WO2024070191A1 - 溶接継手およびその製造方法 - Google Patents

溶接継手およびその製造方法 Download PDF

Info

Publication number
WO2024070191A1
WO2024070191A1 PCT/JP2023/028013 JP2023028013W WO2024070191A1 WO 2024070191 A1 WO2024070191 A1 WO 2024070191A1 JP 2023028013 W JP2023028013 W JP 2023028013W WO 2024070191 A1 WO2024070191 A1 WO 2024070191A1
Authority
WO
WIPO (PCT)
Prior art keywords
welded joint
thickness
steel plate
welding
content
Prior art date
Application number
PCT/JP2023/028013
Other languages
English (en)
French (fr)
Inventor
央海 澤西
克利 ▲高▼島
恭平 小西
公一 谷口
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024070191A1 publication Critical patent/WO2024070191A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a welded joint and a method for manufacturing the same.
  • reducing the weight of a vehicle is highly effective in reducing the amount of CO2 emissions during vehicle operation. For example, reducing the weight of a vehicle by 100 kg can reduce fuel consumption by about 1 km/L on average, which in turn reduces the amount of CO2 emissions.
  • Patent Document 1 describes: "A method for fillet welding steel plates with excellent fatigue strength at the welded portion, comprising using a steel plate having a plate thickness of 1.0 to 4.0 mm and a tensile strength of 680 MPa or more, forming a weld metal at the welded portion having a transformation start temperature of 475 to 550°C and a tensile strength of 680 MPa or more at a welded portion such that the degree of restraint at the welded portion is 4000 N/mm-mm or less, and the penetration depth of the weld metal at the welded portion is 1/3 or less of the plate thickness of the steel plate.” has been disclosed.
  • Patent Document 2 states: "An ultra-high strength welded joint using a steel plate having a thickness of 4 to 12 mm, including a martensite single-phase weld metal, in which, in a cross section of the welded joint perpendicular to the welding direction, the width of the weld metal on the surface of the steel plate is W1, and the width of the weld metal from the surface of the steel plate to 3/4 of the plate thickness is W2, and the cross-sectional shape of the weld metal is such that W1 is 2.0 mm to 7.0 mm and W2 is 0.5 mm to 2.4 mm,
  • the weld metal comprises, in mass %, C: more than 0.09 to 0.24%, Si: 0.2 to 1.0%, Mn: 0.5 to 2.5%, P: 0.02% or less, S: 0.02% or less, Al: 0.004 to 0.08%, Ti: 0.005 to 0.15%, O: 0.005 to 0.05%, Ni: 1.0 to 9% Furthermore, the present invention provides an ultra
  • Brittle fracture is a phenomenon in which a material breaks directly from slight elastic deformation with almost no plastic deformation.
  • Patent Document 2 also evaluates low-temperature toughness using the absorbed energy (vE-40) in a 2 mm V-notch Charpy impact test at -40°C.
  • Patent Documents 1 and 2 do not take into consideration the prevention of the above-mentioned room temperature brittle fracture, and it cannot be said that toughness in a room temperature environment as described above (hereinafter also referred to as room temperature toughness) is guaranteed.
  • the present invention was developed in consideration of the above-mentioned current situation, and aims to provide a welded joint with excellent room temperature toughness using a relatively thin, high-strength steel plate as the base material, together with an advantageous manufacturing method for the same.
  • the amount of oxides present in the bond zone and the weld metal is correlated with the amount of oxygen contained in the weld metal.
  • the relationship between the amount of oxygen contained in the weld metal (hereinafter also referred to as the oxygen amount in the weld metal) and the hardness of the weld metal is appropriately controlled. This makes it possible to effectively prevent room temperature brittle fracture even in a weld that joins high-strength base steel plates, for example, base steel plates containing a large amount of martensite and bainite and having a tensile strength of 980 MPa or more.
  • the present invention was completed based on the above findings and through further investigation.
  • the gist and configuration of the present invention are as follows. 1.
  • a welded joint having two or more base steel plates and a welded portion joining the base steel plates, The thickness of each of the base steel plates is 0.8 mm or more and 10 mm or less, At least one of the base steel plates has a steel structure in which the total area ratio of martensite and bainite is more than 50% and a tensile strength of 980 MPa or more;
  • the composition of the base steel sheet is Ti content: 0 to 0.20 mass% and Al content: 0.01 to 0.30 mass% 3.
  • the welded joint according to claim 1 or 2 is Ti content: 0 to 0.20 mass% and Al content: 0.01 to 0.30 mass% 3.
  • a method for manufacturing a welded joint in which two or more steel plates as joined materials are welded together to obtain a welded joint, comprising the steps of:
  • the thickness of each of the steel plates is 0.8 mm or more and 10 mm or less,
  • the thickness of the surface oxide film of the steel plate is 50 ⁇ m or less in each case,
  • At least one of the steel plates has a steel structure in which the total area ratio of martensite and bainite is more than 50% and a tensile strength of 980 MPa or more;
  • the total volume fraction of CO2 and O2 in the shielding gas used in the welding, and the Ti content and Al content of the steel plate all satisfy the relationship of the following formula (4), and a manufacturing method for a welded joint, wherein an average value of a heat input in the welding, a thickness of the workpieces, and a surface oxide film thickness of the steel plate satisfy the relationship of the following formula (5).
  • the present invention provides a welded joint with excellent room temperature toughness using a relatively thin, high-strength steel plate as the base material.
  • a welded joint according to one embodiment of the present invention is A welded joint having two or more base steel plates and a welded portion joining the base steel plates together,
  • the thickness of each of the base steel plates is 0.8 mm or more and 10 mm or less,
  • At least one of the base steel plates has a steel structure in which the total area ratio of martensite and bainite is more than 50% and a tensile strength of 980 MPa or more;
  • the oxygen content and Vickers hardness of the weld metal of the welded portion satisfy the relationships of the following formulas (1) to (3). 10 ⁇ Ow ⁇ 600 ...
  • the base steel plates constituting the welded joint according to one embodiment of the present invention all have a plate thickness of 0.8 mm or more and 10 mm or less, and at least one of the base steel plates has a steel structure with a total area ratio of martensite and bainite of more than 50% and a tensile strength of 980 MPa or more.
  • Plate thickness of base steel plate 0.8 mm or more and 10 mm or less
  • the plate thickness of the base steel plate is 0.8 mm or more and 10 mm or less.
  • a welded joint obtained by using a steel plate having a plate thickness of 0.8 mm or more and 10 mm or less as a joined material hereinafter also referred to as a welded joint having a plate thickness of 0.8 mm or more and 10 mm or less
  • stress is likely to concentrate at a specific point of the welded part, and it can be said that there is a particularly high possibility of room temperature brittle fracture occurring.
  • the plate thickness of the base steel plate to be targeted here is 0.8 mm or more and 10 mm or less in all cases.
  • the plate thickness of the base steel plate is preferably 1.0 mm or more.
  • the plate thickness of the base steel plate is preferably 6 mm or less, more preferably less than 4 mm. Note that the plate thicknesses of the base steel plates may be the same or different as long as they are within the above range.
  • Total area ratio of martensite and bainite more than 50% Room temperature brittle fracture of a welded portion is particularly likely to occur under conditions where fracture of the base steel plate is unlikely to occur.
  • the total area ratio of martensite and bainite of the base steel plate increases, the occurrence of ductile cracks in the base steel plate is suppressed. As a result, fracture of the base steel plate becomes less likely to occur, and concerns about room temperature brittle fracture of the welded portion increase. That is, in a welded joint formed of such a base steel plate, improvement of room temperature toughness is particularly required. Therefore, the total area ratio of martensite and bainite is set to more than 50% for the steel structure of at least one of the base steel plates among the base steel plates.
  • the total area ratio of martensite and bainite of the base steel plate is preferably 60% or more.
  • the total area ratio of martensite and bainite of the base steel plate is not particularly limited, and may be 100%.
  • the area ratio here is the area ratio with respect to the entire steel structure.
  • the area ratio of the remaining structure other than martensite and bainite is preferably less than 50%, and more preferably 40% or less.
  • the area ratio of the remaining structure may be 0%.
  • An example of the remaining structure is ferrite.
  • the total area ratio of martensite and bainite is calculated as follows. That is, the base steel plate is cut in the thickness direction, the cut surface is polished, and then etched with 3% by mass nital solution. Next, five arbitrary points in the area other than the heat-affected zone of the cut surface are photographed with a scanning electron microscope (SEM) at a magnification of 1000 times, and the area ratio of each phase is calculated by the point counting method. Specifically, so-called lattice points, which are the points where a plurality of lines arranged at equal intervals and perpendicular to each other intersect, are arranged on the SEM photograph.
  • SEM scanning electron microscope
  • the ratio of the number of lattice points in the area identified as martensite and bainite to the total number of lattice points is determined as the total area ratio of martensite and bainite. Note that on the SEM photograph, the area of the lath-shaped microstructure is identified as martensite and bainite, and the other areas are identified as the remaining structure. The lattice point interval is 10 ⁇ m. The area ratio of the remaining structure is calculated by subtracting the total area ratio of martensite and bainite from 100%.
  • Tensile strength 980 MPa or more
  • the tensile strength of the base steel plate is preferably 1180 MPa or more.
  • the upper limit of the tensile strength of the base steel plate is not particularly limited.
  • the tensile strength of the base steel plate is preferably 2500 MPa or less, for example.
  • At least one of the base steel plates has a steel structure with a total area ratio of martensite and bainite of more than 50% and a tensile strength of 980 MPa or more.
  • the remaining base steel plates may or may not have a steel structure with a total area ratio of martensite and bainite of more than 50%.
  • the tensile strength of the remaining base steel plates may be 980 MPa or more or less than 980 MPa.
  • the greater the total area ratio of martensite and bainite in the base steel plate the greater the demand for improvement in room temperature toughness.
  • the greater the strength of the base steel plate the greater the demand for improvement in room temperature toughness. Therefore, it is preferable that all base steel plates, including the remaining base steel plates, have a steel structure with a total area ratio of martensite and bainite of more than 50% and a tensile strength of 980 MPa or more.
  • the composition of the base steel plate is as follows: Ti content: 0 to 0.20 mass% and Al content: 0.01 to 0.30 mass%
  • Ti-based oxides and Al oxides present in the bond portion and the weld metal are the starting points of room temperature brittle fracture. Therefore, if the Ti-based oxides and Al oxides present in the bond portion and the weld metal increase, it becomes difficult to prevent room temperature brittle fracture. Therefore, in the composition of the base steel sheet, the Ti content is preferably 0.20 mass% or less, and the Al content is preferably 0.30 mass% or less.
  • the lower limit of the Ti content is not particularly limited, and may be 0 mass%.
  • the Al content is less than 0.01 mass%, the deoxidation of the steel sheet becomes insufficient, and the mechanical properties of the steel sheet may deteriorate. Therefore, the Al content is preferably 0.01 mass% or more.
  • the composition of the base steel sheet other than Ti and Al is not particularly limited.
  • C 0.04 to 0.40%, Si: 0.01 to 2.50%, Mn: 1.00 to 5.00%, P: 0.050% or less, S: 0.010% or less, Ti: 0 to 0.20%, Al: 0.01 to 0.30% and B: 0 to 0.0100%, and
  • one or more optional additional elements selected from Cr, Ni, Mo, W, V, Nb, Cu, N, and O are contained in a total amount of 10% or less (if these optional additional elements are contained, more preferably, the total amount is 0.1% or more);
  • An example of the composition is a composition in which the balance is Fe and unavoidable impurities.
  • B in particular is an element that improves hardenability and contributes to increasing the strength of the welded parts in addition to the base steel plate.
  • the B content is preferably 0.0002 mass% or more.
  • the B content is more preferably 0.0010 mass% or more.
  • the B content is preferably 0.0100 mass% or less.
  • the B content is more preferably 0.0080 mass% or less, and even more preferably 0.0050 mass% or less.
  • the base steel sheet may also be a surface-treated steel sheet (hereinafter also referred to as plated steel sheet) having a metal plating layer on the surface of the base steel sheet.
