、下板10の穴11の直径BD2より小さくし、一方、突起部239を下板10の穴11の壁面に食い込ませて、部分的に上記隙間を無くす。また、突起部239の形状は、挿入性を考慮して、挿入部231の先端部から非挿入部232側に向けて徐々に径方向幅が増加するほうが好ましい。さらに、突起部239の円周方向の厚みが薄いので、下板10の穴11に対して線接触に近い状態になり、さほどの押し込み圧力の上昇をもたらさない。
 突起部239の形状は、図55A及び図55Bに示すような2等辺三角形でもよいが、図56A~図56Iに示すように、他の形状の三角形状、長方形、部分円形、台形などが典型的で、その形状に制限はない。また、突起部239は、非挿入部232の下面とも接続されていることで、突起部239の強度を向上できる。さらに、突起部239は、図55Aに示すように、挿入部231の軸方向に平行でもよいし、図57Aに示すように軸方向に対して傾きを持たせてもよい。この場合、接合補助部材230を回転させながら圧入するのに好適である。また、図57Bに示すように、突起部239は、基部から先端部に向けて円周方向幅が狭くなるような山形状であってもよい。
 また、突起部239の数は、図55Bに示すような4枚に限定されず、少なくとも1枚あればよく、上限は特に設ける必要はない。すなわち、図58A~図58Eに示すように、1枚、2枚、3枚、6枚、8枚の突起部239を有するものであってもよい。ただし、突起部239の枚数が増えると、下板10の穴11との接触面積が増えて挿入に必要な圧力が上がるので、必要以上に突起部239の数を増やすべきではない。突起部239の数は、8枚以下とするのが望ましい。
 なお、図58Aに示すように、突起部239が1つの場合には、1つの突起部239の最外径部と挿入部231の外周面と接する円Cの直径PD1も、下板10の穴11の直径BD2より大きく設定される。
 また、接合補助部材230は、上述した突起部239の数、及び形状を任意に組み合わせて設計することができる。例えば、図59Aに示すような、3つの直角三角形状の突起部239を有する接合補助部材230を構成してもよい。図59Bは、図59Aの接合補助部材230を用いた場合の異材溶接継手1bの図54Bに対応する断面図である。また、突起部239における機能は、上述した接合補助部材230のいずれであっても実質的に変わらないため、任意の接合補助部材230を用いて以降の説明を行っている。
 接合補助部材230の非挿入部232の外形形状は、図55A及び図55Bに示すような円形に限定されず、下板10に開けられた穴11を塞いでいれば、任意の形状とすることができる。つまり、図5Bに示す楕円形や、図5C~図5Fに示す四角形以上の多角形でもよい。また、図5Dに示すように、多角形の角部を丸くしてもよい。
 なお、これらの接合補助部材230では、後述する非挿入部232の幅PD2は、最も短い対向面間距離で規定される。
 このように、接合補助部材230の挿入部231が下板10に圧入されることで、挿入部231は下板10の穴11と同軸上に位置している。
 また、上板20の穴21には、アーク溶接によってフィラー材(溶接材料)が溶融した、鉄合金、又は、Ni合金の溶接金属40が充填されると共に、溶接金属40と、溶融された上板20及び接合補助部材230の一部とによって溶融部Wが形成される。したがって、溶融部Wは、上板20の穴21内にも配置されて、接合補助部材230と上板20とを溶接しており、これによって、接合補助部材230が圧入された下板10と上板20とが接合される。
 以下、異材溶接継手1bを構成する異材接合用溶接法について、図60A~図60Eを参照して説明する。
 まず、図60Aに示すように、下板10及び上板20に穴11,21をそれぞれ開ける穴開け作業を行う(ステップS1)。
 次に、図60B及び図60Cに示すように、接合補助部材230の挿入部231を、下板10の表面10aから、下板10の穴11に圧入する(ステップS2)。
 さらに、図60Dに示すように、接合補助部材230が取り付けられた下板10を反転させ、上板20の穴21から接合補助部材230の挿入部231が臨むように、下板10の上に上板20を重ね合わせる、重ね合わせ作業を行う(ステップS3)。すなわち、この状態では、下板10に圧入された接合補助部材230の挿入部231が非挿入部232よりも上板20側に位置し、かつ、下板10の穴11と上板20の穴21とが同軸上に位置する。
 そして、図60E又は図61に示すように、以下に詳述する(a)溶極式ガスシールドアーク溶接法、(b)ノンガスアーク溶接法、(c)ガスタングステンアーク溶接法、(d)プラズマアーク溶接法、(e)被覆アーク溶接法のいずれかのアーク溶接作業、又は、(f)レーザ溶接作業を行うことで、下板10と上板20とを接合する(ステップS4)。
 なお、図60Eは、(a)溶極式ガスシールドアーク溶接法を用いてアーク溶接作業が行われた場合を示している。
 ステップS1の穴開け作業、ステップS3の重ね合わせ作業、及び、ステップS4の溶接作業については、第1実施形態で説明したものが適用される。
 ステップS2の圧入作業では、図62に示すように、非挿入部232が下板10の表面10aと当接するまで、接合補助部材230の挿入部231が、下板10の表面10a側から穴11に圧入される。
 一方、下板10に対して、圧入後の接合補助部材230の下面(挿入部231の先端面)の位置は用途により選択することができる。例えば、接合時に上板20の穴21の直径が接合補助部材230の挿入部231の外径よりも小さい場合は、接合補助部材230が下板10の表面から飛び出していると、下板10及び上板20を重ね合わせた際にギャップが生じてしまい、組立て精度が悪くなるので望ましくない。このため、図63A及び図63Bに示すように、接合補助部材230の挿入部231の高さPH1は、下板10の板厚B以下に設計されるのが好ましい。
 しかしながら、設計状態で上板20と下板10間にギャップが発生することが判っている場合には、図63Cに示すように、接合補助部材230はそのギャップ範囲内で裏面(上板20と接合された状態での、下板10の上面)から飛び出していても差し支えない。あるいは、上板20の穴21の直径が接合補助部材230の挿入部231の外径よりも大きい場合には、図63Dに示すように、接合補助部材230の飛び出した部分が重ね合わせの際に目安となって重ね合わせ作業が容易になり、さらに、溶接作業時に仮固定性が増すので、むしろ好ましい。また、接合補助部材230が上記裏面から飛び出している場合においては、図63Eに示すように、接合補助部材230の飛び出した部分にも突起部239を設けることで、下板10と接合補助部材230との一時拘束性をより高めることができるため、さらに好ましい。
 また、本実施形態においても、溶接金属40の溶込みについては、図64Aに示すように、接合補助部材230を適度に溶融していることが必要である。なお、図64Bに示すように、接合補助部材230の板厚を超えて溶接金属40が形成される、いわゆる裏波が出る状態にまで溶けても問題はない。
 ただし、接合補助部材230が溶けずに、溶接金属40が乗っかっているだけであると、金属結合が不完全であるので、継手として高い強度は得られない。また、下板10の表面10aに接して他の部材が組み合わされる場合には、裏波である溶接金属40の張出しが邪魔になるので、無論このような過剰な溶け込み状態は避ける必要がある。さらに、溶接金属40が深く溶け込みすぎて、溶接金属40が溶け落ちてしまわないように溶接する必要がある。
 以上の作業によって、鋼以外の材料からなる下板10と鋼製の上板20は高い強度で接合される。
 以下、上記溶接法において使用される鋼製の接合補助部材230の役割については、第1実施形態で説明した接合補助部材と概ね同様である。
 下板10に設けられた穴11よりも幅広である接合補助部材230の非挿入部232の最大の役割は、上下剥離応力に対する抵抗である。図65Aに示すように、適切なサイズの接合補助部材230を適用することにより、下板10と接合補助部材230の界面が剥離して抜けてしまう現象を防止することが可能となる。一般的には、溶接金属40は、十分に塑性変形した後、破断する。なお、溶接金属40は、せん断方向の引張応力に対しても、強固な結合力を持っているため、脆性的破断をすることなく、はじめに母材が曲げ変形を呈し(図65C参照)、上下剥離引張(図65B参照)と似たような応力作用状態になる。すなわち十分変形した後、高い強度で延性破壊する。
 また、接合補助部材230の非挿入部232は、面積が大きく、かつ高さPH2が大きいほど板厚方向(3次元方向)の外部応力に対して強度を増すため、望ましい。だが、面積や高さが必要以上に大きいと、重量増要因や、上板20の表面からの出っ張り過剰により、美的外観劣化や近接する他の部材との干渉が生じるので、必要設計に応じて適切なサイズとする。
 以上述べたとおり、接合補助部材230には、(1)溶接時に下板10の素材であるアルミ合金やマグネシウム合金の溶融によるIMC生成を防止し、(2)溶接後に下板10と上板20を強固に結合させる役割を有する。
 しかし、実用上一つの課題がある。下板10に設けた穴11の直径BD2に対して、接合補助部材230の挿入部231の外径PD0が小さいほど挿入は容易であり、したがって、挿入部231の外径PD0は小さい方が挿入性の観点からは望ましいが、下板10に設けた穴11と接合補助部材230の挿入部231との間にできる隙間は、接合しようとする上板20と下板10に相互にずれを生じさせる原因となる。すなわち、この接合状態では、下板10を水平方向に拘束する力は生じないため、下板10が水平方向のせん断応力を受けると比較的容易に接合補助部材230と下板10の穴11との間の隙間分滑るようにずれを生じる。
 下板10が隙間分ずれた後は、容易には移動しないが、わずかでもずれが生じやすい状態となるのは、設計精度の劣化要因となるので、許容されない。したがって、接合状態において、接合補助部材230と下板10の穴11との間には隙間が無い状態にする必要がある。この状態を実現するには、接合補助部材230の挿入部231の外径PD0を下板10の穴11の直径BD2よりも大きく設計し、圧力をかけて挿入することで為しえる。しかしながら、上述した通り、単純に大径化すると、狙い位置を定めにくく挿入性が著しく悪くなるだけでなく、たとえ、同軸に狙い位置が定まったとしても非常に高い圧力が必要である。
