WO2019155541A1 - 制御装置一体型回転電機 - Google Patents

制御装置一体型回転電機 Download PDF

Info

Publication number
WO2019155541A1
WO2019155541A1 PCT/JP2018/004157 JP2018004157W WO2019155541A1 WO 2019155541 A1 WO2019155541 A1 WO 2019155541A1 JP 2018004157 W JP2018004157 W JP 2018004157W WO 2019155541 A1 WO2019155541 A1 WO 2019155541A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical member
stator
frame
flange portion
rotating electrical
Prior art date
Application number
PCT/JP2018/004157
Other languages
English (en)
French (fr)
Inventor
石崎 光範
俊宏 松永
山本 孝
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019570191A priority Critical patent/JP6877596B2/ja
Priority to US16/759,443 priority patent/US11641143B2/en
Priority to CN201880087706.2A priority patent/CN111656652A/zh
Priority to PCT/JP2018/004157 priority patent/WO2019155541A1/ja
Priority to EP18905638.5A priority patent/EP3751713B1/en
Publication of WO2019155541A1 publication Critical patent/WO2019155541A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks

Definitions

  • This application relates to a controller-integrated rotating electrical machine in which a rotating electrical machine and a control device for controlling the rotating electrical machine are integrated.
  • Patent Document 1 discloses that a stator of a rotating electrical machine is held on an inner peripheral surface of a frame of the rotating electrical machine, and a rotor is installed inside the stator.
  • Control device-integrated rotating electrical machines mounted on vehicles are required to be lighter in order to improve fuel efficiency. Moreover, it is often installed and used in an engine room, and durability against temperature change and vibration is required. Furthermore, since there is a limit to the space that can be installed in the engine room, a reduction in the radial dimension of the rotating electrical machine is also required.
  • the stator of the rotating electrical machine is fixed to the inner peripheral surface of the frame, but in order to obtain a predetermined holding force, it is necessary to make the outer diameter larger than the inner diameter of the frame and tighten it with the frame.
  • the frame is made of aluminum-based material, the weight can be reduced at a low cost, but the stator is formed by laminating electromagnetic steel sheets, etc., so there is a step due to lamination on the contact surface with the frame, and the stator is fixed.
  • the stator is formed by laminating electromagnetic steel sheets, etc., so there is a step due to lamination on the contact surface with the frame, and the stator is fixed.
  • the aluminum-based material having low hardness is scraped and damages the frame.
  • shrink fitting without directly press-fitting the stator, there is a problem that the manufacturing cost increases due to equipment costs and the like.
  • the frame when trying to increase the holding force with a low-strength aluminum-based material, there is a problem in that the frame must be thick and the radial dimension increases.
  • the present application discloses a technique for solving the above-described problems, and an object thereof is to provide a controller-integrated rotating electrical machine capable of press-fitting a stator into a frame without damaging the frame.
  • a controller-integrated rotating electrical machine disclosed in the present application includes a rotor fixed to a rotor shaft, a stator formed by laminating electromagnetic laminated steel plates, and arranged so as to be separated from and surround the rotor.
  • a stator winding wound around the stator a cylindrical member disposed in contact with the stator, a frame disposed in contact with the cylindrical member and holding the stator, and the frame
  • FIG. 3 is a cross-sectional view illustrating a configuration of the control device-integrated rotating electrical machine according to the first embodiment.
  • 3 is a perspective view showing a cylindrical member of the controller-integrated dynamoelectric machine according to Embodiment 1.
  • FIG. FIG. 6 is a cross-sectional view showing the structure of a control device-integrated dynamoelectric machine according to Embodiment 2.
  • FIG. 10 is a cross-sectional view showing a part of the assembly process of the controller-integrated rotating electrical machine according to the second embodiment.
  • FIG. 10 is a perspective view showing another cylindrical member of the controller-integrated dynamoelectric machine according to Embodiment 3.
  • FIG. 10 is a perspective view showing a cylindrical member of a control device-integrated dynamoelectric machine according to Embodiment 4. It is a figure which shows a part of manufacturing process of the cylindrical member of the control apparatus integrated rotary electric machine which concerns on Embodiment 4.
