WO2022185884A1 - 異材接合用アークスポット溶接法及び異材溶接継手 - Google Patents

異材接合用アークスポット溶接法及び異材溶接継手 Download PDF

Info

Publication number
WO2022185884A1
WO2022185884A1 PCT/JP2022/005610 JP2022005610W WO2022185884A1 WO 2022185884 A1 WO2022185884 A1 WO 2022185884A1 JP 2022005610 W JP2022005610 W JP 2022005610W WO 2022185884 A1 WO2022185884 A1 WO 2022185884A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
joining
welding
welding method
arc
Prior art date
Application number
PCT/JP2022/005610
Other languages
English (en)
French (fr)
Inventor
達郎 大志田
雅夫 秦野
陽一朗 下田
励一 鈴木
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022004685A external-priority patent/JP2022135926A/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN202280019029.7A priority Critical patent/CN117015452A/zh
Priority to US18/548,480 priority patent/US20240139880A1/en
Priority to KR1020237029122A priority patent/KR20230132590A/ko
Publication of WO2022185884A1 publication Critical patent/WO2022185884A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • B23K10/022Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/323Bonding taking account of the properties of the material involved involving parts made of dissimilar metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/007Spot arc welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/14Arc welding or cutting making use of insulated electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • B23K9/232Arc welding or cutting taking account of the properties of the materials to be welded of different metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/235Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/15Magnesium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/20Ferrous alloys and aluminium or alloys thereof