 また、溶接工程前に接合補助部材230を下板10にセットする際、単に圧入するだけでは、下板10を上下反転した際に容易に抜けて脱落してしまう場合がある。このような事態を防ぐために、溶接するまで接合補助部材230を下板10に一時的に仮固定しておく必要がある。その策として、下板10の素材である金属の弾塑性変形を利用した”かしめ”の機能を接合補助部材230に付与する。
 このため、本実施形態の様に、挿入部231の外周面に圧入用突起部239を設けることで、上下反転時の脱落防止及び挿入部231と下板10の穴11との間の隙間を無くすことと、挿入性の確保とを両立することができる。すなわち、挿入部231の外径PD0を下板10の穴の直径BD2より小さくし、一方、突起部239によって下板10の穴11の壁面に食い込ませて、部分的に隙間を無くす。突起部239は円周方向に厚みが薄いので下板10の穴11に対して線接触に近い状態になり、さほどの押し込み圧力の上昇をもたらさない。このような接合補助部材230は、少なくとも2つの突起部239の最外径部と接する最大円Cの直径PD1、又は、1つの突起部239の最外径部と挿入部231の外周面と接する円Cの直径PD1が下板10の穴11の直径BD2よりも大きくなる。
 なお、例えば、穴11を多角形状としたとき、挿入部231の外径PD0を下板10の穴11の内接円の直径BD1より小さくすると、より一層挿入性を向上させることができる。
 このような挿入部231に突起部239を有する接合補助部材230を下板10に圧入させることで、いくつかの副次的効果も得られる。一つ目は、接合対象である下板10と上板20が相互に回転しにくくなることである。接合補助部材230の挿入部231の断面形状が真円形では、接合補助部材230が挿入部231の圧入で接合される場合、例えば下板10に強い水平方向の回転力Fが加わると、接合補助部材230を中心に回るように下板10が回転してしまう可能性がある。しかしながら、図70A及び図70Bに示すように、接合補助部材230には突起部239が設けられていて、突起部239が下板10の穴11の周囲に食い込むことで、容易に回転を防止することができる。
 二つ目は、接合工程の前、例えば、接合とは別の工場で接合補助部材230を下板10であるアルミニウムやマグネシウム合金にまとめて圧入しておく。この場合、接合補助部材230は下板10から容易には外れないことから、接合工場に搬送してから接合工程を行えばよく、製造工程の自由度拡大があげられる。
 接合補助部材230の圧入方法については手段を問わないが、人の手で押し込んだり、ハンマー等で叩いたり、油圧、水圧、空気圧、ガス圧、電気駆動などの動力を用いるプレス機を用いたり、工業用ロボットアームの力を使ったりといった実用的手段があげられる。また、接合補助部材230は穴11に回し入れることによって圧入も可能で、そのような手段を用いる場合は、図71に示すように、挿入部231の上面にネジ回し用ドライバーがフィットするような切り欠き238を設けると接合補助部材230を下板10に回し入れやすくすることができる。
 なお、押し込み圧力が強いと挿入部231だけでなく、非挿入部232の一部まで下板10の母材に押し込まれることがあるが、問題は無い。むしろ、非挿入部232の外径が非円形(図5B~図5F参照)であれば、非挿入部232の一部が下板10の母材に押し込まれることで、下板10が上板20に対して水平方向の回転力が作用したとき比較的弱い力でかしめ効果が外れて回転してしまう現象を防止する効果があるので、望ましい。
 以上の理由から、接合補助部材230は、中実、かつ鋼製で、挿入部231と非挿入部232とを持った段付きの外形形状を有し、挿入部231の外周面には少なくとも1つの圧入用突起部239が設けられ、非挿入部232の幅PD2が下板10の穴11よりそれぞれ大きく、かつ、少なくとも2つの突起部239の最外径部と接する最大円Cの直径PD1、又は、1つの突起部239の最外径部と挿入部231の外周面と接する円Cの直径PD1が下板10の穴11の直径BD2よりも大きいものが使用される。これにより、一般的に溶接することが不可能とされるアルミニウム合金又はマグネシウム合金と鋼板との接合が可能となる。
 なお、鋼製の接合補助部材230の材質は、純鉄及び鉄合金であれば、特に制限されるものでなく、例えば、軟鋼、炭素鋼、ステンレス鋼などがあげられる。
 また、下板10の材質についても、アルミニウム合金又はマグネシウム合金に限定されず、鋼以外の材料からなるものであれば種々の材料からなる部材を適用することができる。鋼以外の材料としては、例えば、CFRP(Carbon Fiber Reinforced Plastics;炭素繊維強化プラスチック)、非鉄金属、樹脂、樹脂と金属とのコンポジット材料、及び1700MPa以上の超高張力鋼等を挙げることができる。
 更に、接合補助部材230には、自身の錆防止や、アルミニウム板との間に生じる電食を防ぐために、電気的卑の元素や加工物、絶縁性物質、不動態といった皮膜を形成する表面処理を施すこともできる。例えば、亜鉛めっき、クロムめっき、ニッケルめっき、アルミめっき、錫(すず)めっき、樹脂塗装、セラミックコーティングなどがあげられる。
 また、接合補助部材230の各種寸法は、図66に示すように、下板10や上板20との関係で次のように設定される。
・挿入部の高さPH1
 挿入部231の高さPH1は、下板10の板厚Bの10%以上、下板10及び上板20の板厚の合計B+F未満に設定される。接合補助部材230の挿入部231には、上述した下板10への圧入によって、かしめによる一時的な拘束効果がある。挿入部231の高さPH1が大きいほどかしめ効果は大きくなって外れにくくなる。挿入部231の高さPH1が板厚の10%未満ではかしめ効果がほとんど得られず不安定なため、10%以上とすることが望ましい。
 一方、挿入部231の高さPH1の上限は、下板10の板厚Bと等しい、すなわち100%とは限らず、先述の通り、上板側に積極的に飛び出している方が望ましい場合もある。しかしながら、挿入部231の高さPH1が上板20の穴21を全て充填する高さになっては、溶接金属が充填される空間が形成されず、上板20と接合補助部材230を溶接することが困難となるため、接合補助部材230の裏面位置は上板20の表面より内側になるのが望ましい。すなわち、挿入部231の高さPH1が下板10及び上板20の板厚の合計B+Fより小さいことを意味する。
・少なくとも2つの突起部の最外径部と接する最大円の直径PD1、又は、1つの突起部の最外径部と挿入部の外周面と接する円の直径PD1
 挿入部231に設けられる複数の突起部239の最外径部と接する最大円Cの直径PD1は、下板10の穴11の直径BD2に対し105%以上125%以下に設計される。接合補助部材230の挿入部231に設けられた突起部239には、下板10への圧入によるかしめ拘束をさせる働きがある。その効果を発揮させるには、該最大円Cの直径PD1は、下板10の直径BD2よりも大きくなければならない。該最大円Cの直径PD1が、直径BD2に対し、最低5%以上大きくなければ、下板穴近傍に適切な圧力をかけることができない。ゆえに、該最大円Cの直径PD1は、直径BD2の最低105%以上である。
 一方、複数の突起部239の最外径部と接する最大円Cの直径PD1が大きくなるほど、かしめ力は強くなるが、圧入に必要な力が大きくなって、簡便性が損なわれ、さらには下板穴周辺の圧力に耐えられず、亀裂発生してしまうことにもなりかねない。これらの理由から該最大円Cの直径PD1の上限は決まり、具体的には125%とする。
 なお、挿入部231の外周面に突起部239が1つ設けられる場合には、1つの突起部239の最外径部と挿入部231の外周面と接する円Cの直径PD1が、下板10の穴11の直径BD2に対し105%以上125%以下に設計される。
・挿入部の外径PD0
 挿入部231の外径PD0は、下板10の穴11の直径BD2に対し80%以上104%以下に設計される。接合補助部材230の挿入部231による下板10へのかしめ拘束作用は、突起部239によって達成される。挿入部231の外径PD0は、下板10の直径BD2より小さければ、挿入への抵抗因子にならず、望ましい。しかしながら、挿入部231の外径PD0が過度に小さければ、接合後の異材溶接継手1bに対して外部応力が作用した際に、比較的小さい力で板面方向に接合補助部材230の挿入部231と、下板10の穴11間の隙間分ずれを生じてしまうので、隙間は小さいほど望ましい。これらの相反する性質から、挿入部231の外径PD0は、下板10の穴11の直径BD2に対し100%未満かつ100%に近いほど望ましいことになる。しかしながら、工業的な見地から、ある程度のばらつきを許容する必要があり、挿入部231の外径PD0の下限は、80%までならば継手性能として実用的に問題がない。
 一方、挿入部231の外径PD0の上限については、下板10の直径BD2よりも大きな104%までが許容される。下板10の直径BD2よりも挿入部231の外径PD0が大きければ、突起部239だけでなく、挿入部231も圧入への抵抗因子となるが、例えば、アルミニウム合金又はマグネシウム合金は弾塑性変形抵抗が小さいので、104%までならば実用上挿入作業に問題をきたさない。
・非挿入部の幅PD2
 非挿入部232の幅PD2は、下板10の穴11の直径BD2に対し105%以上に設計される。接合補助部材230は、板厚方向への外部応力、言い換えれば引き剥がす応力が働いた際の抵抗力を発揮する主体的役割を有する。接合補助部材230の構成では、挿入部231も下板10に対するかしめ効果によりある程度、剥離応力に対する抵抗力を持つが、非挿入部232のほうが相対的にその役割は大きい。非挿入部232は大きく、かつ高さが大きいほど板厚方向(3次元方向)の外部応力に対して強度を増すため、望ましい。
