WO2019035490A1 - 重ね隅肉アーク溶接継手 - Google Patents

重ね隅肉アーク溶接継手 Download PDF

Info

Publication number
WO2019035490A1
WO2019035490A1 PCT/JP2018/030694 JP2018030694W WO2019035490A1 WO 2019035490 A1 WO2019035490 A1 WO 2019035490A1 JP 2018030694 W JP2018030694 W JP 2018030694W WO 2019035490 A1 WO2019035490 A1 WO 2019035490A1
Authority
WO
WIPO (PCT)
Prior art keywords
weld metal
steel plate
point
fillet arc
lap fillet
Prior art date
Application number
PCT/JP2018/030694
Other languages
English (en)
French (fr)
Inventor
和貴 松田
真二 児玉
耕太郎 渡邊
仁寿 ▲徳▼永
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP18845781.6A priority Critical patent/EP3670055B1/en
Priority to KR1020207004668A priority patent/KR102244232B1/ko
Priority to CN201880052656.4A priority patent/CN112203792B/zh
Priority to JP2018563187A priority patent/JP6515401B1/ja
Priority to MX2020001540A priority patent/MX2020001540A/es
Priority to BR112020002088-5A priority patent/BR112020002088A2/pt
Priority to US16/636,788 priority patent/US11592045B2/en
Priority to CA3072156A priority patent/CA3072156A1/en
Publication of WO2019035490A1 publication Critical patent/WO2019035490A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/08Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of welds or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/0216Seam profiling, e.g. weaving, multilayer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a lap fillet arc welded joint.
  • Priority is claimed on Japanese Patent Application No. 2017-157961, filed Aug. 18, 2017, the content of which is incorporated herein by reference.
  • Structural members used in environments with vibration and cyclic external loads such as automotive structural members, have sufficient fatigue strength to withstand repetitive forces in addition to normal static tensile strength It is required to be equipped.
  • the fatigue strength (fatigue limit) of a steel plate rises in proportion to its tensile strength, it is generally known that the fatigue strength of a lap fillet arc welded joint is lower than the fatigue strength of the steel plate as the base material. It is done.
  • FIG. 12 is a graph showing the relationship between the fatigue strength (fatigue limit) of the lap fillet arc welded joint and the tensile strength of the base steel plate, using the shape of the weld toe as a parameter.
  • the relationship between fatigue strength and tensile strength is referred to as fatigue characteristics.
  • FIG. 12 also shows the fatigue characteristics of the base steel plate alone as a reference (see straight line C0). As shown by the straight line C0, the fatigue strength of the base steel plate alone increases in proportion to its tensile strength.
  • a curve C1 shows the fatigue characteristics when the toe shape of the weld metal is sharp
  • a curve C2 shows the fatigue characteristics when the toe shape of the weld metal is smooth.
  • curve C1 when the shape of the toe of the weld metal is steep, the fatigue strength of the lap fillet arc welded joint hardly increases even if the tensile strength of the base steel sheet increases, and the base steel sheet It only remains at a very low level compared to the fatigue strength of a single body.
  • FIG. 13 is a schematic view of the joint portion between the base metal steel plate 200 and the weld metal 100 having a sharp toe shape, as viewed in a cross section orthogonal to the weld metal of the weld metal 100.
  • Patent Document 1 lap fillet arc welding is performed using a welding material (welding wire) having a specific component composition as a technique for stably controlling the shape of a toe portion of a weld metal to a gentle shape.
  • the weld material disclosed in Patent Document 1 is, by mass%, C: 0.005 to 0.40%, Mn: 0.2 to 8.0%, and Si: more than 1.1% and 8.0% or less And Se: 0.01 to 1% and / or Te: 0.01 to 1%.
  • Patent Document 2 In order to improve the fatigue strength of a lap fillet arc welded joint, Patent Document 2 below not only controls the shape of the toe portion of the weld metal to a gentle shape, but also the weld metal with respect to the hardness of the heat affected zone.
  • a technique is disclosed that reduces the concentration of local stresses and strains due to differences in hardness that occur near the melting boundary by controlling the ratio of hardness within a specified range.
  • the hardness of the weld metal is the hardness Hv (FL ⁇ 0.5) of the weld metal at a position 0.5 mm away from the fusion boundary FL of the weld toe toward the weld metal.
  • the hardness of the heat affected zone is the hardness Hv (FL + 0.5) of the heat affected zone at a position 0.5 mm away from the melting boundary FL toward the heat affected zone.
  • the ratio of the hardness of the weld metal to the hardness of the heat affected zone is 0.3 to 0. It is controlled within the range of 9.
  • FIG. 14 is a schematic view of the joint portion between the base metal steel plate 200 and the weld metal 110 having a gentle toe shape in a cross section orthogonal to the weld line of the weld metal 110.
  • the inventor of the present application considered the cause of the significant decrease in the fatigue strength of the lap fillet arc welded joint when the tensile strength of the base steel plate is 950 MPa or more as follows.
  • a curve C3 is a curve of the overlap fillet arc welded joint obtained by performing the overlap fillet arc welding such that the toe shape of the weld metal is smoothed by using a higher strength welding wire.
  • the fatigue characteristics are shown.
  • the curve C3 simply by using a higher strength welding wire, the fatigue strength of the lap fillet arc welded joint continues to rise even when the tensile strength of the base steel plate becomes 950 MPa or more. I understand that.
  • the local stress and strain caused by the difference in hardness occurring near the melting boundary that is, the difference in hardness between the heat affected zone and the weld metal
  • the method of controlling the ratio of the hardness of the weld metal to the hardness of the heat-affected zone within a specific range is applied for the purpose of reducing the concentration, it consists of a base steel plate having a tensile strength of 950 MPa or more It is difficult to increase the fatigue strength of lap fillet arc welded joints.
  • the present invention has been made in view of the above-mentioned circumstances, and it does not use a high strength welding wire which causes hydrogen embrittlement cracking, and a lap fillet arc welded joint made of a base steel plate having a tensile strength of 950 MPa or more.
  • the purpose is to increase the fatigue strength of the
  • the present invention adopts the following means in order to solve the problems and achieve the object.
  • the overlapped fillet arc welded joint according to an aspect of the present invention is a first steel plate and a second steel plate which are overlapped with each other and have a tensile strength of 950 MPa or more, a surface of the first steel plate and the second steel plate.
  • the weld metal simultaneously satisfies the following conditional expressions (1) and (2). 0 ° ⁇ ⁇ 30 ° (1) NB / NA ⁇ 0.70 (2) (However, NA is more than 20)
  • the thickness of each of the first steel plate and the second steel plate may be 0.8 to 3.5 mm.
  • the fatigue strength of a lap fillet arc welded joint made of a base steel plate having a tensile strength of 950 MPa or more is enhanced without using a high strength welding wire which causes hydrogen embrittlement cracking. Is possible.
  • FIG. 1 is a cross-sectional view of a lap fillet arc welded joint according to an embodiment of the present invention.
  • FIG. 1 is a plan view of a lap fillet arc welded joint according to an embodiment of the present invention. It is a cross-sectional photograph of the weld metal obtained by the optical microscope. It is a cross-sectional photograph which shows that the fatigue crack has generate
  • FIG. 1 is a cross-sectional view of a lap fillet arc weld joint 10 according to the present embodiment
  • FIG. 2 is a plan view of the lap fillet arc weld joint 10 according to the present embodiment.
  • the overlapped fillet arc welded joint 10 according to the present embodiment includes a first steel plate 1 and a second steel plate 2 stacked together, a surface 1 a of the first steel plate 1 and a second steel plate A weld metal (weld bead) 3 extending along a corner 4 formed by two end faces 2a.
  • FIG. 1 is a view of the lap fillet arc welded joint 10 in a cross section orthogonal to the weld line W (see FIG. 2) of the weld metal 3. Further, as shown in FIGS. 1 and 2, a direction parallel to weld line W is taken as the Z-axis direction, and a direction perpendicular to the Z-axis direction and parallel to surface 1a of first steel plate 1 is taken as the X-axis direction. A direction orthogonal to the axial direction and the Z-axis direction and parallel to the thickness direction of the first steel plate 1 is taken as a Y-axis direction.
  • the first steel plate 1 and the second steel plate 2 are base steel plates of the lap fillet arc welded joint 10, and each have a tensile strength of 950 MPa or more.
  • the first steel plate 1 and the second steel plate 2 having such high tensile strength are particularly suitable as a base steel plate of a lap fillet arc welded joint 10 for automobiles where weight reduction and improvement of collision safety are strongly required. is there.
  • the thickness of each of the first steel plate 1 and the second steel plate 2 is preferably 0.8 to 3.5 mm.
  • the component compositions of the first steel plate 1 and the second steel plate 2 are not particularly limited as long as mechanical properties of at least 950 MPa or more in tensile strength can be obtained.
  • the first steel plate 1 and the second steel plate 2 are, by mass%, C: 0.01 to 0.25%, Si: 0.01 to 2.0%, Mn: 0.1 to It is preferable to contain 3.0%, P: 0.05% or less, and S: 0.0005 to 0.01%.
  • Weld metal 3 is a weld bead formed by performing fillet arc welding continuously in the Z-axis direction along corner 4 in a state in which first steel plate 1 and second steel plate 2 are superimposed.
  • the hardness of the weld metal 3, the shape of the toe of the weld metal 3, and the relationship between the surface shape of the weld metal 3 and the ferrite structure satisfy the specific conditions. By controlling the above, the fatigue strength of the lap fillet arc welded joint 10 is improved.
  • the Vickers hardness of the weld metal 3 is 400 HV or less. When the Vickers hardness of the weld metal 3 exceeds 400 HV, hydrogen embrittlement cracking occurs in the weld metal 3. That is, by limiting the Vickers hardness of the weld metal 3 to 400 HV or less, the occurrence of hydrogen embrittlement cracking in the weld metal 3 can be suppressed.
  • the Vickers hardness of weld metal 3 is measured at 5 points or more along a straight line parallel to the X-axis direction passing a position at a depth of 0.1 mm from surface 1a of first steel plate 1 and the measurement results The average value of is defined as the Vickers hardness of weld metal 3.
  • the flank angle ⁇ is generally used as a parameter representing the shape of the toe portion of the weld metal 3, but in the present embodiment, the toe angle ⁇ is used as a parameter representing the shape of the toe portion of the weld metal 3.
  • the toe angle ⁇ is defined as follows.
  • a position separated by 0.5 mm from the point A toward the weld metal 3 in the X-axis direction is taken as a point D.
  • an intersection point of a straight line passing through the point D and extending in the thickness direction of the first steel plate 1 (that is, the Y-axis direction) and the surface of the weld metal 3 is taken as a point B.
  • the points B and D are defined, the angle between the straight line connecting the points A and B and the straight line connecting the points A and D is defined as the toe angle ⁇ of the weld metal 3 .
  • the weld metal 3 of the lap fillet arc welded joint 10 satisfies the following conditional expression (1).
  • the shape of the toe end of the weld metal 3 becomes a gentle shape, so that concentration of stress on the toe portion of the weld metal 3 can be suppressed.
  • the toe angle ⁇ is 30 ° or more, since the shape of the toe portion of the weld metal 3 is sharp, stress tends to be concentrated on the toe portion of the weld metal 3. 0 ° ⁇ ⁇ 30 ° (1)
  • the surface 1a of the 1st steel plate 1 contained in the inside of the weld metal 3 and the end surface 2a of the 2nd steel plate 2 are represented by the dotted line.
  • the dotted line portion is dissolved in the weld metal 3, for example, as shown in FIG. 3, even if a cross-sectional photograph of the weld metal 3 is obtained using an optical microscope, the dotted line portion It can not be observed. Therefore, by specifying the three points A, B, and D defined as described above on the cross-sectional picture of the weld metal 3, the toe angle ⁇ of the weld metal 3 is obtained from the cross-sectional picture of the weld metal 3. It can be easily obtained. In addition, as long as it is possible to obtain a photograph that can specify the toe angle ⁇ of the weld metal 3, not only an optical microscope but also a scanning electron microscope (SEM) or a microscope may be used.
  • SEM scanning electron microscope
  • a point at a distance of 0.4 mm from the point A toward the weld metal 3 in the X-axis direction is taken as a point C.
  • the total number of recesses present on the surface of the weld metal 3 included in the range between the point A and the point C is NA, and among the recesses, the number of recesses in contact with ferrite particles having a maximum particle diameter of 10 ⁇ m or more Let NB be.
  • NA and NB are defined, the weld metal 3 of the lap fillet arc welded joint 10 satisfies the following conditional expression (2).
  • NB / NA ⁇ 0.70 (2) (However, NA is more than 20)
  • the recess is likely to be a starting point for the occurrence of fatigue cracking.
  • the ratio is 0.7 or less, the origin of the fatigue crack decreases, and as a result, as shown by the dotted line C4 in FIG.
  • the fatigue strength of the fillet arc welded joint 10 can be increased.