  • FIG. It is a figure which shows a part of manufacturing process of the cylindrical member of the control apparatus integrated rotary electric machine which concerns on Embodiment 4.
  • FIG. It is a figure which shows a part of manufacturing process of the cylindrical member of the control apparatus integrated rotary electric machine which concerns on Embodiment 4.
  • FIG. It is a figure which shows a part of manufacturing process of the cylindrical member of the control apparatus integrated rotary electric machine which concerns on Embodiment 4.
  • FIG. 10 is a perspective view showing another cylindrical member of the controller-integrated dynamoelectric machine according to Embodiment 4.
  • Embodiment 1 FIG.
  • the controller-integrated rotating electrical machine according to the first embodiment will be described with reference to FIGS. 1 and 2.
  • the controller-integrated rotating electrical machine is applied to an electric power steering mounted on a vehicle
  • the rotating electrical machine body that assists the steering force of the vehicle steering and the control for controlling the rotating electrical machine are shown. Consists of devices.
  • FIG. 1 is a cross-sectional view of a controller-integrated rotating electrical machine 100 according to the first embodiment.
  • a controller-integrated rotating electrical machine 100 includes a rotating electrical machine 1 main body and a control device 40 inside a frame 2.
  • a cylindrical member 3 is installed in contact with the inner peripheral portion of the frame 2, and a stator 4 is installed in contact with the inner peripheral surface of the cylindrical member 3.
  • the frame 2 is formed of an inexpensive and lightweight aluminum alloy
  • the cylindrical member 3 is formed of carbon steel
  • the stator 4 is formed by laminating electromagnetic steel plates. Both the cylindrical member 3 and the stator 4 are pressed into the frame 2 and fixed.
  • a flange portion 18 is formed at an end portion of the cylindrical member 3 in the rear direction. As shown in a circle A in the figure, the flange portion 18 rests on the step portion of the frame 2 and is sandwiched between the frame 2 and the heat sink 41 which is a component of the bearing holder 14 and the control device 40 and fixed in the axial direction. ing. The heat sink 41 is also press-fitted into the frame 2 and is inscribed in the frame 2.
  • a stator winding 6 is wound around the stator 4 via an insulator 5 which is an insulator, and the terminal 7 for supplying current from the control device 40 to the stator winding 6 and the terminal 7 are fixed.
  • the holder 8 is installed.
  • a rotor 10 is fixed to the rotor shaft 9, and a magnet 11 is installed on the rotor 10.
  • the rotor shaft 9 is rotatably supported by a bearing 12 and a bearing 13.
  • a rotation angle detection sensor (not shown) for detecting the rotation state of the rotor 10 is installed in the rear direction of the rotor shaft 9. Further, a boss 16 or the like for assembling with the vehicle side is installed at the front end of the rotating electrical machine 1.
  • the stator 4 is disposed so as to be separated from the rotor 10 and surround the rotor 10.
  • control device 40 Although the configuration of the control device 40 is shown in a simplified manner, a power conversion circuit 42 that converts power between the stator winding 6 and external DC power and supplies power to the stator winding 6, and this And a control circuit (not shown) for controlling the power conversion circuit 42.
  • the power conversion circuit 42 includes a power semiconductor element and the like, and is disposed in contact with the heat sink 41 for cooling.
  • FIG. 2 is a perspective view showing the cylindrical member 3 of FIG.
  • the cylindrical member 3 includes a body portion 17 and a flange portion 18.
  • the flange portion 18 is formed over the entire circumference of the end portion of the cylindrical member 3.
  • the outer peripheral surface of the stator 4 and the inner peripheral surface of the body portion 17 of the cylindrical member 3 are in contact with each other, and the outer peripheral surface of the body portion 17 of the cylindrical member 3 and the inner peripheral surface of the frame 2 are in contact with each other.
  • the body portion 17 of the shape member 3 is pressed into the frame 2.
  • the flange portion 18 of the cylindrical member 3 is sandwiched between the frame 2 and the heat sink 41 press-fitted into the frame 2 together with the bearing holder 14, and is fixed in the axial direction (refer to the circle A in FIG. 1).
