WO2020040356A1 - 방향족 카르복실산을 포함하는 도체 피복용 폴리이미드 바니쉬 및 이의 제조방법 - Google Patents

방향족 카르복실산을 포함하는 도체 피복용 폴리이미드 바니쉬 및 이의 제조방법 Download PDF

Info

Publication number
WO2020040356A1
WO2020040356A1 PCT/KR2018/013804 KR2018013804W WO2020040356A1 WO 2020040356 A1 WO2020040356 A1 WO 2020040356A1 KR 2018013804 W KR2018013804 W KR 2018013804W WO 2020040356 A1 WO2020040356 A1 WO 2020040356A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide varnish
polyimide
coating
acid
varnish
Prior art date
Application number
PCT/KR2018/013804
Other languages
English (en)
French (fr)
Inventor
황인환
이익상
최정열
Original Assignee
에스케이씨코오롱피아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨코오롱피아이 주식회사 filed Critical 에스케이씨코오롱피아이 주식회사
Priority to CN201880096771.1A priority Critical patent/CN112585228B/zh
Priority to US17/270,006 priority patent/US11905431B2/en
Priority to EP18931088.1A priority patent/EP3842500A1/en
Priority to JP2021509793A priority patent/JP7140432B2/ja
Publication of WO2020040356A1 publication Critical patent/WO2020040356A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides

Definitions

  • the present invention relates to a polyimide varnish for conductor coating comprising an aromatic carboxylic acid and a method for producing the same.
  • covers a conductor requires the outstanding insulation, adhesiveness with respect to a conductor, heat resistance, mechanical strength, etc.
  • a high voltage is applied to an insulated wire constituting the electric device, and partial discharge (corona discharge) is likely to occur on the insulating coating surface.
  • corona discharge can cause local temperature rise or the generation of ozone or ions, resulting in deterioration of the insulation coating of the insulated wire, which can lead to premature insulation breakdown and shorten the life of electrical equipment. .
  • the insulated wire used at a high voltage is required to improve the corona discharge starting voltage for the above reason, and for this purpose, it is known that it is effective to lower the dielectric constant of the insulating layer.
  • Examples of the resin that can be used for the insulating layer include polyimide resins, polyamideimide resins, polyesterimide resins, and the like.
  • polyimide resins are particularly excellent in heat resistance and insulation properties, and have excellent properties for use as coating materials for conductors.
  • the polyimide resin refers to a high heat-resistant resin prepared by solution polymerization of an aromatic dianhydride and an aromatic diamine or an aromatic diisocyanate to prepare a polyamic acid derivative, followed by ring closure dehydration at high temperature to imide.
  • the polyimide resin As a material for insulating coating, it is necessary to further improve heat resistance, insulation and mechanical properties. For this purpose, a method of increasing the molecular weight of the polyimide resin may be considered.
  • the more imide groups in the molecule the better the heat resistance, insulation and mechanical properties of the polyimide resin, and the longer the polymer chain, the higher the proportion of the imide groups. to be.
  • the higher the molecular weight of the polyamic acid the higher the viscosity of the varnish in which the polyamic acid is dissolved in the solvent, and it is not easy to uniformly coat the varnish on the surface of the conductor, and the thickness of the coating produced is too thick. May occur.
  • polyimide resins generally cause chemical changes, that is, oxidation reactions due to light, heat, pressure, shear force, etc. in the presence of oxygen.
  • This oxidation reaction causes a problem of lowering the heat resistance and mechanical properties of the polyimide resin produced by changing the physical properties by cutting, crosslinking, or the like of molecular chains in the polyimide resin.
  • a method of adding a small amount of an additive such as an antioxidant is used, and the antioxidant, for example, serves to stabilize the polyimide resin by removing oxygen atoms of the already oxidized polyimide resin.
  • an additive such as an antioxidant
  • phosphate compounds and sulfur compounds are typically used.
  • antioxidants have a property of decomposing at high temperatures, and especially in the production of polyimide resins, high temperature heat treatment for imidization is usually carried out. In some cases, there is a problem that does not exhibit any of these effects.
  • a polyimide varnish which is a precursor of a polyimide resin, is applied around an electric wire made of a conductor, and then subjected to heat treatment at a predetermined temperature. Can be used to imidize the polyimide varnish.
  • the polyimide varnish for conductor coating having excellent adhesive strength with the conductor while satisfying the heat resistance, insulation, and mechanical properties of the polyimide manufactured therefrom has a high demand. .
  • aromatic carboxylic acids having four or more carboxyl groups are disclosed as essential factors for the implementation of a polyimide coating having excellent heat resistance, insulation, flexibility and adhesion to a substrate (conductor).
  • the aromatic carboxylic acid constituting the polyimide varnish reacts with the terminal amine groups of the polyamic acid chain or the polyimide chain during heat treatment for imidization to increase the polymer chain length, and thus the heat resistance, insulation, Flexibility and adhesiveness with the substrate can be improved.
  • the polyimide coating according to the present invention increases the molecular weight of the polyimide during the heat treatment for imidization, even if the solid content of the polyimide varnish as its precursor is high, the viscosity can be kept low, thereby significantly reducing the process handling properties. Can be improved.
  • an antioxidant having a 5 wt% decomposition temperature of 380 ° C. or higher is disclosed as an essential factor for implementing a polyimide coating having excellent heat resistance and mechanical properties.
  • the antioxidant constituting the polyimide varnish has low volatility and excellent thermal stability, it is maintained without decomposition or volatilization during the production process of the polyimide coating, thereby preventing oxidation of the amide group or the imide group of the polyimide coating in the polyimide varnish. It can prevent. Accordingly, the antioxidant can minimize the change in physical properties of the polyimide coating.
  • a silicone-based additive and an alkoxy silane coupling agent may be utilized as an adhesion promoter between the polyimide coating prepared from the polyimide varnish and the conductor to increase adhesion.
  • the present invention has a practical purpose to provide a specific embodiment thereof.
  • the present invention is a polyimide varnish for conductor coating
  • Polyamic acid solutions prepared by polymerizing at least one dianhydride monomer and at least one diamine monomer in an organic solvent;
  • Aromatic carboxylic acids having four or more carboxyl groups
  • the viscosity at 23 ° C. is 500 to 9,000 cP
  • a polyimide varnish having a degree of softening of the coating prepared from the polyimide varnish at 520 ° C. or higher and an insulation breakdown voltage (BDV) of at least 8 kV / mm.
  • the polyimide coatings produced therefrom have been found to have excellent heat resistance and insulation, and improve the flexibility of the coating and the adhesion to the substrate.
  • dianhydride is intended to include precursors or derivatives thereof, which technically may not be dianhydride, but nevertheless will react with the diamine to form a polyamic acid. This polyamic acid can be converted back to polyimide.
  • diamine is intended to include precursors or derivatives thereof, which may not technically be diamines, but will nevertheless react with dianhydrides to form polyamic acids, which in turn Can be converted to mid.
  • any pair of any upper range thresholds whether or not a range is disclosed separately, or It is to be understood that this disclosure specifically discloses all ranges formed with a desired value and any lower range limit or desired value.
  • the polyimide varnish according to the present invention is a polyimide varnish for conductor coating
  • Polyamic acid solutions prepared by polymerizing at least one dianhydride monomer and at least one diamine monomer in an organic solvent;
  • Aromatic carboxylic acids having four or more carboxyl groups
  • the viscosity at 23 ° C. is 500 to 9,000 cP
  • the degree of softening resistance of the coating prepared from the polyimide varnish is 520 ° C. or more, and the dielectric breakdown voltage (BDV) is 8 kV / mm or more.
  • the polyimide varnish may have a solids content of 18 to 38% by weight based on the total weight of the polyimide varnish, a viscosity at 23 ° C. in the range of 500 to 8,000 cP, more specifically 500 to 5,000 cP. have.
  • the degree of softening of the coating prepared from the polyimide varnish may be at least 520 °C to 900 °C
  • the breakdown voltage (BDV) may be 8 kV / mm or more to 16 kV / mm or less.
  • the polyimide varnish having the above viscosity has an advantage of easy handling in terms of fluidity, and may also be advantageous in the process of coating the surface of the conductor.
  • polyimide coatings can be difficult to uniformly coat the conductors upon manufacture.
  • the aromatic carboxylic acid may be pyromellitic acid (PMA), 3,3 ', 4,4'-biphenyltetracarboxylic acid (3,3', 4,4'-biphenyltetracarboxylic acid, BPTA), 1,2,3,4-benzenetetracarboxylic acid, benzophenone-3,3 ', 4,4'-tetracarboxylic acid (benzophenone-3,3', 4 , 4'-tetracarboxylic acid, pyrazinetetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid and naphthalene-1,4,5, It may include one or more selected from the group consisting of 8-tetracarboxylic acid (naphthalene-1,4,5,8-tetracarboxylic acid).
  • PMA pyromellitic acid
  • 3,3 ', 4,4'-biphenyltetracarboxylic acid 3,3
  • the aromatic carboxylic acid having four or more carboxyl groups is not polymerized to polyamic acid at a temperature in the process of polymerizing the polyamic acid solution or preparing a polyimide varnish, for example, 40 to 90 ° C.
  • a ring-ring dehydration reaction may occur, such that a carboxyl group may form a dianhydride group.
  • the terminal amine group of the polyamic acid chain or the polyimide chain may react with the dianhydride group to increase the polymer chain length while forming an amic acid group.
  • the resulting amic acid group may be imidized at a high temperature to increase the length of the polyimide chain.
  • the polyimide varnish containing the said aromatic carboxylic acid can keep a viscosity low, process handleability can be improved significantly.
  • heat resistance, insulation, flexibility and adhesion to the substrate can be significantly improved compared to polyimide prepared using polyamic acid of similar molecular weight.
  • the amount of the dianhydride monomer may be 80 to 99.9 mol%, and the amount of the aromatic carboxylic acid may be 0.1 to 20 mol% based on 100 mol% of the diamine monomer.
  • the heat resistance of the polyimide coating may be lowered, the flexibility may be lowered, and a defect may occur in the appearance of the coating. It is not preferable because the low viscosity of can not be achieved.
  • alkoxy silane coupling agent may be included with respect to 100 parts by weight of the solid content of the polyimide varnish.
  • the content of the alkoxy silane coupling agent exceeds the above range, the mechanical properties may decrease, and during the heat treatment for imidization, the alkoxy silane coupling agent decomposes at a high temperature, thereby lowering the adhesive strength between the polyimide coating and the conductor. It is not preferable because it can make.
  • the content of the alkoxy silane coupling agent is less than the above range, it is not preferable because the adhesion improving effect between the polyimide coating and the conductor cannot be sufficiently exhibited.
  • the alkoxy silane coupling agent is, for example, 3-aminopropyl trimethoxysilane, 3-aminopropyl triethoxysilane, 3-aminopropyl methyl dimethoxysilane, 3-aminopropyl methyl diethoxysilane, 3- (2 -Aminoethyl) aminopropyl trimethoxysilane, 3-phenylaminopropyl trimethoxysilane, 2-aminophenyl trimethoxysilane, and 3-aminophenyl trimethoxysilane. It may be, but is not limited to this.
  • the antioxidant may be 5 wt% decomposition temperature of 380 °C or more, specifically 5 wt% decomposition temperature of 400 °C or more.
  • the antioxidant may include a compound represented by the following formula (1).
  • R 1 to R 6 may be each independently selected from the group consisting of C1-C3 alkyl group, aryl group, carboxylic acid group, hydroxy group, fluoroalkyl group and sulfonic acid group,
  • n is an integer from 1 to 4,
  • R 1 to R 6 are plural, they may be the same as or different from each other,
  • n1 to m6 are each independently an integer of 0 to 3;
  • n is 1 in Formula 1
  • m1 to m6 may be 0, and more specifically, the antioxidant may be a compound of Formula 1-1.
  • antioxidants Since these antioxidants have low volatility and excellent thermal stability, they do not decompose or volatilize during the manufacturing process of the polyimide coating, and thus can exhibit an effect of preventing oxidation of the amide group in the polyimide varnish or the imide group of the polyimide coating. have.
  • the antioxidant having a 5 wt% decomposition temperature of 380 ° C. or less, it is decomposed by high temperature in the manufacturing process of the polyimide coating, and thus the effect of the antioxidant input as described above cannot be exerted.
  • the antioxidant may be included in the range of 0.1 to 2 parts by weight based on 100 parts by weight of solids of the polyimide varnish.
  • the present invention may further comprise a polyimide varnish further comprises a silicone-based additive.
  • the polyimide varnish may include 0.01 to 0.05 parts by weight of the silicone-based additives based on 100 parts by weight of the solid content.
  • the content of the silicone-based additive exceeds the above range, the mechanical properties of the polyimide coating to be produced may be deteriorated, and the silicone-based additive may decompose at a high temperature during heat treatment for imidization, thereby improving adhesion between the polyimide coating and the conductor. It is rather undesirable because it can be lowered.
  • the content of the silicone-based additive is less than the above range, it is not preferable because the effect of improving the adhesion between the polyimide coating and the conductor to be produced can not exert sufficient effect.
  • the polyamic acid solution may be produced by a polymerization reaction of at least one dianhydride monomer and at least one diamine monomer.
  • the dianhydride monomers that may be used to prepare the polyamic acid of the present invention may be aromatic tetracarboxylic dianhydrides.
  • the aromatic tetracarboxylic dianhydride is pyromellitic dianhydride (or PMDA), 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (or BPDA), 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride (or a-BPDA), oxydiphthalic dianhydride (or ODPA), diphenylsulfone-3,4,3', 4'-tetracarboxylic Dianhydride (or DSDA), bis (3,4-dicarboxyphenyl) sulfide dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3- Hexafluoropropane dianhydride, 2,3,3 ', 4'- benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride (
  • dianhydride monomers which may be particularly preferably used in the present invention are pyromellitic dianhydride (PMDA), 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride (3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride (BTDA), 2,3,3', 4'-biphenyltetracarboxylic dianhydride (2,3,3 ', 4'-biphenyltetracarboxylic dianhydride), 1H, 3H-naphtho [2,3-c: 6,7-c'] difuran-1,3,6,8-tetrone 2, 3,6,7-naphthalenetetracarboxylic dianhydride (1H, 3H-naphtho [2,3-c: 6,7-c '] difuran-1,3,6,8-tetrone 2,3,6 , 7-n
  • the diamine monomer which can be used for manufacture of the polyamic-acid solution of this invention is aromatic diamine, It can classify as follows, for example.
  • 1,4-diaminobenzene or paraphenylenediamine, PDA
  • 1,3-diaminobenzene 2,4-diaminotoluene
  • 2,6-diaminotoluene 3,5-diaminobenzo Diamines having one benzene nucleus in structure, such as Ik acid (or DABA) and the like, diamines having a relatively rigid structure
  • Ik acid or DABA
  • diaminodiphenyl ethers such as 4,4'-diaminodiphenyl ether (or oxydianiline, ODA), 3,4'-diaminodiphenyl ether, and 4,4'-diaminodiphenylmethane (Methylenediamine), 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl ) -4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-dicarboxy-4,4'-diaminodiphenylmethane , 3,3 ', 5,5'-tetramethyl-4,4'-diaminodiphenylmethane, bis (4-aminophenyl) sulfide, 4,4'-di
  • diamine monomers which may be particularly preferably used in the present invention include para-phenylene diamine (p-PDA, para-phenylene diamine) and diaminophenyl ether.
  • o-phenylenediamine m-phenylenediamine, 2,6-diamino-pyridine, 4,4-diaminodiphenylsulphone, 2 -(4-aminophenyl) -1H-benzooxazol-5-amine (2- (4-aminophenyl) -1H-benzoxazole-5-amine), 2- (4-aminophenyl) -5-aminobenzimidazole (2- (4-aminophenyl) -5-aminobenzimidazole), 6-amino-2- (p-aminophenyl) benzoxazole (6-amino-2- (p-aminophenyl) benzoxazole) and 4,4 ''- It may be at least one selected from the group consisting of diamino-p-terphenyl (4,4 ''-diamino-p-terphenyl).
  • Preparation of the polyamic acid solution in the present invention is, for example,
  • the organic solvent is not particularly limited as long as the solvent can dissolve the polyamic acid, but as an example, the organic solvent may be an aprotic polar solvent.
  • Non-limiting examples of the aprotic polar solvent include amide solvents such as N, N'-dimethylformamide (DMF) and N, N'-dimethylacetamide (DMAc), p-chlorophenol, o-chloro Phenol solvents such as phenol, N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL), diglyme, and the like, and the like, and these may be used alone or in combination of two or more thereof.
  • amide solvents such as N, N'-dimethylformamide (DMF) and N, N'-dimethylacetamide (DMAc)
  • p-chlorophenol o-chloro Phenol solvents
  • o-chloro Phenol solvents such as phenol, N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL), diglyme, and the like, and the like, and these may be used alone or in
  • the solubility of the polyamic acid may be adjusted by using auxiliary solvents such as xylene, toluene, tetrahydrofuran, acetone, methyl ethyl ketone, methanol, ethanol and water.
  • auxiliary solvents such as xylene, toluene, tetrahydrofuran, acetone, methyl ethyl ketone, methanol, ethanol and water.
  • the organic solvents which can be particularly preferably used for preparing the polyimide varnish of the present invention may be N, N'-dimethylformamide and N, N'-dimethylacetamide which are amide solvents.
  • the polymerization method is not limited only to the above examples, and any known method may be used.
  • the dianhydride monomer may be appropriately selected from the examples described above, and in detail, pyromellitic dianhydride (PMDA), 3,3 ', 4,4'-benzophenonetetracarboxylic Dianhydrides (3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, BTDA), 2,3,3', 4'-biphenyltetracarboxylic dianhydride (2,3,3 ', 4'- biphenyltetracarboxylic dianhydride), 1H, 3H-naphtho [2,3-c: 6,7-c '] difuran-1,3,6,8-tetrone 2,3,6,7-naphthalenetetracarboxylic Dianhydride (1H, 3H-naphtho [2,3-c: 6,7-c '] difuran-1,3,6,8-tetrone 2,3,6,7-naphthalenetetracarboxylic dianhydr
  • the diamine monomer may be appropriately selected from the examples described above, specifically, para-phenylene diamine (p-PDA, para-phenylene diamine), diaminophenyl ether, o-phenylenediamine, m-phenylenediamine , 2,6-diamino-pyridine, 4,4-diaminodiphenylsulphone, 2- (4-aminophenyl) -1H-benzooxa Sol-5-amine (2- (4-aminophenyl) -1H-benzoxazole-5-amine), 2- (4-aminophenyl) -5-aminobenzimidazole (2- (4-aminophenyl) -5-aminobenzimidazole ), 6-amino-2- (p-aminophenyl) benzoxazole (6-amino-2- (p-aminophenyl) benzoxazole) and 4,4 ''-diamino-p-terphenyl (4,
  • the process (a) is carried out at 30 to 80 °C,
  • the polyamic acid solution may have a viscosity at 23 ° C. in a range of 500 to 9,000 cP.
  • process (b) may be further mixed with a silicon-based additive to the polyamic acid solution, it may be carried out at 40 to 90 °C.
  • the aromatic carboxylic acid included in the polyimide varnish is not polymerized into a polyamic acid in the varnish state, but is then coated with the polyimide varnish by increasing the length of the polyimide chain during heat treatment for imidization. Due to the low viscosity of the process, the process handling is good, and the length of the polymer chain is increased during the curing process after coating, and thus the level of heat resistance, insulation, flexibility, and the substrate is similar to that of polyimide coatings prepared from higher molecular weight polyamic acid. The adhesiveness of can be secured.
  • the antioxidant included in the polyimide varnish can minimize the change in physical properties of the polyimide coating
  • the alkoxy silane coupling agent and the silicone-based additives included in the polyimide varnish can improve the adhesion between the polyimide coating and the conductor. have.
  • the process (1) and (2) is characterized in that it is carried out continuously 4 to 20 times.
  • the thickness of the polyimide varnish is coated 2 to 6 ⁇ m per one time of repeating the process (1) and (2),
  • the process (2) can be carried out at 300 to 750 °C.
  • the covering speed of the conductor may be 2 to 30 m / min.
  • the conductor may be a copper wire made of copper or a copper alloy, but a conductor made of another metal material such as silver wire, or various metal plated wires such as aluminum and tin plated wire may also be included as a conductor.
  • the cross-sectional shape of the conductor may be a round line, a flat line, a hexagonal line, or the like, but is not limited thereto.
  • the polyimide coating may be prepared by thermal imidization.
  • the said thermal imidation method is a method of removing an chemical catalyst and inducing an imidation reaction with heat sources, such as a hot air and an infrared dryer.
  • the polyimide varnish may be heat-treated at a variable temperature in the range of 100 to 750 ° C. to imidize the amic acid group present in the polyimide varnish, and in detail, 300 to 750 ° C. in more detail.
  • the heat treatment can be carried out at 500 to 700 ° C. to imidize the amic acid group present in the polyimide varnish.
  • the polyimide varnish according to the present invention has a high molecular weight of the polyamic acid, no problem occurs in the surface of the polyimide coating even when heat-treated at the high temperature as described above, or the carbonization of the polyimide resin does not occur. Harmonization can be achieved.
  • Polyimide coating of the present invention prepared according to the above production method, the thickness is in the range of 16 to 50 ⁇ m, tan ⁇ may be 250 °C or more.
  • the present invention can also provide a wire including a polyimide coating prepared by coating and imidating the polyimide varnish on the wire surface, and can provide an electronic device including the wire.
  • the compound of formula 1-1 having a decomposition temperature of about 402 ° C. in the polyamic acid solution of Preparation Example 1 as OFS-6011 as an alkoxy silane coupling agent and an antioxidant was about 402 ° C.
  • BYK-378 was added as an additive in a 1: 50: 1 weight ratio and stirred slowly for 30 minutes to prepare a mixed solution containing an alkoxy silane coupling agent, an antioxidant, and a silicone-based additive.
  • the polyimide varnish of Preparation Example 2 was adjusted to a coating thickness of 2 to 6 ⁇ m per copper wire with a conductor diameter of 1 mm, and the maximum temperature of the coating curing furnace was adjusted to 500 ° C., the coating of copper wire. With the speed adjusted to 12 m / min, the process of coating, drying, and curing a total of seven times was repeated to prepare an electric wire including a polyimide coating having a thickness of 35 ⁇ m.
  • Example 1 the wire was manufactured in the same manner as in Example 1, except that the monomer, the additive, the maximum temperature by curing, and the solid content and the viscosity of the polyimide varnish were changed as shown in Table 1 below.
  • Example 1 an electric wire was manufactured in the same manner as in Example 1, except that 5 wt% of the compound of Formula A having a decomposition temperature of about 377 ° C was added instead of the compound of Formula 1-1 as an antioxidant.
  • Example 1 an electric wire was manufactured in the same manner as in Example 1, except that 5 wt% of the compound of Formula B having a decomposition temperature of about 338 ° C. was added instead of the compound of Formula 1-1 as an antioxidant.
  • Example 1 100 95 5 Formula 1-1 0.5 0.01 0.01 500 25 3,000
  • Example 2 100 95 5 Formula 1-1 0.5 0.01 0.01 550 25 3,000
  • Example 3 100 99.9 0.1 Formula 1-1 0.5 0.01 0.01 500 25 7,000
  • Example 4 100 80 20
  • Formula 1-1 0.5 0.01 0.01 500 25 500
  • Example 5 100 95 5 Formula 1-1 0.5 0.05 0.01 500 25 3,000
  • Example 6 100 95 5 Formula 1-1 0.5 0.01 0.05 500 25 3,000
  • Example 7 100 95 5 Formula 1-1 0.1 0.01 0.01 500 25 3,000
  • Example 8 100 95 5 Formula 1-1 2 0.01 0.01 500 25 3,000
  • Example 9 100 95 5 Formula 1-1 0.5 0.01 0.01 500 18 2,000
  • Example 10 100 95 5 Formula 1-1 0.5 0.01 0.01 500 38 .
  • the coating when the coating is a good product, it is represented by 'O', and when an appearance defect such as pinhole or polyimide resin is carbonized, it is represented by 'X'.
  • Thermal shock resistance was evaluated about the polyimide coating of the electric wire manufactured in Examples 1-10 and Comparative Examples 1-14. Thermal shock is an indicator of whether the wire can withstand temperature exposure in the extended state or around the mandrel.
  • the polyimide coatings of the wires prepared in Examples 1 to 10 and Comparative Examples 1 to 14 were heated at 200 ° C. for 30 minutes, removed from the oven, and the specimens were cooled to room temperature, and then 20 The number of crack occurrences of the polyimide coating at% elongation was determined and the results are shown in Table 2 below.
  • Example 1 O none Example 2 O none Example 3 O none Example 4 O none Example 5 0 none Example 6 0 none Example 7 0 none Example 8 0 none Example 9 0 none Example 10 0 none Comparative Example 1 X 6 Comparative Example 2 X 5 Comparative Example 3 X 5 Comparative Example 4 X 10 Comparative Example 5 O 4 Comparative Example 6 O none Comparative Example 7 O none Comparative Example 8 O 3 Comparative Example 9 O 3 Comparative Example 10 O 2 Comparative Example 11 X 5 Comparative Example 12 O 3 Comparative Example 13 O none Comparative Example 14 O none
  • the tan ⁇ value of the polyimide coating was measured using a DSE TD300 Tan Delta Tester.
  • the specimen is connected to the bridge and the temperature of the assembly is increased at a constant rate to a temperature that provides a clearly defined curve at ambient temperature.
  • the temperature is taken through a detector in contact with the sample and the results are plotted on a linear or logarithmic scale with respect to temperature and the logarithmic or linear axis versus tan ⁇ , from which the tan ⁇ value of the polyimide coating was calculated.
  • the degree of softening represents the decomposition temperature of an insulator and is determined by measuring the temperature at which a short occurs between two wires crossing each other at right angles with the specified load applied at the intersection.
  • the wires are placed on the plate by overlapping the wires at right angles, and a load of 1000 g is applied to the overlapped portions, an AC voltage of 100 V is applied, and the temperature is raised at a rate of about 2 ° C./min and the temperature is shorted. Was measured.
  • the specimen is pretreated in an oven at 150 ° C. for 4 hours and then placed in a pressure vessel. Fill the pressure vessel with 1400 g of refrigerant, heat the pressure vessel for 72 hours, cool the pressure vessel, transfer the specimen to a 150 ° C. oven for 10 minutes, and cool to room temperature. BDV was measured by connecting both ends of the wire and increasing the AC voltage of the nominal frequency of the test voltage (60 Hz) between the wire conductors at a constant rate from zero.
  • a pinhole test was conducted on the polyimide coating of the wire to check whether there was a defect in the insulator. Specifically, about 1.5 m long wire specimens were taken and left for 10 minutes in an air circulation oven (125 ° C.), and then cooled at room temperature without any bending or stretching. The cooled wire specimen was immersed in a sodium chloride electrolyte solution to which phenolphthalein alcohol was added while connected to an electric circuit having a direct current test voltage, and then visually checked the number of pinholes.
  • a straight wire specimen with a free measuring length of 200 to 250 mm is quickly stretched to the breaking point or elongation (20%) given in the standard. After stretching, inspect the specimen for adhesion loss or cracking at the specified magnification (1 to 6 times). The 2 mm length of the broken wire ends shall be ignored.
  • the polyimide coatings of Examples 1 to 10 prepared from polyimide varnishes comprising PMA, antioxidants, silicone additives and alkoxy silane coupling agents according to the present invention have a tan ⁇ of 250 ° C. or higher and a degree of softening. It is confirmed that the heat resistance is higher than 520 ° C, the insulation breakdown voltage is higher than 8 kV / mm, the insulation is excellent, and the adhesion between the conductor and the coating is excellent through the pull test.
  • Comparative Examples 1 to 14 which differed from the Examples at the maximum contents of PMA, antioxidant, silicone additive, alkoxy silane coupling agent, and solid content, viscosity, and curing furnace, tan ⁇ , At least one of the degree of softening resistance or the dielectric breakdown voltage is lowered, and the number of pinholes according to the pinhole test, that is, a relatively large number of insulator defects can be confirmed.
  • the polyimide varnish according to the present invention includes an aromatic carboxylic acid having four or more carboxyl groups, so that the processability of the polyimide varnish is good due to its low viscosity, and the length of the polymer chain in the curing process after coating.
  • the increase in can ensure a level of heat resistance, insulation, flexibility and adhesion to the substrate similar to the polyimide coating prepared from the polyamic acid having a higher molecular weight.
  • the alkoxy silane coupling agent and silicone additive contained in the polyimide varnish can improve the adhesion between the polyimide coating and the conductor to improve the production yield.
  • the antioxidant having a 5 wt% decomposition temperature of 380 ° C. or higher included in the polyimide varnish has low volatility and excellent thermal stability, and thus does not decompose or volatilize during the manufacturing process of the polyimide coating, and the amide group in the polyimide varnish or Oxidation of the imide group of the polyimide coating can be prevented, thereby minimizing the change in physical properties of the polyimide coating.
  • Such polyimide coatings have the advantage of satisfying the heat resistance, insulation and flexibility required for electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Thermal Sciences (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