  • the conditional expression (2) when NB / NA exceeds 0.70, the number of recesses serving as a starting point of fatigue cracking (that is, recesses in which coarse ferrite grains having a maximum particle diameter of 10 ⁇ m or more are in contact) increases. As a result, the fatigue strength of the lap fillet arc welded joint 10 is reduced.
  • the lower limit value of NB / NA is theoretically zero, it is practically difficult to make NB zero.
  • the smaller the value of NB / NA the greater the effect of improving the fatigue strength.
  • a portion including the weld metal 3 is cut out from the lap fillet arc welded joint 10 as a sample, and the sample is cut so that the cross section of the weld metal 3 (the cross section orthogonal to the weld line W) is exposed. Then, after mirror-polishing the cut surface of the sample, the cross section of the weld metal 3 included within at least the range of 0.4 mm from the melting boundary (point A) is photographed with an optical microscope to obtain a weld as shown in FIG.
  • the melting boundary exists at the left end, and the cross-section of the weld metal 3 included within the range of 0.4 mm or less from the melting boundary is included in the photograph.
  • the weld metal 3 as shown in FIG. 6 is traced by tracing the surface shape of the weld metal 3 included in the range of 400 ⁇ m or more from the melting boundary with 50 points or more.
  • the xy coordinate system formed by the horizontal axis x and the vertical axis y corresponds to the XY coordinate system of FIG.
  • an approximate curve f (x) of a cubic function representing a macroscopic surface shape of the weld metal 3 is created by the least squares method.
  • the reason for making the approximate curve f (x) a cubic function is that the macroscopic toe shape gradually rises from the direction along the base material (the first steel plate 1) and is inclined toward the top of the weld metal 3 It is because it has a cubic function change behavior that becomes slow.
  • a normal is drawn from each traced point to the approximate curve f (x), and the length of each normal is determined as yi.
  • the length yi of each normal can be obtained by the following equation (3).
  • the length yi of the normal to a point located below the approximate curve f (x) is given a minus sign.
  • the right side min () of the equation (3) means the minimum value of the values in the parentheses, and can be obtained by convergence calculation or the like.
  • xi is obtained by the following equation (4) as the length of an arbitrary section [0, a] of the approximate curve f (x).
  • a point graph representing the unevenness present on the surface of the weld metal 3 as shown in FIG. 9 is created.
  • the number of portions (portions to be valleys) at which the value of the y axis has a minimum value is on the surface of the weld metal 3 within the range of 0.4 mm or less from the melting boundary (point A).
  • the NA is calculated by counting as the existing recesses.
  • ferrite particles having a maximum particle diameter of 10 ⁇ m or more The NB is calculated by counting the number of recesses in contact with each other.
  • the maximum grain size of the ferrite particles is defined as the longest linear length which can draw the surface of the weld metal 3 as an end point in the ferrite particles. Furthermore, “the ferrite particles are in contact with the recess” means that at least a part of the ferrite particles is present on the surface of the weld metal 3 included in the range of ⁇ 10 ⁇ m from the minimum value of the point graph shown in FIG. Means that
  • NA and NB included in the conditional expression (2) can be specified.
  • the NA is 20 or more.
  • the NA obtained from a plurality of cross-sectional photographs taken at different positions along the weld line W should be 20 or more in total.
  • NB is also necessary to calculate NB from the plurality of cross-sectional photographs. That is, for example, when the NA obtained from the two cross-sectional photographs is 20 or more in total, the NB obtained from the first cross-sectional photograph and the NB obtained from the second cross-sectional photograph Let the total value be the final NB.
  • the first steel plate 1 and the second steel plate 2 having a tensile strength of 950 MPa or more Even when is used as a base material, it is possible to realize improvement in fatigue strength. Furthermore, since the Vickers hardness of the weld metal 3 is a hardness capable of suppressing hydrogen embrittlement cracking, the overall strength of the lap fillet arc welded joint 10 is reduced due to the hydrogen embrittlement cracking. It can also be prevented.
  • the hardness of the HAZ softened portion may decrease to about 60% of the hardness of the base material.
  • the Vickers hardness of the first steel plate 1 is measured at five or more points along a straight line parallel to the X axis direction passing a position at a depth of 0.1 mm from the surface 1 a of the first steel plate 1 and measurement thereof The average value of the results is defined as the Vickers hardness of the first steel plate 1.
  • the overlapped fillet arc welded joint 10 can be manufactured under the manufacturing conditions described below.
  • the Vickers hardness of the weld metal 3 is expressed by the following equation (5).
  • Ceq included in the equation (5) is represented by the following equation (6). Therefore, in order to limit the Vickers hardness of the weld metal 3 to 400 HV or less, the value of Ceq is controlled so that the Vickers hardness Hmax of the weld metal 3 represented by the following equation (5) is 400 HV or less. Just do it. More specifically, C, Si, Mn, Cr, Mo contained in the weld metal 3 are adjusted so that the value of Ceq becomes about 0.406 or less by adjusting the component composition of the base steel plate and the welding wire. The contents of Ti and Nb (in mass%) may be controlled.
  • the weld metal 3 In order to obtain the weld metal 3 with few coarse ferrites, it is desirable that no ferrite is generated inside the weld metal 3 in the first place. Therefore, in the weld metal 3, it is necessary that the content of Si, Al, Cr and Mo as ferrite forming elements is small and the content of Mn, Ni, C and N as austenite forming elements is large. .
  • the value of Cx obtained from the following equation (7) is -0.4 or more, and the weld metal 3 is, in mass%, Ti: 0.05 to 1.0%, B: 0. It is necessary to contain 0003 to 0.03%.
  • TiO 2 becomes a transformation nucleus to refine the ferrite, and B segregates at the prior austenite grain boundaries. As a result, since the formation of grain boundary ferrite is suppressed, it is possible to obtain the weld metal 3 with less coarse ferrite.
  • the curvature radius of the concave portion on the surface of the weld metal is smaller as the surface tension is lower and larger as the surface tension is higher.
  • the relationship between the fatigue strength and the curvature radius of the recess is that forming a recess with a low surface tension and a small radius of curvature is likely to be the starting point of fatigue cracking, and a recess with a large radius of curvature is less likely to be a starting point of fatigue cracking.
  • the proportion of ferrite grains having a maximum grain size of 10 ⁇ m or more in contact with the recess becomes important.
  • Oxygen mixed in the shielding gas affects the surface tension of the molten pool. In that sense as well, it is important to control the amount of oxygen mixed in the shielding gas within an optimal range.
  • the distance from the tip of the shield gas nozzle 21 to the tip of the welding wire 22 (wire It is desirable that the protrusion length L1 be 5 to 20 mm, and the distance L2 between the contact tip 23 and the surface of the base material for supplying current to the welding wire 22 be 8 to 30 mm. Furthermore, when an arc occurs in the immediate vicinity of the base material, the oscillation of the molten pool becomes large, and the ripple (the wave pattern generated in the molten pool) which is the cause of the minute unevenness becomes large. Therefore, it is desirable that L2-L1 ⁇ 1 mm. When L 2 ⁇ L 1 ⁇ 1 mm, many recesses having a depth of more than 10 ⁇ m are formed, and fatigue cracks originating from the recesses are easily generated.
  • the shielding property around the arc will be deteriorated, resulting in excessive mixing of oxygen.
  • the oxygen content of the weld metal 3 increases and a large amount of oxide precipitates, and the decrease in the hardenability of the weld metal 3 facilitates the formation of coarse ferrite such as intergranular ferrite.
  • the distances L1 and L2 are smaller than the lower limit value, the contact tip 23 is burnt down, or the welding torch 20 is broken due to adhesion of fumes and spatters.
  • the welding speed is set to 60 to 150 cm / min, and the welding current is set to 150 to 250 A so that the above conditional expression (1) is satisfied.
  • the shape of the toe end portion of the weld metal 3 is a gentle shape, it is possible to control the relationship between the recess and the ferrite grain size so as to satisfy the above-mentioned conditional expression (2).
  • the lap fillet arc welded joint 10 according to the present embodiment can be manufactured according to the manufacturing conditions as described above.
  • the conditions required for the welding wire include: C, Si, Mn, Cr, Mo, Ti, and Nb contained in the weld metal 3 so that the value of (a) Ceq is about 0.406 or less (B)
  • the value of Cx is -0.4 or more, and the content of Ti and B contained in the weld metal 3 is Ti: 0.05 to 1.0%, B: 0.0003 It is two things that it can control to -0.03%.
  • a welding wire of relatively low strength can be used as a welding wire for manufacturing the lap fillet arc welded joint 10, it is not necessary to use a high strength welding wire which causes hydrogen embrittlement cracking.
  • a high strength welding wire when using a high strength welding wire to improve the fatigue strength of a 950 MPa class steel plate, it is necessary to use a high strength welding wire having a weld metal strength of 950 MPa or more, but according to this embodiment, it is 540 MPa or more Since a welding wire having weld metal strength is sufficient, it is possible to suppress an increase in the manufacturing cost of the lap fillet arc welded joint 10 and to suppress the occurrence of hydrogen embrittlement cracking due to the high strength of the weld metal 3.
  • each of the three types of steel plates was a steel plate having a thickness of 2.9 mm and a tensile strength of 956 MPa.
  • the welding wire of A had a component composition satisfying the two conditions required to produce the lap fillet arc welded joint of the present invention.
  • the B welding wire was a comparative welding wire and did not have a component composition satisfying the two required conditions.
  • the welding speed is 80 cm / min
  • the welding current is 235 A
  • the wire projection length L1 is 10 mm
  • the contact tip-base metal distance L2 is 20 mm
  • the shielding gas is It was a mixed gas of Ar and 20% CO 2 .
  • a sample for measuring the composition of the weld metal is taken from each of the lap fillet arc weld joints of the invention examples 1 to 3 obtained as described above and the lap fillet arc weld joints of the comparison examples 1 to 7 The components of the weld metal were measured. The measurement results of the components of the weld metal are shown in Table 4.
  • samples for observation of the cross section of the weld metal are taken from the lap fillet arc welded joint of each example, and the toe angle ⁇ of the weld metal, the Vickers hardness Hmax of the weld metal, and the melting boundary 0.4 mm
  • the total number NA of the recesses present on the surface of the weld metal included in the range and the number NB of the recesses in contact with the ferrite particles having the maximum particle diameter of 10 ⁇ m or more were respectively measured.
  • samples for fatigue test were taken from the lap fillet arc welded joint of each example, and a plane bending fatigue test was carried out based on a plane bending fatigue test method (JIS Z2275) of a metal flat plate.
  • Comparative Examples 1 to 3 as the manufacturing conditions of the above (b) are not satisfied, a large number of coarse ferrite particles are generated on the surface of the weld metal, and as a result, the value of NB / NA exceeds 0.70. It is thought that it has Therefore, it is considered that the fatigue strength of Comparative Examples 1 to 3 is lower than that of Inventive Examples 1 to 3. That is, it was demonstrated that the fatigue strength improvement effect can not be sufficiently obtained in the case of the lap fillet arc welded joint which does not have the feature (C).
  • Comparative Examples 5 to 7 since the production condition (c) is not satisfied, a large amount of oxygen is mixed in the shield gas and a large amount of coarse ferrite particles are generated on the surface of the weld metal, thereby resulting in NB / NA. The value of is considered to have exceeded 0.70. Therefore, it is considered that the fatigue strength of Comparative Examples 5 to 7 is lower than that of Inventive Examples 1 to 3. That is, it was demonstrated that, in order to obtain the feature (C), it is necessary not only to control the component composition of the weld metal but also to appropriately control the amount of oxygen mixed in the shield gas.
  • FIG. 11A shows a cross-sectional photograph of the vicinity of the toe of the weld metal in the invention example 1
  • FIG. 11B shows a cross-sectional photograph of the vicinity of the toe of the weld metal in the comparative example 1.
  • the invention example 1 it is understood that the ferrite in the vicinity of the melting boundary is miniaturized.
  • the concentration of strain does not occur in the ferrite present on the surface of the weld metal, which is the origin of fatigue cracking, the fatigue limit of the welded joint is good and the fatigue life can be extended. Also, there is no concern of hydrogen embrittlement of the joint. As a result, by applying the present invention to automotive undercarriage members and building materials, safety and durability can be improved, and the industrial contribution is great.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Abstract

