JP7160625B2 - 異材接合用アークスタッド溶接法及び接合補助部材 - Google Patents

異材接合用アークスタッド溶接法及び接合補助部材 Download PDF

Info

Publication number
JP7160625B2
JP7160625B2 JP2018196682A JP2018196682A JP7160625B2 JP 7160625 B2 JP7160625 B2 JP 7160625B2 JP 2018196682 A JP2018196682 A JP 2018196682A JP 2018196682 A JP2018196682 A JP 2018196682A JP 7160625 B2 JP7160625 B2 JP 7160625B2
Authority
JP
Japan
Prior art keywords
plate
joining
insertion portion
arc
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018196682A
Other languages
English (en)
Other versions
JP2020062668A (ja
Inventor
励一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018196682A priority Critical patent/JP7160625B2/ja
Publication of JP2020062668A publication Critical patent/JP2020062668A/ja
Application granted granted Critical
Publication of JP7160625B2 publication Critical patent/JP7160625B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、異材接合用アークスタッド溶接法、接合補助部材、及び、異材溶接継手に関する。
自動車を代表とする輸送機器には、(a)有限資源である石油燃料消費、(b)燃焼に伴って発生する地球温暖化ガスであるCO、(c)走行コストといった各種の抑制を目的として、走行燃費の向上が常に求められている。その手段としては、電気駆動の利用など動力系技術の改善の他に、車体重量の軽量化も改善策の一つである。軽量化には現在の主要材料となっている鋼を、軽量素材であるアルミニウム合金、マグネシウム合金、炭素繊維などに置換する手段がある。しかし、全てをこれら軽量素材に置換するには、高コスト化や強度不足になる、といった課題があり、解決策として鋼と軽量素材を適材適所に組み合わせた、いわゆるマルチマテリアルと呼ばれる設計手法が注目を浴びている。
鋼と上記軽量素材を組み合わせるには、必然的にこれらを接合する箇所が出てくる。鋼同士やアルミニウム合金同士、マグネシウム合金同士では容易である溶接が、異材では極めて困難であることが知られている。この理由として、鋼とアルミニウムあるいはマグネシウムの溶融混合部には極めて脆い性質である金属間化合物(IMC)が生成し、引張や衝撃といった外部応力で溶融混合部が容易に破壊してしまうことにある。このため、抵抗スポット溶接法やアーク溶接法といった溶接法が異材接合には採用できず、他の接合法を用いるのが一般的である。鋼と炭素繊維の接合も、後者が金属ではないことから溶接を用いることができない。
従来の異材接合技術の例としては、鋼素材と軽量素材の両方に貫通穴を設けてボルトとナットで上下から拘束する手段があげられる。また、他の例としては、かしめ部材を強力な圧力をかけて片側から挿入し、かしめ効果によって拘束する手段が知られている(例えば、特許文献1参照)。
また、他の例としては、摩擦攪拌接合ツールを用いてアルミ合金と鋼の素材同士を直接接合する手段も開発されている。(例えば、特許文献2参照)。
さらに、他の例としては、アルミ合金素材に鋼製の接合部材をポンチとして押し込むことで穴あけと接合部材の仮拘束を行い、次に鋼素材と重ね合わせ、上下両方から銅電極にて挟み込んで、圧力と高電流を瞬間的に与えて鋼素材と接合部材を抵抗溶接する、REW(Resistant Element Welding)と呼ばれる手段が実用化されている(例えば、特許文献3参照)。また、鋼と鋼の間にアルミニウムを挟んだ3層構造において、同様に抵抗発熱でアルミニウムを溶融、鋼上下板を貫通させ、抵抗溶接させる手段が考案されている(例えば、特許文献4参照)。
特開2002-174219号公報 特許第5044128号公報 特開2009-285678号公報 特表2016-523718号公報
しかしながら、ボルトとナットによる接合法は、鋼素材と軽量素材が閉断面構造を構成するような場合(図23A参照)、ナットを入れることができず適用できない。また、適用可能な開断面構造の継手の場合(図23B、図23C参照)でも、ナットを回し入れるのに時間を要し能率が悪いという課題がある。
また、特許文献1に記載の接合法は、比較的容易な方法ではあるが、鋼の強度が高い場合には、かしめ部材を挿入できない問題があり、かつ、接合強度は摩擦力とかしめ部材の剛性に依存するので、高い接合強度が得られないという問題がある。また、かしめ部材の挿入に際しては表と裏の両側から治具で押さえ込む必要があるため、閉断面構造には適用できないという課題もある。
特許文献2に記載の接合法は、アルミ合金素材を低温領域で塑性流動させながら鋼素材面に圧力をかけることで、両素材が溶融し合うことがなく、金属間化合物の生成を防止しながら金属結合力が得られるとされ、鋼と炭素繊維も接合可能という研究成果もある。しかしながら、本接合法も閉断面構造には適用できず、また高い圧力を必要とするので機械的に大型となり、高価であるという問題がある。また、接合力としてもそれほど高くならない。
さらに、特許文献3に記載の接合法も、閉断面構造には適用できず、また、接合部材の穴あけ及び打込みと、溶接との2段階の作業に分けなければならず、能率改善が求められる。REWにおいては、能率改善のため、1段階で完了させる試みがなされている。鋼製の接合補助部材、アルミニウム板、鋼板を重ねて電極で挟み込み、通電してその抵抗発熱でアルミニウム板を溶融して接合補助部材を貫通、下板と抵抗溶接させる試みがある。しかしながら、アルミニウムの電気比抵抗は2.8×10-6Ω・cm、マグネシウムの電気比抵抗は4.4×10-6Ω・cmと鉄の10.0×10-6Ω・cmと比べて著しく小さい。すなわち、抵抗発熱ではアルミニウムやマグネシウムは発熱しにくく、容易には溶融しない。超高電流を流してアルミニウムやマグネシウムを貫通したとしても、溶融が不十分なので、形成される溶接金属にはアルミニウムやマグネシウムと鋼の混合物、つまり金属間化合物の形成、排除を防ぐことが出来ず、健全な溶接部が得られない。したがって、接合強度の安定性が悪く、低い場合が生じる。特許文献4に記載の接合法も上記と同様の課題が存在する。
したがって、既存の異材接合技術は、(i)部材や開先形状が開断面構造に限定される、(ii)接合強度が低い、(iii)複数の動作が必要で能率が悪い、といった一つ以上の問題を持っている。このため、種々の素材を組み合わせたマルチマテリアル設計を普及させるためには、(i’)開断面構造と閉断面構造の両方に適用できる、(ii’)接合強度が十分に高く、かつ信頼性も高い、(iii’)能率が高い、という全ての要素を兼ね備えた、使いやすい新技術が求められている。