Definitions

  • the present invention relates to an arc spot welding method for joining dissimilar materials and a welded joint of dissimilar materials.
  • Transportation equipment typified by automobiles, aims to reduce (a) consumption of petroleum fuel, which is a limited resource, (b) CO 2 , which is a global warming gas generated by combustion, and (c) driving costs.
  • a) consumption of petroleum fuel which is a limited resource
  • CO 2 which is a global warming gas generated by combustion
  • driving costs there is a constant demand for improved fuel economy.
  • reducing the weight of the vehicle body is one of the improvement measures.
  • One way to reduce weight is to replace steel, which is currently the main material, with lightweight materials such as aluminum alloys, magnesium alloys, and carbon fiber.
  • replacing everything with these lightweight materials poses problems such as high costs and insufficient strength.
  • multi-material design method which combines steel and lightweight materials in the right place. bathed in
  • Patent Document 1 discloses that an upper plate made of an aluminum alloy or a magnesium alloy and a lower plate made of steel are overlapped and welded through a steel joining auxiliary member.
  • An arc spot welding method is disclosed.
  • a joining auxiliary member having a hollow portion is inserted into a hole provided in an upper plate, the hollow portion is filled with a weld metal, and the lower plate and the joining auxiliary member are inserted. It is for welding members.
  • Patent Document 2 proposes an arc spot welding method for joining dissimilar materials in which the shape of the joining auxiliary member described in Patent Document 1 is improved.
  • the auxiliary joining member described in Patent Document 2 has a stepped outer shape with a shaft portion and a flange portion, and the maximum outer diameter of the shaft portion and the width of the flange portion are larger than the diameter of the hole in the upper plate.
  • the shaft portion has a constricted portion on the side of the flange portion.
  • TSS Tensile Shear Strength
  • CTS Cross Tension Strength
  • the C (carbon) content is 0.1% by mass or more, and the tensile strength is 1180 MPa or more (about 1.0% by mass). It is also necessary to study how to increase the strength of multi-materials using ultra-high tensile strength steel (2 GPa class or higher). However, the desired CTS may not be obtained when aluminum or aluminum alloy material and ultra-high tensile steel of 1180 MPa or more are welded by the above welding method.
  • the present invention has been made in view of the above problems, and is pure aluminum or aluminum alloy (hereinafter also referred to as "Al-based material”), or pure magnesium or magnesium alloy (hereinafter also referred to as "Mg-based material”). ) and steel materials can be joined together using inexpensive arc welding equipment that is already widespread in the world, and a dissimilar welded joint excellent in both tensile shear strength and cross tensile strength is obtained. To provide a dissimilar metal welded joint excellent in both tensile shear strength and cross tensile strength.
  • the steel material to be welded is an ultra-high-strength steel having a tensile strength of 1180 MPa or more, welding containing 13% by mass or more of Ni It was found that the strength of the welded joint of dissimilar metals can be improved by using the material.
  • a preferred embodiment of the present invention relating to the arc spot welding method for joining dissimilar materials relates to the following (2) to (4).
  • the arc for joining dissimilar metals according to (1) wherein, in the step of joining the first plate and the second plate, the weld metal is melted into the second plate to the extent that back-beam appears. spot welding method.
  • the auxiliary joining member has a stepped outer shape with an insertion portion and a non-insertion portion, and the hollow portion is formed to pass through the insertion portion and the non-insertion portion.
  • the step of joining the first plate and the second plate uses any one of the following welding methods (a) to (e), any one of (1) to (3) Arc spot welding method for joining dissimilar materials according to 1.
  • (a) A gas-shielded arc welding method using the welding material as a electrode type wire.
  • a non-gas arc welding method using the welding material as a electrode type wire (b) A non-gas arc welding method using the welding material as a electrode type wire. (c) A gas tungsten arc welding method using the welding material as a non-melting electrode filler. (d) A plasma arc welding method using the welding material as a non-solubilizing filler. (e) A shielded arc welding method using the welding material as a welding electrode.
  • a first plate made of Al-based material or Mg-based material, a second plate made of ultra-high tensile steel having a tensile strength of 1180 MPa or more, and the first plate and the second plate A dissimilar welded joint comprising a joint to be joined,
  • the first plate has a hole facing the overlapping surface with the second plate,
  • the junction is a steel joining auxiliary member having a hollow portion that is inserted into a hole provided in the first plate and penetrates in a direction orthogonal to the overlapping surface; a weld metal filled in a hollow portion of the joining auxiliary member, including a part of the joining auxiliary member and a part of the second plate;
  • preferred embodiments of the present invention relating to dissimilar metal welded joints relate to the following (6) and (7).
  • the second plate has a heat affected zone adjacent to the joint;
  • the maximum hardness of the heat affected zone is 130% or more with respect to the average hardness of the region of the second plate excluding the heat affected zone,
  • the auxiliary joining member has a stepped outer shape with an insertion portion and a non-insertion portion, and the insertion portion is inserted into a hole provided in the first plate, (5 ) or the welded joint of dissimilar metals according to (6).
  • dissimilar materials such as an Al-based material or a Mg-based material and a steel material can be joined together using inexpensive arc welding equipment that is already in widespread use, and the tensile shear strength and cross tensile strength can be increased. It is possible to provide an arc spot welding method for joining dissimilar metals that can obtain excellent welded joints of dissimilar metals. Further, according to the present invention, it is possible to provide a dissimilar metal welded joint excellent in both tensile shear strength and cross tensile strength.
  • FIG. 1A is a perspective view showing a process sequence of an arc spot welding method for joining dissimilar materials according to an embodiment of the present invention, showing step S1.
  • FIG. 1B is a perspective view showing step S2 of the arc spot welding method for joining dissimilar materials according to the embodiment of the present invention.
  • FIG. 1C is a perspective view showing the process sequence of the arc spot welding method for joining dissimilar materials according to the embodiment of the present invention, and shows step S3.
  • FIG. 1D is a perspective view showing the process sequence of the arc spot welding method for joining dissimilar materials according to the embodiment of the present invention, and shows step S4.
  • FIG. 1A is a perspective view showing a process sequence of an arc spot welding method for joining dissimilar materials according to an embodiment of the present invention, showing step S1.
  • FIG. 1B is a perspective view showing step S2 of the arc spot welding method for joining dissimilar materials according to the embodiment of the present invention.
  • FIG. 1C is a perspective view showing the process sequence of the arc spot
  • FIG. 2 is a cross-sectional view showing a welded joint of dissimilar materials obtained by the arc spot welding method for joining dissimilar materials according to the embodiment of the present invention.
  • FIG. 3 is a graph showing the relationship between the type of steel plate and the joint strength when a wire containing no Ni is used.
  • FIG. 4 is a graph showing the cross-sectional hardness of a joint when a Ni-free wire is used, with the Vickers hardness on the vertical axis and the distance from the center line L of the weld on the horizontal axis.
  • FIG. 5 is a graph showing the cross-sectional hardness of the joint when the steel plate C is used, with the Vickers hardness on the vertical axis and the distance from the center line L of the weld on the horizontal axis.
  • FIG. 6 is a schematic diagram showing a specific method of the cross tension test.
  • FIG. 7 is a schematic cross-sectional view showing a dissimilar metal welded joint after welding.
  • FIG. 8A shows the state after a cross tension test was performed on dissimilar metal welded joints using steel sheets A and B having a tensile strength of 1.0 GPa or less and joined using a wire I containing no Ni. It is a schematic cross-sectional view showing.
  • FIG. 8B is a schematic diagram showing the state after a cross tension test was performed on a dissimilar metal welded joint using a steel plate C having a tensile strength of 1.5 GPa and joined using a wire I containing no Ni. It is a sectional view.
  • FIG. 8A shows the state after a cross tension test was performed on dissimilar metal welded joints using steel sheets A and B having a tensile strength of 1.0 GPa or less and joined using a wire I containing no Ni. It is a schematic cross-sectional view showing
  • FIG. 8C shows a cross tension test of a dissimilar metal welded joint using steel plate C with a tensile strength of 1.5 GPa and wire III with a Ni content of 96.3% by mass. It is a typical sectional view showing a state after.
  • FIG. 9 is a drawing-substituting photograph showing a cross-section of a joint obtained by welding using a welding wire for stainless steel, and a diagram showing the relationship between the cross-sectional position and cross-sectional hardness of the joint.
  • FIG. 10 is a drawing-substituting photograph showing a cross-section of a joint obtained by welding using a welding wire for high-strength steel that does not contain Ni, and a diagram showing the relationship between the cross-sectional position and cross-sectional hardness of the joint.
  • FIG. 11 is a cross-sectional view showing another example of a dissimilar metal welded joint obtained by the arc spot welding method for joining dissimilar metals according to the embodiment of the present invention.
  • FIG. 12 is a side view showing the size of the auxiliary joining member used in this example.
  • FIG. 13 is a top view showing the size of the tensile shear test specimen.
  • FIG. 14 is a top view showing the size of a cross tension test specimen.
  • FIG. 15 is a graph showing the relationship between the type of wire and the joint strength when steel plate C is used.
  • FIG. 16 is a graph showing the relationship between the types of wires having various Ni contents and the strength of joints using Steel Plate C.
  • FIG. 17 is a graph showing the relationship between the type of wire and the joint strength when steel plate A is used.
  • FIG. 18 is a graph showing the relationship between the type of wire and the joint strength when steel plate B is used.
  • FIGS. 1A to 1D are perspective views showing steps of an arc spot welding method for joining dissimilar materials according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a welded joint of dissimilar materials obtained by the arc spot welding method for joining dissimilar materials according to the embodiment of the present invention.
  • an upper plate (first plate) 10 made of Al-based material or Mg-based material that is superimposed on each other and a lower plate (second plate) 20 made of steel via a joining auxiliary member 30 by arc spot welding.
  • the upper plate 10 is perforated with a hole 11 that penetrates in the plate thickness direction and faces the overlapping surface of the lower plate 20 (step S1).
  • Specific methods of drilling work include (A) cutting using a rotating tool such as an electric drill and a drill press, (B) punching using a punch, or (C) press punching using a die. .
  • the lower plate 20 is made of ultra-high tensile strength steel having a tensile strength of 1180 MPa or more, for example, 1.5 GPa.
  • the insertion portion 31 of the auxiliary joining member 30 is inserted into the hole 11 of the upper plate 10 from the upper surface of the upper plate 10 (step S3).
  • the auxiliary joining member 30 has, for example, a stepped outer shape having an insertion portion 31 to be inserted into the hole 11 of the upper plate 10 and a flange-shaped non-insertion portion 32 arranged on the upper surface of the upper plate 10. have.
  • a hollow portion 33 penetrating through the insertion portion 31 and the non-insertion portion 32 is formed in the auxiliary joining member 30 . That is, the auxiliary joining member 30 is inserted into the hole of the upper plate 10 so that the penetration direction of the hollow portion 33 is the plate thickness direction of the upper plate 10 and the lower plate 20 .
  • the outer shape of the non-insertion portion 32 is not limited to the circular shape shown in FIG. 1C, and may be any shape.
  • the shape of the hollow portion 33 is not limited to a circle, and may be any shape.
  • FIG. 1D shows a welding wire (welding material) 50 containing 13% by mass or more of Ni.
  • a welding wire (welding material) 50 containing 13% by mass or more of Ni is used to melt the lower plate 20 and the auxiliary joining member 30 by arc welding, and the welding wire 50 is welded.
  • the upper plate 10 and the lower plate 20 are joined by melting and filling the hollow portion 33 of the joining auxiliary member 30 with the weld metal 40 (step S4).
  • the dissimilar metal welded joint 1 shown in FIG. 2 can be obtained.
  • FIG. 1D shows a case where a welding electrode type gas-shielded arc welding method is used as an example of arc welding.
  • the inventors of the present application used steel plates having different tensile strengths as the lower plate 20, used an aluminum alloy plate as the upper plate 10, used a wire I that did not contain Ni, and set other welding conditions to the above steps.
  • the upper plate 10 and the lower plate 20 were joined by adopting the method shown in S1 to step S4. Then, the tensile shear strength (TSS) and cross tensile strength (CTS) of the obtained joint were measured.
  • TSS tensile shear strength
  • CTS cross tensile strength