 非挿入部232の幅PD2が直径BD2に対し105%未満では、非挿入部232が板厚方向への外部応力に対して弾塑性変形した場合に、下板10に空けられた穴11以下の見かけ直径に容易になりやすく、さすれば抜けてしまいやすくなる。つまり、高い抵抗力を示さない。したがって、非挿入部232の幅PD2は直径BD2に対して105%を下限とする。より好ましくは、非挿入部232の幅PD2は直径BD2に対して120%を下限とするとよい。一方、接合部強度の観点では上限を設ける必要は無い。
・非挿入部の高さPH2
 非挿入部232の高さPH2は、下板10の板厚Bの50%以上150%以下に設計される。上述したように、接合補助部材230の非挿入部232は幅PD2が大きく、かつ高さPH2が大きいほど板厚方向(3次元方向)の外部応力に対して強度を増すため、望ましい。その非挿入部232の高さPH2は、下板10の板厚Bに応じて大きくすることで高い抵抗力を発揮する。非挿入部232の高さPH2が下板10の板厚Bの50%未満では、接合補助部材230の非挿入部232が板厚方向への外部応力に対して容易に弾塑性変形を生じ、下板10に空けられた穴11以下の見かけ幅になって、抜けてしまいやすくなる。つまり、高い抵抗力を示さない。したがって、非挿入部232の高さPH2は、下板10の板厚Bの50%を下限とするのが望ましい。
 一方、非挿入部232の高さPH2は、下板10の板厚Bの150%を超えて非挿入部232の高さを大きくすると、継手強度的には問題ないが、過剰に張り出した形状となって外観が悪いだけでなく、重量も無意味に重くなる。したがって、150%以下にすることが望ましい。
 また、図67Aに示すように、上板20の表面からの溶接金属40の未充填高さPH3は、上板20の厚さFの30%以下に設定される。溶接金属40は上板20の穴21内を充填し、その表面位置が上板20の表面と同じ高さになるのが望ましい。これにより、図68に示すように、板厚方向(3次元方向)の外部応力に対して、接合補助部材230の変形が抑えられ、高い強度が得られる。一方、図69Aに示すように、未充填高さPH3が過度に大きいと、接合補助部材230と溶接金属40の結合面積が小さくなるので、接合強度が低くなる。上板20の厚さFの70%未満しか充填されていないと、継手接合強度の低下が顕著であり、図69Bに示すように、接合補助部材230が変形して、下板10が抜けやすくなる。このため、未充填高さを上板20の厚さFの30%を下限とする。
 一方、理想的には、上述の通り、溶接金属40は、下板10の表面と同じ高さに充填されるのがよい。ただし、接合後の異材溶接継手1bがさらに大きな構造体に組み上げられる際、接合部の上部空間に余裕がある場合には、図67Bに示すように、上板20の穴21全面を溶接金属40で充填し、さらに余盛りが形成されても良い。
 なお、下板10及び上板20の板厚については、限定される必要は必ずしもないが、施工能率と、重ね溶接としての形状を考慮すると、上板20の板厚は、5.0mm以下であることが望ましく、4.0mm以下であることがより望ましい。一方、アーク溶接の入熱を考慮すると、板厚が過度に薄いと溶接時に溶け落ちてしまい、溶接が困難であることから、下板10、上板20共に0.5mm以上とすることが望ましい。
 以上の構成により、下板10がアルミニウム合金又はマグネシウム合金、上板20が鋼の素材を強固に接合することができる。
 ここで、異種金属同士を直接接合する場合の課題としては、IMCの形成という課題以外に、もう一つの課題が知られている。それは、異種金属同士が接すると、ガルバニ電池を形成する為に腐食を加速する原因になる。この原因(電池の陽極反応)による腐食は電食と呼ばれている。異種金属同士が接する面に水があると腐食が進むので、接合箇所として水が入りやすい場所に本実施形態が適用される場合は、電食防止を目的として、水の浸入を防ぐためのシーリング処理を施す必要がある。本接合法でも、例えば、第1の板として、Al合金やMg合金のような鋼以外の金属材料を用いた場合には、異種金属同士が接する面は複数形成されるので、樹脂系の接着剤をさらなる継手強度向上の目的のみならず、シーリング材として用いることが好ましい。
 例えば、図72A及び図72Bに示す第1変形例のように、下板10及び上板20の接合面で、溶接部周囲に接着剤60を全周に亘って環状に塗布してもよい。なお、接着剤60を下板10及び上板20の接合面で、溶接部周囲に全周に亘って塗布する方法としては、図73A及び図73Bに示す第2変形例のように、溶接箇所を除いた接合面の全面に塗布する場合も含まれる、これにより、下板10、上板20及び溶接金属40の電食速度を下げることができる。
 また、図74A及び図74Bに示す第3変形例のように、接合補助部材230の非挿入部232と、該非挿入部232と対向する下板10の穴11の周囲との間の少なくとも一方の対向面に、接着剤60を塗布してもよい。さらに、図75A及び図75Bに示す第4変形例のように、接合補助部材230の非挿入部232と下板10の表面との境界部に接着剤60を塗布してもよい。
 これら第3及び第4変形例はいずれも、接合補助部材230の非挿入部232と下板10の表面との境界部からの水の浸入を防ぐことができ、電食を抑制することができる。
 なお、図74A及び図74Bに示す第3変形例では、塗布は挿入工程の際にしか実施できないが、図75A及び図75Bに示す第4変形例では、塗布は挿入工程の際、又は、充填溶接工程後でも可能である。
 なお、接合補助部材230の下板10との接触面は、図76Aに示すように、必ずしも平坦な面である必要はない。すなわち、接合補助部材230の下板10との接触面は、図76B及び図76Cに示すように、必要に応じてスリット234a、234bを設けて良い。特に、下板10との接触面側に円周状のスリット234aや、放射状のスリット234b、あるいは不図示の碁盤目状のスリットを設けると、接着剤60の塗布がスリット234a、234bの隙間に入り込んで逃げなくなるため、安定した接着が行なわれ、シーリングの効果も確実となる。このような平坦ではない面の場合の接合補助部材230の非挿入部232の厚さPH2の定義は、高さの最も大きな部分とする。
 また、図77に示すように、接合補助部材230の辺に当たる箇所には、使用時の安全性や鍛造時の制限などの点から、丸みRを持たせることには何ら問題がない。
 さらに、図27Aに示す変形例のように、上板20に膨出部22を設けてもよい。この場合、挿入部231の高さPH1が下板10の板厚B未満に設計されている(図66参照)。
 下板10の板厚が比較的薄い場合には、上述したように、上板20は穴開けするだけで良好な溶接が可能となる。しかし、下板10の板厚が大きいと、溶接工程で、下板10の穴11を充填するのに時間がかかり、能率が悪くなる。また、熱量が過大となって、充填完了するより先に接合補助部材230が溶け落ちしてしまいやすくなる。このため、上板20について絞り加工で膨出部22を設ければ、図78に示すように、穴11の体積が小さくなるので溶け落ち欠陥を防ぎながら、充填することができる。
 また、上板20の表面から溶接金属40の余盛りが突出することを防ぎ、外観が向上する、あるいは他の部材との干渉が避けられる効果も得られる。さらにまた、上板20の溶接箇所に膨出部22を設けることで、下板10に設けられた穴11と容易に位置合わせをすることができ、下板10と上板20との重ね合わせが容易になる。この効果は、板厚によらずに得られるので、上板20に絞り加工を施すことは、板厚に関係なく効果的である。
 なお、膨出部22の絞り加工は、図28Aに示すように、上板20の膨出部22が形成される部分の周辺部をダイ50で拘束する。そして、図28Bに示すように、膨出部22が形成される部分に圧力をかけてポンチ51を押し込むことで、膨出部22が成形される。また、下板10の穴開け工程は、深絞り工程の前でも後でもかまわない。
 また、本実施形態の溶接法は、接合面積が小さい点溶接と言えるので、ある程度の接合面積を有する実用部材同士の重ね合わせ部分Jを接合する場合は、本溶接法を図29A~図29Cに示すように、複数実施すればよい。これにより、重ね合わせ部分Jにおいて強固な接合が行われる。本実施形態は、図29B及び図29Cに示すような開断面構造にも使用できるが、特に、図29Aに示すような閉断面構造において好適に使用することができる。
 以上説明したように、本実施形態の異材接合用溶接法によれば、下板10及び上板20に穴11、21をそれぞれ開ける工程と、挿入部231と非挿入部232とを持った段付きの外形形状を有し、挿入部231の外周面には少なくとも1つの圧入用突起部239が設けられ、非挿入部232の幅PD2が下板10の穴の直径BD2より大きく、かつ、少なくとも2つの突起部239の最外径部と接する最大円の直径PD1、又は、1つの突起部239の最外径部と挿入部231の外周面と接する円の直径PD1が下板10の穴の直径BD2よりも大きい、中実、かつ鋼製の接合補助部材230を、下板10の穴上に載置して、挿入部231を下板10の穴に圧入する工程と、上板20の穴から接合補助部材230の挿入部231が臨むように、下板10と上板20を重ね合わせる工程と、以下の(a)~(f)のいずれかの手法によって、上板20の穴内を溶接金属40で充填すると共に、上板20及び接合補助部材230を溶接する工程と、を備える。
(a)鉄合金、又は、Ni合金の溶接金属40が得られる溶接ワイヤを溶極として用いるガスシールドアーク溶接法。
(b)前記溶接ワイヤを溶極として用いるノンガスアーク溶接法。
(c)前記溶接ワイヤを非溶極フィラーとして用いるガスタングステンアーク溶接法。
(d)前記溶接ワイヤを非溶極フィラーとして用いるプラズマアーク溶接法。
(e)鉄合金、又は、Ni合金の溶接金属40が得られる被覆アーク溶接棒を溶極として用いる被覆アーク溶接法。
(f)前記溶接ワイヤをフィラーワイヤとして用いるレーザ溶接法。
 これにより、例えば、Al合金又はMg合金のように、鋼以外の材料からなる第1の板(下板10)と鋼製の第2の板(上板20)とを、安価な溶接設備を用いて、強固かつ信頼性の高い品質で接合でき、かつ開断面構造にも閉断面構造にも制限無く適用でき、さらに、鋼製の上板20が表側の場合に適用できる。
