WO2019159797A1 - Mnフェライト粉末、樹脂組成物、電磁波シールド材、電子材料および電子部品 - Google Patents
Mnフェライト粉末、樹脂組成物、電磁波シールド材、電子材料および電子部品 Download PDFInfo
- Publication number
- WO2019159797A1 WO2019159797A1 PCT/JP2019/004301 JP2019004301W WO2019159797A1 WO 2019159797 A1 WO2019159797 A1 WO 2019159797A1 JP 2019004301 W JP2019004301 W JP 2019004301W WO 2019159797 A1 WO2019159797 A1 WO 2019159797A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ferrite powder
- ferrite
- less
- particles
- mass
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/342—Oxides
- H01F1/344—Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/36—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/0018—Mixed oxides or hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/0018—Mixed oxides or hydroxides
- C01G49/0072—Mixed oxides or hydroxides containing manganese
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
- C08L29/02—Homopolymers or copolymers of unsaturated alcohols
- C08L29/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/36—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
- H01F1/37—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0073—Shielding materials
- H05K9/0081—Electromagnetic shielding materials, e.g. EMI, RFI shielding
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0073—Shielding materials
- H05K9/0081—Electromagnetic shielding materials, e.g. EMI, RFI shielding
- H05K9/0083—Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/10—Solid density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/11—Powder tap density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/22—Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/42—Magnetic properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2265—Oxides; Hydroxides of metals of iron
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/005—Additives being defined by their particle size in general
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/006—Additives being defined by their surface area
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/01—Magnetic additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
Definitions
- the present invention relates to a Mn ferrite powder, a resin composition, an electromagnetic shielding material, an electronic material, and an electronic component.
- an electromagnetic shielding material using ferrite powder a resin composition containing ferrite powder formed into a sheet shape can be considered.
- a sheet-shaped electromagnetic shielding material By attaching a sheet-shaped electromagnetic shielding material to digital electronic devices such as personal computers and mobile phones that require electromagnetic shielding, it is possible to prevent leakage of electromagnetic waves to the outside of the electronic device, and electromagnetic waves between circuits inside the electronic device. Mutual interference, and malfunction of electronic equipment due to external electromagnetic waves can be prevented.
- ferrite powder As an electromagnetic wave shield for electronic equipment, it is desired that electromagnetic waves in a wide frequency band can be shielded.
- excellent electromagnetic shielding properties in a high frequency band have been demanded, but conventional electromagnetic shielding materials have insufficient electromagnetic shielding properties in a high frequency band (for example, a frequency band of 1 GHz to 12 GHz or less).
- a high frequency band for example, a frequency band of 1 GHz to 12 GHz or less.
- ferrite particles having a specific size and crystal structure are known (for example, Patent Document 4), but even when such ferrite particles are used, satisfactory results cannot be obtained.
- An object of the present invention is to provide an Mn ferrite powder having excellent shielding properties for electromagnetic waves in a low frequency region of 1 GHz or less and having excellent shielding properties for electromagnetic waves in a high frequency region of more than 1 GHz and not more than 12 GHz.
- the present invention provides an electromagnetic shielding material, an electronic material, and an electronic component that have excellent shielding properties with respect to electromagnetic waves in the low frequency region and have excellent shielding properties with respect to electromagnetic waves in the high frequency region of 1 GHz to 12 GHz or less. It is providing the resin composition which can be used suitably for manufacture of a shielding material, the said electronic material, and the said electronic component.
- [1] Including a plurality of ferrite particles, The volume average particle size is 1 ⁇ m or more and 10 ⁇ m or less, 2.
- a Mn ferrite powder characterized in that a volume-based integrated distribution (under a sieve) at 106 ⁇ m is 0.1 volume% or more and 50.0 volume% or less.
- [4] The Mn ferrite powder according to any one of [1] to [3], wherein the Mn content is 4% by mass to 13% by mass and the Fe content is 60% by mass to 68% by mass.
- a resin composition comprising the Mn ferrite powder according to any one of [1] to [4] and a resin material.
- An electromagnetic wave shielding material comprising a material containing the Mn ferrite powder according to any one of [1] to [4] and a resin material.
- An electronic material comprising a material containing the Mn ferrite powder according to any one of [1] to [4].
- An electronic component comprising a material containing the Mn ferrite powder according to any one of [1] to [4].
- the present invention it is possible to provide a Mn ferrite powder having excellent shielding properties for electromagnetic waves in a low frequency region of 1 GHz or less and having excellent shielding properties for electromagnetic waves in a high frequency region of more than 1 GHz and not more than 12 GHz.
- the present invention provides an electromagnetic shielding material, an electronic material, and an electronic component that have excellent shielding properties with respect to electromagnetic waves in the low frequency region and have excellent shielding properties with respect to electromagnetic waves in the high frequency region of 1 GHz to 12 GHz or less.
- the resin composition which can be used suitably for manufacture of a shielding material, the said electronic material, and the said electronic component can be provided.
- Mn ferrite powder >> First, the Mn ferrite powder of the present invention will be described.
- the electromagnetic shielding material containing ferrite powder is widely used, the conventional electromagnetic shielding material has not been able to sufficiently meet the recent requirements for electromagnetic shielding properties in a high frequency band.
- the Mn ferrite powder of the present invention (hereinafter also simply referred to as “ferrite powder”) includes a plurality of ferrite particles, the volume average particle diameter is 1 ⁇ m or more and 10 ⁇ m or less, and the volume-based integrated distribution at 2.106 ⁇ m. (Under a sieve) is 0.1 volume% or more and 50.0 volume% or less.
- the ferrite powder of the present invention has excellent shielding properties against electromagnetic waves in a low frequency region of 1 GHz or less.
- the flowability and ease of handling of the ferrite powder and the resin composition containing the ferrite powder can be improved.
- the productivity of an electromagnetic shielding material containing ferrite powder (including electronic materials, electronic components, etc .; hereinafter the same) can be made excellent.
- the filling rate (content rate) of the ferrite powder in an electromagnetic wave shielding material etc. can be made high, ensuring the outstanding moldability. From the above, it can be suitably used for the production of an electromagnetic shielding material or the like excellent in shielding properties for electromagnetic waves in a high frequency region of 1 GHz to 12 GHz.
- the volume average particle diameter of the ferrite powder (specifically, the volume average particle diameter of the entire particles constituting the ferrite powder, the same applies hereinafter) is less than the lower limit, the flowability of the ferrite powder and the ferrite powder As the fluidity of the resin composition is reduced, the particles are likely to agglomerate, and the reliability of the electromagnetic wave shielding material and the like manufactured using ferrite powder (the shielding property for electromagnetic waves in a high frequency region of 1 GHz to 12 GHz or less) Inclusive) cannot be made sufficiently excellent.
- the volume average particle diameter of the ferrite powder exceeds the upper limit, the gap between the ferrite particles becomes large, and the gap tends to remain due to insufficient ferrite particles filled in the gap, and the magnetic permeability is low. It becomes difficult to go up.
- the volume average particle diameter is not 1 ⁇ m or more and 10 ⁇ m or less, the permeability at 1 MHz to 1 GHz cannot be increased.
- the volume-based cumulative distribution (under the sieve) at 2.106 ⁇ m in the ferrite powder is below the lower limit value, the permeability as the ferrite powder cannot be made sufficiently excellent, and a high frequency exceeding 1 GHz and not exceeding 12 GHz.
- the absorptivity of electromagnetic waves in the region cannot be made sufficiently excellent.
- the cumulative volume% at 2.106 ⁇ m in the ferrite powder exceeds the upper limit, the fluidity of the ferrite powder and the fluidity of the resin composition containing the ferrite powder are reduced, and the particles are likely to aggregate.
- the reliability of an electromagnetic shielding material or the like produced using ferrite powder (including shielding properties for electromagnetic waves in a high frequency region of more than 1 GHz and not more than 12 GHz) cannot be made sufficiently excellent.
- the permeability as the ferrite powder cannot be made sufficiently excellent, and the absorption of electromagnetic waves in the high frequency range of 1 GHz to 12 GHz or less is not possible. The property cannot be made sufficiently excellent.
- the electromagnetic wave shielding material etc. manufactured using a ferrite powder it becomes easy to produce unintentional unevenness on the surface.
- the content of Fe 2+ is preferably 0% by mass to 10% by mass, more preferably 0% by mass to 7% by mass, and further preferably 0% by mass to 5% by mass.
- the content of Fe 2+ in the ferrite powder is determined by redox titration with potassium permanganate.
- the particle size distribution described in this specification means a volume particle size distribution
- the volume average particle size and the particle size distribution (volume particle size distribution) are determined by the following measurement. That is, first, 10 g of ferrite powder as a sample and 80 ml of water are placed in a 100 ml beaker, and two drops of a dispersant (sodium hexametaphosphate) are added. Next, dispersion is performed using an ultrasonic homogenizer (UH-150, manufactured by SMT Co. LTD.). SMT. As an ultrasonic homogenizer. Co. LTD. In the UH-150 model, output level 4 is set and dispersion is performed for 20 seconds.
- UH-150 Ultrasonic homogenizer
- the magnetic permeability (the real part ⁇ ′ and the imaginary part ⁇ ′′ of the complex relative permeability) in the region where the frequency is greater than 1 GHz and not greater than 12 GHz is obtained as follows. That is, after mixing 70 parts by mass of ferrite powder with 30 parts by mass of epoxy resin, it is injected into a cylindrical mold having an inner diameter of 1.8 mm and a length of 100 mm, and then cured by heating. After returning the mold to room temperature, a round bar-shaped sample is taken out of the mold and used as a magnetic permeability measurement sample.
- the sample is set in a resonator, and the magnetic permeability is measured using a cavity resonator (for S band and C band made by Kanto Electronics Application Development Co., Ltd.) and a network analyzer (E5071C made by Keysight Technology). The obtained value is adopted as the permeability value of the ferrite powder.
- the volume average particle diameter of the ferrite powder may be 1 ⁇ m or more and 10 ⁇ m or less, preferably 1 ⁇ m or more and 5 ⁇ m or less, more preferably 1 ⁇ m or more and 3.5 ⁇ m or less, and more preferably 1 ⁇ m or more and 3 ⁇ m or less. Further preferred. Thereby, the effects as described above are more remarkably exhibited.
- the volume-based cumulative distribution (under a sieve) at 2.106 ⁇ m may be 0.1 volume% or more and 50.0 volume% or less, but 0.1 volume% or more and 30.0 volume% or less. It is preferable that it is 0.1 volume% or more and 20.0 volume% or less. Thereby, the effect mentioned above is exhibited more notably.
- the particle size of the ferrite particles constituting the ferrite powder is preferably 1 nm or more and 2106 nm (2.106 ⁇ m) or less.
- the ferrite particles having a particle size of 1 nm or more and 2106 nm or less are usually single crystal particles (single crystal ferrite particles), but may be polycrystalline particles (polycrystalline ferrite particles).
- the method for confirming the single crystal is to take a limited-field electron diffraction image using a TEM in a field where only a particle having the above particle size is present, and the spotted pattern is equivalent to an annular pattern in the obtained image. It can be determined by clearly appearing more than equivalent.
- the particle size of the single crystal ferrite particles constituting the ferrite powder is preferably 1 nm or more and 2000 nm or less, more preferably 10 nm or more and 1000 nm or less, and further preferably 10 nm or more and 500 nm or less. Thereby, the effects as described above are more remarkably exhibited.
- the ferrite powder of the present invention preferably has a Mn content of 4% by mass to 13% by mass and an Fe content of 60% by mass to 68% by mass. Thereby, a magnetic characteristic can be easily adjusted at the time of baking (at the time of thermal spraying).
- the content of Mn in the ferrite powder is preferably 4% by mass to 13% by mass, more preferably 4% by mass to 11% by mass, and more preferably 5% by mass to 10% by mass. Is more preferable. Thereby, the effects as described above are more remarkably exhibited.
- the Fe content in the ferrite powder of the present invention is preferably 60% by mass or more and 68% by mass or less, more preferably 60% by mass or more and 65% by mass or less, and 61% by mass or more and 65% by mass or less. More preferably, it is at most mass%. Thereby, the effects as described above are more remarkably exhibited.
- the Mn ferrite preferably contains only Fe and Mn as metal components. From the above viewpoint, it is desirable that the content of all components (elements) other than Fe, Mn, and O contained in the Mn ferrite does not exceed the amount of impurities. Specifically, the content of all components (elements) other than Fe, Mn, and O contained in the Mn ferrite is preferably less than 0.1% by mass, and less than 0.05% by mass. More preferably, the content is less than 0.01% by mass.
- each metal element constituting the ferrite powder is determined by measurement using an ICP analyzer. More specifically, 0.2 g of ferrite powder is weighed, and 60 mL of pure water plus 20 mL of 1N hydrochloric acid and 20 mL of 1N nitric acid is heated to prepare an aqueous solution in which the ferrite powder is completely dissolved. By measuring the aqueous solution using an ICP analyzer (ICPS-1000IV manufactured by Shimadzu Corporation), the content of each metal element can be determined.
- ICP analyzer ICPS-1000IV manufactured by Shimadzu Corporation
- the shape of the ferrite particles is not particularly limited, but it is preferable to have a shape that is a true sphere or a polygon having a hexagonal shape or more in cross section.
- the filling rate of a ferrite powder can be made higher, and the electromagnetic wave absorptivity (especially 1 GHz to 12 GHz or less high frequency region)
- the electromagnetic wave absorbability of the above can be further improved.
- spherical means a true sphere or a shape that is sufficiently close to a true sphere, and specifically means that the spherical ratio is 1 or more and 1.2 or less.
- the sphericity is obtained as follows.