本発明は、前述した課題に鑑みてなされたものであり、その目的は、アルミニウム合金(以下「Al合金」とも言う)もしくはマグネシウム合金(以下、「Mg合金」とも言う)と鋼の異材を、強固かつ信頼性の高い品質で、さらに高能率で接合でき、かつ開断面構造にも閉断面構造にも制限無く適用できる、異材接合用アークスタッド溶接法、接合補助部材、及び、異材溶接継手を提供することにある。
ここで、Al合金もしくはMg合金と鋼を溶融接合させようとすると、上述したように金属間化合物(IMC)の生成が避けられない。これは抵抗溶接でもアーク溶接でも同じである。IMCが発生すれば継手強度は著しく低下する。一方、鋼同士の溶接が最も高い接合強度と信頼性を示すことは、科学的にも実績的にも自明である。
そこで、本発明者らは、鋼同士の溶接を結合力として用い、さらに拘束力を利用して異材の接合を達成する高能率な手法を考案した。
したがって、本発明の上記目的は、異材接合用アークスタッド溶接法に係る下記(1)の構成により達成される。
(1) アルミニウム合金もしくはマグネシウム合金製の第1の板と、鋼製の第2の板と、を接合する異材接合用アークスタッド溶接法であって、
前記第1の板と前記第2の板を重ね合わせる重ね合わせ工程と、
挿入部と非挿入部とを持った段付きの外形形状を有し、前記非挿入部の外径寸法が前記挿入部の外径寸法よりも大きく、かつ、前記挿入部の長さが、前記第1の板の板厚よりも長い鋼製の接合補助部材を、非消耗式電極を介して前記第1の板に向けて移動させる第1移動工程と、
前記接合補助部材と前記第1の板の間にアークを発生させるアーク発生工程と、
アーク熱によって前記接合補助部材の挿入部の先端部、前記第1の板、及び前記第2の板を溶融し、鋼とアルミニウム合金もしくはマグネシウム合金の溶融混合物を形成する溶融工程と、
前記接合補助部材を前記第2の板に向けて移動させ、前記溶融混合物を流動させて、前記接合補助部材の挿入部を前記第1の板内に挿入すると共に、前記接合補助部材と前記第2の板とを溶接する第2移動工程と、を備える異材接合用アークスタッド溶接法。
また、異材接合用アークスタッド溶接法に係る本発明の好ましい実施形態は、以下の(2)~(12)に関する。
(2) 前記第1移動工程において、前記接合補助部材を前記第1の板に接触させる、(1)に記載の異材接合用アークスタッド溶接法。
(3) 前記第1移動工程によって、前記接合補助部材を前記第1の板に接触させた後、前記アーク発生工程において、非消耗式電極と前記接合補助部材とを一旦引き上げる、(2)に記載の異材接合用アークスタッド溶接法。
(4) 前記第1移動工程の後、前記接合補助部材が前記第1の板に非接触の状態で、前記接合補助部材と前記第1の板の間に高周波高電圧を印加する工程をさらに備える、(1)に記載の異材接合用アークスタッド溶接法。
(5) 前記第2移動工程において、前記アークの消失後も電流を供給し続けて、前記接合補助部材と前記第2の板との接合面に抵抗発熱を発生させる、(1)~(4)のいずれかに記載の異材接合用アークスタッド溶接法。
(6) 前記第2移動工程の後、再度電流を供給して、前記接合補助部材と前記第2の板との接合面を再結晶もしくは再溶融した後、再凝固させる、(1)~(5)のいずれかに記載の異材接合用アークスタッド溶接法。
(7) 前記挿入部の長さが、前記第1の板の板厚の1.05倍以上、2.0倍以下である、(1)~(6)のいずれかに記載の異材接合用アークスタッド溶接法。
(8) 前記挿入部の先端部は、錐形状、又は、突起を有する形状である、(1)~(7)のいずれかに記載の異材接合用アークスタッド溶接法。
(9) 前記挿入部の断面は、非円形形状である、(1)~(8)のいずれかに記載の異材接合用アークスタッド溶接法。
(10) 前記非挿入部の挿入部側の面には、溝が設けられている、(1)~(9)のいずれかに記載の異材接合用アークスタッド溶接法。
(11) 前記挿入部の外周面には、溝が設けられている、(1)~(10)のいずれかに記載の異材接合用アークスタッド溶接法。
(12) 前記第1の板と前記第2の板の少なくとも一方の重ね合せ面に接着剤を塗布する工程を、さらに備える、(1)~(11)のいずれかに記載の異材接合用アークスタッド溶接法。
また、本発明の上記目的は、接合補助部材に係る下記(13)の構成により達成される。
(13) (1)~(12)のいずれかに記載の異材接合用アークスタッド溶接法に用いられ、
鋼製で、挿入部と非挿入部とを持った段付きの外形形状を有し、前記非挿入部の外径寸法が前記挿入部の外径寸法よりも大きく、かつ、前記挿入部の長さが、前記第1の板の板厚よりも長い、接合補助部材。
また、本発明の上記目的は、異材溶接継手に係る下記(14)の構成により達成される。
(14) アルミニウム合金もしくはマグネシウム合金製の第1の板と、該第1の板に重ね合わされた、鋼製の第2の板と、を備える異材溶接継手であって、
挿入部と非挿入部とを持った段付きの外形形状を有し、前記非挿入部の外径寸法が前記挿入部の外径寸法よりも大きい鋼製の接合補助部材をさらに備え、
前記第1の板には、前記挿入部が挿通される穴部が形成されており、
前記穴部に前記挿入部が挿通され、かつ、前記接合補助部材の前記挿入部と前記第2の板とが溶接されることで、鋼同士の金属結合となる溶接部を有するとともに、
前記第1の板の表面に、鋼とアルミニウム合金もしくはマグネシウム合金との間の金属間化合物を有する、異材溶接継手。
さらに、異材溶接継手に係る本発明の好ましい実施形態は、以下の(15)~(17)に関する。
(15) 前記挿入部の断面は、非円形形状である、(14)に記載の異材溶接継手。
(16) 前記非挿入部の挿入部側の面には、溝が設けられている、(14)又は(15)に記載の異材溶接継手。
(17) 前記挿入部の外周面には、溝が設けられている、(14)~(16)のいずれかに記載の異材溶接継手。
本発明によれば、アルミニウム合金もしくはマグネシウム合金と、鋼との異材を、強固かつ信頼性の高い品質で、さらに高能率で接合でき、かつ開断面構造にも閉断面構造にも制限無く適用できる。