 また、充填溶接工程において、上記(a)~(e)のいずれかのアーク溶接法において、熱源としてアークにレーザを加えて溶接する。これにより、施工能率をより高めることができる。
 また、接合補助部材230の挿入部231の高さPH1が下板10の板厚B未満であり、上板20には、絞り加工により膨出部22が形成されており、重ね合わせ工程において、上板20の膨出部22が、下板10の穴11内に配置される。これにより、下板10の板厚が大きな場合でも溶接効率を向上し、溶け落ち欠陥を防止して溶接することができ、また、下板10と上板20を容易に位置決めすることができる。
 また、重ね合わせ工程の前に、下板10と上板20の少なくとも一方の重ね合せ面には、下板10及び上板20の穴11、21の周囲に、全周に亘って接着剤60を塗布する工程を、さらに備える。これにより、接着剤は、継手強度向上の他、シーリング材として作用し、下板10、上板20及び溶接金属40の電食速度を下げることができる。
 また、挿入工程において、接合補助部材230の非挿入部232と、該非挿入部232と対向する下板10との間の少なくとも一方の対向面に、接着剤60を塗布する。この場合も、接着剤60は、継手強度向上の他、シーリング材として作用し、下板10、上板20及び溶接金属40の電食速度を下げることができる。
 さらに、挿入工程において、又は、充填溶接工程後に、接合補助部材230の非挿入部232と、下板10の表面との境界部に接着剤60を塗布する。この場合も、接着剤60は、継手強度向上の他、シーリング材として作用し、下板10、上板20及び溶接金属40の電食速度を下げることができる。
 また、接合補助部材230の挿入部231の高さPH1が下板10の板厚Bの10%以上、下板10及び上板20の板厚の合計B+F未満であるので、挿入部231は、かしめによる一時的な拘束効果を与えると共に、溶接金属40が充填される空間を確保している。
 また、少なくとも2つの突起部239の最外径部と接する最大円Cの直径PD1、又は、1つの突起部239の最外径部と挿入部231の外周面と接する円Cの直径PD1は、下板10の穴11の直径BD2に対し105%以上125%以下であるので、適当なかしめ力で、接合補助部材230を下板10の穴11にかしめ拘束することができる。
 また、接合補助部材230の挿入部231の最大外径PD0は、下板10の穴11の直径BD2に対し80%以上104%以下であるので、継手に外部応力が作用した際の下板10のずれを抑え、かつ、挿入性を確保することができる。
 また、接合補助部材230の非挿入部232の幅PD2は、下板10の穴11の直径BD2に対し105%以上であるので、接合補助部材230が板厚方向の外部応力への抵抗力として機能することができる。
 また、接合補助部材230の非挿入部232の高さPH2は、下板10の板厚Bの50%以上150%以下であるので、接合補助部材230は、接合補助部材230の板厚方向の外部応力への抵抗力として機能することができ、また、重量増加を抑えることができる。
 また、充填溶接工程において、上板20の表面からの溶接金属40の未充填高さPH3が、上板20の板厚Fの30%以下である、又は、上板20の穴21内を完全に充填しつつ、上板の表面に対して余盛りを形成するので、異材溶接継手1bの接合強度を確保することができる。
 また、本実施形態の接合補助部材230は、中実、かつ鋼製で、挿入部231と非挿入部232とを持った段付きの外形形状を有し、挿入部231の外周面には少なくとも1つの圧入用突起部239が設けられ、非挿入部232の幅PD2が下板10の穴の直径BD2より大きく、かつ、少なくとも2つの突起部239の最外径部と接する最大円の直径PD1、又は、1つの突起部239の最外径部と挿入部231の外周面と接する円の直径PD1が下板10の穴の直径BD2よりも大きい。これにより、接合補助部材230は、上述した異材接合用溶接法に好適に用いられる。
 また、本実施形態の異材溶接継手1bは、鋼以外の材料からなる下板10と、下板10に接合される、鋼製の上板20と、を備え、下板10及び上板20は、穴11、21をそれぞれ有し、挿入部231と非挿入部232とを持った段付きの外形形状を有し、挿入部231の外周面には少なくとも1つの圧入用突起部239が設けられ、非挿入部232の幅PD2が下板10の穴の直径BD2より大きく、かつ、少なくとも2つの突起部239の最外径部と接する最大円の直径PD1、又は、1つの突起部239の最外径部と挿入部231の外周面と接する円の直径PD1が下板10の穴の直径BD2よりも大きい、中実、かつ鋼製の接合補助部材230をさらに備え、接合補助部材230の挿入部231は、下板10の穴内に固定されており、下板10及び上板20は、下板10の穴及び上板20の穴が互いに同軸上に位置するように重ね合されており、上板20の穴は、鉄合金、又は、Ni合金の溶接金属で充填されると共に、溶接金属40と、溶融された上板20及び接合補助部材230の一部とによって溶融部Wが形成される。
 これにより、鋼以外の材料からなる第1の板(下板10)と鋼製の第2の板(上板20)とを備えた異材溶接継手1bは、安価な溶接設備を用いて、強固かつ信頼性の高い品質で接合され、かつ開断面構造にも閉断面構造にも制限無く適用でき、さらに、鋼製の上板20が表側の場合に適用できる。
 なお、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。
 以上の通り、本明細書には次の事項が開示されている。
(1) 鋼以外の材料からなる第1の板と、鋼製の第2の板と、を接合する異材接合用溶接法であって、
 前記第1の板及び前記第2の板に穴をそれぞれ開ける工程と、
 軸部とフランジ部とを持った段付きの外形形状を有し、前記軸部の最大外径PD1と、前記フランジ部の幅PD2と、前記第1の板の穴の直径BD1との関係がPD2>PD1>BD1であり、前記軸部がフランジ部側でくびれ部を有する、中実、かつ鋼製の接合補助部材、又は、軸部とフランジ部とを持った段付きの外形形状を有し、前記軸部の外周面には少なくとも1つの圧入用突起部が設けられ、前記フランジ部の幅PD2が前記第1の板の穴の直径BD2より大きく、かつ、少なくとも2つの前記突起部の最外径部と接する最大円の直径PD1、若しくは、1つの前記突起部の最外径部と前記軸部の外周面と接する円の直径PD1が前記第1の板の穴の直径BD2よりも大きい、中実、かつ鋼製の接合補助部材における、少なくとも前記軸部を前記第1の板の穴に圧入する工程と、
 前記第2の板の穴から前記接合補助部材の軸部が臨むように、前記第1の板と前記第2の板を重ね合わせる工程と、
 以下の(a)~(f)のいずれかの手法によって、前記第2の板の穴内を溶接金属で充填すると共に、前記第2の板及び前記接合補助部材を溶接する工程と、
を備える異材接合用溶接法。
(a)鉄合金、又は、Ni合金の前記溶接金属が得られる溶接ワイヤを溶極として用いるガスシールドアーク溶接法。
(b)前記溶接ワイヤを溶極として用いるノンガスアーク溶接法。
(c)前記溶接ワイヤを非溶極フィラーとして用いるガスタングステンアーク溶接法。
(d)前記溶接ワイヤを非溶極フィラーとして用いるプラズマアーク溶接法。
(e)鉄合金、又は、Ni合金の前記溶接金属が得られる被覆アーク溶接棒を溶極として用いる被覆アーク溶接法。
(f)前記溶接ワイヤをフィラーワイヤとして用いるレーザ溶接法。
(2) 前記圧入工程において、前記接合補助部材は、前記フランジ部の露出面が前記第1の板の表面と略面一又は内側に位置するように、前記第1の板の穴に圧入される、(1に記載の異材接合用溶接法。
(3) 前記充填溶接工程において、(a)~(e)のいずれかの前記手法において、熱源としてアークにレーザを加えて溶接する、(2)に記載の異材接合用溶接法。
(4)前記接合補助部材の厚さPが前記第1の板の板厚BH1以下であり、
 前記第2の板には、絞り加工により膨出部が形成されており、
 前記重ね合わせ工程において、前記第2の板の膨出部が、前記第1の板の穴内に配置される、(2)又は(3)に記載の異材接合用溶接法。
(5) 前記重ね合わせ工程の前に、前記第1の板と前記第2の板の少なくとも一方の重ね合せ面には、前記第1及び第2の板の前記穴の周囲に、全周に亘って接着剤を塗布する工程を、さらに備える、(2)~(4)のいずれか1つに記載の異材接合用溶接法。
(6) 前記接合補助部材の厚さPが前記第1の板の板厚BH1以下であり、
 前記圧入工程後に、前記第1の板は、プレス成形される、(2)~(5)のいずれか1つに記載の異材接合用溶接法。
(7) 前記接合補助部材のフランジ部の厚さPH2は、前記第1の板の板厚BH1の20%以上80%以下である、(2)~(6)のいずれか1つに記載の異材接合用溶接法。
(8) 前記接合補助部材のフランジ部の幅PD2は、前記第1の板の穴の直径BD1に対し110%以上200%以下である、(2)~(7)のいずれか1つに記載の異材接合用溶接法。
(9) 前記充填溶接工程において、前記溶接金属は、前記第2の板の表面からの前記溶接金属の未充填高さPH3が、前記第2の板の板厚BH2の30%以下である、又は、前記第2の板の穴内を完全に充填しつつ、前記第2の板の表面に対して余盛りを形成する、(2)~(8)のいずれか1つに記載の異材接合用溶接法。
(10) 前記圧入工程において、前記接合補助部材を前記第1の板の穴上に載置して、前記軸部を前記第1の板の穴に圧入し、
 前記軸部が挿入部を構成し、前記フランジ部が非挿入部を構成する、(1)に記載の異材接合用溶接法。
(11) 前記充填溶接工程において、(a)~(e)のいずれかの前記手法において、熱源としてアークにレーザを加えて溶接する、(10)に記載の異材接合用溶接法。
(12) 前記接合補助部材の挿入部の高さPH1が前記第1の板の板厚B未満であり、
 前記第2の板には、絞り加工により膨出部が形成されており、
 前記重ね合わせ工程において、前記第2の板の膨出部が、前記第1の板の穴内に配置される、(10)又は(11)に記載の異材接合用溶接法。