互いに重ね合わされ且つそれぞれ950MPa以上の引張強度を有する第1鋼板及び第2鋼板と、前記第1鋼板の表面と前記第2鋼板の端面とで形成される隅に沿って延在する溶接金属とを備える重ね隅肉アーク溶接継手であって、前記溶接金属の止端角度をβとし、溶融境界から0.4mm以内の範囲に含まれる前記溶接金属の表面に存在する凹部の総数をNAとし、前記凹部のうち、10μm以上の最大粒径を有するフェライト粒が接する凹部の数をNBとしたとき、前記溶接金属は、下記条件式(1)及び(2)を同時に満たす。 0°< β < 30° …(1) NB/NA ≦ 0.70 …(2) (ただし、NAは20以上)

Description

重ね隅肉アーク溶接継手
本発明は、重ね隅肉アーク溶接継手に関する。
本願は、2017年8月18日に日本に出願された特願2017-157961号に基づき優先権を主張し、その内容をここに援用する。
自動車の分野では、環境保全のため、車体の軽量化による燃費の向上とともに、衝突安全性の向上が求められている。従来から、車体の軽量化と衝突安全性の向上を図るために、板厚の薄い高強度鋼板を車体の構造部材として使用するとともに車体構造の最適化を行うなど、様々な技術開発が行われている。なお、自動車の構造部材のなかには、複数の高強度鋼板を母材として有する溶接継手も含まれる。自動車分野では、溶接継手の製造方法として、2枚の高強度鋼板を重ね合わせた状態で隅肉アーク溶接を行う重ね隅肉アーク溶接法が広く採用されている。本願明細書では、このような重ね隅肉アーク溶接法により製造された溶接継手を、重ね隅肉アーク溶接継手と呼称する。
 自動車の構造部材のように、振動や繰返しの外力負荷を伴う環境で使用される構造部材には、通常の静的な引張強度の他に、繰り返し作用する力に耐えるように、十分な疲労強度を具備することが要求される。鋼板の疲労強度(疲労限)は、その引張強度に比例して上昇するが、重ね隅肉アーク溶接継手の疲労強度は、その母材である鋼板の疲労強度より低くなることが一般的に知られている。
 その原因の1つとして、重ね隅肉アーク溶接継手の疲労強度は、溶接止端部形状に対して依存性を有していることが挙げられる。図12は、溶接止端部形状をパラメータとして、重ね隅肉アーク溶接継手の疲労強度(疲労限)と母材鋼板の引張強度との関係を示したグラフである。以下では、疲労強度と引張強度との関係を疲労特性と呼称する。図12では、リファレンスとして、母材鋼板単体の疲労特性も示している(直線C0参照)。直線C0で示されるように、母材鋼板単体の疲労強度は、その引張強度に比例して上昇する。
 図12において、曲線C1は、溶接金属の止端部形状が急峻な場合の疲労特性を示し、曲線C2は、溶接金属の止端部形状がなだらかな場合の疲労特性を示している。曲線C1で示されるように、溶接金属の止端部形状が急峻な場合、母材鋼板の引張強度が増加しても、重ね隅肉アーク溶接継手の疲労強度はほとんど増加せず、母材鋼板単体の疲労強度と比較して非常に低いレベルで推移するのみである。
 この理由は、溶接金属の止端部形状が急峻な形状の場合、止端部の応力集中が非常に高くなるためである。その結果、図13に示すように、重ね隅肉アーク溶接継手が繰り返し引張荷重を受け続けると、早期の段階で、溶接金属100の止端部と母材鋼板(下板)200との境界である溶融境界に疲労亀裂300が発生する。なお、図13は、急峻な止端部形状を有する溶接金属100と母材鋼板200との接合部分を、溶接金属100の溶接線に直交する断面でみた模式図である。
 一方、図12の曲線C2で示されるように、溶接金属の止端部形状がなだらかな場合、重ね隅肉アーク溶接継手の疲労強度は、母材鋼板単体の疲労強度より低いが、母材鋼板の引張強度の増加に伴って上昇する。この理由は、溶接金属の止端部形状がなだらかな形状の場合(図14参照)、その止端部に応力が集中することを抑制できるからである。そのため、従来から、重ね隅肉アーク溶接継手の疲労強度を向上させる技術として、溶接金属の止端部形状をなだらかな形状に制御する技術が一般的に採用されている。
例えば、下記特許文献1には、溶接金属の止端部形状をなだらかな形状に安定的に制御する技術として、特定の成分組成を有する溶接材料(溶接ワイヤ)を用いて重ね隅肉アーク溶接を行うことにより、母材鋼板に対する溶融金属の濡れ性を向上させる技術が開示されている。特許文献1に開示された溶接材料は、質量%で、C:0.005~0.40%、Mn:0.2~8.0%、及びSi:1.1%超8.0以下%を含有し、さらに、Se:0.01~1%および/またはTe:0.01~1%を含有する。
下記特許文献2には、重ね隅肉アーク溶接継手の疲労強度を向上させるために、溶接金属の止端部形状をなだらかな形状に制御するだけでなく、熱影響部の硬さに対する溶接金属の硬さの比を特定の範囲内に制御することにより、溶融境界近傍に生じる硬さの差に起因した局所的な応力及びひずみの集中を低減する技術が開示されている。
ここで、溶接金属の硬さとは、溶接止端部の溶融境界FLから溶接金属側に0.5mm離れた位置における溶接金属の硬さHv(FL-0.5)である。熱影響部の硬さとは、溶融境界FLから熱影響部側に0.5mm離れた位置における熱影響部の硬さHv(FL+0.5)である。具体的には、特許文献2の技術では、熱影響部の硬さに対する溶接金属の硬さの比(Hv(FL-0.5)/(FL+0.5))が、0.3~0.9の範囲内に制御される。
日本国特開2002-361481号公報 日本国特開2008-178910号公報
 上記のように、従来から、重ね隅肉アーク溶接継手の疲労強度を向上させる技術として、溶接金属の止端部形状をなだらかな形状に制御する技術が一般的に採用されている。しかしながら、図12の曲線C2で示されるように、母材鋼板の引張強度が950MPa以上になると、たとえ溶接金属の止端部形状をなだらかな形状に制御したとしても、重ね隅肉アーク溶接継手の疲労強度が大幅に低下することが、本願発明者の研究により判明した。
 近年、自動車の軽量化及び衝突安全性の向上が強く要請されるなか、950MPa以上の高い引張強度を有する高強度薄板鋼板を自動車の構造部材として利用するために、疲労強度等の諸条件を達成可能な接合技術(溶接技術)を確立することは非常に重要な研究テーマである。そこで、本願発明者は、まず、母材鋼板の引張強度が950MPa以上の場合に重ね隅肉アーク溶接継手の疲労強度が大幅に低下する原因を調査した。
 その結果、図14に示すように、母材鋼板の引張強度が950MPa以上の場合、なだらかな止端部形状を有する溶接金属110と母材鋼板(下板)200との溶融境界ではなく、溶接金属の止端部の表面に疲労亀裂310が発生していることが判明した。なお、図14は、なだらかな止端部形状を有する溶接金属110と母材鋼板200との接合部分を、溶接金属110の溶接線に直交する断面でみた模式図である。
さらに、疲労亀裂310が発生している部分を微視的に観察すると、溶接金属の止端部の表面に存在する粗大なフェライト粒から疲労亀裂310が発生していることが判明した。以上の結果から、本願発明者は、母材鋼板の引張強度が950MPa以上の場合に重ね隅肉アーク溶接継手の疲労強度が大幅に低下する原因を以下のように考察した。
母材鋼板の引張強度が950MPa以上の場合、溶接金属の表面には、フェライトとベイナイト(もしくはマルテンサイト)との複合組織が生成されている。周知のとおり、フェライトは比較的軟らかな組織であり、ベイナイト(もしくはマルテンサイト)は比較的硬い組織である。そのため、硬さの異なる組織間の強度差に起因して、軟らかなフェライトに応力及び歪みが集中しやすいと考えられる。そして、重ね隅肉アーク溶接継手が繰り返し引張荷重を受け続ける環境下において、フェライトに応力及び歪みが集中した結果、早期の段階で、溶接金属の表面に存在するフェライト粒から疲労亀裂310が発生したと考えられる。
 このような技術課題に対して、母材鋼板の引張強度が950MPa以上の場合でも、単純に、より高強度の溶接ワイヤを使用して重ね隅肉アーク溶接を行うことにより、高い疲労強度を有する重ね隅肉アーク溶接継手を得ることができる。図12において、曲線C3は、より高強度の溶接ワイヤを使用して溶接金属の止端部形状がなだらかになるように重ね隅肉アーク溶接を行うことで得られた重ね隅肉アーク溶接継手の疲労特性を示している。この曲線C3で示されるように、単純に、より高強度の溶接ワイヤを使用すれば、母材鋼板の引張強度が950MPa以上となっても、重ね隅肉アーク溶接継手の疲労強度は上昇を続けることがわかる。
 しかしながら、本願発明者によるさらなる研究の結果、より高強度の溶接ワイヤを使用して重ね隅肉アーク溶接を行うと、溶接金属の高強度化(高硬度化)に起因して、溶接金属に水素脆化割れが発生しやすくなることが判明した。すなわち、母材鋼板の引張強度が950MPa以上の場合でも、より高強度の溶接ワイヤを使用することにより、重ね隅肉アーク溶接継手の疲労強度を高めることはできるが、水素脆化割れの発生を考慮すると、重ね隅肉アーク溶接継手の総合的な強度はむしろ低下することが判明した。また、より高強度の溶接ワイヤを使用することは、重ね隅肉アーク溶接継手の製造コストの上昇を招く。
 一方、高強度溶接ワイヤを使用せずに、特許文献2に開示された技術を適用して重ね隅肉アーク溶接継手の疲労強度を高める方法も考えられる。しかしながら、上述したように、母材鋼板の引張強度が950MPa以上の場合、溶接金属の表面に存在する硬さの異なる組織間の強度差に起因して、軟らかなフェライトに応力及び歪みが集中しやすいことが、重ね隅肉アーク溶接継手の疲労強度の低下を招く原因だと考えられる。そのため、特許文献2に開示された技術のように、溶融境界近傍に生じる硬さの差(つまり熱影響部と溶接金属との間の硬さの差)に起因した局所的な応力及びひずみの集中を低減することを目的として、熱影響部の硬さに対する溶接金属の硬さの比を特定の範囲内に制御する方法を適用したとしても、950MPa以上の引張強度を有する母材鋼板からなる重ね隅肉アーク溶接継手の疲労強度を高めることは困難である。
 本発明は上記の事情に鑑みてなされたものであり、水素脆化割れの原因となる高強度溶接ワイヤを用いることなく、950MPa以上の引張強度を有する母材鋼板からなる重ね隅肉アーク溶接継手の疲労強度を高めることを目的とする。
本発明は上記課題を解決して係る目的を達成するために以下の手段を採用する。
