WO2019164068A1 - 구형의 pi계 필러를 포함하는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조되는 그라파이트 시트 - Google Patents

구형의 pi계 필러를 포함하는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조되는 그라파이트 시트 Download PDF

Info

Publication number
WO2019164068A1
WO2019164068A1 PCT/KR2018/008199 KR2018008199W WO2019164068A1 WO 2019164068 A1 WO2019164068 A1 WO 2019164068A1 KR 2018008199 W KR2018008199 W KR 2018008199W WO 2019164068 A1 WO2019164068 A1 WO 2019164068A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
polyimide film
polyamic acid
filler
graphite sheet
Prior art date
Application number
PCT/KR2018/008199
Other languages
English (en)
French (fr)
Inventor
김경수
최정열
원동영
Original Assignee
에스케이씨코오롱피아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨코오롱피아이 주식회사 filed Critical 에스케이씨코오롱피아이 주식회사
Priority to US16/975,757 priority Critical patent/US11731908B2/en
Priority to JP2020544907A priority patent/JP6982694B2/ja
Priority to CN201880090182.2A priority patent/CN111836850B/zh
Publication of WO2019164068A1 publication Critical patent/WO2019164068A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/325Calcium, strontium or barium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the present invention relates to a polyimide film for graphite sheet comprising a spherical PI filler, a method for producing the same, and a graphite sheet produced using the same.
  • Graphite having excellent thermal conductivity has attracted attention as a heat dissipation means used in the electronic device, and among these, easy to process into a sheet form, and artificial graphite having a thermal conductivity of about 2 to 7 times superior to that of copper or aluminum.
  • the sheet is in the limelight.
  • the artificial graphite sheet may be prepared through a carbonization process and a graphitization process of the polymer, and a heat resistant polymer capable of withstanding a temperature of about 400 ° C. or more among the polymer may be used as the graphite precursor.
  • a heat resistant polymer capable of withstanding a temperature of about 400 ° C. or more among the polymer.
  • heat resistant polymers include polyimide (PI).
  • Polyimide is a high-molecular material with the highest level of heat resistance, chemical resistance, electrical insulation, chemical resistance and weather resistance among organic materials, based on imide rings with a strong aromatic backbone and excellent chemical stability. It is known to be an optimal graphite precursor by enabling excellent yield, crystallinity and thermal conductivity in the preparation of.
  • polyimide is produced as a highly oriented film and used for producing the graphite sheet.
  • the highly oriented polyimide film may be obtained by drying a polyamic acid as a precursor and orienting polymer chains in a planar direction of the film through a process such as stretching or pressing.
  • Constantly oriented polymer chains can form a graphite layer with good crystallinity in a regular carbon arrangement upon carbonization and graphitization. Accordingly, by using a highly oriented polyimide film, a graphite sheet having a 'multilayer graphite structure' excellent in crystallinity can be produced.
  • Such a graphite sheet has excellent thermal conductivity in the two-dimensional plane direction, but thermal conductivity in the thickness direction is about 1% or less as compared with the plane direction. This is presumably due to the fact that most graphite layers are superimposed by electrical attraction, so that there is a physical gap between the layers.
  • a polyimide film including a sublimable inorganic filler and a spherical polyimide filler may implement a graphite sheet with improved thermal conductivity in the thickness direction as well as thermal conductivity in the thickness direction.
  • the present invention has a substantial object to provide a specific embodiment thereof.
  • the graphite sheet in the case of using a polyimide film containing a polyimide-based filler, has a thermal conductivity of 1,000 W / m ⁇ K or more in the plane direction and a thermal conductivity of 30 W / m ⁇ K or more in the thickness direction. It has been found that manufacture is possible, and details for implementation thereof are described herein.
  • the present invention is, as a first aspect, a polyimide film comprising a sublimable inorganic filler and a spherical polyimide filler, as a polyimide film for graphite sheets derived from a first precursor composition containing a first polyamic acid. Films may be provided.
  • the present invention provides a first polyamic acid by polymerizing a diamine monomer and a dianhydride monomer in an organic solvent, using a first precursor composition obtained by mixing an inorganic filler and a polyimide filler, It is possible to provide a method for producing a polyimide film.
  • the first polyamic acid solution may be provided with a production method for further adding a linear catalyst and the second catalyst of the ring structure.
  • a graphite sheet manufactured using the polyimide film and an electronic device including the same may be provided.
  • dianhydrides are intended to include precursors or derivatives thereof, which may technically not be dianhydrides, but nevertheless will react with diamines to form polyamic acids. This polyamic acid can be converted back to polyimide.
  • diamine is intended to include precursors or derivatives thereof, which may not technically be diamines, but will nevertheless react with dianhydrides to form polyamic acids, which in turn Can be converted to mid.
  • any pair of any upper range thresholds whether or not a range is disclosed separately, or It is to be understood that this disclosure specifically discloses all ranges formed with a desired value and any lower range limit or desired value.
  • a range of numerical values is mentioned herein, unless stated otherwise, the range is intended to include the endpoint and all integers and fractions within that range. It is intended that the scope of the invention not be limited to the particular values mentioned when defining the range.
  • the polyimide film which concerns on this invention is a polyimide film for graphite sheets derived from the 1st precursor composition containing a 1st polyamic acid, Comprising:
  • the inorganic filler which has sublimation, and spherical polyimide filler is characterized by the above-mentioned. It is done.
  • the inorganic filler may sublimate upon carbonization and graphitization of the polyimide film to induce a predetermined foaming phenomenon.
  • This foaming phenomenon can facilitate the exhaust of the sublimation gas generated during carbonization and graphitization, thereby obtaining a high-quality graphite sheet, and the predetermined voids formed by the foaming have the flexibility of the graphite sheet ('flexibility' ') Can also be improved.
  • the content of the inorganic filler may be 0.2 to 0.5 parts by weight based on 100 parts by weight of the first polyamic acid.
  • the content of the inorganic filler is less than the above range, it is difficult to expect the above-described foaming phenomenon.
  • the exhaust of the sublimation gas generated inside the film may not be made smoothly.
  • the unexhausted sublimation gas remaining inside the film interferes with carbon rearrangement and adversely affects the conversion to highly purified artificial graphite, which may result in the production of graphite sheets having poor crystallinity.
  • the sublimation gas generated from the inside can damage or destroy the graphite structure formed on the surface layer, thereby obtaining a high quality graphite sheet. it's difficult.
  • the content of the inorganic filler is less than the above range, the roughness of the surface of the polyimide film may be lowered, which is not preferable.
  • the frictional force between the overlapping film surface is increased to reduce the process handleability.
  • the increased adhesion between the overlapping films makes it difficult to correct the winding failure due to meandering properties occurring during the winding of the polyimide film, resulting in a decrease in the winding ability and an increase in corona treatment.
  • a blocking phenomenon may occur due to the adhesiveness.
  • the content of the inorganic filler exceeds the above range, the dispersibility of the inorganic filler may be deteriorated, and thus some aggregated inorganic filler may be exposed on the surface of the polyimide film, causing surface defects. have.
  • the excess inorganic filler outside the above range may cause excessive foaming during the carbonization and graphitization process, causing damage to the internal structure of the graphite sheet, thereby lowering the thermal conductivity of the graphite sheet It is not preferable because the number of bright spots, which are traces of foaming, on the graphite sheet surface can be greatly increased.
  • the average particle diameter of the inorganic filler may also be selected under the same principle as the significance of the content of the inorganic filler described above, and in detail, the average particle diameter may be 1.5 to 4.5 ⁇ m.
  • the average particle diameter of the inorganic filler is less than the above range, the roughness of the surface of the polyimide film may be lowered.
  • the inorganic filler having a particle size smaller than the above range is difficult to induce a desired level of foaming phenomenon during the carbonization and graphitization process, the above-described damage may occur.
  • the inorganic filler is not preferable when the average particle diameter exceeds the above range, together with the surface defects described above, which may cause excessive bright spot formation.
  • the inorganic filler may include, for example, one or more inorganic particles selected from the group consisting of dicalcium phosphate, barium sulfate, and calcium carbonate, but is not limited thereto.
  • such a polyimide filler in the process of carbonization and / or graphitization, may play an important role in determining the thermal conductivity of the graphite sheet, in particular the thermal conductivity in the thickness direction, and thus, its content and particle size Should be chosen carefully.
  • the content of the polyimide filler may be 0.1 to 5 parts by weight based on 100 parts by weight of the first polyamic acid, and the average particle diameter of the polyimide filler may be 1 to 10 ⁇ m.
  • the content of the polyimide filler is less than the above range, it is not possible to expect an effect of improving the thickness direction thermal conductivity of the graphite sheet intended by the present invention. This may be the same even when the average particle diameter is less than the range.
  • the content of the polyimide filler exceeds the above range, the dispersibility of the polyimide filler may be deteriorated, and thus, some aggregated polyimide filler may be exposed on the surface of the polyimide film, resulting in surface defects. It can be cause.
  • the excess polyimide filler outside the above range may impede rearrangement of carbon atoms during carbonization and / or graphitization, thereby damaging the structure of the graphite sheet, thereby causing an excessive reduction in planar thermal conductivity.
  • the polyimide filler may include a second polyimide chain derived from a second polyamic acid, and the composition of the monomer constituting the second polyamic acid is the same as the composition of the monomer constituting the first polyamic acid. It may be possible and may differ in some cases.
  • the polyimide film comprises a first polyimide chain derived from the first polyamic acid, the first polyimide chain forms a multi-layer structure in which at least a portion thereof is oriented in a planar direction, At least a portion of the polyimide filler may be a structure in which the multilayer structure is dispersed.
  • At least a part of the multilayer structure of the first polyimide chain is graphitized to form a multilayer graphite structure, and at least a part of the polyimide filler is graphitized, It is possible to form crosslinking portions connecting between the layers of the multilayer graphite structure.
  • the first crosslinked portion may be a graphite form having a two-dimensional planar shape or a carbon allotrope close to the graphite form, or a three-dimensional carbon allotrope in which the two-dimensional carbon allotropes are stacked, and may serve as a heat transfer path between layers.
  • the thermal conductivity in the thickness direction is different from that of the conventional case described above. Can be significantly improved in comparison.
  • the polyimide film of the present invention may be prepared from a first precursor composition that is a precursor of polyimide, and the first precursor composition may be referred to as a polyamic acid solution in a broad sense.
  • Such a polyamic acid solution can be prepared by dissolving and polymerizing an aromatic diamine monomer and an aromatic dianhydride monomer in an organic solvent in a substantially equimolar amount.
  • the polymerization method is, for example
  • the polymerization method is not limited only to the above examples, of course, any known method may be used.
  • the dianhydride monomers that may be used in the preparation of the polyamic acid solution are pyromellitic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 3,3 ', 4,4'- Biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride, 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 3,4,9,10-perylene tetracarboxylic Dianhydride, bis (3,4-dicarboxyphenyl) propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxy Phen
  • Diamines that may be used in the preparation of the polyamic acid solution are 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylmethane, benzidine, 3,3'-dichlorobenzidine, 4,4 ' -Diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylether (4,4'-oxydianiline) , 3,3'-diaminodiphenyl ether (3,3'-oxydianiline), 3,4'-diaminodiphenyl ether (3,4'-oxydianiline), 1,5-diaminonaphthalene , 4,4'-D
  • the polyamic acid solution is usually obtained at a solid content of 5 to 35% by weight, preferably 10 to 30% by weight.
  • the polyamic acid solution obtains a molecular weight and solution viscosity suitable for forming a film.
  • the organic solvent is not particularly limited as long as it can dissolve the polyamic acid, but may be an aprotic polar solvent.
  • Non-limiting examples of the aprotic polar solvent include amide solvents such as N, N'-dimethylformamide (DMF) and N, N'-dimethylacetamide (DMAc), p-chlorophenol, o-chloro Phenol solvents such as phenol, N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL), and Diglyme (Diglyme), and the like. These may be used alone or in combination of two or more thereof.
  • amide solvents such as N, N'-dimethylformamide (DMF) and N, N'-dimethylacetamide (DMAc)
  • p-chlorophenol o-chloro Phenol solvents
  • o-chloro Phenol solvents such as phenol, N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL), and Diglyme (Diglyme), and the like.
  • the solubility of the polyamic acid may be adjusted by using auxiliary solvents such as toluene, tetrahydrofuran, acetone, methyl ethyl ketone, methanol, ethanol and water.
  • auxiliary solvents such as toluene, tetrahydrofuran, acetone, methyl ethyl ketone, methanol, ethanol and water.
  • the organic solvents which may be particularly preferably used for preparing the precursor composition of the present invention may be N, N-dimethylformamide and N, N-dimethylacetamide, which are amide solvents.
  • the present invention provides a method for producing a polyimide film.
  • all the monomers may be added in one step or the monomers may be sequentially added in step (a), in which case partial polymerization between monomers may occur.
  • step (a) in which case partial polymerization between monomers may occur.
  • the addition method of the said inorganic filler or the said polyimide filler is not specifically limited, Any known method can also be used.
  • the said polyimide filler can be manufactured according to the method demonstrated below.
  • the method for preparing the polyimide-based filler may include preparing a polyamic acid solution by mixing and polymerizing an organic solvent, a diamine monomer, and a dianhydride monomer;
  • the solidified discharge may be pulverized to prepare a powder granule.
  • a polyimide filler can be manufactured using the method known to a person skilled in the art, or the method already known.
  • the first catalyst and the second catalyst having a ring structure may be additionally added to the first polyamic acid solution, and the content of the second catalyst may be the first catalyst and the second catalyst. It may be 10 to 30 mol% based on the total amount of.
  • the production method according to the present invention can improve the packing property of the polyamic acid polymer chain by including the second catalyst in a specific range.
  • the packing property may be a characteristic that means that the polyamic acid polymer chain is regularly arranged and overlapped, so that the entire molecular structure of the polyamic acid is regular.
  • the packing efficiency of the polyimide film polymer chain may be improved, and thus, the entire molecular structure of the polyimide may include many crystalline portions while having regularity. Can be.