본 발명은 도체 피복용 폴리이미드 바니쉬로서, 1종 이상의 디안하이드라이드 단량체와 1종 이상의 디아민 단량체가 유기 용매 중에서 중합되어 제조되는 폴리아믹산 용액; 4개 이상의 카르복실기를 갖는 방향족 카르복실산; 알콕시 실란 커플링제; 및 산화방지제를 포함하고, 폴리이미드 바니쉬 전체 중량을 기준으로 고형분 함량이 15 내지 38 중량%이고, 23℃에서의 점도가 500 내지 9,000 cP이고, 상기 폴리이미드 바니쉬로부터 제조되는 피복물의 내연화도가 520℃ 이상이고, 절연파괴전압(BDV)이 8 kV/mm 이상인, 폴리이미드 바니쉬 를 제공한다.

Description

방향족 카르복실산을 포함하는 도체 피복용 폴리이미드 바니쉬 및 이의 제조방법
본 발명은 방향족 카르복실산을 포함하는 도체 피복용 폴리이미드 바니쉬 및 이의 제조방법에 관한 것이다.
도체를 피복하는 절연층(절연 피복)에는, 우수한 절연성, 도체에 대한 밀착성, 내열성, 기계적 강도 등이 요구되고 있다.
또한 적용 전압이 높은 전기 기기, 예컨대 고전압에서 사용되는 모터 등에서는, 전기 기기를 구성하는 절연 전선에 고전압이 인가되어, 그 절연 피복 표면에서 부분 방전(코로나 방전)이 발생하기 쉽다.
코로나 방전의 발생에 의해 국부적인 온도 상승이나 오존 또는 이온의 발생이 야기될 수 있으며, 그 결과 절연 전선의 절연 피복에 열화가 생김으로써 조기에 절연 파괴를 일으키고, 전기 기기의 수명이 짧아질 수 있다.
고전압으로 사용되는 절연 전선에는 상기의 이유에 의해 코로나 방전 개시 전압의 향상이 요구되고 있으며, 이를 위해서는 절연층의 유전율을 낮추는 것이 유효하다고 알려져 있다.
절연층에 사용 가능한 수지는 폴리이미드 수지, 폴리아마이드이미드 수지, 폴리에스터이미드 수지 등을 예로 들 수 있다.
이들 중, 특히 폴리이미드 수지는 내열성 및 절연성이 우수한 재료로서 도체의 피복용 물질로 사용하기에 우수한 성질을 가지고 있다.
폴리이미드 수지는 방향족 디안하이드라이드와 방향족 디아민 또는 방향족 디이소시아네이트를 용액중합하여 폴리아믹산 유도체를 제조한 후, 고온에서 폐환 탈수시켜 이미드화하여 제조되는 고내열 수지를 일컫는다.
폴리이미드 수지를 절연 피복용 물질로 사용하기 위하여, 내열성, 절연성 및 기계적 물성을 더욱 향상시키는 것이 필요하며, 이를 위해서는 폴리이미드 수지의 분자량을 증가시키는 방법을 고려할 수 있다.
분자 내에 이미드기가 많을수록 폴리이미드 수지의 내열성, 절연성 및 기계적 물성을 향상시킬 수 있고, 고분자 사슬이 길어질수록 이미드기의 비율이 증가하므로, 높은 분자량의 폴리이미드를 제조하는 것이 물성 확보에 유리하기 때문이다.
높은 분자량의 폴리이미드를 제조하기 위해서는 그 전구체인 폴리아믹산을 고분자량으로 제조한 후 열처리를 통해 이미드화하는 것이 일반적이다.
그러나, 폴리아믹산의 분자량이 높을수록 폴리아믹산이 용매에 용해된 상태인 바니쉬의 점도가 상승하여, 도체 표면에 바니쉬를 균일하게 코팅하는 것이 용이하지 않고, 제조되는 피복의 두께가 지나치게 두꺼워지는 문제가 발생할 수 있다.
폴리아믹산의 분자량을 유지하면서 바니쉬의 점도를 낮추기 위해서는 고형분의 함량을 낮추고 용매 함량을 증가시키는 방법을 고려할 수 있지만, 이 경우 경화 과정에서 다량의 용매를 제거해야 함에 따라 제조 비용과 공정 시간이 증가하는 문제가 발생할 수 있다.
한편, 일반적으로 폴리이미드 수지는 산소 존재 하에 빛, 열, 압력, 전단력 등에 의하여 화학적 변화, 즉 산화반응을 일으킨다. 이러한 산화반응은 폴리이미드 수지 내의 분자사슬의 절단, 가교 등으로 물성의 변화를 발생시켜 제조되는 폴리이미드 수지의 내열성 및 기계적 물성을 저하시키는 문제를 야기한다.
이러한 문제를 해결하기 위하여, 산화방지제 등의 첨가제를 소량 투입하는 방법이 사용되고 있으며, 상기 산화방지제는 예를 들어, 이미 산화된 폴리이미드 수지의 산소원자를 제거하여 폴리이미드 수지를 안정화시키는 역할을 하는 것으로서, 포스페이트(phosphate) 화합물과 유황 화합물이 대표적으로 사용되고 있다.
그러나, 일반적으로 사용되는 산화방지제의 경우 고온에서 분해되는 성질을 가지고 있으며, 특히 폴리이미드 수지의 제조 시에는 이미드화를 위한 고온 열처리가 수반되는 것이 일반적이므로 이때 산화방지제가 분해되어 산화방지 효과가 저감되거나 경우에 따라서는 이러한 효과를 전혀 발휘하지 못하는 문제가 있다.
한편, 폴리이미드 수지를 사용하여 절연 피복을 형성하는 방법으로는 예를 들어, 도체로 이루어진 전선 주위에 폴리이미드 수지의 전구체인 폴리이미드 바니쉬를 도포하고, 이후 소정의 온도로 열처리가 가능한 경화로 내에서 상기 폴리이미드 바니쉬를 이미드화시키는 방법을 사용할 수 있다.
그러나, 일반적인 폴리이미드 수지는 우수한 물성에도 불구하고 도체와의 접착력이 뛰어나지는 않으므로, 절연 피복을 형성할 때 외관불량이 발생하는 문제가 발생할 수 있다.
따라서, 바니쉬의 고형분 함량이 높더라도 점도를 낮게 유지하며, 이로부터 제조된 폴리이미드의 내열성, 절연성 및 기계적 물성을 동시에 만족하면서 도체와의 접착력이 우수한 도체 피복용 폴리이미드 바니쉬의 필요성이 높은 실정이다.
본 발명의 목적은 4개 이상의 카르복실기를 갖는 방향족 카르복실산을 포함하는 도체 피복용 폴리이미드 바니쉬 및 이의 제조방법을 제공하는 것이다.
본 발명의 일 측면에 따르면, 4개 이상의 카르복실기를 갖는 방향족 카르복실산이 우수한 내열성, 절연성, 유연성 및 기재(도체)와의 접착성을 갖는 폴리이미드 피복물의 구현에 필수적인 인자로서 개시된다.
폴리이미드 바니쉬를 구성하는 상기 방향족 카르복실산은 이미드화를 위한 열처리 시, 폴리아믹산 사슬 또는 폴리이미드 사슬의 말단 아민기와 반응하여 고분자 사슬 길이가 증가되며, 이를 통해 제조되는 폴리이미드 피복물의 내열성, 절연성, 유연성 및 기재와의 접착성을 향상시킬 수 있다.
본 발명에 따른 폴리이미드 피복물은 이미드화를 위한 열처리 시에 폴리이미드의 분자량이 상승하므로, 이의 전구체인 폴리이미드 바니쉬의 고형분 함량이 높더라도 점도를 낮게 유지할 수 있고, 이로 인해 공정 취급성을 현저하게 향상시킬 수 있다.
본 발명의 또 다른 일 측면에 따르면, 5 중량% 분해온도가 380℃ 이상인 산화방지제가 우수한 내열성 및 기계적 물성을 갖는 폴리이미드 피복물의 구현에 필수적인 인자로서 개시된다.
폴리이미드 바니쉬를 구성하는 산화방지제는 낮은 휘발성과 우수한 열 안정성을 가지므로, 폴리이미드 피복물의 제조 공정 중에서 분해되거나 휘발되지 않고 유지되어, 폴리이미드 바니쉬 내의 아미드기 또는 폴리이미드 피복물의 이미드기의 산화를 방지할 수 있다. 그에 따라 상기 산화방지제는 폴리이미드 피복물의 물성 변화를 최소화 할 수 있다.
본 발명의 또 다른 일 측면에 따르면, 실리콘계 첨가물 및 알콕시 실란 커플링제가 상기 폴리이미드 바니쉬로부터 제조되는 폴리이미드 피복물과 도체 사이의 접착 증진제로서 활용되어 접착력을 증가시킬 수 있다.
이에 본 발명은 이의 구체적 실시예를 제공하는데 실질적인 목적이 있다.
본 발명은, 도체 피복용 폴리이미드 바니쉬로서,
1종 이상의 디안하이드라이드 단량체와 1종 이상의 디아민 단량체가 유기 용매 중에서 중합되어 제조되는 폴리아믹산 용액;
4개 이상의 카르복실기를 갖는 방향족 카르복실산;
알콕시 실란 커플링제; 및
산화방지제를 포함하고,
폴리이미드 바니쉬 전체 중량을 기준으로 고형분 함량이 15 내지 38 중량%이고,
23℃에서의 점도가 500 내지 9,000 cP이고,
상기 폴리이미드 바니쉬로부터 제조되는 피복물의 내연화도가 520℃ 이상이고, 절연파괴전압(BDV)이 8 kV/mm 이상인 폴리이미드 바니쉬를 제공한다.
상기 폴리이미드 바니쉬를 이용하는 경우 고형분 함량이 높으면서 상대적으로 낮은 점도로 인해 공정 취급성이 향상되어, 폴리이미드 피복물을 제조 시 도체에 균일하게 코팅할 수 있음은 물론, 피복물의 두께를 용이하게 조절할 수 있다.
또한, 이로부터 제조되는 폴리이미드 피복물은 우수한 내열성 및 절연성을 가지며, 피복의 유연성 및 기재와의 밀착성이 향상됨을 발견하였다.
따라서, 이의 구현을 위한 구체적인 내용을 본 명세서에서 설명한다.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 존재할 수 있음을 이해하여야 한다.
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 "디안하이드라이드(이무수물; dianhydride)"는 그 전구체 또는 유도체를 포함하는 것으로 의도되는데, 이들은 기술적으로는 디안하이드라이드가 아닐 수 있지만, 그럼에도 불구하고 디아민과 반응하여 폴리아믹산을 형성할 것이며, 이 폴리아믹산은 다시 폴리이미드로 변환될 수 있다.
본 명세서에서 "디아민"은 그의 전구체 또는 유도체를 포함하는 것으로 의도되는데, 이들은 기술적으로는 디아민이 아닐 수 있지만, 그럼에도 불구하고 디안하이드라이드와 반응하여 폴리아믹산을 형성할 것이며, 이 폴리아믹산은 다시 폴리이미드로 변환될 수 있다.
본 명세서에서 양, 농도, 또는 다른 값 또는 파라미터가 범위, 바람직한 범위 또는 바람직한 상한 값 및 바람직한 하한 값의 열거로서 주어지는 경우, 범위가 별도로 개시되는 지에 상관없이 임의의 한 쌍의 임의의 위쪽 범위 한계치 또는 바람직한 값 및 임의의 아래쪽 범위 한계치 또는 바람직한 값으로 형성된 모든 범위를 구체적으로 개시하는 것으로 이해되어야 한다.
수치 값의 범위가 본 명세서에서 언급될 경우, 달리 기술되지 않는다면, 그 범위는 그 종점 및 그 범위 내의 모든 정수와 분수를 포함하는 것으로 의도된다.
본 발명의 범주는 범위를 정의할 때 언급되는 특정 값으로 한정되지 않는 것으로 의도된다.
제1 양태: 폴리이미드 바니쉬
본 발명에 따른 폴리이미드 바니쉬는, 도체 피복용 폴리이미드 바니쉬로서,
1종 이상의 디안하이드라이드 단량체와 1종 이상의 디아민 단량체가 유기 용매 중에서 중합되어 제조되는 폴리아믹산 용액;
4개 이상의 카르복실기를 갖는 방향족 카르복실산;
알콕시 실란 커플링제; 및
산화방지제를 포함하고,
폴리이미드 바니쉬 전체 중량을 기준으로 고형분 함량이 15 내지 38 중량%이고,
23℃에서의 점도가 500 내지 9,000 cP이고,
상기 폴리이미드 바니쉬로부터 제조되는 피복물의 내연화도가 520℃ 이상이고, 절연파괴전압(BDV)이 8 kV/mm 이상인 것을 특징으로 한다.
상세하게는, 상기 폴리이미드 바니쉬는 폴리이미드 바니쉬 전체 중량을 기준으로 고형분 함량이 18 내지 38 중량%이고, 23℃에서의 점도가 500 내지 8,000 cP 범위, 더욱 상세하게는 500 내지 5,000 cP 범위일 수 있다.
하나의 구체적인 예에서, 상기 폴리이미드 바니쉬로부터 제조되는 피복물의 내연화도는 520℃ 이상 내지 900℃ 이하일 수 있고, 절연파괴전압(BDV)은 8 kV/mm 이상 내지 16 kV/mm 이하일 수 있다.
상기 폴리이미드 바니쉬의 고형분 함량이 상기 범위를 상회하는 경우에는, 폴리이미드 바니쉬의 점도가 상승하는 것이 불가피하므로 바람직하지 않다.
반대로, 상기 폴리이미드 바니쉬의 고형분 함량이 상기 범위를 하회하는 경우에는, 경화 과정에서 다량의 용매를 제거해야 함에 따라 제조 비용과 공정 시간이 증가하는 문제가 발생할 수 있다.
또한, 상기 점도를 가지는 폴리이미드 바니쉬는 유동성 측면에서 취급이 용이한 이점이 있고, 도체 표면에 코팅하는 공정에도 유리할 수 있다.
상세하게는, 상기 폴리이미드 바니쉬의 점도가 상기 범위를 상회하는 경우에는, 폴리이미드 제조 공정 중에 폴리이미드 바니쉬를 파이프를 통해 이동시킬 때 파이프와의 마찰에 의해 더 높은 압력을 인가해야만 하므로, 공정 비용이 증가되고 취급성이 저하될 수 있다.
또한, 폴리이미드 피복물을 제조 시 도체에 균일하게 코팅하기 어려울 수 있다.
반면에, 상기 폴리이미드 바니쉬의 점도가 상기 범위를 하회하는 경우에는, 경화 과정에서 다량의 용매를 제거해야 함에 따라 제조 비용과 공정 시간이 증가하는 문제가 발생할 수 있다.
한편, 상기 방향족 카르복실산이 피로멜리트산(pyromellitic acid, PMA), 3,3',4,4'-비페닐테트라카르복실산(3,3',4,4'-biphenyltetracarboxylic acid, BPTA), 1,2,3,4-벤젠테트라카르복실산(1,2,3,4-benzenetetracarboxylic acid), 벤조페논-3,3',4,4'-테트라카복실산(benzophenone-3,3',4,4'-tetracarboxylic acid), 피라진테트라카복실산(pyrazinetetracarboxylic acid), 2,3,6,7-나프탈렌테트라카르복실산(2,3,6,7-naphthalenetetracarboxylic acid) 및 나프탈렌-1,4,5,8-테트라카르복실산(naphthalene-1,4,5,8-tetracarboxylic acid)으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
본 발명에서 4개 이상의 카르복실기를 갖는 방향족 카르복실산은폴리아믹산 용액을 중합하거나 또는 폴리이미드 바니쉬를 제조하는 과정에서의 온도, 예를 들어, 40 내지 90℃의 온도에서는 폴리아믹산으로 중합되지 않지만, 이후 이미드화를 위한 열처리 시 폐환 탈수 반응을 일으켜, 카르복실기가 디안하이드라이드기를 형성할 수 있다.
상기 방향족 카르복실기가 디안하이드라이드기를 형성하면, 폴리아믹산 사슬 또는 폴리이미드 사슬의 말단 아민기와 상기 디안하이드라이드기가 반응하여 아믹산기를 형성하면서 고분자 사슬 길이를 증가시킬 수 있다.