(1)本発明の一態様に係る重ね隅肉アーク溶接継手は、互いに重ね合わされ且つそれぞれ950MPa以上の引張強度を有する第1鋼板及び第2鋼板と、前記第1鋼板の表面と前記第2鋼板の端面とで形成される隅に沿って延在する溶接金属とを備える。この重ね隅肉アーク溶接継手において、前記溶接金属のビッカース硬さは400HV以下である。また、この重ね隅肉アーク溶接継手を、前記溶接金属の溶接線に直交する断面でみた場合に、前記第1鋼板の表面に存在する溶融境界の位置をA点とし;前記第1鋼板の表面に平行なX方向において前記A点から前記溶接金属に向かって0.5mm離れた位置をD点とし;前記X方向において前記A点から前記溶接金属に向かって0.4mm離れた位置をC点とし;前記D点を通り且つ前記第1鋼板の板厚方向に延びる直線と前記溶接金属の表面との交点をB点とし;前記A点と前記B点を結ぶ直線と、前記A点と前記D点を結ぶ直線との間の角度を、前記溶接金属の止端角度βとし;前記A点と前記C点との間の範囲に含まれる前記溶接金属の表面に存在する凹部の総数をNAとし;前記凹部のうち、10μm以上の最大粒径を有するフェライト粒が接する凹部の数をNBとする。上記のように、β、NAおよびNBを定義したとき、前記溶接金属は、下記条件式(1)及び(2)を同時に満たす。
0°< β < 30°   …(1)
       NB/NA ≦ 0.70  …(2)
     (ただし、NAは20以上)
(2)上記(1)に記載の重ね隅肉アーク溶接継手において、前記第1鋼板及び前記第2鋼板の板厚がそれぞれ0.8~3.5mmであってもよい。
本発明の上記態様によれば、水素脆化割れの原因となる高強度溶接ワイヤを用いることなく、950MPa以上の引張強度を有する母材鋼板からなる重ね隅肉アーク溶接継手の疲労強度を高めることが可能である。
本発明の一実施形態に係る重ね隅肉アーク溶接継手の断面図である。 本発明の一実施形態に係る重ね隅肉アーク溶接継手の平面図である。 光学顕微鏡によって得られた溶接金属の断面写真である。 溶接金属の表面に存在する凹部から疲労亀裂が発生していることを示す断面写真である。 条件式(2)に含まれるNA及びNBの特定方法に関する第1説明図である。 条件式(2)に含まれるNA及びNBの特定方法に関する第2説明図である。 条件式(2)に含まれるNA及びNBの特定方法に関する第3説明図である。 条件式(2)に含まれるNA及びNBの特定方法に関する第4説明図である。 条件式(2)に含まれるNA及びNBの特定方法に関する第5説明図である。 重ね隅肉アーク溶接の溶接条件に関する説明図である。 実施例における溶接金属の断面写真である。 溶接金属の止端部形状をパラメータとして、重ね隅肉アーク溶接継手の疲労強度(疲労限)と母材鋼板の引張強度との関係を示したグラフである。 急峻な止端部形状を有する溶接金属と母材鋼板との接合部分を、溶接金属の溶接線に直交する断面でみた模式図である。 なだらかな止端部形状を有する溶接金属と母材鋼板との接合部分を、溶接金属の溶接線に直交する断面でみた模式図である。
以下、図面を参照しながら、本発明の一実施形態に係る重ね隅肉アーク溶接継手について説明する。
図1は、本実施形態に係る重ね隅肉アーク溶接継手10の断面図であり、図2は、本実施形態に係る重ね隅肉アーク溶接継手10の平面図である。図1及び図2に示すように、本実施形態に係る重ね隅肉アーク溶接継手10は、互いに重ね合わされた第1鋼板1及び第2鋼板2と、第1鋼板1の表面1aと第2鋼板2の端面2aとで形成される隅4に沿って延在する溶接金属(溶接ビード)3とを備える。
なお、図1は、重ね隅肉アーク溶接継手10を、溶接金属3の溶接線W(図2参照)に直交する断面でみた図である。また、図1及び図2に示すように、溶接線Wに平行な方向をZ軸方向とし、Z軸方向に直交し且つ第1鋼板1の表面1aに平行な方向をX軸方向とし、X軸方向及びZ軸方向に直交し且つ第1鋼板1の板厚方向に平行な方向をY軸方向とする。
第1鋼板1及び第2鋼板2は、重ね隅肉アーク溶接継手10の母材鋼板であり、それぞれ950MPa以上の引張強度を有する。このような高引張強度を有する第1鋼板1及び第2鋼板2は、とくに軽量化及び衝突安全性の向上が強く要請される自動車用の重ね隅肉アーク溶接継手10の母材鋼板として好適である。自動車の軽量化及び衝突安全性の向上を両立するために、第1鋼板1及び第2鋼板2の板厚は、それぞれ0.8~3.5mmであることが好ましい。
少なくとも950MPa以上の引張強度という機械的特性を得ることができるのであれば、第1鋼板1及び第2鋼板2の成分組成はとくに限定されない。好適な例を挙げると、第1鋼板1及び第2鋼板2は、質量%で、C:0.01~0.25%、Si:0.01~2.0%、Mn:0.1~3.0%、P:0.05%以下、S:0.0005~0.01%を含有することが好ましい。
 溶接金属3は、第1鋼板1及び第2鋼板2が重ね合わされた状態で、隅4に沿ってZ軸方向に連続的に隅肉アーク溶接が行われることにより形成された溶接ビードである。本実施形態では、以下で説明するように、溶接金属3の硬さ、溶接金属3の止端部形状、および溶接金属3の表面形状とフェライト組織との関係を、それぞれ特定の条件を満たすように制御することにより、重ね隅肉アーク溶接継手10の疲労強度向上を実現する。
[溶接金属3の硬さ]
 溶接金属3のビッカース硬さは、400HV以下である。溶接金属3のビッカース硬さが400HVを越えると、溶接金属3に水素脆化割れが発生する。すなわち、溶接金属3のビッカース硬さを400HV以下に制限することにより、溶接金属3に水素脆化割れが発生することを抑制できる。なお、第1鋼板1の表面1aから0.1mmの深さの位置を通り且つX軸方向に平行な直線に沿って、溶接金属3のビッカース硬さを5点以上測定し、それらの測定結果の平均値を溶接金属3のビッカース硬さとして定義する。
[溶接金属3の止端部形状]
図1に示すように、第1鋼板1の表面1aに存在する溶融境界の位置をA点とすると、溶接金属3は、A点から止端角度βをもって立ち上がり、A点からさらに第2鋼板2の側に寄った位置からフランク角θをもって立ち上がる。フランク角θは、溶接金属3の止端部形状を表すパラメータとして一般的に用いられているが、本実施形態では、溶接金属3の止端部形状を表すパラメータとして止端角度βを用いる。止端角度βは以下のように定義される。
図1に示すように、X軸方向において上記A点から溶接金属3に向かって0.5mm離れた位置をD点とする。また、D点を通り且つ第1鋼板1の板厚方向(つまりY軸方向)に延びる直線と溶接金属3の表面との交点をB点とする。このように、B点及びD点を定義したとき、A点とB点を結ぶ直線と、A点とD点を結ぶ直線との間の角度を、溶接金属3の止端角度βとして定義する。
上記のように止端角度βを定義したとき、重ね隅肉アーク溶接継手10の溶接金属3は、下記条件式(1)を満足する。条件式(1)を満たすことにより、溶接金属3の止端部形状はなだらかな形状になるので、溶接金属3の止端部に応力が集中することを抑制することができる。止端角度βが30°以上の場合、溶接金属3の止端部形状が急峻な形状となるため、溶接金属3の止端部に応力が集中しやすくなる。
0°< β < 30°   …(1)
なお、図1では、説明の便宜上、隅4の位置を示すために、溶接金属3の内部に含まれる第1鋼板1の表面1a及び第2鋼板2の端面2aを点線で表している。しかしながら、実際には、上記の点線部分は溶接金属3に溶け込んでいるため、例えば、図3に示すように、光学顕微鏡を用いて溶接金属3の断面写真を得たとしても、上記点線部分を観察することはできない。そこで、上記のように定義されたA点、B点及びD点の3点を溶接金属3の断面写真上で特定することにより、溶接金属3の断面写真から溶接金属3の止端角度βを容易に得ることができる。なお、溶接金属3の止端角度βを特定できる程度の写真を取得できさえすれば、光学顕微鏡に限らず、走査型電子顕微鏡(SEM)またはマイクロスコープ等を用いてもよい。
[溶接金属3の表面形状とフェライト組織との関係]
上記のように、溶接金属3の止端部形状をなだらかな形状に制御することで、溶接金属3の止端部に応力が集中することを抑制することができるが、図12を用いて説明したように、これだけでは、950MPa以上の引張強度を有する母材鋼板からなる重ね隅肉アーク溶接継手10の疲労強度を高めることは困難である。そこで、本実施形態では、重ね隅肉アーク溶接継手10の疲労強度を高めるために、以下の条件式(2)を満たすように、溶接金属3の微視的な表面形状と、溶接金属3の表面に存在するフェライト組織とを制御する。
図1に示すように、X軸方向においてA点から溶接金属3に向かって0.4mm離れた位置をC点とする。また、A点とC点との間の範囲に含まれる溶接金属3の表面に存在する凹部の総数をNAとし、前記凹部のうち、10μm以上の最大粒径を有するフェライト粒が接する凹部の数をNBとする。このように、NAおよびNBを定義したとき、重ね隅肉アーク溶接継手10の溶接金属3は、下記条件式(2)を満足する。
NB/NA ≦ 0.70  …(2)
(ただし、NAは20以上)
既に述べたように、母材鋼板の引張強度が950MPa以上の場合、溶接金属の表面には、フェライトとベイナイト(もしくはマルテンサイト)との複合組織が生成されている。そのため、硬さの異なる組織間の強度差に起因して、軟らかなフェライトに応力及び歪みが集中しやすくなると考えられる。本願発明者による研究の結果、図4に示すように、溶融境界であるA点から0.4mm以内の範囲に含まれる溶接金属の表面に存在する微小な凹部から疲労亀裂が生じることが多いことが判明した。そこで、本願発明者は、溶接金属の表面に存在する凹部に接するフェライトのサイズと疲労強度との関係について、さらなる研究を行った。
その結果、凹部に接するフェライトの最大粒径が10μm以上になると、その凹部は疲労亀裂の発生する起点となりやすいことが判明した。また、溶融境界であるA点から0.4mm以内の範囲に含まれる溶接金属の表面に存在する凹部の総数NAに対して、10μm以上の最大粒径を有するフェライト粒が接する凹部の数NBの比が0.7以下の場合、疲労亀裂の起点が減少し、その結果、図12の点線C4で示されるように、母材鋼板の引張強度が950MPa以上であっても、重ね隅肉アーク溶接継手の疲労強度が向上することが判明した。なお、以上の研究結果は、溶接金属の止端部形状をなだらかな形状に制御することを前提条件として得られた結果である。