- ferrite particles are photographed at a magnification of 10,000 to 200,000 times using a scanning electron microscope (FE-SEM (SU-8020, manufactured by Hitachi High Technology)). Then, the circumscribed circle diameter and the inscribed circle diameter are determined for the ferrite particles from the photographed SEM image, and the ratio (circumscribed circle diameter / inscribed circle diameter) is obtained as a spherical ratio. If the two diameters are the same, i.e. a true sphere, this ratio is 1.
- the magnification is preferably 100,000 to 200,000 when photographing particles with a ferret diameter (particle diameter) of 500 nm or less, and 10,000 when the ferret diameter (particle diameter) is 500 nm to 3 ⁇ m. It is preferable to shoot at a magnification of 100,000 to 100,000 times, and when shooting particles larger than 3 ⁇ m, it is preferable to shoot at a magnification of about 1000 to 10,000 times.
- a cross-sectional sample of the ferrite powder may be prepared using an ion milling apparatus, and the spherical ratio may be calculated by photographing at the above magnification.
- the proportion of particles that form a spherical shape (ferrite particles) constituting the ferrite powder is preferably 90% by number or more, more preferably 91% by number or more, and 93% by number or more. Is more preferable. Thereby, the effect mentioned above is exhibited more notably.
- the above ratio is obtained by an image analysis apparatus. Specifically, measurement can be performed using the particle shape measuring function of EDX by combining FE-SEM (SU-8020 manufactured by Hitachi High-Technologies Corporation) with E-MAX (EDX) manufactured by Horiba.
- the average sphericity of particles (ferrite particles) constituting the ferrite powder is preferably 1 or more and 1.14 or less, and more preferably 1 or more and 1.10 or less. Thereby, the effect mentioned above is exhibited more notably.
- an average value of the sphericity obtained for 100 particles (ferrite particles) randomly extracted from the ferrite powder can be adopted.
- the shape of the ferrite particles is preferably a shape having a polygonal cross section.
- the cross-sectional shape of the ferrite is measured by FE-SEM (SU-8020 manufactured by Hitachi High-Technologies Corporation) obtained by embedding ferrite powder in resin and processing the cross-section with an ion milling device.
- the BET specific surface area of the ferrite powder (specifically, the BET specific surface area of the entire particles constituting the ferrite powder, the same shall apply hereinafter) is preferably 0.35 m 2 / g or more and 9 m 2 / g or less, 0.35 m 2 / g or more and 8 m 2 / g or less is more preferable, and 0.5 m 2 / g or more and 8 m 2 / g or less is further preferable.
- the ferrite powder and the resin material In particular, the durability of the electromagnetic wave shielding material and the like can be made particularly excellent.
- the BET specific surface area of the entire particles constituting the ferrite powder is less than the lower limit value, for example, in the electromagnetic wave shielding material produced using the ferrite powder, the adhesion between the ferrite powder and the resin material is improved. It becomes difficult to make it excellent, and the durability of the electromagnetic shielding material and the like may be reduced.
- electromagnetic wave shielding properties especially, electromagnetic wave shielding properties in a high frequency region of 1 GHz to 12 GHz or less
- electromagnetic wave shielding properties especially, electromagnetic wave shielding properties in a high frequency region of 1 GHz to 12 GHz or less
- the BET specific surface area is determined by measurement using a specific surface area measuring device (model: Macsorb HM model-1208 (manufactured by Mountec)).
- the tap density of the ferrite powder but preferably not more than 0.5 g / cm 3 or more 3.5g / cm 3, 0.5g / cm 3 or more 3.4 g / cm 3 at and more preferably less.
- the tap density means a density obtained by measurement according to JIS Z 2512-2012.
- a USP tap density measuring device Powder Tester PT-X manufactured by Hosokawa Micron Corporation
- the like is used as the tapping device.
- the saturation magnetization of the ferrite powder is preferably 45 emu / g or more and 95 emu / g or less. Ferrite powder that satisfies these conditions has a large magnetic moment per unit volume, and is suitable as a filler for electromagnetic wave shielding materials and the like.
- the residual magnetization of the ferrite powder is preferably 0.5 or more and 12 emu / g or less. Thereby, the dispersibility of the ferrite powder when it is set as the resin composition can be made more excellent.
- the coercive force of the ferrite powder is preferably 25 Oe or more and 80 Oe or less.
- a vibration sample type magnetometer model: VSM-C7-10A (manufactured by Toei Kogyo Co., Ltd.)
- the electrical resistivity (also referred to as “volume resistance”) of the ferrite powder at 25 ° C. is preferably 1 ⁇ 10 6 to 1 ⁇ 10 12 ⁇ ⁇ cm, preferably 1 ⁇ 10 6 to 1 ⁇ 10 10 ⁇ ⁇ cm. More preferably.
- the value of volume resistance was determined as follows. That is, first, the ferrite powder obtained in a Teflon cylinder having an electrode at the bottom with an inner diameter of 22.5 mm is introduced so that the height is 4 mm, an electrode having the same size as the inner diameter is inserted from the top, and further 1 kg from the top. The bottom and top electrodes were connected to a measuring device (using a Keithley 6517A model) in the state of applying a load, and the resistance was measured. The volume resistance was calculated using the resistance value, the inner diameter and the thickness obtained by the measurement.
- an electromagnetic shielding material or the like resin molded body
- the volume resistance of the electromagnetic shielding material or the like can be maintained at a high level, and a voltage is applied. Even if it is used in the vicinity of, current is difficult to leak.
- the volume-based cumulative distribution (under a sieve) at 2.106 ⁇ m is 0.1 volume% or more and 50.0 volume% or less, but the particle size is larger than 2.106 ⁇ m (2106 nm).
- Ferrite particles may be included. Although it does not specifically limit as a ferrite particle with a particle size larger than 2106 nm, For example, the ferrite particle larger than a particle size 2106 micrometers can be mentioned, A polycrystalline ferrite particle is preferable.
- the ferrite powder may or may not contain particles other than ferrite particles. It is preferable that the entire particles constituting the ferrite powder consist only of ferrite particles.
- the ferrite particles may be provided with a coating (surface treatment layer) on the surface thereof.
- a coating surface treatment layer
- the insulation of a ferrite particle (ferrite powder) can be improved, for example.
- the dispersibility of the ferrite powder in a resin or the like can be improved.
- the ferrite particles may be surface-treated with a coupling agent.
- a coupling agent for example, the dispersibility to the resin etc. of a ferrite powder can be improved, for example.
- the coupling agent for example, various silane coupling agents, titanate coupling agents, aluminate coupling agents and the like can be used.
- the ferrite particles are those treated with a silane coupling agent, the ferrite powder more reliably satisfies a suitable condition for electrical resistivity. Further, aggregation of ferrite particles can be more effectively prevented, and the fluidity and ease of handling of the ferrite powder and the resin composition containing the ferrite powder can be made particularly excellent.
- the ferrite particles as the mother particles can be more uniformly surface-treated with the silane coupling agent for each part.
- silane coupling agent for example, a silane compound having a silyl group and a hydrocarbon group can be used.
- the alkyl group preferably has an alkyl group having 8 to 10 carbon atoms. .
- the ferrite powder more reliably satisfies a suitable condition for electrical resistivity. Moreover, the aggregation of ferrite particles can be further effectively prevented, and the fluidity and ease of handling of the ferrite powder and the resin composition containing the ferrite powder can be further improved. Further, due to the relationship between the affinity of the silane coupling agent and the above-described ferrite, the surface of the ferrite particles as the mother particles can be more uniformly subjected to the surface treatment with the silane coupling agent.
- the surface treatment amount with the silane coupling agent is preferably 0.05% by mass or more and 2% by mass or less with respect to the ferrite particles (mother particles) in terms of the silane coupling agent.
- the surface of the ferrite particles may be surface-treated with an Al compound.
- Al compound examples include aluminum sulfate and sodium aluminate.
- the amount of surface treatment with the Al compound is preferably 0.2% by mass or more and 1% by mass or less with respect to the ferrite particles (mother particles) in terms of Al.
- examples of other surface treatment agents that can be used for the surface treatment of ferrite particles include phosphoric acid compounds, carboxylic acids, and fluorine compounds.
- Examples of the phosphoric acid compound include lauryl phosphate, lauryl-2-phosphate, steareth-2 phosphate, phosphate ester of 2- (perfluorohexyl) ethylphosphonic acid, and the like.
- carboxylic acid for example, a compound having a hydrocarbon group and a carboxyl group (fatty acid) can be used. Specific examples of such compounds include decanoic acid, tetradecanoic acid, octadecanoic acid, cis-9-octadecenoic acid and the like.
- fluorine compound examples include a silane coupling agent as described above, a phosphoric acid compound, and a compound having a structure in which at least a part of hydrogen atoms of the carboxylic acid is substituted with a fluorine atom (fluorine silane compound, fluorine A phosphoric acid compound and a fluorine-substituted fatty acid).
- the ferrite powder of the present invention may be produced by any method, but can be suitably produced, for example, by the method described below.
- the ferrite powder of the present invention can be suitably manufactured, for example, by spraying a ferrite raw material prepared to a predetermined composition in the air and then rapidly solidifying it.
- a granulated material can be suitably used as the ferrite raw material.
- the method for preparing the ferrite raw material is not particularly limited, and for example, a dry method or a wet method may be used.
- An example of a method for preparing a ferrite raw material (granulated product) is as follows. That is, a plurality of kinds of raw materials containing a metal element are weighed and mixed so as to correspond to the composition of the ferrite powder to be manufactured, and then water is added to pulverize to prepare a slurry. The prepared pulverized slurry is granulated with a spray dryer and classified to prepare a granulated product having a predetermined particle size.
- Another example of the method for preparing the ferrite raw material (granulated product) is as follows. That is, a plurality of kinds of raw materials containing metal elements are weighed and mixed so as to correspond to the composition of the ferrite powder to be manufactured, then dry pulverized, each raw material is pulverized and dispersed, and the mixture is granulated with a granulator And classified to prepare a granulated product having a predetermined particle size.
- the granulated material prepared as described above is sprayed in the atmosphere to be ferritized.
- a mixed gas of combustion gas and oxygen can be used as a combustible gas combustion flame.
- the volume ratio of the combustion gas and oxygen is preferably 1: 3.5 or more and 1: 6.0 or less.
- combustion gas used for thermal spraying examples include propane gas, propylene gas, and acetylene gas. Of these, propane gas can be preferably used.
- nitrogen, oxygen, air, or the like can be used as the granulated product transport gas.
- the flow rate of the granulated material to be conveyed is preferably 20 m / second or more and 60 m / second or less. Moreover, it is preferable to perform the said thermal spraying at the temperature of 1000 degreeC or more and 3500 degrees C or less, and it is more preferable to carry out at 2000 degrees C or more and 3500 degrees C or less.
- the formation of ferrite particles having a relatively small particle size due to reprecipitation of the volatilized material can be further promoted.
- the shape (for example, BET specific surface area etc.) of the ferrite particle finally obtained can be adjusted more suitably.
- the processing such as classification in the subsequent steps can be omitted or simplified, and the productivity of the ferrite powder can be further improved.
- the proportion of particles to be removed by classification in the subsequent step can be made smaller, and the yield of the ferrite powder can be further improved.
- the ferrite particles ferritized by thermal spraying in this way are rapidly solidified in water or in the air and collected by a filter.
- the ferrite particles collected by the collection filter are classified as necessary.
- the particle size is adjusted to a desired particle size using an existing air classification, mesh filtration method, sedimentation method, or the like. It is also possible to separate and collect the particles having a large particle size with a cyclone or the like.
- the ferrite powder satisfying the above-mentioned particle size conditions can be efficiently produced by the above method.
- the manufacturing process unlike wet granulation methods using acid or alkali, it is possible to effectively prevent impurities or the like derived from acid or alkali from remaining in the finally obtained ferrite powder. Further, it is possible to further improve the durability and reliability of the ferrite powder and the resin composition produced using the ferrite powder and the molded body (electromagnetic wave shielding material and the like).
- the ferrite powder of the present invention includes a plurality of types of powders manufactured by different methods (for example, a single crystal ferrite powder including a plurality of single crystal ferrite particles having a particle size of 1 nm to 2000 nm, and a particle size of 2000 nm or more.
- Polycrystalline ferrite powder containing a plurality of large polycrystalline ferrite particles may be prepared by mixing.
- the resin composition of the present invention contains the above-described ferrite powder of the present invention and a resin material.
- the resin composition that can be suitably used for the production of an electromagnetic shielding material having excellent shielding properties for electromagnetic waves in a high frequency region of 1 GHz to 12 GHz or less. Further, for example, the moldability of an electromagnetic wave shielding material or the like (molded body) described later can be made excellent.
- the resin composition thus obtained is one in which unintentional aggregation of ferrite powder is stably prevented over a long period of time.
- the ferrite powder in the resin composition is prevented from agglomerating and undesired dispersion of the composition, the undesired composition of the electromagnetic shielding material or the like (molded article) produced using the resin composition Variation can be effectively prevented.
- the resin material constituting the resin composition examples include epoxy resins, urethane resins, acrylic resins, silicone resins, various modified silicone resins (acrylic modified, urethane modified, epoxy modified, fluorine), polyamide resins, polyimide resins, and polyamideimides. Resins, fluorine and the like can be mentioned, and one or more selected from these can be used in combination.
- the resin composition may contain components (other components) other than the ferrite powder and the resin material.
- Such components include solvents, fillers (organic fillers, inorganic fillers), plasticizers, antioxidants, dispersants, colorants such as pigments, heat conductive particles (particles with high heat conductivity). ) And the like.
- the ratio (content) of the ferrite powder to the total solid content in the resin composition is preferably 50% by mass to 95% by mass, and more preferably 80% by mass to 95% by mass.