이렇게 생성된 아믹산기는 고온에서 이미드화 되어 폴리이미드 사슬의 길이가 증가 될 수 있다.
이와 같이 상기 방향족 카르복실산을 포함하는 폴리이미드 바니쉬는 점도를 낮게 유지할 수 있으므로, 공정 취급성을 현저하게 향상시킬 수 있다. 또한, 이미드화를 위한 열처리 시, 고분자 사슬의 길이를 증가시켜, 유사한 분자량의 폴리아믹산을 사용하여 제조된 폴리이미드에 비해 내열성, 절연성, 유연성 및 기재와의 접착성이 현저하게 향상될 수 있다.
상기 디아민 단량체 100 몰%를 기준으로, 상기 디안하이드라이드 단량체의 투입량이 80 내지 99.9 몰%이고, 상기 방향족 카르복실산의 투입량이 0.1 내지 20 몰%일 수 있다.
상기 방향족 카르복실산의 투입량이 상기 범위를 상회하는 경우에는, 폴리이미드 피복물의 내열성이 낮아질 수 있고, 유연성이 저하되어 피복물 외관에 불량이 발생할 수 있으며, 상기 범위를 하회하는 경우에는, 소망하는 수준의 낮은 점도를 달성할 수 없으므로 바람직하지 않다.
한편, 상기 폴리이미드 바니쉬의 고형분 100 중량부에 대해서 0.01 내지 0.05 중량부의 알콕시 실란 커플링제를 포함할 수 있다.
이러한 알콕시 실란 커플링제의 함량이 상기 범위를 상회하는 경우에는, 기계적 물성이 저하될 수 있고, 이미드화를 위한 열처리 시 상기 알콕시 실란 커플링제가 고온에서 분해되어 폴리이미드 피복물과 도체 간의 접착력을 오히려 저하시킬 수 있으므로 바람직하지 않다.
반면에, 상기 알콕시 실란 커플링제의 함량이 상기 범위를 하회하는 경우에는, 폴리이미드 피복물과 도체 간의 접착력 향상 효과를 충분히 발휘할 수 없으므로 바람직하지 않다.
상기 알콕시 실란 커플링제는 예를 들어, 3-아미노프로필 트리메톡시실란, 3-아미노프로필 트리에톡시실란, 3-아미노프로필 메틸 디메톡시실란, 3-아미노프로필 메틸 디에톡시실란, 3-(2-아미노에틸)아미노프로필 트리메톡시실란, 3-페닐아미노프로필 트리메톡시실란, 2-아미노페닐 트리메톡시실란, 및 3-아미노페닐 트리메톡시실란으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있으나, 이것만으로 한정되는 것은 아니다.
한편, 상기 산화방지제는 5 중량% 분해온도가 380℃ 이상, 상세하게는 5 중량% 분해온도가 400℃ 이상일 수 있다.
구체적으로, 상기 산화방지제가 하기 화학식 1로 표시되는 화합물을 포함할 수 있다.
Figure PCTKR2018013804-appb-I000001
(1)
상기 화학식 1에서, R1 내지 R6은 각각 독립적으로 C1-C3의 알킬기, 아릴기, 카르복실산기, 하이드록시기, 플루오로알킬기 및 술폰산기로 이루어진 군에서 선택될 수 있고,
n은 1 내지 4의 정수이고,
R1 내지 R6가 복수인 경우, 서로 동일 또는 상이할 수 있고,
m1 내지 m6은 각각 독립적으로 0 내지 3의 정수이다.
상기 화학식 1에서 벤젠 고리의 치환기가 특별히 지정되지 않은 경우에는 수소를 의미한다.
하나의 구체적인 예에서, 상기 화학식 1에서 n이 1이고, m1 내지 m6이 0 일 수 있으며, 더욱 상세하게는 상기 산화방지제는 하기 화학식 1-1의 화합물일 수 있다.
Figure PCTKR2018013804-appb-I000002
(1-1)
이러한 산화방지제는 낮은 휘발성과 우수한 열 안정성을 가지므로, 폴리이미드 피복물의 제조 공정 중에서 분해되거나 휘발되지 않는 바, 폴리이미드 바니쉬 내의 아미드기 또는 폴리이미드 피복물의 이미드기의 산화를 방지하는 효과를 발휘할 수 있다.
반대로, 5 중량% 분해온도가 380℃ 이하인 산화방지제의 경우, 폴리이미드 피복물의 제조 공정 중에서 고온에 의해 분해되어 상기와 같은 산화방지제 투입에 따른 효과를 발휘할 수 없다.
상기 산화방지제는 폴리이미드 바니쉬의 고형분 100 중량부에 대해서 0.1 내지 2 중량부의 범위로 포함할 수 있다.
이러한 산화방지제의 함량이 상기 범위를 상회하는 경우에는, 폴리이미드 피복물 내에 침적 또는 블루밍(blooming) 현상이 발생하여 기계적 물성을 오히려 저하시킬 수 있고, 피복물 외관에 불량이 발생할 수 있으므로 바람직하지 않다.
반대로, 상기 산화방지제의 함량이 상기 범위를 하회하는 경우에는, 산화방지 효과를 충분히 발휘할 수 없으므로 바람직하지 않다.
본 발명은 또한, 상기 폴리이미드 바니쉬가 실리콘계 첨가물을 추가로 포함할 수 있다.
구체적으로, 상기 폴리이미드 바니쉬의 고형분 100 중량부에 대해서 0.01 내지 0.05 중량부의 실리콘계 첨가물을 포함할 수 있다.
이러한 실리콘계 첨가물의 함량이 상기 범위를 상회하는 경우에는, 제조되는 폴리이미드 피복물의 기계적 물성이 저하될 수 있고, 이미드화를 위한 열처리 시 상기 실리콘계 첨가물이 고온에서 분해되어 폴리이미드 피복물과 도체 간의 접착력을 오히려 저하시킬 수 있으므로 바람직하지 않다.
반면에, 상기 실리콘계 첨가물의 함량이 상기 범위를 하회하는 경우에는, 제조되는 폴리이미드 피복물과 도체 간의 접착력 개선 효과를 충분한 효과를 발휘할 수 없으므로 바람직하지 않다.
상기 실리콘계 첨가물은 예를 들어, 디메틸폴리실록산(dimethylpolysiloxane), 폴리에테르변성폴리디메틸실록산(Polyether modified polydimethysiloxane) 폴리메틸알킬실록산(Polymethylalkylsiloxane, 하이드록실 그룹(-OH) 및 이중결합구조(C=C)를 포함한 실리콘첨가제로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있으나, 이것만으로 한정되는 것은 아니다.
한편, 앞서 설명한 바와 같이, 상기 폴리아믹산 용액은 1종 이상의 디안하이드라이드 단량체 및 1종 이상의 디아민 단량체의 중합 반응에 의해 생성될 수 있다.
본 발명의 폴리아믹산 제조에 사용될 수 있는 디안하이드라이드 단량체는 방향족 테트라카르복실릭 디안하이드라이드일 수 있다.
상기 방향족 테트라카르복실릭 디안하이드라이드는 피로멜리틱 디안하이드라이드(또는 PMDA), 3,3',4,4'-바이페닐테트라카르복실릭 디안하이드라이드(또는 BPDA), 2,3,3',4'-바이페닐테트라카르복실릭 디안하이드라이드(또는 a-BPDA), 옥시디프탈릭 디안하이드라이드(또는 ODPA), 디페닐설폰-3,4,3',4'-테트라카르복실릭 디안하이드라이드(또는 DSDA), 비스(3,4-디카르복시페닐)설파이드 디안하이드라이드, 2,2-비스(3,4-디카르복시페닐)-1,1,1,3,3,3-헥사플루오로프로페인 디안하이드라이드, 2,3,3',4'- 벤조페논테트라카르복실릭 디안하이드라이드, 3,3',4,4'-벤조페논테트라카르복실릭 디안하이드라이드(또는 BTDA), 비스(3,4-디카르복시페닐)메테인 디안하이드라이드, 2,2-비스(3,4-디카르복시페닐)프로페인 디안하이드라이드, p-페닐렌비스(트라이멜리틱 모노에스터 애시드 안하이드라이드), p-바이페닐렌비스(트라이멜리틱 모노에스터 애시드 안하이드라이드), m-터페닐-3,4,3',4'-테트라카르복실릭 디안하이드라이드, p-터페닐-3,4,3',4'-테트라카르복실릭 디안하이드라이드, 1,3-비스(3,4-디카르복시페녹시)벤젠 디안하이드라이드, 1,4-비스(3,4-디카르복시페녹시)벤젠 디안하이드라이드, 1,4-비스(3,4-디카르복시페녹시)바이페닐 디안하이드라이드, 2,2-비스〔(3,4-디카르복시 페녹시)페닐〕프로페인 디안하이드라이드(BPADA), 2,3,6,7-나프탈렌테트라카복실산 디안하이드라이드, 1,4,5,8-나프탈렌테트라카르복실릭 디안하이드라이드, 4,4'-(2,2-헥사플루오로아이소프로필리덴)디프탈산 디안하이드라이드 등을 예로 들 수 있다. 이들은 소망하는 바에 따라 단독 또는 2 종 이상을 조합하여 이용할 수 있다.
이들은 소망하는 바에 따라 단독 또는 2 종 이상을 조합하여 이용할 수 있지만, 본 발명에서 특히 바람직하게 이용될 수 있는 디안하이드라이드 단량체는 피로멜리틱 디안하이드라이드(PMDA, pyromellitic dianhydride), 3,3',4,4'-벤조페논테트라카르복실릭 디안하이드라이드(3,3',4,4'-benzophenonetetracarboxylic dianhydride, BTDA), 2,3,3',4'-비페닐테트라카르복실릭 디안하이드라이드(2,3,3',4'-biphenyltetracarboxylic dianhydride), 1H,3H-나프토[2,3-c:6,7-c']디퓨란-1,3,6,8-테트론 2,3,6,7-나프탈렌테트라카르복실릭 디안하이드라이드(1H,3H-naphtho[2,3-c:6,7-c']difuran-1,3,6,8-tetrone 2,3,6,7-naphthalenetetracarboxylic dianhydride), 1,4,5,8-나프탈렌테트라카르복실릭 디안하이드라이드(1,4,5,8-naphthalenetetracarboxylic dianhydride), 4,4'-옥시디프탈릭 안하이드라이드(4,4'-oxydiphthalic anhydride), 4,4'-옥시비스(2-벤조퓨란-1,3-디온)(4,4'-oxybis(2-benzofurane-1,3-dione)), 4-[(1,3-디옥소-1,3-디하이드로-2-벤조퓨란-5-일)옥시]-2-벤조퓨란-1,3-디온(4-[(1,3-dioxo-1,3-dihydro-2-benzofuran-5-yl)oxy]-2-benzofuran-1,3-dione) 및 5,5'-설포닐비스-1,3-이소벤조퓨란디온(5,5'-sulfonylbis-1,3-isobenzofurandione)으로 이루어진 군으로부터 선택된 1종 이상을 더 포함할 수 있다.
본 발명의 폴리아믹산 용액의 제조에 사용될 수 있는 디아민 단량체는 방향족 디아민으로서, 이하와 같이 분류하여 예를 들 수 있다.
1) 1,4-디아미노벤젠(또는 파라페닐렌디아민, PDA), 1,3-디아미노벤젠, 2,4-디아미노톨루엔, 2,6-디아미노톨루엔, 3,5-디아미노벤조익 애시드(또는 DABA) 등과 같이, 구조 상 벤젠 핵 1개를 갖는 디아민으로서, 상대적으로 강직한 구조의 디아민;
2) 4,4'-디아미노디페닐에테르(또는 옥시디아닐린, ODA), 3,4'-디아미노디페닐에테르 등의 디아미노디페닐에테르, 4,4'-디아미노디페닐메테인(메틸렌디아민), 3,3'-디메틸-4,4'-디아미노바이페닐, 2,2'-디메틸-4,4'-디아미노바이페닐, 2,2'-비스(트라이플루오로메틸)-4,4'-디아미노바이페닐, 3,3'-디메틸-4,4'-디아미노디페닐메테인, 3,3'-디카복시-4,4'-디아미노디페닐메테인, 3,3',5,5'-테트라메틸-4,4'-디아미노디페닐메테인, 비스(4-아미노페닐)설파이드, 4,4'-디아미노벤즈아닐라이드, 3,3'-디클로로벤지딘, 3,3'-디메틸벤지딘(또는 o-톨리딘), 2,2'-디메틸벤지딘(또는 m-톨리딘), 3,3'-디메톡시벤지딘, 2,2'-디메톡시벤지딘, 3,3'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐설파이드, 3,4'-디아미노디페닐설파이드, 4,4'-디아미노디페닐설파이드, 3,3'-디아미노디페닐설폰, 3,4'-디아미노디페닐설폰, 4,4'-디아미노디페닐설폰, 3,3'-디아미노벤조페논, 4,4'-디아미노벤조페논, 3,3'-디아미노-4,4'-디클로로벤조페논, 3,3'-디아미노-4,4'-디메톡시벤조페논, 3,3'-디아미노디페닐메테인, 3,4'-디아미노디페닐메테인, 4,4'-디아미노디페닐메테인, 2,2-비스(3-아미노페닐)프로페인, 2,2-비스(4-아미노페닐)프로페인, 2,2-비스(3-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스(4-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로페인, 3,3'-디아미노디페닐설폭사이드, 3,4'-디아미노디페닐설폭사이드, 4,4'-디아미노디페닐설폭사이드 등과 같이, 구조 상 벤젠 핵 2개를 갖는 디아민;
3) 1,3-비스(3-아미노페닐)벤젠, 1,3-비스(4-아미노페닐)벤젠, 1,4-비스(3-아미노페닐)벤젠, 1,4-비스(4-아미노 페닐)벤젠, 1,3-비스(4-아미노페녹시)벤젠, 1,4-비스(3-아미노페녹시)벤젠(또는 TPE-Q), 1,4-비스(4-아미노페녹시)벤젠(또는 TPE-Q), 1,3-비스(3-아미노페녹시)-4-트라이플루오로메틸벤젠, 3,3'-디아미노-4-(4-페닐)페녹시벤조페논, 3,3'-디아미노-4,4'-디(4-페닐페녹시)벤조페논, 1,3-비스(3-아미노페닐설파이드)벤젠, 1,3-비스(4-아미노페닐설파이 드)벤젠, 1,4-비스(4-아미노페닐설파이드)벤젠, 1,3-비스(3-아미노페닐설폰)벤젠, 1,3-비스(4-아미노페닐설폰)벤젠, 1,4-비스(4-아미노페닐설폰)벤젠, 1,3-비스〔2-(4-아미노페닐)아이소프로필〕벤젠, 1,4-비스〔2-(3-아미노페닐)아이소프로필〕벤젠, 1,4-비스〔2-(4-아미노페닐)아이소프로필〕벤젠 등과 같이, 구조 상 벤젠 핵 3개를 갖는 디아민;