このように、条件式(1)に加えて条件式(2)を同時に満足することにより、950MPa以上の引張強度を有する第1鋼板1及び第2鋼板2を母材として使用した場合でも、重ね隅肉アーク溶接継手10の疲労強度を高めることができる。なお、条件式(2)において、NB/NAが0.70を超えると、疲労亀裂の起点となる凹部(つまり、10μm以上の最大粒径を有する粗大なフェライト粒が接する凹部)の数が増加するため、重ね隅肉アーク溶接継手10の疲労強度が低下する。NB/NAの下限値は理論的にゼロであるが、NBをゼロにすることは現実的に困難である。しかしながら、NB/NAの値が小さいほど、疲労強度の向上効果は増す。
以下、A点とC点との間の範囲に含まれる溶接金属3の表面に存在する凹部の総数NAと、前記凹部のうち、10μm以上の最大粒径を有するフェライト粒が接する凹部の数NBの特定方法について説明する。
まず、重ね隅肉アーク溶接継手10から溶接金属3を含む部分をサンプルとして切り出し、溶接金属3の断面(溶接線Wに直交する断面)が露出するようにサンプルを切断する。そして、サンプルの切断面を鏡面研磨した後、少なくとも溶融境界(A点)から0.4mm以内の範囲に含まれる溶接金属3の断面を光学顕微鏡で撮影することにより、図5に示すような溶接金属3の断面写真を得る。溶接金属3の表面に存在する微小な凸凹を判別できる程度の写真を取得できさえすれば、光学顕微鏡に限らず、SEMまたはマイクロスコープ等を用いてもよい。図5の断面写真では、左端に溶融境界が存在しており、その溶融境界から0.4mm以内の範囲に含まれる溶接金属3の断面が写真内に収められている。
続いて、溶接金属3の断面写真を基に、溶融境界から400μm以上の範囲に含まれる溶接金属3の表面形状を50点以上のプロット数でトレースすることにより、図6に示すような溶接金属3の巨視的な表面形状を表す点グラフを作成する。なお、図6の点グラフにおいて、横軸xと縦軸yからなるxy座標系は、図1のXY座標系に対応している。次に、図7に示すように、上記の点グラフを基に、最小二乗法により溶接金属3の巨視的な表面形状を表す三次関数の近似曲線f(x)を作成する。ここで、近似曲線f(x)を三次関数とする理由は、巨視的な止端部形状は母材(第1鋼板1)に沿う向きから徐々に立ち上がり、溶接金属3の頂点に向かって傾斜が緩やかになるという三次関数的な変化挙動をするためである。
そして、図8に示すように、トレースした各点から近似曲線f(x)へ法線を引き、各法線の長さをyiとして求める。トレースした各点の座標を(p、q)とすると、各法線の長さyiは下記(3)式で求められる。近似曲線f(x)より下部に位置する点の法線の長さyiにはマイナスの符号をつける。(3)式の右辺min( )は、括弧内の値の最小値という意味であり、収束計算などにより求めることができる。
Figure JPOXMLDOC01-appb-M000001
また、法線と近似曲線f(x)との交点から溶融境界までの近似曲線f(x)の長さをxiとして求める。xiは、近似曲線f(x)の任意区間[0、a]の長さとして下記(4)式で求められる。
Figure JPOXMLDOC01-appb-M000002
次に、上記の方法で得られたxi及びyiのデータをxy座標系のグラフにプロットすることにより、図9に示すような溶接金属3の表面に存在する凹凸を表す点グラフを作成する。図9に示す点グラフにおいて、y軸の値が極小値となる部分(谷となる部分)の数を、溶融境界(A点)から0.4mm以内の範囲に含まれる溶接金属3の表面に存在する凹部としてカウントすることにより、NAを算出する。
そして、図9に示す点グラフにおいて凹部として識別された部分と、図5に示す溶接金属3の断面写真とを照らし合わせながら、識別された凹部のうち、10μm以上の最大粒径を有するフェライト粒が接する凹部の数をカウントすることにより、NBを算出する。
ここで、「フェライト粒の最大粒径」とは、フェライト粒内において溶接金属3の表面を端点として引くことのできる最も長い直線の長さと定義する。さらに、「フェライト粒が凹部に接している」とは、図9に示す点グラフの極小値からx座標±10μmの範囲に含まれる溶接金属3の表面に、フェライト粒の少なくとも一部が存在していることを意味する。
上記の手法により、条件式(2)に含まれるNA及びNBを特定することができる。なお、条件式(2)による疲労強度向上効果を確実に得るためには、NAが20以上であることが必要であるが、これは、一枚の断面写真から得られるNAが必ず20以上にならなければならないことを意味するものではない。溶接線Wに沿う異なる位置で撮影された複数の断面写真から得られたNAが合計で20以上になればよい。複数の断面写真からNAを算出する場合、それらの複数の断面写真からNBも算出する必要がある。すなわち、例えば、2枚の断面写真から得られたNAが合計で20以上となった場合、1枚目の断面写真から得られたNBと、2枚目の断面写真から得られたNBとの合計値を最終的なNBとする。
以上のように、条件式(1)及び(2)を同時に満足する溶接金属3を有する重ね隅肉アーク溶接継手10によれば、950MPa以上の引張強度を有する第1鋼板1及び第2鋼板2を母材として使用した場合でも、疲労強度の向上を実現することが可能である。さらに、溶接金属3のビッカース硬さは、水素脆化割れを抑制可能な硬さであるので、水素脆化割れに起因して重ね隅肉アーク溶接継手10の総合的な強度が低下することを防止することもできる。
なお、上記の重ね隅肉アーク溶接継手10において、溶融境界近傍に生じる硬さの差に起因した局所的な応力及び歪みの集中を低減するために、母材鋼板(第1鋼板1)のビッカース硬さに対する溶接金属3のビッカース硬さの比を0.7以上としてもよい。950MPa以上の引張強度を有する母材鋼板からなる重ね隅肉アーク溶接継手10の溶接金属3では、HAZ軟化部の硬さが母材の硬さに対して60%程度まで低下する事があるため、溶接金属3の硬さの下限を母材の硬さの70%に制限することにより、溶接金属3で引張破断が生じることを抑制できる。なお、第1鋼板1の表面1aから0.1mmの深さの位置を通り且つX軸方向に平行な直線に沿って、第1鋼板1のビッカース硬さを5点以上測定し、それらの測定結果の平均値を第1鋼板1のビッカース硬さとして定義する。
[重ね隅肉アーク溶接継手10の製造条件]
 本実施形態に係る重ね隅肉アーク溶接継手10は、以下で説明する製造条件によって製造することができる。
 まず、溶接金属3のビッカース硬さは、下記(5)式で表される。(5)式に含まれるCeqは、下記(6)式で表される。従って、溶接金属3のビッカース硬さを400HV以下に制限するためには、下記(5)式で表される溶接金属3のビッカース硬さHmaxが400HV以下となるように、Ceqの値を制御すればよい。より具体的には、母材鋼板及び溶接ワイヤの成分組成を調整することにより、Ceqの値が約0.406以下となるように、溶接金属3に含まれるC、Si、Mn、Cr、Mo、Ti及びNbの含有量(単位は質量%)を制御すればよい。
Figure JPOXMLDOC01-appb-M000003
 粗大なフェライトの少ない溶接金属3を得るためには、そもそも溶接金属3の内部にフェライトが生じないことが望ましい。よって、溶接金属3において、フェライトの生成元素であるSi、Al、Cr及びMoの含有量が少なく、且つオーステナイトの生成元素であるMn、Ni、C及びNの含有量が多いことが必要である。
具体的には、下記(7)式から得られるCxの値が-0.4以上であり、且つ溶接金属3が、質量%で、Ti:0.05~1.0%、B:0.0003~0.03%を含有していることが必要である。母材鋼板及び溶接ワイヤの成分組成の調整により、上記のように溶接金属3の成分を制御することにより、TiOが変態核となってフェライトを微細化し、Bが旧オーステナイト粒界に偏析して粒界フェライトの生成を抑制するため、その結果、粗大なフェライトの少ない溶接金属3を得ることができる。
Figure JPOXMLDOC01-appb-M000004
 上記のように、TiOを核とした粒内変態によるフェライトの微細化を実現するためには、微量の酸素が必要である。図10に示すように、重ね隅肉アーク溶接を行う場合、溶接トーチ20に設けられたシールドガスノズル21から供給されたシールドガスによってアーク周辺をシールドするが、その際に微量の酸素がシールドガスに混入する。一般的に、シールドガスとして、Ar、もしくはCO、もしくはArとCOの混合ガスが用いられ、アーク空間内においてCO2が電離して生じるO(酸素)と空気の巻き込みよって混入する酸素が溶接金属の酸素量に影響を及ぼす。溶接金属においてTiOを安定的に生成するためには、シールドガスに混入する酸素の量を適切な値に制御することが重要である。
さらに、溶接金属表面の凹部の曲率半径は、表面張力が低いほど小さく、表面張力が高いほど大きくなる。疲労強度と凹部の曲率半径の関係としては、表面張力が低く、曲率半径の小さい凹部が形成されるほうが、疲労亀裂の起点となりやすく、曲率半径の大きい凹部ほど、疲労亀裂の起点となりにくいため、凹部に接する最大粒径10μm以上のフェライト粒の割合が重要になってくる。凹部の曲率半径としては、13μm以下であると、疲労亀裂の起点になりやすい。
 シールドガスに混入する酸素は、溶融池の表面張力に影響する。その意味でも、シールドガスに混入する酸素の量を最適な範囲に制御することが重要である。
 フェライトの微細化と溶接金属表面の凹部の制御のため、シールドガスに混入する酸素の量を適切な値に制御するためには、シールドガスノズル21の先端から溶接ワイヤ22の先端までの距離(ワイヤ突出し長さ)L1が5~20mmであり、且つ、溶接ワイヤ22に電流を流すためのコンタクトチップ23と母材表面との間の距離L2が8~30mmであることが望ましい。さらに、母材直近でアークが発生すると、溶融池の搖動が大きくなり、微小凹凸の原因であるリップル(溶融池に生じる波目模様)が大きくなる。そのため、L2-L1≧1mmであることが望ましい。L2-L1<1mmであると、深さが10μmを超える凹部が多く形成されることになり、凹部を起点とした疲労亀裂が生じやすくなる。
 上記の距離L1及びL2が上限値を超えると、アーク周辺におけるシールド性が悪化し、過大な酸素の混入を招く。その結果、溶接金属3の酸素含有量が増大して酸化物が多く析出し、溶接金属3の焼入れ性低下により粒界フェライトなどの粗大なフェライトが生成し易くなってしまう。一方、上記の距離L1及びL2が下限値未満になると、コンタクトチップ23の焼損、あるいは、ヒューム及びスパッタの付着による溶接トーチ20の破損などを引き起こす。