- a molded article (electromagnetic wave) produced using the resin composition while having excellent dispersion stability of the ferrite powder in the resin composition, storage stability of the resin composition, moldability of the resin composition, and the like.
- the mechanical strength of the shielding material and the like, and the shielding property of electromagnetic waves can be further improved.
- the ratio (content ratio) of the resin material to the total solid content in the resin composition is preferably 5% by mass or more and 50% by mass or less, and more preferably 5% by mass or more and 20% by mass or less.
- a molded article (electromagnetic wave) produced using the resin composition while having excellent dispersion stability of the ferrite powder in the resin composition, storage stability of the resin composition, moldability of the resin composition, and the like.
- the mechanical strength of the shielding material and the like, and the shielding property of electromagnetic waves can be further improved.
- the electromagnetic wave shielding material (molded body) of the present invention can be composed of a material containing the ferrite powder of the present invention and a resin material.
- the ferrite powder satisfying the above-described conditions can exhibit an excellent filler effect, and can make the mechanical strength of the electromagnetic wave shielding material (molded body) particularly excellent.
- the electromagnetic wave shielding material (molded article) of the present invention can be preferably produced using the resin composition of the present invention as described above.
- the molding method of the electromagnetic shielding material examples include compression molding, extrusion molding, injection molding, blow molding, calendar molding, various coating methods, and the like.
- the electromagnetic wave shielding material (molded body) may be formed by, for example, directly applying a resin composition on a member on which the electromagnetic wave shielding material (molded body) is to be formed, or prepared separately. It may be installed later on a target member (for example, a printed wiring board, a metal foil (for example, copper foil, etc.)).
- the ferrite powder according to the present invention may be used without mixing and dispersing in a resin or the like without performing a step such as firing.
- the ferrite particles may be molded, granulated, coated, etc. into a desired shape. After performing a process, it may bake and may be used for manufacture of a forming object (electromagnetic wave shielding material) as a sintered compact.
- the electronic material and electronic component of the present invention can be composed of a material containing the ferrite powder of the present invention and a resin material.
- the ferrite powder that satisfies the above-described conditions can exhibit an excellent filler effect, and can make the mechanical strength and the like of electronic materials and electronic parts particularly excellent.
- Examples of the electronic material of the present invention include an electronic substrate, an LSI sealing agent, a noise suppressing paste, a noise suppressing sheet, and a mold paste.
- examples of the electronic component of the present invention include an inductor and a reactor.
- the electronic material and electronic component of the present invention can be suitably manufactured using the resin composition of the present invention as described above.
- Examples of methods for molding electronic materials and electronic parts include compression molding, extrusion molding, injection molding, blow molding, calendar molding, and various coating methods.
- the electronic material and electronic component may be formed by, for example, directly applying a resin composition on a member on which the electronic material or electronic component is to be formed, or after being separately manufactured. It may be installed on a member.
- the ferrite powder according to the present invention may be used without mixing and dispersing in a resin or the like without performing a step such as firing.
- the ferrite particles may be molded, granulated, coated, etc. into a desired shape. After performing a process, it may bake and may be used for manufacture of an electronic material and electronic parts as a sintered compact.
- a pretreatment step for example, in the method for producing a ferrite powder of the present invention, if necessary, in addition to the steps described above, other steps (a pretreatment step, an intermediate step, a post treatment step) may be included.
- the ferrite powder of the present invention is not limited to the one manufactured by the method as described above, and may be manufactured by any method.
- the ferrite powder and resin composition of the present invention have been representatively described for use in the production of electromagnetic shielding materials, electronic materials, and electronic components. However, the ferrite powder and resin composition of the present invention are described. May be used for manufacturing other than these.
- Example 1 Fe 2 O 3 and Mn 3 O 4 as raw materials were mixed at a predetermined ratio and mixed for 15 minutes with a Henschel mixer. The pulverized material thus obtained was pelletized using a roller compactor and then calcined in the air at 900 ° C. for 5 hours using a rotary kiln.
- the volume average particle diameter of the powdery calcined product (calcined powder) (also referred to as raw material powder) contained in the slurry was 1.5 ⁇ m.
- the obtained slurry was granulated with a spray dryer and classified to obtain a granulated product having a volume average particle size of 5 ⁇ m.
- propane: oxygen 10 Nm 3 / hr: it was sprayed at a flow rate of 40 m / sec in the combustible gas combustion flame of 35 Nm 3 / hr.
- the particles after spraying and quenching were independent without being bound to each other.
- the cooled particles are collected by a filter (bag filter) provided on the downstream side of the airflow, classified by an airflow classifier, and ferrite powder (Mn) having a predetermined volume average particle size and particle size distribution. Ferrite powder) was obtained.
- the volume average particle diameter and the particle size distribution (volume particle size distribution) of the ferrite powder were determined by the following measurements. That is, first, powder: 10 g as a sample, water: 80 ml, and 100 ml were placed in a beaker, and two drops of a dispersant (sodium hexametaphosphate) were added. Subsequently, dispersion was performed using an ultrasonic homogenizer (UH-150 type manufactured by SMT Co Ltd). At this time, the output level of the ultrasonic homogenizer was set to 4, and dispersion was performed for 20 seconds.
- UH-150 type manufactured by SMT Co Ltd
- the ferrite powder was observed with an electron beam diffraction image at a magnification of 100,000 times and 500,000 times with a transmission electron microscope (TEM) (HF-2100, Cold-FE-TEM (manufactured by Hitachi High-Technologies Corporation)). As a result, it was confirmed that single crystal ferrite particles and polycrystalline ferrite particles were included.
- TEM transmission electron microscope
- the obtained ferrite powder had a volume average particle size of 2.84 ⁇ m and a BET specific surface area of 5.57 m 2 / g.
- the obtained ferrite powder had a volume-based cumulative distribution (under a sieve) at 2.106 ⁇ m of 9.71% by volume.
- the BET specific surface area was determined by measurement using a specific surface area measuring device (model: Macsorb HM model-1208 (manufactured by Mountec)). More specifically, about 5 g of the measurement sample was put in a standard sample cell dedicated to a specific surface area measurement apparatus, accurately weighed with a precision balance, the sample (ferrite powder) was set in the measurement port, and measurement was started. The measurement was performed by a one-point method, and the BET specific surface area was automatically calculated when the weight of the sample was input at the end of the measurement.
- a specific surface area measuring device model: Macsorb HM model-1208 (manufactured by Mountec)
- the measurement sample As a pretreatment before the measurement, about 20 g of the measurement sample was placed on the medicine wrapping paper, then degassed to ⁇ 0.1 MPa with a vacuum dryer, and it was confirmed that the degree of vacuum had reached ⁇ 0.1 MPa or less. Then, it heated at 200 degreeC for 2 hours.
- the measurement environment was temperature: 10-30 ° C., humidity: 20-80% relative humidity, and no condensation.
- the tap density of the obtained ferrite powder was 2.23 g / cm 3 .
- the tap density was determined by measurement according to JIS Z 2512-2012 using a tapping device (USP tap density measuring device, powder tester PT-X manufactured by Hosokawa Micron). Tapping was performed at 100 times / min for 3 minutes.
- Example 2 Ferrite powder was produced in the same manner as in Example 1 except that the classification conditions were changed.
- Example 4 The ferrite powder obtained in Example 3 and the ferrite powder obtained in Comparative Example 1 were mixed at a mass ratio of 80:20 to produce the ferrite powder of this example.
- each metal element constituting the ferrite powder is determined by measurement using an ICP analyzer. More specifically, 0.2 g of ferrite powder is weighed, and 60 mL of pure water plus 20 mL of 1N hydrochloric acid and 20 mL of 1N nitric acid is heated to prepare an aqueous solution in which the ferrite powder is completely dissolved. The aqueous solution was measured using an ICP analyzer (ICPS-1000IV, manufactured by Shimadzu Corporation) to determine the content of each metal element.
- ICP analyzer ICPS-1000IV, manufactured by Shimadzu Corporation
- the content of Fe 2+ in the ferrite powder was determined by redox titration with potassium permanganate.
- the proportion of the particles that are truly spherical was determined as described above.
- the true density was measured using a fully automatic true density measuring device Macpycno manufactured by Mountec Co., Ltd. in accordance with JIS Z 8807: 2012.
- PVA polyvinyl alcohol
- ⁇ 3 Permeability of ferrite powder (1MHz to 1GHz)
- the magnetic permeability was measured as follows. The magnetic permeability was measured using an E4991A type RF impedance / material analyzer 16454A magnetic material measuring electrode manufactured by Agilent Technologies. First, 4.5 g of ferrite powder and 0.5 g of a fluorinated powder resin were placed in a 100 cc polyethylene container and mixed by stirring for 30 minutes in a 100 rpm ball mill.
- the obtained mixture was filled in a die having an inner diameter of 4.5 mm and an outer diameter of 13 mm, and pressurized with a press at a pressure of 40 MPa for 1 minute.
- the obtained molded body was heat-cured at a temperature of 140 ° C. for 2 hours with a hot air dryer to obtain a measurement sample.
- the outer diameter of the measuring sample measured in advance, the internal diameter, and the height were input into the measuring apparatus.
- the amplitude was 100 mV
- the frequency range of 1 MHz to 3 GHz was swept on a logarithmic scale
- the magnetic permeability (the real part ⁇ ′ of the complex magnetic permeability) was measured.
- ⁇ 4 Permeability measurement in the range of 1 GHz to 12 GHz or less
- the mixture was poured into a cylindrical mold having an inner diameter of 1.8 mm and a length of 100 mm and then cured by heating.
- a round bar-shaped sample was taken out of the mold and used as a sample for measuring permeability.
- the obtained sample was set in a resonator, and the permeability was determined using a cavity resonator (for S band and C band (both manufactured by Kanto Electronics Application Development Co., Ltd.)) and a network analyzer (E5071C manufactured by Keysight Technology). Measured.
- ⁇ 4-1 Frequency at which ⁇ ′ is 1 or Less From the above measurement results, the frequency at which ⁇ ′ is 1 or less was determined in the region where the frequency was greater than 1 GHz and not greater than 12 GHz.
- ⁇ 5 Saturation Magnetization, Residual Magnetization, Coercivity
- the saturation magnetization, the residual magnetization, and the coercivity were determined for the ferrite powders of the examples and the comparative examples.
- Saturation magnetization, residual magnetization, and coercive force were determined as follows. That is, first, ferrite powder was packed in a cell having an inner diameter of 5 mm and a height of 2 mm, and set in a vibration sample type magnetic measuring device (VSM-C7-10A manufactured by Toei Kogyo Co., Ltd.). Next, an applied magnetic field was applied, sweeping was performed to 5K ⁇ 1000 / 4 ⁇ ⁇ A / m, and then the applied magnetic field was decreased to prepare a hysteresis curve. Thereafter, saturation magnetization, residual magnetization, and coercive force were obtained from the data of this curve.
- VSM-C7-10A vibration sample type magnetic measuring device
- volume resistance was obtained as follows. That is, first, the ferrite powder obtained in a Teflon cylinder having an electrode at the bottom with an inner diameter of 22.5 mm is introduced so that the height is 4 mm, an electrode having the same size as the inner diameter is inserted from the top, and further 1 kg from the top. The bottom and top electrodes were connected to a measuring device (using a Keithley 6517A model) in the state of applying a load, and the resistance was measured. The volume resistance was calculated using the resistance value, the inner diameter and the thickness obtained by the measurement.
- ferrite powder, powder PVA as a resin material, and water as a solvent were dispersed and mixed at a mass ratio of 70: 30: 270 to obtain a resin dispersion.
- the mixture was poured into a flat plate-shaped container, and the solvent was removed to obtain a sheet-shaped molded body (electromagnetic wave shielding material) having a thickness of 1 mm.
- the obtained molded body (electromagnetic shielding material) was evaluated for electromagnetic shielding ability, excellent results were obtained in the present invention. Specifically, the molded body obtained above was cut into a length of 200 mm, a width of 200 mm, and a thickness of 5 mm, and measured by a transmission attenuation rate measuring method (microstrip line) based on IEC62333.
- FIG. 1 shows the measurement results of a molded body produced using the ferrite powder of Example 2.