  • the graphite sheet excellent in crystallinity can be manufactured, and the excellent crystallinity is the heat conductivity of a graphite sheet. In particular, it contributes significantly to the improvement of the planar thermal conductivity.
  • the content of the second catalyst is not more than 10 mol% outside the range according to the present invention, it is difficult to expect the improvement of the packing property, accordingly the crystallinity is not sufficiently improved, the thermal conductivity of the graphite sheet intended in the present invention Also the improvement effect is not great.
  • the imidization rate may be lowered, thereby greatly lowering the mechanical strength of the polyimide film, or more time may be required to achieve the same imidization rate, thereby lowering the overall process efficiency. have.
  • the total amount of the first catalyst and the second catalyst may be in the range of 1.5 to 4.5 moles with respect to 1 mole of the amic acid group in the polyamic acid, and may be in the range of 2.5 to 3.5 moles in detail.
  • the thermal and / or mechanical properties of the polyimide film or graphite sheet to be produced may be lowered, which is not preferable.
  • the linear catalyst may be at least one selected from the group consisting of dimethylacetamide (DMAc), N, N-diethylacetamide, dimethylformamide (DMF), and diethylformamide (DEF), and thermal conductivity Dimethylformamide may be most preferred in view of the improvement.
  • DMAc dimethylacetamide
  • DMF dimethylformamide
  • DEF diethylformamide
  • thermal conductivity Dimethylformamide may be most preferred in view of the improvement.
  • the second catalyst of the ring structure is N-methyl-2-pyrrolidone (NMP), N-ethylpyrrolidone (NEP), N-vinylpyrrolidone and 1,3-dimethyl-2-imidazolidinone It may be one or more selected from the group consisting of, in detail N-methylpyrrolidone may be most preferred.
  • the method of imidating the said 1st precursor composition and manufacturing a polyimide film for example, the thermal imidation method, the chemical imidation method, or the composite imidation method which used the thermal imidation method and the chemical imidation method together.
  • the thermal imidation method for example, the thermal imidation method, the chemical imidation method, or the composite imidation method which used the thermal imidation method and the chemical imidation method together.
  • the thermal imidation method is a method of advancing the imidation reaction only by heating without acting on a dehydrating cyclization agent, and after forming a polyamic acid on a support, the temperature is 40 ° C to 400 ° C, preferably 40 ° C to 300 ° C. It is a method of obtaining a polyimide film in which the polyamic acid is imidated by gradually heating the temperature in the temperature range for 1 to 8 hours.
  • the chemical imidization method is a method of promoting imidization by applying a dehydrating agent and / or an imidating agent to a polyamic acid solution.
  • a dehydrating agent and an imidizing agent are added to a polyamic acid solution to form a film on a support, followed by heating at 80 to 200 ° C., preferably 100 to 180 ° C. to activate the dehydrating agent and the imidizing agent, and partially cure.
  • a polyimide film can be obtained by drying at 200 to 400 ° C. for 5 to 400 seconds after drying.
  • a chemical imidization method or a complex imidization method may be used.
  • a dehydrating agent and an imidizing agent may be further added to the first polyamic acid solution.
  • the term "dehydrating agent” promotes a ring-closure reaction through dehydration to polyamic acid, and for example, aliphatic acid anhydride, aromatic acid anhydride, N, N'-dialkylcarbodiimide, halogenated lower aliphatic, halogenated lower fatty acid.
  • aliphatic acid anhydrides such as acetic anhydride, propionic anhydride, and lactic anhydride, or a mixture of two or more thereof can be preferably used in view of ease of availability and cost.
  • an "imide agent” means the component which has an effect which accelerates the ring-closure reaction with respect to a polyamic acid,
  • an aliphatic tertiary amine, an aromatic tertiary amine, a heterocyclic tertiary amine, etc. are used.
  • heterocyclic tertiary amines are particularly preferably used in view of reactivity as a catalyst.
  • quinoline isoquinoline, ⁇ -picolin, pyridine and the like are preferably used.
  • the imidization step is performed by applying the first precursor composition containing the polyamic acid solution on a support, and heat-treating the gel at a temperature range of 40 ° C. to 300 ° C. on the support. And forming a film, peeling the gel film from the support, and further heating the gel film to imidize and dry the remaining amic acid (hereinafter also referred to as "firing process"). desirable.
  • a dehydrating agent and / or an imidizing agent is mixed at low temperature in a polyamic acid solution to obtain a first precursor composition.
  • the said dehydrating agent and the imidating agent are not specifically limited, The compound illustrated above can be selected and used.
  • the chemical imidation may be insufficient, and may break during firing or the mechanical strength may decrease.
  • the first precursor composition is then cast in the form of a film on a support such as a glass plate, an aluminum foil, an endless stainless belt, or a stainless drum.
  • the first precursor composition is heated on the support at 80 ° C to 200 ° C, preferably at 100 ° C to 180 ° C, more preferably at 100 ° C to 130 ° C.
  • the dehydrating agent and the imidizing agent are activated, and partially hardening and / or drying occurs, thereby forming a gel film.
  • the gel film is in the intermediate stage of curing from polyamic acid to polyimide and is self supporting.
  • the volatile matter content of the gel film is preferably in the range of 5 to 500% by weight, more preferably in the range of 5 to 200% by weight, and particularly preferably in the range of 5 to 150% by weight.
  • the method for producing a polyimide film according to the present invention may include an imidization step of forming a polyimide film by heat-treating the gel film, in one specific example, the gel film to 500 °C to 600 °C It can be heat treated.
  • the graphite sheet according to the present invention may be prepared using a polyimide film prepared by the foregoing "polyimide film” or "method of producing a polyimide", and in detail, the polyimide film may be carbonized and / or graphitized Can be prepared.
  • the graphite sheet may have a thickness of 10 to 100 ⁇ m, a thermal conductivity of about 1,000 W / m ⁇ K or more in a plane direction, and a thermal conductivity of about 30 W / m ⁇ K or more in a thickness direction.
  • the carbonization step may be performed using a hot press and / or an electric furnace in reduced pressure or nitrogen gas.
  • the carbonization may be prepared by raising and maintaining the temperature in a nitrogen / argon atmosphere at a maximum temperature of 1,000 ° C. to 1500 ° C. over a period of about 12 hours, and vertically using a hot press for high orientation of carbon. Pressure can be applied in the direction.
  • a pressure of at least 5 kg / cm 2 , preferably at least 15 kg / cm 2 , more preferably at least 25 kg / cm 2 can be applied during the carbonization process, but this is intended as an example to aid in the practice of the invention.
  • the scope of the invention is not limited.
  • the graphitization step may also be used hot press and / or electric furnace.
  • the graphitization step can also take place in an inert gas, and preferred examples of the inert gas include a mixed gas comprising nitrogen, argon and a small amount of helium.
  • the graphitization step may be prepared by raising and maintaining over a period of about 10 hours from a normal temperature of nitrogen / argon atmosphere to a maximum temperature of 2,500 °C to 3,000 °C range.
  • a pressure of 100 kg / cm 2 or more, preferably 200 kg / cm 2 or more, more preferably 300 kg / cm 2 or more may be applied.
  • the scope of the present invention is not limited to the conditions.
  • Figure 2 is a photograph of the surface of the polyimide film prepared in Example 1.
  • DMAc N, N'-dimethylacetamide
  • the mixture was stirred for 30 minutes while adjusting the reaction temperature not to exceed 40 ° C, and then slowly heated up to 80 ° C, followed by stirring at the same temperature for 4 hours to obtain a polyamic acid solution.
  • the viscosity of the obtained polyamic acid solution was measured at 75 poise, and the intrinsic viscosity was 1.31 dl / g.
  • the obtained polyamic acid solution was immersed in 800 g of methanol, discharged in a yarn form, and left for 10 hours.
  • DMF dimethylformamide
  • the content of the inorganic filler with respect to 100 parts by weight of the first polyamic acid solid content in the first precursor composition is 0.3 parts by weight, and the content of the polyimide filler is 1 part by weight.
  • the film was peeled off the SUS plate, fixed to the pin frame, and transferred to a high temperature tenter.
  • the film was heated from 200 ° C. to 600 ° C. in a high temperature tenter, cooled at 25 ° C., and separated from the pin frame to obtain a polyimide film having a width of 20 * 20 cm and a thickness of 50 ⁇ m.
  • a polyimide film was manufactured in the same manner as in Example 1, except that the polyimide filler having an average particle diameter of 1 ⁇ m was manufactured in Production Example 1-1.
  • a polyimide film was manufactured in the same manner as in Example 1, except that the polyimide filler having an average particle diameter of 10 ⁇ m was manufactured in Production Example 1-1.
  • a polyimide film was prepared in the same manner as in Example 1 except that the amount of the polyimide filler was changed so that the content of the polyimide filler was 0.1 parts by weight.
  • a polyimide film was prepared in the same manner as in Example 1 except that the amount of the polyimide filler was changed so that the content of the polyimide filler was 5 parts by weight.
  • a polyimide film was prepared in the same manner as in Example 1 except that the amount of the inorganic filler was changed so that the content of the inorganic filler was 0.5 parts by weight.
  • the polyimide film was prepared in the same manner as in Example 1 except that the inorganic filler was changed to barium sulfate having an average particle diameter of 3 ⁇ m, and the amount of the barium sulfate was changed so that the content of the inorganic filler was 0.3 parts by weight.
  • a polyimide film was prepared in the same manner as in Example 1 except that no polyimide filler was added.
  • a polyimide film was prepared in the same manner as in Example 1 except that no inorganic filler was added.
  • a polyimide film was prepared in the same manner as in Example 1 except that the polyimide filler and the inorganic filler were not added.
  • a polyimide film was manufactured in the same manner as in Example 1, except that the polyimide filler having an average particle diameter of 15 ⁇ m was manufactured in Preparation Example 1-1.
  • a polyimide film was prepared in the same manner as in Example 1, except that the amount of the polyimide filler was changed so that the content of the polyimide filler was 10 parts by weight.
  • a polyimide film was prepared in the same manner as in Example 1, except that the amount of the polyimide filler was changed so that the content of the polyimide filler was 0.05 parts by weight.
  • a polyimide film was prepared in the same manner as in Example 1 except that the amount of the inorganic filler was changed so that the content of the inorganic filler was 0.1 parts by weight.
  • a polyimide film was prepared in the same manner as in Example 1, except that the amount of the inorganic filler was changed so that the content of the inorganic filler was 0.6 parts by weight.
  • a polyimide film was prepared in the same manner as in Example 1 except that the average particle diameter of the dibasic calcium phosphate was changed to 5 ⁇ m.
  • a polyimide film was prepared in the same manner as in Example 1 except that the average particle diameter of the dibasic calcium phosphate was changed to 1 ⁇ m.
  • Example 1-3 a polyimide film was prepared in the same manner as in Example 1, except that the second catalyst was not included and a catalyst including DMF 11.84 g was added as the first catalyst.
  • Example 1 One 3 0.3 - 0
  • Example 2 One One 3 0.3 - 0
  • Example 3 10 One 3 0.3 - 0
  • Example 4 3 0.1 3 0.3 - 0
  • Example 5 3 5 3 0.3 - 0
  • Example 6 3 One 3 0.5 - 0
  • Example 7 3 One 3 - 0.3 0
  • Comparative Example 4 15 One 3 0.3 - 35
  • Comparative Example 5 3 10 3 0.3 - 21
  • Comparative Example 8 3 One 3 0.6 - 6 Comparative Example 9 3 One 5 0.3 - 8
  • the polyimide film of the embodiments of the average particle diameter and the amount of the polyimide filler and / or inorganic filler in the range of the present invention did not have a surface defect, the surface of the polyimide film according to Example 1 Even referring to Figure 2 taken, it can be confirmed that the surface state on the naked eye is smooth.
  • the polyimide films were heated to 1,200 ° C. under nitrogen gas at a rate of 3 ° C./min using a high temperature furnace capable of carbonization and maintained for about 2 hours (carbonization). Subsequently, graphite sheets having a thickness of 30 ⁇ m were prepared by raising the temperature to 2,800 ° C. under an argon gas at an elevated temperature rate of 5 ° C./min using an ultra high temperature furnace for 1 hour (graphitization), and then cooling them.
  • planar thermal conductivity, the thickness direction thermal conductivity, and the number of occurrences of the bright spots of the prepared graphite sheet were respectively measured, and the results are shown in Table 2 below.
  • the thermal diffusivity of the graphite sheet in the thickness direction and the planar direction was measured using a diffusion rate measuring instrument (Model LFA 467, Netsch), and the density (weight / volume) and specific heat (DSC) values of the thermal diffusivity were measured.
  • the thermal conductivity was calculated by multiplying the specific heat measurement using).
  • the number of occurrences of the bright spots is a factor that causes surface defects of the graphite sheet, and the number of occurrences of protrusions having a size of 0.05 mm or more is measured inside a square of 50 mm ⁇ 50 mm.
  • the examples all relate to a polyimide film comprising the polyimide filler in the scope of the present invention, that is, the preferred content and average particle diameter.
  • the graphite sheet made of such a polyimide film has a thermal conductivity of 1,000 W / m ⁇ K or more in the planar direction as shown in Table 2, and excellent thermal conductivity of 30 W / m ⁇ K or more in the thickness direction.
  • the graphite sheet made of the polyimide film of Comparative Example 1 in which the injection of the polyimide filler was omitted it can be confirmed that the thermal conductivity in the thickness direction is significantly lower than the embodiment.
  • the thickness direction thermal conductivity of the graphite sheet may be remarkably different depending on whether the polyimide particles are included or not.
  • the number of the generated bright spots is 5 or less, and the surface is better than the graphite sheets of Comparative Examples 4, 8 and 9.
  • Comparative Example 4 a polyimide film was prepared by adding a polyimide filler having an average particle diameter of 15 ⁇ m in an appropriate amount, but it was confirmed that thermal conductivity in the planar direction was decreased. It is expected that the carbon atoms will not be rearranged and the desired results will not be produced.
  • the inorganic filler acts as an important factor in the conversion from polyimide to graphite, and in particular, the thermal conductivity is remarkably improved when the amount and size of the inorganic filler fall within a specific range.
  • the thermal conductivity in the planar direction is remarkably excellent as compared with Comparative Example 11. It can be expected that the packing efficiency of the chain can be improved, and that this improvement in packing efficiency favors the regular arrangement of carbon in carbonization and graphitization.
  • the polyimide film of the present invention may form one or more crosslinked portions in which the polyimide filler forms a heat transfer path between the layers of the multilayer graphite structure during carbonization and graphitization.
  • the polyimide film may also induce a predetermined foaming phenomenon by including an inorganic filler of a preferable content, thereby realizing a graphite sheet having excellent flexibility.
  • the present invention has also been described in detail above the advantages of using two or more catalysts, in summary by using a combination of two or more catalysts, it is possible to improve the packing properties of the polymer chain of the polyamic acid and in such a polyamic acid
  • the derived polyimide film may have a structure in which polymer chains are regularly arranged, and thus may implement a graphite sheet having improved thermal conductivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은, 제1 폴리아믹산을 포함하는 제1 전구체 조성물로부터 유래되는 그라파이트 시트용 폴리이미드 필름으로서, 승화성을 가지는 무기물계 필러 및 구형의 폴리이미드계 필러를 포함하는, 폴리이미드 이의 제조방법 및 이를 이용하여 제조되는 그라파이트 시트를 제공한다.