 重ね隅肉アーク溶接を行う際には、上記の溶接条件に加えて、溶接速度を60~150cm/minとし、溶接電流を150~250Aとすることにより、上記条件式(1)を満たすように、溶接金属3の止端部形状をなだらかな形状に制御できると共に、上記条件式(2)を満たすように、凹部とフェライト粒径との関係を制御することができる。
以上のような製造条件によって本実施形態に係る重ね隅肉アーク溶接継手10を製造することができる。この場合、溶接ワイヤに要求される条件は、(a)Ceqの値が約0.406以下となるように、溶接金属3に含まれるC、Si、Mn、Cr、Mo、Ti及びNbの含有量を制御できること、(b)Cxの値が-0.4以上となり、且つ溶接金属3に含まれるTi及びBの含有量を、Ti:0.05~1.0%、B:0.0003~0.03%に制御できること、の2つである。
そのため、重ね隅肉アーク溶接継手10を製造するための溶接ワイヤとして、比較的低強度の溶接ワイヤを使用できるため、水素脆化割れの原因となる高強度溶接ワイヤを用いる必要がない。例えば、950MPa級鋼板に対して高強度溶接ワイヤを用いて疲労強度を向上させる場合、950MPa以上の溶着金属強度を有する高強度溶接ワイヤを用いる必要があるが、本実施形態によると、540MPa以上の溶着金属強度を有する溶接ワイヤで十分なので、重ね隅肉アーク溶接継手10の製造コストの上昇を抑制できると共に、溶接金属3の高強度化による水素脆化割れの発生を抑制できる。
まず、表1に示す成分組成を有する3種の鋼板と、表2に示す成分組成を有する2種の溶接ワイヤを用意した。3種の鋼板は、それぞれ、2.9mmの板厚と、956MPaの引張強度を有する鋼板であった。2種の溶接ワイヤのうち、No.Aの溶接ワイヤは、本発明の重ね隅肉アーク溶接継手を製造するのに要求される2つの条件を満たす成分組成を有するものであった。一方、No.Bの溶接ワイヤは、比較用の溶接ワイヤであり、要求される2つの条件を満たす成分組成を有するものではなかった。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
続いて、No.1の鋼板を母材とし、No.Aの溶接ワイヤを用いて溶接条件WC1で重ね隅肉アーク溶接を行うことにより、発明例1(試験符号1-A-WC1)の重ね隅肉アーク溶接継手を得た。また、No.1の鋼板を母材とし、No.Bの溶接ワイヤを用いて溶接条件WC1で重ね隅肉アーク溶接を行うことにより、比較例1(試験符号1-B-WC1)の重ね隅肉アーク溶接継手を得た。
表3に示すように、溶接条件WC1では、溶接速度を80cm/minとし、溶接電流を235Aとし、ワイヤ突出し長さL1を10mmとし、コンタクトチップ-母材間距離L2を20mmとし、シールドガスをArと20%COの混合ガスとした。
同様に、No.2の鋼板を母材とし、No.Aの溶接ワイヤを用いて溶接条件WC1で重ね隅肉アーク溶接を行うことにより、発明例2(試験符号2-A-WC1)の重ね隅肉アーク溶接継手を得た。また、No.2の鋼板を母材とし、No.Bの溶接ワイヤを用いて溶接条件WC1で重ね隅肉アーク溶接を行うことにより、比較例2(試験符号2-B-WC1)の重ね隅肉アーク溶接継手を得た。
同様に、No.3の鋼板を母材とし、No.Aの溶接ワイヤを用いて溶接条件WC1で重ね隅肉アーク溶接を行うことにより、発明例3(試験符号3-A-WC1)の重ね隅肉アーク溶接継手を得た。また、No.3の鋼板を母材とし、No.Bの溶接ワイヤを用いて溶接条件WC1で重ね隅肉アーク溶接を行うことにより、比較例3(試験符号3-B-WC1)の重ね隅肉アーク溶接継手を得た。
また、No.1の鋼板を母材とし、No.Aの溶接ワイヤを用いて溶接条件WC2で重ね隅肉アーク溶接を行うことにより、比較例4(試験符号1-A-WC2)の重ね隅肉アーク溶接継手を得た。
表3に示すように、溶接条件WC2では、溶接速度を160cm/minとし、溶接電流を270Aとし、ワイヤ突出し長さL1を10mmとし、コンタクトチップ-母材間距離L2を20mmとし、シールドガスをArと20%COの混合ガスとした。
さらに、No.1の鋼板を母材とし、No.Aの溶接ワイヤを用いて溶接条件WC3で重ね隅肉アーク溶接を行うことにより、比較例5(試験符号1-A-WC3)の重ね隅肉アーク溶接継手を得た。
表3に示すように、溶接条件WC3では、溶接速度を80cm/minとし、溶接電流を235Aとし、ワイヤ突出し長さL1を25mmとし、コンタクトチップ-母材間距離L2を35mmとし、シールドガスをArと20%COの混合ガスとした。
同様に、No.2の鋼板を母材とし、No.Aの溶接ワイヤを用いて溶接条件WC3で重ね隅肉アーク溶接を行うことにより、比較例6(試験符号2-A-WC3)の重ね隅肉アーク溶接継手を得た。また、No.3の鋼板を母材とし、No.Aの溶接ワイヤを用いて溶接条件WC3で重ね隅肉アーク溶接を行うことにより、比較例7(試験符号3-A-WC3)の重ね隅肉アーク溶接継手を得た。
Figure JPOXMLDOC01-appb-T000007
上記のように得られた発明例1~3の重ね隅肉アーク溶接継手と、比較例1~7の重ね隅肉アーク溶接継手とのそれぞれから、溶接金属の成分測定用のサンプルを採取して溶接金属の成分を測定した。溶接金属の成分の測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000008
また、各例の重ね隅肉アーク溶接継手から、溶接金属の断面観察用のサンプルを採取して、溶接金属の止端角度βと、溶接金属のビッカース硬さHmaxと、溶融境界から0.4mm以内の範囲に含まれる溶接金属の表面に存在する凹部の総数NAと、10μm以上の最大粒径を有するフェライト粒が接する凹部の数NBとを、それぞれ測定した。さらに、各例の重ね隅肉アーク溶接継手から、疲労試験用のサンプルを採取し、金属平板の平面曲げ疲れ試験方法(JIS Z2275)に基づき、平面曲げ疲労試験を実施した。疲労試験では、JIS Z2273に基づき、繰返し数10回で破断が起こらない曲げ応力を疲労限とした。なお、平面曲げ疲労試験は変位固定のため、初期に設定した曲げモーメントと、試験片の最小断面積となる断面の断面係数から曲げ応力を算出した。溶接金属の断面観察結果と、疲労試験結果を表5に示す。なお、表5では、比較例1の疲労限に対する比(疲労限比)で各例の疲労試験結果を示している。従って、比較例1の疲労限比は「1」になっている。
Figure JPOXMLDOC01-appb-T000009
表3及び表4に示されるように、発明例1~3では、以下のような本発明の重ね隅肉アーク溶接継手を得るための製造条件の全てが満たされている。
(a)溶接金属のビッカース硬さが400HV以下となるように溶接金属の成分組成が制御されること。
(b)Cxの値が-0.4以上となり、且つTi含有量が0.05~1.0%の範囲内に含まれ、B含有量が0.0003~0.03%の範囲内に含まれるように、溶接金属の成分組成が制御されること。
(c)ワイヤ突出し長さL1が5~20mmの範囲内に含まれ、且つコンタクトチップ-母材間距離L2が8~30mmの範囲内に含まれること。
(d)溶接速度が60~150cm/minの範囲内に含まれ、且つ溶接電流が150~250Aの範囲内に含まれること。
 したがって、表5に示されるように、発明例1~3では、以下のような本発明の重ね隅肉アーク溶接継手の特徴の全てが得られている。
(A)溶接金属のビッカース硬さが400HV以下である。
(B)溶接金属の止端角度βが0°超30°未満の範囲内に含まれる。
(C)NB/NAの値が0.70以下である。
表5に示されるように、発明例1~3では、比較例1と比較して、疲労強度(疲労限)が30%以上向上していることが確認された。すなわち、上記の(A)、(B)及び(C)の特徴を有する本発明の重ね隅肉アーク溶接継手によれば、950MPa以上の引張強度を有する鋼板を母材として用いた場合でも疲労強度の向上を実現できることが実証された。
比較例1~3では、上記(b)の製造条件が満たされていないため、溶接金属表面に粗大なフェライト粒が多く生成されてしまった結果、NB/NAの値が0.70を越えてしまったと考えられる。そのため、発明例1~3と比較して、比較例1~3の疲労強度は低くなったと考えられる。すなわち、上記(C)の特徴を有していない重ね隅肉アーク溶接継手では、疲労強度向上効果を十分に得られないことが実証された。
比較例4では、上記(d)の製造条件が満たされていないため、溶接金属の止端角度βが30°以上になったと考えられる。そのため、溶接金属の止端部形状が急峻となって止端部に応力が集中した結果、発明例1~3と比較して、比較例4の疲労強度は低くなったと考えられる。また、止端部形状がなだらかな(止端角度βが30°未満の)比較例1と比較しても、比較例4の疲労強度は低い。すなわち、上記(B)の特徴を有していない重ね隅肉アーク溶接継手では、疲労強度向上効果を十分に得られないことが実証された。
比較例5~7では、上記(c)の製造条件が満たされていないため、シールドガスに酸素が多く混入して溶接金属表面に粗大なフェライト粒が多く生成されてしまった結果、NB/NAの値が0.70を越えてしまったと考えられる。そのため、発明例1~3と比較して、比較例5~7の疲労強度は低くなったと考えられる。すなわち、上記(C)の特徴を得るには、溶接金属の成分組成を制御するだけでなく、シールドガスへの酸素混入量を適切に制御する必要があることが実証された。
なお、表5に示されるように、ワイヤ突出し長さL1及びコンタクトチップ-母材間距離L2が変化すると、アーク現象が変化するため、溶接金属の止端部形状(止端角度β)も変化し、また、フェライト粒の生成量も変化するので溶接金属のビッカース硬さも変化する。しかしながら、それらの変化量は、上記の(A)及び(B)の特徴が得られなくなるほどのものではない。
図11(a)は、発明例1における溶接金属の止端部付近の断面写真を示しており、図11(b)は、比較例1における溶接金属の止端部付近の断面写真を示す。発明例1では、溶融境界付近のフェライトが微細化されていることがわかる。
本発明によれば、疲労亀裂の発生起点となる、溶接金属表面に存在するフェライトにひずみの集中が生じないため、溶接継手の疲労限は良好となり、また、疲労寿命も長大化させることができる。また、継手の水素脆化の懸念も無くなる。その結果、本発明を自動車の足回り部材や建材に適用することにより、安全性及び耐久性を向上することができ、産業上の貢献は多大なものである。