- the Mn ferrite powder of the present invention includes a plurality of ferrite particles, and has a volume average particle size of 1 ⁇ m or more and 10 ⁇ m or less, and a volume-based integrated distribution (under a sieve) at 2.106 ⁇ m is 0.1 volume% or more and 50.50%. It is 0 volume% or less. Therefore, it is possible to provide a ferrite powder having excellent shielding properties for electromagnetic waves in a low frequency region of 1 GHz or less and excellent shielding properties for electromagnetic waves in a high frequency region of more than 1 GHz and not more than 12 GHz. Therefore, the ferrite powder of the present invention has industrial applicability.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dispersion Chemistry (AREA)
- Electromagnetism (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Soft Magnetic Materials (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Compounds Of Iron (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本発明は、複数個のフェライト粒子を含み、体積平均粒径が1μm以上10μm以下であり、2.106μmにおける体積基準の積算分布(フルイ下)が0.1体積%以上50.0体積%以下含有することを特徴とするMnフェライト粉末、上記粉末と樹脂材料とを含むことを特徴とする樹脂組成物を提供する。
Description
本発明は、Mnフェライト粉末、樹脂組成物、電磁波シールド材、電子材料および電子部品に関する。
フェライト粉末を電磁波シールド材に用いることが知られている(例えば、特許文献1、2、3参照)。
フェライト粉末を用いた電磁波シールド材としては、フェライト粉末を含む樹脂組成物をシート状に成形したものが考えられる。シート状の電磁波シールド材を電磁波の遮蔽を必要とするパソコン、携帯電話等のデジタル電子機器に貼付することにより、電子機器外部への電磁波の漏えいを防止したり、電子機器内部の回路間における電磁波の相互干渉を防止したり、外部の電磁波による電子機器の誤動作を防止したりすることができる。
フェライト粉末を電子機器用の電磁波シールドとして用いるには、幅広い周波数帯域の電磁波を遮蔽できることが望まれる。特に、近年、高周波数帯域での優れた電磁波遮蔽性が求められているが、従来の電磁波シールド材では、高周波数帯域(例えば、1GHz超12GHz以下の周波数帯域)での電磁波遮蔽性が不十分であった。
また、特定の大きさ、結晶構造のフェライト粒子も知られているが(例えば、特許文献4)、このようなフェライト粒子を用いた場合でも、満足のいく結果は得られない。
本発明の目的は、1GHz以下の低周波領域の電磁波について優れた遮蔽性を有し、かつ1GHz超12GHz以下の高周波領域の電磁波について優れた遮蔽性を有するMnフェライト粉末を提供すること、1GHz以下の低周波領域の電磁波について優れた遮蔽性を有し、かつ1GHz超12GHz以下の高周波領域の電磁波について優れた遮蔽性を有する電磁波シールド材、電子材料、電子部品を提供すること、また、前記電磁波シールド材、前記電子材料、前記電子部品の製造に好適に用いることができる樹脂組成物を提供することにある。
このような目的は、下記の本発明により達成される。
[1]
複数個のフェライト粒子を含み、
体積平均粒径が1μm以上10μm以下であり、
2.106μmにおける体積基準の積算分布(フルイ下)が0.1体積%以上50.0体積%以下であることを特徴とするMnフェライト粉末。
[2]
BET比表面積が0.35m2/g以上9m2/g以下である[1]記載のMnフェライト粉末。
[3]
前記フェライト粒子は、真球状または断面が6角形以上の多角形である形状を有するものである[1]または[2]に記載のMnフェライト粉末。
[4]
Mnの含有率が4質量%以上13質量%以下、Feの含有率が60質量%以上68質量%以下であること[1]~[3]のいずれか1項に記載のMnフェライト粉末。
[5]
[1]~[4]のいずれか1項に記載のMnフェライト粉末と、樹脂材料とを含むことを特徴とする樹脂組成物。
[6]
[1]~[4]のいずれか1項に記載のMnフェライト粉末と、樹脂材料とを含む材料で構成されたことを特徴とする電磁波シールド材。
[7]
[1]~[4]のいずれか1項に記載のMnフェライト粉末を含む材料で構成されていることを特徴とする電子材料。
[8]
[1]~[4]のいずれか1項に記載のMnフェライト粉末を含む材料で構成されていることを特徴とする電子部品。
複数個のフェライト粒子を含み、
体積平均粒径が1μm以上10μm以下であり、
2.106μmにおける体積基準の積算分布(フルイ下)が0.1体積%以上50.0体積%以下であることを特徴とするMnフェライト粉末。
[2]
BET比表面積が0.35m2/g以上9m2/g以下である[1]記載のMnフェライト粉末。
[3]
前記フェライト粒子は、真球状または断面が6角形以上の多角形である形状を有するものである[1]または[2]に記載のMnフェライト粉末。
[4]
Mnの含有率が4質量%以上13質量%以下、Feの含有率が60質量%以上68質量%以下であること[1]~[3]のいずれか1項に記載のMnフェライト粉末。
[5]
[1]~[4]のいずれか1項に記載のMnフェライト粉末と、樹脂材料とを含むことを特徴とする樹脂組成物。
[6]
[1]~[4]のいずれか1項に記載のMnフェライト粉末と、樹脂材料とを含む材料で構成されたことを特徴とする電磁波シールド材。
[7]
[1]~[4]のいずれか1項に記載のMnフェライト粉末を含む材料で構成されていることを特徴とする電子材料。
[8]
[1]~[4]のいずれか1項に記載のMnフェライト粉末を含む材料で構成されていることを特徴とする電子部品。
本発明によれば、1GHz以下の低周波領域の電磁波について優れた遮蔽性を有し、かつ1GHz超12GHz以下の高周波領域の電磁波について優れた遮蔽性を有するMnフェライト粉末を提供すること、1GHz以下の低周波領域の電磁波について優れた遮蔽性を有し、かつ1GHz超12GHz以下の高周波領域の電磁波について優れた遮蔽性を有する電磁波シールド材、電子材料、電子部品を提供すること、また、前記電磁波シールド材、前記電子材料、前記電子部品の製造に好適に用いることができる樹脂組成物を提供することができる。
以下、本発明の好適な実施形態について詳細な説明をする。
《Mnフェライト粉末》
まず、本発明のMnフェライト粉末について説明する。
《Mnフェライト粉末》
まず、本発明のMnフェライト粉末について説明する。
ところで、フェライト粉末を含む電磁波シールド材が広く用いられているが、従来の電磁波シールド材では、近年の高周波数帯域での電磁波遮蔽性に対する要求に十分に応えることができていなかった。
そこで、本発明者は、上記のような問題を解決する目的で鋭意研究を行い、その結果、本発明に至った。
すなわち、本発明のMnフェライト粉末(以下、単に「フェライト粉末」とも言う)は、複数個のフェライト粒子を含み、体積平均粒径が1μm以上10μm以下であり、2.106μmにおける体積基準の積算分布(フルイ下)が0.1体積%以上50.0体積%以下であることを特徴とする。
これにより、1GHzより高い周波数においてμ’が1を下回る周波数のポイントを高い側にシフトさせることができ、結果として、1GHzより高い高周波領域の電磁波について優れた遮蔽性を有するフェライト粉末を提供することができる。
また、本発明のフェライト粉末は、1GHz以下の低周波数領域の電磁波に対しても優れた遮蔽性を有する。
また、本発明のフェライト粉末は、1GHz以下の低周波数領域の電磁波に対しても優れた遮蔽性を有する。
また、上記のような粒径の条件を満足すると、フェライト粉末や当該フェライト粉末を含む樹脂組成物の流動性、取り扱いのし易さを優れたものとすることができる。その結果、例えば、フェライト粉末を含む電磁波シールド材等(電子材料、電子部品等を含む。以下、同様。)の生産性を優れたものとすることができる。また、電磁波シールド材等の各部位での不本意な組成のばらつきの発生を効果的に防止することができる。また、優れた成形性を確保しつつ、電磁波シールド材等におけるフェライト粉末の充填率(含有率)を高いものとすることができる。以上のようなことから、1GHz超12GHz以下の高周波領域の電磁波について遮蔽性に優れた電磁波シールド材等の製造に好適に用いることができる。
また、上記のような組成を有することにより、高い透磁率と低い保磁力とを高いレベルで両立することができる。
これに対し、上記のような条件を満たさない場合には、満足のいく特性が得られない。
例えば、フェライト粉末の体積平均粒径(具体的には、フェライト粉末を構成する粒子全体の体積平均粒径、以下同様)が前記下限値未満であると、フェライト粉末の流動性や、フェライト粉末を含む樹脂組成物の流動性が低下するとともに、粒子の凝集が生じやすくなり、フェライト粉末を用いて製造される電磁波シールド材等の信頼性(1GHz超12GHz以下の高周波領域の電磁波についての遮蔽性を含む)を十分に優れたものとすることができない。
また、フェライト粉末の体積平均粒径が前記上限値を超えると、フェライト粒子間の空隙が大きくなり、空隙に充填されるフェライト粒子が不足することで空隙が残りやすくなりなってしまい、透磁率が上がりにくくなる。
また、体積平均粒径が1μm以上10μm以下でない場合、1MHz~1GHzにおける透磁率も大きくすることができない。
また、フェライト粉末において2.106μmにおける体積基準の積算分布(フルイ下)が下限値を下回ると、フェライト粉末としての透磁率を十分に優れたものとすることができなくなり、1GHz超12GHz以下の高周波領域の電磁波についての吸収性を十分に優れたものとすることができない。
また、フェライト粉末において2.106μmにおける積算体積%が前記上限値を超えると、フェライト粉末の流動性や、フェライト粉末を含む樹脂組成物の流動性が低下するとともに、粒子の凝集が生じやすくなり、フェライト粉末を用いて製造される電磁波シールド材等の信頼性(1GHz超12GHz以下の高周波領域の電磁波についての遮蔽性を含む)を十分に優れたものとすることができない。
また、フェライト粉末において2.106μmにおける積算体積%が前記下限値を下回ると、フェライト粉末としての透磁率を十分に優れたものとすることができず、1GHz超12GHz以下の高周波領域の電磁波の吸収性を十分に優れたものとすることができない。また、フェライト粉末を用いて製造される電磁波シールド材等において、表面に不本意な凹凸が生じやすくなる。
また、フェライト粉末が、Mn系の組成を有していないと、Mnフェライト粉末の製造時において、溶射を行う際にフェライト粒子中にFe2+が大量に生成し、溶射後酸化しやすくなり磁気特性が劣るという問題を生じる。Fe2+の含有量は0質量%以上10質量%以下であることが好ましく、0質量%以上7質量%以下であることがより好ましく、0質量%以上5質量%以下であることがさらに好ましい。
フェライト粉末中のFe2+の含有量は、過マンガン酸カリウムによる酸化還元滴定により求めるものとする。
フェライト粉末中のFe2+の含有量は、過マンガン酸カリウムによる酸化還元滴定により求めるものとする。
なお、本明細書に記載の粒度分布は体積粒度分布を意味し、体積平均粒径、および、粒度分布(体積粒度分布)は、以下のような測定により求めるものとする。すなわち、まず、試料としてのフェライト粉末:10gと水:80mlを100mlのビーカーに入れ、分散剤(ヘキサメタリン酸ナトリウム)を2滴添加する。次いで、超音波ホモジナイザー(SMT.Co.LTD.製UH-150型)を用い分散を行う。超音波ホモジナイザーとしてのSMT.Co.LTD.製UH-150型において、出力レベル4に設定し、20秒間分散を行う。その後、ビーカー表面にできた泡を取り除き、レーザー回折式粒度分布測定装置(島津製作所社製SALD-7500nano)に導入し、屈折率1.70-0.50i、吸光度が0.04~0.12の条件で測定し、付属ソフトウエアの粒子径分割101CHで自動的に解析し、体積平均粒径、粒度分布(体積粒度分布)および、2.106μmにおける体積基準の積算分布(フルイ下)の測定を行う。
また、周波数が1GHz超12GHz以下の領域における透磁率(複素比透磁率の実数部μ’および虚数部μ’’)は、以下のようにして求めるものとする。
すなわち、エポキシ樹脂30質量部にフェライト粉末70質量部を混合した後、内径1.8mm、長さ100mmの円柱状の金型に注入した後、加熱硬化させる。金型を室温に戻したのち、金型から丸棒状のサンプルを取り出し、透磁率測定用サンプルとする。
そして、前記サンプルを共振器にセットし、空洞共振器(関東電子応用開発社製のSバンド用およびCバンド用)とネットワークアナライザ(キーサイトテクノロジー社製E5071C)とを用いて透磁率を測定し、得られた値をフェライト粉末の透磁率の値として採用するものとする。
すなわち、エポキシ樹脂30質量部にフェライト粉末70質量部を混合した後、内径1.8mm、長さ100mmの円柱状の金型に注入した後、加熱硬化させる。金型を室温に戻したのち、金型から丸棒状のサンプルを取り出し、透磁率測定用サンプルとする。
そして、前記サンプルを共振器にセットし、空洞共振器(関東電子応用開発社製のSバンド用およびCバンド用)とネットワークアナライザ(キーサイトテクノロジー社製E5071C)とを用いて透磁率を測定し、得られた値をフェライト粉末の透磁率の値として採用するものとする。
フェライト粉末の体積平均粒径は、1μm以上10μm以下であればよいが、1μm以上5μm以下であるのが好ましく、1μm以上3.5μm以下であるのがより好ましく、1μm以上3μm以下であるのがさらに好ましい。
これにより、前述したような効果がより顕著に発揮される。
これにより、前述したような効果がより顕著に発揮される。
フェライト粉末中において、2.106μmにおける体積基準の積算分布(フルイ下)は、0.1体積%以上50.0体積%以下であればよいが、0.1体積%以上30.0体積%以下であるのが好ましく、0.1体積%以上20.0体積%以下であるのがより好ましい。
これにより、前述した効果がより顕著に発揮される。
これにより、前述した効果がより顕著に発揮される。
フェライト粉末を構成するフェライト粒子の粒径は1nm以上2106nm(2.106μm)以下であることが好ましい。粒径1nm以上2106nm以下のフェライト粒子は、通常、単結晶の粒子(単結晶フェライト粒子)であるが、多結晶の粒子(多結晶フェライト粒子)であっても良い。