  • the type and composition of the metal plating layer are not particularly limited.
  • the metal plating layer include a Zn-based plating layer (a plating layer with a Zn content of more than 50% by mass) and an Al-based plating layer (a plating layer with an Al content of more than 50% by mass).
  • a Zn-based plating layer is preferable to an Al-based plating layer. This is because the sacrificial anticorrosive effect of Zn in a Zn-based plating layer reduces the corrosion rate of the base steel sheet.
  • Examples of the Zn-based plating layer include a hot-dip galvanized layer (GI), a galvannealed hot-dip galvanized layer (GA), an electrolytic galvanized layer (EG), a Zn-Ni-based plating layer (for example, a plating layer containing 10 to 25% by mass of Ni in addition to Zn), a Zn-Al-based plating layer, a Zn-Mg-based plating layer, and a Zn-Al-Mg-based plating layer.
  • Examples of Al-based plating layers include Al-Si-based plating layers (for example, plating layers that contain 10 to 20 mass% Si in addition to Al).
  • the amount of adhesion of the metal plating layer in the plated steel sheet is not particularly limited.
  • the amount of adhesion of the metal plating layer is preferably 120 g/ m2 or less per side.
  • the amount of adhesion of the metal plating layer is preferably 20 g/ m2 or more per side.
  • the number of base steel plates constituting the welded joint may be two or more.
  • An example of a welded joint having three or more base steel plates is a lap fillet welded joint, in which three or four base steel plates are overlapped and joined at one weld.
  • the welded part constituting the welded joint is a part where the above-mentioned base steel plates are joined together, and is made of weld metal.
  • the oxygen content and Vickers hardness of the weld metal satisfy the relationships of the following formulas (1) to (3). 10 ⁇ Ow ⁇ 600 ... (1) When 10 ⁇ Ow ⁇ 350, 180 ⁇ Hvw ⁇ 550-(Ow-10) ⁇ 100/340...(2) ⁇ When 350 ⁇ Ow ⁇ 600, 180 ⁇ Hvw ⁇ 450 - (Ow - 350) ⁇ 50 / 250 ... (3) here, Ow: oxygen content of weld metal (ppm by mass), Hvw: Vickers hardness of the weld metal (HV), It is.
  • Ow 10 ⁇ Ow ⁇ 600 ...
  • Hvw Vickers hardness
  • Figure 2 shows the results of confirming the fracture morphology of various welded joints manufactured using various steel plates under various welding conditions (welding wire, shielding gas, and joint type) by conducting tensile tests in the same manner as in the examples described below.
  • the horizontal axis is Ow and the vertical axis is Hvw.
  • means that the fracture morphology in the tensile test is ductile fracture, i.e., excellent room temperature toughness is obtained.
  • means that the fracture morphology in the tensile test is brittle fracture, i.e., sufficient room temperature toughness is not obtained.
  • the inside of the dotted line is the range that satisfies the above formulas (1) to (3).
  • Hvw is set to 550-(Ow-10) ⁇ 100/340 or less.
  • Hvw is set to 450 ⁇ (Ow ⁇ 350) ⁇ 3 or less.
  • Ow can be determined by inert gas fusion-infrared absorption method.
  • Hvw can be determined by Vickers hardness test in accordance with JIS Z 2244-1 (2020). Details are as described in the examples below.
  • the composition of the weld metal is not particularly limited, and may be, for example, in mass %: C: 0.03 to 0.30%, Si: 0.01 to 2.50%, Mn: 0.80 to 5.00%, P: 0.050% or less, S: 0.010% or less, Ti: 0 to 0.2%, Al: 0.001 to 0.30% and O: 0.001 to 0.06%, and
  • one or more optional additional elements selected from Cr, Ni, Mo, W, V, B, Nb, Cu, and N are contained in a total amount of 10% or less (if these optional additional elements are contained, more preferably in a total amount of 0.01% or more);
  • An example of the composition is a composition in which the balance is Fe and unavoidable impurities.
  • the type of joint is not particularly limited, and examples include lap fillet welded joints and butt welded joints. Among these, lap fillet welded joints are preferred.
  • a manufacturing method of a welded joint includes: A method for manufacturing a welded joint, comprising welding two or more steel plates as joined materials to obtain a welded joint,
  • the thickness of each of the steel plates is 0.8 mm or more and 10 mm or less,
  • the thickness of the surface oxide film of the steel plate is 50 ⁇ m or less in each case,
  • At least one of the steel plates has a steel structure in which the total area ratio of martensite and bainite is more than 50% and a tensile strength of 980 MPa or more;
  • the total volume fraction of CO2 and O2 in the shielding gas used in the welding, and the Ti content and Al content of the steel plate all satisfy the relationship of the following formula (4), and
  • the heat input in the welding, the thickness of the workpieces, and the average thickness of the surface oxide film of the steel plate satisfy the relationship of the following formula (5).
  • the surface oxide film thickness of the steel sheet to be joined melts during welding and is taken into the weld metal. This leads to an increase in the oxygen content of the weld metal, Ow. Therefore, the surface oxide film thickness of the steel sheet is set to 50 ⁇ m or less.
  • the surface oxide film thickness of the steel sheet is more preferably 30 ⁇ m or less, and further preferably 10 ⁇ m or less.
  • the surface oxide film thickness is not particularly limited. However, even if the steel sheet is pickled to remove the oxide film, a natural oxide film of about 0.001 ⁇ m is formed. Therefore, the surface oxide film thickness of the steel sheet is preferably 0.001 ⁇ m or more.
  • the surface oxide film thickness of the steel sheet referred to here is per one side.
  • the surface oxide film of the steel plate is an oxide film formed on the surface of the steel plate. That is, the surface oxide film of the steel plate is a layer formed by the oxidation of iron and/or other metal elements on the surface of the steel plate.
  • the thickness of the surface oxide film of the steel plate can be measured according to a conventional method. For example, the thickness can be measured by mirror-polishing the cross section of the steel plate and then observing the cross section of the steel plate using a field emission scanning electron microscope (FE-SEM). In addition, when the surface oxide film of the steel plate is very thin due to pickling or the like, the thickness of the surface oxide film of the steel plate can be measured by observing the surface part of the steel plate using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the thickness of the surface oxide film of the steel plate may be calculated as the average thickness of the oxide film on the surface of the steel plate measured at any five points, for example. However, areas where the oxide film is not confirmed due to scratches on the surface of the steel plate or the like are excluded. In addition, if the thickness of the surface oxide film differs significantly between the front and back surfaces of the steel sheet, the thickness of the oxide film on the surface of the steel sheet is measured at any five points on each of the front and back surfaces, and the average value is regarded as the thickness of the surface oxide film of the steel sheet.
  • the thickness of the surface oxide film of the steel plate after welding i.e., the base steel plate constituting the welded joint
  • the surface oxide film of the base steel plate may become thicker than the steel plate before welding.
  • the surface oxide film of the base steel plate may become thicker as corrosion progresses.
  • the thickness of the surface oxide film of the base steel plate does not have any particular effect on Ow, which is the amount of oxygen in the weld metal. Therefore, the thickness of the surface oxide film of the base steel plate is not particularly limited.
  • the upper limit of the above formula (4) is preferably 0.25-(Og-100) ⁇ 0.25-(t-0.8)/46 ⁇ /100.
  • the lower limit of the above formula (4) is preferably 0.03.
  • the heat input Q needs to be controlled to satisfy the above formula (5).
  • the upper limit is preferably 3000 ⁇ t all 1/3 ⁇ (1+0.1 ⁇ t 1/5 ).
  • the lower limit is preferably 1300 ⁇ t all 1/3 ⁇ (1+0.1 ⁇ t 1/5 ).
  • t all thickness of the workpiece (mm)
  • t o average thickness of surface oxide film of steel sheet ( ⁇ m)
  • t all is the total thickness of the steel plates to be welded.
  • t all is the thickness of the thickest steel plate among the steel plates to be welded.
  • t o is the average thickness of the surface oxide film (per one side) of the steel plate to be joined.
  • the heat input Q is calculated by the following formula.
  • Q I x E x 60/c here, I: welding current (A), E: arc voltage (V), c: Welding speed (cm/min) It is.
  • the heat input Q is calculated using the average values (time average value during welding (time integral value ⁇ welding time)).
  • the type of shielding gas used in welding is not particularly limited as long as it satisfies the above formula (4), and examples of the shielding gas include Ar, He, CO2 , O2 , N2 , and mixed gases thereof.
  • the filler metal for example, a solid wire, a flux cored wire, or a metal cored wire can be used. Among them, it is preferable to use a solid wire from the viewpoint of controlling the oxygen content and Vickers hardness of the weld metal so as to satisfy the above formulas (1) to (3).
  • the composition of the filler metal is, for example, in mass %, as follows: C: 0.03 to 0.2%, Si: 0.005 to 2.00%, Mn: 0.05 to 5.00%, P: 0.050% or less, S: 0.010% or less, Ti: 0 to 0.20%, Al: 0 to 0.30% and O: 0 to 0.01%, and optionally, one or more optional additional elements selected from Cr, Ni, Mo, W, V, B, Nb, Cu, and N are contained in a total amount of 10% or less (if these optional additional elements are contained, more preferably, the total amount is 0.01% or more);
  • An example of the composition is a composition in which the balance is Fe and unavoidable impurities.
  • Examples of welding methods include gas metal arc welding and laser-arc hybrid welding.
  • Gas metal arc welding which is the line welding method most commonly used in the automobile assembly process, is particularly suitable.
  • the current control method in gas metal arc welding is not particularly limited; for example, DC pulse welding, in which the current is controlled in a pulsed manner at a constant cycle, can be applied.
  • push-pull welding in which the welding wire is fed forward and backward at a constant cycle during welding, as typified by CMT welding, can also be applied.
  • the power supply characteristics of the welding machine are also not particularly limited. For example, a suitable average welding current is 100 to 300 A, an average arc voltage is 10 to 30 V, and a welding speed is 40 to 200 cm/min.
  • Steel plates 1 and 2 shown in Table 1 were used as the materials to be joined, and welding was performed under the conditions shown in Table 2 to produce welded joints.
  • the filler material (welding wire) used was a solid wire (referred to as SW in Table 2) or flux cored wire (referred to as FCW in Table 2) having the composition exemplified above.
  • the joint type was a lap fillet welded joint or a butt welded joint.
  • the positional relationship between steel plates 1 and 2 is as shown in Figures 3 and 4. Conditions other than those specified were in accordance with conventional methods.
  • both steel plates 1 and 2 had the composition exemplified above, and the area ratio of the steel structure shown in Table 1 was measured according to the above-mentioned procedure.
  • the prepared welded joint was cut so that the cross section perpendicular to the weld bead in the plate thickness direction was the observation surface.
  • the cut surface was then polished, and a Vickers hardness test was performed in accordance with JIS Z 2244-1 (2020) at any five points on the weld metal of the cut surface, and the average value was taken as Hvw.
  • the conditions were a load of 200 g and a pressing time of 15 s.
  • Table 2 The results are shown in Table 2.
  • tensile test specimens as shown in Figs. 3 and 4 were taken from the prepared welded joints so that the direction perpendicular to the weld (the direction perpendicular to the welding direction (weld bead direction) and the thickness direction of the welded joint (the plate thickness direction of the base steel plate)) was the longitudinal direction.
  • a lap fillet welded joint as shown in Fig. 3, a backing plate was joined to the base steel plate by resistance spot welding.
  • a tensile test was performed using the taken tensile test specimens in accordance with JIS Z 2241 (2011).
  • the tensile direction in the tensile test was as shown in Figs. 3 and 4, and the test speed was 10 mm/s.
  • the fracture surface of the tensile test specimen was observed. Specifically, as shown in Fig. 5, the observation was performed in the width direction center of the fracture surface of the parallel part of the tensile test specimen, with a field size of 200 ⁇ m square, while moving in the thickness direction. The observation was performed using a scanning electron microscope (SEM) at a magnification of 500 times. In each observation field, when the area of the brittle fracture region was 50% or more of the observation field, the observation field was judged to be a brittle fracture surface.
  • the brittle fracture region means a region in which the fracture surface form is cleavage fracture or quasi-cleavage fracture.
  • the thickness, steel structure, and chemical composition of the base steel plate that constituted the obtained welded joint were the same as the thickness, steel structure, and chemical composition of the steel plate used as the joined material, so they are not described here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)