Description

구형의 PI계 필러를 포함하는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조되는 그라파이트 시트
본 발명은 구형의 PI계 필러를 포함하는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조되는 그라파이트 시트에 관한 것이다.
최근의 전자기기는 점차 그 구조가 경량화, 소형화, 박형화 및 고집적화되고 있는 바, 단위 체적당 발열량이 증가하면서 열 부하로 인한 많은 문제들이 발생하고 있으며, 대표적인 문제로는 전자기기의 열 부하로 인한 반도체의 연산 속도 저하와 배터리의 열화로 인한 수명 단축 등 전자기기 성능에 직접적인 영향을 주는 것들을 예로 들 수 있다.
이러한 이유로 전자기기의 효과적인 방열은 매우 중요한 과제 중 하나로 대두되고 있다.
상기 전자기기에 사용되는 방열 수단으로 열전도도가 우수한 그라파이트가 주목 받고 있으며, 그 중에서도 시트 형태로 가공하기 용이하며, 구리나 알루미늄의 열전도도와 비교하여 약 2 배 내지 7 배 우수한 열전도도를 가지는 인조 그라파이트 시트가 각광받고 있다.
이러한 인조 그라파이트 시트는 고분자의 탄화 공정과 흑연화 공정을 통해 제조할 수 있으며, 고분자 중에서도 약 400 ℃ 이상의 온도를 견딜 수 있는 내열성 고분자가 그라파이트 전구체로 사용될 수 있다. 이러한 내열성 고분자의 대표적인 예로는 폴리이미드(polyimide, PI)를 들 수 있다.
폴리이미드는 강직한 방향족 주쇄와 함께 화학적 안정성이 매우 우수한 이미드 고리를 기초로 하여, 유기 재료들 중에서도 최고 수준의 내열성, 내약품성, 전기 절연성, 내화학성, 내후성을 가지는 고분자 재료로서, 인조 그라파이트 시트의 제조 시 우수한 수율, 결정화도 및 열전도도를 가능하게 하여 최적의 그라파이트 전구체로 알려져 있다.
일반적으로, 인조 그라파이트 시트의 물성은 전구체인 폴리이미드의 물성에 크게 영향을 받는 것으로 알려져 있으며, 인조 그라파이트 시트의 물성 향상을 위해 폴리이미드의 개량이 활발하게 이루어지고 있다. 특히 인조 그라파이트 시트의 열전도도 향상을 위한 많은 연구가 진행 중에 있다.
대표적으로 폴리이미드를 고 배향성의 필름으로 제조하고, 이를 그라파이트 시트의 제조에 이용하는 것을 예로 들 수 있다. 고 배향성 폴리이미드 필름은, 전구체인 폴리아믹산을 건조하고, 연신이나 압착 등의 공정을 통해 고분자 사슬들을 필름의 평면방향으로 배향시킨 것일 수 있다.
일정하게 배향된 고분자 사슬들은 탄화와 흑연화 시, 규칙적인 탄소 배열을 이루면서 결정성이 우수한 그라파이트 층을 형성할 수 있다. 이에 따라 고 배향성 폴리이미드 필름을 이용하면 결정성이 우수한 '다층 그라파이트 구조'의 그라파이트 시트를 제조할 수 있다.
이러한 그라파이트 시트는, 2차원 평면방향으로의 열전도도가 매우 우수하지만, 두께방향으로의 열전도도는 평면방향과 비교하여 1 % 이하 정도이다. 이는, 대부분의 그라파이트 층들이 전기적 인력으로 중첩되어 있어, 층과 층 사이에 물리적인 갭이 존재함에 따른 것으로 추측된다.
이에, 평면으로의 열전도도 뿐만 아니라 두께방향으로도 우수한 열전도도를 가지는 그라파이트 시트와, 이의 구현을 가능하게 하는 폴리이미드의 개발이 필요한 실정이다.
본 발명의 목적은 신규한 폴리이미드 필름과 이로 제조된 그라파이트 시트를 제공하는 것이다.
본 발명의 일 측면에 따르면, 승화성을 가지는 무기물계 필러 및 구형의 폴리이미드계 필러를 포함하는 폴리이미드 필름은 평면방향의 열전도도 뿐만 아니라, 두께방향의 열전도도 역시 현저히 향상된 그라파이트 시트를 구현할 수 있다.
본 발명의 또 다른 측면에 따르면, 제1 전구체 조성물을 이미드화할 때, 서로 상이한 특성을 가진 2종 이상의 촉매를 이용함으로써, 고분자 사슬의 패킹 효율이 향상된 폴리이미드 필름을 구현할 수 있다.
또한, 이와 같이 제조된 폴리이미드 필름을 이용하면, 결정화도가 우수하고, 열전도도가 향상된 그라파이트 시트를 제조할 수 있다.
이에 본 발명은 이의 구체적 실시예를 제공하는데 실질적인 목적이 있다.
본 발명은 폴리이미드계 필러를 포함하는 폴리이미드 필름을 이용하는 경우, 평면방향에 대한 열전도도가 1,000 W/m·K 이상이고, 두께방향에 대한 열전도도가 30 W/m·K 이상인 그라파이트 시트의 제조가 가능함을 발견하였으며, 이의 구현을 위한 구체적인 내용을 본 명세서에서 설명한다.
본 발명은 제1 양태로서, 제1 폴리아믹산을 포함하는 제1 전구체 조성물로부터 유래되는 그라파이트 시트용 폴리이미드 필름으로서, 승화성을 가지는 무기물계 필러 및 구형의 폴리이미드계 필러를 포함하는, 폴리이미드 필름을 제공할 수 있다.
본 발명은 또한 제2 양태로서, 유기용매에서 디아민 단량체 및 디안하이드라이드 단량체를 중합하여 제1 폴리아믹산을 제조하고, 이에 무기물계 필러와 폴리이미드계 필러를 혼합한 제1 전구체 조성물을 이용하고, 폴리이미드 필름을 제조하는 방법을 제공할 수 있다.
또한, 상기 제1 폴리아믹산 용액에 선형 구조의 제1 촉매 및 고리 구조의 제2 촉매를 추가로 투입하는 제조 방법을 제공할 수 있다.
본 발명은 또한 제3 양태로서, 상기 폴리이미드 필름을 이용하여 제조된 그라파이트 시트와, 이를 포함하는 전자 장치를 제공할 수 있다.
이하에서는 본 발명에 따른 "폴리이미드 필름", "폴리이미드 필름의 제조방법" 및 "그라파이트 시트"의 순서로 발명의 실시 형태를 보다 상세하게 설명한다.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 존재할 수 있음을 이해하여야 한다.
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 "디안하이드라이드(이무수물; dianhydride)"는 그 전구체 또는 유도체를 포함하는 것으로 의도되는데, 이들은 기술적으로는 디안하이드라이드가 아닐 수 있지만, 그럼에도 불구하고 디아민과 반응하여 폴리아믹산을 형성할 것이며, 이 폴리아믹산은 다시 폴리이미드로 변환될 수 있다.
본 명세서에서 "디아민"은 그의 전구체 또는 유도체를 포함하는 것으로 의도되는데, 이들은 기술적으로는 디아민이 아닐 수 있지만, 그럼에도 불구하고 디안하이드라이드와 반응하여 폴리아믹산을 형성할 것이며, 이 폴리아믹산은 다시 폴리이미드로 변환될 수 있다.
본 명세서에서 양, 농도, 또는 다른 값 또는 파라미터가 범위, 바람직한 범위 또는 바람직한 상한 값 및 바람직한 하한 값의 열거로서 주어지는 경우, 범위가 별도로 개시되는 지에 상관없이 임의의 한 쌍의 임의의 위쪽 범위 한계치 또는 바람직한 값 및 임의의 아래쪽 범위 한계치 또는 바람직한 값으로 형성된 모든 범위를 구체적으로 개시하는 것으로 이해되어야 한다. 수치 값의 범위가 본 명세서에서 언급될 경우, 달리 기술되지 않는다면, 그 범위는 그 종점 및 그 범위 내의 모든 정수와 분수를 포함하는 것으로 의도된다. 본 발명의 범주는 범위를 정의할 때 언급되는 특정 값으로 한정되지 않는 것으로 의도된다.
제1 양태: 폴리이미드 필름
본 발명에 따른 폴리이미드 필름은, 제1 폴리아믹산을 포함하는 제1 전구체 조성물로부터 유래되는 그라파이트 시트용 폴리이미드 필름으로서, 승화성을 가지는 무기물계 필러 및 구형의 폴리이미드계 필러를 포함하는 것을 특징으로 한다.
상기 무기물계 필러는 폴리이미드 필름의 탄화와 흑연화 시 승화하여 소정의 발포 현상을 유도할 수 있다. 이러한 발포 현상은, 탄화와 흑연화 시 발생하는 승화 가스의 배기를 원활하게 하여 양질의 그라파이트 시트의 수득을 가능하게 할 수 있고, 발포에 따라 형성되는 소정의 공극은 그라파이트 시트의 내굴곡성('유연성')도 향상시킬 수 있다.
다만, 과도한 발포 현상과 그로 인한 다수의 공극은, 그라파이트 시트의 열전도도와 기계적 물성을 크게 악화시킬 수 있고, 표면불량을 야기할 수 있어 상품으로써의 가치를 떨어트릴 수 있으므로, 무기물계 필러의 종류, 함량 및 입자 크기는 신중하게 선택되어야 한다.
이에 대한 하나의 구체적인 예에서, 상기 무기물계 필러의 함량은 제1 폴리아믹산 100 중량부 대비 0.2 내지 0.5 중량부일 수 있다.
상기 무기물계 필러의 함량이 상기 범위를 하회하는 경우, 앞서 설명한 발포 현상을 기대하기 어렵다. 이러한 경우, 폴리이미드 필름이 탄화 및/또는 흑연화될 때, 필름 내부에서 발생하는 승화 가스의 배기가 원활하게 이루어지지 않을 수 있다. 필름 내부에 잔류하는 미배기 승화 가스는 탄소 재배열을 방해하여 순도 높은 인조 그라파이트로의 전환에 악영향을 주고, 결과적으로 결정성이 좋지 못한 그라파이트 시트가 제조되는 원인이 될 수 있다.
또한, 폴리이미드 필름의 표면층과 내부에서 거의 동시에 탄화 및/또는 흑연화가 진행한다고 가정할 때, 내부로부터 발생하는 승화 가스가 표면층에 형성된 그라파이트 구조를 손상 내지 파괴할 수 있어, 양질의 그라파이트 시트를 얻기 어렵다.
또 다른 측면에서, 상기 무기물계 필러의 함량이 상기 범위를 하회하는 경우, 폴리이미드 필름 표면의 조도(roughness)가 낮아질 수 있으므로 바람직하지 않다.
여기서, 폴리이미드 필름 표면의 조도가 지나치게 낮아지는 경우, 상호 중첩되는 필름 표면 사이의 마찰력이 증가하게 되어 공정 취급성이 저하될 수 있다. 구체적으로, 중첩되는 필름들 사이의 증가된 밀착력은 폴리이미드 필름의 권취 과정에서 발생하는 사행성(斜行性)으로 인한 권취 불량의 수정을 어렵게 함으로써, 결과적으로 권취성이 저하되고, 코로나 처리시 증가되는 접착성으로 인한 블로킹(blocking) 현상을 발생시킬 수 있다.
또한, 상기 권취 과정에서 중첩되는 필름들 사이에 미세한 크기의 이물질이 유입되는 경우, 낮은 표면 조도로 인해 상기 이물질의 크기를 상쇄할 수 있는 정도의 공간을 확보할 수 없고, 이에 따라 권취를 반복하여 롤의 두께가 증가할수록 상기 이물질로 인해 해당 부위의 두께 편차가 증가하므로 결국, 이물질로 인해 변형된 흔적인 돌출흔이 발생할 수 있다.
상기 무기물계 필러의 함량이 상기 범위를 상회하는 경우, 무기물계 필러의 분산성이 악화될 수 있고, 이에 따라 일부 응집된 무기물계 필러가 폴리이미드 필름 표면에 드러나면서, 표면 결함의 원인이 될 수 있다.
또 다른 측면에서, 상기 범위를 벗어난 과량의 무기물계 필러는, 탄화와 흑연화 과정에서 과도한 발포 현상을 유발하여 그라파이트 시트의 내부 구조에 손상을 유발하고, 이에 따라 그라파이트 시트의 열전도도가 저하될 수 있으며, 그라파이트 시트 표면에, 발포 흔적인 브라이트 스팟(bright spot)의 개수를 크게 증가시킬 수 있으므로 바람직하지 않다.
상기 무기물계 필러의 평균 입경 역시, 이상에서 설명한 무기물계 필러의 함량의 의의와 동일한 원리 하에 선택될 수 있으며, 상세하게는 상기 평균 입경이 1.5 내지 4.5 ㎛일 수 있다.
상기 무기물계 필러의 평균 입경이 상기 범위를 하회하는 경우, 폴리이미드 필름 표면의 조도가 낮아질 수 있다. 또한, 상기 범위를 하회하여 너무 작은 입자 크기의 무기물계 필러는 탄화와 흑연화 과정에서 소망하는 수준의 발포 현상을 유도하기 어려운 바, 이에 대한 앞서 설명한 폐해가 발생될 수 있다.
무기물계 필러는 평균 입경이 상기 범위를 상회하는 경우, 앞서 설명한 표면 결함과 함께, 과도한 브라이트 스팟 형성의 원인이 될 수 있으므로 바람직하지 않다.
상기 무기물계 필러는 예를 들어, 제2인산칼슘, 황산바륨 및 탄산칼슘으로 이루어진 군으로부터 선택되는 하나 이상의 무기물 입자를 포함할 수 있지만, 이들로만 한정되는 것은 아니다.
한편, 이러한 폴리이미드계 필러는, 탄화 및/또는 흑연화 과정에서, 그라파이트 시트의 열전도도, 상세하게는 두께 방향의 열전도도를 결정하는데 중요하게 작용할 수 있으며, 이에 따라, 그것의 함량과 입자 크기가 신중하게 선택되어야 한다.
이에 대한 하나의 구체적인 예에서, 상기 폴리이미드계 필러의 함량은 제1 폴리아믹산 100 중량부 대비 0.1 내지 5 중량부일 수 있고, 폴리이미드계 필러의 평균 입경은 1 내지 10 ㎛일 수 있다.
상기 폴리이미드계 필러의 함량이 상기 범위를 하회하는 경우 본 발명이 의도한 그라파이트 시트의 두께방향 열전도도 향상 효과를 기대할 수 없다. 이는 상기 평균 입경의 범위를 하회하는 경우에도 동일할 수 있다.
이상의 폐해는 이후 설명하는 실시예를 통해 명확하게 입증할 것이다.