単結晶の確認方法はTEMを用いて上記粒径の粒子のみが複数の粒子が存在する視野で制限視野電子回折像を撮影し、得られた画像において斑点状のパターンが円環状のパターンと同等か同等以上に明確に出ていることにより判別することができる。(日立ハイテクノロジーズ社製HF-2100、Cold-FE-TEMを用いてVacc:200kV、100000倍で撮影した。
フェライト粉末を構成する単結晶フェライト粒子の粒径は、1nm以上2000nm以下であるのが好ましく、10nm以上1000nm以下であるのがより好ましく、10nm以上500nm以下であるのがさらに好ましい。
これにより、前述したような効果がより顕著に発揮される。
単結晶の確認方法はTEMを用いて上記粒径の粒子のみが複数の粒子が存在する視野で制限視野電子回折像を撮影し、得られた画像において斑点状のパターンが円環状のパターンと同等か同等以上に明確に出ていることにより判別することができる。(日立ハイテクノロジーズ社製HF-2100、Cold-FE-TEMを用いてVacc:200kV、100000倍で撮影した。
フェライト粉末を構成する単結晶フェライト粒子の粒径は、1nm以上2000nm以下であるのが好ましく、10nm以上1000nm以下であるのがより好ましく、10nm以上500nm以下であるのがさらに好ましい。
これにより、前述したような効果がより顕著に発揮される。
本発明のフェライト粉末は、Mnの含有率が4質量%以上13質量%以下、Feの含有率が60質量%以上68質量%以下であるのが好ましい。
これにより、焼成時(溶射時)に磁気特性を容易に調整することができる。
これにより、焼成時(溶射時)に磁気特性を容易に調整することができる。
フェライト粉末中におけるMnの含有率は、4質量%以上13質量%以下であるのが好ましいが、4質量%以上11質量%以下であるのがより好ましく、5質量%以上10質量%以下であるのがさらに好ましい。
これにより、前述したような効果がより顕著に発揮される。
これにより、前述したような効果がより顕著に発揮される。
また、本発明のフェライト粉末中におけるFeの含有率は、60質量%以上68質量%以下であるのが好ましいが、60質量%以上65質量%以下であるのがより好ましく、61質量%以上65質量%以下であるのがさらに好ましい。
これにより、前述したような効果がより顕著に発揮される。
これにより、前述したような効果がより顕著に発揮される。
Mnフェライトは、金属成分として、Fe、Mnのみを含むことが望ましい。上記観点から、Mnフェライト中に含まれるFe、Mn、O以外の全成分(元素)の含有率は、不純物量程度を超えて存在しないことが望ましい。
具体的には、Mnフェライト中に含まれるFe、Mn、O以外の全成分(元素)の含有率は、0.1質量%未満であるのが好ましく、0.05質量%未満であることがより好ましく、0.01質量%未満であることが更に好ましい。
具体的には、Mnフェライト中に含まれるFe、Mn、O以外の全成分(元素)の含有率は、0.1質量%未満であるのが好ましく、0.05質量%未満であることがより好ましく、0.01質量%未満であることが更に好ましい。
フェライト粉末を構成する各金属元素の含有量は、ICP分析装置を用いた測定により求めるものとする。
より具体的には、フェライト粉末0.2gを秤量し、純水60mlに1Nの塩酸20mLおよび1Nの硝酸20mLを加えたものを加熱し、フェライト粉末を完全溶解させた水溶液を準備し、その後、当該水溶液について、ICP分析装置(島津製作所製ICPS-1000IV)を用いた測定を行うことにより、各金属元素の含有量を求めることができる。
より具体的には、フェライト粉末0.2gを秤量し、純水60mlに1Nの塩酸20mLおよび1Nの硝酸20mLを加えたものを加熱し、フェライト粉末を完全溶解させた水溶液を準備し、その後、当該水溶液について、ICP分析装置(島津製作所製ICPS-1000IV)を用いた測定を行うことにより、各金属元素の含有量を求めることができる。
フェライト粒子の形状は、特に限定されないが、真球状または断面が6角形以上の多角形である形状を有するものであるのが好ましい。
これにより、フェライト粉末を用いて製造される電磁波シールド材等において、フェライト粉末の充填率をより高くすることができ、電磁波シールド材等についての電磁波の吸収性(特に、1GHz超12GHz以下の高周波領域の電磁波の吸収性)をより向上させることができる。
なお、本明細書において、真球状とは、真球または十分に真球に近い形状のことを言い、具体的には、球状率が1以上1.2以下のことをいう。
球状率は、次のようにして求めるものとする。
球状率は、次のようにして求めるものとする。
まず、走査型電子顕微鏡(FE-SEM(SU-8020、日立ハイテクノロジー社製))を用いて、倍率1万~20万倍でフェライト粒子を撮影する。そして、撮影したSEM画像から、フェライト粒子について、外接円直径、内接円直径を求め、その比(外接円直径/内接円直径)を球状率として求める。2つの直径が同一である場合、すなわち、真球である場合、この比が1となる。
なお、倍率はフェレ径(粒径)が500nm以下の粒子を撮影する場合は10万倍から20万倍で撮影することが好ましく、フェレ径(粒径)が500nm以上3μm以下の場合は1万倍から10万倍で撮影することが好ましく、3μmよりも大きい粒子を撮影する場合は1000倍から1万倍程度で撮影することが好ましい。
さらに、フェライト粉末をエポキシ樹脂等に包埋、硬化させた後、イオンミリング装置を用いてフェライト粉末の断面サンプルを作製し、上記の倍率で撮影し球状率を算出してもよい。
また、フェライト粉末を構成する粒子(フェライト粒子)のうち、真球状をなすものの割合は、90個数%以上であるのが好ましく、91個数%以上であるのがより好ましく、93個数%以上であるのがさらに好ましい。
これにより、前述した効果がより顕著に発揮される。
上記の割合は、画像解析装置にて求めるものとする。
具体的には、FE-SEM(日立ハイテクノロジーズ社製SU-8020に堀場製作所製E-MAX(EDX)を組み合わせて、EDXの粒子形状測定機能を用いて測定することができる。
これにより、前述した効果がより顕著に発揮される。
上記の割合は、画像解析装置にて求めるものとする。
具体的には、FE-SEM(日立ハイテクノロジーズ社製SU-8020に堀場製作所製E-MAX(EDX)を組み合わせて、EDXの粒子形状測定機能を用いて測定することができる。
フェライト粉末を構成する粒子(フェライト粒子)の平均球状率は、1以上1.14以下であるのが好ましく、1以上1.10以下であるのがより好ましい。
これにより、前述した効果がより顕著に発揮される。
これにより、前述した効果がより顕著に発揮される。
平均球状率は、フェライト粉末から無作為に抽出した100個の粒子(フェライト粒子)について求めた球状率の平均値を採用することができる。
フェライト粒子の形状は、断面が6角形以上の多角形である形状であることが好ましい。
フェライトの断面形状は、フェライト粉末を樹脂に包埋させ、イオンミリング装置で断面加工を行ったものをFE-SEM(日立ハイテクノロジーズ社製SU-8020)により測定するものとする。
フェライトの断面形状は、フェライト粉末を樹脂に包埋させ、イオンミリング装置で断面加工を行ったものをFE-SEM(日立ハイテクノロジーズ社製SU-8020)により測定するものとする。
フェライト粉末のBET比表面積(具体的には、フェライト粉末を構成する粒子全体のBET比表面積、以下同様)は、0.35m2/g以上9m2/g以下であるのが好ましく、0.35m2/g以上8m2/g以下であるのがより好ましく、0.5m2/g以上8m2/g以下であるのがさらに好ましい。
これにより、電磁波の遮蔽性(特に、1GHz超12GHz以下の高周波領域の電磁波の遮蔽性)を特に優れたものとしつつ、フェライト粉末を用いて製造される電磁波シールド材等において、フェライト粉末と樹脂材料との密着性を特に優れたものとし、電磁波シールド材等の耐久性を特に優れたものとすることができる。
これに対し、フェライト粉末を構成する粒子全体のBET比表面積が前記下限値未満であると、例えば、フェライト粉末を用いて製造される電磁波シールド材等において、フェライト粉末と樹脂材料との密着性を優れたものとすることが困難となり、電磁波シールド材等の耐久性が低下する場合がある。
また、フェライト粉末を構成する粒子全体のBET比表面積が前記上限値を超えると、電磁波の遮蔽性(特に、1GHz超12GHz以下の高周波領域の電磁波の遮蔽性)が低下する可能性がある。
なお、BET比表面積は、比表面積測定装置(型式:Macsorb HM model-1208(マウンテック社製))を用いた測定により求めるものとする。
フェライト粉末のタップ密度は、0.5g/cm3以上3.5g/cm3以下であるのが好ましく、0.5g/cm3以上3.4g/cm3以下であるのがより好ましい。
これにより、粒径の小さい粒子と、比較的大きな粒子とを好適に混在させることができ、粒径の大きな粒子の隙間に粒径の小さい粒子を好適に入り込ませ、電磁波シールド材等中におけるフェライト粉末の充填量を高くしやすくなる。
なお、本明細書中において、タップ密度とは、JIS Z 2512-2012に準拠した測定により求められる密度のことをいう。
タッピング装置としては、USPタップ密度測定装置(ホソカワミクロン社製パウダテスタPT-X)等を用いるものとする。
タッピング装置としては、USPタップ密度測定装置(ホソカワミクロン社製パウダテスタPT-X)等を用いるものとする。
フェライト粉末の飽和磁化は、45emu/g以上95emu/g以下であるのが好ましい。
このような条件を満足するフェライト粉末は、単位体積当たりの磁気モーメントが大きく、電磁波シールド材等のフィラーとして好適である。
このような条件を満足するフェライト粉末は、単位体積当たりの磁気モーメントが大きく、電磁波シールド材等のフィラーとして好適である。
フェライト粉末の残留磁化は、0.5以上12emu/g以下であるのが好ましい。
これにより、樹脂組成物としたときのフェライト粉末の分散性をより確実に優れたものとすることができる。
フェライト粉末の保磁力は、25Oe以上80Oe以下であるのが好ましい。
これにより、樹脂組成物としたときのフェライト粉末の分散性をより確実に優れたものとすることができる。
フェライト粉末の保磁力は、25Oe以上80Oe以下であるのが好ましい。
上記飽和磁化、残留磁化、保磁力は、振動試料型磁気測定装置(型式:VSM-C7-10A(東英工業社製))を用いた測定により求めるものとする。より具体的には、まず、測定試料を、内径5mm、高さ2mmのセルに詰めて振動試料型磁気測定装置にセットし、その後、印加磁場を加え、5K・1000/4π・A/m(=5kOe)まで掃引し、次いで、印加磁場を減少させ、記録紙上にヒステリシスカーブを作製する。そして、このカーブのデータから印加磁場が5K・1000/4π・A/mにおける飽和磁化、残留磁化、保磁力を求めることができる。
フェライト粉末の25℃における電気抵抗率(「体積抵抗」ともいう)は、1×106~1×1012Ω・cmであるのが好ましく、1×106~1×1010Ω・cmであるのがより好ましい。
体積抵抗の値は、以下のようにして求めた。すなわち、まず、内径22.5mmの底部に電極を有するテフロン製シリンダーに得られたフェライト粉末を高さが4mmになるように投入し、内径と同じサイズの電極を上部より差し込み、さらに上から1kgの荷重をかけた状態で底部と上部の電極を測定装置(ケースレー社製6517A型を用いた)に接続し、抵抗を測定した。当該測定により得られた抵抗値、内径および厚さを用いて体積抵抗を算出した。
体積抵抗の値は、以下のようにして求めた。すなわち、まず、内径22.5mmの底部に電極を有するテフロン製シリンダーに得られたフェライト粉末を高さが4mmになるように投入し、内径と同じサイズの電極を上部より差し込み、さらに上から1kgの荷重をかけた状態で底部と上部の電極を測定装置(ケースレー社製6517A型を用いた)に接続し、抵抗を測定した。当該測定により得られた抵抗値、内径および厚さを用いて体積抵抗を算出した。
これにより、例えば、樹脂中にフェライト粒子を分散させて電磁波シールド材等(樹脂成形体)を製造した場合に、当該電磁波シールド材等の体積抵抗を高い状態を維持することがき、電圧がかかる場所の近傍で使っても電流がリークしにくい。
本発明のフェライト粉末中において、2.106μmにおける体積基準の積算分布(フルイ下)は、0.1体積%以上50.0体積%以下であるが、粒径が2.106μm(2106nm)より大きいフェライト粒子を含んでいても良い。
粒径が2106nmより大きいフェライト粒子としては、特に限定されないが、例えば、粒径2106μmより大きいフェライト粒子を挙げることができ、多結晶フェライト粒子が好ましい。
粒径が2106nmより大きいフェライト粒子としては、特に限定されないが、例えば、粒径2106μmより大きいフェライト粒子を挙げることができ、多結晶フェライト粒子が好ましい。
フェライト粉末は、フェライト粒子以外の粒子を含んでいても良く、含んでいなくても良い。
フェライト粉末を構成する粒子全体は、フェライト粒子のみからなることが好ましい。
フェライト粉末を構成する粒子全体は、フェライト粒子のみからなることが好ましい。
フェライト粒子は、その表面に被膜(表面処理層)が設けられていてもよい。
これにより、例えば、フェライト粒子(フェライト粉末)の絶縁性を向上させることができる。また、例えば、フェライト粉末の樹脂等への分散性を向上させることができる。
これにより、例えば、フェライト粒子(フェライト粉末)の絶縁性を向上させることができる。また、例えば、フェライト粉末の樹脂等への分散性を向上させることができる。
例えば、フェライト粒子は、カップリング剤で表面処理されたものであってもよい。
これにより、例えば、フェライト粉末の樹脂等への分散性を高めることができる。
これにより、例えば、フェライト粉末の樹脂等への分散性を高めることができる。
カップリング剤としては、例えば、各種シランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤等を用いることができる。
特に、フェライト粒子がシランカップリング剤で処理されたものであると、フェライト粉末は、電気抵抗率について好適な条件をより確実に満足するものとなる。また、フェライト粒子の凝集をより効果的に防止することができ、フェライト粉末や当該フェライト粉末を含む樹脂組成物の流動性、取り扱いのし易さを特に優れたものとすることができる。また、シランカップリング剤と前述したフェライトとの親和性との関係から、母粒子としてのフェライト粒子に対して、各部位に対しより均一にシランカップリング剤による表面処理を施すことができる。
シランカップリング剤としては、例えば、シリル基および炭化水素基を有するシラン化合物を用いることができるが、特に、前記アルキル基として炭素数が8以上10以下のアルキル基を有するものであるのが好ましい。
これにより、フェライト粉末は、電気抵抗率について好適な条件をさらに確実に満足するものとなる。また、フェライト粒子の凝集をさらに効果的に防止することができ、フェライト粉末や当該フェライト粉末を含む樹脂組成物の流動性、取り扱いのし易さをさらに優れたものとすることができる。また、シランカップリング剤と前述したフェライトとの親和性との関係から、母粒子としてのフェライト粒子に対して、各部位に対しさらに均一にシランカップリング剤による表面処理を施すことができる。