Abstract

比較的薄肉の高強度鋼板を母材とする、常温靭性に優れる溶接継手を提供する。母材鋼板の板厚がいずれも0.8mm以上10mm以下であり、母材鋼板のうち、少なくとも1枚の母材鋼板が、マルテンサイトおよびベイナイトの合計の面積率:50%超の鋼組織と、980MPa以上の引張強さと、を有し、溶接部の溶接金属の酸素量およびビッカース硬さが、所定の関係を満足する。

Description

溶接継手およびその製造方法
 本発明は、溶接継手およびその製造方法に関する。
 自動車分野では、地球温暖化防止を目的としたCO排出抑制、ならびに、衝突時の乗員および歩行者の安全性(衝突安全性)向上に対する社会的要請が増大してきている。このうち、自動車走行時のCO排出量削減には、車体重量の軽量化による効果が大きい。例えば、車体重量を100kg軽量化することより、平均して約1km/Lの燃費節減が可能となり、これに伴ってCO排出量が削減される。
 一方、衝突安全性についてはその基準が年々厳しくなっている。そのため、車体強度および剛性の向上や強度の最適配分による衝突安全性の確保が必要となっている。一般的に、車体強度の向上を図ると、車体重量が増加してCO排出量が増加する。そのため、車体に使用される素材の高強度化により、衝突安全性と車体重量の軽量化(すなわちCO排出量削減)とのバランスをとることが重要である。なかでも、鋼板などの鉄鋼材料は、自動車の重量の約7割を占める主要な素材であり、その高強度化が進められている。
 また、車体重量の軽量化、すなわち、自動車の部品の軽量化の実現には、素材となる鋼板だけでなく、鋼板を溶接して得た溶接継手の溶接部も良好な強度特性を有することが必要である。特に、自動車の部品の中でも、足回り部品やフレーム部品などの溶接部において、良好な強度特性を確保することが重要である。
 このような溶接部の強度特性の向上に関する技術として、例えば、特許文献1には、
「鋼板の隅肉溶接する方法において、板厚が1.0~4.0mmで、かつ、引っ張り強度が680MPa以上の鋼板を用い、該鋼板の溶接部の拘束度が4000N/mm・mm以下、かつ、該溶接部における溶接金属の溶け込み深さが前記鋼板の板厚の1/3以下となるように該溶接部に溶接金属の変態開始温度が475~550℃、かつ、引っ張り強度が680MPa以上の溶接金属を形成することを特徴とする溶接部の疲労強度に優れた鋼板の隅肉溶接方法。」
が開示されている。
 また、特許文献2には、
「マルテンサイト単相組織の溶接金属を含む板厚が4~12mmの鋼板を用いた超高強度溶接継手であって、溶接方向に垂直の溶接継手の断面において、鋼板表層の溶接金属の幅をW1とし、鋼板表層から板厚の3/4のところの溶接金属の幅をW2とし、W1が2.0mm~7.0mmであり、かつ、W2が0.5mm~2.4mmである溶接金属の断面形状を持ち、かつ、
 前記溶接金属が、質量%で、
C:0.09超~0.24%、
Si:0.2~1.0%、
Mn:0.5~2.5%、
P:0.02%以下、
S:0.02%以下、
Al:0.004~0.08%、
Ti:0.005~0.15%、
O:0.005~0.05%、
Ni:1.0~9%を含有し、
 さらに、下記(式1)で定義される炭素等量(Ceq)が0.40~1.00%であり、かつ、下記(式2)で定義されるYが0.07~0.20%であり、残部が不可避的不純物ならびにFeからなることを特徴とする強度と靭性に優れる超高強度溶接継手。
 Ceq=[C]+[Si]/24+[Mn]/6+[Ni]/4
    0+[Cr]/5+[Mo]/4+[V]/14
                       ・・・(式1)
 Y=([Si]+[Mn])/40+[Al]+[Ti]
                       ・・・(式2)
(式1)および(式2)において、[ ]付元素はそれぞれの元素の含有量(質量%)を表す。」
が開示されている。
特開2004-001075号公報 国際公開第2011/155620号
 ところで、溶接部、特に厚鋼板を溶接して得た溶接継手の溶接部(以下、厚鋼板の溶接部ともいう)の強度特性では、脆性破壊の防止が重要な因子となる。ここで、脆性破壊とは、材料が、塑性変形をほとんど伴わずにわずかな弾性変形からそのまま破壊に至る現象である。
 従来、脆性破壊の防止の観点から、0℃以下といった低温環境下での靭性(以下、低温靭性ともいう)の向上が志向されてきた。すなわち、溶接部を含む金属材料は、常温では、一般的に延性材料とみなされる。しかし、金属材料、特に厚肉の金属材料が、低温環境下に置かれると、脆化して脆性破壊が生じる。そのため、従来、厚鋼板の溶接部の低温靭性の向上が志向されてきた。実際、特許文献2でも、-40℃での2mmVノッチシャルピー衝撃試験における吸収エネルギー(vE-40)により、低温靭性が評価されている。
 しかし、後述する発明者らの検討から明らかになったように、自動車の部品に使用されるような比較的薄肉の高強度鋼板、例えば、板厚:0.8mm以上10mm以下の引張強さ:980MPa以上の鋼板を被接合材として得た溶接継手、特に、重ね隅肉溶接継手では、溶接部の特定箇所に応力集中が生じ、常温付近の温度で脆性破壊(以下、常温脆性破壊ともいう)が発生するおそれがあることが判明した。
 この点、特許文献1および2に開示の技術では、上記した常温脆性破壊の防止については考慮が払われておらず、上記のような常温環境下での靭性(以下、常温靭性ともいう)が保証されるものとはいえない。
 本発明は、上記の現状に鑑み開発されたものであって、比較的薄肉の高強度鋼板を母材とする、常温靭性に優れる溶接継手を、その有利な製造方法とともに提供することを目的とする。
 さて、発明者らは、上記の目的を達成すべく、鋭意検討を重ねたところ、以下の知見を得た。
(1)一般的に、板厚:10mm超、特には20mm超の厚鋼板の溶接部では、当該溶接部が過度に脆化する場合や、許容応力を超えるような過度な荷重が付加されない限り、常温脆性破壊が生じる懸念は小さい。
(2)しかし、板厚:0.8mm以上10mm以下の引張強さ:980MPa以上の鋼板を被接合材として得た溶接継手、特に、重ね隅肉溶接継手では、溶接部に許容応力以下の引張応力が加わる場合にも、溶接部の特定箇所に応力集中が生じ、常温脆性破壊が発生するリスクが高くなる。
(3)例えば、図1に示すような重ね隅肉溶接継手に引張応力を付与する場合、ルート部に大きな応力集中が生じる。図中、符号1および2が鋼板(母材鋼板)、3が溶接部(溶接金属)である。加えて、被接合材となる鋼板が高強度化するに従い、母材鋼板での破断(延性破壊)が生じにくくなる。そのため、ルート部の応力集中部からき裂が発生し、溶接金属の内部または溶接金属と熱影響部(以下、HAZともいう)の境界であるボンド部において、常温脆性破壊が発生する。
(4)常温脆性破壊は、種々の因子が複雑に影響しているため単純には説明できないものの、発明者らの検討によれば、ボンド部および溶接金属に存在する酸化物、例えば、Ti系酸化物およびAl酸化物が常温脆性破壊の起点となることがわかった。
(5)また、ボンド部および溶接金属に存在する酸化物の量は、溶接金属に含有される酸素量と相関がある。そして、この溶接金属に含有される酸素量(以下、溶接金属の酸素量ともいう)と、溶接金属の硬さとの関係を、適正に制御する。これにより、高強度の母材鋼板、例えば、マルテンサイトおよびベイナイトを多量に含むような引張強さ:980MPa以上の母材鋼板を接合する溶接部においても、常温脆性破壊の発生を有効に防止できる。
 本発明は、上記の知見に基づき、さらに検討を加えて完成されたものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.2枚以上の母材鋼板と、該母材鋼板同士を接合する溶接部と、を有する、溶接継手であって、
 前記母材鋼板の板厚がいずれも0.8mm以上10mm以下であり、
 前記母材鋼板のうち、少なくとも1枚の母材鋼板が、マルテンサイトおよびベイナイトの合計の面積率:50%超の鋼組織と、980MPa以上の引張強さと、を有し、
 前記溶接部の溶接金属の酸素量およびビッカース硬さが、次式(1)~(3)の関係を満足する、溶接継手。
 10≦ Ow≦ 600 ・・・(1)
・10 ≦ Ow ≦ 350の場合
 180 ≦ Hvw ≦ 550-(Ow-10)×100/340 ・・・(2)
・350 < Ow ≦ 600の場合
 180 ≦ Hvw ≦ 450-(Ow-350)×50/250 ・・・(3)
 ここで、
 Ow:溶接金属の酸素量(質量ppm)、
 Hvw:溶接金属のビッカース硬さ(HV)、
である。
2.重ね隅肉溶接継手である、前記1に記載の溶接継手。
3.前記母材鋼板の成分組成がいずれも、
 Ti含有量:0~0.20質量%および
 Al含有量:0.01~0.30質量%
である、前記1または2に記載の溶接継手。
4.被接合材である2枚以上の鋼板を溶接し、溶接継手を得る、溶接継手の製造方法であって、
 前記鋼板の板厚がいずれも0.8mm以上10mm以下であり、
 前記鋼板の表層酸化皮膜厚さがいずれも50μm以下であり、
 前記鋼板のうち、少なくとも1枚の鋼板が、マルテンサイトおよびベイナイトの合計の面積率:50%超の鋼組織と、980MPa以上の引張強さと、を有し、
 前記溶接に使用するシールドガスのCOおよびOの合計体積分率、ならびに、前記鋼板のTi含有量およびAl含有量がいずれも、次式(4)の関係を満足し、かつ、
 前記溶接における入熱量、前記被接合材の厚さ、および、前記鋼板の表層酸化皮膜厚さの平均値が、次式(5)の関係を満足する、溶接継手の製造方法。
 0.01≦ Ti+Al ≦ 0.5-Og×0.25/100  ・・・(4)