本発明の一実施形態に係る異材溶接継手の斜視図である。 図1AのI-I線に沿った異材溶接継手の断面図である。 本実施形態の接合補助部材の側面図である。 本実施形態の接合補助部材の正面図である。 接合補助部材の第1変形例の側面図である。 接合補助部材の第2変形例の側面図である。 接合補助部材の第3変形例の正面図である。 接合補助部材の第4変形例の正面図である。 接合補助部材の第5変形例の正面図である。 接合補助部材の第6変形例の正面図である。 接合補助部材の第7変形例の正面図である。 本実施形態の異材溶接継手の断面図である。 図5AのV-V線に沿った断面図である。 本実施形態の異材接合用アークスタッド溶接法を示す工程図である。 本実施形態の異材接合用アークスタッド溶接法を示すタイミングチャートである。 本実施形態の異材接合用アークスタッド溶接法の第1変形例を示すタイミングチャートである。 接合補助部材と上板との寸法関係を説明するための図である。 本実施形態の異材接合用アークスタッド溶接法の第2変形例を示す部分工程図である。 本実施形態の異材接合用アークスタッド溶接法の第2変形例を示すタイミングチャートである。 本実施形態の異材接合用アークスタッド溶接法の第3変形例を示す部分工程図である。 本実施形態の異材接合用アークスタッド溶接法の第3変形例を示すタイミングチャートである。 本実施形態の異材接合用アークスタッド溶接法の第4変形例を説明するため、接合部に溶け残りが生じている場合の異材溶接継手の断面図である。 本実施形態の異材接合用アークスタッド溶接法の第4変形例を示すタイミングチャートである。 本実施形態の異材接合用アークスタッド溶接法の第5変形例を示すタイミングチャートである。 本実施形態の異材接合用アークスタッド溶接法の第5変形例を示す、電流を再供給する際の各種パターンを示すタイミングチャートである。 接合補助部材の第8変形例の断面図である。 接合補助部材の第9変形例の断面図である。 図16Aの接合補助部材を用いた場合の異材溶接継手の断面図である。 図16Bの接合補助部材を用いた場合の異材溶接継手の断面図である。 接合補助部材の第10変形例の側面図である。 接合補助部材の第11変形例の側面図である。 図18Aの接合補助部材を用いた場合の異材溶接継手の断面図である。 図18Bの接合補助部材を用いた場合の異材溶接継手の断面図である。 本実施形態の異材接合用アークスタッド溶接法の第6変形例を示す工程図である。 本実施形態の異材接合用アークスタッド溶接法の第6変形例を示す工程図である。 接合補助部材の第12変形例の断面図である。 接合補助部材の第13変形例の断面図である。 本実施形態の異材溶接継手が適用された閉断面構造を示す斜視図である。 本実施形態の異材溶接継手が適用された、L字板と平板による開断面構造を示す斜視図である。 本実施形態の異材溶接継手が適用された、2枚の平板による開断面構造を示す斜視図である。
以下、本発明の一実施形態に係る異材接合用アークスタッド溶接法、接合補助部材、及び、異材溶接継手を図面に基づいて詳細に説明する。
本実施形態の異材接合用アークスタッド溶接法は、互いに重ね合わせされる、アルミニウム合金もしくはマグネシウム合金製の上板10(第1の板)と、鋼製の下板20(第2の板)とを、鋼製の接合補助部材30を介して接合することで、図1A及び図1Bに示すような異材溶接継手1を得るものである。
本実施形態に使用される上板10及び下板20は、いずれも平板状であり、穴あけやリベット打込みなどの前処理が施されていない。ただし、上板10には、後述するアークスタッド溶接法によって、接合補助部材30の挿入部31との間に発生するアークの熱によって、板厚方向全体に亘って溶融され、挿入部31が挿通される穴部11が板厚方向に貫通形成される。
図2A及び図2Bに示すように、接合補助部材30は、挿入部31と、該挿入部31に対して外向きフランジ状の非挿入部32と、を持った段付きの外形形状を有する。接合補助部材30は、非挿入部32の外径寸法Pが挿入部31の外径寸法Qよりも大きく、かつ、挿入部31の長さLが、上板10の板厚Tよりも長く設定されている(図8参照)。特に、本実施形態では、以下に詳述するように、挿入部31の長さLが、上板10の板厚Tの1.05倍以上2.0倍以下としている。
挿入部31の先端部31aは、円錐形状に形成されている。これは、溶融工程において、接合補助部材30の挿入部31と上板10との間に、接触と同時にアークを発生させる必要があるが、先端部31aを平坦とした場合、接触断面積が大きいため、アークが発生しにくいからである。一方、先端部31aを円錐形状とすることで、接触断面積を小さくすることができ、容易に接合補助部材30自身が溶融してアーク長を伸ばすことができる。なお、先端部31aの形状は、円錐形状に限らず、四角錐等の他の錐形状であってもよく、あるいは、図3Aに示すように、突起を有する形状であってもよい。また、挿入部31全体を円錐(図3B参照)や四角錐などの形状としてもよい。
接合補助部材30の概略断面形状をT字状の2段階形状とする理由は、下板20と接合補助部材30によって挟持される上板10への拘束力を高めるためである。非挿入部(フランジ部)32が挿入部31よりも幅広とする役割は、張り出し部分が上下剥離応力に対する抵抗体の役割となるためである。適切なサイズの接合補助部材30を適用することにより、上板10が接合補助部材30から容易に抜けてしまう現象を防止することが可能となる。一般的には、上板10は、接合補助部材30周辺の母材金属もしくは溶接金属が塑性変形した後、破断する。
なお、接合補助部材30は挿入部31と非挿入部32の2段形状が適切であるが、非挿入部32を2段以上にして合計3段以上としてもよい。ただし、3段以上の形状は、2段形状に対して工業的改善価値はあまり無い。
また、非挿入部32は、面積が大きく、かつ厚さが大きいほど板厚方向(3次元方向)の外部応力に対して強度を増すため、望ましい。だが、必要以上に大きいと重量増要因や、上板10の表面からの出っ張り過剰により、美的外観劣化や近接する他の部材との干渉が生じるので、必要設計に応じてサイズを決めればよい。
さらに、非挿入部32の外形は、円形としているが、そのメカニズム上、形状を問わず、単に、挿入部31の外径寸法Qよりも外径寸法Pが大きければよい。すなわち、図4A~図4Eに示すように四角形以上の多角形形状でもよく、図4B及び図4Eに示すように、多角形の角部を丸くしてもよい。なお、非挿入部32の外形が非円形の場合、その外径寸法Pは、最短となる対向面間の距離で規定される。
また、接合補助部材30の挿入部31の断面形状を真円にすると、溶融して上板10に形成される穴部11の形状もほぼ真円となる。下板20と接合補助部材30とは接合されているが、上板10は金属的に接合されていないため、平面内で回転方向に力FRが作用すると、挿入部31を中心に下板20及び接合補助部材30が上板10に対して相対的に回転してしまう。
そこで、図5Bに示すように、挿入部31の断面形状を非円形形状にすることで、下板20及び接合補助部材30を上板10に対して相対回転させないようにすることができる。具体的に、挿入部31の断面形状は、三角形、四角形、五角形、六角形、八角形などの多角形や楕円などがあげられる。なお、後述するように、現実的には構造物を一点で接合することはほぼないので、稀有な懸念であるが保証しておくことに越したことはない。
なお、鋼製の接合補助部材30の材質は、純鉄及び鉄合金であれば、特に制限されるものでなく、例えば、軟鋼、炭素鋼、ステンレス鋼などがあげられる。
また、図1Bに示すように、接合補助部材30の挿入部31の先端部31aと、下板20の上板側の一部とは、アーク熱によって、あるいは付加的な抵抗溶接による抵抗発熱によって金属結合された溶接部(溶接金属)Wを形成しており、これによって、上板10と下板20とが接合される。
以下、異材溶接継手1を構成する異材接合用アークスタッド溶接法について、図6及び図7Aを参照して説明する。なお、以下に説明する溶融工程において、アークを利用するためには、抵抗溶接を利用するものと異なり、アークを発生、維持するための機構が必要である。具体的に、電源には板厚等に応じて、コンデンサ方式、電力アーク方式、ショートサイクル方式が適用できる。コンデンサ方式(CD方式)は、大容量のコンデンサに電力を蓄え、アーク溶接時に電力を一気に放出する方式であり、非常に薄い板に適用される。電力アーク方式は、一般的な交流→直流変換と変圧回路を有した溶接電源を用いる方式で、比較的長時間のアーク発生が可能であり、大きな板厚を溶融できる。ショートサイクル方式は、電力アーク方式と電源の機構は同じであるが、短時間制御が可能なように改良された方式であり、適用板厚はコンデンサ方式と電力アーク方式の中間に位置する。これらの溶接用電源は一般的なアークスタッド溶接用のものを流用できる。