  • a cup-shaped member in which the flange portion 18 is formed by deep drawing a carbon steel sheet is created, and the bottom of the opposite side to the flange portion 18 is deleted to form the cylindrical member 3. Formed.
  • the stepped portion due to the lamination of the stator 4 is in contact with the inner peripheral surface of the cylindrical member 3 formed of carbon steel having high hardness, and the inner peripheral surface of the frame 2 has a surface. Since the contact is made with the outer peripheral surface of the smooth cylindrical member 3, damage to the frame 2 can be prevented even if the stator 4 and the cylindrical member 3 are directly press-fitted into the aluminum alloy frame 2. Moreover, since shrink fitting is not performed, the shrink fitting cost can be eliminated. Further, since the flange portion 18 of the cylindrical member 3 is sandwiched between the frame 2 and the heat sink 41 and fixed in the axial direction, the stator 4 is moved from the radial direction by the frame 2 (see the circle B in FIG. 1). Since the holding force in the axial direction (see circle A in FIG. 1) is also added to the holding force and the holding force is improved as a whole, the frame 2 can be thinned and the radial dimension of the rotating electrical machine can be reduced.
  • Embodiment 2 shows an example applied to an electric power steering mounted on a vehicle, and is a controller-integrated rotating electrical machine including a rotating electrical machine body and a control device.
  • FIG. 3 is a cross-sectional view showing the structure of the controller-integrated rotating electrical machine according to the second embodiment.
  • a stator introducing portion 19 having an inner diameter larger than the inner diameter of the body portion 17 is formed on the flange portion 18 side.
  • the stator introduction portion 19 of the cylindrical member 30 is formed between the body portion 17 and the flange portion 18 so as to extend in the rear direction from a portion where the body portion 17 is in contact with the stator 4. That is, by forming the stator introduction part 19, the inner diameter at the end of the cylindrical member 30 in which the flange part 18 is formed is larger than the inner diameter of the body part 17.
  • Other configurations are the same as those of the first embodiment.
  • FIG. 4 is a cross-sectional view showing a process of press-fitting the stator 4 into the cylindrical member 30 in the controller-integrated rotating electrical machine of FIG.
  • the outer diameter of the stator 4 before assembly is larger than the inner diameter of the body portion 17 of the cylindrical member 3 so that the assembled stator 4 and the cylindrical member 30 are in a press-fit relationship. Therefore, when the stator 4 is press-fitted from the flange portion side of the cylindrical member 30, the bottom surface and corner portions of the outer peripheral end portion of the stator 4 and the flange portion 18 of the cylindrical member 30 are brought into contact, and the flange portion 18 is deformed. There is a risk of damage.
  • stator introduction portion 19 having an inner diameter larger than the outer diameter of the stator 4 on the rear side of the body portion 17 in contact with the stator 4 of the cylindrical member 30, the stator 4 is made cylindrical. It is possible to prevent the flange portion 18 from being damaged when it is press-fitted into the casing. By preventing damage to the flange portion, the fixed portion in which the flange portion 18 of the cylindrical member 3 is sandwiched between the frame 2 and the heat sink 41 becomes solid.
  • the stator 4 is press-fitted into the held cylindrical member 30 as indicated by the arrow direction, but the stator 4 may be held and the cylindrical member 30 may be press-fitted into the stator 4.
  • the stator 4 can be press-fitted into the cylindrical member 3. In any case, it is possible to prevent the flange portion 18 from being damaged in the press-fitting process if the stator introduction portion 19 is formed in the cylindrical member 30.
  • the second embodiment has the same effect as the first embodiment. Further, in the press-fitting process at the time of manufacturing the controller-integrated rotating electrical machine, damage to the flange portion of the cylindrical member 30 can be prevented, and the fixing portion in which the flange portion 18 of the cylindrical member 3 is sandwiched between the frame 2 and the heat sink 41 is firmly fixed. It has the effect of becoming.
  • Embodiment 3 Although the cylindrical member of the controller-integrated dynamoelectric machine according to the first and second embodiments has a continuous cylindrical shape, in the third embodiment, an example of a cylindrical member having a notch in the axial direction. explain.