シランカップリング剤による表面処理量は、シランカップリング剤換算で、フェライト粒子(母粒子)に対して0.05質量%以上2質量%以下であるのが好ましい。
また、フェライト粒子は、表面をAl化合物で表面処理されていてもよい。
これにより、フェライト粉末を用いて成形された成形体(例えば、電磁波シールド材等)中においてフェライト粒子同士が接触しにくくなるので電気抵抗を高めることができる。
これにより、フェライト粉末を用いて成形された成形体(例えば、電磁波シールド材等)中においてフェライト粒子同士が接触しにくくなるので電気抵抗を高めることができる。
Al化合物としては、例えば、硫酸アルミニウム、アルミン酸ナトリウム等が挙げられる。
Al化合物による表面処理量は、Al換算で、フェライト粒子(母粒子)に対して0.2質量%以上1質量%以下であるのが好ましい。
また、フェライト粒子の表面処理に用いることのできるその他の表面処理剤としては、例えば、リン酸系化合物、カルボン酸、フッ素系化合物等が挙げられる。
リン酸系化合物としては、例えば、ラウリルリン酸エステル、ラウリル-2リン酸エステル、ステアレス-2リン酸、2-(パーフルオロヘキシル)エチルホスホン酸のリン酸エステル等を挙げることができる。
カルボン酸としては、例えば、炭化水素基と、カルボキシル基とを有する化合物(脂肪酸)を用いることができる。このような化合物の具体例としては、デカン酸、テトラデカン酸、オクタデカン酸、cis-9-オクタデセン酸等を挙げることができる。
フッ素系化合物としては、例えば、上述したようなシランカップリング剤、リン酸系化合物、カルボン酸が有する水素原子の少なくとも一部がフッ素原子で置換された構造を有する化合物(フッ素系シラン化合物、フッ素系リン酸化合物、フッ素置換脂肪酸)等が挙げられる。
《フェライト粉末の製造方法》
次に、本発明に係るフェライト粉末の製造方法について説明する。
本発明のフェライト粉末は、いかなる方法で製造してもよいが、例えば、以下に述べるような方法により、好適に製造することができる。
次に、本発明に係るフェライト粉末の製造方法について説明する。
本発明のフェライト粉末は、いかなる方法で製造してもよいが、例えば、以下に述べるような方法により、好適に製造することができる。
本発明のフェライト粉末は、例えば、所定の組成に調製したフェライト原料を、大気中で溶射して、次いで急冷凝固することにより好適に製造することができる。
この方法では、フェライト原料としては、造粒物を好適に用いることができる。
この方法では、フェライト原料としては、造粒物を好適に用いることができる。
フェライト原料を調製する方法は、特に限定されず、例えば、乾式による方法を用いてもよいし、湿式による方法を用いてもよい。
フェライト原料(造粒物)の調製方法の一例を挙げると以下の通りである。
すなわち、製造すべきフェライト粉末の組成に対応するように、金属元素を含む複数種の原料を秤量、混合した後、水を加えて粉砕しスラリーを作製する。作製した粉砕スラリーをスプレードライヤーで造粒して、分級して所定粒径の造粒物を調製する。
すなわち、製造すべきフェライト粉末の組成に対応するように、金属元素を含む複数種の原料を秤量、混合した後、水を加えて粉砕しスラリーを作製する。作製した粉砕スラリーをスプレードライヤーで造粒して、分級して所定粒径の造粒物を調製する。
また、フェライト原料(造粒物)の調製方法の他の一例を挙げると以下の通りである。
すなわち、製造すべきフェライト粉末の組成に対応するように、金属元素を含む複数種の原料を秤量、混合した後、乾式粉砕を行い、各原材料を粉砕分散させ、その混合物をグラニュレーターで造粒し、分級して所定粒径の造粒物を調製する。
すなわち、製造すべきフェライト粉末の組成に対応するように、金属元素を含む複数種の原料を秤量、混合した後、乾式粉砕を行い、各原材料を粉砕分散させ、その混合物をグラニュレーターで造粒し、分級して所定粒径の造粒物を調製する。
上記のようにして調製された造粒物を大気中で溶射してフェライト化する。
溶射には、可燃性ガス燃焼炎として燃焼ガスと酸素との混合気体を用いることができる。
溶射には、可燃性ガス燃焼炎として燃焼ガスと酸素との混合気体を用いることができる。
燃焼ガスと酸素との容積比は、1:3.5以上1:6.0以下であるのが好ましい。
これにより、揮発した材料の再析出による粒径が比較的小さいフェライト粒子の形成を好適に進行させることができる。また、最終的に得られるフェライト粒子の形状(例えば、BET比表面積等)を好適に調整することができる。また、後の工程での分級等の処理を省略または簡略化することができ、フェライト粉末の生産性をさらに優れたものとすることができる。また、後の工程での分級により除去する粒子の割合をより少ないものとすることができ、フェライト粉末の収率をさらに優れたものとすることができる。
これにより、揮発した材料の再析出による粒径が比較的小さいフェライト粒子の形成を好適に進行させることができる。また、最終的に得られるフェライト粒子の形状(例えば、BET比表面積等)を好適に調整することができる。また、後の工程での分級等の処理を省略または簡略化することができ、フェライト粉末の生産性をさらに優れたものとすることができる。また、後の工程での分級により除去する粒子の割合をより少ないものとすることができ、フェライト粉末の収率をさらに優れたものとすることができる。
例えば、燃焼ガス10Nm3hrに対して酸素35Nm3hr以上60Nm3hr以下の割合で用いることができる。
溶射に用いる燃焼ガスとしては、プロパンガス、プロピレンガス、アセチレンガス等が挙げられる。中でも、プロパンガスを好適に用いることができる。
また、造粒物を可燃性ガス中に搬送するために、造粒物搬送ガスとして窒素、酸素、空気等を用いることができる。
搬送される造粒物の流速は、20m/秒以上60m/秒以下であるのが好ましい。
また、前記溶射は、温度1000℃以上3500℃以下で行うのが好ましく、2000℃以上3500℃以下で行うのがより好ましい。
また、前記溶射は、温度1000℃以上3500℃以下で行うのが好ましく、2000℃以上3500℃以下で行うのがより好ましい。
上記のような条件を満足することにより、揮発した材料の再析出による粒径が比較的小さいフェライト粒子の形成をさらに好適に進行させることができる。また、最終的に得られるフェライト粒子の形状(例えば、BET比表面積等)をさらに好適に調整することができる。また、後の工程での分級等の処理を省略または簡略化することができ、フェライト粉末の生産性をさらに優れたものとすることができる。また、後の工程での分級により除去する粒子の割合をより少ないものとすることができ、フェライト粉末の収率をさらに優れたものとすることができる。
このようにして溶射してフェライト化されたフェライト粒子は、水中または大気で急冷凝固され、これをフィルターによって捕集する。
その後、捕集用フィルターで回収したフェライト粒子は、必要に応じて分級を行う。分級方法としては、既存の風力分級、メッシュ濾過法、沈降法など用いて所望の粒径に粒度調整する。なお、サイクロン等で粒径の大きい粒子と分離して回収することも可能である。
上記のような方法により、前述したような粒径の条件を満足するフェライト粉末を効率よく製造することができる。また、製造過程において、酸やアルカリを用いる湿式の造粒法とは異なり、最終的に得られるフェライト粉末に、酸やアルカリが由来の不純物等が残存することを効果的に防止することができ、フェライト粉末やフェライト粉末を用いて製造される樹脂組成物、成形体(電磁波シールド材等)の耐久性、信頼性をより優れたものとすることができる。
なお、本発明のフェライト粉末は、別途異なる方法で製造した複数種の粉末(例えば、粒径が1nm以上2000nm以下の複数個の単結晶フェライト粒子を含む単結晶フェライト粉末と、粒径が2000nmより大きい複数個の多結晶体フェライト粒子を含む多結晶体フェライト粉末)を混合して調製してもよい。
《樹脂組成物》
本発明の樹脂組成物は、前述した本発明のフェライト粉末と、樹脂材料とを含むものである。
本発明の樹脂組成物は、前述した本発明のフェライト粉末と、樹脂材料とを含むものである。
これにより、1GHz超12GHz以下の高周波領域の電磁波について優れた遮蔽性を有する電磁波シールド材等の製造に好適に用いることができる樹脂組成物を提供することができる。また、例えば、後述するような電磁波シールド材等(成形体)の成形性を優れたものとすることができる。また、このようにして得られる樹脂組成物は、フェライト粉末の不本意な凝集が長期間にわたって安定的に防止されたものとなる。また、樹脂組成物中におけるフェライト粉末の凝集や不本意な組成のばらつきが防止されたものとなるため、樹脂組成物を用いて製造される電磁波シールド材等(成形体)における不本意な組成のばらつきを効果的に防止することができる。
樹脂組成物を構成する樹脂材料としては、例えば、エポキシ樹脂、ウレタン樹脂、アクリル樹脂、シリコーン樹脂、各種変性シリコーン樹脂(アクリル変性、ウレタン変性、エポキシ変性、フッ素)、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、フッ素等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
また、樹脂組成物は、フェライト粉末、樹脂材料以外の成分(その他の成分)を含んでいてもよい。
このような成分としては、例えば、溶媒、充填剤(有機充填剤、無機充填剤)、可塑剤、酸化防止剤、分散剤、顔料等の着色剤、熱伝導性粒子(熱伝導性の高い粒子)等が挙げられる。
樹脂組成物中における全固形分に対するフェライト粉末の比率(含有率)は、50質量%以上95質量%以下であるのが好ましく、80質量%以上95質量%以下であるのがより好ましい。
これにより、樹脂組成物中におけるフェライト粉末の分散安定性、樹脂組成物の保存安定性、樹脂組成物の成形性等を優れたものとしつつ、樹脂組成物を用いて製造される成形体(電磁波シールド材等)の機械的強度、電磁波の遮蔽性等をより優れたものとすることができる。
樹脂組成物中における全固形分に対する樹脂材料の比率(含有率)は、5質量%以上50質量%以下であるのが好ましく、5質量%以上20質量%以下であるのがより好ましい。
これにより、樹脂組成物中におけるフェライト粉末の分散安定性、樹脂組成物の保存安定性、樹脂組成物の成形性等を優れたものとしつつ、樹脂組成物を用いて製造される成形体(電磁波シールド材等)の機械的強度、電磁波の遮蔽性等をより優れたものとすることができる。
《電磁波シールド材》
本発明の電磁波シールド材(成形体)は、本発明のフェライト粉末と、樹脂材料とを含む材料で構成されたものとすることができる。
本発明の電磁波シールド材(成形体)は、本発明のフェライト粉末と、樹脂材料とを含む材料で構成されたものとすることができる。
これにより、1GHz超12GHz以下の高周波領域の電磁波について優れた遮蔽性を有する電磁波シールド材を提供することができる。また、前述したような条件を満足するフェライト粉末は、優れたフィラー効果を発揮することができ、電磁波シールド材(成形体)の機械的強度等を特に優れたものとすることができる。
本発明の電磁波シールド材(成形体)は、前述したような本発明の樹脂組成物を用いて好適に製造することができる。
電磁波シールド材(成形体)の成形方法としては、例えば、圧縮成形、押出成形、射出成形、ブロー成形、カレンダー成形、各種塗布法等が挙げられる。また、電磁波シールド材(成形体)は、例えば、電磁波シールド材(成形体)を形成すべき部材上に、直接樹脂組成物を付与することにより形成するものであってもよいし、別途作製した後に目的とする部材(例えば、プリント配線基板や金属箔(例えば、銅箔等)等)上に設置されるものであってもよい。
なお、本発明に係るフェライト粉末は、樹脂等に混合、分散して焼成等の工程を行わずに使用してもよく、例えば、フェライト粒子を所望の形に成型、造粒、塗工等の工程を行った後、焼成を行い、焼結体としての成形体(電磁波シールド材)の製造に用いるものであってもよい。
《電子材料、電子部品》
本発明の電子材料、電子部品は、本発明のフェライト粉末と、樹脂材料とを含む材料で構成されたものとすることができる。
本発明の電子材料、電子部品は、本発明のフェライト粉末と、樹脂材料とを含む材料で構成されたものとすることができる。
これにより、1GHz超12GHz以下の高周波領域の電磁波について優れた遮蔽性を有する電子材料、電子部品を提供することができる。また、前述したような条件を満足するフェライト粉末は、優れたフィラー効果を発揮することができ、電子材料、電子部品の機械的強度等を特に優れたものとすることができる。
本発明の電子材料としては、例えば、電子基板、LSI封止剤、ノイズ抑制用ペースト、ノイズ抑制シート、モールド用ペースト等が挙げられる。
また、本発明の電子部品としては、例えば、インダクター、リアクトル等が挙げられる。
本発明の電子材料、電子部品は、前述したような本発明の樹脂組成物を用いて好適に製造することができる。
電子材料、電子部品の成形方法としては、例えば、圧縮成形、押出成形、射出成形、ブロー成形、カレンダー成形、各種塗布法等が挙げられる。また、電子材料、電子部品は、例えば、電子材料、電子部品を形成すべき部材上に、直接樹脂組成物を付与することにより形成するものであってもよいし、別途作製した後に目的とする部材上に設置されるものであってもよい。
なお、本発明に係るフェライト粉末は、樹脂等に混合、分散して焼成等の工程を行わずに使用してもよく、例えば、フェライト粒子を所望の形に成型、造粒、塗工等の工程を行った後、焼成を行い、焼結体としての電子材料、電子部品の製造に用いるものであってもよい。
以上、本発明の好適な実施形態について説明したが、本発明は、これらに限定されるものではない。
例えば、本発明のフェライト粉末の製造方法では、必要に応じて、前述した工程に加えて、他の工程(前処理工程、中間工程、後処理工程)を有していてもよい。
また、本発明のフェライト粉末は、前述したような方法で製造されたものに限定されず、いかなる方法で製造されたものであってもよい。
また、前述した実施形態では、本発明のフェライト粉末、樹脂組成物を、電磁波シールド材、電子材料、電子部品の製造に用いる場合について代表的に説明したが、本発明のフェライト粉末、樹脂組成物は、これら以外の製造に用いてもよい。
以下、本発明を実施例および比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。以下の説明で、特に温度条件を示していない処理、測定については、室温(25℃)で行った。
《1》フェライト粉末の製造
各実施例および各比較例のフェライト粉末を以下のようにして製造した。
各実施例および各比較例のフェライト粉末を以下のようにして製造した。
(実施例1)
まず、原料としてのFe2O3およびMn3O4を所定の割合で混合し、ヘンシェルミキサーで15分間混合した。
このようにして得られた粉砕物を、ローラコンパクターを用いてペレット化した後、大気中、900℃で5時間ロータリーキルンを用いて仮焼成を行った。
まず、原料としてのFe2O3およびMn3O4を所定の割合で混合し、ヘンシェルミキサーで15分間混合した。
このようにして得られた粉砕物を、ローラコンパクターを用いてペレット化した後、大気中、900℃で5時間ロータリーキルンを用いて仮焼成を行った。
仮焼成後、水を加えて粉砕(湿式粉砕)し、スラリーを得た。スラリー中に含まれる粉末状の仮焼成体(仮焼粉)(原料粉ともいう)の体積平均粒径は、1.5μmであった。
次に、得られたスラリーをスプレードライヤーで造粒し、分級して体積平均粒径5μmの造粒物を得た。