まず、本溶接方法は、溶接されるべき上板10と下板20とを重ね合わせ(Step1:重ね合わせ工程)、併せて、非消耗式電極40の先端に接合補助部材30をセットする。なお、電極40と接合補助部材30とは一時的に機械的方式あるいは電磁的方式で連結されており、容易に脱着が出来るようにする。また、連結状態では電極40と接合補助部材30間は通電される状態である。
そして、図7Aに示す時間tにおいて、接合補助部材30を、非消耗式電極40を介して上板10に向けて移動させる(Step2:第1移動工程)。さらに、時間tにおいて、アーク発生に向けて、電極40と上板10の間には溶接電源50から無負荷電圧がかけられる(Step3:アーク発生工程)。
接合補助部材30の先端部31aが上板10の表面に達すると、無負荷電圧の作用でアークが発生する。この時、アークを維持するために電極40と接合補助部材30の進行は一時的に中断している。そして、アークが発生すると、アーク熱によって、上板10と接合補助部材30の先端部31aの同時溶融が始まる(Step4:溶融工程)。図7Aに示す間隔tiaにおいて、接合補助部材30と上板10の溶融が進むにつれ、アーク長は長くなっていく。
また、Step4において、上板10が溶融しきると、さらに下板20にアーク熱が伝わり、下板20の一部表面が溶融しはじめる(図7Aに示す間隔tib)。この時、上板10と下板20、そして接合補助部材30の素材が混じった液体がアーク直下に溜まった状態になっている。アーク直下に溜まった溶融池は、そのまま凝固すると、鋼とアルミニウム合金もしくはマグネシウム合金が混ざった溶融混合物、すなわち、金属間化合物(IMC)であるため、高い接合強度を得ることが出来ない。つまり、アーク直下に溜まった溶融池は、溶接部には不要な物質であることから排出させなければならない。なお、図6中、Step3~Step5に示す領域hは、アーク熱によって熱せられた部分を表している。
外部から与える熱が不要になると、図7Aに示す時間tにおいて、電源50は電力供給を終了させ、一方、電極40と接合補助部材30を下板20に向けて再び移動させる(Step5:第2移動工程)。なお、図7Bに示すように、電力供給を終了させる直前の時間tにおいて、電極40と接合補助部材30の移動を開始してもよい。ただし、高い電流の状態で、接合補助部材30を急激に進行させて溶融池に接触すると、スパッタが発しやすい。
これにより、接合補助部材30からの圧力によってアーク直下に溜まった溶融池の溶融混合物は、流動して該溶融池から押し出される(図7Aに示す間隔tic)。なお、溶融混合物は液体であるため強い圧力は不要であり、接合補助部材30を溶融池に軽く押し付ける程度で、溶融混合物は接合補助部材30の周囲の上板10の表面に押し出される。
また、溶融混合物の流動により、接合補助部材30の挿入部31が上板10内に挿入され、高熱状態にある接合補助部材30の固体面端部と下板20とが接触すれば、鋼同士の金属結合となる健全な溶接部Wが得られる。その後、電極40と接合補助部材30の一時的連結を解除して電極40を外し、自然冷却すれば、下板20と接合補助部材30が上板10を挟み込んだ状態で溶接工程は完了となる。溶接後には接合補助部材30の非挿入部32の周囲に金属間化合物IMCがくっついた状態になるが、溶接継手強度には無関係である。
このように、アーク熱と加圧を利用すれば、アルミニウム合金やマグネシウム合金を容易に溶融させ、その全てを溶接界面から排出させることができる。この結果、接合補助部材30と下板20の間に金属間化合物が残らない健全な溶接部Wを形成することが出来る。
なお、一般にアーク溶接はシールドガスを用いて大気から溶融池を遮断する必要があるが、本溶接法では必ずしも必要ない。溶融から凝固までの時間が非常に短く、大気との反応時間がわずかであり、また、大気と反応し、窒素などが混入した溶融池の溶融化合物は最終的に溶接部外に物理的に排出されるためである。ただし、板厚が大きく、反応時間が長い場合は、通常のアーク溶接と同じく、Ar,CO,He,Oといったガスで接合部全体をシールドしてもよい。これにより、溶接熱による溶接部の焼け、すなわち酸化物生成が抑制され、外観が向上する効果がある。
また、図8に示すように、本実施形態では、接合補助部材30の挿入部31の長さLが、上板10の板厚Tの1.05倍以上2.0倍以下としている。上述の通り、接合補助部材30の挿入部31はアーク発生時に自ら溶融消耗し、溶接部外に排出される。したがって、挿入部31の長さLは上板10の板厚Tと、溶接条件によって変動する溶融長さから換算されたものとするのが望ましい。もし、溶接工程後に上板10の板厚Tよりも長い状態になってしまうと、上板10は接合補助部材30と下板20とに挟持されず、力をほとんどかけずとも上下に動いてしまう。挿入部31の長さLが、上板10の板厚Tの2.0倍以下であれば板厚分を残して溶融消費し、溶融化合物は溶接部Wから排出されるので、望ましい。一方、挿入部31の長さLが短いと液体状金属間化合物の排出が不十分で溶接部Wに残留してしまい、低継手強度になったり、さらに、挿入部31の長さLが過度に短い場合は下板20を溶かすことなく、すなわち溶接そのものが達成できない状態になったりもする。挿入部31の長さLが、上板10の板厚Tの1.05倍以上であれば溶融化合物を溶接部外に押し出し、さらに残った挿入部31の固体部分で上下板10,20同士を締結することができるので望ましい。さらに望ましくは、挿入部31の長さLは、上板10の板厚Tの1.2倍以上である。
ここで、上記アークスタッド溶接法、及び該溶接法にて製造される異材溶接継手1のメリットについて、以下詳述する。
すなわち、従来のREWにおいても、接合補助部材と下板とが溶接され、上板が拘束される形状としているが、上述したように、REWは、接合補助部材を打ち込む工程と抵抗溶接の工程が独立した2段階プロセスとなるため、能率が悪い。そこで、一工程でプロセスを完遂させるために、接合補助部材を介して抵抗スポット溶接を行うことで、アルミニウム合金又はマグネシウム合金を溶融させ、接合補助部材を下板に到達させ、鋼同士の抵抗溶接を行い、REWと同じ継手形状を得ることが考えられる。しかしながら、電気抵抗を利用しての発熱はアルミニウム合金やマグネシウム合金では小さく、これらの合金を完全に溶融させることは困難であった。つまり、抵抗溶接では、接合補助部材30と下板20の溶接は不完全である。
一方、本実施形態では、アルミニウム合金やマグネシウム合金を効率的に溶融させる手段としてアーク熱を利用することとした。アークは鉄、アルミニウム合金、マグネシウム合金など素材にかかわらず、最高点で1万℃を超える超高温が発生する。さらに鉄の融点は1530℃に対し、アルミニウムは660℃、マグネシウムは650℃と遙かに低い。したがって、本実施形態のように、アルミニウム合金やマグネシウム合金はアーク熱によって超高温に曝すことで、容易に溶融し、液体化することができる。