  • FIG. 3 is a graph showing the relationship between the type of steel plate and the joint strength when a wire containing no Ni is used.
  • steel plate A having a tensile strength of 0.6 GPa and steel plate B having a tensile strength of 1.0 GPa were bonded to an aluminum alloy plate using a wire I that did not use Ni. No significant difference is seen in the CTS values.
  • FIG. 3 it can be read that the CTS is greatly reduced when the steel sheet C having a tensile strength of 1.5 GPa is used.
  • the inventors of the present application considered that the hardness at each position of the joint may affect the tensile strength of the joint, and under the same conditions as the conditions for measuring the strength of the joint, the upper plate 10 and the lower plate were measured.
  • the plate 20 was joined, and the cross-sectional hardness of the obtained joint was measured.
  • FIG. 4 is a graph showing the cross-sectional hardness of a joint when a Ni-free wire is used, with the Vickers hardness on the vertical axis and the distance from the center line L of the weld on the horizontal axis.
  • the graph indicated by ⁇ represents the hardness of the welded joint using steel plate A having a tensile strength of 0.6 GPa as the lower plate 20, and the graph indicated by ⁇ indicates that the lower plate 20 has a tensile strength of 1.
  • the graph indicated by ⁇ represents the hardness of welded joints using steel plate B having a tensile strength of 0.0 GPa
  • the graph indicated by ⁇ represents the hardness of welded joints using steel plate C having a tensile strength of 1.5 GPa as the lower plate 20
  • the region from 0 mm to about 2 mm in distance from the center line L of the weld represents the weld metal portion (the portion where the weld metal is formed)
  • the region from about 2 mm to about 4 mm represents the heat affected zone. (HAZ: Heat-Affected Zone)
  • the area of about 4 mm or more represents the steel plate (lower plate 20).
  • the welded joint using steel plate C having a tensile strength of 1.5 GPa has a HAZ Vickers hardness of about 650HV0.5, and the HAZ of the welded joint using other steel plates A and B is about 650HV0.5. Vickers hardness of about 370 HV 0.5, which is 1.5 times or more. It is considered that this is because the carbon content of the steel plate C is larger than the carbon content of the other steel plates A and B.
  • the inventors of the present application used a steel plate C having a tensile strength of 1.5 GPa as the lower plate 20, used an aluminum alloy plate as the upper plate 10, and used wires with different Ni contents,
  • the method shown in steps S1 to S4 was adopted to join the upper plate 10 and the lower plate 20, and the cross-sectional hardness of the obtained joint was measured.
  • FIG. 5 is a graph showing the cross-sectional hardness of the joint when the steel plate C is used, with the Vickers hardness on the vertical axis and the distance from the center line L of the weld on the horizontal axis.
  • the graph indicated by ⁇ represents the hardness of the welded joint using the wire I that does not contain Ni
  • the graph indicated by ⁇ indicates that the Ni content is 66.0% by mass with respect to the total mass of the wire.
  • the hardness of welded joints using a certain wire II, and the graph indicated by x represents the hardness of welded joints using wire III with a Ni content of 96.3% by mass relative to the total mass of the wire. Also, as in FIG.
  • the area from 0 mm to about 2 mm in distance from the center line L of the weld represents the weld metal part, and the area from about 2 mm to about 4 mm represents the heat affected zone (HAZ). , and the region of about 4 mm or more represents the steel plate (lower plate 20).
  • FIG. 6 is a schematic diagram showing a specific method of the cross tension test.
  • an upper plate 10 and a lower plate 20 are prepared in which one piece is longer than the other in plan view, and the upper plate 10 and the lower plate 20 form a cross in plan view. Place them on top of each other so that In the examination test, welding was performed using a joining auxiliary member by the method shown in FIGS. . After that, both longitudinal ends of the upper plate 10 were pulled in the direction indicated by the arrow A10, and both longitudinal ends of the lower plate 20 were pulled in the direction indicated by the arrow A20, and the maximum tensile load until the test piece broke was measured. .
  • FIG. 7 is a schematic cross-sectional view showing a dissimilar metal welded joint after welding.
  • FIG. 8A shows a cross tension test of dissimilar metal welded joints using steel plates A and B having a tensile strength of 1.0 GPa or less and joined using a wire I that does not contain Ni. It is a typical sectional view showing a state.
  • FIG. 8B shows the state after the cross tension test was performed on the dissimilar metal welded joint which was joined using the steel plate C having a tensile strength of 1.5 GPa and the wire I containing no Ni. It is a schematic cross-sectional view.
  • FIG. 8A shows a cross tension test of dissimilar metal welded joints using steel plates A and B having a tensile strength of 1.0 GPa or less and joined using a wire I that does not contain Ni. It is a typical sectional view showing a state.
  • FIG. 8B shows the state after the cross tension test was performed on the dissimilar metal welded joint which was joined using the steel plate
  • 8C shows a cross tension test of a dissimilar metal welded joint using steel plate C with a tensile strength of 1.5 GPa and wire III with a Ni content of 96.3% by mass. It is a typical sectional view showing a state after. 8A to 8C show only the portion surrounded by the broken line in the cross-sectional view of the dissimilar metal welded joint 1 shown in FIG.
  • the upper plate 10 and the lower plate 20 are joined by a joining portion 46 , and the joining portion 46 has a joining auxiliary member 30 and a weld metal 40 .
  • a HAZ 45 is formed in a region of the lower plate (steel plate) 20 adjacent to the weld metal 40, regardless of the types of wire and steel material.
  • the weld metal 40 has an interface portion (bond) 41 with the HAZ 45 . As shown in FIG.
  • the welded joint using the steel sheets A and B having a tensile strength of 1.0 GPa or less and using the wire I containing no Ni has no significant hardening of HAZ45, and the cross tension test shows that The lower plate 20 itself is deformed in the direction indicated by the arrow. This indicates a high CTS.
  • the HAZ is significantly hardened because the carbon content in the lower plate (steel plate) 20 is high. . Therefore, as shown in FIG. 8B, stress concentrates on the interface (bond) 41 between the hardened HAZ 45 and the weld metal 40 . As a result, it is believed that the cross tension test caused brittle breakage at the interface 41 and lowered the CTS.
  • the welded joint using steel plate C having a tensile strength of 1.5 GPa and wire III having a Ni content of 96.3% by mass has a significantly hardened HAZ, similar to the case shown in FIG. 8B.
  • the wire III having a Ni content of 96.3% by mass is used, the Ni is contained in the weld metal 40, and the structure of the weld metal 40 becomes an austenite crystal structure with large elongation, and is softened. . Therefore, when the upper plate 10 and the lower plate 20 are joined by the arc spot welding method for joining dissimilar materials according to the present embodiment, the weld metal 40 is deformed in the direction indicated by the arrow by the cross tension test as shown in FIG. 8C. It is believed that this suppressed brittle fracture and improved CTS.
  • arc spot welding was performed using a relatively inexpensive welding wire for stainless steel (JIS Z 3321 YS310) as a welding material with an austenitic crystal structure in the weld metal, and the cross-sectional hardness of the joint was measured. did.
  • arc spot welding was performed using a welding wire for high-strength steel (JIS Z 3317 G52A-1CM3) containing no Ni, and the cross-sectional hardness of the joint was similarly measured.
  • the Ni content of the welding wire for stainless steel used was 20.0 to 22.5% by mass.
  • FIG. 9 is a drawing-substituting photograph showing a cross section of a joint obtained by welding using a welding wire for stainless steel, and a diagram showing the relationship between the cross-sectional position and cross-sectional hardness of the joint.
  • the Ni content of the welding wire for stainless steel (JIS Z3321 YS310) used for welding the joint shown in FIG. 9 is 21.21% by mass.
  • FIG. 10 is a drawing-substituting photograph showing a cross section of a joint obtained by welding using a welding wire for high-strength steel that does not contain Ni, and a diagram showing the relationship between the cross-sectional position and cross-sectional hardness of the joint. .
  • the horizontal axis of the graph represents the distance (mm) from the center line L of the weld, corresponding to the position of the drawing substitute photograph showing the cross section of the joint.
  • the circled part in the graph represents the area of the weld metal.
  • the maximum hardness of the weld metal obtained using the welding wire for stainless steel (approximately 210 Hv) is the maximum hardness of the weld metal obtained using the welding wire for high-tensile steel ( Approximately 380Hv), it was significantly reduced. From this result, it is considered that even when a welding wire for stainless steel is used, the weld metal has a soft, highly ductile austenite crystal structure. Therefore, the bending deformability of the weld metal is increased, and the cross tension strength can be improved.
  • the lower plate 20 to be welded in this embodiment is made of steel having a tensile strength of 1180 MPa or more.
  • a steel material preferably has a C content of 0.2% by mass or more and 0.5% by mass or less with respect to the total mass of the steel material.
  • FIG. 8A for steel materials having a tensile strength of less than 1180 MPa, high strength can be obtained regardless of the type of wire, so there is no need to limit the welding material. Not applicable.
  • ⁇ Upper plate (plate made of Al-based material or Mg-based material)>
  • a plate made of Al-based material or Mg-based material is used as the upper plate 10 as a material different from that of the lower plate 20 .
  • the composition of the upper plate 10 is not particularly limited.
  • the Al-based material means pure aluminum or an aluminum alloy
  • the Mg-based material means pure magnesium or a magnesium alloy.
  • a commonly used welding wire can be applied as long as it is made of a material containing 13% by mass or more of Ni.
  • the Ni content with respect to the total mass of the welding material is 13% by mass or more, preferably 21% by mass or more. Considering only the strength of the joint, the Ni content is 96% by mass. % or more is more preferable.
  • the upper limit of the Ni content is not specified, it is preferably 98% by mass or less, and more preferably 22.5% by mass or less in consideration of the cost of the welding material.
  • stainless steel filler YS310 and YS309 described in JIS Z 3321, nickel and nickel alloy coated arc welding rods described in JIS Z 3224:2010, nickel and nickel described in JIS Z 3335:2014 Flux-cored wires for nickel alloy arc welding, filler rods and solid wires for nickel and nickel alloy welding described in JIS Z 3334:2011, and the like can be used.
  • Components other than Ni in the welding material include C, Si, Mn, Cr, Ti, Al, Fe, Mo, Ca, and the like.
  • the total content of Cr, Ni and Fe is preferably 85% by mass or more, more preferably 90% by mass or more, and more preferably 95% by mass or more. More preferred.
  • the arc spot welding method for joining dissimilar materials is used for joining high-strength steel of 1180 MPa or more and a plate made of Al-based material or Mg-based material. % or more, it is possible to obtain welded joints excellent in both TSS and CTS.
  • the steel-made auxiliary joining member 30 used in the arc spot welding method functions as a protective wall for avoiding melting of Al-based material or Mg-based material, for example.
  • the parts that are most likely to melt during welding are the inner surface of the hole 11 and the surface surrounding the inner surface.
  • the penetration range of arc welding is only the joining auxiliary member 30 and the lower plate 20
  • the dilution of the components (Al-based material or Mg-based material) of the upper plate 10 into the weld metal 40 is zero, and the IMC Since the generation is completely prevented, high joint strength can be obtained.
  • the occurrence of IMC need not be zero, and some formation of IMC is allowed. Even if the IMC is formed on the inner surface of the hole 11, if the weld metal 40 has ductility and appropriate strength, the weld metal 40 acts as a resistance to external stress in the plate width direction (two-dimensional direction). Therefore, the influence of the IMC layer formed around the weld metal 40 is small.
  • IMC is brittle, even if tensile stress acts as a structural body, it is designed so that compressive stress and tensile stress act simultaneously on the joints, and IMC has sufficient strength against compressive force. Since it sustains, the formation of the IMC layer does not result in fracture propagation. Therefore, the insertion portion 31 of the auxiliary joining member 30 does not necessarily have to have the same thickness as the upper plate 10 .
  • the auxiliary joining member 30 preferably has a stepped outer shape with an insertion portion 31 and a non-insertion portion 32 .
  • the strength can be maintained even when an external force acts in the plate thickness direction as in a cross tension test.
  • the steel material forming the auxiliary joining member 30 for example, mild steel, carbon steel, or stainless steel can be used.
  • Electrode-type gas-shielded arc welding is a welding method generally called MAG or MIG, which uses a solid wire or flux-cored wire as a filler and an arc-generating electrode, and uses CO 2 , Ar, This is a welding method in which a sound weld is formed by shielding the weld from the atmosphere with a shielding gas such as He.
  • Non-gas arc welding also called self-shielded arc welding, is a welding method that uses a special flux-cored wire as a filler and an arc-generating electrode while eliminating the need for shielding gas to form sound welds.
  • the gas tungsten arc welding method is a kind of gas shielded arc welding method, but it is a non-electrode type and is generally called TIG (TIG).