  • FIG. 5 is a perspective view showing the structure of the cylindrical member 31 according to the third embodiment, and is used, for example, in the controller-integrated dynamoelectric machine exemplified in the first and second embodiments.
  • the cylindrical member 31 has a notch 20 that penetrates in the axial direction. That is, the notch 20 is formed in the axial direction across both ends of the cylindrical member 31.
  • the cylindrical member 31 is press-fitted into the frame 2 at the time of manufacturing the controller-integrated rotating electrical machine, but it is possible to lower the pressure input by press-fitting while applying a load in the direction of reducing the diameter of the cylindrical member 31. The effect of facilitating assembly is obtained.
  • FIG. 5 illustrates the cylindrical member 3 shown in FIG. 2 of the first embodiment provided with the notch 20, but the stator introduction part 19 shown in FIG. 4 of the second embodiment.
  • the formed cylindrical member 30 may be provided with a notch in the axial direction.
  • the same effects as those of the first and second embodiments can be obtained, and the effect that the assembly is facilitated can be obtained.
  • Embodiment 4 In the cylindrical member of the controller-integrated rotating electrical machine according to the first to third embodiments, the flange portion is formed around the end of the cylindrical member. In the fourth embodiment, an example of a cylindrical member having a flange portion at a part around the end portion will be described.
  • FIG. 6 is a perspective view showing the structure of the cylindrical member 32 according to the fourth embodiment, and is used, for example, in the controller-integrated dynamoelectric machine exemplified in the first and second embodiments.
  • the cylindrical member 32 is formed by processing a carbon steel plate, and a flange portion 18a provided at an end on the rear direction side is divided into a plurality of locations. Moreover, since the cylindrical member 32 is formed by processing a carbon steel plate by a process described later, the cylindrical member 32 has the welded portion 21.
  • FIG. 7A to 7D show an example of the manufacturing process of the cylindrical member 32 of FIG.
  • a carbon steel plate 22 forming a cylindrical member 32 is prepared.
  • FIG. 7B a plurality of portions 22b to be the flange portions 18a are formed on one side of the portion 22a where the body portion 17 is formed by punching or cutting.
  • FIG. 7C the part 22a is processed into a cylindrical shape, and the two short sides of the part 22a are welded.
  • FIG. 7D the portion 22b is bent to form the flange portion 18a.
  • the flange portion 18a is formed in a part of the periphery of the end portion of the cylindrical member 32, the same effect as in the first embodiment is obtained. That is, even if the stator 4 and the cylindrical member 32 are directly press-fitted into the aluminum alloy frame 2, damage to the frame 2 can be prevented. Moreover, since shrink fitting is not performed, the shrink fitting cost can be eliminated. Further, the flange portion 18a of the cylindrical member 32 is sandwiched between the frame 2 and the heat sink 41 and fixed in the axial direction. In addition to the stator 4 being held in the radial direction by the frame 2, the stator 4 is also held in the axial direction. Since the holding force is improved, the frame 2 can be thinned, and the radial dimension of the rotating electrical machine can be reduced.
  • FIG. 8 is a perspective view showing another example of the cylindrical member according to the fourth embodiment.
  • a cylindrical member 33 is formed by dividing a stator introduction portion 19a having an inner diameter larger than the inner diameter of the body portion 17 at a rear end portion into a plurality of locations, and the tip of each stator introduction portion 19a.
  • a flange portion 18a is formed on the bottom.
  • the cylindrical member 33 can be manufactured by the same manufacturing process as that shown in FIGS. 7A to 7D described above.
  • FIG. 7B the shape of the part 22b is processed in consideration of the stator introduction part 19a.
  • FIG. 7D the shape of the stator introduction portion 19a and the flange portion 18a is formed by bending the portion 22b in two stages.
  • the same effects as those of the first and second embodiments are obtained. Furthermore, the area of the steel plate forming the cylindrical member 3 is reduced, and the weight can be reduced.
  • the stator 4 can be pressed into the cylindrical members 32 and 33 after the cylindrical members 32 and 33 are press-fitted into the frame 2.