 1200×tall 1/3×(1+0.1×t 1/5)≦ Q ≦4000×tall 1/3×(1+0.1×t 1/5) ・・・(5)
 ここで、
 Og:シールドガスのCOおよびOの合計体積分率(%)、
 Ti:鋼板のTi含有量(質量%)、
 Al:鋼板のAl含有量(質量%)、
 Q:入熱量(J/cm)、
 tall:被接合材の厚さ(mm)、
 t:鋼板の表層酸化皮膜厚さの平均値(μm)、
である。
5.前記溶接に使用する溶加材がソリッドワイヤである、前記4に記載の溶接継手の製造方法。
6.前記溶接がガスメタルアーク溶接である、前記4または5に記載の溶接継手の製造方法。
 本発明によれば、比較的薄肉の高強度鋼板を母材とする、常温靭性に優れる溶接継手が得られる。このような溶接継手を自動車の部品、例えば、足回り部品やフレーム部品などに適用することによって、車体重量の軽量化を図りつつ、自動車の安全性能を一層高めることが可能となる。
重ね隅肉溶接継手の断面の一例を模式的に示す図である。 種々の溶接継手について、引張試験での破断形態を確認した結果を示す図である。 重ね隅肉溶接継手の場合の引張試験片の一例を模式的に示す図である。 突合せ溶接継手の場合の引張試験片の一例を模式的に示す図である。 常温靭性の評価方法を説明する模式図である。
 本発明を、以下の実施形態に基づき説明する。まず、本発明の一実施形態に従う溶接継手について、説明する。
[1]溶接継手
 本発明の一実施形態に従う溶接継手は、
 2枚以上の母材鋼板と、該母材鋼板同士を接合する溶接部と、を有する、溶接継手であって、
 前記母材鋼板の板厚がいずれも0.8mm以上10mm以下であり、
 前記母材鋼板のうち、少なくとも1枚の母材鋼板が、マルテンサイトおよびベイナイトの合計の面積率:50%超の鋼組織と、980MPa以上の引張強さと、を有し、
 前記溶接部の溶接金属の酸素量およびビッカース硬さが、次式(1)~(3)の関係を満足する、というものである。
 10≦ Ow≦ 600 ・・・(1)
・10 ≦ Ow ≦ 350の場合
 180 ≦ Hvw ≦ 550-(Ow-10)×100/340 ・・・(2)
・350 < Ow ≦ 600の場合
 180 ≦ Hvw ≦ 450-(Ow-350)×50/250 ・・・(3)
 ここで、
 Ow:溶接金属の酸素量(質量ppm)、
 Hvw:溶接金属のビッカース硬さ(HV)、
である。
 以下、本発明の一実施形態に従う溶接継手について、詳細に説明する。
[1-1]母材鋼板
 上記したように、本発明の一実施形態に従う溶接継手を構成する母材鋼板は、板厚がいずれも0.8mm以上10mm以下であり、母材鋼板のうち、少なくとも1枚の母材鋼板が、マルテンサイトおよびベイナイトの合計の面積率:50%超の鋼組織と、980MPa以上の引張強さと、を有する。
母材鋼板の板厚:0.8mm以上10mm以下
 母材鋼板の板厚は0.8mm以上10mm以下とする。板厚:0.8mm以上10mm以下の鋼板を被接合材として得た溶接継手(以下、板厚:0.8mm以上10mm以下の溶接継手ともいう)、特に、重ね隅肉溶接継手では、溶接部の特定箇所に応力集中し易く、常温脆性破壊が発生するおそれが特に高いものといえる。すなわち、このような板厚:0.8mm以上10mm以下の溶接継手では、常温靭性の改善が特に求められる。そのため、ここで対象とする母材鋼板の板厚はいずれも0.8mm以上10mm以下とする。母材鋼板の板厚は、好ましくは1.0mm以上である。また、母材鋼板の板厚は、好ましくは6mm以下、より好ましくは4mm未満である。なお、母材鋼板の板厚は、上記の範囲内であれば、それぞれ同じであっても、異なっていてもよい。
マルテンサイトおよびベイナイトの合計の面積率:50%超
 溶接部の常温脆性破壊は、母材鋼板の破断が生じにくい状況下で、特に発生しやすい。ここで、母材鋼板のマルテンサイトおよびベイナイトの合計の面積率が増加すると、母材鋼板における延性き裂の発生が抑制される。これにより、母材鋼板の破断が生じにくくなり、溶接部の常温脆性破壊の懸念が高まる。すなわち、このような母材鋼板により構成される溶接継手では、常温靭性の改善が特に求められる。そのため、母材鋼板のうち、少なくとも1枚の母材鋼板の鋼組織について、マルテンサイトおよびベイナイトの合計の面積率を50%超とする。母材鋼板のマルテンサイトおよびベイナイトの合計の面積率は、好ましくは60%以上である。なお、母材鋼板のマルテンサイトおよびベイナイトの合計の面積率は特に限定されず、100%であってもよい。なお、ここでいう面積率は、鋼組織全体に対する面積率である。
 マルテンサイトおよびベイナイト以外の残部組織の面積率は、好ましくは50%未満、より好ましくは40%以下である。残部組織の面積率は0%であってもよい。なお、残部組織としては、例えば、フェライトが挙げられる。
 マルテンサイトおよびベイナイトの合計の面積率は、以下のようにして求める。すなわち、母材鋼板を板厚方向に切断し、切断面を研磨後、3質量%ナイタール液で腐食する。ついで、切断面の熱影響部以外の領域の任意の5か所を、走査型電子顕微鏡(SEM)により、倍率:1000倍で撮影し、点算法により各相の面積率を求める。具体的には、SEM写真上に、等間隔かつ直行するように複数配置した線が交わる点、いわゆる格子点を配置する。そして、全格子点数に対する、マルテンサイトおよびベイナイトと同定した領域にある格子点の数の比率を、マルテンサイトおよびベイナイトの合計の面積率とする。なお、SEM写真上において、ラス状のミクロ組織である領域をマルテンサイトおよびベイナイトと同定し、これ以外の領域を残部組織と同定する。また、格子点間隔は10μmとする。また、残部組織の面積率は、100%からマルテンサイトおよびベイナイトの合計の面積率を減じることにより、求める。
引張強さ:980MPa以上
 母材鋼板が高強度化するほど、特には、引張強さが980MPa以上になると、母材鋼板の破断が生じにくくなる。また、溶接金属の硬化が促される。これにより、溶接部の常温脆性破壊の懸念が高まる。すなわち、このような母材鋼板により構成される溶接継手では、常温靭性の改善が特に求められる。そのため、母材鋼板のうち、少なくとも1枚の母材鋼板の引張強さは980MPa以上とする。母材鋼板の引張強さは、好ましくは1180MPa以上である。母材鋼板の引張強さの上限は特に限定されない。母材鋼板の引張強さは、例えば、2500MPa以下が好ましい。
 また、上述したように、母材鋼板のうち、少なくとも1枚の母材鋼板が、マルテンサイトおよびベイナイトの合計の面積率:50%超の鋼組織と、980MPa以上の引張強さと、を有していればよい。残りの母材鋼板は、マルテンサイトおよびベイナイトの合計の面積率:50%超の鋼組織を有していても、有していなくてもよい。また、残りの母材鋼板の引張強さは980MPa以上であっても、980MPa未満であってもよい。ただし、上述したように、母材鋼板のマルテンサイトおよびベイナイトの合計の面積率が増加するほど、常温靭性の改善が求められる。同様に、母材鋼板が高強度化するほど、常温靭性の改善が求められる。そのため、残りの母材鋼板も含め、全ての母材鋼板が、マルテンサイトおよびベイナイトの合計の面積率:50%超の鋼組織と、980MPa以上の引張強さと、を有していることが好ましい。
 加えて、母材鋼板の成分組成は、いずれも、
 Ti含有量:0~0.20質量%および
 Al含有量:0.01~0.30質量%
であることが好ましい。上述したように、ボンド部および溶接金属に存在するTi系酸化物およびAl酸化物は、常温脆性破壊の起点となる。そのため、ボンド部および溶接金属に存在するTi系酸化物およびAl酸化物が増加すると、常温脆性破壊を防止することが困難となる。従って、母材鋼板の成分組成において、Ti含有量は0.20質量%以下、Al含有量は0.30質量%以下が好ましい。なお、Ti含有量の下限は特に限定されず、0質量%であってもよい。また、Al含有量が0.01質量%未満になると、鋼板の脱酸が不十分となり、鋼板の機械的特性が劣化するおそれがある。そのため、Al含有量は0.01質量%以上が好ましい。
 TiおよびAl以外の母材鋼板の成分組成は、特に限定されない。例えば、質量%で、
 C:0.04~0.40%、
 Si:0.01~2.50%、
 Mn:1.00~5.00%、
 P:0.050%以下、
 S:0.010%以下、
 Ti:0~0.20%、
 Al:0.01~0.30%および
 B:0~0.0100%、
であり、
 任意に、Cr、Ni、Mo、W、V、Nb、Cu、N、Oから選ばれる1つまたは2つ以上の任意添加元素を合計で10%以下で含有し(これらの任意添加元素を含有させる場合、より好適には合計で0.1%以上)、
 残部がFeおよび不可避的不純物である成分組成を例示できる。
 上記の任意添加成分のうち、特に、Bは、焼入れ性を向上させる元素であり、母材鋼板に加え、溶接部の高強度化に寄与する元素である。このような効果を発揮するために、B含有量は0.0002質量%以上が好ましい。B含有量は、より好ましくは0.0010質量%以上である。一方、B含有量が0.0100質量%を超えると、上記の効果が飽和する。そのため、B含有量は0.0100質量%以下が好ましい。B含有量は、より好ましくは0.0080質量%以下、さらに好ましくは0.0050質量%以下である。