  • TIG inert gas
  • An arc is generated between the tungsten electrode and the base material, and the filler wire is laterally fed into the arc.
  • the filler wire is not energized, but some hot wire TIGs are energized to increase the melting rate. In this case, the filler wire will not arc.
  • (d) Plasma arc welding method using a welding material containing 13% by mass or more of Ni as a non-electrode filler The plasma arc welding method has the same principle as TIG, but is a welding method in which the arc is tightened by dual gas system and high speed, and the arc force is increased.
  • Shielded arc welding is an arc welding method in which a shielded arc welding rod in which flux is applied to a metal core wire is used as a filler, and no shielding gas is required.
  • the welding material containing 13% by mass or more of Ni is used to fill the hollow portion 33 of the joining auxiliary member 30 with the weld metal.
  • the position does not need to be moved, just cut the arc after an appropriate feed time to finish welding.
  • the target position of the wire or welding rod may be moved in a circle within the hollow portion 33 .
  • the weld metal 40 fills the hollow portion 33 of the auxiliary joining member 30, and further forms an excess bulge on the surface of the auxiliary joining member 30 (in FIG. 2, the portion where the weld metal 40 protrudes above the auxiliary joining member 30). It is desirable to By forming the extra build-up, it is possible to obtain high strength against external stress in the plate thickness direction (three-dimensional direction).
  • the weld metal 40 is allowed to penetrate beyond the plate thickness of the lower plate 20 to the extent that penetration is generated.
  • the weld metal 40 is melted into the lower plate 20 to the extent that Uranami appears, the upper plate 10 and the lower plate 20 can be joined with high strength.
  • the strength of the joint interface can be estimated by confirming the occurrence of back-beads during welding, it is preferable to melt in until the back-beads appear.
  • the plate thicknesses of the upper plate 10 and the lower plate 20 are not necessarily limited, but considering the construction efficiency and the shape of lap welding, the plate thickness of the upper plate 10 is 4.0 mm or less. It is desirable to have On the other hand, considering the heat input of arc welding, if the plate thickness is too thin, it will melt down during welding, making welding difficult. .
  • the dissimilar metal welded joint according to the present embodiment includes a first plate made of an Al-based material or a Mg-based material, a second plate made of ultra-high-tensile steel having a tensile strength of 1180 MPa or more, and a first plate and a joint portion that joins the second plate.
  • the term "joint” refers to a portion related to the joining of the first plate and the second plate, and may also be referred to as a "weld". As shown in FIG.
  • the upper plate (first plate) 10 has a hole 11 facing the overlapping surface with the lower plate (second plate) 20 .
  • the joint has a joint auxiliary member 30 and a weld metal 40 .
  • the auxiliary joining member 30 has a hollow portion penetrating in a direction perpendicular to the overlapping surface, and is inserted into the hole 11 provided in the upper plate 10 .
  • the weld metal 40 includes part of the auxiliary joining member 30 and part of the lower plate 20 and fills the hollow portion of the auxiliary joining member 30 .
  • the weld metal 40 contains Ni, as well as the components of the steel that constitutes the auxiliary joining member 30 and the components of the ultra-high-strength steel that constitutes the lower plate 20 .
  • the lower plate 20 has a heat affected zone 45 formed adjacent to the joint 46 . Since the lower plate 20 targeted by the present invention is made of ultra-high-tensile steel with a tensile strength of 1180 MPa or more, the hardness of the heat-affected zone 45 is the hardness of the region of the lower plate 20 excluding the heat-affected zone 45.
  • the lower plate 20 It can be determined that the steel is an ultra-high tensile strength steel with a tensile strength of 1180 MPa or more. That is, in the present embodiment, a great effect can be obtained when the maximum hardness of the heat affected zone 45 is 130% or more of the average hardness of the base material portion of the lower plate 20 .
  • the weld metal 40 is softened, and its maximum hardness is the lower plate 20 except for the heat-affected zone 45. lower relative to the average hardness of the region.
  • the maximum hardness of the weld metal 40 is 50% or less of the average hardness, the weld metal 40 is sufficiently softened to form a homogeneous soft structure without unevenness in hardness, thereby further improving the CTS. be able to. Therefore, the maximum hardness of weld metal 40 is preferably 50% or less of the average hardness.
  • the maximum hardness of the weld metal 40 in the cross section of the obtained joint, is perpendicular to the plate thickness with reference to the position 0.7 mm below the upper surface of the lower plate 20 (the surface in contact with the upper plate 10) in the plate thickness direction.
  • the Vickers hardness is measured at a pitch of 0.3 mm in accordance with JIS Z 2244:2009 along the direction to which the weld metal 40 extends, and the maximum hardness of the weld metal 40 is read.
  • the maximum hardness of the heat affected zone 45 was obtained by measuring the Vickers hardness at a pitch of 0.3 mm in the same manner as the method for measuring the maximum hardness of the weld metal 40, and reading the maximum hardness of the heat affected zone 45. value.
  • the average hardness of the region of the lower plate 20 excluding the heat-affected zone 45 is 8.1 mm from the center line L of the weld metal 40 along the direction orthogonal to the plate thickness, starting at a position of 6 mm.
  • the Vickers hardness was measured at a pitch of 0.3 mm by the same method as the method for measuring the maximum hardness of the weld metal 40, and the measured values at a total of eight points were averaged.
  • the points where the maximum hardness of the weld metal, the maximum hardness of the heat-affected zone, and the average hardness of the area excluding the heat-affected zone of the lower plate are to be measured are the positions where the maximum hardness or average hardness of the required points can be measured correctly.
  • the center of the plate thickness of the lower plate 20 may be used as a reference, and the measurement may be performed along a direction orthogonal to the plate thickness.
  • the maximum hardness (%) of the heat affected zone with respect to the average hardness of the region of the lower plate excluding the heat affected zone can be calculated by the following formula. ((maximum hardness of heat-affected zone) / (average hardness of lower plate)) ⁇ 100
  • the maximum hardness (%) of the weld metal with respect to the average hardness of the region of the lower plate excluding the heat-affected zone can be calculated by the following formula. ((maximum hardness of weld metal) / (average hardness of lower plate)) x 100
  • the weld metal 40 contains Ni, which is the main component of the welding material used in the welding method according to the present embodiment, so that the weld metal 40 is softened and brittle. Breakage is suppressed, and excellent TSS and CTS can be obtained.
  • arc spot welding is performed using the wire I containing no Ni, the wire II having a Ni content of 66.0% by mass, and the wire III having a Ni content of 96.3% by mass. The strength was measured by tensile shear test and cross tension test.
  • step S1 a steel joining auxiliary member 30 is produced, and an aluminum alloy plate (A6022-T4) having a thickness of 2.0 mm is prepared as the upper plate (first plate) 10, and the lower As the plate (second plate) 20, a 1.5 GPa class ultra-high tensile strength steel plate (steel plate C) having a plate thickness of 1.4 mm and a carbon (C) content of 0.40% by mass is prepared, A specimen for tensile shear test and a specimen for cross tension test were prepared.
  • a specimen for tensile shear test and a specimen for cross tension test were prepared.
  • FIG. 12 is a side view showing the size of the auxiliary joining member used in this example.
  • FIG. 13 is a top view showing the size of the specimen for the tensile shear test.
  • FIG. 14 is a top view showing the size of a cross tension test specimen.
  • the auxiliary joining member 30 is made of a mild steel material, and has an insertion portion 31 with a diameter of 6.9 mm and a height of 1.9 mm, and a non-insertion portion 32 with a diameter of 11 mm and a height of 1 mm. 0.6 mm, and the diameter of the hollow portion 33 was 4.9 mm.
  • the test material for the tensile shear test had a length of 125 mm in the longitudinal direction and a width of 40 mm, and the center of the hole was located 20 mm from one end face in the longitudinal direction and the end face in the width direction. A hole 11 was formed so as to be positioned. Further, as shown in FIG.
  • the cross tension test specimen had a longitudinal length of 150 mm and a width of 50 mm.
  • the hole 11 is formed so that the center of the hole is located at a position 75 mm from the end face in the longitudinal direction and 25 mm from the end face in the width direction.
  • Two bolt holes 15 were formed so that the center of the .
  • the lower plate 20 of each test sample plate had the same size as the upper plate 10, but the hole 11 was not formed.
  • step S2 as shown in FIG. 1B, the upper plate 10 and the lower plate 20 are overlapped, and as shown in FIG. 1C, as shown in FIG. 11 was inserted.
  • step S4 as shown in FIG. 1D and FIG. 2, MAG welding (MAG welding: Metal Active Gas Welding) performed arc welding at a fixed point for a certain period of time.
  • MAG welding Metal Active Gas Welding
  • step S4 as shown in FIG. 1D and FIG. 2
  • MAG welding MAG welding: Metal Active Gas Welding
  • TSS represents the tensile strength measured by the tensile shear test
  • CTS represents the tensile strength measured by the cross tension test.
  • invention example No. 1 and 2 use a wire containing 13% by mass or more of Ni (in particular, a wire with a Ni content of more than 50% by mass) and are joined by the arc spot welding method for joining dissimilar materials according to the present invention. be. Therefore, it was possible to use inexpensive arc welding equipment that is already in widespread use, and to obtain a welded joint of dissimilar metals excellent in both TSS and CTS.
  • comparative example No. 1 was joined by the same welding method as the invention example using wire I that does not contain Ni. 1 had the same value of TSS as the invention example, but the CTS was remarkably lowered.
  • Second embodiment> As a second example, arc spot welding was performed using various wires (W1 to W6) having different Ni contents, and the strength was measured by a tensile shear test and a cross tension test. , the hardness of the heat affected zone and the lower plate were compared. Specific welding methods and test methods are shown below.
  • JIS Z3136 Teest piece dimensions and test method for resistance spot and projection shear test of welded joint
  • JIS Z3137 Resistance A tensile test was performed according to "Cross Tension Test of Spot and Projection Welded Joints”.
  • the measurement results of the tensile test are shown in Table 6 below and FIG.
  • TSS represents the tensile strength measured by the tensile shear test
  • CTS represents the tensile strength measured by the cross tension test.
  • the values of TSS and CTS shown in Table 6 below and FIG. 16 are the average values of the three test materials, respectively.
  • the maximum hardness of the weld metal and the maximum hardness of the heat-affected zone were measured, and the hardness ratio to the average hardness of the lower plate was calculated.
  • Vickers hardness was measured at a pitch of 0.3 mm according to JIS Z 2244:2009. Then, the maximum hardness of the weld metal was read and defined as the maximum hardness of the weld metal.
  • the Vickers hardness was measured at a pitch of 0.3 mm by the same method as the method for measuring the maximum hardness of the weld metal, and the maximum hardness in the heat affected zone was read and taken as the maximum hardness of the heat affected zone.
  • the Vickers hardness was measured at a pitch of 0.3 mm from the center line of the weld metal along the direction orthogonal to the plate thickness, starting at a position 6 mm to a position 8.1 mm, and a total of 8 points. The measured values were averaged to obtain the average hardness of the lower plate (the average hardness of the area of the lower plate excluding the heat-affected zone).
  • the maximum hardness (%) of the weld metal with respect to the lower plate average hardness in Table 6 was calculated by the following formula. ((maximum hardness of weld metal) / (average hardness of lower plate)) x 100
  • the maximum hardness (%) of the heat-affected zone with respect to the average hardness of the lower plate in Table 6 was calculated by the following formula. ((maximum hardness of heat-affected zone) / (average hardness of lower plate)) ⁇ 100
  • invention example No. 3 to 6 are wires (welding materials) W3 to W6 containing 13% by mass or more of Ni, and are joined by the arc spot welding method for joining dissimilar materials according to the present invention. Therefore, inexpensive arc welding equipment could be used, and a dissimilar metal welded joint excellent in both TSS and CTS could be obtained.
  • invention example No. 3 and 4 are invention example nos. Due to the use of SUS wire with lower Ni content compared to 5 and 6, the cost for wire was also reduced.
  • comparative example No. 1 was joined by the same welding method as the invention example using wire W1 having a Ni content of 0.01% by mass.
  • the TSS was equivalent to that of the invention example, but the CTS was remarkably lowered.
  • comparative example No. 1 was joined by the same welding method as the invention example.
  • Comparative Example No. 3 although the Ni content was higher than in the case of using wire W1, the structure of the weld metal was non-uniform. Compared to 2, TSS and CTS appear to have decreased.
  • FIG. 17 is a graph showing the relationship between wire type and joint strength when steel plate A is used, and FIG. 18 shows the relationship between wire type and joint strength when steel plate B is used. Graphically.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