반면에 상기 폴리이미드계 필러의 함량이 상기 범위를 상회하는 경우 폴리이미드계 필러의 분산성이 악화될 수 있고, 이에 따라 일부 응집된 폴리이미드계 필러가 폴리이미드 필름 표면에 드러나면서, 표면 결함의 원인이 될 수 있다.
또한, 상기 범위를 벗어나는 과량의 폴리이미드계 필러는 탄화 및/또는 흑연화 과정에서 탄소원자가 재배열되는 것을 방해하여 그라파이트 시트의 구조를 손상시킬 수 있으며, 그로 인하여 평면방향 열전도도가 지나치게 감소될 수 있다.
이상의 폐해는 상기 평균 입경의 범위를 상회하는 경우에도 동일할 수 있다
상기 폴리이미드계 필러는, 제2 폴리아믹산으로부터 유래된 제2 폴리이미드 사슬을 포함할 수 있으며, 상기 제2 폴리아믹산을 구성하는 단량체의 조성은 제1 폴리아믹산을 구성하는 단량체의 조성과 서로 동일할 수 있고, 경우에 따라서는 상이할 수도 있다.
하나의 구체적인 예에서, 상기 폴리이미드 필름은, 상기 제1 폴리아믹산으로부터 유래된 제1 폴리이미드 사슬을 포함하고, 상기 제1 폴리이미드 사슬은 적어도 일부가 평면방향으로 배향된 다층구조를 형성하며, 상기 폴리이미드계 필러의 적어도 일부가 상기 다층구조 사이에 분산되어 있는 구조일 수 있다.
상기 폴리이미드 필름을 탄화 및/또는 흑연화할 때, 상기 제1 폴리이미드 사슬의 다층구조 중 적어도 일부가 흑연화 되어 다층 그라파이트 구조를 형성하고, 상기 폴리이미드계 필러의 적어도 일부가 흑연화되어, 상기 다층 그라파이트 구조의 층 사이를 연결하는 가교부를 형성할 수 있다.
상기 제1 가교부는 2차원 평면 형태를 가지는 그라파이트 형태 또는 그라파이트 형태에 가까운 탄소 동소체이거나 상기 2차원 탄소 동소체들이 적층된 3차원의 탄소 동소체일 수 있으며, 층 사이의 열전달 경로로 작용할 수 있다.
통상의 그라파이트 시트에서 열은 다층 그라파이트 구조의 층 표면을 따라 이동하여 평면방향의 열전도도가 상대적으로 높고, 다층 그라파이트 구조를 관통하는 두께방향의 경우 다층 구조 사이의 물리적 갭으로 인해 열전도도가 상대적으로 낮다.
반면에, 본 발명에 따른 폴리이미드 필름으로부터 유래된 그라파이트 시트는, 열의 일부가 상기 제1 가교부를 따라 다층 그라파이트 구조의 층 사이에서 이동하기 용이하여, 두께방향의 열전도도가 전술한 통상의 경우와 비교하여 현저히 향상될 수 있다.
제2 양태: 폴리이미드 필름의 제조방법
본 발명의 폴리이미드 필름은 폴리이미드의 전구체인 제1 전구체 조성물로부터 제조될 수 있고, 상기 제1 전구체 조성물은 넓은 의미에서 폴리아믹산 용액으로 지칭할 수 있다.
이러한 폴리아믹산 용액은 방향족 디아민 단량체 및 방향족 디안하이드라이드 단량체를 실질적으로 등몰량이 되도록 유기용매 중에 용해시키고 중합하여 제조할 수 있다.
상기 중합 방법은, 예를 들어
(1) 디아민 단량체 전량을 용매 중에 넣고, 그 후 디안하이드라이드 단량체를 디아민 단량체와 실질적으로 등몰이되도록 첨가하여 중합하는 방법;
(2) 디안하이드라이드 단량체 전량을 용매 중에 넣고, 그 후 디아민 단량체를 디안하이드라이드 단량체와 실질적으로 등몰이되도록 첨가하여 중합하는 방법;
(3) 디아민 단량체 중 일부 성분을 용매 중에 넣은 후, 반응 성분에 대해서 디안하이드라이드 단량체 중 일부 성분을 약 95~105 몰%의 비율로 혼합한 후, 나머지 디아민 단량체 성분을 첨가하고 이에 연속해서 나머지 디안하이드라이드 단량체 성분을 첨가하여, 디아민 단량체 및 디안하이드라이드 단량체가 실질적으로 등몰이 되도록 하여 중합하는 방법;
(4) 디안하이드라이드 단량체를 용매 중에 넣은 후, 반응 성분에 대해서 디아민 화합물 중 일부 성분을 95~105 몰%의 비율로 혼합한 후, 다른 디안하이드라이드 단량체 성분을 첨가하고 계속되어 나머지 디아민 단량체 성분을 첨가하여, 디아민 단량체 및 디안하이드라이드 단량체가 실질적으로 등몰이 되도록 하여 중합하는 방법;
(5) 용매 중에서 일부 디아민 단량체 성분과 일부 디안하이드라이드 단량체 성분을 어느 하나가 과량이도록 반응시켜, 제1 조성물을 형성하고, 또 다른 용매 중에서 일부 디아민 단량체 성분과 일부 디안하이드라이드 단량체 성분을 어느 하나가 과량이도록 반응시켜 제2 조성물을 형성한 후, 제1, 제2 조성물들을 혼합하고, 중합을 완결하는 방법으로서, 이 때 제1 조성물을 형성할 때 디아민 단량체 성분이 과잉일 경우, 제2 조성물에서는 디안하이드라이드 단량체 성분을 과량으로 하고, 제1 조성물에서 디안하이드라이드 단량체 성분이 과잉일 경우, 제2 조성물에서는 디아민 단량체 성분을 과량으로 하여, 제1, 제2 조성물들을 혼합하여 이들 반응에 사용되는 전체 디아민 단량체 성분과 디안하이드라이드 단량체 성분이 실질적으로 등몰이 되도록 하여 중합하는 방법 등을 들 수 있다.
다만, 상기 중합 방법이 이상의 예들로만 한정되는 것은 아니며, 공지된 어떠한 방법을 사용할 수 있음은 물론이다.
상기 폴리아믹산 용액의 제조에 이용될 수 있는 디안하이드라이드 단량체 는 피로멜리틱디안하이드라이드, 2,3,6,7-나프탈렌테트라카르복실릭디안하이드라이드, 3,3',4,4'-비페닐테트라카르복실릭디안하이드라이드, 1,2,5,6-나프탈렌테트라카르복실릭디안하이드라이드, 2,2',3,3'-비페닐테트라카르복실릭디안하이드라이드, 3,3',4,4'-벤조페논테트라카르복실릭디안하이드라이드, 2,2-비스(3,4-디카르복시페닐) 프로판 디안하이드라이드, 3,4,9,10-페릴렌 테트라카르복실릭디안하이드라이드, 비스(3,4-디카르복시페닐) 프로판 디안하이드라이드, 1,1-비스(2,3-디카르복시페닐) 에탄 디안하이드라이드, 1,1-비스(3,4-디카르복시페닐) 에탄 디안하이드라이드, 비스(2,3-디카르복시페닐) 메탄 디안하이드라이드, 비스(3,4-디카르복시페닐) 에탄 디안하이드라이드, 옥시디프탈릭안하이드라이드, 비스(3,4-디카르복시페닐) 설폰 디안하이드라이드, p-페닐렌비스(트리멜리틱 모노에스테르애시드 안하이드라이드), 에틸렌비스(트리멜리틱 모노에스테르애시드 안하이드라이드), 및 비스페놀 A비스(트리멜리틱 모노에스테르애시드 안하이드라이드) 및 이들의 유사물을 포함하고 이들을 단독으로 또는 임의의 비율로 혼합한 혼합물로 이용할 수 있다.
상기 폴리아믹산 용액의 제조에 이용될 수 있는 디아민은, 4,4'-디아미노디페닐프로판, 4,4'-디아미노디페닐메탄, 벤지딘, 3,3'-디클로로벤지딘, 4,4'-디아미노디페닐술피드, 3,3'-디아미노디페닐술폰, 4,4'-디아미노디페닐술폰, 4,4'-디아미노디페닐에테르(4,4'-옥시디아닐린), 3,3'-디아미노디페닐에테르(3,3'-옥시디아닐린), 3,4'-디아미노디페닐에테르(3,4'-옥시디아닐린), 1,5-디아미노나프탈렌, 4,4'-디
아미노디페닐 디에틸 실란, 4,4'-디아미노디페닐 실란, 4,4'-디아미노디페닐 에틸포스핀 옥사이드, 4,4'-디아미노디페닐 N-메틸아민, 4,4'-디아미노디페닐 N-페닐 아민, 1,4-디아미노벤젠(p-페닐렌디아민), 1,3-디아미노벤젠, 1,2-디아미노벤젠 및 이들의 유사물을 포함하고 이들을 단독으로 또는 임의의 비율로 혼합한 혼합물로 이용할 수 있다.
다만, 이상의 예들로만 본 발명의 범주가 한정되는 것은 아니며, 공지된 어떠한 물질을 사용할 수 있음은 물론이다.
상기 폴리아믹산 용액은 통상 고형분 함량이 5 내지 35 중량%, 바람직하게는 10 내지 30 중량%의 농도로 얻어진다.
이 범위의 농도인 경우, 폴리아믹산 용액은 필름을 형성하기에 적당한 분자량과 용액 점도를 얻는다.
상기 유기용매는 폴리아믹산이 용해될 수 있는 용매라면 특별히 한정되지는 않으나, 비양성자성 극성 용매(aprotic polar solvent)일 수 있다.
상기 비양성자성 극성 용매의 비제한적인 예로서, N,N'-디메틸포름아미드(DMF), N,N'-디메틸아세트아미드(DMAc) 등의 아미드계 용매, p-클로로페놀, o-클로로페놀 등의 페놀계 용매, N-메틸-피롤리돈(NMP), 감마 브티로 락톤(GBL) 및 디그림(Diglyme) 등을 들 수 있고, 이들은 단독으로 또는 2종 이상 조합되어 사용될 수 있다.
경우에 따라서는 톨루엔, 테트라히드로푸란, 아세톤, 메틸에틸케톤, 메탄올, 에탄올, 물 등의 보조적 용매를 사용하여, 폴리아믹산의 용해도를 조절할 수도 있다.
하나의 예에서, 본 발명의 전구체 조성물 제조에 특히 바람직하게 사용될 수 있는 유기용매는 아미드계 용매인 N,N-디메틸포름아미드 및 N,N-디메틸아세트아미드일 수 있다.
한편, 본 발명의 폴리이미드 필름을 얻기 위해서는, 하기 (a) 내지 (d) 단계들을 거침으로써 얻어진 폴리아믹산 용액을 제조하고, 이를 이미드화하는 제조방법이 바람직하다.
이에, 본 발명은 폴리이미드 필름의 제조 방법을 제공한다.
상기 제조방법은,
(a) 유기용매, 디아민 단량체 및 디안하이드라이드 단량체를 혼합하여 제1 폴리아믹산 용액을 제조하는 단계;
(b) 상기 제1 폴리아믹산 용액에 무기물계 필러 및 폴리이미드계 필러를 혼합하여 제1 전구체 조성물을 제조하는 단계;
(c) 상기 제1 전구체 조성물을 지지체에 캐스팅하고 건조하여 겔 필름을 제조하는 단계; 및
(d) 상기 겔 필름을 열처리하여 폴리이미드 필름을 형성하는 이미드화 단계를 포함할 수 있다.
다만, 단량체의 종류 및 소망하는 폴리이미드 필름의 물성에 따라서 상기 (a) 단계에서 모든 단량체들이 일거에 첨가되거나, 또는 각 단량체들을 순차적으로 첨가할 수 있으며, 이 경우, 단량체 간 부분적 중합이 일어날 수 있음은 물론이다.
상기 무기물계 필러 또는 상기 폴리이미드계 필러의 첨가 방법은 특별히 한정되는 것은 아니고, 공지된 어떠한 방법을 이용할 수도 있다.
상기 폴리이미드계 필러는 이하에 설명하는 방법에 따라 제조할 수 있다.
구체적으로, 상기 폴리이미드계 필러를 제조하는 방법은, 유기용매, 디아민 단량체 및 디안하이드라이드 단량체를 혼합하고 중합시켜 폴리아믹산 용액을 제조하는 단계;
상기 제조된 폴리아믹산 용액을 60 내지 100 ℃의 온도에서 2 시간 내지 6 시간 동안 숙성하는 단계;
상기 숙성시킨 폴리아믹산 용액을 과량의 용제에 토출하여 고형화 시키면서, 상기 용액에서 중합용매를 제거하는 단계; 및
상기 고형화된 토출물을 분쇄시켜 분말 입상체를 제조하는 단계를 포함할 수 있다.
이상과 같이 폴리이미드계 필러의 제조방법을 소개하였지만, 이것으로만 한정되는 것은 아니며, 당업자에게 알려진 방법이나, 이미 공지된 방법을 사용하여 폴리이미드계 필러를 제조할 수 있다.
한편, 상기 (b) 단계에서 제1 폴리아믹산 용액에 선형 구조의 제1 촉매 및 고리 구조의 제2 촉매를 추가로 투입할 수 있고, 상기 제2 촉매의 함량은 상기 제1 촉매 및 제2 촉매의 총량을 기준으로 10 내지 30 몰%일 수 있다.
본 발명에 따른 제조방법은, 특히, 제2 촉매를 특정한 범위로 포함함으로써, 폴리아믹산 고분자 사슬의 패킹성을 향상시킬 수 있다. 상기 패킹성은, 폴리아믹산 고분자 사슬이 규칙적으로 배열 및 중첩되어, 폴리아믹산의 전체 분자 구조가 규칙적인 것을 의미하는 특성일 수 있다.
이와 같이 패킹성이 향상된 폴리아믹산으로 폴리이미드 필름을 제조하면, 폴리이미드 필름 고분자 사슬의 패킹 효율이 향상될 수 있으며, 이에 따라 폴리이미드 전체 분자 구조가 규칙성을 가지면서 결정성 부분을 많이 포함할 수 있다.
따라서, 이러한 폴리이미드 필름을 이용하여 그라파이트 시트를 제조하는 경우, 폴리이미드의 규칙적인 분자 구조로부터 탄소가 규칙적으로 배열되면서, 결정화도가 우수한 그라파이트 시트를 제조할 수 있고, 우수한 결정화도는, 그라파이트 시트의 열전도도, 특히 평면방향 열전도도의 향상에 상당히 기여한다.
다만, 상기 제2 촉매의 함량이 본 발명에 따른 범위를 벗어나 10몰% 이하인 경우에는, 패킹성의 향상을 기대하기 어렵고, 이에 따라 결정성이 충분히 향상되지 않아서, 본 발명에서 의도한 그라파이트 시트의 열전도도 향상 효과가 크지 않다.
반면에, 30 몰%를 초과하는 경우에는, 이미드화율이 저하되어 폴리이미드 필름의 기계적 강도가 크게 저하되거나, 동일한 이미드화율을 달성하기 위해 더 많은 시간이 소요되어 전체적인 공정 효율이 저하될 수 있다.
또한, 상기 제1 촉매 및 제2 촉매의 총 투입량은 폴리아믹산 중 아믹산기 1 몰에 대하여 1.5 내지 4.5 몰의 범위 내일 수 있고, 상세하게는 2.5 내지 3.5 몰의 범위 내일 수 있다.
상기 제1 촉매 및 제2 촉매의 총 투입량이 상기 범위를 벗어나서 상회하거나 하회하는 경우, 제조되는 폴리이미드 필름 또는 그라파이트 시트의 열적 및/또는 기계적 물성이 저하될 수 있으므로 바람직하지 않다.