(13) 前記重ね合わせ工程の前に、前記第1の板と前記第2の板の少なくとも一方の重ね合せ面には、前記第1及び第2の板の前記穴の周囲に、全周に亘って接着剤を塗布する工程を、さらに備える、(10)~(12)のいずれか1つに記載の異材接合用溶接法。
(14) 前記挿入工程において、前記接合補助部材の非挿入部と、該非挿入部と対向する前記第1の板との間の少なくとも一方の対向面に、接着剤を塗布する、(10)~(13)のいずれか1つに記載の異材接合用溶接法。
(15) 前記挿入工程において、又は、前記充填溶接工程後に、前記接合補助部材の非挿入部と、前記第1の板の表面との境界部に接着剤を塗布する、(10)~(14)のいずれか1つに記載の異材接合用溶接法。
(16) 前記接合補助部材の挿入部の高さPH1は、前記第1の板の板厚Bの10%以上、前記第1の板及び第2の板の板厚の合計B+F未満である、(10)~(15)のいずれか1つに記載の異材接合用溶接法。
(17) 前記接合補助部材の挿入部の最大直径PD1は、前記第1の板の穴の直径BD1又は直径BD2に対し102%以上125%以下である、(10)~(16)のいずれか1つに記載の異材接合用溶接法。
(18) 前記接合補助部材の非挿入部の幅PD2は、前記第1の板の穴の直径BD1又は直径BD2に対し105%以上である、(10)~(17)のいずれか1つに記載の異材接合用溶接法。
(19) 前記接合補助部材の非挿入部の高さPH2は、前記第1の板の板厚Bの50%以上150%以下である、(10)~(18)のいずれか1つに記載の異材接合用溶接法。
(20) 前記充填溶接工程において、前記溶接金属は、前記第2の板の表面からの前記溶接金属の未充填高さPH3が、前記第2の板の板厚Fの30%以下である、又は、前記第2の板の穴内を完全に充填しつつ、前記第2の板の表面に対して余盛りを形成する、(10)~(19)のいずれか1つに記載の異材接合用溶接法。
(21) 前記少なくとも2つの突起部の最外径部と接する最大円の直径PD1、又は、前記1つの突起部の最外径部と前記軸部の外周面と接する円の直径PD1は、前記第1の板の穴の直径BD2に対し105%以上125%以下である、(10)~(15)のいずれか1つに記載の異材接合用溶接法。
(22) 前記接合補助部材の軸部の外径PD0は、前記第1の板の穴の直径BD1又は直径BD2に対し80%以上104%以下である、(10)~(15)のいずれか1つ、又は(21)に記載の異材接合用溶接法。
(23) (1)~(20)のいずれか1つに記載の異材接合用溶接法に用いられ、
 中実、かつ鋼製で、軸部とフランジ部とを持った段付きの外形形状を有し、前記軸部の最大外径PD1と、前記フランジ部の幅PD2と、前記第1の板の穴の直径BD1との関係がPD2>PD1>BD1であり、前記軸部がフランジ部側でくびれ部を有する、接合補助部材。
(24) (1)~(22)のいずれか1つに記載の異材接合用溶接法に用いられ、
 中実、かつ鋼製で、軸部とフランジ部とを持った段付きの外形形状を有し、前記軸部の外周面には少なくとも1つの圧入用突起部が設けられ、前記フランジ部の幅PD2が前記第1の板の穴の直径BD2より大きく、かつ、少なくとも2つの前記突起部の最外径部と接する最大円の直径PD1、又は、1つの前記突起部の最外径部と前記軸部の外周面と接する円の直径PD1が前記第1の板の穴の直径BD2よりも大きい、接合補助部材。
(25) 鋼以外の材料からなる第1の板と、該第1の板に接合される、鋼製の第2の板と、を備える異材溶接継手であって、
 前記第1の板及び前記第2の板は、互いに同軸上に位置する穴をそれぞれ有し、
 軸部とフランジ部とを持った段付きの外形形状を有し、前記軸部の最大外径PD1と、前記フランジ部の幅PD2と、前記第1の板の穴の直径BD1との関係がPD2>PD1>BD1であり、前記軸部がフランジ部側でくびれ部を有する鋼製の接合補助部材、又は、軸部とフランジ部とを持った段付きの外形形状を有し、前記軸部の外周面には少なくとも1つの圧入用突起部が設けられ、前記フランジ部の幅PD2が前記第1の板の穴の直径BD2より大きく、かつ、少なくとも2つの前記突起部の最外径部と接する最大円の直径PD1、又は、1つの前記突起部の最外径部と前記軸部の外周面と接する円の直径PD1が前記第1の板の穴の直径BD2よりも大きい、中実、かつ鋼製の接合補助部材をさらに備え、
 前記接合補助部材の少なくとも前記軸部は、前記第1の板の穴内に固定されており、
 前記第1の板及び前記第2の板は、前記第2の板の穴から前記接合補助部材の軸部が臨むように重ね合されており、
 前記第2の板の穴は、鉄合金、又は、Ni合金の溶接金属で充填されると共に、前記溶接金属と、溶融された前記第2の板及び前記接合補助部材の一部とによって溶融部が形成される、異材溶接継手。
(26) 前記接合補助部材は、前記フランジ部の露出面が前記第1の板の表面と略面一又は内側に位置するように、前記第1の板の穴内に固定されている、(25)に記載の異材溶接継手。
(27) 前記第1の板の穴内には、前記第2の板に形成された膨出部が配置される、(26)に記載の異材溶接継手。
(28) 前記第1の板と前記第2の板の少なくとも一方の前記重ね合せ面には、前記第1及び第2の板の前記穴の周囲に、全周に亘って設けられた接着剤を備える、(26)又は(27)に記載の異材溶接継手。
(29) 前記接合補助部材のフランジ部の厚さPH2は、前記第1の板の板厚BH1の20%以上80%以下である、(26)~(28)のいずれか1つに記載の異材溶接継手。
(30) 前記接合補助部材のフランジ部の幅PD2は、前記第1の板の穴の直径BD1に対し110%以上200%以下である、(26)~(29)のいずれか1つに記載の異材溶接継手。
(31) 前記第2の板の表面からの前記溶接金属の未充填高さPH3が、前記第2の板の板厚BH2の30%以下である、(26)~(30)のいずれか1つに記載の異材溶接継手。
(32) 前記溶接金属が、前記第2の板の穴内を完全に充填しつつ、前記第2の板の表面に対して余盛りを形成する、(26)~(30)のいずれか1つに記載の異材溶接継手。
(33) 前記接合補助部材は、前記第1の板の穴に圧入して固定されている、(26)~(32)のいずれか1つに記載の異材溶接継手。
(34) 前記接合補助部材の挿入部は、前記第1の板の穴内に固定されており、
 前記軸部が挿入部を構成し、前記フランジ部が非挿入部を構成する、(25)に記載の異材溶接継手。
(35) 前記第1の板の穴内には、前記第2の板に形成された膨出部が配置される、(34)に記載の異材溶接継手。
(36) 前記第1の板と前記第2の板の少なくとも一方の前記重ね合せ面には、前記第1及び第2の板の前記穴の周囲に、全周に亘って設けられた接着剤を備える、(34)又は(35)に記載の異材溶接継手。
(37) 前記接合補助部材の非挿入部と、該非挿入部と対向する前記第1の板との間の対向面に、接着剤を備える、(34)~(36)のいずれか1つに記載の異材溶接継手。
(38) 前記接合補助部材の非挿入部と、前記第1の板の表面との境界部に接着剤を備える、(34)~(37)のいずれか1つに記載の異材溶接継手。
(39) 前記接合補助部材の挿入部の高さPH1は、前記第1の板の板厚Bの10%以上、前記第1の板の板厚及び第2の板の板厚の合計B+F未満である、(34)~
(38)のいずれか1つに記載の異材溶接継手。
(40) 前記接合補助部材の挿入部の最大直径PD1は、前記第1の板の穴の直径BD1又は直径BD2に対し102%以上125%以下である、(34)~(39)のいずれか1つに記載の異材溶接継手。
(41) 前記接合補助部材の非挿入部の幅PD2は、前記第1の板の穴の直径BD1又は直径BD2に対し105%以上である、(34)~(40)のいずれか1つに記載の異材溶接継手。
(42) 前記接合補助部材の非挿入部の高さPH2は、前記第1の板の板厚Bの50%以上150%以下である、(34)~(41)のいずれか1つに記載の異材溶接継手。
(43) 前記第2の板の表面からの前記溶接金属の未充填高さPH3が、前記第2の板の板厚Fの30%以下である、(34)~(42)のいずれか1つに記載の異材溶接継手。
(44) 前記溶接金属が、前記第2の板の穴内を完全に充填しつつ、前記第2の板の表面に対して余盛りを形成する、(34)~(42)のいずれか1つに記載の異材溶接継手。
(45) 前記接合補助部材は、前記第1の板の穴に圧入して固定されている、(34)~(44)のいずれか1つに記載の異材溶接継手。
(46) 前記少なくとも2つの突起部の最外径部と接する最大円の直径PD1、又は、前記1つの突起部の最外径部と前記軸部の外周面と接する最大円の直径PD1、前記第1の板の穴の直径BD2に対し105%以上125%以下である、(34)~(39)のいずれか1つに記載の異材溶接継手。
(47) 前記接合補助部材の軸部の外径PD0は、前記第1の板の穴の直径BD1又は直径BD2に対し80%以上104%以下である、(34)~(39)のいずれか1つ、又は(46)に記載の異材溶接継手。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2018年11月14日出願の日本特許出願(特願2018-214061)に基づくものであり、その内容は本出願の中に参照として援用される。
1、1a、1b、100a 異材溶接継手
10  下板(第1の板)
10a 表面
11  穴
20  上板(第2の板)
21  穴
22  膨出部
30、130、230 接合補助部材
31  軸部
32  フランジ部
35、135   テーパ部
35a、135a 溝
36、136   小径円筒部
37、137   縮径テーパ部
38、138   大径円筒部
39、139   くびれ部
40、40a   溶接金属
50  ダイ
51  ポンチ
60  接着剤
70、70a   金型
131、231  挿入部
132、232  非挿入部
134a、134b、234a、234b スリット
238 切り欠き
239 (圧入用)突起部
W  溶融部
R  丸み
J  重ね合わせ部分