引張せん断強度及び十字引張強度がともに優れた異材溶接継手を得ることができる異材接合用アークスポット溶接法を提供する。Al系材料又はMg系材料からなる第1の板(10)と、引張強度が1180MPa以上である超高張力鋼からなる第2の板(20)と、を接合する異材接合用アークスポット溶接法は、第1の板(10)に穴を空ける工程と、第1の板(10)と第2の板(20)を重ね合わせる工程と、中空部が形成された鋼製の接合補助部材(30)を、第1の板(10)の穴に挿入する工程と、Niを13質量%以上含有する溶接材料を用いて、接合補助部材(30)を介して第1の板(10)と第2の板(20)とを接合する工程と、を備え、第1の板(10)と第2の板(20)とを接合する工程は、第2の板(20)及び接合補助部材(30)を溶融させるとともに溶接材料を溶融させ、接合補助部材(30)の中空部を溶接金属(40)で充填する工程である。

Description

異材接合用アークスポット溶接法及び異材溶接継手
 本発明は、異材接合用アークスポット溶接法及び異材溶接継手に関する。
 自動車を代表とする輸送機器には、(a)有限資源である石油燃料消費、(b)燃焼に伴って発生する地球温暖化ガスであるCO、(c)走行コストといった各種の抑制を目的として、走行燃費の向上が常に求められている。その手段としては、電気駆動の利用など動力系技術の改善の他に、車体重量の軽量化も改善策の一つである。軽量化には現在の主要材料となっている鋼を、軽量素材であるアルミニウム合金、マグネシウム合金、炭素繊維などに置換する手段がある。しかし、全てをこれら軽量素材に置換するには、高コスト化や強度不足になる、といった課題があり、解決策として鋼と軽量素材を適材適所に組み合わせた、いわゆるマルチマテリアルと呼ばれる設計手法が注目を浴びている。
 鋼と上記軽量素材を組み合わせるには、必然的にこれらを接合する箇所が出てくる。鋼同士やアルミニウム合金同士、マグネシウム合金同士では容易である溶接が、異材では極めて困難であることが知られている。この理由として、鋼とアルミニウムあるいはマグネシウムの溶融混合部には極めて脆い性質である金属間化合物(IMC:Intermetallic Compound)が生成し、引張や衝撃といった外部応力で溶融混合部が容易に破壊してしまうことにある。このため、抵抗スポット溶接法やアーク溶接法といった溶接法が異材接合には採用できず、他の接合法を用いるのが一般的である。鋼と炭素繊維の接合も、後者が金属ではないことから溶接を用いることができない。
 従来の異材接合技術の例としては、例えば、特許文献1には、アルミニウム合金もしくはマグネシウム合金製の上板と、鋼製の下板とを重ね合わせ、鋼製の接合補助部材を介して溶接するアークスポット溶接法が開示されている。上記特許文献1に記載のアークスポット溶接法は、中空部を有する接合補助部材を、上板に設けられた穴に挿入し、この中空部を溶接金属で充填するとともに、下板及び前記接合補助部材を溶接するものである。
 また、特許文献2には、上記特許文献1に記載の接合補助部材の形状が改良された異材接合用アークスポット溶接法が提案されている。特許文献2に記載の接合補助部材は、軸部とフランジ部とを持った段付きの外形形状を有し、軸部の最大外径及びフランジ部の幅が上板の穴の直径よりそれぞれ大きく、軸部がフランジ部側でくびれ部を有するものである。
 上記特許文献1や2に記載の溶接法によれば、鋼同士を溶接するため、高い接合強度と信頼性を得ることができる。また、上記特許文献2によれば、軸部の最大外径が上板の孔の直径よりも大きいため、上板と下板とを水平方向に拘束する力が得られ、水平方向のせん断応力に対する強度を向上させることができる。
日本国特開2018-034164号公報 日本国特開2018-103240号公報
 ところで、2枚の板材を重ねて接合することにより得られる溶接継手においては、継手強度を判断する指標として、引張せん断強度(TSS:Tensile Shear Strength)及び十字引張強度(CTS:Cross Tension Strength)が挙げられる。したがって、上記のような鋼と軽量素材とを組み合わせて異材接合された異材溶接継手においても、TSS及びCTSがともに優れていることが要求される。
 例えば、下板として、1180MPa級以下の鋼板を使用し、上記特許文献1や2に記載の溶接法により異材を接合した場合には、TSS及びCTSがいずれも良好である溶接継手を得ることができる。
 一方、上記輸送機器等の分野においては、より一層鋼材部分の強度に対する要求が高まっており、C(炭素)の含有量が0.1質量%以上であり、引張強度が1180MPa以上(約1.2GPa級以上)の超高張力鋼材を用いたマルチマテリアルについても、高強度化の検討が必要になっている。
 しかしながら、アルミニウム又はアルミニウム合金材と、1180MPa以上の超高張力鋼とを上記溶接法により溶接すると、所望のCTSが得られないことがある。
 本発明は、上記課題に鑑みてなされたものであり、純アルミニウム若しくはアルミニウム合金(以下、「Al系材料」ともいう。)、又は、純マグネシウム若しくはマグネシウム合金(以下、「Mg系材料」ともいう。)からなる材料と、鋼材との異材同士を、既に世に普及している安価なアーク溶接設備を用いて接合することができ、引張せん断強度及び十字引張強度がともに優れた異材溶接継手を得ることができる異材接合用アークスポット溶接法、及び引張せん断強度及び十字引張強度がともに優れた異材溶接継手を提供することにある。
 上記課題を解決するため本願発明者らが鋭意検討を行った結果、溶接対象とする鋼材が、引張強度が1180MPa以上である超高張力鋼である場合に、Niを13質量%以上含有する溶接材料を用いることにより、異材溶接継手の強度を向上させることができることを見出した。
 したがって、本発明の上記目的は、下記(1)の構成により達成される。
(1) Al系材料又はMg系材料からなる第1の板と、引張強度が1180MPa以上である超高張力鋼からなる第2の板と、を接合する異材接合用アークスポット溶接法であって、
 前記第1の板に穴を空ける工程と、
 前記第1の板と前記第2の板を重ね合わせる工程と、
 前記第1の板及び前記第2の板の板厚方向に貫通する中空部が形成された鋼製の接合補助部材を、前記第1の板に設けられた穴に挿入する工程と、
 Niを13質量%以上含有する溶接材料を用いて、前記接合補助部材を介して前記第1の板と前記第2の板とを接合する工程と、を備え、
 前記第1の板と前記第2の板とを接合する工程は、前記第2の板及び前記接合補助部材を溶融させるとともに前記溶接材料を溶融させ、前記接合補助部材の中空部を溶接金属で充填する工程である異材接合用アークスポット溶接法。
 また、異材接合用アークスポット溶接法に係る本発明の好ましい実施形態は、以下の(2)~(4)に関する。
(2) 前記第1の板と前記第2の板とを接合する工程において、前記溶接金属を前記第2の板に裏波が出る状態まで溶け込ませる、(1)に記載の異材接合用アークスポット溶接法。
(3) 前記接合補助部材は、挿入部と非挿入部とを持った段付きの外形形状を有し、前記中空部は前記挿入部及び前記非挿入部を貫通するように形成されている、(1)又は(2)に記載の異材接合用アークスポット溶接法。
(4) 前記第1の板と前記第2の板とを接合する工程は、以下の(a)~(e)のいずれかの溶接法を用いる、(1)~(3)のいずれか1つに記載の異材接合用アークスポット溶接法。
 (a)前記溶接材料を溶極式のワイヤとして用いるガスシールドアーク溶接法。
 (b)前記溶接材料を溶極式のワイヤとして用いるノンガスアーク溶接法。
 (c)前記溶接材料を非溶極式のフィラーとして用いるガスタングステンアーク溶接法。
 (d)前記溶接材料を非溶極式のフィラーとして用いるプラズマアーク溶接法。
 (e)前記溶接材料を溶極式の溶接棒として用いる被覆アーク溶接法。
 また、本発明の上記目的は、異材溶接継手に係る下記(5)の構成により達成される。
(5) Al系材料又はMg系材料からなる第1の板と、引張強度が1180MPa以上である超高張力鋼からなる第2の板と、前記第1の板と前記第2の板とを接合する接合部と、を備える異材溶接継手であって、
 前記第1の板は、前記第2の板との重ね合わせ面に臨む穴を有し、
 前記接合部は、
 前記第1の板に設けられた穴に挿入され、前記重ね合わせ面に直交する方向に貫通する中空部を有する鋼製の接合補助部材と、
 前記接合補助部材の一部及び前記第2の板の一部を含み、前記接合補助部材の中空部に充填された溶接金属と、を有し、
 (1)~(4)のいずれか1つに記載の異材接合用アークスポット溶接法で接合された異材溶接継手。
 また、異材溶接継手に係る本発明の好ましい実施形態は、以下の(6)及び(7)に関する。
(6) 前記第2の板は、前記接合部に隣接する位置に熱影響部を有し、
 前記熱影響部の最大硬度は、前記第2の板における前記熱影響部を除く領域の平均硬度に対して130%以上であり、
 前記溶接金属の最大硬度は、前記平均硬度に対して50%以下である、(5)に記載の異材溶接継手。
(7) 前記接合補助部材は、挿入部と非挿入部とを持った段付きの外形形状を有し、前記挿入部が前記第1の板に設けられた穴に挿入されている、(5)又は(6)に記載の異材溶接継手。
 本発明によれば、Al系材料又はMg系材料と、鋼材との異材同士を、既に世に普及している安価なアーク溶接設備を用いて接合することができ、引張せん断強度及び十字引張強度がともに優れた異材溶接継手を得ることができる異材接合用アークスポット溶接法を提供することができる。また、本発明によれば、引張せん断強度及び十字引張強度がともに優れた異材溶接継手を提供することができる。
図1Aは、本発明の実施形態に係る異材接合用アークスポット溶接法を工程順に示す斜視図であり、ステップS1を示す図である。 図1Bは、本発明の実施形態に係る異材接合用アークスポット溶接法を工程順に示す斜視図であり、ステップS2を示す図である。 図1Cは、本発明の実施形態に係る異材接合用アークスポット溶接法を工程順に示す斜視図であり、ステップS3を示す図である。 図1Dは、本発明の実施形態に係る異材接合用アークスポット溶接法を工程順に示す斜視図であり、ステップS4を示す図である。 図2は、本発明の実施形態に係る異材接合用アークスポット溶接法により得られた異材溶接継手を示す断面図である。 図3は、Niを含有しないワイヤを用いた場合の、鋼板の種類と継手の強度との関係を示すグラフである。 図4は、縦軸をビッカース硬さとし、横軸を溶接部の中心線Lからの距離として、Niを含有しないワイヤを用いた場合の、継手の断面硬度を示すグラフである。 図5は、縦軸をビッカース硬さとし、横軸を溶接部の中心線Lからの距離として、鋼板Cを用いた場合の、継手の断面硬度を示すグラフである。 図6は、十字引張試験の具体的な方法を示す模式図である。 図7は、溶接後の異材溶接継手を示す模式的断面図である。 図8Aは、引張強度が1.0GPa以下である鋼板A,Bを使用し、Niを含有しないワイヤIを使用して接合した異材溶接継手に対して、十字引張試験を実施した後の様子を示す模式的断面図である。 図8Bは、引張強度が1.5GPaである鋼板Cを使用し、Niを含有しないワイヤIを使用して接合した異材溶接継手に対して、十字引張試験を実施した後の様子を示す模式的断面図である。 図8Cは、引張強度が1.5GPaである鋼板Cを使用し、Ni含有量が96.3質量%であるワイヤIIIを使用して接合した異材溶接継手に対して、十字引張試験を実施した後の様子を示す模式的断面図である。 図9は、ステンレス鋼用溶接ワイヤを用いた溶接により得られた継手の断面を示す図面代用写真と、該継手の断面位置と断面硬度との関係を示す図である。 図10は、Niを含有しない高張力鋼用溶接ワイヤを用いた溶接により得られた継手の断面を示す図面代用写真と、該継手の断面位置と断面硬度との関係を示す図である。 図11は、本発明の実施形態に係る異材接合用アークスポット溶接法により得られた異材溶接継手の他の例を示す断面図である。 図12は、本実施例において使用した接合補助部材のサイズを示す側面図である。 図13は、引張せん断試験用供試材のサイズを示す上面図である。 図14は、十字引張試験用供試材のサイズを示す上面図である。 図15は、鋼板Cを使用した場合の、ワイヤの種類と継手の強度との関係を示すグラフである。 図16は、鋼板Cを使用し、種々のNi含有量を有するワイヤの種類と継手の強度との関係を示すグラフである。 図17は、鋼板Aを使用した場合の、ワイヤの種類と継手の強度との関係を示すグラフである。 図18は、鋼板Bを使用した場合の、ワイヤの種類と継手の強度との関係を示すグラフである。
 以下、本発明の実施形態に係る異材接合用アークスポット溶接法及び異材溶接継手について、図面に基づいて詳細に説明する。
[異材接合用アークスポット溶接法]
 図1A~図1Dは、本発明の実施形態に係る異材接合用アークスポット溶接法を工程順に示す斜視図である。また、図2は、本発明の実施形態に係る異材接合用アークスポット溶接法により得られた異材溶接継手を示す断面図である。
 図1A~図1D及び図2に示すように、本実施形態に係る異材接合用アークスポット溶接法は、互いに重ね合わせされたAl系材料又はMg系材料製の上板(第1の板)10と、鋼製の下板(第2の板)20とを、接合補助部材30を介して、アークスポット溶接法によって接合する溶接法である。
 具体的な異材接合用アークスポット溶接法について、図1A~図1Dを参照して説明する。まず、図1Aに示すように、上板10に対し、板厚方向に貫通して下板20の重ね合わせ面に臨む穴11を空ける穴開け作業を行う(ステップS1)。穴開け作業の具体的な手法としては、(A)電動ドリルやボール盤といった回転工具を用いた切削、(B)ポンチを用いた打抜き、又は(C)金型を用いたプレス型抜きが挙げられる。
 次に、図1Bに示すように、上板10と下板20を重ね合わせる重ね合わせ作業を行う(ステップS2)。なお、本実施形態においては、下板20として、引張強度が1180MPa以上のものとして、例えば1.5GPaである超高張力鋼を使用している。
 さらに、図1Cに示すように、接合補助部材30の挿入部31を、上板10の上面から、上板10の穴11に挿入する(ステップS3)。接合補助部材30は、例えば、上板10の穴11に挿入される挿入部31と、上板10の上面に配置されるフランジ形状の非挿入部32とを持った、段付きの外形形状を有する。また、接合補助部材30には、挿入部31及び非挿入部32を貫通する中空部33が形成されている。すなわち、中空部33の貫通方向が、上板10及び下板20の板厚方向となるように、接合補助部材30を上板10の孔に挿入する。なお、非挿入部32の外形形状は、図1Cに示すような円形に限定されず、任意の形状とすることができる。また、中空部33の形状も、円形に限定されず、任意の形状とすることができる。
 続いて、図1Dに示すように、Niを13質量%以上含有する溶接ワイヤ(溶接材料)50を使用し、アーク溶接により、下板20及び接合補助部材30を溶融させるとともに、溶接ワイヤ50を溶融させて、接合補助部材30の中空部33に溶接金属40で充填することにより、上板10と下板20とを接合する(ステップS4)。このようにして、図2に示す異材溶接継手1を得ることができる。なお、図1Dは、アーク溶接の一例として、溶極式ガスシールドアーク溶接法を用いた場合を示している。
 ここで、Al系材料(上板10)と鋼材(下板20)とを上記ステップS1~ステップS4に示す方法により接合した場合に、鋼材と溶接ワイヤの種類によって、継手強度が変化するメカニズムについて、本願発明者らが種々検討した内容を説明する。
 まず本願発明者らは、下板20として引張強度が互いに異なる鋼板を使用し、上板10としてアルミニウム合金板を使用して、Niを含有しないワイヤIを用いて、その他の溶接条件は上記ステップS1~ステップS4に示す方法を採用して、上板10と下板20とを接合した。そして、得られた継手の引張せん断強度(TSS)及び十字引張強度(CTS)を測定した。
 図3は、Niを含有しないワイヤを用いた場合の、鋼板の種類と継手の強度との関係を示すグラフである。
 図3に示すように、引張強度が0.6GPaである鋼板A及び引張強度が1.0GPaである鋼板Bは、Niを使用しないワイヤIを用いてアルミニウム合金板と接合しても、TSS及びCTSの値に大きな差異は見られない。
 一方、図3に示すように、引張強度が1.5GPaである鋼板Cを用いた場合に、CTSが大きく低下することが読み取れる。