상기 선형 구조의 제1 촉매는 디메틸아세트아미드(DMAc), N,N-디에틸아세트아미드, 디메틸포름아미드(DMF) 및 디에틸포름아미드(DEF)로 이루어진 군으로부터 선택되는 하나 이상일 수 있으며, 열전도도 개선의 측면에서 디메틸포름아미드가 가장 바람직할 수 있다.
상기 고리 구조의 제2 촉매는 N-메틸-2-피롤리돈(NMP), N-에틸피롤리돈(NEP), N-비닐피롤리돈 및 1,3-디메틸-2-이미다졸리디논으로 이루어진 군으로부터 선택되는 하나 이상일 수 있으며, 상세하게는 N-메틸피롤리돈이 가장 바람직할 수 있다.
한편, 상기 제1 전구체 조성물을 이미드화하여 폴리이미드 필름을 제조하는 방법은, 예를 들어, 열 이미드화법, 화학 이미드화법 또는 열 이미드화법과 화학 이미드화법을 병용한 복합이미드화법일 수 있다.
열 이미드화법은 탈수 폐환제 등을 작용시키지 않고, 가열만으로 이미드화 반응을 진행시키는 방법으로서, 폴리아믹산을 지지체 상에 제막한 후, 40 ℃ 내지 400 ℃, 바람직하게는 40 ℃ 내지 300 ℃의 온도범위에서 서서히 승온시키며 1 내지 8 시간 열처리하여 상기 폴리아믹산이 이미드화된 폴리이미드 필름을 수득하는 방법이다.
화학 이미드화법은 폴리아믹산 용액에 탈수제 및/또는 이미드화제를 작용시켜 이미드화를 촉진하는 방법이다.
복합이미드화법은 폴리아믹산 용액에 탈수제 및 이미드화제를 투입하여 지지체상에 제막한 후 80 내지 200 ℃, 바람직하게는 100 내지 180 ℃에서 가열하여 탈수제 및 이미드화제를 활성화하고, 부분적으로 경화 및 건조한 후에 200 내지 400 ℃에서 5 내지 400 초간 가열함으로써 폴리이미드 필름을 얻을 수 있다.
본 발명에 따른 제조방법은, 화학 이미드화법 또는 복합이미드화법을 이용할 수 있고, 예를 들어, 상기 (b) 단계에서 제1 폴리아믹산 용액에 탈수제 및 이미드화제를 추가로 투입할 수 있다.
한편, "탈수제"란, 폴리아믹산에 대한 탈수 작용을 통해 폐환 반응을 촉진하며, 예를 들면 지방족 산 무수물, 방향족 산 무수물, N,N'-디알킬카르보디이미드, 할로겐화 저급 지방족, 할로겐화 저급 지방산 무수물, 아릴포스폰산디할로겐화물, 및 티오닐할로겐화물, 또는 이들 2종 이상의 혼합물을 들 수 있다.
그 중에서도 입수의 용이성, 및 비용의 관점에서 아세트산 무수물, 프로피온산 무수물, 및 락트산 무수물 등의 지방족 산 무수물, 또는 이들 2종 이상의 혼합물을 바람직하게 사용할 수 있다.
또한, "이미드화제"란 폴리아믹산에 대한 폐환 반응을 촉진하는 효과를 갖는 성분을 의미하고, 예를 들면 지방족 3급 아민, 방향족 3급 아민, 및 복소환식 3급 아민 등이 이용된다.
그 중에서도 촉매로서의 반응성의 관점에서 복소환식 3급 아민으로부터 선택되는 것이 특히 바람직하게 이용된다.
구체적으로는 퀴놀린, 이소퀴놀린, β-피콜린, 피리딘 등이 바람직하게 이용된다.
상기 이미드화 공정에서 화학 이미드화법을 이용하는 경우, 상기 이미드화 공정은 상기 폴리아믹산 용액을 포함하는 제1 전구체 조성물을 지지체 상에 도포하고, 지지체 상에서 40 ℃ 내지 300 ℃의 온도범위로 열처리하여 겔 필름을 형성하고, 지지체로부터 겔 필름을 박리하는 공정 및 상기 겔 필름을 더욱 가열하여, 남은 아믹산(amic acid)을 이미드화하고 건조시키는 공정(이하, "소성 과정"이라고도 함)을 포함하는 것이 바람직하다.
이하에 상기한 각 공정에 대해서 상세히 설명한다.
겔 필름 제조하기 위해서는, 우선 탈수제 및/또는 이미드화제를 저온으로 폴리아믹산 용액 중에 혼합하여 제1 전구체 조성물을 얻는다.
상기 탈수제 및 이미드화제는 특별히 한정되는 것은 아니지만, 상기 예시한 화합물을 선택하여 사용할 수 있다.
또한, 상기 겔 필름 제조 공정에서는 탈수제 및 이미드화제를 포함하는 경화제를 이용하여, 폴리아믹산 용액 중에 혼합하여 제1 전구체 조성물을 얻을 수도 있다.
탈수제의 첨가량은 폴리아믹산 중 아믹산기 1 몰에 대하여 0.5 내지 5 몰의 범위 내인 것이 바람직하고, 1.0 내지 4 몰의 범위 내인 것이 보다 바람직하다.
또한, 이미드화제의 첨가량은 폴리아믹산 중 아믹산기 1 몰에 대하여 0.05 내지 3 몰의 범위 내인 것이 바람직하고, 0.2 내지 2 몰의 범위 내인 것이 특히 바람직하다.
탈수제 및 이미드화제가 상기 범위를 하회하면 화학적 이미드화가 불충분하고, 소성 도중에 파단되거나, 기계적 강도가 저하되는 경우가 있다.
또한, 이들 양이 상기 범위를 상회하면 이미드화가 빠르게 진행되어, 필름형으로 캐스팅하는 것이 곤란해지는 경우가 있기 때문에 바람직하지 않다.
한편, 다음으로 상기 제1 전구체 조성물을 유리판, 알루미늄 박, 무단(endless) 스테인레스 벨트, 또는 스테인레스 드럼 등의 지지체 상에 필름형으로 캐스팅한다.
그 후, 지지체 상에서 제1 전구체 조성물을 80℃ 내지 200℃, 바람직하게는 100 ℃ 내지 180 ℃, 더욱 바람직하게는 100 ℃ 내지 130 ℃에서 가열한다.
이와 같이 함으로써, 탈수제 및 이미드화제가 활성화되고, 부분적으로 경화 및/또는 건조가 일어남으로써, 겔 필름이 형성된다.
그 후, 지지체로부터 박리하여 겔 필름을 얻는다.
상기 겔 필름은 폴리아믹산으로부터 폴리이미드에의 경화의 중간 단계에 있고, 자기 지지성을 갖는다.
상기 겔 필름의 휘발분 함량은 5 내지 500 중량%의 범위 내인 것이 바람직하고, 5 내지 200 중량%의 범위 내인 것이 보다 바람직하며, 5 내지 150 중량%의 범위 내인 것이 특히 바람직하다.
휘발분 함량이 이 범위 내에 있는 겔 필름을 이용함으로써, 소성 공정에서 발생하는 필름 파단, 건조 얼룩에 의한 필름의 색조 얼룩, 특성 변동 등의 결점을 회피할 수 있다.
또한, 본 발명에 따른 폴리이미드 필름의 제조방법은 상기 겔 필름을 열처리하여 폴리이미드 필름을 형성하는 이미드화 단계를 포함할 수 있으며, 하나의 구체적인 예에서, 상기 겔 필름을 500 ℃ 내지 600 ℃로 열처리할 수 있다.
제3 양태: 그라파이트 시트
본 발명에 따른 그라파이트 시트는 앞선 "폴리이미드 필름" 또는 "폴리이미드의 제조방법"으로 제조된 폴리이미드 필름을 이용하여 제조될 수 있으며, 상세하게는 상기 폴리이미드 필름을 탄화 및/또는 흑연화하여 제조될 수 있다.
상기 그라파이트 시트는 10 내지 100 ㎛의 두께를 가지며, 평면방향에 대한 열전도도가 1,000 W/m·K 이상이고, 두께방향에 대한 열전도도가 30 W/m·K 이상일 수 있다.
하나의 구체적인 예에서, 탄화 단계는 감압 또는 질소 가스 중에서 핫프레스 및/또는 전기로를 이용하여 수행될 수 있다. 본 발명에서 탄화는 질소/아르곤 분위기인 상온에서 최고 온도인 1,000 ℃ 내지 1,500 ℃ 범위의 온도까지 약 12 시간에 걸쳐 승온 및 유지하여 조제할 수 있으며, 탄소의 고배향성을 위해 핫프레스를 이용하여 수직 방향으로 압력을 가할 수 있다. 탄화 과정 중에 5 kg/cm2 이상, 바람직하게는 15 kg/cm2 이상, 보다 바람직하게는 25 kg/cm2 이상 압력을 가할 수 있지만, 이는 발명의 실시를 돕기 위한 예시로서 상기의 압력 조건으로 본 발명의 범주가 한정되는 것은 아니다.
이에 연속해서 탄화된 폴리이미드 필름의 흑연화 단계가 진행될 수 있다.
상기 흑연화 단계 역시 핫프레스 및/또는 전기로가 이용될 수 있다.
흑연화 단계는 또한, 불활성 가스 중에서 이루어질 수 있으며, 불활성 가스의 바람직한 예로는 질소, 아르곤 및 소량의 헬륨을 포함하는 혼합 기체를 들 수 있다.
구체적으로, 상기 흑연화 단계는 질소/아르곤 분위기인 상온에서 최고온도인 2,500 ℃ 내지 3,000 ℃ 범위의 온도까지 약 10 시간에 걸쳐 승온 및 유지하여 조제할 수 있다.
상기 흑연화 단계에서 100 kg/cm2 이상, 바람직하게는 200 kg/cm2 이상, 보다 바람직하게는 300 kg/cm2 이상 압력을 가할 수 있지만, 이는 발명의 실시를 돕기 위한 예시로서 상기의 압력 조건으로 본 발명의 범주가 한정되는 것은 아니다.
도 1은 비교예 4에서 제조된 폴리이미드 필름의 표면을 촬영한 사진이다.
도 2는 실시예 1에서 제조된 폴리이미드 필름의 표면을 촬영한 사진이다.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.
<실시예 1>
제조예 1-1: 폴리이미드계 필러 제조
1L 용기에 N,N'-디메틸아세트아미드(DMAc) 200 g을 첨가하여 0 ℃로 온도를 낮춘 다음, 4,4'-옥시페닐렌디아민(ODA) 17.23 g(84.4 mmol)을 첨가하여 용해시켰다.
여기에 1,2,4,5-벤젠테트라카르복실릭디언하이드라이드(PMDA) 18.4 g(84.4 mmol)을 적가시키면서 투입하였다.
반응 온도가 40 ℃를 넘지 않도록 조절하면서 30분 동안 교반시킨 후, 80 ℃로 천천히 승온한 후 4 시간 동안 같은 온도에서 교반하여 숙성시킴으로써, 폴리아믹산 용액을 얻었다.
얻어진 폴리아믹산 용액의 점도는 75 poise로 측정되었고, 고유점도는 1.31 dl/g 이었다.
상기 얻어진 폴리아믹산 용액을 메탄올 800 g에 침지시켜 실형태로 토출하고 10 시간 동안 방치시켰다.
3 시간에 일회씩 실형태의 폴리아믹산 침지물 위에 떠있는 메탄올 윗물을 제거하고 600 g의 메탄올을 투입하여 용매를 제거시켰다.
10 시간 경과 후 메탄올을 모두 따라내고 남은 고체화된 물질을 분쇄기를 이용하여 분쇄하고 물과 메탄올로 세정 및 여과를 한 후 40 ℃ 진공 오븐에서 10 시간 동안 건조하여 평균입경 3 ㎛인 분말 상의 폴리이미드계 필러를 수득하였다.
제조예 1-2: 제1 전구체 조성물의 제조
0.5 L 반응기에 질소 분위기하에서 유기용매로서 디메틸포름아미드(DMF) 404.8 g을 투입하였다.
온도를 25℃로 설정한 다음, 디아민 단량체로서 ODA를 45.59 g 투입하고, 30 분 가량 교반하여 단량체가 용해된 것을 확인한 뒤에 디안하이드라이드 단량체로서 PMDA를 49.66 g 투입하고 최종적으로 점도 20만 cP 내지 25만 cP가 되도록 마지막 투입량을 조절하여 투입하여 제1 폴리아믹산을 중합하였다.
이후 무기물계 필러로서 평균 입경이 3 ㎛인 제2인산칼슘 0.26 g 및 제조예 1-1에서 최종 수득된 폴리이미드계 필러를 0.86 g 투입하고, 온도를 유지하면서 1 시간 동안 교반하여 제1 전구체 조성물을 수득하였다.
비교를 위한 환산 시, 제1 전구체 조성물에서 제1 폴리아믹산 고형분 100 중량부에 대한 무기물계 필러의 함량은 0.3 중량부이고, 폴리이미드계 필러의 함량은 1 중량부이다.
제조예 1-3: 폴리이미드 필름의 제조
제조예 1-2에서 제조된 제1 전구체 조성물 70 g에 베타피콜린(BP)2.25 g, 무수초산(AA) 16.73 g 및 제1 촉매로서 DMF 9.5 g, 제2 촉매로서 NMP 3.2 g을 투입한 후, 균일하게 혼합하여 SUS plate(100SA, Sandvik)에 닥터 블레이드를 사용하여 350 ㎛로 캐스팅하고 100 ℃ 내지 200 ℃의 온도범위에서 건조시켰다.
그 다음, 필름을 SUS Plate에서 박리하여 핀 프레임에 고정시켜 고온 텐터로 이송하였다.
필름을 고온 텐터에서 200 ℃부터 600 ℃까지 가열한 후 25 ℃에서 냉각시킨 후 핀 프레임에서 분리하여 가로*세로가 20*20 cm이고, 두께 50 ㎛의 폴리이미드 필름을 수득하였다.
<실시예 2>
제조예 1-1에서 평균입경 1 ㎛인 폴리이미드계 필러를 제조한 점을 제외하면, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.
<실시예 3>
제조예 1-1에서 평균입경 10 ㎛인 폴리이미드계 필러를 제조한 점을 제외하면, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.
<실시예 4>
폴리이미드계 필러의 함량이 0.1 중량부가 되도록, 폴리이미드계 필러의 투입량을 변경한 것을 제외하면, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.
<실시예 5>
폴리이미드계 필러의 함량이 5 중량부가 되도록, 폴리이미드계 필러의 투입량을 변경한 것을 제외하면, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.
<실시예 6>