Claims (47)

  1.  鋼以外の材料からなる第1の板と、鋼製の第2の板と、を接合する異材接合用溶接法であって、
     前記第1の板及び前記第2の板に穴をそれぞれ開ける工程と、
     軸部とフランジ部とを持った段付きの外形形状を有し、前記軸部の最大外径PD1、前記フランジ部の幅PD2、及び前記第1の板の穴の直径BD1の関係がPD2>PD1>BD1であり、前記軸部がフランジ部側でくびれ部を有する、中実、かつ鋼製の接合補助部材、
     又は、軸部とフランジ部とを持った段付きの外形形状を有し、前記軸部の外周面には少なくとも1つの圧入用突起部が設けられ、前記フランジ部の幅PD2が前記第1の板の穴の直径BD2より大きく、かつ、少なくとも2つの前記突起部の最外径部と接する最大円の直径PD1、若しくは、1つの前記突起部の最外径部と前記軸部の外周面と接する円の直径PD1が前記第1の板の穴の直径BD2よりも大きい、中実、かつ鋼製の接合補助部材における、少なくとも前記軸部を前記第1の板の穴に圧入する工程と、
     前記第2の板の穴から前記接合補助部材の軸部が臨むように、前記第1の板と前記第2の板を重ね合わせる工程と、
     以下の(a)~(f)のいずれかの手法によって、前記第2の板の穴内を溶接金属で充填すると共に、前記第2の板及び前記接合補助部材を溶接する工程と、
    を備える異材接合用溶接法。
    (a)鉄合金、又は、Ni合金の前記溶接金属が得られる溶接ワイヤを溶極として用いるガスシールドアーク溶接法。
    (b)前記溶接ワイヤを溶極として用いるノンガスアーク溶接法。
    (c)前記溶接ワイヤを非溶極フィラーとして用いるガスタングステンアーク溶接法。
    (d)前記溶接ワイヤを非溶極フィラーとして用いるプラズマアーク溶接法。
    (e)鉄合金、又は、Ni合金の前記溶接金属が得られる被覆アーク溶接棒を溶極として用いる被覆アーク溶接法。
    (f)前記溶接ワイヤをフィラーワイヤとして用いるレーザ溶接法。
  2.  前記圧入工程において、前記接合補助部材は、前記フランジ部の露出面が前記第1の板の表面と略面一又は内側に位置するように、前記第1の板の穴に圧入される、請求項1に記載の異材接合用溶接法。
  3.  前記充填溶接工程において、前記(a)~(e)のいずれかの前記手法において、熱源としてアークにレーザを加えて溶接する、請求項2に記載の異材接合用溶接法。
  4.  前記接合補助部材の厚さPが前記第1の板の板厚BH1以下であり、
     前記第2の板には、絞り加工により膨出部が形成されており、
     前記重ね合わせ工程において、前記第2の板の膨出部が、前記第1の板の穴内に配置される、請求項2又は3に記載の異材接合用溶接法。
  5.  前記重ね合わせ工程の前に、前記第1の板と前記第2の板の少なくとも一方の重ね合せ面には、前記第1及び第2の板の前記穴の周囲に、全周に亘って接着剤を塗布する工程を、さらに備える、請求項2又は3に記載の異材接合用溶接法。
  6.  前記接合補助部材の厚さPが前記第1の板の板厚BH1以下であり、
     前記圧入工程後に、前記第1の板は、プレス成形される、請求項2又は3に記載の異材接合用溶接法。
  7.  前記接合補助部材のフランジ部の厚さPH2は、前記第1の板の板厚BH1の20%以上80%以下である、請求項2又は3に記載の異材接合用溶接法。
  8.  前記接合補助部材のフランジ部の幅PD2は、前記第1の板の穴の直径BD1に対し110%以上200%以下である、請求項2又は3に記載の異材接合用溶接法。
  9.  前記充填溶接工程において、前記溶接金属は、前記第2の板の表面からの前記溶接金属の未充填高さPH3が、前記第2の板の板厚BH2の30%以下である、又は、前記第2の板の穴内を完全に充填しつつ、前記第2の板の表面に対して余盛りを形成する、請求項2又は3に記載の異材接合用溶接法。
  10.  前記圧入工程において、前記接合補助部材を前記第1の板の穴上に載置して、前記軸部を前記第1の板の穴に圧入し、
     前記軸部が挿入部を構成し、前記フランジ部が非挿入部を構成する、請求項1に記載の異材接合用溶接法。
  11.  前記充填溶接工程において、前記(a)~(e)のいずれかの前記手法において、熱源としてアークにレーザを加えて溶接する、請求項10に記載の異材接合用溶接法。
  12.  前記接合補助部材の挿入部の高さPH1が前記第1の板の板厚B未満であり、
     前記第2の板には、絞り加工により膨出部が形成されており、
     前記重ね合わせ工程において、前記第2の板の膨出部が、前記第1の板の穴内に配置される、請求項10又は11に記載の異材接合用溶接法。
  13.  前記重ね合わせ工程の前に、前記第1の板と前記第2の板の少なくとも一方の重ね合せ面には、前記第1及び第2の板の前記穴の周囲に、全周に亘って接着剤を塗布する工程を、さらに備える、請求項10又は11に記載の異材接合用溶接法。
  14.  前記挿入工程において、前記接合補助部材の非挿入部と、該非挿入部と対向する前記第1の板との間の少なくとも一方の対向面に、接着剤を塗布する、請求項10又は11に記載の異材接合用溶接法。
  15.  前記挿入工程において、又は、前記充填溶接工程後に、前記接合補助部材の非挿入部と、前記第1の板の表面との境界部に接着剤を塗布する、請求項10又は11に記載の異材接合用溶接法。
  16.  前記接合補助部材の挿入部の高さPH1は、前記第1の板の板厚Bの10%以上、前記第1の板及び第2の板の板厚の合計B+F未満である、請求項10又は11に記載の異材接合用溶接法。
  17.  前記接合補助部材の挿入部の最大直径PD1は、前記第1の板の穴の直径BD1又は直径BD2に対し102%以上125%以下である、請求項10又は11に記載の異材接合用溶接法。
  18.  前記接合補助部材の非挿入部の幅PD2は、前記第1の板の穴の直径BD1又は直径BD2に対し105%以上である、請求項10又は11に記載の異材接合用溶接法。
  19.  前記接合補助部材の非挿入部の高さPH2は、前記第1の板の板厚Bの50%以上150%以下である、請求項10又は11に記載の異材接合用溶接法。
  20.  前記充填溶接工程において、前記溶接金属は、前記第2の板の表面からの前記溶接金属の未充填高さPH3が、前記第2の板の板厚Fの30%以下である、又は、前記第2の板の穴内を完全に充填しつつ、前記第2の板の表面に対して余盛りを形成する、請求項10又は11に記載の異材接合用溶接法。
  21.  前記少なくとも2つの突起部の最外径部と接する最大円の直径PD1、又は、前記1つの突起部の最外径部と前記軸部の外周面と接する円の直径PD1は、前記第1の板の穴の直径BD2に対し105%以上125%以下である、請求項10又は11に記載の異材接合用溶接法。
  22.  前記接合補助部材の軸部の外径PD0は、前記第1の板の穴の直径BD1又は直径BD2に対し80%以上104%以下である、請求項10又は11に記載の異材接合用溶接法。
  23.  請求項1~3のいずれか1項に記載の異材接合用溶接法に用いられ、
     中実、かつ鋼製で、軸部とフランジ部とを持った段付きの外形形状を有し、前記軸部の最大外径PD1と、前記フランジ部の幅PD2と、前記第1の板の穴の直径BD1との関係がPD2>PD1>BD1であり、前記軸部がフランジ部側でくびれ部を有する、接合補助部材。