 そこで、本願発明者らは、継手の各位置における硬度が、継手の引張強度に影響を与えているのではないかと考え、上記継手の強度を測定した条件と同様にして、上板10と下板20とを接合し、得られた継手の断面硬度を測定した。
 図4は、縦軸をビッカース硬さとし、横軸を溶接部の中心線Lからの距離として、Niを含有しないワイヤを用いた場合の、継手の断面硬度を示すグラフである。なお、図4中、○で示すグラフは、下板20として引張強度が0.6GPaである鋼板Aを使用した溶接継手の硬度を表し、□で示すグラフは、下板20として引張強度が1.0GPaである鋼板Bを使用した溶接継手の硬度を表し、△で示すグラフは、下板20として引張強度が1.5GPaである鋼板Cを使用した溶接継手の硬度を表す。
 また、溶接部の中心線Lからの距離が0mmから約2mmまでの領域は、溶接金属部(溶接金属が形成されている部分)を表し、約2mmから約4mmまでの領域は、熱影響部(HAZ:Heat-Affected Zone)を表し、約4mm以上の領域は、鋼板(下板20)を表す。
 図4に示すように、引張強度が1.5GPaである鋼板Cを使用した溶接継手は、HAZのビッカース硬さが約650HV0.5であり、他の鋼板A,Bを使用した溶接継手におけるHAZのビッカース硬さ約370HV0.5と比較して、1.5倍以上高い値を示した。
 これは、鋼板Cの炭素量が、他の鋼板A,Bの炭素量よりも多いからであると考えられる。
 次に、本願発明者らは、下板20として引張強度が1.5GPaである鋼板Cを使用し、上板10としてアルミニウム合金板を使用して、Ni含有量が互いに異なるワイヤを用いて、その他の溶接条件については、上記ステップS1~ステップS4に示す方法を採用して、上板10と下板20とを接合し、得られた継手の断面硬度を測定した。
 図5は、縦軸をビッカース硬さとし、横軸を溶接部の中心線Lからの距離として、鋼板Cを用いた場合の、継手の断面硬度を示すグラフである。なお、図5中、△で示すグラフは、Niを含有しないワイヤIを使用した溶接継手の硬度を表し、◇で示すグラフは、Ni含有量がワイヤ全質量に対して66.0質量%であるワイヤIIを使用した溶接継手の硬度を表し、×で示すグラフは、Ni含有量がワイヤ全質量に対して96.3質量%であるワイヤIIIを使用した溶接継手の硬度を表す。
 また、図4と同様に、溶接部の中心線Lからの距離が0mmから約2mmまでの領域は、溶接金属部を表し、約2mmから約4mmまでの領域は、熱影響部(HAZ)を表し、約4mm以上の領域は、鋼板(下板20)を表す。
 図5に示すように、引張強度が1.5GPaである鋼板Cを使用した場合に、Niを含有するワイヤII,IIIを使用すると、溶接金属のビッカース硬さが約170HV0.5となり、Niを含有しないワイヤIを使用した場合の溶接金属のビッカース硬さ約370HV0.5と比較して、軟化する傾向を示した。
 そして、引張強度が1.5GPaである鋼板Cを使用し、Niを含有するワイヤII,IIIを使用した場合に、引張強度が1.0GPa以下である鋼板A,Bを使用し、Niを含有しないワイヤIを使用した場合と同等のCTSが得られた。
 上記の結果から、本願発明者らは、十字引張試験(CTS)における破断メカニズムについて推察した。
 図6は、十字引張試験の具体的な方法を示す模式図である。図6に示すように、平面視で一方の片が他方の片よりも長いサイズで作成された上板10及び下板20を準備し、上板10と下板20とが平面視で十字となるように両者を重ねて配置する。検討試験においては、引張強度が異なる下板20や、Ni含有量が異なるワイヤを使用して、図1(C)及び図1(D)に示す方法で接合補助部材を用いた溶接を実施した。その後、上板10の長手方向両端部を矢印A10に示す方向に引張るとともに、下板20の長手方向両端部を矢印A20に示す方向に引張り、試験片が破断するまでの最大引張荷重を測定した。
 図7は、溶接後の異材溶接継手を示す模式的断面図である。また、図8Aは、引張強度が1.0GPa以下である鋼板A,Bを使用し、Niを含有しないワイヤIを使用して接合した異材溶接継手に対して、十字引張試験を実施した後の様子を示す模式的断面図である。さらに、図8Bは、引張強度が1.5GPaである鋼板Cを使用し、Niを含有しないワイヤIを使用して接合した異材溶接継手に対して、十字引張試験を実施した後の様子を示す模式的断面図である。図8Cは、引張強度が1.5GPaである鋼板Cを使用し、Ni含有量が96.3質量%であるワイヤIIIを使用して接合した異材溶接継手に対して、十字引張試験を実施した後の様子を示す模式的断面図である。
 なお、図8A~図8Cは、図7に示す異材溶接継手1の断面図における破線で囲まれた部分のみを示している。
 図7に示すように、上板10と下板20とは、接合部46によって接合されており、接合部46は、接合補助部材30と、溶接金属40とを有する。なお、ワイヤ及び鋼材の種類にかかわらず、得られた異材溶接継手1において、下板(鋼板)20における溶接金属40に隣接する領域に、HAZ45が形成されている。また、溶接金属40は、HAZ45との間に界面部(ボンド)41を有する。
 図8Aに示すように、引張強度が1.0GPa以下である鋼板A,Bを使用し、Niを含有しないワイヤIを使用した溶接継手は、顕著なHAZ45の硬化がなく、十字引張試験により、下板20自体が矢印で示す方向に変形している。これにより、高いCTSを示している。
 一方、引張強度が1.5GPaである鋼板Cを使用し、Niを含有しないワイヤIを使用した溶接継手では、下板(鋼板)20に含有される炭素量が高いため、HAZが著しく硬化する。したがって、図8Bに示すように、溶接金属40における、硬化したHAZ45との界面部(ボンド)41に応力が集中する。その結果、十字引張試験により、界面部41において脆性的に破断し、CTSが低下したと考えられる。
 また、引張強度が1.5GPaである鋼板Cを使用し、Ni含有量が96.3質量%であるワイヤIIIを使用した溶接継手は、図8Bに示す場合と同様に、HAZが著しく硬化する。ただし、Ni含有量が96.3質量%であるワイヤIIIを使用しているため、溶接金属40にNiが含有され、溶接金属40の組織は伸びの大きなオーステナイト結晶組織となって、軟質化する。したがって、本実施形態に係る異材接合用アークスポット溶接法により上板10と下板20とを接合すると、図8Cに示すように、十字引張試験により、溶接金属40が矢印で示す方向に変形することによって、脆性的な破断が抑制され、CTSが向上したと考えられる。
 さらに、本願発明者らは、溶接金属40の組織を、軟質であるとともに高延性であるオーステナイト結晶組織にすることができ、より低コストである溶接材料について、さらに検討を行った。具体的には、溶接金属がオーステナイト結晶組織となる溶接材料として、比較的安価なステンレス鋼用溶接ワイヤ(JIS Z 3321 YS310)を使用して、アークスポット溶接を実施し、継手の断面硬度を測定した。また、比較のため、Niを含有しない高張力鋼用溶接ワイヤ(JIS Z 3317 G52A-1CM3)を使用して、アークスポット溶接を実施し、同様に継手の断面硬度を測定した。なお、使用したステンレス鋼用溶接ワイヤのNi含有量は、20.0~22.5質量%である。
 図9は、ステンレス鋼用溶接ワイヤを用いた溶接により得られた継手の断面を示す図面代用写真と、該継手の断面位置と断面硬度との関係を示す図である。なお、図9に示す継手の溶接に使用したステンレス鋼用溶接ワイヤ(JIS Z3321 YS310)のNi含有量は、21.21質量%である。また、図10は、Niを含有しない高張力鋼用溶接ワイヤを用いた溶接により得られた継手の断面を示す図面代用写真と、該継手の断面位置と断面硬度との関係を示す図である。図9及び図10において、グラフの横軸は、溶接部の中心線Lからの距離(mm)を表し、継手の断面を示す図面代用写真の位置に対応している。
 図9及び図10において、グラフ中の丸で囲まれた部分は、溶接金属の領域を表す。図9及び図10に示すように、ステンレス鋼用溶接ワイヤを用いて得られた溶接金属の最大硬度(約210Hv)は、高張力鋼用溶接ワイヤを用いて得られた溶接金属の最大硬度(約380Hv)と比較して、著しく低下した。この結果から、ステンレス鋼用溶接ワイヤを用いた場合であっても、溶接金属は軟質で高延性のオーステナイト結晶組織になっていると考えられる。したがって、溶接金属の曲げ変形能が高くなり、十字引張強度を向上させることができる。
 次に、本実施形態に係る溶接法に使用される上板10、下板20、溶接材料及び接合補助部材30、並びに具体的な溶接方法について、以下に詳細に説明する。
<下板(鋼板)>
 上記のとおり、本実施形態において溶接対象とする下板20は、引張強度が1180MPa以上である鋼材とする。このような鋼材としては、鋼材全質量に対するC含有量が0.2質量%以上、0.5質量%以下であることが好ましい。
 図8Aに示すように、引張強度が1180MPa未満である鋼材については、ワイヤの種類にかかわらず、高い強度を得ることができるため、溶接材料を限定する必要がないため、本実施形態においては溶接対象としない。
<上板(Al系材料又はMg系材料からなる板)>
 本実施形態においては、上記下板20との異材接合を対象としているため、下板20と異なる材料として、Al系材料又はMg系材料からなる板を上板10として使用する。本実施形態において、上板10の組成は、特に限定されない。なお、Al系材料とは、上述のとおり、純アルミニウム又はアルミニウム合金を意味し、Mg系材料とは、純マグネシウム又はマグネシウム合金を意味するものとする。
<溶接材料>
 本実施形態において使用することができる溶接材料としては、Niを13質量%以上含有する材料からなるものであれば、一般的に用いられる溶接ワイヤが適用可能である。具体的には、溶接材料全質量に対するNi含有量が13質量%以上であるものとし、Ni含有量は21質量%以上であることが好ましく、継手の強度のみを考慮すると、Ni含有量は96質量%以上であることがより好ましい。また、Ni含有量の上限は特に規定しないが、98質量%以下であることが好ましく、溶接材料のコスト等を考慮すると、22.5質量%以下であることがより好ましい。
 具体的には、JIS Z 3321に記載されたステンレス鋼溶加材YS310、YS309、JIS Z 3224:2010に記載されたニッケル及びニッケル合金被覆アーク溶接棒、JIS Z 3335:2014に記載されたニッケル及びニッケル合金アーク溶接用フラックス入りワイヤ、JIS Z 3334:2011に記載されたニッケル及びニッケル合金溶接用の溶加棒ならびにソリッドワイヤ等を使用することができる。
 なお、溶接材料中のNi以外の成分としては、C、Si、Mn、Cr、Ti、Al、Fe、Mo、Ca等が挙げられる。溶接材料の組成としては、例えば、Cr、Ni及びFeの含有量の合計が、85質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましい。
 このように、本実施形態に係る異材接合用アークスポット溶接法は、1180MPa以上の高張力鋼と、Al系材料又はMg系材料からなる板との接合に用いるものであって、Niを13質量%以上含有するワイヤを使用するため、TSS及びCTSがともに優れた溶接継手を得ることができる。
<接合補助部材>
 また、上記アークスポット溶接法において使用される鋼製の接合補助部材30は、例えば、Al系材料又はMg系材料の溶融を避けるための防護壁としての作用を有する。Al系材料又はMg系材料からなる上板10において、溶接時に最も溶融しやすい箇所は、穴11の内面や、該内面の周囲の表面である。これらの面を接合補助部材30で覆うことで、アーク溶接の熱が直接上板10に伝わるのを防ぎ、溶接材料の成分と混合されて、金属間化合物(IMC)を生成されることを防止することができる。すなわち、アーク溶接の溶込み範囲が、接合補助部材30と下板20のみであれば、上板10の成分(Al系材料又はMg系材料)の溶接金属40への希釈はゼロとなり、IMCの生成は完全に防止されるため、高い継手強度を得ることができる。
 ただし、本実施形態ではIMCの発生がゼロである必要はなく、IMCの多少の形成は許容される。穴11の内面にIMCが形成されても、溶接金属40が延性と適度な強度を有していれば、溶接金属40が板幅方向(2次元方向)への外部応力への抵抗作用として働くので、溶接金属40の周囲に形成されるIMC層の影響は小さいからである。また、IMCは脆性的であるが、構造体として引張応力が作用しても、接合部には圧縮応力と引張応力が同時に働く仕組みになっており、圧縮力に対してIMCは十分な強度を維持することから、IMC層の形成は破壊伝播にはならない。したがって、接合補助部材30の挿入部31は必ずしも、上板10の板厚と同じである必要はない。
 また、本実施形態において、図2に示すように、接合補助部材30は、挿入部31と非挿入部32とを持った段付きの外形形状を有していることが好ましい。接合補助部材30が上記のような形状を有すると、十字引張試験のように、板厚方向への外力が作用した場合でも、強度を保持することができる。
 さらに、接合補助部材30を構成する鋼材としては、例えば、軟鋼、炭素鋼、ステンレス鋼を利用することができる。
<具体的な溶接方法>
 ステップS4のアーク溶接により上板10と下板20とを接合する工程は、上記のとおり、下板20と接合補助部材30とを溶融させるとともに、接合補助部材30に設けられた中空部33を溶接金属40で充填するために必要とされる。また、良好なCTSを得るため、Niを含有する溶接金属を形成する必要がある。したがって、アーク溶接には充填材となる溶接材料として、Niを13質量%以上含有する材料からなる溶接ワイヤ(溶接材料)50の挿入が不可欠となる。
 このため、本実施形態においては、例えば、以下の(a)~(e)の溶接法を用いることができる。
「(a)Niを13質量%以上含有する溶接材料を溶極式のワイヤとして用いるガスシールドアーク溶接法」
 溶極式ガスシールドアーク溶接法は、一般的にMAG(マグ)やMIG(ミグ)と呼ばれる溶接法であり、ソリッドワイヤ又はフラックス入りワイヤをフィラー兼アーク発生溶極として用い、CO,Ar,Heといったシールドガスで溶接部を大気から遮断して健全な溶接部を形成する溶接法である。
「(b)Niを13質量%以上含有する溶接材料を溶極式のワイヤとして用いるノンガスアーク溶接法」
 ノンガスアーク溶接法は、セルフシールドアーク溶接法とも呼ばれ、特殊なフラックス入りワイヤをフィラー兼アーク発生溶極として用い、一方、シールドガスを不要として、健全な溶接部を形成する溶接法である。
「(c)Niを13質量%以上含有する溶接材料を非溶極式のフィラーとして用いるガスタングステンアーク溶接法」
 ガスタングステンアーク溶接法は、ガスシールドアーク溶接法の一種であるが、非溶極式であり、一般的にTIG(ティグ)とも呼ばれる。シールドガスは、Ar又はHeの不活性ガスが用いられる。タングステン電極と母材との間にはアークが発生し、フィラーワイヤはアークに横から送給される。
 一般的に、フィラーワイヤは通電されないが、通電させて溶融速度を高めるホットワイヤ方式TIGもある。この場合、フィラーワイヤにはアークは発生しない。
「(d)Niを13質量%以上含有する溶接材料を非溶極式のフィラーとして用いるプラズマアーク溶接法」
 プラズマアーク溶接法は、TIGと原理は同じであるが、ガスの2重系統化と高速化によってアークを緊縮させ、アーク力を高めた溶接法である。
「(e)Niを13質量%以上含有する溶接材料を溶極式の溶接棒として用いる被覆アーク溶接法」
 被覆アーク溶接法は、金属の芯線にフラックスを塗布した被覆アーク溶接棒をフィラーとして用いるアーク溶接法であり、シールドガスは不要である。
 本実施形態においては、上記のとおり、Niを13質量%以上含有する溶接材料を用いて、接合補助部材30の中空部33に溶接金属で充填するが、一般的に、ワイヤ又は溶接棒の狙い位置は移動させる必要がなく、適切な送給時間を経てアークを切って溶接を終了させればよい。ただし、中空部33の面積が大きい場合は、ワイヤ又は溶接棒の狙い位置を、中空部33内で円を描くように移動させてもよい。
 溶接金属40は接合補助部材30の中空部33を充填し、さらに、接合補助部材30の表面に余盛り(図2において、溶接金属40が接合補助部材30よりも上方に飛び出した部分)を形成するのが望ましい。余盛りを形成することにより、特に、板厚方向(3次元方向)の外部応力に対して、高い強度を得ることができる。