4) 3,3'-비스(3-아미노페녹시)바이페닐, 3,3'-비스(4-아미노페녹시)바이페닐, 4,4'-비스(3-아미노페녹시)바이페닐, 4,4'-비스(4-아미노페녹시)바이페닐, 비스〔3-(3-아미노페녹시)페닐〕에테르, 비스〔3-(4-아미노페녹시)페닐〕에테르, 비스〔4-(3-아미노페녹시)페닐〕에테르, 비스〔4-(4-아미노페녹시)페닐〕에테르, 비스〔3-(3-아미노페녹시)페닐〕케톤, 비스〔3-(4-아미노페녹시)페닐〕케톤, 비스〔4-(3-아미노페녹시)페닐〕케톤, 비스〔4-(4-아미노 페녹시)페닐〕케톤, 비스〔3-(3-아미노페녹시)페닐〕설파이드, 비스〔3-(4-아미노페녹시)페닐〕설파이드, 비스 〔4-(3-아미노페녹시)페닐〕설파이드, 비스〔4-(4-아미노페녹시)페닐〕설파이드, 비스〔3-(3-아미노페녹시)페닐〕설폰, 비스〔3-(4-아미노페녹시)페닐〕설폰, 비스〔4-(3-아미노페녹시)페닐〕설폰, 비스〔4-(4-아미노페녹시)페닐〕설폰, 비스〔3-(3-아미노페녹시)페닐〕메테인, 비스〔3-(4-아미노페녹시)페닐〕메테인, 비스〔4-(3-아미노페녹시)페닐〕메테인, 비스〔4-(4-아미노페녹시)페닐〕메테인, 2,2-비스〔3-(3-아미노페녹시)페닐〕프로페인, 2,2-비스〔3-(4-아미노페녹시)페닐〕프로페인, 2,2-비스〔4-(3-아미노페녹시)페닐〕프로페인, 2,2-비스〔4-(4-아미노페녹시)페닐〕프로페인(BAPP), 2,2-비스〔3-(3-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스〔3-(4-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스〔4-(3-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스〔4-(4-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로페인 등과 같이, 구조 상 벤젠 핵 4개를 갖는 디아민.
이들은 소망하는 바에 따라 단독 또는 2 종 이상을 조합하여 이용할 수 있지만, 본 발명에서 특히 바람직하게 이용될 수 있는 디아민 단량체는 파라-페닐렌 디아민(p-PDA, para-phenylene diamine), 디아미노페닐에테르, o-페닐렌디아민, m-페닐렌디아민, 2,6-디아미노-피리딘(2,6-diamino-pyridine), 4,4-디아미노디페닐설폰(4,4'-diaminodiphenylsulphone), 2-(4-아미노페닐)-1H-벤조옥사졸-5-아민(2-(4-aminophenyl)-1H-benzoxazole-5-amine), 2-(4-아미노페닐)-5-아미노벤즈이미다졸(2-(4-aminophenyl)-5-aminobenzimidazole), 6-아미노-2-(p-아미노페닐)벤즈옥사졸(6-amino-2-(p-aminophenyl)benzoxazole) 및 4,4''-디아미노-p-터페닐(4,4''-diamino-p-terphenyl)로 이루어진 군에서 선택되는 1종 이상일 수 있다.
제2 양태: 폴리이미드 바니쉬의 제조방법
본 발명에 따른 폴리이미드 바니쉬의 제조방법은,
(a) 1종 이상의 디안하이드라이드 단량체 및 1종 이상의 디아민 단량체를 유기 용매 중에서 중합하여 폴리아믹산 용액을 제조하는 과정;
(b) 상기 폴리아믹산 용액에 알콕시 실란 커플링제 및 산화방지제를 혼합하여 혼합물을 제조하는 과정; 및
(c) 상기 혼합물과 4개 이상의 카르복실기를 갖는 방향족 카르복실산을 혼합하는 과정을 포함할 수 있다.
본 발명에서 폴리아믹산 용액의 제조는 예를 들어,
(1) 디아민 단량체 전량을 용매 중에 넣고, 그 후 디안하이드라이드 단량체를 디아민 단량체와 실질적으로 등몰이 되도록 첨가하여 중합하는 방법;
(2) 디안하이드라이드 단량체 전량을 용매 중에 넣고, 그 후 디아민 단량체를 디안하이드라이드 단량체와 실질적으로 등몰이 되도록 첨가하여 중합하는 방법;
(3) 디아민 단량체 중 일부 성분을 용매 중에 넣은 후, 반응 성분에 대해서 디안하이드라이드 단량체 중 일부 성분을 약 80~120 몰%의 비율로 혼합한 후, 나머지 디아민 단량체 성분을 첨가하고 이에 연속해서 나머지 디안하이드라이드 단량체 성분을 첨가하여, 디아민 단량체 및 디안하이드라이드 단량체가 실질적으로 등몰이 되도록 하여 중합하는 방법;
(4) 디안하이드라이드 단량체를 용매 중에 넣은 후, 반응 성분에 대해서 디아민 화합물 중 일부 성분을 90~110 몰%의 비율로 혼합한 후, 다른 디안하이드라이드 단량체 성분을 첨가하고 계속되어 나머지 디아민 단량체 성분을 첨가하여, 디아민 단량체 및 디안하이드라이드 단량체가 실질적으로 등몰이 되도록 하여 중합하는 방법;
(5) 용매 중에서 일부 디아민 단량체 성분과 일부 디안하이드라이드 단량체 성분을 어느 하나가 과량이도록 반응시켜, 제1 조성물을 형성하고, 또 다른 용매 중에서 일부 디아민 단량체 성분과 일부 디안하이드라이드 단량체 성분을 어느 하나가 과량이도록 반응시켜 제2 조성물을 형성한 후, 제1, 제2 조성물들을 혼합하고, 중합을 완결하는 방법으로서, 이 때 제1 조성물을 형성할 때 디아민 단량체 성분이 과잉일 경우, 제 2조성물에서는 디안하이드라이드 단량체 성분을 과량으로 하고, 제1 조성물에서 디안하이드라이드 단량체 성분이 과잉일 경우, 제2 조성물에서는 디아민 단량체 성분을 과량으로 하여, 제1, 제2 조성물들을 혼합하여 이들 반응에 사용되는 전체 디아민 단량체 성분과 디안하이드라이드 단량체 성분이 실질적으로 등몰이 되도록 하여 중합하는 방법 등을 들 수 있다.
상기 유기 용매는 폴리아믹산이 용해될 수 있는 용매라면 특별히 한정되지는 않으나, 하나의 예로서, 비양성자성 극성 용매(aprotic polar solvent)일 수 있다.
상기 비양성자성 극성 용매의 비제한적인 예로서, N,N'-디메틸포름아미드(DMF), N,N'-디메틸아세트아미드(DMAc) 등의 아미드계 용매, p-클로로페놀, o-클로로페놀 등의 페놀계 용매, N-메틸-피롤리돈(NMP), 감마 브티로 락톤(GBL) 및 디그림(Diglyme) 등을 들 수 있고, 이들은 단독으로 또는 2종 이상 조합되어 사용될 수 있다.
경우에 따라서는 자일렌, 톨루엔, 테트라히드로푸란, 아세톤, 메틸에틸케톤, 메탄올, 에탄올, 물 등의 보조적 용매를 사용하여, 폴리아믹산의 용해도를 조절할 수도 있다.
하나의 예에서, 본 발명의 폴리이미드 바니쉬 제조에 특히 바람직하게 사용될 수 있는 유기 용매는 아미드계 용매인 N,N'-디메틸포름아미드 및 N,N'-디메틸아세트아미드일 수 있다.
상기 중합 방법이 이상의 예들로만 한정되는 것은 아니며, 공지된 어떠한 방법을 사용할 수 있음은 물론이다.
상기 디안하이드라이드 단량체는 앞서 설명한 예시로부터 적절하게 선택될 수 있으며, 상세하게는, 피로멜리틱 디안하이드라이드(PMDA, pyromellitic dianhydride), 3,3',4,4'-벤조페논테트라카르복실릭 디안하이드라이드(3,3',4,4'-benzophenonetetracarboxylic dianhydride, BTDA), 2,3,3',4'-비페닐테트라카르복실릭 디안하이드라이드(2,3,3',4'-biphenyltetracarboxylic dianhydride), 1H,3H-나프토[2,3-c:6,7-c']디퓨란-1,3,6,8-테트론 2,3,6,7-나프탈렌테트라카르복실릭 디안하이드라이드(1H,3H-naphtho[2,3-c:6,7-c']difuran-1,3,6,8-tetrone 2,3,6,7-naphthalenetetracarboxylic dianhydride), 1,4,5,8-나프탈렌테트라카르복실릭 디안하이드라이드(1,4,5,8-naphthalenetetracarboxylic dianhydride), 4,4'-옥시디프탈릭 안하이드라이드(4,4'-oxydiphthalic anhydride), 4,4'-옥시비스(2-벤조퓨란-1,3-디온)(4,4'-oxybis(2-benzofurane-1,3-dione)), 4-[(1,3-디옥소-1,3-디하이드로-2-벤조퓨란-5-일)옥시]-2-벤조퓨란-1,3-디온(4-[(1,3-dioxo-1,3-dihydro-2-benzofuran-5-yl)oxy]-2-benzofuran-1,3-dione) 및 5,5'-설포닐비스-1,3-이소벤조퓨란디온(5,5'-sulfonylbis-1,3-isobenzofurandione)으로 이루어진 군에서 선택되는 1종 이상을 더 포함할 수 있다.
상기 디아민 단량체는 앞서 설명한 예시로부터 적절하게 선택될 수 있으며, 상세하게는 파라-페닐렌 디아민(p-PDA, para-phenylene diamine), 디아미노페닐에테르, o-페닐렌디아민, m-페닐렌디아민, 2,6-디아미노-피리딘(2,6-diamino-pyridine), 4,4-디아미노디페닐설폰(4,4'-diaminodiphenylsulphone), 2-(4-아미노페닐)-1H-벤조옥사졸-5-아민(2-(4-aminophenyl)-1H-benzoxazole-5-amine), 2-(4-아미노페닐)-5-아미노벤즈이미다졸(2-(4-aminophenyl)-5-aminobenzimidazole), 6-아미노-2-(p-아미노페닐)벤즈옥사졸(6-amino-2-(p-aminophenyl)benzoxazole) 및 4,4''-디아미노-p-터페닐(4,4''-diamino-p-terphenyl)로 이루어진 군에서 선택되는 1종 이상이 바람직하게 이용될 수 있다.
상기 과정 (a)는 30 내지 80℃에서 수행되고,
상기 폴리아믹산 용액은 23℃에서의 점도가 500 내지 9,000 cP 범위일 수 있다.
또한, 상기 과정 (b)는 폴리아믹산 용액에 실리콘계 첨가물을 추가로 혼합하고, 40 내지 90 ℃에서 수행될 수 있다.
앞서 설명한 바와 같이, 상기 폴리이미드 바니쉬에 포함된 방향족 카르복실산은, 바니쉬 상태에서는 폴리아믹산으로 중합되지 않지만, 이후 이미드화를 위한 열처리 시 폴리이미드 사슬의 길이를 증가시킴으로써, 상기 폴리이미드 바니쉬를 코팅하는 과정에서는 낮은 점도로 인해 공정 취급성이 좋고, 코팅된 이후 경화 과정에서 고분자 사슬의 길이가 증가되므로 보다 높은 분자량을 가지는 폴리아믹산으로부터 제조되는 폴리이미드 피복물과 유사한 수준의 내열성, 절연성, 유연성 및 기재와의 접착성을 확보할 수 있다.
또한, 상기 폴리이미드 바니쉬에 포함된 산화방지제는 폴리이미드 피복물의 물성 변화를 최소화 할 수 있으며, 상기 폴리이미드 바니쉬에 포함된 알콕시 실란 커플링제 및 실리콘계 첨가물은 폴리이미드 피복물과 도체 간의 접착력을 향상시킬 수 있다.
제3 양태: 폴리이미드 피복물의 제조방법 및 폴리이미드 피복물
본 발명에 따른 폴리이미드 피복물의 제조방법은,
(1) 폴리이미드 바니쉬를 도체 표면에 코팅하는 과정; 및
(2) 상기 도체 표면에 코팅된 폴리이미드 바니쉬를 이미드화하는 과정을 포함하고,
상기 과정 (1) 및 (2)를 연속적으로 4 내지 20회 반복 수행하는 것을 특징으로 한다.
상기 과정 (1) 및 (2)의 반복 수행 1회당 상기 폴리이미드 바니쉬가 코팅되는 두께는 2 내지 6 ㎛이고,
상기 과정 (2)는 300 내지 750℃에서 수행될 수 있다.
또한, 상기 도체의 피복 속도는 2 내지 30 m/분일 수 있다.
상기 도체는 구리 또는 구리 합금으로 이루어진 동선일 수 있으나, 은선 등의 다른 금속 재료로 이루어진 도체나, 알루미늄, 주석 도금 도선 등의 각종 금속 도금선도 도체로 포함될 수 있다.
도체의 단면 형상으로는, 환선, 평각선, 육각선 등일 수 있으나, 이것만으로 제한되는 것은 아니다.
본 발명의 제조방법에서 폴리이미드 피복물은 열 이미드화법을 통해 제조될 수 있다.
상기 열 이미드화법이란, 화학적 촉매를 배제하고, 열풍이나 적외선 건조기 등의 열원으로 이미드화 반응을 유도하는 방법이다.
상기 열 이미드화법은, 폴리이미드 바니쉬를 100 내지 750℃의 범위의 가변적인 온도에서 열처리하여 폴리이미드 바니쉬에 존재하는 아믹산기를 이미드화할 수 있으며, 상세하게는 300 내지 750℃, 더욱 상세하게는, 500 내지 700℃에서 열처리하여 폴리이미드 바니쉬에 존재하는 아믹산기를 이미드화할 수 있다.
특히, 본 발명에 따른 폴리이미드 바니쉬는 폴리아믹산의 분자량이 높으므로, 상기와 같은 고온에서 열처리 시에도 폴리이미드 피복물 표면에 흠결이 발생하거나 폴리이미드 수지가 탄화되는 문제가 발생하지 않고, 높은 이미드화율을 달성할 수 있다.
이상과 같은 제조방법에 따라 제조된 본 발명의 폴리이미드 피복물은, 두께가 16 내지 50 ㎛ 범위이고, tanδ가 250℃ 이상일 수 있다.
본 발명은 또한, 상기 폴리이미드 바니쉬를 전선 표면에 코팅하고 이미드화하여 제조된 폴리이미드 피복물을 포함하는 전선을 제공할 수 있으며, 상기 전선을 포함하는 전자 장치를 제공할 수 있다.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.
이하 실시예 및 비교예에서 사용한 약어의 화합물명은 다음과 같다.
- 피로멜리트산 이무수물: PMDA
- 피로멜리트산: PMA
- 옥시디아닐린: ODA
- N-메틸 피롤리돈: NMP
<실시예 1>
제조예 1: 폴리아믹산 용액의 제조
교반기 및 질소 주입·배출관을 구비한 500 ㎖ 반응기에 질소를 주입시키면서 364.6 g의 NMP을 투입하고 반응기의 온도를 30℃로 설정한 후 61.4 g의 ODA 및 63.5 g의 PMDA를 투입하여 완전히 용해된 것을 확인한다.
질소 분위기하에 50℃로 온도를 올려 가열하면서 120 분간 교반을 계속한 후, 23℃에서의 점도가 10,000 cP를 나타내는 폴리아믹산 용액을 제조하였다.
제조예 2: 폴리이미드 바니쉬의 제조
반응기의 온도를 50℃로 설정한 후 상기 제조예 1의 폴리아믹산 용액에 알콕시 실란 커플링제로서 OFS-6011, 산화방지제로서 5 중량% 분해온도가 약 402℃인 하기 화학식 1-1의 화합물, 실리콘계 첨가물로서 BYK-378을 1:50:1 중량비로 투입하고 30 분간 서서히 교반하여 알콕시 실란 커플링제, 산화방지제 및 실리콘계 첨가물을 포함하는 혼합액을 제조하였다.
Figure PCTKR2018013804-appb-I000003
(1-1)