その後、得られた造粒物を用いて、プロパン:酸素=10Nm3/hr:35Nm3/hrの可燃性ガス燃焼炎中に流速40m/秒の条件で溶射を行った。このとき、造粒物を連続的に流動させながら溶射したため、溶射、急冷後の粒子は互いに結着することなく独立していた。続いて、冷却された粒子を気流の下流側に設けたフィルター(バグフィルター)によって捕集して、気流分級装置にて分級して、所定の体積平均粒径及び粒度分布を有するフェライト粉末(Mnフェライト粉末)を得た。
なお、フェライト粉末の体積平均粒径、および、粒度分布(体積粒度分布)は、以下のような測定により求めた。すなわち、まず、試料としての粉末:10gと水:80mlと100mlのビーカーに入れ、分散剤(ヘキサメタリン酸ナトリウム)を2滴添加した。次いで、超音波ホモジナイザー(SMT.Co.LTD.製UH-150型)を用い分散を行った。このとき、超音波ホモジナイザーの出力レベルを4に設定し、20秒間分散を行った。その後、ビーカー表面にできた泡を取り除き、レーザー回折式粒度分布測定装置(島津製作所社製、SALD-7500nano)に導入し、前期条件で測定を行った。なお、後に述べる各実施例および各比較例についても同様にして求めた。
また、フェライト粉末について、透過型電子顕微鏡(TEM)(HF-2100 Cold-FE-TEM(株式会社日立ハイテクノロジーズ製))による倍率10万倍および倍率50万倍における電子線回折像の観察を行ったところ、単結晶フェライト粒子および多結晶体フェライト粒子を含むことが確認された。
得られたフェライト粉末の体積平均粒径は2.84μm、BET比表面積は5.57m2/gであった。また、得られたフェライト粉末は、2.106μmにおける体積基準の積算分布(フルイ下)が9.71体積%であった。
BET比表面積は、比表面積測定装置(型式:Macsorb HM model-1208(マウンテック社製))を用いた測定により求めた。より具体的には、測定試料を比表面積測定装置専用の標準サンプルセルに約5g入れ、精密天秤で正確に秤量し、測定ポートに試料(フェライト粉末)をセットし、測定を開始した。測定は1点法で行い、測定終了時に試料の重量を入力すると、BET比表面積が自動的に算出された。なお、測定前に前処理として、測定試料を薬包紙に20g程度を取り分けた後、真空乾燥機で-0.1MPaまで脱気し-0.1MPa以下に真空度が到達していることを確認した後、200℃で2時間加熱した。測定環境は、温度:10~30℃、湿度:相対湿度で20~80%で、結露なしの条件とした。
また、得られたフェライト粉末のタップ密度は2.23g/cm3であった。
タップ密度は、タッピング装置(USPタップ密度測定装置、ホソカワミクロン社製パウダテスタPT-X)を用い、JIS Z 2512-2012に準拠した測定により求めた。タッピングは、100回/分で3分間行った。
タップ密度は、タッピング装置(USPタップ密度測定装置、ホソカワミクロン社製パウダテスタPT-X)を用い、JIS Z 2512-2012に準拠した測定により求めた。タッピングは、100回/分で3分間行った。
(実施例2、3)
分級条件を変更した以外は前記実施例1と同様にフェライト粉末を製造した。
分級条件を変更した以外は前記実施例1と同様にフェライト粉末を製造した。
(比較例1、2、3)
原料の比率、仮焼成の条件、スプレードライヤーでの造粒条件、溶射処理条件、分級条件を表1に示すように調整することにより、フェライト粉末の条件を表2に示すようにした以外は、前記実施例1と同様にフェライト粉末を製造した。
原料の比率、仮焼成の条件、スプレードライヤーでの造粒条件、溶射処理条件、分級条件を表1に示すように調整することにより、フェライト粉末の条件を表2に示すようにした以外は、前記実施例1と同様にフェライト粉末を製造した。
(実施例4)
前記実施例3で得られたフェライト粉末と、前記比較例1で得られたフェライト粉末とを、質量比で、80:20の割合で混合することにより、本実施例のフェライト粉末を製造した。
前記実施例3で得られたフェライト粉末と、前記比較例1で得られたフェライト粉末とを、質量比で、80:20の割合で混合することにより、本実施例のフェライト粉末を製造した。
前記各実施例および各比較例のフェライト粉末の製造条件を表1にまとめて示し、前記各実施例および各比較例のフェライト粉末の構成を表2にまとめて示した。
フェライト粉末を構成する各金属元素の含有量は、ICP分析装置を用いた測定により求めるものとする。
より具体的には、フェライト粉末0.2gを秤量し、純水60mlに1Nの塩酸20mLおよび1Nの硝酸20mLを加えたものを加熱し、フェライト粉末を完全溶解させた水溶液を準備し、その後、当該水溶液について、ICP分析装置(島津製作所製ICPS-1000IV)を用いた測定を行うことにより、各金属元素の含有量を求めた。
より具体的には、フェライト粉末0.2gを秤量し、純水60mlに1Nの塩酸20mLおよび1Nの硝酸20mLを加えたものを加熱し、フェライト粉末を完全溶解させた水溶液を準備し、その後、当該水溶液について、ICP分析装置(島津製作所製ICPS-1000IV)を用いた測定を行うことにより、各金属元素の含有量を求めた。
フェライト粉末中のFe2+の含有量は、過マンガン酸カリウムによる酸化還元滴定により求めた。
フェライト粉末を構成する粒子のうち、真球状をなすものの割合は、上記のように求めた。
フェライト粉末を構成する粒子のうち、真球状をなすものの割合は、上記のように求めた。
また、真密度はJIS Z 8807:2012に準拠して、マウンテック社製全自動真密度測定装置Macpycnoを用いて測定した。
《2》粘度測定
前記各実施例および前記各比較例のフェライト粉末70質量部とポリビニルアルコール(PVA)水溶液(固形分10質量%)30質量部とを、自転公転型ミキサーで3分間分散混合したのち、得られた混合物の粘度をB型粘度計で測定した。粘度の測定に関しては最初の1回転目の粘度と10回転目の粘度を測定し、評価した。
前記各実施例および前記各比較例のフェライト粉末70質量部とポリビニルアルコール(PVA)水溶液(固形分10質量%)30質量部とを、自転公転型ミキサーで3分間分散混合したのち、得られた混合物の粘度をB型粘度計で測定した。粘度の測定に関しては最初の1回転目の粘度と10回転目の粘度を測定し、評価した。
《3》フェライト粉末の透磁率(1MHz~1GHz)
前記各実施例および前記各比較例のフェライト粉末について、以下のようにして透磁率を測定した。透磁率の測定は、アジレントテクノロジー社製E4991A型RFインピーダンス/マテリアル・アナライザ 16454A磁性材料測定電極を用いて行った。まず、フェライト粉末4.5gとフッ素系粉末樹脂0.5gとを100ccのポリエチレン製容器に収容し、100rpmのボールミルで30分間撹拌して混合した。撹拌終了後、得られた混合物0.8g程度を、内径4.5mm、外径13mmのダイスに充填し、プレス機で40MPaの圧力で1分間加圧した。得られた成形体を熱風乾燥機によって温度140℃で2時間加熱硬化させることにより、測定用サンプルを得た。そして、測定用サンプルを測定装置にセットする共に、事前に測定しておいた測定用サンプルの外径、内径、高さを測定装置に入力した。測定は、振幅100mVとし、周波数1MHz~3GHzの範囲を対数スケールで掃引し、透磁率(複素透磁率の実部μ’)を測定した。
前記各実施例および前記各比較例のフェライト粉末について、以下のようにして透磁率を測定した。透磁率の測定は、アジレントテクノロジー社製E4991A型RFインピーダンス/マテリアル・アナライザ 16454A磁性材料測定電極を用いて行った。まず、フェライト粉末4.5gとフッ素系粉末樹脂0.5gとを100ccのポリエチレン製容器に収容し、100rpmのボールミルで30分間撹拌して混合した。撹拌終了後、得られた混合物0.8g程度を、内径4.5mm、外径13mmのダイスに充填し、プレス機で40MPaの圧力で1分間加圧した。得られた成形体を熱風乾燥機によって温度140℃で2時間加熱硬化させることにより、測定用サンプルを得た。そして、測定用サンプルを測定装置にセットする共に、事前に測定しておいた測定用サンプルの外径、内径、高さを測定装置に入力した。測定は、振幅100mVとし、周波数1MHz~3GHzの範囲を対数スケールで掃引し、透磁率(複素透磁率の実部μ’)を測定した。
《4》1GHz超12GHz以下における透磁率測定
エポキシ樹脂30質量部にフェライト粉末70質量部を混合後、内径1.8mm、長さ100mmの円柱状の金型に注入した後、加熱硬化させた。金型を室温に戻したのち、金型から丸棒状のサンプルを取り出し、透磁率測定用サンプルとした。
得られたサンプルを共振器にセットし、透磁率を空洞共振器(Sバンド用およびCバンド用(いずれも関東電子応用開発社製))とネットワークアナライザ(キーサイトテクノロジー社製E5071C)とを用いて測定した。
エポキシ樹脂30質量部にフェライト粉末70質量部を混合後、内径1.8mm、長さ100mmの円柱状の金型に注入した後、加熱硬化させた。金型を室温に戻したのち、金型から丸棒状のサンプルを取り出し、透磁率測定用サンプルとした。
得られたサンプルを共振器にセットし、透磁率を空洞共振器(Sバンド用およびCバンド用(いずれも関東電子応用開発社製))とネットワークアナライザ(キーサイトテクノロジー社製E5071C)とを用いて測定した。
《4-1》μ’が1以下になる周波数
上記の測定結果から、周波数が1GHz超12GHz以下の領域において、μ’が1以下になる周波数を求めた。
上記の測定結果から、周波数が1GHz超12GHz以下の領域において、μ’が1以下になる周波数を求めた。
《5》飽和磁化、残留磁化、保磁力
前記各実施例および各比較例のフェライト粉末について、飽和磁化、残留磁化、保磁力を求めた。
前記各実施例および各比較例のフェライト粉末について、飽和磁化、残留磁化、保磁力を求めた。
飽和磁化、残留磁化、保磁力は以下のようにして求めた。すなわち、まず、内径5mm、高さ2mmのセルにフェライト粉末を詰めて振動試料型磁気測定装置(東英工業社製 VSM-C7-10A)にセットした。次に、印加磁場を加え、5K・1000/4π・A/mまで掃引し、次いで、印加磁場を減少させ、ヒステリシスカーブを作製した。その後、このカーブのデータより飽和磁化、残留磁化および保磁力を求めた。
《6》体積抵抗
体積抵抗の値は、以下のようにして求めた。すなわち、まず、内径22.5mmの底部に電極を有するテフロン製シリンダーに得られたフェライト粉末を高さが4mmになるように投入し、内径と同じサイズの電極を上部より差し込み、さらに上から1kgの荷重をかけた状態で底部と上部の電極を測定装置(ケースレー社製6517A型を用いた)に接続し、抵抗を測定した。当該測定により得られた抵抗値、内径および厚さを用いて体積抵抗を算出した。
体積抵抗の値は、以下のようにして求めた。すなわち、まず、内径22.5mmの底部に電極を有するテフロン製シリンダーに得られたフェライト粉末を高さが4mmになるように投入し、内径と同じサイズの電極を上部より差し込み、さらに上から1kgの荷重をかけた状態で底部と上部の電極を測定装置(ケースレー社製6517A型を用いた)に接続し、抵抗を測定した。当該測定により得られた抵抗値、内径および厚さを用いて体積抵抗を算出した。
これらの結果を表3にまとめて示す。
表3から明らかなように、本発明では、優れた結果が得られたのに対し、比較例では満足のいく結果が得られなかった。
また、前記各実施例について、フェライト粉末と樹脂材料としての粉末PVAと、溶媒としての水とを、質量比で、70:30:270で分散、混合して、樹脂分散液を得た。
その後、これらの樹脂分散液を用いて、平板状の成型容器に流し込み、溶媒を除去することにより、厚さ1mmのシート状の成形体(電磁波シールド材)を得た。
得られた成形体(電磁波シールド材)について、電磁波シールド能力の評価を行ったところ、本発明では優れた結果が得られた。具体的には上記で得られた成型体を縦200mm×横200mm×厚み5mmに切り出し、IEC62333に準拠した伝送減衰率測定方法(マイクロストリップライン)にて測定した。
(測定範囲)
1~18GHz
(測定用冶具)
マイクロストリップライン冶具
(ネットワークアナイライザ)
Anritsu37247C
1~18GHz
(測定用冶具)
マイクロストリップライン冶具
(ネットワークアナイライザ)
Anritsu37247C
代表的に、実施例2のフェライト粉末を用いて製造された成形体についての測定結果を図1に示す。
本発明のMnフェライト粉末は、複数個のフェライト粒子を含み、体積平均粒径が1μm以上10μm以下であり、2.106μmにおける体積基準の積算分布(フルイ下)を0.1体積%以上50.0体積%以下であることを特徴とする。そのため、1GHz以下の低周波領域の電磁波について優れた遮蔽性を有し、かつ1GHz超12GHz以下の高周波領域の電磁波について優れた遮蔽性を有するフェライト粉末を提供することができる。従って、本発明のフェライト粉末は、産業上の利用可能性を有する。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2018年2月13日出願の日本特許出願(特願2018-023565)に基づくものであり、その内容はここに参照として取り込まれる。
本出願は、2018年2月13日出願の日本特許出願(特願2018-023565)に基づくものであり、その内容はここに参照として取り込まれる。
Claims (8)
- 複数個のフェライト粒子を含み、
体積平均粒径が1μm以上10μm以下であり、
2.106μmにおける体積基準の積算分布(フルイ下)が0.1体積%以上50.0体積%以下であることを特徴とするMnフェライト粉末。 - BET比表面積が0.35m2/g以上9m2/g以下である請求項1記載のMnフェライト粉末。
- 前記フェライト粒子は、真球状または断面が6角形以上の多角形である形状を有するものである請求項1または2に記載のMnフェライト粉末。
- Mnの含有率が4質量%以上13質量%以下、Feの含有率が60質量%以上68質量%以下であること請求項1~3のいずれか1項に記載のMnフェライト粉末。
- 請求項1~4のいずれか1項に記載のMnフェライト粉末と、樹脂材料とを含むことを特徴とする樹脂組成物。
- 請求項1~4のいずれか1項に記載のMnフェライト粉末と、樹脂材料とを含む材料で構成されたことを特徴とする電磁波シールド材。
- 請求項1~4のいずれか1項に記載のMnフェライト粉末を含む材料で構成されていることを特徴とする電子材料。
- 請求項1~4のいずれか1項に記載のMnフェライト粉末を含む材料で構成されていることを特徴とする電子部品。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980013177.6A CN111712464B (zh) | 2018-02-13 | 2019-02-06 | Mn铁氧体粉末、树脂组合物、电磁波屏蔽材料、电子材料及电子部件 |
EP19754645.0A EP3753904A4 (en) | 2018-02-13 | 2019-02-06 | MN FERRITE POWDER, RESIN COMPOSITION, ELECTROMAGNETIC WAVE SHIELDING MATERIAL, ELECTRONIC MATERIAL AND ELECTRONIC COMPONENT |
JP2020500436A JP7269661B2 (ja) | 2018-02-13 | 2019-02-06 | Mnフェライト粉末、樹脂組成物、電磁波シールド材、電子材料および電子部品 |