 また、母材鋼板は、下地鋼板の表面に金属めっき層を有する表面処理鋼板(以下、めっき鋼板ともいう)であってもよい。金属めっき層の種類および組成は特に限定されない。金属めっき層としては、例えば、Zn系めっき層(Zn含有量が50質量%超のめっき層)やAl系めっき層(Al含有量が50質量%超のめっき層)が挙げられる。耐食性が必要とされる場合には、Al系めっき層よりもZn系めっき層のほうが好ましい。Zn系めっき層では、Znの犠牲防食作用により、下地鋼板の腐食速度が低下するためである。Zn系めっき層としては、溶融亜鉛めっき層(GI)、合金化溶融亜鉛めっき層(GA)、電気亜鉛めっき層(EG)、Zn-Ni系めっき層(例えば、Znに加え、10~25質量%のNiを含むめっき層)、Zn-Al系めっき層、Zn-Mg系めっき層、Zn-Al-Mg系めっき層などを例示できる。また、Al系めっき層としては、Al-Si系めっき層(例えば、Alに加え、10~20質量%のSiを含むめっき層)などを例示できる。
 なお、めっき鋼板における金属めっき層の付着量も、特に限定されない。金属めっき層の付着量は、例えば、溶接性の観点から、片面あたり120g/m以下が好ましい。また、金属めっき層の付着量は、例えば、防錆性確保の観点から、片面あたり20g/m2以上とすることが好ましい。
 また、溶接継手を構成する母材鋼板の枚数は2枚以上であればよい。母材鋼板の枚数が3枚以上である溶接継手としては、母材鋼板を3枚または4枚重ね合わせ、これらの母材鋼板を1の溶接部で接合する、重ね隅肉溶接継手を例示できる。
[1-2]溶接部
 上記したように、本発明の一実施形態に従う溶接継手を構成する溶接部は、上記した母材鋼板同士を接合する部位であり、溶接金属により構成される。そして、この溶接部では、溶接金属の酸素量およびビッカース硬さが、次式(1)~(3)の関係を満足することが重要である。
 10≦ Ow≦ 600 ・・・(1)
・10 ≦ Ow ≦ 350の場合
 180 ≦ Hvw ≦ 550-(Ow-10)×100/340 ・・・(2)
・350 < Ow ≦ 600の場合
 180 ≦ Hvw ≦ 450-(Ow-350)×50/250 ・・・(3)
 ここで、
 Ow:溶接金属の酸素量(質量ppm)、
 Hvw:溶接金属のビッカース硬さ(HV)、
である。
10≦ Ow≦ 600 ・・・(1)
 溶接金属の酸素量であるOwが600質量ppmを超えると、ボンド部および溶接金属に酸化物、例えば、Ti系酸化物およびAl酸化物が多量に存在し、常温脆性破壊を防止することが困難となる。一方、Owを10質量ppm未満に抑制するには、母材鋼板に加え、溶接に使用する溶加材(溶接ワイヤ)およびシールドガスの酸素量を極めて低減する必要があり、現実的ではない。そのため、Owについて、上掲式(1)を満足させる。Owは、好ましくは400質量ppm以下である。
・10 ≦ Ow ≦ 350の場合
 180 ≦ Hvw ≦ 550-(Ow-10)×100/340 ・・・(2)
・350 < Ow ≦ 600の場合
 180 ≦ Hvw ≦ 450-(Ow-350)×50/250 ・・・(3)
 上述したように、溶接部の常温脆性破壊を防止するには、溶接金属の酸素量と、溶接金属の硬さとの関係を、適正に制御する、具体的には、Owに応じて、10 ≦ Ow≦ 350の場合には、溶接金属のビッカース硬さ(HV)であるHvwを550-(Ow-10)×100/340以下に、350 < Ow ≦ 600の場合には、Hvwを450-(Ow-350)×50/250以下とする必要がある。ただし、Hvwが180未満では、溶接金属が軟質となり、所定の継手強度の確保が困難となる。そのため、Hvwについて、Owに応じて上掲式(2)または(3)を満足させる。
 ここで、図2に、種々の鋼板を用いて種々の溶接条件(溶接ワイヤ、シールドガスおよび継手形式)で製造した種々の溶接継手について、後述する実施例と同じ要領の引張試験を行い、その破断形態を確認した結果を示す。図2において、横軸がOw、縦軸がHvwである。また、〇は引張試験での破断形態が延性破壊であること、すなわち、優れた常温靭性が得られていることを意味する。×は引張試験での破断形態が脆性破壊であること、すなわち、十分な常温靭性が得られていないことを意味する。また、点線の内側が、上掲式(1)~(3)を満足する範囲である。図2より、上掲式(1)~(3)を満足する範囲(点線の内側)では、優れた常温靭性が得られている一方、上掲式(1)~(3)を1つでも満足しない範囲(点線の外側)では、十分な常温靭性が得られていないことがわかる。
 特には、以下の条件を満足させることが好ましい。
 すなわち、Owを400質量ppm以下としたうえで、
 10≦ Ow≦ 350の場合には、Hvwを550-(Ow-10)×100/340以下に、
 350 < Ow ≦ 400の場合には、Hvwを450-(Ow-350)×3以下にすることが好ましい。
 また、重ね隅肉溶接では、母材鋼板の板厚が大きいほど、溶接部の回転変形に対する剛性が増加する。そのため、ルート部への応力集中が増加しやすい。よって、母材鋼板の板厚に応じて、Hvwをより厳密に制御することが好適である。具体的には、以下の式(2)´または(3)´の関係を満足させることが好適である。
・10 ≦ Ow ≦ 350の場合
 180 ≦ Hvw ≦ 550×{1+(0.8-t)/92}-(Ow-10)×100/340 ・・・(2)´
・350 < Ow ≦ 600の場合
 180 ≦ Hvw ≦ 500×{1+(0.8-t)/92}-100-(Ow-350)×50/250 ・・・(3)´
 なお、tは、母材鋼板のうち、板厚が最も小さい母材鋼板の板厚(mm)である。
 なお、Owは、不活性ガス融解-赤外線吸収法により求めればよい。また、Hvwは、JIS Z 2244-1(2020)に準拠するビッカース硬さ試験により求めればよい。詳細は、後述する実施例に記載するとおりである。
 また、溶接金属の成分組成は、特に限定されず、例えば、質量%で、
 C:0.03~0.30%、
 Si:0.01~2.50%、
 Mn:0.80~5.00%、
 P:0.050%以下、
 S:0.010%以下、
 Ti:0~0.2%、
 Al:0.001~0.30%および
 O:0.001~0.06%、
であり、
 任意に、Cr、Ni、Mo、W、V、B、Nb、Cu、Nから選ばれる1つまたは2つ以上の任意添加元素を合計で10%以下で含有し(これらの任意添加元素を含有させる場合、より好適には合計で0.01%以上)、
 残部がFeおよび不可避的不純物である成分組成を例示できる。
 加えて、継手形式も特に限定されず、重ね隅肉溶接継手や突合せ溶接継手を例示できる。なかでも、重ね隅肉溶接継手が好ましい。
[2]溶接継手の製造方法
 本発明の一実施形態に従う溶接継手の製造方法は、
 被接合材である2枚以上の鋼板を溶接し、溶接継手を得る、溶接継手の製造方法であって、
 前記鋼板の板厚がいずれも0.8mm以上10mm以下であり、
 前記鋼板の表層酸化皮膜厚さがいずれも50μm以下であり、
 前記鋼板のうち、少なくとも1枚の鋼板が、マルテンサイトおよびベイナイトの合計の面積率:50%超の鋼組織と、980MPa以上の引張強さと、を有し、
 前記溶接に使用するシールドガスのCOおよびOの合計体積分率、ならびに、前記鋼板のTi含有量およびAl含有量がいずれも、次式(4)の関係を満足し、かつ、
 前記溶接における入熱量、前記被接合材の厚さ、および、前記鋼板の表層酸化皮膜厚さの平均値が、次式(5)の関係を満足する、というものである。
 0.01≦ Ti+Al ≦ 0.5-Og×0.25/100  ・・・(4)
 1200×tall 1/3×(1+0.1×t 1/5)≦ Q ≦4000×tall 1/3×(1+0.1×t 1/5) ・・・(5)
 ここで、
 Og:シールドガスのCOおよびOの合計体積分率(%)、
 Ti:鋼板のTi含有量(質量%)、
 Al:鋼板のAl含有量(質量%)、
 Q:入熱量(J/cm)、
 tall:被接合材の厚さ(mm)、
 t:鋼板の表層酸化皮膜厚さの平均値(μm)、
である。
 以下、本発明の一実施形態に従う溶接継手の製造方法について、詳細に説明する。なお、被接合材とする鋼板の板厚、鋼組織および成分組成等の説明は、上記した[1-1]母材鋼板における板厚、鋼組織および成分組成等の説明と同じであるため、ここでは記載を省略する。
鋼板の表層酸化皮膜厚さ:50μm以下
 被接合材とする鋼板の表層の酸化皮膜は、溶接時に溶融して溶接金属内に取り込まれる。これにより、溶接金属の酸素量であるOwの増加を招く。そのため、鋼板の表層酸化皮膜厚さはいずれも50μm以下とする。鋼板の表層酸化皮膜厚さは、より好ましくは30μm以下、さらに好ましくは10μm以下である。表層酸化皮膜厚さは、特に限定されない。ただし、鋼板を酸洗して酸化皮膜を除去したとしても、0.001μm程度の自然酸化皮膜が形成する。そのため、鋼板の表層酸化皮膜厚さは0.001μm以上が好ましい。なお、ここでいう鋼板の表層酸化皮膜厚さは、片面当たりのものである。
 ここで、鋼板の表層酸化皮膜は、鋼板表面に形成される酸化皮膜である。すなわち、鋼板の表層酸化皮膜は、鋼板の表面において、鉄および/またはその他金属元素が酸化されて形成される層である。また、鋼板の表層酸化皮膜厚さは、常法に従い、測定することができる。例えば、鋼板の断面を鏡面研磨し、ついで、電界放出形走査電子顕微鏡(FE-SEM)を用いて鋼板の断面を観察することにより、測定することができる。また、酸洗などによって鋼板の表層酸化皮膜が非常に薄くなっている場合は、透過型電子顕微鏡(TEM)を用いて、鋼板の表層部を観察することにより、鋼板の表層酸化皮膜厚さを測定することができる。鋼板の表層酸化皮膜厚さは、例えば、任意の5か所で測定した鋼板表面の酸化皮膜の厚さの平均値として求めればよい。ただし、鋼板表面の傷などにより酸化皮膜が確認されない領域は、除外するものとする。また、鋼板の表裏面で表層酸化皮膜厚さが大きく異なる場合には、表裏面それぞれにおいて、任意の5か所で鋼板表面の酸化皮膜の厚さを測定し、その平均値を、鋼板の表層酸化皮膜厚さとする。