이어서 반응기의 온도를 50 ℃로 설정한 후 ODA 100 몰에 대하여 5 몰의 PMA를 투입하였다. 반응이 완료될 때까지 충분히 교반하여 총 고형분의 함량이 약 25 중량%, 점도가 약 3,000 cP가 되도록 NMP를 투입하고, 디아민 단량체, 디안하이드라이드 단량체 및 방향족 카르복실산의 몰비가 100:95:5 이고, 고형분 100중량부에 대하여 알콕시 실란 커플링제를 0.01 중량부, 산화방지제를 0.5 중량부, 실리콘계 첨가물을 0.01 중량부를 포함하는 폴리이미드 바니쉬를 제조하였다.
제조예 3: 폴리이미드 피복물의 제조
코팅 경화로 내에서 상기 제조예 2의 폴리이미드 바니쉬를 도체경 1 mm의 동선에 1회당 코팅 두께를 2 내지 6 ㎛ 사이로 조절하고, 코팅 경화로의 최고 온도를 500℃로 조절하였으며, 동선의 피복 속도를 12 m/분으로 조절한 상태에서, 총 7회 코팅, 건조 및 경화하는 과정을 반복하여 피복 두께가 35 ㎛의 폴리이미드 피복물을 포함하는 전선을 제조하였다.
<실시예 2 내지 10 및 비교예 1 내지 12>
실시예 1에서, 단량체, 첨가물, 경화로 최고온도, 폴리이미드 바니쉬의 고형분 함량 및 점도를 각각 하기 표 1과 같이 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 전선을 제조하였다.
<비교예 13>
실시예1에서, 산화방지제로서 화학식 1-1의 화합물 대신 5 중량% 분해온도가 약 377℃인 하기 화학식 A의 화합물을 투입한 것을 제외하고, 실시예 1과 동일한 방법으로 전선을 제조하였다.
Figure PCTKR2018013804-appb-I000004
(A)
<비교예 14>
실시예1에서, 산화방지제로서 화학식 1-1의 화합물 대신 5 중량% 분해온도가 약 338℃인 하기 화학식 B의 화합물을 투입한 것을 제외하고, 실시예 1과 동일한 방법으로 전선을 제조하였다.
Figure PCTKR2018013804-appb-I000005
(B)
ODA(몰%) PMDA(몰%) PMA(몰%) 산화방지제 커플링제(중량부) 실리콘계 첨가물(중량부) 경화로 최고온도(℃) 고형분 함량(중량%) 점도(cP)
종류 함량(중량부)
실시예 1 100 95 5 화학식 1-1 0.5 0.01 0.01 500 25 3,000
실시예 2 100 95 5 화학식 1-1 0.5 0.01 0.01 550 25 3,000
실시예 3 100 99.9 0.1 화학식 1-1 0.5 0.01 0.01 500 25 7,000
실시예 4 100 80 20 화학식 1-1 0.5 0.01 0.01 500 25 500
실시예 5 100 95 5 화학식 1-1 0.5 0.05 0.01 500 25 3,000
실시예 6 100 95 5 화학식 1-1 0.5 0.01 0.05 500 25 3,000
실시예 7 100 95 5 화학식 1-1 0.1 0.01 0.01 500 25 3,000
실시예 8 100 95 5 화학식 1-1 2 0.01 0.01 500 25 3,000
실시예 9 100 95 5 화학식 1-1 0.5 0.01 0.01 500 18 2,000
실시예 10 100 95 5 화학식 1-1 0.5 0.01 0.01 500 38 9,000
비교예 1 100 100 - 화학식 1-1 0.5 0.01 0.01 500 25 21,000
비교예 2 100 100 - 화학식 1-1 0.5 0.01 0.01 550 25 21,000
비교예 3 100 99.95 0.05 화학식 1-1 0.5 0.01 0.01 500 25 8,000
비교예 4 100 75 25 화학식 1-1 0.5 0.01 0.01 500 25 400
비교예 5 100 95 5 화학식 1-1 0.5 0.01 0.01 500 13 3,000
비교예 6 100 95 5 화학식 1-1 0.5 0.06 0.01 500 25 3,000
비교예 7 100 95 5 화학식 1-1 0.5 0.01 0.06 500 25 3,000
비교예 8 100 95 5 화학식 1-1 0.5 - 0.01 500 25 3,000
비교예 9 100 95 5 화학식 1-1 0.5 0.01 - 500 25 3,000
비교예 10 100 95 5 화학식 1-1 0.01 0.01 0.01 500 25 3,000
비교예 11 100 95 5 화학식 1-1 2.5 0.01 0.01 500 25 3,000
비교예 12 100 95 5 화학식 1-1 - 0.01 0.01 500 25 3,000
비교예 13 100 95 5 화학식 A 0.5 0.01 0.01 500 25 3,000
비교예 14 100 95 5 화학식 B 0.5 0.01 0.01 500 25 3,000
<실험예 1: 외관 불량 평가>
실시예 1 내지 10, 비교예 1 내지 14에서 제조된 전선의 폴리이미드 피복물의 외관을 육안으로 관찰하여, 불량 여부를 판단하고 그 결과를 하기 표 2에 나타내었다.
예를 들어, 양품의 피복물일 때, 'O'로 나타내었고, 핀홀 또는 폴리이미드 수지가 탄화되는 등의 외관 불량이 발견되었을 때 'X'로 나타내었다.
<실험예 2: 내열 충격 평가>
실시예 1 내지 10, 비교예 1 내지 14에서 제조된 전선의 폴리이미드 피복물에 대해서 내열 충격을 평가하였다. 내열 충격은 전선이 확장된 상태 또는 맨드릴 주변에 감기거나 구부러진 상태에서 온도 노출에 견딜 수 있는지를 나타내는 지표이다.
구체적으로, 내열 충격을 평가하기 위해서 실시예 1 내지 10, 비교예 1 내지 14에서 제조된 전선의 폴리이미드 피복물을 200℃ 온도에서 30 분간 가열하고 오븐에서 꺼낸 후 시편을 실온으로 냉각시킨 다음, 20 % 신장시의 폴리이미드 피복물의 크랙 발생 개수를 판단하고 그 결과를 하기 표 2에 나타내었다.
외관 평가 20 % 신장시 크랙 개수(ea)
실시예 1 O 없음
실시예 2 O 없음
실시예 3 O 없음
실시예 4 O 없음
실시예 5 0 없음
실시예 6 0 없음
실시예 7 0 없음
실시예 8 0 없음
실시예 9 0 없음
실시예 10 0 없음
비교예 1 X 6
비교예 2 X 5
비교예 3 X 5
비교예 4 X 10
비교예 5 O 4
비교예 6 O 없음
비교예 7 O 없음
비교예 8 O 3
비교예 9 O 3
비교예 10 O 2
비교예 11 X 5
비교예 12 O 3
비교예 13 O 없음
비교예 14 O 없음
표 2의 결과로부터, 본 발명의 범위를 벗어나도록 PMA를 사용한 비교예 1 내지 4, 고형분 함량이 본 발명의 범위를 하회하는 비교예 5, 산화방지제, 실리콘계 첨가물 및 알콕시 실란 커플링제 중 적어도 하나가 본 발명의 범위를 벗어나도록 포함되는 비교예 6 내지 12의 경우, 폴리이미드 피복물의 코팅이 균일하지 못하거나, 부분적으로 탄화가 발생하였으며, 내열 충격에 취약함을 알 수 있다.
<실험예 3: 물성평가>
실시예 1 내지 10, 비교예 1 내지 14에서 제조된 전선의 폴리이미드 피복물의 물성을 하기 방식을 이용하여 측정하고, 그 결과를 하기 표 3에 나타내었다.
(1) tanδ 값
DSE사TD300 Tan Delta Tester를 사용하여 폴리이미드 피복물의 tanδ 값을 측정하였다.
구체적으로, 도체를 하나의 전극으로, 흑연 코팅을 다른 전극으로 해서 시편을 브릿지에 접속하고 조립체의 온도는 주위온도에서 명확하게 정의된 곡선을 제공하는 온도로 일정한 비율로 증가시킨다. 온도는 시료와 접촉하는 검출기를 통해서 취하고 그 결과는 온도에 대한 선형축과 tanδ에 대한 로그 또는 선형축의 그래프로 그려지며, 그 값을 통해 폴리이미드 피복물의 tanδ 값을 계산하였다.
(2) 내연화도
내연화도는 절연체의 분해온도를 나타내는 것으로, 규정된 부하가 교차점에 가해진 상태에서 직각으로 서로 교차하는 2개의 전선 사이에서 단락이 발생하는 온도를 측정하여 결정한다.
구체적으로, 전선을 직각으로 교차하도록 겹쳐서 평판위에 놓고, 겹친 부분에 1000 g의 하중을 가한 상태에서, 교류전압 100 V를 가하고 그 상태에서 약 2℃/min의 비율로 온도를 상승시켜 단락 하는 온도를 측정하였다.
(3) 절연파괴전압(BDV)
시편을 4 시간 동안 150℃의 오븐에서 전처리한 다음, 압력 용기에 놓는다. 압력 용기를 1400 g의 냉매로 채우고 압력용기를 72 시간 동안 가열한 다음 압력 용기를 냉각시키고, 시편을 150℃ 오븐으로 옮겨서 10 분 동안 유지하고 실온으로 냉각시킨다. 전선의 양 말단을 연결하고 전선 도체 사이에 시험전압(60 Hz) 공칭 주파수의 교류전압을 0에서부터 일정한 속도로 증가시켜 BDV를 측정하였다.
(4) 핀홀 시험
전선의 폴리이미드 피복물에 대하여 절연체의 결함이 존재하는지 여부를 확인하기 위하여 핀홀 시험을 실시하였다. 구체적으로, 약 1.5 m 길이의 전선 시편을 취하여 공기순환 오븐(125℃)에서 10 분 동안 놓아두고, 이후 어떠한 굴곡이나 늘어남 없이 상온에서 냉각시켰다. 냉각된 전선 시편을 직류 시험전압을 갖는 전기회로에 접속된 상태로 페놀프탈레인 알코올이 첨가된 염화나트륨 전해액에 침지한 후 꺼내어 육안으로 핀홀의 갯수를 확인하였다.
<실험예 4: 당김 시험>
실시예 1 내지 10, 비교예 1 내지 14에서 제조된 전선의 폴리이미드 피복물에 대하여, 도체와 피복물 사이의 접착력을 확인하기 위하여 당김 시험을 실시하고, 그 결과를 하기 표 3에 나타내었다.
구체적으로, 200∼250 mm의 자유 측정길이를 가진 곧은 전선 시편을 파괴점 또는 해당 표준에 주어진 신장(20 %)까지 재빨리 잡아 늘인다. 신장 후, 명시된 배율(1~6배)로 시편에 접착력 손실이나 균열이 발생했는지 검사한다. 파괴된 전선 끝의 2 mm 길이는 무시되어야 한다.
3개의 시편을 시험한다. 전선에 균열 및/또는 접착력 손실이 나타나면 이를 기록한다.
tanδ(℃) 내연화도(℃) BDV(kV) 핀홀개수(ea) 당김 후크랙개수(ea)
실시예 1 310 549 10.1 0 0
실시예 2 340 568 10.3 0 0
실시예 3 283 536 9.2 0 0
실시예 4 277 530 8.9 1 0
실시예 5 301 532 9.4 0 0
실시예 6 302 540 9.1 0 0
실시예 7 295 535 9.3 0 0
실시예 8 290 534 9.3 0 0
실시예 9 265 527 8.6 1 1
실시예 10 258 525 8.2 1 1
비교예 1 235 470 6.4 10 3
비교예 2 240 481 6.8 8 3
비교예 3 244 492 7.3 6 2
비교예 4 230 464 7.2 8 4
비교예 5 237 465 6.9 12 3
비교예 6 245 500 7.7 7 10
비교예 7 246 506 7.2 7 10
비교예 8 243 503 7.3 12 12
비교예 9 245 510 6.8 10 12
비교예 10 241 495 7.3 2 1
비교예 11 240 476 7.1 3 1
비교예 12 233 482 6.8 0 0
비교예 13 273 515 7.8 0 0
비교예 14 260 505 7.3 0 0
표 3을 참조하면, 본 발명에 따른 PMA, 산화방지제, 실리콘계 첨가물 및 알콕시 실란 커플링제를 포함하는 폴리이미드 바니쉬로부터 제조된 실시예 1 내지 10의 폴리이미드 피복물은 tanδ가 250℃ 이상이고, 내연화도가 520℃ 이상으로 내열성이 우수하고, 절연파괴전압이 8 kV/mm 이상으로 절연성이 우수하며, 당김 시험을 통해 도체와 피복물 사이의 접착력이 우수함을 확인할 수 있다.
반면에, PMA, 산화방지제, 실리콘계 첨가물, 알콕시 실란 커플링제, 및 고형분의 함량, 점도, 및 경화로의 최고온도에서 실시예와 차이를 가지는 비교예 1 내지 14의 경우, 실시예에 비해 tanδ, 내연화도 또는 절연파괴전압 중 적어도 하나 이상이 저하되었으며, 핀홀시험에 따른 핀홀 개수, 즉 절연체의 결함이 상대적으로 다수 존재하는 것을 확인할 수 있다.
또한, 일부 비교예, 특히, 실리콘계 첨가물 또는 알콕시 실란 커플링제가 본 발명의 범위를 벗어나도록 포함되는 비교예 6 내지 9의 경우, 당김 시험에서 폴리이미드 피복물 외면에 크랙이 다수 관찰되어 도체와 피복물 사이의 접착력이 저하되었음을 확인할 수 있다.
또한, 산화방지제를 투입하지 않거나, 5 중량% 분해온도가 380℃ 이하인 산화방지제를 투입한 폴리이미드 바니쉬로부터 제조된 비교예 12 내지 14의 폴리이미드 피복물의 경우, tanδ, 내연화도 또는 절연파괴전압 중 적어도 하나 이상이 저하된 바, 폴리이미드 피복물의 제조 공정 중에서 고온에서 상기 산화방지제가 분해된 결과임을 예측할 수 있다.
이상 본 발명의 실시예들을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
본 발명에 따른 폴리이미드 바니쉬는 4개 이상의 카르복실기를 갖는 방향족 카르복실산을 포함함으로써, 폴리이미드 바니쉬를 코팅하는 과정에서는 낮은 점도로 인해 공정 취급성이 좋고, 코팅된 이후 경화 과정에서 고분자 사슬의 길이가 증가되므로 보다 높은 분자량을 가지는 폴리아믹산으로부터 제조되는 폴리이미드 피복물과 유사한 수준의 내열성, 절연성, 유연성 및 기재와의 접착성을 확보할 수 있다.
또한, 폴리이미드 바니쉬에 포함되는 알콕시 실란 커플링제 및 실리콘계 첨가물은 폴리이미드 피복물과 도체 사이의 접착력을 향상시켜 생산 수율을 향상시킬 수 있다.
또한, 폴리이미드 바니쉬에 포함되는 5 중량% 분해온도가 380℃ 이상인 산화방지제는 낮은 휘발성과 우수한 열 안정성을 가지므로, 폴리이미드 피복물의 제조 공정 중에서 분해되거나 휘발되지 않고, 폴리이미드 바니쉬 내의 아미드기 또는 폴리이미드 피복물의 이미드기의 산화를 방지할 수 있고, 그에 따라 폴리이미드 피복물의 물성 변화를 최소화 할 수 있다.
이러한 폴리이미드 피복물은 전자 장치에 요구되는 내열성, 절연성 및 유연성을 만족하는 이점이 있다.