また、本実施形態では、アルミニウム合金やマグネシウム合金にアークを曝すため、非消耗電極式のアーク発生・維持装置を工夫して、非消耗式電極40に対して鋼製の接合補助部材30を機械的方式あるいは電磁的方式で連結する構成とした。この場合、非消耗式電極は、一般的に抵抗スポット溶接法と同じく、銅合金電極としている。したがって、本実施形態は、アークを発生すると共に接合補助部材30自身も溶融し続ける消耗電極式のアーク発生・維持装置となる。
さらに、本実施形態では、電気抵抗を利用する場合と異なり、アークは経路の電気抵抗にあまり影響を受けないことから、強い加圧をして固体状態の上板10と下板20とを圧着させ、電気抵抗変化を極力低減させる必要がない。したがって、アークを利用すると下板20の裏側から押し上げるクランプ機構が不要であり、片側からの電極アクセスで接合が可能である。つまり、閉断面部材にも適用可能となる。
図9及び図10は、本実施形態のアークスタッド溶接法の第2変形例を示す。なお、図9は、Step2~Step3のみ図示している。
Step2の第1移動工程において、接合補助部材30が上板10の表面に接触すると、溶接電源50が供給する無負荷電圧によってアークが発生し、接合補助部材30自体の溶融消耗に伴い、徐々にアーク長は長くなっていく。しかし、アーク発生直後の段階では、まだアークの維持が不安定であり、接合補助部材30が溶けた液滴が上板10の母材と橋絡状態を作ってしまい、アークが消失しやすい。
このため、第2変形例では、Step3のアーク発生工程において、前進させた接合補助部材30をストップさせるのではなく、期間tidの間、逆送させる、すなわち、非消耗式電極40と接合補助部材30とを一旦引き上げる。これにより、橋絡を防ぐことができ、アークを安定化させることができる。また、接合補助部材30を引き上げることで、それ自体の総溶融量も減少し、ひいては押し出される溶融化合物の量も減少するので、健全な溶接部Wの形成にも貢献する。
図11及び図12は、本実施形態のアークスタッド溶接法の第3変形例を示す。なお、図11は、Step2~Step3のみ図示している。
上記実施形態及び第2変形例におけるアーク発生方法はタッチスタートと呼ばれる方式であるが、アークが円滑に発生すれば他の方式であってもよい。他の方式の代表的な手段として、ティグ(Tungsten Inert Gas)溶接法用として良く用いられている非接触式があげられる。中でも、アーク用電力回路とは別に高周波高電圧放電回路を設けて、空間に火花を発生させ、さらにアークを誘導発生させる手段が使いやすさの点から普及している。一般的には100kHz~500MHzの周波数かつ1~100kボルトの出力の高周波高電圧がアーク発生用に適している。
したがって、該変形例は、図12の時間tにおいて、接合補助部材30の移動を上板10に非接触の状態で停止させ、また、間隔tieの間だけ、接合補助部材30と上板10との間に高周波高電圧を印加し、空間に火花を発生させ、その後、無負荷電圧を作用させてアークを発生させるようにしている。
なお、該変形例では、高周波高電圧を印加しアークを発生させた後、接合補助部材30を一旦引き上げることも可能である。
図13及び図14は、本実施形態のアークスタッド溶接法の第4変形例を示す。上記実施形態では、アーク熱によって上板10の溶接個所全厚を溶融し、さらに下板20の一部表面が溶融し始めた後、電力供給を止め、余熱と加圧によって接合補助部材30と下板20を溶接することができる。しかし、図13に示すように、余熱不足で溶け残りが生じてしまう場合がある。溶け残りは、溶接部Wの強度を下げてしまうので極力避けるべきである。
これを避けるため、該変形例では、図14に示すように、接合補助部材30と下板20を溶接すると共に溶融池を排出するための第2移動工程において、アークの消失後も電源から電力(電流)を供給し続けて、接合補助部材30と下板20との接合面に抵抗発熱を発生させ、溶接部Wの面積を大きくする。なお、電力供給期間tifは加圧時間と連動させる必要はなく、加圧時間よりも短い、加圧時間と同一、加圧時間より長い、のいずれも選択可能である。材料や板厚の組合せによって最適な電流と時間が調整されればよい。
図15A及び図15Bは、本実施形態のアークスタッド溶接法の第5変形例を示す。該変形例では、後工程である第2移動工程の後、再度電流を供給して、接合補助部材30と下板20との接合面を再結晶もしくは再溶融した後、再凝固させる。
下板20が炭素量や合金添加量の多い高炭素当量の材質であった場合、その溶接部Wが急冷凝固されると硬くて脆い組織となり、幾何学的には健全であっても、材質的問題によって低い接合強度になってしまうことが知られている。本溶接法もプロセス時間はごく短いので、同様の問題が生じることがある。そこで、溶接熱影響部を含めた溶接部Wの材質的健全化を目的として、凝固後、再度電力(電流)を供給し、抵抗発熱によって再度温度を高め、焼きなまし効果を与えることによって、延性に富んだ溶接金属組織とし、接合強度を高めることができる。その手段としては、図15Aに示すように、単純に電流を一定時間供給する矩形波とするだけでなく、図15Bに示すように、矩形波を繰り返すパルス状であってもよく、また徐々に電流を下げる三角波や台形波とすることもできる。材質に応じて最適な電流値と波形が選択されればよい。
また、本実施形態の溶接法は、工程最後にアルミニウム合金やマグネシウム合金と鉄が混ざった液体状の金属間化合物が上板10の表面の接合補助部材30の非挿入部周囲に押し出されて凝固し、完了する。押し出されて凝固した金属間化合物は継手接合強度には影響を及ぼさないが、外観が悪い。また、完全に非挿入部32の外部に排出されず、非挿入部32と上板10の表面上に押しつぶされるような状態で残ってしまい、非挿入部32と上板10が非接触となる不健全な締結状態となってしまう場合もある。
このような状態になるのを防ぐため、金属間化合物を収めるポケットを接合補助部材30に積極的に設けることができる。具体的には、図16A及び図16Bに示すように、非挿入部32の挿入部側の面、いわゆる裏面に溝34を設けることで金属間化合物のポケットとすることができる。図17A及び図17Bに示すように、液体状の金属間化合物が押し出された場合、溝34に流れ込み、外部に溢れ出るのを防ぐ、あるいは溢れ出る量を減少させて外観を向上することができる。また、上板10と接合補助部材30の非挿入部32が非接触状態になるのを防ぎ、健全な締結状態を得ることができる。
また、上記と同様な効果として、図18A及び図18Bに示すように、金属間化合物を収める溝35を接合補助部材30の挿入部31の外周面に設けることもできる。上板10と接合補助部材30との間に金属間化合物が収まることになるが、これらは元々結合しているわけではないため、金属間化合物があっても接合強度に悪影響は与えない。
また、挿入部31の溝35と非挿入部32の裏面に設けた溝34とを合わせて用いることは何ら問題ない。
また、異種金属同士を直接接合する場合の課題としては、IMCの形成という課題以外に、もう一つ大きな課題が知られている。それは、異種金属同士が接すると、ガルバニ電池を形成する為に腐食を加速する要因になる。この原因(電池の陽極反応)による腐食は電食と呼ばれている。鋼とアルミニウム合金もしくはマグネシウム合金の継手であれば、アルミニウム合金もしくはマグネシウム合金の腐食が進む。異種金属同士が接する面に水があると腐食が進むので、接合箇所として水が入りやすい場所に本実施形態が適用される場合は、電食防止を目的として、水の浸入を防ぐためのシーリング処理を施す必要がある。本接合法でもAl合金やMg合金と鋼が接する面は複数形成されるので、樹脂系の接着剤60をさらなる継手強度向上の目的のみならず、シーリング材として用いることが好ましい。