 また、余盛り側と反対側の溶込みについては、図2に示すように、溶接金属40を、下板20の板厚を超えて裏波が出る状態まで溶け込ませることが好ましい。溶接金属40を下板20に裏波が出る状態まで溶け込ませると、上板10と下板20とを高い強度で接合することができる。
 さらに、溶接時に裏波の発生を確認することにより、接合界面の強度を推定することができるため、裏波が出る状態まで溶け込ませることが好ましい。
 ただし、本実施形態においては、図2に示すように、必ずしも裏波が出る状態まで溶け込ませる必要はなく、図11に示すように、下板20が適度に溶融していればよい。
 なお、上板10及び下板20の板厚については、限定される必要は必ずしもないが、施工能率と、重ね溶接としての形状を考慮すると、上板10の板厚は、4.0mm以下であることが望ましい。一方、アーク溶接の入熱を考慮すると、板厚が過度に薄いと溶接時に溶け落ちてしまい、溶接が困難であることから、上板10、下板20共に0.5mm以上とすることが望ましい。
[異材溶接継手]
 本実施形態に係る異材溶接継手は、上記異材接合用アークスポット溶接法により製造されるものである。すなわち、本実施形態に係る異材溶接継手は、Al系材料又はMg系材料からなる第1の板と、引張強度が1180MPa以上である超高張力鋼からなる第2の板と、第1の板と第2の板とを接合する接合部と、を備える。ここで、「接合部」とは、第1の板と第2の板との接合に関わる部分をいい、「溶接部」ということもある。
 図2に示すように、上板(第1の板)10は、下板(第2の板)20との重ね合わせ面に臨む穴11を有する。また、接合部は、接合補助部材30と、溶接金属40を有する。接合補助部材30は、上記重ね合わせ面に直交する方向に貫通する中空部を有し、上板10に設けられた穴11に挿入されている。さらに、溶接金属40は、接合補助部材30の一部及び下板20の一部を含み、接合補助部材30の中空部に充填されている。
 さらに、溶接金属40はNiを含有するとともに、接合補助部材30を構成する鋼の成分と、下板20を構成する超高張力鋼の成分とを含有する。
 また、本実施形態においては、図7に示すように、下板20は、接合部46に隣接する位置に熱影響部45が形成される。本発明が対象とする下板20は、引張強度が1180MPa以上である超高張力鋼からなるものであるため、熱影響部45の硬度は、下板20の熱影響部45を除く領域の硬度に対して高くなる。すなわち、熱影響部45の最大硬度が、下板20の熱影響部45を除く領域(下板20の母材部分)の平均硬度に対して、130%以上であると、下板20は、引張強度が1180MPa以上である超高張力鋼であると判断することができる。すなわち、本実施形態においては、熱影響部45の最大硬度が、下板20の母材部分の平均硬度に対して、130%以上となる場合に、大きな効果を得ることができる。
 さらに、本実施形態においては、Niを13質量%以上含有する溶接材料を用いて、溶接を行うため、溶接金属40は軟質化して、その最大硬度は、下板20の熱影響部45を除く領域の平均硬度に対して低くなる。溶接金属40の最大硬度が、上記平均硬度に対して50%以下であると、溶接金属40が十分に軟質化し、硬度のむらがなく均質な軟質組織となっているため、CTSをより一層向上させることができる。したがって、溶接金属40の最大硬度は、上記平均硬度に対して50%以下であることが好ましい。
 なお、溶接金属40の最大硬度は、得られた継手の断面において、下板20の上面(上板10と接する面)から板厚方向に0.7mm下方の位置を基準として、板厚に直交する方向に沿って、JIS Z 2244:2009に準じて0.3mmピッチでビッカース硬さを測定し、溶接金属40における最大の硬度を読み取った値である。また、熱影響部45の最大硬度は、上記溶接金属40の最大硬度の測定方法と同様の方法で、0.3mmピッチでビッカース硬さを測定し、熱影響部45における最大の硬度を読み取った値である。さらに、下板20の熱影響部45を除く領域の平均硬度は、溶接金属40の中心線Lから板厚に直交する方向に沿って6mmの位置を起点として、8.1mmの位置までの間を、上記溶接金属40の最大硬度の測定方法と同様の方法で、0.3mmピッチでビッカース硬さを測定し、合計8点の測定値を平均した値である。なお、溶接金属の最大硬度、熱影響部の最大硬度、及び下板の熱影響部を除く領域の平均硬度を測定する箇所は、要求される箇所の最大硬度又は平均硬度が正しく測定できる位置であればよく、例えば、下板20の板厚の中央を基準として、板厚に直交する方向に沿って測定してもよい。
 また、下板における熱影響部を除く領域の平均硬度(下板の平均硬度)に対する熱影響部の最大硬度(%)は、以下の式により算出することができる。
((熱影響部の最大硬度)/(下板の平均硬度))×100
 さらに、下板における熱影響部を除く領域の平均硬度(下板の平均硬度)に対する溶接金属の最大硬度(%)は、以下の式により算出することができる。
((溶接金属の最大硬度)/(下板の平均硬度))×100
 このように構成された異材溶接継手においては、溶接金属40が、本実施形態に係る溶接法で用いられる溶接材料の主成分であるNiを含有するため、溶接金属40が軟質化し、脆性的な破断が抑制され、優れたTSS及びCTSを得ることができる。
 なお、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良等が可能である。
<1.第1実施例>
 以下、本実施形態に係る異材接合用アークスポット溶接法の実施例について、その比較例と比較して具体的に説明する。なお、第1実施例では、Niを含有しないワイヤI、Ni含有量が66.0質量%であるワイヤII、Ni含有量が96.3質量%であるワイヤIIIを使用してアークスポット溶接を実施し、引張せん断試験及び十字引張試験により強度を測定した。
 まず、ステップS1として、鋼製の接合補助部材30を作製するとともに、上板(第1の板)10として、板厚が2.0mmであるアルミニウム合金板(A6022-T4)を準備し、下板(第2の板)20として、板厚が1.4mmであり、炭素(C)含有量が0.40質量%である1.5GPa級超高張力鋼板(鋼板C)を準備して、引張せん断試験用供試材と、十字引張試験用供試材とを作製した。
 図12は、本実施例において使用した接合補助部材のサイズを示す側面図である。また、図13は、引張せん断試験用供試材のサイズを示す上面図である。図14は、十字引張試験用供試材のサイズを示す上面図である。
 図12に示すように、接合補助部材30は、軟鋼材からなるものとし、挿入部31の直径を6.9mm、高さを1.9mm、非挿入部32の直径を11mm、高さを1.6mm、中空部33の直径を4.9mmとした。
 また、図13に示すように、引張せん断試験用供試材は、長手方向の長さを125mm、幅を40mmとし、長手方向の一端面及び幅方向の端面から20mmの位置に穴の中心が位置するように、穴11を形成した。
 さらに、図14に示すように、十字引張試験用供試材は、長手方向の長さを150mm、幅を50mmとした。また、長手方向の端面から75mm、幅方向の端面から25mmの位置に穴の中心が位置するように、穴11を形成するとともに、長手方向の両端面及び幅方向の端面から25mmの位置に穴の中心が位置するように、2箇所にボルト穴15を形成した。なお、各試験用供試板の下板20は、それぞれ上板10と同一のサイズとしたが、穴11は形成しなかった。
 次に、ステップS2として、図1Bに示すように、上板10と下板20を重ね合わせた後、ステップS3として、図1Cに示すように、接合補助部材30を上板10の上面から穴11に挿入した。
 その後、ステップS4として、図1D及び図2に示すように、マグ溶接(MAG溶接:Metal Active Gas Welding)により、一定時間、定点でのアーク溶接を実施した。これにより、下板20及び接合補助部材30を溶融させるとともに、溶接ワイヤ50を溶融させて、接合補助部材30の中空部33を溶接金属40で充填し、上板10と下板20とが接合された異材溶接継手1を得た。詳細な溶接条件を下記表1に示し、使用した溶接ワイヤ50の化学組成を下記表2に示す。
 その後、異材溶接継手1に対して、JIS Z3136「抵抗スポット及びプロジェクション 溶接継手のせん断試験に対する試験片寸法及び試験方法」及びJIS Z3137「抵抗スポット及びプロジェクション溶接継手の十字引張試験」に準拠し、引張試験を行った。引張試験の測定結果を下記表3及び図15に示す。なお、下記表3及び図15において、TSSは引張せん断試験により測定された引張強度を表し、CTSは十字引張試験により測定された引張強度を表す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上記表3及び図12に示すように、発明例No.1及び2は、Niを13質量%以上含有するワイヤ(特に、Ni含有量が50質量%超であるワイヤ)を使用して、本発明に係る異材接合用アークスポット溶接法により接合したものである。したがって、既に世に普及している安価なアーク溶接設備を用いることができ、TSS及びCTSがともに優れた異材溶接継手を得ることができた。
 一方、Niを含有しないワイヤIを使用して、発明例と同様の溶接方法にて接合した比較例No.1は、TSSは発明例と同等の値であったが、CTSが著しく低下した。
<2.第2実施例>
 次に、第2実施例として、Ni含有量が互いに異なる種々のワイヤ(W1~W6)を使用してアークスポット溶接を実施し、引張せん断試験及び十字引張試験により強度を測定するとともに、溶接金属、熱影響部及び下板の硬度を比較した。具体的な溶接方法及び試験方法を以下に示す。
 引張せん断試験用供試材及び十字引張試験用供試材の作製方法及び供試材のサイズは、上記第1実施例と同様とし、各試験用に3つずつ、供試材を作製した。詳細な溶接条件を下記表4に示し、使用した溶接ワイヤの化学組成を下記表5に示す。ただし、下記表5において、「-」とは、検出限界値以下であったことを表し、「0.00」とは、0.005質量%未満であったことを表す。
 その後、第1実施例と同様に、得られた異材溶接継手の各供試材に対して、JIS Z3136「抵抗スポット及びプロジェクション 溶接継手のせん断試験に対する試験片寸法及び試験方法」及びJIS Z3137「抵抗スポット及びプロジェクション溶接継手の十字引張試験」に準拠し、引張試験を行った。引張試験の測定結果を下記表6及び図16に示す。なお、下記表6及び図16において、TSSは引張せん断試験により測定された引張強度を表し、CTSは十字引張試験により測定された引張強度を表す。また、下記表6及び図16に示すTSS及びCTSの値は、それぞれ、3つの供試材の平均値である。
 また、溶接金属の最大硬度及び熱影響部の最大硬度を測定し、下板の平均硬度に対する硬度比を算出した。
 まず、得られた継手(供試材)の断面において、下板の上面(上板と接する面)から板厚方向に0.7mm下方の位置を基準として、板厚に直交する方向に沿って、JIS Z 2244:2009に準じて0.3mmピッチでビッカース硬さを測定した。そして、溶接金属における最大の硬度を読み取り、溶接金属の最大硬度とした。また溶接金属の最大硬度の測定方法と同様の方法で、0.3mmピッチでビッカース硬さを測定し、熱影響部における最大の硬度を読み取り、熱影響部の最大硬度とした。さらに、溶接金属の中心線から板厚に直交する方向に沿って6mmの位置を起点として、8.1mmの位置までの間を、0.3mmピッチでビッカース硬さを測定し、合計8点の測定値を平均して、下板の平均硬度(下板の熱影響部を除く領域の平均硬度)とした。
 なお、表6中の下板平均硬度に対する溶接金属の最大硬度(%)は、以下の式により算出した。
((溶接金属の最大硬度)/(下板の平均硬度))×100
 また、表6中の下板平均硬度に対する熱影響部の最大硬度(%)は、以下の式により算出した。
((熱影響部の最大硬度)/(下板の平均硬度))×100
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 上記表6及び図16に示すように、発明例No.3~6は、Niを13質量%以上含有するワイヤ(溶接材料)W3~W6を使用して、本発明に係る異材接合用アークスポット溶接法により接合したものである。したがって、安価なアーク溶接設備を用いることができ、TSS及びCTSがともに優れた異材溶接継手を得ることができた。特に、発明例No.3及び4は、発明例No.5及び6と比較してNi含有量が低いSUSワイヤを使用しているため、ワイヤに関するコストも低下した。
 また、発明例No.3~6並びに比較例No.1及び2は、いずれも、下板として、1500MPa級中高炭素高張力鋼板を使用しているため、熱影響部の最大硬度は、650HV以上となり、下板平均硬度に対する熱影響部の最大硬度は130%以上となった。さらに、発明例No.3~6は、Niを13質量%以上含有するワイヤ(溶接材料)を使用したため、溶接金属の最大硬度は、下板の平均硬度に対して50%以下となり、比較例No.2及び3と比較して、低いものとなった。したがって、発明例No.3~6のTSS及びCTSは、比較例と比較して優れた結果となったと考えられる。
 一方、Ni含有量が0.01質量%であるワイヤW1を使用して、発明例と同様の溶接方法にて接合した比較例No.2は、TSSは発明例と同等の値であったが、CTSが著しく低下した。また、ワイヤW2を使用して、発明例と同様の溶接方法にて接合した比較例No.3は、Ni含有量はワイヤW1を使用した場合と比較して高かったものの、溶接金属の組織が不均一となり、比較例No.2と比較して、TSS及びCTSが低下したと考えられる。
<3.参考例>
 次に、参考例として、引張強度が約0.6GPaであり、炭素(C)含有量が0.06質量%である鋼板A、及び引張強度が約1.0GPaであり、炭素(C)含有量が0.09質量%である鋼板Bを下板20として使用し、上記第1実施例のワイヤI及びワイヤIIIを使用して、上記第1実施例と同様にして上板10と下板20とを接合し、TSS及びCTSを測定した。
 なお、本参考例においては、鋼板Aとして、GA(合金化溶融亜鉛メッキ:Galvannealed Steel)590DP(Dual Phase)を使用し、鋼板Bとして、GA980DPを使用した。
 使用したワイヤI、ワイヤIIIの化学組成は上記表2に示したとおりである。また、鋼板Aを使用した場合の、ワイヤの種類と継手の強度との関係を図17にグラフで示し、鋼板Bを使用した場合の、ワイヤの種類と継手の強度との関係を図18にグラフで示す。
 図17に示すように、0.6GPa級の鋼板Aを使用した場合に、Niを含有しないワイヤIと、Niを96.3質量%含有するワイヤIIIとの間に大きな差異はなく、いずれも良好なTSS及びCTSを得ることができた。
 また、図18に示すように、1.0GPa級の鋼板Bを使用した場合においても、ワイヤIとワイヤIIIとの間に大きな差異はなく、いずれも良好なTSS及びCTSを得ることができた。
 これらのことから、下板として、引張強度が1180MPa未満である鋼材を使用した場合においては、溶接材料のNi含有量にかかわらず、良好な引張強度を得ることはできることが示された。すなわち、引張強度が1180MPa未満である鋼板を下板として使用する場合には、溶接材料として、所定のNi量を含有するワイヤを用いる必要はないことがわかる。
 しかし、下板として、引張強度が1180MPa以上である鋼板を用いた場合には、Niを含有しないワイヤで溶接を実施すると、CTSが著しく低下するため、CTSの低下を防止することができる本発明に係る異材接合用アークスポット溶接法が極めて有効であることが示された。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2021年3月5日出願の日本特許出願(特願2021-035718)及び2022年1月14日出願の日本特許出願(特願2022-004685)に基づくものであり、その内容は本出願の中に参照として援用される。
1  異材溶接継手
10 上板(第1の板)
11 穴
20 下板(第2の板)
30 接合補助部材
31 挿入部
32 非挿入部
33 中空部
40 溶接金属
41 界面部(ボンド)
45 HAZ
50 溶接ワイヤ(溶接材料)