무기물계 필러의 함량이 0.5 중량부가 되도록, 무기물계 필러의 투입량을 변경한 것을 제외하면, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.
<실시예 7>
무기물계 필러를 평균 입경 3 ㎛의 황산바륨으로 변경하였고, 무기물계 필러의 함량이 0.3 중량부가 되도록 황산바륨의 투입량을 변경한 것을 제외하면, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.
<비교예 1>
폴리이미드계 필러를 투입하지 않은 점을 제외하면, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.
<비교예 2>
무기물계 필러를 투입하지 않은 점을 제외하면, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.
<비교예 3>
폴리이미드계 필러 및 무기물계 필러를 투입하지 않은 점을 제외하면, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.
<비교예 4>
제조예 1-1에서 평균입경 15 ㎛인 폴리이미드계 필러를 제조한 점을 제외하면, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.
<비교예 5>
폴리이미드계 필러의 함량이 10 중량부가 되도록, 폴리이미드계 필러의 투입량을 변경한 것을 제외하면, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.
<비교예 6>
폴리이미드계 필러의 함량이 0.05 중량부가 되도록, 폴리이미드계 필러의 투입량을 변경한 것을 제외하면, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.
<비교예 7>
무기물계 필러의 함량이 0.1 중량부가 되도록, 무기물계 필러의 투입량을 변경한 것을 제외하면, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.
<비교예 8>
무기물계 필러의 함량이 0.6 중량부가 되도록, 무기물계 필러의 투입량을 변경한 것을 제외하면, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.
<비교예 9>
제2인산칼슘의 평균 입경을 5 ㎛로 변경한 것을 제외하면, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.
<비교예 10>
제2인산칼슘의 평균 입경을 1 ㎛로 변경한 것을 제외하면, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.
<비교예 11>
제조예 1-3에서, 제2 촉매를 포함하지 않고, 제1 촉매로서 DMF 11.84 g을 포함한 촉매를 투입한 것을 제외하면, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.
<실험예 1>
실시예들 및 비교예들의 폴리이미드 필름에 대해서 폴리이미드계 필러 및/또는 무기물계 필러의 평균 입경 및 투입량에 따라, 폴리이미드 필름의 외관에 어떠한 결과가 도출되는지 확인하였다.
이에, 상기한 평균 입경 및 투입량이 본 발명의 범위에 있는 실시예 1 내지 7에서 제조된 폴리이미드 필름과 본 발명의 범위를 벗어난 비교예 4, 5, 8 및 9의 폴리이미드 필름을 비교하였으며, 육안을 통해 각 폴리이미드 필름의 돌출흔이나 핀홀과 같은 표면 결함 개수를 체크하고, 그 결과를 표 1 및 도 1(비교예 4)과 도 2(실시예 1)에 나타내었다.
구분 폴리이미드계 필러 무기물계 필러 표면 결함(개수)
입경(㎛) 함량(%) 입경(㎛) 제2인산칼슘(%) 황산바륨(%)
실시예 1 3 1 3 0.3 - 0
실시예 2 1 1 3 0.3 - 0
실시예 3 10 1 3 0.3 - 0
실시예 4 3 0.1 3 0.3 - 0
실시예 5 3 5 3 0.3 - 0
실시예 6 3 1 3 0.5 - 0
실시예 7 3 1 3 - 0.3 0
비교예 4 15 1 3 0.3 - 35
비교예 5 3 10 3 0.3 - 21
비교예 8 3 1 3 0.6 - 6
비교예 9 3 1 5 0.3 - 8
폴리이미드계 필러 및/또는 무기물계 필러의 평균 입경 및 투입량이 본 발명의 범위를 벗어나는 비교예 4, 5, 8 및 9의 폴리이미드 필름은 다수의 표면 결함이 발생되었음을 확인할 수 있다. 또한, 비교예 4에 따른 폴리이미드 필름의 표면을 촬영한 도 1을 참고하더라도, 육안 상 표면 상태가 좋지 않음을 확인할 수 있다.이로 미루어볼 때, 본 발명의 범위를 벗어나 폴리이미드계 필러 및/또는 무기물계 필러를 과도하게 투입하는 경우, 또는 너무 큰 입자를 사용하는 경우에는 폴리이미드 필름의 외관이 매끄럽지 못함을 알 수 있다.
반면에, 폴리이미드계 필러 및/또는 무기물계 필러의 평균 입경 및 투입량이 본 발명의 범위에 있는 실시예들의 폴리이미드 필름은 표면 결함이 발생하지 않았으며, 실시예 1에 따른 폴리이미드 필름의 표면을 촬영한 도 2를 참고하더라도, 육안 상 표면 상태가 매끄러운 것을 확인할 수 있다.
<실험예 2>
폴리이미드 필름들을 탄화가 가능한 고온로를 사용하여 질소 기체 하에서 3 ℃/분의 속도로 1,200 ℃까지 승온하여 약 2 시간 유지시켰다(탄화). 이어서, 초고온로를 사용하여 아르곤 기체 하에서 5 ℃/분의 승온 속도로 2,800 ℃까지 승온하여 1 시간 유지(흑연화)시킨 후 냉각하여 30 ㎛의 두께를 갖는 그라파이트 시트들을 제조하였다.
상기 제조된 그라파이트 시트의 평면방향 열전도도, 두께방향 열전도도 및 브라이트 스팟의 발생 수량을 각각 측정하여, 그 결과를 하기 표 2에 나타내었다.
확산율 측정 장비(모델명 LFA 467, Netsch 사)를 사용하여 laser flash 법으로 그라파이트 시트의 두께방향 및 평면방향에 대한 열확산율을 측정하였으며, 상기 열확산율 측정값에 밀도(중량/부피) 및 비열(DSC를 사용한 비열 측정값)을 곱하여 열전도도를 산출하였다.
브라이트 스팟의 발생 수량은 그라파이트 시트의 표면 불량을 발생시키는 요인으로서, 상기 시트의 50mm X 50 mm인 정사각형 내부에 크기가 0.05 mm 이상인 돌기의 발생 수량을 측정하였다.
구분 평면 방향 열전도도(W/m·k) 두께 방향 열전도도(W/m·k) 브라이트 스팟발생 수량(EA)
실시예 1 1127.3 33.2 2
실시예 2 1188.4 30.1 1
실시예 3 1058.9 34.0 5
실시예 4 1174.6 31.5 0
실시예 5 1043.5 34.9 3
실시예 6 1135.0 30.2 2
실시예 7 1048.1 30.5 4
비교예 1 1142.2 5.4 3
비교예 2 - - 흑연화 진행 불가
비교예 3 - - 흑연화 진행 불가
비교예 4 894.5 43.2 27
비교예 5 832.2 51.3 12
비교예 6 1139.4 4.9 3
비교예 7 986.0 23.6 2
비교예 8 1104.5 27.1 21
비교예 9 951.5 23.5 13
비교예 10 880.6 19.8 1
비교예 11 997.1 17.5 2
상기 표 2를 정리하면 하기와 같은 결과가 도출된다.
첫째, 실시예들은 모두 폴리이미드계 필러를 본 발명의 범위, 즉, 바람직한 함량과 평균 입경으로 포함하는 폴리이미드 필름에 관한 것이다. 이러한 폴리이미드 필름으로 제조된 그라파이트 시트는 표 2에서와 같이 평면방향의 열전도도가 1,000 W/m·K 이상이고, 두께방향의 열전도도 또한 30 W/m·K 이상으로 매우 우수하다.
이는, 폴리이미드계 입자의 적어도 일부가 다층 그라파이트 구조의 층 사이에서 흑연화되어 가교부를 형성하고, 이 가교부가 층간 열 전달 경로로 작용함에 따른 것으로 추측된다.
반면에, 폴리이미드계 필러의 투입이 생략된 비교예 1의 폴리이미드 필름으로 제조된 그라파이트 시트는, 두께방향의 열전도도가 실시예 대비 현저히 낮은 것을 확인할 수 있다.
비교예 1의 경우에는, 전술과 같은 가교부가 층과 층사이에 존재하지 않고, 대신 물리적인 갭만이 존재하여 층간 열 전달이 원활하지 않은 점에 따른 것이라 이해된다.
즉, 폴리이미드계 입자의 포함 여부에 따라서 그라파이트 시트의 두께방향 열전도도가 현격한 차이를 보일 수 있다.
또한, 실시예들 발생된 브라이트 스팟의 개수가 5개 이하로서 비교예 4, 8 및 9의 그라파이트 시트에 비해 표면이 양호하다.
둘째, 그렇다면, 더 많은 가교부 형성을 위해서 폴리이미드계 필러의 과량 투입을 고려할 수 있지만, 이 경우에 해당하는 비교예 5를 참고하면, 평면방향의 열전도도가 실시예 대비 좋지 못함을 알 수 있다.
탄화와 흑연화 과정에서, 폴리이미드 필름 내의 필러들의 대부분 성분들은 승화하게 되며, 이 과정에서 발생하는 가스가 다량일수록 그라파이트 구조를 파괴할 가능성이 높아진다. 결과적으로 비교예 5의 경우, 과량의 폴리이미드 필러에서 유래된 다량의 가스가 탄화와 흑연화 과정에서 탄소원자가 재 배열되는 것을 방해하여 다층 그라파이트 구조를 부분적으로 손상시켰고, 그로 인해, 그라파이트 시트에서 평면방향의 열전도도가 저하된 것이라 추측된다.
한편, 더 많은 가교부 형성을 위해서 더 큰 입경의 폴리이미드계 필러의 사용을 고려할 수 있으며, 이에 대해서는 비교예 4를 참조할 수 있다.
비교예 4의 경우, 평균 입경 15 ㎛의 폴리이미드계 필러를 적절한 함량으로 투입하여 폴리이미드 필름을 제조하였지만, 평면방향의 열전도도가 저하된 것을 확인할 수 있으며, 이러한 경우에서도 탄화와 흑연화 과정에서 탄소원자가 재배열되는 것을 방해하여 소망하는 결과가 나타나지 않은 것으로 예상된다.
또한, 폴리이미드계 필러를 상대적으로 소량 포함하는 비교예 6의 경우도 마찬가지로, 두께방향 열전도도가 현저히 낮은 것을 확인할 수 있다. 이는 가교부 형성이 미미함에 따른 것이라 이해된다.
이상의 결과로부터 폴리이미드계 필러의 함량과 입자 크기가 우수한 열전도도를 갖는 그라파이트 시트 구현에 매우 중요한 인자로 작용함을 알 수 있다.
셋째, 무기물계 필러를 포함하지 않는 비교예 2 및 3의 경우, 흑연화 진행이 불가하여 그라파이트 시트를 제조할 수 없었으며, 무기물계 필러를 소량으로 포함하는 비교예 7 및 무기물계 필러의 입경이 큰 비교예 10의 경우, 평면방향 및 두께방향의 열전도도가 모두 저하된 것을 확인할 수 있다.
이로 미루어볼 때, 무기물계 필러가 폴리이미드로부터 그라파이트로의 변환에 중요한 인자로 작용하며, 특히, 무기물계 필러의 투입량과 크기가 특정 범위에 속하는 경우 열전전도가 현저하게 향상됨을 알 수 있다.
넷째, 비교예 11의 경우, 제1 촉매만을 포함하고 제2 촉매를 포함하지 않았으며, 이로부터 유래된 그라파이트 시트는 표 2에서와 같이 평면방향 및 두께방향의 열전도도가 상대적으로 낮은 것을 확인할 수 있다.
이는 폴리아믹산이 이미드화 되는 과정에서 폴리이미드 고분자 사슬의 패킹 효율이 상대적으로 낮았던 점에 기인하는 것으로 예상된다.
이의 반증으로서, 제2 촉매를 제1 촉매와 함께 투입한 실시예들의 경우, 비교예 11과 비교하여 평면방향의 열전도도가 현저히 우수하며, 이러한 결과로부터, 제2 촉매의 적정량 사용 시 폴리이미드 고분자 사슬의 패킹 효율 향상을 유도할 수 있고, 이러한 패킹 효율 향상이 탄화와 흑연화 시, 탄소의 규칙적 배열을 유리하게 함을 예상할 수 있다.
이상 본 발명의 실시예들을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
본 발명은 승화성을 가지는 무기물계 필러 및 폴리이미드계 필러를 포함함에 따른 이점을 이상에서 구체적으로 설명하였다.
정리하면, 본 발명의 폴리이미드 필름은, 탄화와 흑연화 시, 폴리이미드계 필러가 다층 그라파이트 구조의 층과 층 사이에 열전달 경로를 이루는 하나 이상의 가교부를 형성할 수 있다. 이에 따라 평면방향의 열전도도 뿐만 아니라, 두께방향의 열전도도 역시 현저히 향상된 그라파이트 시트를 구현할 수 있다.
폴리이미드 필름은, 또한, 바람직한 함량의 무기물계 필러를 포함함에 따라 소정의 발포 현상을 유도할 수 있고, 이에 따라 유연성이 우수한 그라파이트 시트를 구현할 수 있다.
본 발명은 또한, 2종 이상의 촉매를 이용함에 따른 이점을 이상에서 구체적으로 설명하였으며, 요약하면 2종 이상의 촉매를 조합하여 이용함으로써, 폴리아믹산의 고분자 사슬의 패킹성 향상시킬 수 있고 이러한 폴리아믹산에서 유래된 폴리이미드 필름은 고분자 사슬이 규칙적으로 배열된 구조일 수 있고, 이에 기반하여 열전도도가 향상된 그라파이트 시트를 구현할 수 있다.