最も異種金属が接する面積が大きいのは上板10と下板20の母材間空間であることから、上板10と下板20の間の接合面全面に接着剤60を塗布してから接合補助部材30を用いた接合を始めるのが望ましい。ただし、アーク熱で接着剤60が気化し、アークの不安定化、溶融池の飛散、気孔欠陥の発生につながる可能性があることから、図21に示すように、接合領域Aを除いて接着剤60を塗布する方法がより好ましい。
なお、本接合法では電食が起きやすい箇所は母材間のみならず、接合後の接合補助部材の非挿入部32とアルミニウム合金やマグネシウム合金である上板10との境界付近もある。この箇所の腐食を緩和するために、図22Aに示すように、接合補助部材の表面に亜鉛めっきやクロムめっきといった鉄よりも腐食電位が小さい、”卑”の物質61でコーティングする、あるいはリン酸塩被膜処理(ボンデライト処理)しておくと効果がある。
あるいは、図22Bに示すように、さらに望ましくは鋼製接合補助部材で接合後、樹脂製などのシーリング材62で非挿入部32との周囲全体を覆い、接触部を水密状態とするのが最も効果がある。
以上の構成により、上板がアルミニウム合金もしくはマグネシウム合金、下板が鋼の素材を開断面構造、閉断面構造にかかわらず強固に接合することができる。さらには接着剤60を併用することにより、接合強度の向上と共に腐食を防ぐことも出来る。
また、本実施形態の溶接法は、接合面積が小さい点溶接と言えるので、ある程度の接合面積を有する実用部材同士の重ね合わせ部分Jを接合する場合は、本溶接を図23A~図23Cに示すように、複数実施すればよい。これにより、重ね合わせ部分Jにおいて強固な接合が行われる。本実施形態は、図23B及び図23Cに示すような開断面構造にも使用できるが、特に、図23Aに示すような閉断面構造において好適に使用することができる。
以上説明したように、本実施形態の異材接合用アークスタッド溶接法によれば、アルミニウム合金もしくはマグネシウム合金製の上板10と鋼製の下板20とを重ね合わせる重ね合わせ工程と、挿入部31と非挿入部32とを持った段付きの外形形状を有し、非挿入部32の外径寸法が挿入部31の外径寸法よりも大きく、かつ、挿入部31の長さLが、上板10の板厚Tよりも長い鋼製の接合補助部材30を、非消耗式電極40を介して上板10に向けて移動させる第1移動工程と、接合補助部材30と上板10の間にアークを発生させるアーク発生工程と、アーク熱によって接合補助部材30の挿入部31の先端部31a、上板10、及び下板20を溶融し、鋼とアルミニウム合金もしくはマグネシウム合金の溶融混合物を形成する溶融工程と、接合補助部材30を下板20に向けて移動させ、溶融混合物を流動させて、接合補助部材30の挿入部31を上板10内に挿入する共に、接合補助部材30と下板20とを溶接する第2移動工程と、を備える。
これにより、アルミニウム合金もしくはマグネシウム合金の上板10と、鋼の下板20を、強固かつ信頼性の高い品質で、さらに高能率で接合でき、かつ開断面構造にも閉断面構造にも制限無く適用できる。
また、第1移動工程において、接合補助部材30を上板10に接触させる。これにより、タッチスタート方式で、アークを発生させることができる。
さらに、第1移動工程によって、接合補助部材30を上板10に接触させた後、アーク発生工程において、非消耗式電極と接合補助部材30とを一旦引き上げる。これにより、橋絡を防いでアークを安定化することができる。
また、第1移動工程の後、接合補助部材30が上板10に非接触の状態で、接合補助部材30と上板10の間に高周波高電圧を印加する工程をさらに備える。これにより、非接触式でアークを容易に発生させることができる。
また、第2移動工程において、アークの消失後も電流を供給し続けて、接合補助部材30と下板20との接合面に抵抗発熱を発生させる。これにより、接合部の溶け残りを防止して、接合強度を高めることができる。
また、第2移動工程の後、再度電流を供給して、接合補助部材30と下板20との接合面を再結晶もしくは再溶融した後、再凝固させる。これにより、接合部Wを延性に富んだ溶接金属組織とし、接合強度を高めることができる。
また、挿入部31の長さが、上板10の板厚の1.05倍以上、2.0倍以下である。これにより、溶融消耗される部分の長さと、残った固体部分の長さを適切に管理することで、上板10と下板20とを強固に締結することができる。
また、挿入部31の先端部31aは、錐形状、又は、突起を有する形状である。これにより、アークの発生を円滑に行うことができる。
また、挿入部31の断面は、非円形形状である。これにより、1点での接合の場合であっても上板10と下板20との相対回転を防止することができる。
また、非挿入部32の挿入部側の面には、溝が設けられている。これにより、上板10と下板20との健全な締結と、外観性の向上を図ることができる。
また、挿入部31の外周面には、溝が設けられている。これにより、上板10と下板20との健全な締結と、外観性の向上を図ることができる。
上板10と下板20の少なくとも一方の重ね合せ面に接着剤60を塗布する工程を、さらに備える。これにより、接着剤60は、継手強度向上の他、シーリング材として作用し、上板10と下板20間での電食を防止することができる。
また、本実施形態の接合補助部材30は、上述した異材接合用アークスタッド溶接法に用いられ、鋼製で、挿入部31と非挿入部32とを持った段付きの外形形状を有し、非挿入部32の外径寸法が挿入部31の外径寸法よりも大きく、かつ、挿入部31の長さが、上板10の板厚よりも長い。これにより、当該接合補助部材30を用いて、異材接合用アークスタッド溶接法を適切に行うことができる。
また、本実施形態の異材溶接継手1は、アルミニウム合金もしくはマグネシウム合金製の第1の板と、該第1の板に重ね合わされた、鋼製の第2の板と、を備えるものであって、挿入部31と非挿入部32とを持った段付きの外形形状を有し、非挿入部32の外径寸法が挿入部31の外径寸法よりも大きい鋼製の接合補助部材30をさらに備え、上板10には、挿入部31が挿通される穴部11が形成されており、穴部11に挿入部31が挿通され、かつ、接合補助部材30の挿入部31と下板20とが溶接されることで、鋼同士の金属結合となる溶接部Wを有するとともに、上板10の表面に、鋼とアルミニウム合金もしくはマグネシウム合金との間の金属間化合物(IMC)を有する。
これにより、アルミニウム合金もしくはマグネシウム合金の上板10と、鋼の下板20とを備えた異材溶接継手1は、強固かつ信頼性の高い品質で、さらに高能率で接合でき、かつ開断面構造にも閉断面構造にも制限無く適用できる。
尚、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。
1 異材溶接継手
10 上板(第1の板)
11 穴部
20 下板(第2の板)
30 接合補助部材
31 挿入部
31a 先端部
32 非挿入部
34,35 溝
40 非消耗式電極
60 接着剤
W 溶接部
J 重ね合わせ部分