Claims (8)

  1.  Al系材料又はMg系材料からなる第1の板と、引張強度が1180MPa以上である超高張力鋼からなる第2の板と、を接合する異材接合用アークスポット溶接法であって、
     前記第1の板に穴を空ける工程と、
     前記第1の板と前記第2の板を重ね合わせる工程と、
     前記第1の板及び前記第2の板の板厚方向に貫通する中空部が形成された鋼製の接合補助部材を、前記第1の板に設けられた穴に挿入する工程と、
     Niを13質量%以上含有する溶接材料を用いて、前記接合補助部材を介して前記第1の板と前記第2の板とを接合する工程と、を備え、
     前記第1の板と前記第2の板とを接合する工程は、前記第2の板及び前記接合補助部材を溶融させるとともに前記溶接材料を溶融させ、前記接合補助部材の中空部を溶接金属で充填する工程である異材接合用アークスポット溶接法。
  2.  前記第1の板と前記第2の板とを接合する工程において、前記溶接金属を前記第2の板に裏波が出る状態まで溶け込ませる、請求項1に記載の異材接合用アークスポット溶接法。
  3.  前記接合補助部材は、挿入部と非挿入部とを持った段付きの外形形状を有し、前記中空部は前記挿入部及び前記非挿入部を貫通するように形成されている、請求項1又は2に記載の異材接合用アークスポット溶接法。
  4.  前記第1の板と前記第2の板とを接合する工程は、以下の(a)~(e)のいずれかの溶接法を用いる、請求項1又は2に記載の異材接合用アークスポット溶接法。
     (a)前記溶接材料を溶極式のワイヤとして用いるガスシールドアーク溶接法。
     (b)前記溶接材料を溶極式のワイヤとして用いるノンガスアーク溶接法。
     (c)前記溶接材料を非溶極式のフィラーとして用いるガスタングステンアーク溶接法。
     (d)前記溶接材料を非溶極式のフィラーとして用いるプラズマアーク溶接法。
     (e)前記溶接材料を溶極式の溶接棒として用いる被覆アーク溶接法。
  5.  前記第1の板と前記第2の板とを接合する工程は、以下の(a)~(e)のいずれかの溶接法を用いる、請求項3に記載の異材接合用アークスポット溶接法。
     (a)前記溶接材料を溶極式のワイヤとして用いるガスシールドアーク溶接法。
     (b)前記溶接材料を溶極式のワイヤとして用いるノンガスアーク溶接法。
     (c)前記溶接材料を非溶極式のフィラーとして用いるガスタングステンアーク溶接法。
     (d)前記溶接材料を非溶極式のフィラーとして用いるプラズマアーク溶接法。
     (e)前記溶接材料を溶極式の溶接棒として用いる被覆アーク溶接法。
  6.  Al系材料又はMg系材料からなる第1の板と、引張強度が1180MPa以上である超高張力鋼からなる第2の板と、前記第1の板と前記第2の板とを接合する接合部と、を備える異材溶接継手であって、
     前記第1の板は、前記第2の板との重ね合わせ面に臨む穴を有し、
     前記接合部は、
     前記第1の板に設けられた穴に挿入され、前記重ね合わせ面に直交する方向に貫通する中空部を有する鋼製の接合補助部材と、
     前記接合補助部材の一部及び前記第2の板の一部を含み、前記接合補助部材の中空部に充填された溶接金属と、を有し、
     請求項1~5のいずれか1項に記載の異材接合用アークスポット溶接法で接合された異材溶接継手。
  7.  前記第2の板は、前記接合部に隣接する位置に熱影響部を有し、
     前記熱影響部の最大硬度は、前記第2の板における前記熱影響部を除く領域の平均硬度に対して130%以上であり、
     前記溶接金属の最大硬度は、前記平均硬度に対して50%以下である、請求項6に記載の異材溶接継手。
  8.  前記接合補助部材は、挿入部と非挿入部とを持った段付きの外形形状を有し、前記挿入部が前記第1の板に設けられた穴に挿入されている、請求項6又は7に記載の異材溶接継手。
PCT/JP2022/005610 2021-03-05 2022-02-14 異材接合用アークスポット溶接法及び異材溶接継手 WO2022185884A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280019029.7A CN117015452A (zh) 2021-03-05 2022-02-14 异种材料接合用电弧点焊法及异种材料焊接接头
US18/548,480 US20240139880A1 (en) 2021-03-05 2022-02-14 Arc spot welding method for joining dissimilar materials and weld joint of dissimilar materials
KR1020237029122A KR20230132590A (ko) 2021-03-05 2022-02-14 이재 접합용 아크 스폿 용접법 및 이재 용접 조인트

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021035718 2021-03-05
JP2021-035718 2021-03-05
JP2022004685A JP2022135926A (ja) 2021-03-05 2022-01-14 異材接合用アークスポット溶接法及び異材溶接継手
JP2022-004685 2022-01-14

Publications (1)

Publication Number Publication Date
WO2022185884A1 true WO2022185884A1 (ja) 2022-09-09

Family

ID=83154057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005610 WO2022185884A1 (ja) 2021-03-05 2022-02-14 異材接合用アークスポット溶接法及び異材溶接継手

Country Status (3)

Country Link
US (1) US20240139880A1 (ja)
KR (1) KR20230132590A (ja)
WO (1) WO2022185884A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018034164A (ja) * 2016-08-29 2018-03-08 株式会社神戸製鋼所 異材接合用アークスポット溶接法、接合補助部材、及び、異材溶接継手
WO2018123716A1 (ja) * 2016-12-27 2018-07-05 株式会社神戸製鋼所 異材接合用アーク溶接法、接合補助部材、異材溶接継手、及び、接合補助部材付き板材
JP2020078826A (ja) * 2018-11-14 2020-05-28 株式会社神戸製鋼所 異材接合用溶接法、接合補助部材、及び、異材溶接継手

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018103240A (ja) 2016-12-27 2018-07-05 株式会社神戸製鋼所 異材接合用アーク溶接法、接合補助部材、異材溶接継手、及び、接合補助部材付き板材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018034164A (ja) * 2016-08-29 2018-03-08 株式会社神戸製鋼所 異材接合用アークスポット溶接法、接合補助部材、及び、異材溶接継手
WO2018123716A1 (ja) * 2016-12-27 2018-07-05 株式会社神戸製鋼所 異材接合用アーク溶接法、接合補助部材、異材溶接継手、及び、接合補助部材付き板材
JP2020078826A (ja) * 2018-11-14 2020-05-28 株式会社神戸製鋼所 異材接合用溶接法、接合補助部材、及び、異材溶接継手

Also Published As

Publication number Publication date
KR20230132590A (ko) 2023-09-15
US20240139880A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
CN109641307B (zh) 异材接合用电弧点焊法、接合辅助部件及异材焊接接头
JP5842734B2 (ja) 継手強度に優れたアークスポット溶接継手およびその製造方法
WO2018056172A1 (ja) 異材接合用スポット溶接法、接合補助部材、及び、異材溶接継手
WO2016056563A1 (ja) アークスポット溶接方法及びそれを実行する溶接装置
JP2018103240A (ja) 異材接合用アーク溶接法、接合補助部材、異材溶接継手、及び、接合補助部材付き板材
JPWO2018155492A1 (ja) レーザろう付け方法および重ね継手部材の製造方法
WO2021210322A1 (ja) 異材接合用アークスポット溶接法
JP2022135926A (ja) 異材接合用アークスポット溶接法及び異材溶接継手
WO2020100426A1 (ja) 異材接合用溶接法、接合補助部材、及び、異材溶接継手
JP2017209725A (ja) 接合構造体及び接合構造体の製造方法
JP4978121B2 (ja) 金属板の突合せ接合方法
WO2018055982A1 (ja) 異材接合用アーク溶接法、接合補助部材、及び、異材溶接継手
WO2022185884A1 (ja) 異材接合用アークスポット溶接法及び異材溶接継手
JPH11104865A (ja) 溶接構造及び溶接方法
KR102103688B1 (ko) 아크 스폿 용접 방법
KR102061470B1 (ko) Mig 브레이징 방법, 겹치기 이음 부재의 제조방법, 및 겹치기 이음 부재
WO2018042681A1 (ja) 異材接合用アークスポット溶接法、接合補助部材、及び、異材溶接継手
JP2018103241A (ja) 異材接合用アーク溶接法、接合補助部材、異材溶接継手、及び、接合補助部材付き板材
CN117015452A (zh) 异种材料接合用电弧点焊法及异种材料焊接接头
WO2023027042A1 (ja) 異材接合用アークスポット溶接法、及び、異材溶接継手
WO2024070191A1 (ja) 溶接継手およびその製造方法
JP2019188407A (ja) レーザ溶接継手及びレーザ溶接継手の製造方法
WO2020084971A1 (ja) 異材接合用アーク溶接法、接合補助部材、異材溶接継手、及び、接合補助部材付き板材
JP7025489B2 (ja) 異材接合用アーク溶接法、接合補助部材、及び、異材溶接継手
JPH11277227A (ja) 鋼構造物の溶接構造及び鋼構造物の溶接工法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237029122

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237029122

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 18548480

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280019029.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22762941

Country of ref document: EP

Kind code of ref document: A1