Claims (2)

  1. 互いに重ね合わされ且つそれぞれ950MPa以上の引張強度を有する第1鋼板及び第2鋼板と、前記第1鋼板の表面と前記第2鋼板の端面とで形成される隅に沿って延在する溶接金属とを備える重ね隅肉アーク溶接継手であって、
    前記溶接金属のビッカース硬さが400HV以下であり、
    前記溶接金属の溶接線に直交する断面でみた場合に、
    前記第1鋼板の表面に存在する溶融境界の位置をA点とし、
    前記第1鋼板の表面に平行なX方向において、前記A点から前記溶接金属の内部に向かって0.5mm離れた位置をD点とし、
    前記X方向において、前記A点から前記溶接金属の内部に向かって0.4mm離れた位置をC点とし、
    前記D点を通り且つ前記第1鋼板の板厚方向に延びる直線と前記溶接金属の表面との交点をB点とし、
    前記A点と前記B点を結ぶ直線と、前記A点と前記D点を結ぶ直線との間の角度を、前記溶接金属の止端角度βとし、
    前記A点と前記C点との間の範囲に含まれる前記溶接金属の表面に存在する凹部の総数をNAとし、
    前記凹部のうち、10μm以上の最大粒径を有するフェライト粒が接する凹部の数をNBとしたとき、
    前記溶接金属は、下記条件式(1)及び(2)を同時に満たす
    ことを特徴とする重ね隅肉アーク溶接継手。
        0°< β < 30°   …(1)
        NB/NA ≦ 0.70  …(2)
        (ただし、NAは20以上)
  2.  前記第1鋼板及び前記第2鋼板の板厚が、それぞれ0.8~3.5mmであることを特徴とする請求項1に記載の重ね隅肉アーク溶接継手。
PCT/JP2018/030694 2017-08-18 2018-08-20 重ね隅肉アーク溶接継手 WO2019035490A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP18845781.6A EP3670055B1 (en) 2017-08-18 2018-08-20 Lap fillet arc welding joint
KR1020207004668A KR102244232B1 (ko) 2017-08-18 2018-08-20 겹침 필릿 아크 용접 조인트
CN201880052656.4A CN112203792B (zh) 2017-08-18 2018-08-20 电弧搭接角焊接头
JP2018563187A JP6515401B1 (ja) 2017-08-18 2018-08-20 重ね隅肉アーク溶接継手
MX2020001540A MX2020001540A (es) 2017-08-18 2018-08-20 Union soldada por arco de filete a solape.
BR112020002088-5A BR112020002088A2 (pt) 2017-08-18 2018-08-20 junta soldada por arco de filete de sobreposição
US16/636,788 US11592045B2 (en) 2017-08-18 2018-08-20 Lap fillet arc welded joint
CA3072156A CA3072156A1 (en) 2017-08-18 2018-08-20 Lap fillet arc welded joint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-157961 2017-08-18
JP2017157961 2017-08-18