Claims (13)

  1. アルミニウム合金もしくはマグネシウム合金製の第1の板と、鋼製の第2の板と、を接合する異材接合用アークスタッド溶接法であって、
    前記第1の板と前記第2の板を重ね合わせる重ね合わせ工程と、
    挿入部と非挿入部とを持った段付きの外形形状を有し、前記非挿入部の外径寸法が前記挿入部の外径寸法よりも大きく、かつ、前記挿入部の長さが、前記第1の板の板厚よりも長い鋼製の接合補助部材を、非消耗式電極を介して前記第1の板に向けて移動させる第1移動工程と、
    前記接合補助部材と前記第1の板の間にアークを発生させるアーク発生工程と、
    アーク熱によって前記接合補助部材の挿入部の先端部、前記第1の板、及び前記第2の板を溶融し、鋼とアルミニウム合金もしくはマグネシウム合金の溶融混合物を形成する溶融工程と、
    前記接合補助部材を前記第2の板に向けて移動させ、前記溶融混合物を流動させて、前記接合補助部材の挿入部を前記第1の板内に挿入すると共に、前記接合補助部材と前記第2の板とを溶接する第2移動工程と、を備える異材接合用アークスタッド溶接法。
  2. 前記第1移動工程において、前記接合補助部材を前記第1の板に接触させる、請求項1に記載の異材接合用アークスタッド溶接法。
  3. 前記第1移動工程によって、前記接合補助部材を前記第1の板に接触させた後、前記アーク発生工程において、非消耗式電極と前記接合補助部材とを一旦引き上げる、請求項2に記載の異材接合用アークスタッド溶接法。
  4. 前記第1移動工程の後、前記接合補助部材が前記第1の板に非接触の状態で、前記接合補助部材と前記第1の板の間に高周波高電圧を印加する工程をさらに備える、請求項1に記載の異材接合用アークスタッド溶接法。
  5. 前記第2移動工程において、前記アークの消失後も電流を供給し続けて、前記接合補助部材と前記第2の板との接合面に抵抗発熱を発生させる、請求項1~4のいずれか1項に記載の異材接合用アークスタッド溶接法。
  6. 前記第2移動工程の後、再度電流を供給して、前記接合補助部材と前記第2の板との接合面を再結晶もしくは再溶融した後、再凝固させる、請求項1~5のいずれか1項に記載の異材接合用アークスタッド溶接法。
  7. 前記挿入部の長さが、前記第1の板の板厚の1.05倍以上、2.0倍以下である、請求項1~6のいずれか1項に記載の異材接合用アークスタッド溶接法。
  8. 前記挿入部の先端部は、錐形状、又は、突起を有する形状である、請求項1~7のいずれか1項に記載の異材接合用アークスタッド溶接法。
  9. 前記挿入部の断面は、非円形形状である、請求項1~8のいずれか1項に記載の異材接合用アークスタッド溶接法。
  10. 前記非挿入部の挿入部側の面には、溝が設けられている、請求項1~9のいずれか1項に記載の異材接合用アークスタッド溶接法。
  11. 前記挿入部の外周面には、溝が設けられている、請求項1~10のいずれか1項に記載の異材接合用アークスタッド溶接法。
  12. 前記第1の板と前記第2の板の少なくとも一方の重ね合せ面に接着剤を塗布する工程を、さらに備える、請求項1~11のいずれか1項に記載の異材接合用アークスタッド溶接法。
  13. 請求項1~12のいずれか1項に記載の異材接合用アークスタッド溶接法に用いられ、
    鋼製で、挿入部と非挿入部とを持った段付きの外形形状を有し、前記非挿入部の外径寸法が前記挿入部の外径寸法よりも大きく、かつ、前記挿入部の長さが、前記第1の板の板厚よりも長い、接合補助部材。
JP2018196682A 2018-10-18 2018-10-18 異材接合用アークスタッド溶接法及び接合補助部材 Active JP7160625B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018196682A JP7160625B2 (ja) 2018-10-18 2018-10-18 異材接合用アークスタッド溶接法及び接合補助部材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018196682A JP7160625B2 (ja) 2018-10-18 2018-10-18 異材接合用アークスタッド溶接法及び接合補助部材