  • the cylindrical members 32 and 33 are press-fitted into the frame 2, in FIG. 7C, when forming the cylindrical members 32 and 33 from a carbon steel plate, it is better not to weld the two short sides of the portion 22a. .
  • the cylindrical members 32 and 33 can be press-fitted while applying a load in the direction of reducing the diameter, and an effect of facilitating assembly by reducing the pressure input can be obtained.
  • the frame and the stator are press-fitted through a cylindrical member. Will come in contact with the surface. Accordingly, even if the frame 2 is a lightweight aluminum-based material, it is not damaged, and press-fitting by shrink fitting is unnecessary, so that the equipment cost can be reduced.
  • the fourth embodiment can be made lighter than the cylindrical member of the first to third embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Frames (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

軽量かつ径方向寸法が小さい制御装置一体型回転電機(100)を提供する。 電磁積層鋼板を積層して形成した固定子(4)と固定子(4)を保持するフレーム(2)との間に、円筒形状部材(3)を固定子(4)とフレーム(2)に対して圧入となる関係で配置するとともに、円筒形状部材(3)の一方の端部にフランジ部(18)を設け、フレーム(2)と制御装置(40)を構成する部材であるヒートシンク(41)でフランジ部(18)を挟み込んで固定する。

Description

制御装置一体型回転電機
 本願は、回転電機と回転電機を制御するための制御装置とを一体化した制御装置一体型回転電機に関するものである。
 従来から、回転電機を制御するための制御装置と回転電機とが一体化され、車両に搭載される制御装置一体型回転電機は知られている。例えば特許文献1には、回転電機のフレームの内周面に回転電機の固定子が保持され、固定子の内側に回転子が設置されていることが開示されている。
国際公開2014/188803号公報
 車両に搭載される制御装置一体型回転電機には燃費向上のため軽量化の要求がある。また、エンジンルーム内に設置されて使用されることも多く、温度変化及び振動等に対する耐久性が要求されている。さらに、エンジンルーム内では設置できる空間に限りがあるため、回転電機の径方向の寸法の小型化も要求されている。回転電機の固定子はフレームの内周面に固定されるが、所定の保持力を得るためにフレームの内径よりも外径を大きくしてフレームで締付ける必要がある。フレームをアルミニウム系材料等で構成すれば安価に軽量化を図れるが、固定子は電磁鋼板等を積層して形成されるため、フレームとの接触面には積層による段差があり、固定子を固定する際にフレームに直接圧入すると硬度の低いアルミニウム系材料が削れてフレームを損傷させる問題があった。固定子を直接圧入せず焼嵌めを用いることが可能であるが、設備費等により製造コストが増加する問題があった。また、強度の低いアルミニウム系材料で保持力を高めようとするとフレームを肉厚にする必要があり径方向の寸法が増大する問題があった。
 本願は、上記のような課題を解決するための技術を開示するものであり、フレームを損傷することなく固定子をフレームに圧入可能な制御装置一体型回転電機を提供することを目的とする。
 本願に開示される制御装置一体型回転電機は、回転子軸に固定された回転子と、電磁積層鋼板を積層して形成され前記回転子と離間してかつ囲むように配置された固定子と、前記固定子に巻装された固定子巻線と、前記固定子に接して配置された円筒形状部材と、前記円筒形状部材に接して配置され前記固定子を保持するフレームと、前記フレームに内接するヒートシンクを有し前記固定子巻線に電力を供給する制御装置とを備え、前記円筒形状部材は一端にフランジ部を有し、前記フランジ部が前記フレームと前記ヒートシンクに挟まれているものである。
 以上のように構成されたので、フレームを損傷することなく固定子をフレームに圧入可能な制御装置一体型回転電機を提供することができる。
実施の形態1に係る制御装置一体型回転電機の構成を示す断面図である。 実施の形態1に係る制御装置一体型回転電機の円筒形状部材を示す斜視図である。 実施の形態2に係る制御装置一体型回転電機の構造を示す断面図である。 実施の形態2に係る制御装置一体型回転電機の組立工程の一部を示す断面図である。 実施の形態3に係る制御装置一体型回転電機の別の円筒形状部材を示す斜視図である。 実施の形態4に係る制御装置一体型回転電機の円筒形状部材を示す斜視図である。 実施の形態4に係る制御装置一体型回転電機の円筒形状部材の製造工程の一部を示す図である。 実施の形態4に係る制御装置一体型回転電機の円筒形状部材の製造工程の一部を示す図である。 実施の形態4に係る制御装置一体型回転電機の円筒形状部材の製造工程の一部を示す図である。 実施の形態4に係る制御装置一体型回転電機の円筒形状部材の製造工程の一部を示す図である。 実施の形態4に係る制御装置一体型回転電機の別の円筒形状部材を示す斜視図である。
 以下、本願で開示される制御装置一体型回転電機の好適な実施の形態について図を参照して説明する。なお、各図中、同一符号は、同一または相当部分を示すものとする。以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合があり、また、本開示の特徴に関係しない構成の図示は省略する。
実施の形態1.