Publications (1)

Publication Number Publication Date
WO2019035490A1 true WO2019035490A1 (ja) 2019-02-21

Family

ID=65361857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030694 WO2019035490A1 (ja) 2017-08-18 2018-08-20 重ね隅肉アーク溶接継手

Country Status (9)

Country Link
US (1) US11592045B2 (ja)
EP (1) EP3670055B1 (ja)
JP (1) JP6515401B1 (ja)
KR (1) KR102244232B1 (ja)
CN (1) CN112203792B (ja)
BR (1) BR112020002088A2 (ja)
CA (1) CA3072156A1 (ja)
MX (1) MX2020001540A (ja)
WO (1) WO2019035490A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021074740A (ja) * 2019-11-07 2021-05-20 日本製鉄株式会社 溶接継手、及び自動車部品
WO2024070192A1 (ja) * 2022-09-28 2024-04-04 Jfeスチール株式会社 溶接継手およびその製造方法
WO2024070191A1 (ja) * 2022-09-28 2024-04-04 Jfeスチール株式会社 溶接継手およびその製造方法
JP7508013B1 (ja) 2022-09-28 2024-07-01 Jfeスチール株式会社 溶接継手およびその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7368760B2 (ja) * 2019-10-04 2023-10-25 日本製鉄株式会社 溶接継手、及び自動車部品
KR102428825B1 (ko) * 2020-12-18 2022-08-02 주식회사 포스코 용접부의 피로강도가 우수한 용접부재 및 그 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161275A (ja) * 1997-08-07 1999-03-05 Mitsubishi Heavy Ind Ltd オーステナイト系ステンレス鋼の溶接部
JP2002361481A (ja) 2001-03-29 2002-12-18 Kobe Steel Ltd 溶接継手部の疲労強度に優れた鉄系消耗溶接材料および溶接継手
JP2008178910A (ja) 2006-12-25 2008-08-07 Nippon Steel Corp 耐疲労き裂発生特性に優れた隅肉溶接継手
JP2013220431A (ja) * 2012-04-13 2013-10-28 Kobe Steel Ltd 疲労強度に優れた溶接継手、熱延鋼板のmag溶接方法、熱延鋼板のmig溶接方法およびフラックス入りワイヤ
JP2013226600A (ja) * 2008-07-23 2013-11-07 Nippon Steel & Sumitomo Metal Corp 疲労特性に優れる重ねすみ肉アーク溶接継手およびその製造方法
JP2017101299A (ja) * 2015-12-03 2017-06-08 新日鐵住金株式会社 熱延鋼板およびその製造方法
JP2017157961A (ja) 2016-02-29 2017-09-07 パナソニック株式会社 アンテナ基板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736193B2 (ja) * 2001-01-29 2011-07-27 Jfeスチール株式会社 疲労特性に優れるすみ肉溶接継手およびガスシールドアークすみ肉溶接方法
JP2011062718A (ja) 2009-09-16 2011-03-31 Nippon Steel Corp 薄鋼板の重ねすみ肉アーク溶接継手およびその製造方法
JP5450293B2 (ja) 2010-07-01 2014-03-26 株式会社神戸製鋼所 すみ肉溶接継手およびガスシールドアーク溶接方法
JP5600652B2 (ja) 2011-09-27 2014-10-01 株式会社神戸製鋼所 異種金属接合方法
WO2014084317A1 (ja) * 2012-11-29 2014-06-05 新日鐵住金株式会社 隅肉アーク溶接継手の形成方法及び隅肉アーク溶接継手
US11235415B2 (en) 2017-02-28 2022-02-01 Nippon Steel Corporation Fillet welded joint and method of manufacturing thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161275A (ja) * 1997-08-07 1999-03-05 Mitsubishi Heavy Ind Ltd オーステナイト系ステンレス鋼の溶接部
JP2002361481A (ja) 2001-03-29 2002-12-18 Kobe Steel Ltd 溶接継手部の疲労強度に優れた鉄系消耗溶接材料および溶接継手
JP2008178910A (ja) 2006-12-25 2008-08-07 Nippon Steel Corp 耐疲労き裂発生特性に優れた隅肉溶接継手
JP2013226600A (ja) * 2008-07-23 2013-11-07 Nippon Steel & Sumitomo Metal Corp 疲労特性に優れる重ねすみ肉アーク溶接継手およびその製造方法
JP2013220431A (ja) * 2012-04-13 2013-10-28 Kobe Steel Ltd 疲労強度に優れた溶接継手、熱延鋼板のmag溶接方法、熱延鋼板のmig溶接方法およびフラックス入りワイヤ
JP2017101299A (ja) * 2015-12-03 2017-06-08 新日鐵住金株式会社 熱延鋼板およびその製造方法
JP2017157961A (ja) 2016-02-29 2017-09-07 パナソニック株式会社 アンテナ基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3670055A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021074740A (ja) * 2019-11-07 2021-05-20 日本製鉄株式会社 溶接継手、及び自動車部品
JP7376779B2 (ja) 2019-11-07 2023-11-09 日本製鉄株式会社 溶接継手、及び自動車部品
WO2024070192A1 (ja) * 2022-09-28 2024-04-04 Jfeスチール株式会社 溶接継手およびその製造方法
WO2024070191A1 (ja) * 2022-09-28 2024-04-04 Jfeスチール株式会社 溶接継手およびその製造方法
JP7508013B1 (ja) 2022-09-28 2024-07-01 Jfeスチール株式会社 溶接継手およびその製造方法
JP7508014B1 (ja) 2022-09-28 2024-07-01 Jfeスチール株式会社 溶接継手およびその製造方法

Also Published As

Publication number Publication date
EP3670055A4 (en) 2021-07-21
EP3670055A1 (en) 2020-06-24
MX2020001540A (es) 2020-07-13
US11592045B2 (en) 2023-02-28
CN112203792B (zh) 2022-03-18
JP6515401B1 (ja) 2019-05-22
BR112020002088A2 (pt) 2020-07-28
EP3670055B1 (en) 2022-07-13
CA3072156A1 (en) 2019-02-21
CN112203792A (zh) 2021-01-08
KR20200033287A (ko) 2020-03-27
US20200378420A1 (en) 2020-12-03
JPWO2019035490A1 (ja) 2019-11-07
KR102244232B1 (ko) 2021-04-26

Similar Documents

Publication Publication Date Title
JP6515401B1 (ja) 重ね隅肉アーク溶接継手
KR100934058B1 (ko) 내취성파괴 균열 전파 정지 특성이 우수한 t형 용접 이음구조
KR101598318B1 (ko) 필릿 아크 용접 조인트 및 그 형성 방법
KR101649837B1 (ko) 필렛 아크 용접 조인트의 형성 방법 및 필렛 아크 용접 조인트
JP4528089B2 (ja) 耐脆性破壊発生特性を有する船体用大入熱突合せ溶接継手
KR102001923B1 (ko) 용접 구조체
JP6443319B2 (ja) 重ねレーザスポット溶接継手および該溶接継手の製造方法
JP2006320960A (ja) 疲労き裂発生・進展抑止特性に優れた金属部品または金属製構造物およびそれらの製造方法
JP5163215B2 (ja) 薄鋼板の隅肉アーク溶接方法
JP5000476B2 (ja) 耐疲労き裂発生特性に優れた隅肉溶接継手
JP6635235B1 (ja) 重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法および自動車用骨格部品
JP2008137024A (ja) 疲労強度に優れた溶接継手
KR20180074826A (ko) 용접부 내기공성 및 피로 특성이 우수한 도금강판 용접부재 및 이의 제조 방법
JP6885112B2 (ja) 重ねすみ肉溶接継手及び重ねすみ肉溶接継手の製造方法
CN114423558B (zh) 焊接接头及汽车部件
JP6984495B2 (ja) 隅肉溶接継手及びその製造方法
JP7376779B2 (ja) 溶接継手、及び自動車部品
JP2021120473A (ja) 縦シーム溶接鋼管
JP2008087031A (ja) 耐脆性破壊発生特性に優れた溶接継手
JP6149698B2 (ja) 熱影響部が靭性に優れた溶接方法
JP6819432B2 (ja) 溶接継手及び溶接継手の製造方法
JP6852797B2 (ja) 重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法および自動車用骨格部品
JP4660421B2 (ja) 高疲労強度隅肉溶接継手及びその形成方法
JP2013081973A (ja) 疲労特性に優れた重ねすみ肉アーク溶接継手およびその製造方法
JP2001071136A (ja) 疲労強度の優れたガスシールドアーク溶接継手

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018563187

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3072156

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020002088

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207004668

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018845781

Country of ref document: EP

Effective date: 20200318

ENP Entry into the national phase

Ref document number: 112020002088

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200131