Publications (2)

Publication Number Publication Date
JP2020062668A JP2020062668A (ja) 2020-04-23
JP7160625B2 true JP7160625B2 (ja) 2022-10-25

Family

ID=70387930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018196682A Active JP7160625B2 (ja) 2018-10-18 2018-10-18 異材接合用アークスタッド溶接法及び接合補助部材

Country Status (1)

Country Link
JP (1) JP7160625B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022050161A1 (ja) * 2020-09-01 2022-03-10
JP2023105755A (ja) * 2022-01-19 2023-07-31 株式会社神戸製鋼所 抵抗溶接用エレメント及び抵抗溶接方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013078804A (ja) 2007-08-10 2013-05-02 Nissan Motor Co Ltd 異種金属接合方法
JP2015042417A (ja) 2013-07-22 2015-03-05 株式会社神戸製鋼所 異材接合用リベット、異材接合用部材、異材接合体の製造方法及び異材接合体
US20160158873A1 (en) 2013-08-23 2016-06-09 Volkswagen Aktiengesellschaft Method for connecting at least two sheet metal parts
JP2016528044A (ja) 2013-06-26 2016-09-15 アルコア インコーポレイテッド 抵抗溶接用ファスナー、装置及び方法
JP2018034165A (ja) 2016-08-29 2018-03-08 株式会社神戸製鋼所 異材接合用アークスポット溶接法、接合補助部材、及び、異材溶接継手

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013078804A (ja) 2007-08-10 2013-05-02 Nissan Motor Co Ltd 異種金属接合方法
JP2016528044A (ja) 2013-06-26 2016-09-15 アルコア インコーポレイテッド 抵抗溶接用ファスナー、装置及び方法
JP2015042417A (ja) 2013-07-22 2015-03-05 株式会社神戸製鋼所 異材接合用リベット、異材接合用部材、異材接合体の製造方法及び異材接合体
US20160158873A1 (en) 2013-08-23 2016-06-09 Volkswagen Aktiengesellschaft Method for connecting at least two sheet metal parts
JP2018034165A (ja) 2016-08-29 2018-03-08 株式会社神戸製鋼所 異材接合用アークスポット溶接法、接合補助部材、及び、異材溶接継手

Also Published As

Publication number Publication date
JP2020062668A (ja) 2020-04-23

Similar Documents

Publication Publication Date Title
JP7038279B2 (ja) 接合構造およびそのアーク溶接方法
JP6829218B2 (ja) 異材接合用アーク溶接法
CN103415369B (zh) 异种金属接合方法
WO2018056172A1 (ja) 異材接合用スポット溶接法、接合補助部材、及び、異材溶接継手
JP2004223548A (ja) アルミニウムと鉄鋼の接合方法
CN110114181B (zh) 异种材料接合用电弧焊法、接合辅助构件、异种材料焊接接头和带接合辅助构件的板材
JP2011088192A (ja) 異種金属板の接合方法および異種金属接合体
WO2018042680A1 (ja) 異材接合用アークスポット溶接法、接合補助部材、及び、異材溶接継手
JP7160625B2 (ja) 異材接合用アークスタッド溶接法及び接合補助部材
WO2020100426A1 (ja) 異材接合用溶接法、接合補助部材、及び、異材溶接継手
US20230191520A1 (en) Joining method
JP2018103240A (ja) 異材接合用アーク溶接法、接合補助部材、異材溶接継手、及び、接合補助部材付き板材
JP2011088197A (ja) 異材接合体及び異材抵抗スポット溶接方法
JP2009226425A (ja) 異種板材のスポット溶接方法
WO2018042682A1 (ja) 異材接合用アーク溶接法、接合補助部材、及び、異材溶接継手
JP6999015B2 (ja) 異材接合用アーク溶接法
JP7111665B2 (ja) 異材接合用アークスタッド溶接法
JP7256498B2 (ja) 異材接合用アークスタッド溶接方法、接合補助部材及び異材溶接継手
JP2018103241A (ja) 異材接合用アーク溶接法、接合補助部材、異材溶接継手、及び、接合補助部材付き板材
JP7131927B2 (ja) 異材接合法、接合補助部材、及び、異材接合継手
JP5600652B2 (ja) 異種金属接合方法
JP7025489B2 (ja) 異材接合用アーク溶接法、接合補助部材、及び、異材溶接継手
WO2022050161A1 (ja) 接合構造
WO2020084971A1 (ja) 異材接合用アーク溶接法、接合補助部材、異材溶接継手、及び、接合補助部材付き板材
WO2022050182A1 (ja) 接合構造

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221013

R150 Certificate of patent or registration of utility model

Ref document number: 7160625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150