 なお、溶接後の鋼板、すなわち、溶接継手を構成する母材鋼板の表層酸化皮膜厚さは、特に限定されない。すなわち、溶接の熱影響によって、母材鋼板の表層酸化皮膜は、溶接前の鋼板に比べて厚くなる場合がある。また、溶接継手の製造後に溶接継手が保管・使用される環境によっても、腐食の進行などに伴い、母材鋼板の表層酸化皮膜は厚くなる場合がある。ただし、母材鋼板の表層酸化皮膜厚さは、溶接金属の酸素量であるOwに特段の影響を与えない。そのため、母材鋼板の表層酸化皮膜厚さは、特に限定されない。
0.01≦ Ti+Al ≦ 0.5-Og×0.25/100  ・・・(4)
 上述したように、溶接部の常温脆性破壊を防止するには、溶接金属の酸素量と、溶接金属の硬さとの関係を、適正に制御する、具体的には、上掲式(1)~(3)を満足する範囲とすることが必要である。そのためには、被接合材とする鋼板の表層酸化皮膜厚さをいずれも50μm以下とし、かつ、後述する式(5)の関係を満足させる。そして、これらと同時に、被接合材とする鋼板のTi含有量およびAl含有量の合計と、溶接に用いるシールドガス中のCOおよびOの合計体積分率との関係を適正に制御することが必要である。具体的には、上掲式(4)を満足させることが必要である。なお、上掲式(4)について、上限は好ましくは0.25-(Og-100)×{0.25-(t-0.8)/46}/100である。上掲式(4)について、下限は好ましくは0.03である。
 なお、被接合材とする2枚以上の鋼板の成分組成が互いに異なる場合には、各鋼板の成分組成について、上掲式(4)を満足させることが必要である。
1200×tall 1/3×(1+0.1×t 1/5)≦ Q ≦4000×tall 1/3×(1+0.1×t 1/5) ・・・(5)
 溶接部の常温脆性破壊を防止するには、溶接金属の酸素量と、溶接金属の硬さとの関係を、適正に制御する、具体的には、上掲式(1)~(3)を満足する範囲とすることが必要である。そのためには、被接合材とする鋼板の表層酸化皮膜厚さをいずれも50μm以下とし、かつ、上掲式(4)の関係を満足させる。そして、これらと同時に、入熱量Q(J/cm)を、上掲式(5)のように被接合材の厚さおよび被接合材となる鋼板の表層酸化皮膜厚さに応じて適正化することが必要である。
 すなわち、入熱量Qが過小となる場合には、溶け込み不良が生じるだけでなく、溶接後の冷却速度が増して溶接金属が過度に硬化する。その結果、溶接金属の常温靭性の低下を招くおそれがある。また、溶接金属の体積が少なくなり、溶接金属中に取り込まれた酸素の希釈が不十分となる、その結果、やはり溶接金属の常温靭性の低下を招くおそれがある。一方、入熱量Qが過大となる場合には、溶け落ちが生じて健全な溶接継手が得られない。また、スラグが多量に発生することにより、耐食性の劣化を引き起こすおそれがある。そのため、入熱量Qについては、上掲式(5)を満足するように制御する必要がある。上掲式(5)について、上限は好ましくは3000×tall 1/3×(1+0.1×t 1/5)である。また、上掲式(5)について、下限は好ましくは1300×tall 1/3×(1+0.1×t 1/5)である。
 なお、式(5)中、
 tall:被接合材の厚さ(mm)、
 t:鋼板の表層酸化皮膜厚さの平均値(μm)、
である。
 すなわち、重ね隅肉溶接継手の場合、tallは、被接合材となる鋼板の板厚の合計値である。また、突合せ溶接継手やビードオンプレート溶接継手の場合、tallは、被接合材となる鋼板のうち、最も板厚の大きな鋼板の板厚である。
 また、tは、被接合材となる鋼板の(片面あたりの)表層酸化皮膜厚さの平均値である。
 また、入熱量Qは、次式により求める。
 Q=I×E×60/c
 ここで、
 I:溶接電流(A)、
 E:アーク電圧(V)、
 c:溶接速度(cm/min)
である。
 なお、溶接中に溶接電流、アーク電圧および溶接速度が変化する場合はそれぞれ、平均値(溶接中の時間平均値(時間積分値÷溶接時間))を用いて、入熱量Qを算出する。
 上記以外の溶接条件は特に限定されず、常法に従えばよい。
 例えば、溶接に用いるシールドガスの種類は、上掲式(4)を満足すれば特に限定されず、Ar、He、CO、O、N、および、これらの混合ガスを例示できる。
 また、溶加材としては、例えば、ソリッドワイヤやフラックスコアードワイヤ、メタルコアードワイヤを用いることができる。なかでも、溶接金属の酸素量およびビッカース硬さについて上掲式(1)~(3)を満足するように制御する観点から、ソリッドワイヤを用いることが好適である。溶加材の成分組成としては、例えば、質量%で、
 C:0.03~0.2%、
 Si:0.005~2.00%、
 Mn:0.05~5.00%、
 P:0.050%以下、
 S:0.010%以下、
 Ti:0~0.20%、
 Al:0~0.30%および
 O:0~0.01%、
であり、
 任意に、Cr、Ni、Mo、W、V、B、Nb、Cu、Nから選ばれる1つまたは2つ以上の任意添加元素を合計で10%以下で含有し(これらの任意添加元素を含有させる場合、より好適には合計で0.01%以上)、
 残部がFeおよび不可避的不純物である成分組成を例示できる。
 溶接方式としては、ガスメタルアーク溶接およびレーザ・アークハイブリッド溶接を例示できる。溶接方式としては、特に、自動車組み立て工程において最も多く用いられている線溶接方法であるガスメタルアーク溶接が好適である。
 ガスメタルアーク溶接における電流制御方式も特に限定されず、例えば、電流を一定周期でパルス状に制御する直流パルス溶接が適用できる。また、CMT溶接に代表されるような、溶接中に溶接ワイヤの送給を一定周期で正送・逆送とするプッシュ・プル式の溶接も適用できる。また、溶接機の電源特性も特に限定されない。例えば、溶接電流の平均値は100~300A、アーク電圧の平均値は10~30V、溶接速度は40~200cm/minが好適である。
 表1に示す鋼板1および2を被接合材として、表2に示す条件で溶接を行い、溶接継手を作製した。溶加材(溶接ワイヤ)は、上記で例示した成分組成を有するソリッドワイヤ(表2ではSWと表記する)またはフラックスコアードワイヤ(表2ではFCWと表記する)を用いた。継手形式は、重ね隅肉溶接継手または突合せ溶接継手とした。鋼板1および2の位置関係は、図3および4に示すとおりである。なお、明記した以外の条件は、常法に従うものとした。また、鋼板1および2はいずれも、上記で例示した成分組成を有するものとし、表1に示した鋼組織の面積率は上述した要領に従って測定した。
 ついで、作製した溶接継手から1~10gのサンプルを採取し、不活性ガス融解-赤外線吸収法により、溶接金属の酸素量Owを測定した。結果を表2に示す。なお、表2の(4)式の欄では、被接合材とした鋼板1および2の両方について(4)式を満足する場合を「満足」、被接合材とした鋼板1および2の一方でも(4)式を満足しない場合を「不満足」と記載している。
 また、作製した溶接継手を、溶接ビードに垂直な板厚方向断面が観察面となるように切断した。ついで、切断面を研磨し、当該切断面の溶接金属の任意の5点において、JIS Z 2244-1(2020)に準拠するビッカース硬さ試験を行い、その平均値をHvwとした。ここで、荷重:200g、押込み時間:15sの条件とした。結果を表2に示す。
 また、作製した溶接継手から、溶接直角方向(溶接方向(溶接ビード方向)および溶接継手の厚さ方向(母材鋼板の板厚方向)に直角な方向)が長手方向となるように、図3および図4の引張試験片を採取した。なお、重ね隅肉溶接継手の場合は、図3に示すように、母材鋼板に当て板を抵抗スポット溶接で接合した。そして、採取した引張試験片を用いて、JIS Z 2241(2011)に準拠する引張試験を行った。引張試験での引張方向は、図3および図4に示すとおりである、また、試験速度は10mm/sとした。引張試験後、引張試験片の破面観察を実施した。具体的には、図5に示す要領で、引張試験片の平行部の破面の幅方向中央において、視野サイズ:200μm四方の観察を、厚さ方向に移動しながら実施した。なお、観察は、走査型電子顕微鏡(SEM)を用いて倍率:500倍で行った。そして、各観察視野において、脆性破壊領域の面積が当該観察視野面積の50%以上である場合に、当該観察視野を脆性破面であると判断した。なお、脆性破壊領域は、破面形態がへき開破壊または擬へき開破壊である領域であることを意味する。また、ディンプルまたはせん断破壊の痕跡などが確認された領域は、脆性破壊領域ではなく、延性破壊領域とみなした。そして、上記の観察視野の全数をNa、脆性破面と判断した観察視野数をNbとし、Nb/Naにより、以下の基準で常温靭性を評価した。
 評価A(常温靭性に非常に優れる):0≦Nb/Na≦0.2
 評価B(常温靭性に優れる):0.2<Nb/Na≦0.5
 評価F(常温靭性が十分ではない):0.5<Nb/Na≦1.0
 評価結果を表2に示す。
 なお、得られた溶接継手を構成する母材鋼板の板厚、鋼組織および成分組成は、被接合材とした鋼板の板厚、鋼組織および成分組成と同じであったため、ここでは記載を省略した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-T000003
 表2より、発明例の溶接継手はいずれも、優れた常温靭性が得られていた。一方、比較例の溶接継手では、十分な常温靭性が得られなかった。
 1 鋼板(母材鋼板)
 2 鋼板(母材鋼板)
 3 溶接部(溶接金属)