Claims (22)

  1. 제1 폴리아믹산을 포함하는 제1 전구체 조성물로부터 유래되는 그라파이트 시트용 폴리이미드 필름으로서,
    승화성을 가지는 무기물계 필러; 및
    구형의 폴리이미드계 필러를 포함하는, 폴리이미드 필름.
  2. 제1항에 있어서,
    상기 무기물계 필러의 함량은 제1 폴리아믹산 100 중량부 대비 0.2 내지 0.5 중량부이고,
    상기 폴리이미드계 필러는 제1 폴리아믹산 100 중량부 대비 0.1 내지 5 중량부인, 폴리이미드 필름.
  3. 제1항에 있어서,
    상기 무기물계 필러는 평균 입경이 1.5 내지 4.5 ㎛인, 폴리이미드 필름.
  4. 제1항에 있어서,
    상기 무기물계 필러는 제2인산칼슘, 황산바륨 및 탄산칼슘으로 이루어진 군으로부터 선택되는 하나 이상의 무기물 입자를 포함하는, 폴리이미드 필름.
  5. 제1항에 있어서,
    상기 폴리이미드계 필러는 평균 입경이 1 내지 10 ㎛인, 폴리이미드 필름.
  6. 제1항에 있어서,
    상기 폴리이미드 필름은, 상기 제1 폴리아믹산으로부터 유래된 제1 폴리이미드 사슬을 포함하고,
    상기 제1 폴리이미드 사슬은 적어도 일부가 평면 방향으로 배향된 다층구조를 형성하고,
    상기 폴리이미드계 필러의 적어도 일부가 상기 다층구조 사이에 분산되어 있는, 폴리이미드 필름.
  7. 제6항에 있어서,
    상기 폴리이미드 필름을 탄화 및/또는 흑연화할 때,
    상기 제1 폴리이미드 사슬의 다층구조 중 적어도 일부가 흑연화 되어 다층 그라파이트 구조를 형성하고,
    상기 폴리이미드계 필러의 적어도 일부가 흑연화되어, 상기 다층 그라파이트 구조의 층 사이를 연결하는 가교부를 형성하는, 폴리이미드 필름.
  8. 제1항에 있어서,
    상기 구형의 폴리이미드계 필러는 제2 폴리아믹산을 포함하는 제2 전구체 조성물로부터 유래되는, 폴리이미드 필름.
  9. 제8항에 있어서,
    상기 제1 폴리아믹산을 구성하는 단량체의 조성과 상기 제2 폴리아믹산을 구성하는 단량체의 조성은 서로 동일하거나 상이한, 폴리이미드 필름.
  10. 제1항에 따른 폴리이미드 필름을 제조하는 방법으로서,
    (a) 유기용매, 디아민 단량체 및 디안하이드라이드 단량체를 혼합하여 제1 폴리아믹산 용액을 제조하는 단계;
    (b) 상기 제1 폴리아믹산 용액에 무기물계 필러 및 폴리이미드계 필러를 혼합하여 제1 전구체 조성물을 제조하는 단계;
    (c) 상기 제1 전구체 조성물을 지지체에 캐스팅하고 건조하여 겔 필름을 제조하는 단계; 및
    (d) 상기 겔 필름을 열처리하여 폴리이미드 필름을 형성하는 이미드화 단계를 포함하는, 폴리이미드 필름의 제조방법.
  11. 제10항에 있어서,
    상기 (b) 단계에서 제1 폴리아믹산 용액에 선형 구조의 제1 촉매 및 고리 구조의 제2 촉매를 추가로 투입하는, 제조 방법.
  12. 제11항에 있어서,
    상기 제1 촉매는 디메틸아세트아미드(DMAc), N,N-디에틸아세트아미드, 디메틸포름아미드(DMF) 및 디에틸포름아미드(DEF)로 이루어진 군으로부터 선택되는 하나 이상인, 제조 방법.
  13. 제11항에 있어서,
    상기 제1 촉매는 디메틸포름아미드인, 제조 방법.
  14. 제11항에 있어서,
    상기 제2 촉매는 N-메틸-2-피롤리돈(NMP)인, 제조 방법.
  15. 제11항에 있어서,
    상기 제1 촉매 및 제2 촉매의 총 투입량은 폴리아믹산 중 아믹산기 1 몰에 대하여 1.5 내지 4.5 몰인, 제조 방법.
  16. 제11항에 있어서,
    상기 제2 촉매의 함량은 제1 촉매 및 제2 촉매의 총량을 기준으로 10 내지 30 몰%인, 제조 방법.
  17. 제10항에 있어서,
    상기 (b) 단계에서 제1 폴리아믹산 용액에 탈수제 및 이미드화제를 추가로 투입하는, 제조 방법.
  18. 제1항에 따른 폴리이미드 필름을 탄화 및/또는 흑연화시킴으로써 제조되는, 그라파이트 시트.
  19. 제18항에 있어서,
    상기 그라파이트 시트는 10 내지 100 ㎛의 두께를 가지는, 그라파이트 시트.
  20. 제18항에 있어서,
    상기 그라파이트 시트는 평면방향에 대한 열전도도가 1,000 W/m·K 이상인, 그라파이트 시트.
  21. 제18항에 있어서,
    상기 그라파이트 시트는 두께방향에 대한 열전도도가 30 W/m·K 이상인 그라파이트 시트.
  22. 제18항에 따른 그라파이트 시트를 포함하는 전자 장치.
PCT/KR2018/008199 2018-02-26 2018-07-20 구형의 pi계 필러를 포함하는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조되는 그라파이트 시트 WO2019164068A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/975,757 US11731908B2 (en) 2018-02-26 2018-07-20 Graphite sheet polyimide film comprising spherical PI-based filler, manufacturing method therefor, and graphite sheet manufactured using same
JP2020544907A JP6982694B2 (ja) 2018-02-26 2018-07-20 球状のpi系フィラーを含むグラファイトシート用ポリイミドフィルム、その製造方法及びこれを用いて製造されるグラファイトシート
CN201880090182.2A CN111836850B (zh) 2018-02-26 2018-07-20 包含基于球形pi的填料的石墨片聚酰亚胺膜、其制造方法及使用其制造的石墨片