Claims (22)

  1. 도체 피복용 폴리이미드 바니쉬로서,
    1종 이상의 디안하이드라이드 단량체와 1종 이상의 디아민 단량체가 유기 용매 중에서 중합되어 제조되는 폴리아믹산 용액;
    4개 이상의 카르복실기를 갖는 방향족 카르복실산;
    알콕시 실란 커플링제; 및
    산화방지제를 포함하고,
    폴리이미드 바니쉬 전체 중량을 기준으로 고형분 함량이 15 내지 38 중량%이고,
    23℃에서의 점도가 500 내지 9,000 cP이고,
    상기 폴리이미드 바니쉬로부터 제조되는 피복물의 내연화도가 520℃ 이상이고, 절연파괴전압(BDV)이 8 kV/mm 이상인, 폴리이미드 바니쉬.
  2. 제1항에 있어서,
    상기 방향족 카르복실산이 피로멜리트산(pyromellitic acid, PMA), 3,3',4,4'-비페닐테트라카르복실산(3,3',4,4'-biphenyltetracarboxylic acid, BPTA), 1,2,3,4-벤젠테트라카르복실산(1,2,3,4-benzenetetracarboxylic acid), 벤조페논-3,3',4,4'-테트라카복실산(benzophenone-3,3',4,4'-tetracarboxylic acid), 피라진테트라카복실산(pyrazinetetracarboxylic acid), 2,3,6,7-나프탈렌테트라카르복실산(2,3,6,7-naphthalenetetracarboxylic acid) 및 나프탈렌-1,4,5,8-테트라카르복실산(naphthalene-1,4,5,8-tetracarboxylic acid)으로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 폴리이미드 바니쉬.
  3. 제1항에 있어서,
    상기 디아민 단량체 100 몰%를 기준으로, 상기 디안하이드라이드 단량체의 투입량이 80 내지 99.9 몰%이고, 상기 방향족 카르복실산의 투입량이 0.1 내지 20 몰%인, 폴리이미드 바니쉬.
  4. 제1항에 있어서,
    상기 폴리이미드 바니쉬의 고형분 100 중량부에 대해서 0.01 내지 0.05 중량부의 알콕시 실란 커플링제를 포함하는, 폴리이미드 바니쉬.
  5. 제4항에 있어서,
    상기 알콕시 실란 커플링제는 3-아미노프로필 트리메톡시실란, 3-아미노프로필 트리에톡시실란, 3-아미노프로필 메틸 디메톡시실란, 3-아미노프로필 메틸 디에톡시실란, 3-(2-아미노에틸)아미노프로필 트리메톡시실란, 3-페닐아미노프로필 트리메톡시실란, 2-아미노페닐 트리메톡시실란, 및 3-아미노페닐 트리메톡시실란으로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 폴리이미드 바니쉬.
  6. 제1항에 있어서,
    상기 폴리이미드 바니쉬가 실리콘계 첨가물을 추가로 포함하는, 폴리이미드 바니쉬.
  7. 제6항에 있어서,
    상기 폴리이미드 바니쉬의 고형분 100 중량부에 대해서 0.01 내지 0.05 중량부의 실리콘계 첨가물을 포함하는, 폴리이미드 바니쉬.
  8. 제6항에 있어서,
    상기 실리콘계 첨가물은 디메틸폴리실록산(dimethylpolysiloxane), 폴리에테르변성폴리디메틸실록산(Polyether modified polydimethysiloxane) 폴리메틸알킬실록산(Polymethylalkylsiloxane), 및 하이드록실 그룹(-OH) 및 탄소-탄소 이중결합구조(C=C)를 포함한 실리콘계 화합물로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 폴리이미드 바니쉬.
  9. 제1항에 있어서,
    상기 산화방지제는 5 중량% 분해온도가 380℃ 이상인, 폴리이미드 바니쉬.
  10. 제1항에 있어서,
    상기 산화방지제는 5 중량% 분해온도가 400℃ 이상인, 폴리이미드 바니쉬.
  11. 제1항에 있어서,
    상기 산화방지제가 하기 화학식 1로 표시되는 화합물을 포함하는, 폴리이미드 바니쉬:
    Figure PCTKR2018013804-appb-I000006
    (1)
    상기 화학식 1에서, R1 내지 R6은 각각 독립적으로 C1-C3의 알킬기, 아릴기, 카르복실산기, 하이드록시기, 플루오로알킬기 및 술폰산기로 이루어진 군에서 선택될 수 있고,
    n은 1 내지 4의 정수이고,
    R1 내지 R6가 복수인 경우, 서로 동일 또는 상이할 수 있고,
    m1 내지 m6은 각각 독립적으로 0 내지 3의 정수이다.
  12. 제11항에 있어서,
    상기 화학식 1에서 n이 1이고, m1 내지 m6이 0 인, 폴리이미드 바니쉬.
  13. 제1항에 있어서,
    상기 폴리이미드 바니쉬의 고형분 100 중량부에 대해서 0.1 내지 2 중량부의 산화방지제를 포함하는, 폴리이미드 바니쉬.
  14. 제1항에 따른 폴리이미드 바니쉬를 제조하는 방법으로서,
    (a) 1종 이상의 디안하이드라이드 단량체 및 1종 이상의 디아민 단량체를 유기 용매 중에서 중합하여 폴리아믹산 용액을 제조하는 과정;
    (b) 상기 폴리아믹산 용액에 알콕시 실란 커플링제 및 산화방지제를 혼합하여 혼합물을 제조하는 과정; 및
    (c) 상기 혼합물과 4개 이상의 카르복실기를 갖는 방향족 카르복실산을 혼합하는 과정을 포함하는, 폴리이미드 바니쉬 제조방법.
  15. 제14항에 있어서,
    상기 과정 (a)는 30 내지 80 ℃에서 수행되고,
    상기 폴리아믹산 용액은 23 ℃에서의 점도가 500 내지 9,000 cP 범위이고,
    상기 과정 (b)는 폴리아믹산 용액에 실리콘계 첨가물을 추가로 혼합하고, 40 내지 90 ℃에서 수행되고,
    상기 과정 (c)는 40 내지 90 ℃에서 수행되는, 폴리이미드 바니쉬 제조방법.
  16. (1) 제1항에 따른 폴리이미드 바니쉬를 도체 표면에 코팅하는 과정; 및
    (2) 상기 도체 표면에 코팅된 폴리이미드 바니쉬를 이미드화하는 과정을 포함하고,
    상기 과정 (1) 및 (2)를 연속적으로 4 내지 20회 반복 수행하는, 폴리이미드 피복물 제조방법.
  17. 제16항에 있어서,
    상기 과정 (1) 및 (2)의 반복 수행 1회당 상기 폴리이미드 바니쉬가 코팅되는 두께는 2 내지 6 ㎛이고,
    상기 과정 (2)는 300 내지 750℃에서 수행되고,
    상기 도체의 피복 속도는 2 내지 30 m/분인, 폴리이미드 피복물 제조방법.
  18. 제16항에 있어서,
    상기 도체는 직경 0.1 내지 5 mm의 전선인, 폴리이미드 피복물 제조방법.
  19. 제16항에 따른 폴리이미드 피복물 제조방법으로 제조된 폴리이미드 피복물.
  20. 제19항에 있어서,
    상기 폴리이미드 피복물의 두께가 16 내지 50 ㎛ 범위이고,
    tanδ가 250℃ 이상인, 폴리이미드 피복물.
  21. 제1항에 따른 폴리이미드 바니쉬를 전선 표면에 코팅하고 이미드화하여 제조된 폴리이미드 피복물을 포함하는 전선.
  22. 제21항에 따른 전선을 포함하는 전자 장치.
PCT/KR2018/013804 2018-08-22 2018-11-13 방향족 카르복실산을 포함하는 도체 피복용 폴리이미드 바니쉬 및 이의 제조방법 WO2020040356A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880096771.1A CN112585228B (zh) 2018-08-22 2018-11-13 含有芳香族羧酸的导体被覆用聚酰亚胺清漆及其制备方法
US17/270,006 US11905431B2 (en) 2018-08-22 2018-11-13 Polyimide varnish comprising aromatic carboxylic acid for conductor coating and manufacturing method therefor
EP18931088.1A EP3842500A1 (en) 2018-08-22 2018-11-13 Polyimide varnish comprising aromatic carboxylic acid for conductor coating and manufacturing method therefor
JP2021509793A JP7140432B2 (ja) 2018-08-22 2018-11-13 芳香族カルボン酸を含む導体被覆用ポリイミドワニスおよびその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0097929 2018-08-22
KR20180097929 2018-08-22
KR1020180128186A KR101959807B1 (ko) 2018-08-22 2018-10-25 방향족 카르복실산을 포함하는 도체 피복용 폴리이미드 바니쉬 및 이의 제조방법
KR10-2018-0128186 2018-10-25