Claims (6)

  1.  2枚以上の母材鋼板と、該母材鋼板同士を接合する溶接部と、を有する、溶接継手であって、
     前記母材鋼板の板厚がいずれも0.8mm以上10mm以下であり、
     前記母材鋼板のうち、少なくとも1枚の母材鋼板が、マルテンサイトおよびベイナイトの合計の面積率:50%超の鋼組織と、980MPa以上の引張強さと、を有し、
     前記溶接部の溶接金属の酸素量およびビッカース硬さが、次式(1)~(3)の関係を満足する、溶接継手。
     10 ≦ Ow ≦ 600 ・・・(1)
    ・10 ≦ Ow ≦ 350の場合
     180 ≦ Hvw ≦ 550-(Ow-10)×100/340 ・・・(2)
    ・350 < Ow ≦ 600の場合
     180 ≦ Hvw ≦ 450-(Ow-350)×50/250 ・・・(3)
     ここで、
     Ow:溶接金属の酸素量(質量ppm)、
     Hvw:溶接金属のビッカース硬さ(HV)、
    である。
  2.  重ね隅肉溶接継手である、請求項1に記載の溶接継手。
  3.  前記母材鋼板の成分組成がいずれも、
     Ti含有量:0~0.20質量%および
     Al含有量:0.01~0.30質量%
    である、請求項1または2に記載の溶接継手。
  4.  被接合材である2枚以上の鋼板を溶接し、溶接継手を得る、溶接継手の製造方法であって、
     前記鋼板の板厚がいずれも0.8mm以上10mm以下であり、
     前記鋼板の表層酸化皮膜厚さがいずれも50μm以下であり、
     前記鋼板のうち、少なくとも1枚の鋼板が、マルテンサイトおよびベイナイトの合計の面積率:50%超の鋼組織と、980MPa以上の引張強さと、を有し、
     前記溶接に使用するシールドガスのCOおよびOの合計体積分率、ならびに、前記鋼板のTi含有量およびAl含有量がいずれも、次式(4)の関係を満足し、かつ、
     前記溶接における入熱量、前記被接合材の厚さ、および、前記鋼板の表層酸化皮膜厚さの平均値が、次式(5)の関係を満足する、溶接継手の製造方法。
     0.01 ≦ Ti+Al≦ 0.5-Og×0.25/100  ・・・(4)
     1200×tall 1/3×(1+0.1×t 1/5)≦ Q ≦4000×tall 1/3×(1+0.1×t 1/5) ・・・(5)
     ここで、
     Og:シールドガスのCOおよびOの合計体積分率(%)、
     Ti:鋼板のTi含有量(質量%)、
     Al:鋼板のAl含有量(質量%)、
     Q:入熱量(J/cm)、
     tall:被接合材の厚さ(mm)、
     t:鋼板の表層酸化皮膜厚さの平均値(μm)、
    である。
  5.  前記溶接に使用する溶加材がソリッドワイヤである、請求項4に記載の溶接継手の製造方法。
  6.  前記溶接がガスメタルアーク溶接である、請求項4または5に記載の溶接継手の製造方法。
PCT/JP2023/028013 2022-09-28 2023-07-31 溶接継手およびその製造方法 WO2024070191A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022155596 2022-09-28
JP2022-155596 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024070191A1 true WO2024070191A1 (ja) 2024-04-04