  24.  請求項1~3のいずれか1項に記載の異材接合用溶接法に用いられ、
     中実、かつ鋼製で、軸部とフランジ部とを持った段付きの外形形状を有し、前記軸部の外周面には少なくとも1つの圧入用突起部が設けられ、前記フランジ部の幅PD2が前記第1の板の穴の直径BD2より大きく、かつ、少なくとも2つの前記突起部の最外径部と接する最大円の直径PD1、又は、1つの前記突起部の最外径部と前記軸部の外周面と接する円の直径PD1が前記第1の板の穴の直径BD2よりも大きい、接合補助部材。
  25.  鋼以外の材料からなる第1の板と、該第1の板に接合される、鋼製の第2の板と、を備える異材溶接継手であって、
     前記第1の板及び前記第2の板は、互いに同軸上に位置する穴をそれぞれ有し、
     軸部とフランジ部とを持った段付きの外形形状を有し、前記軸部の最大外径PD1と、前記フランジ部の幅PD2と前記第1の板の穴の直径BD1との関係がPD2>PD1>BD1であり、前記軸部がフランジ部側でくびれ部を有する鋼製の接合補助部材、又は、軸部とフランジ部とを持った段付きの外形形状を有し、前記軸部の外周面には少なくとも1つの圧入用突起部が設けられ、前記フランジ部の幅PD2が前記第1の板の穴の直径BD2より大きく、かつ、少なくとも2つの前記突起部の最外径部と接する最大円の直径PD1、又は、1つの前記突起部の最外径部と前記軸部の外周面と接する円の直径PD1が前記第1の板の穴の直径BD2よりも大きい、中実、かつ鋼製の接合補助部材をさらに備え、
     前記接合補助部材の少なくとも前記軸部は、前記第1の板の穴内に固定されており、
     前記第1の板及び前記第2の板は、前記第2の板の穴から前記接合補助部材の軸部が臨むように重ね合されており、
     前記第2の板の穴は、鉄合金、又は、Ni合金の溶接金属で充填されると共に、前記溶接金属と、溶融された前記第2の板及び前記接合補助部材の一部とによって溶融部が形成される、異材溶接継手。
  26.  前記接合補助部材は、前記フランジ部の露出面が前記第1の板の表面と略面一又は内側に位置するように、前記第1の板の穴内に固定されている、請求項25に記載の異材溶接継手。
  27.  前記第1の板の穴内には、前記第2の板に形成された膨出部が配置される、請求項26に記載の異材溶接継手。
  28.  前記第1の板と前記第2の板の少なくとも一方の前記重ね合せ面には、前記第1及び第2の板の前記穴の周囲に、全周に亘って設けられた接着剤を備える、請求項26又は27に記載の異材溶接継手。
  29.  前記接合補助部材のフランジ部の厚さPH2は、前記第1の板の板厚BH1の20%以上80%以下である、請求項26又は27に記載の異材溶接継手。
  30.  前記接合補助部材のフランジ部の幅PD2は、前記第1の板の穴の直径BD1に対し110%以上200%以下である、請求項26又は27に記載の異材溶接継手。
  31.  前記第2の板の表面からの前記溶接金属の未充填高さPH3が、前記第2の板の板厚BH2の30%以下である、請求項26又は27に記載の異材溶接継手。
  32.  前記溶接金属が、前記第2の板の穴内を完全に充填しつつ、前記第2の板の表面に対して余盛りを形成する、請求項26又は27に記載の異材溶接継手。
  33.  前記接合補助部材は、前記第1の板の穴に圧入して固定されている、請求項26又は27に記載の異材溶接継手。
  34.  前記接合補助部材の挿入部は、前記第1の板の穴内に固定されており、
     前記軸部が挿入部を構成し、前記フランジ部が非挿入部を構成する、請求項25に記載の異材溶接継手。
  35.  前記第1の板の穴内には、前記第2の板に形成された膨出部が配置される、請求項34に記載の異材溶接継手。
  36.  前記第1の板と前記第2の板の少なくとも一方の前記重ね合せ面には、前記第1及び第2の板の前記穴の周囲に、全周に亘って設けられた接着剤を備える、請求項34又は35に記載の異材溶接継手。
  37.  前記接合補助部材の非挿入部と、該非挿入部と対向する前記第1の板との間の対向面に、接着剤を備える、請求項34又は35に記載の異材溶接継手。
  38.  前記接合補助部材の非挿入部と、前記第1の板の表面との境界部に接着剤を備える、請求項34又は35に記載の異材溶接継手。
  39.  前記接合補助部材の挿入部の高さPH1は、前記第1の板の板厚Bの10%以上、前記第1の板の板厚及び第2の板の板厚の合計B+F未満である、請求項34又は35に記載の異材溶接継手。
  40.  前記接合補助部材の挿入部の最大直径PD1は、前記第1の板の穴の直径BD1又は直径BD2に対し102%以上125%以下である、請求項34又は35に記載の異材溶接継手。
  41.  前記接合補助部材の非挿入部の幅PD2は、前記第1の板の穴の直径BD1又は直径BD2に対し105%以上である、請求項34又は35に記載の異材溶接継手。
  42.  前記接合補助部材の非挿入部の高さPH2は、前記第1の板の板厚Bの50%以上150%以下である、請求項34又は35に記載の異材溶接継手。
  43.  前記第2の板の表面からの前記溶接金属の未充填高さPH3が、前記第2の板の板厚Fの30%以下である、請求項34又は35に記載の異材溶接継手。
  44.  前記溶接金属が、前記第2の板の穴内を完全に充填しつつ、前記第2の板の表面に対して余盛りを形成する、請求項34又は35に記載の異材溶接継手。
  45.  前記接合補助部材は、前記第1の板の穴に圧入して固定されている、請求項34又は35に記載の異材溶接継手。
  46.  前記少なくとも2つの突起部の最外径部と接する最大円の直径PD1、又は、前記1つの突起部の最外径部と前記軸部の外周面と接する最大円の直径PD1は、前記第1の板の穴の直径BD2に対し105%以上125%以下である、請求項34又は35に記載の異材溶接継手。
  47.  前記接合補助部材の軸部の外径PD0は、前記第1の板の穴の直径BD1又は直径BD2に対し80%以上104%以下である、請求項34又は35に記載の異材溶接継手。
PCT/JP2019/036838 2018-11-14 2019-09-19 異材接合用溶接法、接合補助部材、及び、異材溶接継手 WO2020100426A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19883745.2A EP3868506A4 (en) 2018-11-14 2019-09-19 WELDING PROCESS FOR JOINING DIFFERENT MATERIALS, AUXILIARY ASSEMBLY ELEMENT AND WELDED JOINT OF DIFFERENT MATERIALS
US17/291,759 US20210387278A1 (en) 2018-11-14 2019-09-19 Welding method for bonding dissimilar materials, bonding auxiliary member, and dissimilar material welded joint
CN201980074157.XA CN112996623B (zh) 2018-11-14 2019-09-19 异种材料接合用焊接法、接合辅助构件和异种材料焊接接头