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180023078A KR102115841B1 (ko) 2018-02-26 2018-02-26 구형의 pi계 필러를 포함하는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조되는 그라파이트 시트
KR10-2018-0023078 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019164068A1 true WO2019164068A1 (ko) 2019-08-29

Family

ID=67687135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008199 WO2019164068A1 (ko) 2018-02-26 2018-07-20 구형의 pi계 필러를 포함하는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조되는 그라파이트 시트

Country Status (6)

Country Link
US (1) US11731908B2 (ko)
JP (1) JP6982694B2 (ko)
KR (1) KR102115841B1 (ko)
CN (1) CN111836850B (ko)
TW (1) TWI714971B (ko)
WO (1) WO2019164068A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102115842B1 (ko) * 2018-02-28 2020-05-28 에스케이씨코오롱피아이 주식회사 그래핀 함유의 구형 pi계 필러를 포함하는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조되는 그라파이트 시트
KR102271946B1 (ko) * 2019-07-22 2021-07-02 피아이첨단소재 주식회사 그라파이트 시트 및 이를 포함한 전자 장치
TWI717093B (zh) * 2019-11-07 2021-01-21 達邁科技股份有限公司 用於石墨化之聚醯亞胺膜
CN112831181B (zh) * 2019-11-25 2023-08-01 达迈科技股份有限公司 用于石墨化的聚酰亚胺膜
KR102396418B1 (ko) * 2019-11-29 2022-05-12 피아이첨단소재 주식회사 폴리이미드 필름, 이의 제조 방법, 및 이를 포함한 연성 금속박 적층판
KR102414419B1 (ko) * 2020-08-27 2022-06-30 피아이첨단소재 주식회사 그라파이트 시트용 폴리이미드 필름 제조방법 및 그라파이트 시트 제조방법
KR102450700B1 (ko) * 2020-11-13 2022-10-06 피아이첨단소재 주식회사 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트
KR102493901B1 (ko) * 2020-11-30 2023-01-31 피아이첨단소재 주식회사 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이로부터 제조된 그라파이트 시트
CN117616073A (zh) * 2021-07-30 2024-02-27 株式会社钟化 石墨片用的聚酰亚胺薄膜、石墨片和它们的制造方法
CN113788478B (zh) * 2021-09-03 2023-05-23 中天电子材料有限公司 一种超厚石墨导热膜及其制备方法和其应用
CN114736019B (zh) * 2022-06-10 2022-09-13 宁波长阳科技股份有限公司 一种高垂直导热人造石墨片及包含该人造石墨片的散热片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010011184A (ko) * 1999-07-26 2001-02-15 유현식 폴리아믹산 랜덤 공중합체 및 폴리이미드 랜덤 공중합체
US20060035085A1 (en) * 2003-08-26 2006-02-16 Matsushita Electric Industrial Co., Ltd. High thermal conductivite element, method for manufacturing same, and heat radiating system
US20110265980A1 (en) * 2009-07-13 2011-11-03 Kazuhiko Kubo Graphite sheet and heat transfer structure using same
KR101527164B1 (ko) * 2013-12-10 2015-06-09 한국화학연구원 열전도성 고분자 복합체 및 이의 제조방법
KR20170024532A (ko) * 2015-08-25 2017-03-07 듀폰 도레이 컴파니, 리미티드 폴리이미드 필름 및 이의 제조 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681928A (en) * 1984-06-01 1987-07-21 M&T Chemicals Inc. Poly(amide-amide acid), polyamide acid, poly(esteramide acid), poly(amide-imide), polyimide, poly(esterimide) from poly arylene diamine
CN100379706C (zh) * 2003-08-26 2008-04-09 松下电器产业株式会社 高导热性部件及其制造方法和使用该部件的散热系统
JP2013189568A (ja) * 2012-03-14 2013-09-26 Du Pont-Toray Co Ltd グラファイト粉体含有高熱伝導性ポリイミドフィルム
KR102234015B1 (ko) * 2015-03-30 2021-03-29 코오롱인더스트리 주식회사 열전도도가 우수한 그라파이트 시트의 제조방법 및 이로 제조된 그라파이트 시트
KR102125911B1 (ko) * 2015-10-29 2020-06-23 피아이첨단소재 주식회사 폴리이미드 필름 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010011184A (ko) * 1999-07-26 2001-02-15 유현식 폴리아믹산 랜덤 공중합체 및 폴리이미드 랜덤 공중합체
US20060035085A1 (en) * 2003-08-26 2006-02-16 Matsushita Electric Industrial Co., Ltd. High thermal conductivite element, method for manufacturing same, and heat radiating system
US20110265980A1 (en) * 2009-07-13 2011-11-03 Kazuhiko Kubo Graphite sheet and heat transfer structure using same
KR101527164B1 (ko) * 2013-12-10 2015-06-09 한국화학연구원 열전도성 고분자 복합체 및 이의 제조방법
KR20170024532A (ko) * 2015-08-25 2017-03-07 듀폰 도레이 컴파니, 리미티드 폴리이미드 필름 및 이의 제조 방법

Also Published As

Publication number Publication date
TW201936737A (zh) 2019-09-16
CN111836850A (zh) 2020-10-27
TWI714971B (zh) 2021-01-01
JP2021515075A (ja) 2021-06-17
KR102115841B1 (ko) 2020-05-28
KR20190102561A (ko) 2019-09-04
US11731908B2 (en) 2023-08-22
CN111836850B (zh) 2023-01-24
US20200399183A1 (en) 2020-12-24
JP6982694B2 (ja) 2021-12-17

Similar Documents

Publication Publication Date Title
WO2019164068A1 (ko) 구형의 pi계 필러를 포함하는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조되는 그라파이트 시트
WO2019168245A1 (ko) 그래핀 함유의 구형 pi계 필러를 포함하는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조되는 그라파이트 시트
WO2019088454A1 (ko) 초박막 블랙 폴리이미드 필름 및 이의 제조방법
WO2019093669A2 (ko) 초박막 블랙 폴리이미드 필름 및 이의 제조방법
WO2016108491A1 (ko) 가교형 수용성 열가소성 폴리아믹산을 이용한 열융착 다층 폴리이미드 필름, 및 이의 제조방법
WO2020096259A1 (ko) 치수 안정성이 향상된 초박막 폴리이미드 필름 및 이의 제조방법
WO2020096363A1 (ko) 유전특성이 우수한 폴리이미드 복합 필름 및 이를 제조하는 방법
WO2020111399A1 (ko) 입경이 상이한 2 이상의 필러를 포함하는 폴리이미드 필름 및 이를 포함하는 전자장치
WO2020262765A1 (ko) 그라파이트 시트용 폴리이미드 필름 및 이의 제조방법
WO2020017697A1 (ko) 불소-함유 실란 첨가제 및 카본 블랙을 포함하는 폴리이미드 필름 및 이의 제조방법
WO2020091432A1 (ko) 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
WO2020054912A1 (ko) 표면 품질이 개선된 폴리이미드 필름 및 이의 제조방법
WO2019160218A1 (ko) 저장 안정성이 향상된 폴리아믹산 조성물, 이를 이용한 폴리이미드 필름의 제조방법 및 이로 제조된 폴리이미드 필름
WO2020080598A1 (ko) 표면 품질이 개선된 고후도 폴리이미드 필름 및 이의 제조방법
WO2019132184A1 (ko) 연성동박적층판 제조용 폴리이미드 필름 및 이를 포함하는 연성동박적층판
WO2020040356A1 (ko) 방향족 카르복실산을 포함하는 도체 피복용 폴리이미드 바니쉬 및 이의 제조방법
WO2020091147A1 (ko) 폴리이미드 피복물의 내열성을 향상시키기 위한 도체 피복용 폴리이미드 바니쉬 및 이로부터 제조된 폴리이미드 피복물
WO2016108490A1 (ko) 가교형 수용성 열가소성 폴리아믹산 및 이의 제조방법
WO2019139249A1 (ko) 내염기성이 향상된 폴리이미드 필름 및 이의 제조방법
WO2019182224A1 (ko) 무지향성 고분자 사슬을 포함하는 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조된 그라파이트 시트
WO2020101225A1 (ko) 가교성 디안하이드라이드계 화합물 및 산화방지제를 포함하는 폴리이미드 전구체 조성물, 이로부터 제조된 폴리이미드 필름
WO2019143000A1 (ko) 2 종 이상의 필러를 포함하는 고열전도성 폴리이미드 필름
WO2020096410A1 (ko) 금속층과의 접착력이 향상된 폴리이미드 복합 필름 및 이를 제조하는 방법
WO2020040527A1 (ko) 결정성 폴리이미드 수지 및 열전도성 필러를 포함하는 폴리이미드 필름 및 이의 제조방법
WO2020040347A1 (ko) 내염기성이 향상된 폴리이미드 필름 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020544907

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907357

Country of ref document: EP

Kind code of ref document: A1