Family

ID=90477022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028013 WO2024070191A1 (ja) 2022-09-28 2023-07-31 溶接継手およびその製造方法

Country Status (1)

Country Link
WO (1) WO2024070191A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037272A1 (ja) * 2009-09-25 2011-03-31 新日本製鐵株式会社 高強度薄鋼板の隅肉アーク溶接方法
WO2018159404A1 (ja) * 2017-02-28 2018-09-07 Jfeスチール株式会社 重ね隅肉アーク溶接継手およびその製造方法
WO2019035490A1 (ja) * 2017-08-18 2019-02-21 新日鐵住金株式会社 重ね隅肉アーク溶接継手
WO2020196869A1 (ja) * 2019-03-27 2020-10-01 日本製鉄株式会社 自動車用足回り部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037272A1 (ja) * 2009-09-25 2011-03-31 新日本製鐵株式会社 高強度薄鋼板の隅肉アーク溶接方法
WO2018159404A1 (ja) * 2017-02-28 2018-09-07 Jfeスチール株式会社 重ね隅肉アーク溶接継手およびその製造方法
WO2019035490A1 (ja) * 2017-08-18 2019-02-21 新日鐵住金株式会社 重ね隅肉アーク溶接継手
WO2020196869A1 (ja) * 2019-03-27 2020-10-01 日本製鉄株式会社 自動車用足回り部品

Similar Documents

Publication Publication Date Title
RU2633414C2 (ru) Точечно-сварное соединение и способ точечной сварки
JP6447752B2 (ja) 抵抗溶接部を有する自動車用部材
CA3011332C (en) Flux-cored wire, manufacturing method of welded joint, and welded joint
WO2018203513A1 (ja) アーク溶接方法及び溶接ワイヤ
JP2013010139A (ja) 継手強度に優れたアークスポット溶接継手およびその製造方法
JP2013220431A (ja) 疲労強度に優れた溶接継手、熱延鋼板のmag溶接方法、熱延鋼板のmig溶接方法およびフラックス入りワイヤ
JP2012081514A (ja) 亜鉛めっき鋼板の隅肉アーク溶接方法
JP6635235B1 (ja) 重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法および自動車用骨格部品
JP4452204B2 (ja) アルミニウム系材料とのロウ付け接合用鋼板、その鋼板を用いた接合方法および接合継手
JP5059455B2 (ja) アルミニウム系材料とのロウ付け接合用鋼板、その鋼板を用いた接合方法および接合継手
JP4640995B2 (ja) アルミニウム系材料とのロウ付け接合用鋼板、その鋼板を用いた接合方法および接合継手
JPH05261568A (ja) クラッド鋼管の製造方法
WO2023054717A1 (ja) 鋼溶接部材
WO2024070191A1 (ja) 溶接継手およびその製造方法
WO2024070192A1 (ja) 溶接継手およびその製造方法
WO2022230071A1 (ja) 鋼溶接部材
TW201833345A (zh) Mig硬焊方法、搭接接頭部件的製造方法,以及搭接接頭部件
JP4452205B2 (ja) アルミニウム系材料とのロウ付け接合用鋼板、その鋼板を用いた接合方法および接合継手
JP2010214466A (ja) 高強度薄鋼板の溶接方法
JP7432723B2 (ja) 溶接部の疲労強度に優れた溶接部材及びその製造方法
US20230356334A1 (en) Welding wires for obtaining giga-grade welds, welded structures manufacturing using same, and welding method thereof
JP7435935B1 (ja) 溶接部材およびその製造方法
WO2024063010A1 (ja) 溶接部材およびその製造方法
JP7477059B1 (ja) 溶接部材およびその製造方法
WO2022107580A1 (ja) スポット溶接用めっき鋼板、接合部材、及び自動車用部材、並びに接合部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871434

Country of ref document: EP

Kind code of ref document: A1