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018214061A JP7017501B2 (ja) 2018-11-14 2018-11-14 異材接合用溶接法、接合補助部材、及び、異材溶接継手
JP2018-214061 2018-11-14

Publications (1)

Publication Number Publication Date
WO2020100426A1 true WO2020100426A1 (ja) 2020-05-22

Family

ID=70731130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036838 WO2020100426A1 (ja) 2018-11-14 2019-09-19 異材接合用溶接法、接合補助部材、及び、異材溶接継手

Country Status (5)

Country Link
US (1) US20210387278A1 (ja)
EP (1) EP3868506A4 (ja)
JP (1) JP7017501B2 (ja)
CN (1) CN112996623B (ja)
WO (1) WO2020100426A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022117565A (ja) 2021-02-01 2022-08-12 トヨタ自動車株式会社 インサートの接合した鋳造品又は鍛造品の製造方法
WO2022185884A1 (ja) * 2021-03-05 2022-09-09 株式会社神戸製鋼所 異材接合用アークスポット溶接法及び異材溶接継手
KR102525443B1 (ko) * 2021-08-09 2023-04-27 주식회사 신영 이종소재 하이브리드 접합방법
CN114505576A (zh) * 2022-03-05 2022-05-17 安阳工学院 镍基合金/铝合金或铝异种材料激光焊接方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174219A (ja) 2000-12-06 2002-06-21 Toyota Motor Corp セルフピアスリベットおよび締結方法
JP2009285678A (ja) 2008-05-28 2009-12-10 Kobe Steel Ltd 鋼材と軽合金材との異材接合方法および異材接合体、鋼材との異材接合用軽合金材、鋼材と軽合金材との異材接合用リベット。
JP5044128B2 (ja) 2006-03-22 2012-10-10 本田技研工業株式会社 アルミ合金と鋼板との摩擦攪拌接合方法および摩擦攪拌接合部材
WO2015016287A1 (ja) * 2013-07-31 2015-02-05 新日鐵住金株式会社 アークスポット溶接継手及びその製造方法
WO2016188564A1 (de) * 2015-05-26 2016-12-01 Trumpf Laser- Und Systemtechnik Gmbh Fügeverfahren und fügevorrichtung zum verbinden von wenigstens zwei bauteilen mittels eines hilfsfügeteiles und laserschweissens
US20180147652A1 (en) * 2016-11-30 2018-05-31 Volkswagen Aktiengesellschaft Method and apparatus for connecting components made of different materials
WO2018123716A1 (ja) * 2016-12-27 2018-07-05 株式会社神戸製鋼所 異材接合用アーク溶接法、接合補助部材、異材溶接継手、及び、接合補助部材付き板材
GB2558611A (en) * 2017-01-10 2018-07-18 Penn Engineering Fastening Tech Europe Ltd A method of joining first and second components, a component assembly formed by the method and an insert for use in the component assembly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1346054A (en) * 1918-10-19 1920-07-06 Us Light & Heat Corp Method of riveting
JPH07227670A (ja) * 1994-02-19 1995-08-29 Aioi Seiki Kk 板部材の栓溶接方法
JP6022402B2 (ja) * 2013-05-22 2016-11-09 株式会社神戸製鋼所 リベット接合構造体及びその製造方法
JP5722479B2 (ja) * 2013-07-22 2015-05-20 株式会社神戸製鋼所 異材接合用リベット、異材接合用部材、異材接合体の製造方法及び異材接合体
JP6009004B2 (ja) * 2015-01-20 2016-10-19 株式会社神戸製鋼所 異材接合用鍛造リベット及び異材接合方法
JP6411993B2 (ja) * 2015-12-25 2018-10-24 株式会社神戸製鋼所 異材接合構造体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174219A (ja) 2000-12-06 2002-06-21 Toyota Motor Corp セルフピアスリベットおよび締結方法
JP5044128B2 (ja) 2006-03-22 2012-10-10 本田技研工業株式会社 アルミ合金と鋼板との摩擦攪拌接合方法および摩擦攪拌接合部材
JP2009285678A (ja) 2008-05-28 2009-12-10 Kobe Steel Ltd 鋼材と軽合金材との異材接合方法および異材接合体、鋼材との異材接合用軽合金材、鋼材と軽合金材との異材接合用リベット。
WO2015016287A1 (ja) * 2013-07-31 2015-02-05 新日鐵住金株式会社 アークスポット溶接継手及びその製造方法
WO2016188564A1 (de) * 2015-05-26 2016-12-01 Trumpf Laser- Und Systemtechnik Gmbh Fügeverfahren und fügevorrichtung zum verbinden von wenigstens zwei bauteilen mittels eines hilfsfügeteiles und laserschweissens
US20180147652A1 (en) * 2016-11-30 2018-05-31 Volkswagen Aktiengesellschaft Method and apparatus for connecting components made of different materials
WO2018123716A1 (ja) * 2016-12-27 2018-07-05 株式会社神戸製鋼所 異材接合用アーク溶接法、接合補助部材、異材溶接継手、及び、接合補助部材付き板材
GB2558611A (en) * 2017-01-10 2018-07-18 Penn Engineering Fastening Tech Europe Ltd A method of joining first and second components, a component assembly formed by the method and an insert for use in the component assembly

Also Published As

Publication number Publication date
CN112996623B (zh) 2023-05-05
US20210387278A1 (en) 2021-12-16
JP7017501B2 (ja) 2022-02-08
EP3868506A4 (en) 2022-02-23
EP3868506A1 (en) 2021-08-25
CN112996623A (zh) 2021-06-18
JP2020078826A (ja) 2020-05-28

Similar Documents

Publication Publication Date Title
WO2020100426A1 (ja) 異材接合用溶接法、接合補助部材、及び、異材溶接継手
WO2018056172A1 (ja) 異材接合用スポット溶接法、接合補助部材、及び、異材溶接継手
KR102225141B1 (ko) 이재 접합용 아크 용접법, 접합 보조 부재, 이재 용접 이음, 및 접합 보조 부재를 구비한 판재
CN109641307B (zh) 异材接合用电弧点焊法、接合辅助部件及异材焊接接头
CN111801189B (zh) 异种材料接合用电弧焊接法
WO2018042680A1 (ja) 異材接合用アークスポット溶接法、接合補助部材、及び、異材溶接継手
JP2018103240A (ja) 異材接合用アーク溶接法、接合補助部材、異材溶接継手、及び、接合補助部材付き板材
WO2018055982A1 (ja) 異材接合用アーク溶接法、接合補助部材、及び、異材溶接継手
WO2018042682A1 (ja) 異材接合用アーク溶接法、接合補助部材、及び、異材溶接継手
JP6999015B2 (ja) 異材接合用アーク溶接法
JP2018103241A (ja) 異材接合用アーク溶接法、接合補助部材、異材溶接継手、及び、接合補助部材付き板材
WO2018042681A1 (ja) 異材接合用アークスポット溶接法、接合補助部材、及び、異材溶接継手
JP7131927B2 (ja) 異材接合法、接合補助部材、及び、異材接合継手
JP7025489B2 (ja) 異材接合用アーク溶接法、接合補助部材、及び、異材溶接継手
JP2022135926A (ja) 異材接合用アークスポット溶接法及び異材溶接継手
WO2020084971A1 (ja) 異材接合用アーク溶接法、接合補助部材、異材溶接継手、及び、接合補助部材付き板材
WO2022185884A1 (ja) 異材接合用アークスポット溶接法及び異材溶接継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019883745

Country of ref document: EP

Effective date: 20210520