US16/967,197 US11952286B2 (en) | 2018-02-13 | 2019-02-06 | Mn ferrite powder, resin composition, electromagnetic wave shielding material, electronic material, and electronic component |
KR1020207022561A KR102626298B1 (ko) | 2018-02-13 | 2019-02-06 | Mn 페라이트 분말, 수지 조성물, 전자파 쉴드재, 전자 재료 및 전자 부품 |
TW108104594A TW201945318A (zh) | 2018-02-13 | 2019-02-12 | 錳鐵氧體粉末、樹脂組合物、電磁波遮蔽材、電子材料及電子元件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-023565 | 2018-02-13 | ||
JP2018023565 | 2018-02-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019159797A1 true WO2019159797A1 (ja) | 2019-08-22 |
Family
ID=67618980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/004301 WO2019159797A1 (ja) | 2018-02-13 | 2019-02-06 | Mnフェライト粉末、樹脂組成物、電磁波シールド材、電子材料および電子部品 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11952286B2 (ja) |
EP (1) | EP3753904A4 (ja) |
JP (1) | JP7269661B2 (ja) |
KR (1) | KR102626298B1 (ja) |
CN (1) | CN111712464B (ja) |
TW (1) | TW201945318A (ja) |
WO (1) | WO2019159797A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115003633A (zh) * | 2020-01-27 | 2022-09-02 | 保德科技股份有限公司 | 铁氧体粉末及其制造方法 |
EP4043402A4 (en) * | 2019-10-07 | 2023-10-18 | Powdertech Co., Ltd. | FERRITE POWDER, FERRITE RESIN COMPOSITE MATERIAL AND ELECTROMAGNETIC SHIELDING MATERIAL, ELECTRONIC MATERIAL OR ELECTRONIC COMPONENT |
JP7563102B2 (ja) | 2020-10-14 | 2024-10-08 | 味の素株式会社 | 樹脂組成物 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11130524A (ja) * | 1997-10-31 | 1999-05-18 | Tdk Corp | 軟磁性粉末、磁気シールド材、および磁気バーコード |
JP2002025816A (ja) | 2000-07-07 | 2002-01-25 | Shoei Chem Ind Co | 単結晶フェライト微粉末 |
JP2006286729A (ja) | 2005-03-31 | 2006-10-19 | Kobe Steel Ltd | 電磁波吸収性および導電性に優れた塗料組成物、並びに該塗料組成物で被覆されている塗装金属板 |
JP2009099969A (ja) * | 2007-09-28 | 2009-05-07 | Dowa Electronics Materials Co Ltd | ボンド磁石用フェライト粉末およびその製造方法、並びに、これを用いたボンド磁石 |
JP2010184840A (ja) * | 2009-02-12 | 2010-08-26 | Dowa Electronics Materials Co Ltd | 磁性粉末と磁性焼結体および製造方法 |
JP2016060682A (ja) | 2014-09-19 | 2016-04-25 | パウダーテック株式会社 | 球状フェライト粉、該球状フェライト粉を含有する樹脂組成物、及び該樹脂組成物を用いた成型体 |
JP2017178718A (ja) | 2016-03-31 | 2017-10-05 | パウダーテック株式会社 | フェライト粒子、樹脂組成物及び樹脂フィルム |
WO2017212997A1 (ja) * | 2016-06-07 | 2017-12-14 | パウダーテック株式会社 | フェライト粒子、樹脂組成物及び電磁波シールド材料 |
JP2018023565A (ja) | 2016-08-10 | 2018-02-15 | 株式会社大都技研 | 遊技台 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006269892A (ja) | 2005-03-25 | 2006-10-05 | Aica Kogyo Co Ltd | 電磁波シールド成型品 |
US20110111337A1 (en) * | 2009-11-09 | 2011-05-12 | Canon Kabushiki Kaisha | Magnetic carrier |
JP6407156B2 (ja) | 2013-09-25 | 2018-10-17 | 保土谷化学工業株式会社 | トナー、現像剤及びトナーカートリッジ |
US20160026105A1 (en) | 2014-07-23 | 2016-01-28 | Fuji Xerox Co., Ltd. | Carrier for developing electrostatic image, electrostatic image developer, process cartridge, and image forming apparatus |
WO2016052681A1 (ja) * | 2014-09-30 | 2016-04-07 | Dowaエレクトロニクス株式会社 | ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石 |
JP6482443B2 (ja) | 2014-09-30 | 2019-03-13 | Dowaエレクトロニクス株式会社 | ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石 |
JP2017201693A (ja) * | 2017-05-12 | 2017-11-09 | パウダーテック株式会社 | フェライト粉、樹脂組成物および成形体 |
-
2019
- 2019-02-06 KR KR1020207022561A patent/KR102626298B1/ko active IP Right Grant
- 2019-02-06 JP JP2020500436A patent/JP7269661B2/ja active Active
- 2019-02-06 EP EP19754645.0A patent/EP3753904A4/en active Pending
- 2019-02-06 WO PCT/JP2019/004301 patent/WO2019159797A1/ja unknown
- 2019-02-06 CN CN201980013177.6A patent/CN111712464B/zh active Active
- 2019-02-06 US US16/967,197 patent/US11952286B2/en active Active
- 2019-02-12 TW TW108104594A patent/TW201945318A/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11130524A (ja) * | 1997-10-31 | 1999-05-18 | Tdk Corp | 軟磁性粉末、磁気シールド材、および磁気バーコード |
JP2002025816A (ja) | 2000-07-07 | 2002-01-25 | Shoei Chem Ind Co | 単結晶フェライト微粉末 |
JP2006286729A (ja) | 2005-03-31 | 2006-10-19 | Kobe Steel Ltd | 電磁波吸収性および導電性に優れた塗料組成物、並びに該塗料組成物で被覆されている塗装金属板 |
JP2009099969A (ja) * | 2007-09-28 | 2009-05-07 | Dowa Electronics Materials Co Ltd | ボンド磁石用フェライト粉末およびその製造方法、並びに、これを用いたボンド磁石 |
JP2010184840A (ja) * | 2009-02-12 | 2010-08-26 | Dowa Electronics Materials Co Ltd | 磁性粉末と磁性焼結体および製造方法 |
JP2016060682A (ja) | 2014-09-19 | 2016-04-25 | パウダーテック株式会社 | 球状フェライト粉、該球状フェライト粉を含有する樹脂組成物、及び該樹脂組成物を用いた成型体 |
JP2017178718A (ja) | 2016-03-31 | 2017-10-05 | パウダーテック株式会社 | フェライト粒子、樹脂組成物及び樹脂フィルム |
WO2017212997A1 (ja) * | 2016-06-07 | 2017-12-14 | パウダーテック株式会社 | フェライト粒子、樹脂組成物及び電磁波シールド材料 |
JP2018023565A (ja) | 2016-08-10 | 2018-02-15 | 株式会社大都技研 | 遊技台 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3753904A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4043402A4 (en) * | 2019-10-07 | 2023-10-18 | Powdertech Co., Ltd. | FERRITE POWDER, FERRITE RESIN COMPOSITE MATERIAL AND ELECTROMAGNETIC SHIELDING MATERIAL, ELECTRONIC MATERIAL OR ELECTRONIC COMPONENT |
CN115003633A (zh) * | 2020-01-27 | 2022-09-02 | 保德科技股份有限公司 | 铁氧体粉末及其制造方法 |
US12119151B2 (en) | 2020-01-27 | 2024-10-15 | Powdertech Co., Ltd. | Ferrite powder and method of producing the same |
JP7563102B2 (ja) | 2020-10-14 | 2024-10-08 | 味の素株式会社 | 樹脂組成物 |
Also Published As
Publication number | Publication date |
---|---|
US20210047200A1 (en) | 2021-02-18 |
KR20200121298A (ko) | 2020-10-23 |
US11952286B2 (en) | 2024-04-09 |
JP7269661B2 (ja) | 2023-05-09 |
CN111712464B (zh) | 2023-04-18 |
TW201945318A (zh) | 2019-12-01 |
EP3753904A4 (en) | 2021-11-17 |
KR102626298B1 (ko) | 2024-01-16 |
EP3753904A1 (en) | 2020-12-23 |
CN111712464A (zh) | 2020-09-25 |
JPWO2019159797A1 (ja) | 2021-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7068703B2 (ja) | フェライト粒子、樹脂組成物及び電磁波シールド材料 | |
Afghahi et al. | A new multicomponent material based on carbonyl iron/carbon nanofiber/lanthanum–strontium–manganite as microwave absorbers in the range of 8–12 GHz | |
WO2019159797A1 (ja) | Mnフェライト粉末、樹脂組成物、電磁波シールド材、電子材料および電子部品 | |
EP2980811B1 (en) | Composite magnetic powder for noise suppressing | |
JP6186639B2 (ja) | 六角板状フェライト粉及びその製造方法、並びに該フェライト粉を用いた樹脂組成物及び成型体 | |
TWI794167B (zh) | 肥粒鐵粉末、樹脂組成物、電磁波遮蔽材、電子電路基板、電子電路零件及電子機器殼體 | |
EP3522179A1 (en) | Ni-zn-cu ferrite particles, resin composition and resin molded body | |
EP3664106A1 (en) | Composite particles, powder, resin composition and moulded body | |
JP7269660B2 (ja) | Mn-Mg系フェライト粉末、樹脂組成物、電磁波シールド材、電子材料および電子部品 | |
KR20220098126A (ko) | 페라이트 분말, 페라이트 수지 복합 재료 및 전자파 쉴드재, 전자 재료 또는 전자 부품 | |
JP7486774B2 (ja) | フェライト粉末及びその製造方法 | |
KR20170107986A (ko) | 금속 광택을 가지는 안료용 판상 페라이트 입자 | |
JP7126267B2 (ja) | フェライト粉末、樹脂組成物および成形体 | |
JP7278001B2 (ja) | フェライト粉末及びその製造方法 | |
박성은 | Study on Electromagnetic Properties of Sendust/MWCNTs/Polymer Composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19754645 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020500436 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019754645 Country of ref document: EP Effective date: 20200914 |