Publications (1)

Publication Number Publication Date
WO2020040356A1 true WO2020040356A1 (ko) 2020-02-27

Family

ID=66036168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013804 WO2020040356A1 (ko) 2018-08-22 2018-11-13 방향족 카르복실산을 포함하는 도체 피복용 폴리이미드 바니쉬 및 이의 제조방법

Country Status (6)

Country Link
US (1) US11905431B2 (ko)
EP (1) EP3842500A1 (ko)
JP (1) JP7140432B2 (ko)
KR (1) KR101959807B1 (ko)
CN (1) CN112585228B (ko)
WO (1) WO2020040356A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220102158A (ko) * 2021-01-11 2022-07-20 주식회사 넥스플렉스 플렉시블 기판용 폴리이미드 바니쉬 조성물 및 이를 이용한 폴리이미드 필름

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102246218B1 (ko) * 2019-09-27 2021-04-29 피아이첨단소재 주식회사 폴리아믹산 조성물, 이의 제조방법 및 이를 포함하는 폴리이미드 필름
KR102246227B1 (ko) * 2019-09-27 2021-04-29 피아이첨단소재 주식회사 폴리아믹산 조성물, 이의 제조방법 및 이를 포함하는 폴리이미드 필름
CN113308004B (zh) * 2021-06-04 2022-03-04 西南科技大学 共价交联型多氟磺化聚酰亚胺质子交换膜的制备及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291093A (ja) * 1996-04-25 1997-11-11 Daihachi Chem Ind Co Ltd 高温着色性が改善された芳香族ホスフェート組成物
JP2008120869A (ja) * 2006-11-09 2008-05-29 Teraoka Seisakusho:Kk ポリイミド樹脂組成物
JP2010001412A (ja) * 2008-06-20 2010-01-07 Mitsui Chemicals Inc ポリイミド前駆体溶液及びその製造方法、並びに該ポリイミド前駆体溶液を用いて製造したポリイミドフィルム、接着用フィルム、および金属ポリイミド積層体
KR20120111255A (ko) * 2011-03-31 2012-10-10 엘에스전선 주식회사 유연성 및 밀착성이 강화된 내코로나 방전성 절연 도료 조성물 및 이를 도포하여 형성된 절연 피막을 포함하는 절연 전선
JP2018115272A (ja) * 2017-01-18 2018-07-26 住友電気工業株式会社 樹脂ワニス、絶縁電線及び絶縁電線の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1006394B (zh) * 1984-03-21 1990-01-10 宇部兴产株式会社 芳香族聚酰亚胺组合物
JP2000044800A (ja) * 1998-08-03 2000-02-15 Jsr Corp ポリイミド系複合物、ワニス、フィルム、金属張積層体および印刷配線板
TWI220901B (en) * 1998-12-09 2004-09-11 Dupont Wirex Corp Polyimide laminate
TWI398350B (zh) 2008-02-05 2013-06-11 Du Pont 高黏著性聚醯亞胺銅箔積層板及其製造方法
JP2010001414A (ja) * 2008-06-23 2010-01-07 Sanyo Chem Ind Ltd 活性エネルギー線硬化性ウレタン樹脂の製造方法
KR101404093B1 (ko) * 2009-01-13 2014-06-09 에스케이씨코오롱피아이 주식회사 폴리이미드 필름
TWI516524B (zh) * 2010-07-22 2016-01-11 宇部興產股份有限公司 聚醯亞胺前驅體、聚醯亞胺及製造聚醯亞胺所使用之材料
JP2012153848A (ja) * 2011-01-28 2012-08-16 Sumitomo Electric Wintec Inc ポリイミド樹脂ワニス及びそれを用いた絶縁電線、電機コイル、モータ
US20120211258A1 (en) * 2011-02-18 2012-08-23 Hitachi Cable, Ltd. Polyamide-imide resin insulating coating material and insulated wire using the same
WO2013136807A1 (ja) 2012-03-14 2013-09-19 三井化学株式会社 ポリイミド前駆体ワニス、ポリイミド樹脂、及びその用途
JP6039297B2 (ja) * 2012-08-07 2016-12-07 三井化学株式会社 ポリイミドフィルム及びその製造方法
TWI488887B (zh) * 2013-02-08 2015-06-21 長興材料工業股份有限公司 聚醯亞胺,由此形成之塗料組合物及其用途
JP2016044288A (ja) * 2014-08-26 2016-04-04 日立金属株式会社 ポリイミド樹脂前駆体絶縁塗料及びそれを用いた絶縁電線
JP2016191029A (ja) * 2015-03-31 2016-11-10 新日鉄住金化学株式会社 ポリアミド酸組成物、ポリイミド、樹脂フィルム及び金属張積層体
US20180093461A1 (en) * 2015-04-17 2018-04-05 Asahi Kasei Kabushiki Kaisha Resin composition, polyimide resin film, and method for producing same
JP2017036373A (ja) * 2015-08-07 2017-02-16 出光興産株式会社 絶縁フィルム
KR102531268B1 (ko) * 2015-12-31 2023-05-12 주식회사 동진쎄미켐 폴리이미드 필름 제조용 조성물, 이의 제조 방법 및 이를 이용한 폴리이미드 필름의 제조 방법
JP6767751B2 (ja) * 2016-02-18 2020-10-14 日鉄ケミカル&マテリアル株式会社 ポリアミド酸、ポリイミド、樹脂フィルム及び金属張積層板
JP7527610B2 (ja) * 2018-08-20 2024-08-05 河村産業株式会社 ポリイミド粉体、ポリイミドワニス、ポリイミドフィルムおよびポリイミド多孔質膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291093A (ja) * 1996-04-25 1997-11-11 Daihachi Chem Ind Co Ltd 高温着色性が改善された芳香族ホスフェート組成物
JP2008120869A (ja) * 2006-11-09 2008-05-29 Teraoka Seisakusho:Kk ポリイミド樹脂組成物
JP2010001412A (ja) * 2008-06-20 2010-01-07 Mitsui Chemicals Inc ポリイミド前駆体溶液及びその製造方法、並びに該ポリイミド前駆体溶液を用いて製造したポリイミドフィルム、接着用フィルム、および金属ポリイミド積層体
KR20120111255A (ko) * 2011-03-31 2012-10-10 엘에스전선 주식회사 유연성 및 밀착성이 강화된 내코로나 방전성 절연 도료 조성물 및 이를 도포하여 형성된 절연 피막을 포함하는 절연 전선
JP2018115272A (ja) * 2017-01-18 2018-07-26 住友電気工業株式会社 樹脂ワニス、絶縁電線及び絶縁電線の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220102158A (ko) * 2021-01-11 2022-07-20 주식회사 넥스플렉스 플렉시블 기판용 폴리이미드 바니쉬 조성물 및 이를 이용한 폴리이미드 필름
KR102479024B1 (ko) * 2021-01-11 2022-12-21 주식회사 넥스플렉스 플렉시블 기판용 폴리이미드 바니쉬 조성물 및 이를 이용한 폴리이미드 필름
US11965110B2 (en) 2021-01-11 2024-04-23 Nexflex Co., Ltd. Polyimide varnish composition for flexible substrate and polyimide film using same

Also Published As

Publication number Publication date
CN112585228B (zh) 2022-07-08
JP2021535243A (ja) 2021-12-16
KR101959807B1 (ko) 2019-03-20
US20210198521A1 (en) 2021-07-01
EP3842500A1 (en) 2021-06-30
US11905431B2 (en) 2024-02-20
CN112585228A (zh) 2021-03-30
JP7140432B2 (ja) 2022-09-21

Similar Documents

Publication Publication Date Title
WO2020040356A1 (ko) 방향족 카르복실산을 포함하는 도체 피복용 폴리이미드 바니쉬 및 이의 제조방법
WO2020091432A1 (ko) 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
WO2019093669A2 (ko) 초박막 블랙 폴리이미드 필름 및 이의 제조방법
WO2020091147A1 (ko) 폴리이미드 피복물의 내열성을 향상시키기 위한 도체 피복용 폴리이미드 바니쉬 및 이로부터 제조된 폴리이미드 피복물
WO2020096259A1 (ko) 치수 안정성이 향상된 초박막 폴리이미드 필름 및 이의 제조방법
WO2021091011A1 (ko) 고내열 저유전 폴리이미드 필름 및 이의 제조방법
WO2019160218A1 (ko) 저장 안정성이 향상된 폴리아믹산 조성물, 이를 이용한 폴리이미드 필름의 제조방법 및 이로 제조된 폴리이미드 필름
WO2021095975A1 (ko) 저유전 폴리이미드 필름 및 이의 제조방법
WO2020017697A1 (ko) 불소-함유 실란 첨가제 및 카본 블랙을 포함하는 폴리이미드 필름 및 이의 제조방법
WO2020111399A1 (ko) 입경이 상이한 2 이상의 필러를 포함하는 폴리이미드 필름 및 이를 포함하는 전자장치
WO2020080598A1 (ko) 표면 품질이 개선된 고후도 폴리이미드 필름 및 이의 제조방법
WO2018147611A1 (ko) 폴리아마이드-이미드 필름의 제조방법
WO2020101225A1 (ko) 가교성 디안하이드라이드계 화합물 및 산화방지제를 포함하는 폴리이미드 전구체 조성물, 이로부터 제조된 폴리이미드 필름
WO2021006428A1 (ko) 폴리아믹산 조성물, 폴리아믹산 조성물의 제조 방법, 이를 포함하는 폴리이미드 및 이를 포함하는 피복물
WO2022107969A1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드
WO2020022564A1 (ko) 방향족 카르복실산을 포함하는 폴리이미드 전구체 조성물 및 이를 이용하여 제조되는 폴리이미드 필름
KR102013531B1 (ko) 폴리이미드 바니쉬를 이용한 전선 피복 방법
WO2021006430A1 (ko) 폴리아믹산 조성물, 폴리아믹산 조성물의 제조 방법, 이를 포함하는 폴리이미드 및 이를 포함하는 피복물
WO2020040527A1 (ko) 결정성 폴리이미드 수지 및 열전도성 필러를 포함하는 폴리이미드 필름 및 이의 제조방법
WO2021091013A1 (ko) 고내열 저유전 폴리이미드 필름 및 이의 제조방법
WO2020017692A1 (ko) 점토 입자 및 카본 블랙을 포함하는 폴리이미드 필름 및 이의 제조방법
WO2020071588A1 (ko) 폴리아미드이미드 필름의 제조방법 및 이로부터 제조되는 폴리아미드이미드 필름
WO2022098042A1 (ko) 높은 치수 안정성을 가지는 폴리이미드 필름 및 그 제조방법
WO2022065804A1 (ko) 저유전 폴리이미드 필름 및 이의 제조방법
WO2020141708A1 (ko) 폴리아믹산 조성물, 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931088

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509793

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018931088

Country of ref document: EP

Effective date: 20210322