 以下に、本実施の形態1に係る制御装置一体型回転電機を図1および図2に基づいて説明する。本実施の形態では、制御装置一体型回転電機を車両に搭載する電動パワーステアリングに適用した例を示しており、車両のステアリングの操舵力をアシストする回転電機本体と回転電機を制御するための制御装置から構成される。
 図1は実施の形態1に係る制御装置一体型回転電機100の断面図である。
 図において、制御装置一体型回転電機100は、フレーム2の内部に回転電機1本体と制御装置40とを備える。フレーム2の内周部に接するように円筒形状部材3が設置され、円筒形状部材3の内周面に接して固定子4が設置されている。フレーム2は安価で軽量なアルミニウム合金で形成されており、円筒形状部材3は炭素鋼で形成されており、固定子4は電磁鋼板を積層して形成されている。円筒形状部材3および固定子4はともにフレーム2に圧入されて固定されている。
 円筒形状部材3の全体構造については後述するが、円筒形状部材3のリア方向の端部にフランジ部18が形成されている。図中円A内で示されるように、フランジ部18がフレーム2の段差部に載り、フレーム2と軸受ホルダ14および制御装置40の構成部材であるヒートシンク41とに挟み込まれて軸方向に固定されている。ヒートシンク41もフレーム2に圧入され、フレーム2に内接し設置されている。
 固定子4には絶縁体であるインシュレータ5を介して固定子巻線6が巻装され、制御装置40からの電流を固定子巻線6に供給するためのターミナル7とターミナル7を固定するためのホルダ8が設置されている。
 回転子軸9には回転子10が固定されており、回転子10には磁石11が設置されている。回転子軸9は軸受12および軸受13によって回転可能に支持されている。回転子軸9のリア方向には回転子10の回転状態を検出する回転角度検出センサ(図示せず)が設置されている。また、回転電機1のフロント方向の端部には車両側と組付けるためのボス16等が設置されている。なお、固定子4は回転子10と離間してかつ回転子10を囲むように配置されている。
 なお、制御装置40の構成は簡略に示しているが、固定子巻線6と外部の直流電力との間の電力変換を行い固定子巻線6に電力を供給する電力変換回路42と、この電力変換回路42を制御するための制御回路(図示せず)とを具備する。電力変換回路42はパワー半導体素子等を有しており、冷却のためにヒートシンク41に接して配置されている。
 図2は図1の円筒形状部材3示した斜視図である。円筒形状部材3は胴体部17とフランジ部18とを備えている。フランジ部18は円筒形状部材3の端部の全周に亘って形成されている。固定子4の外周面と円筒形状部材3の胴体部17の内周面が接し、円筒形状部材3の胴体部17の外周面とフレーム2の内周面とが接して、固定子4、円筒形状部材3の胴体部17がフレーム2に対して圧入された関係となる。
 また、円筒形状部材3のフランジ部18は軸受ホルダ14とともに、フレーム2とフレーム2に圧入されたヒートシンク41とに挟み込まれて軸方向に固定される(図1中円A内参照)。本実施の形態では、まず、炭素鋼の鋼板を深絞り加工によりフランジ部18が形成されたカップ状の部材を作成し、フランジ部18とは反対側の底部を削除して円筒形状部材3を形成した。
 以上のとおり、実施の形態1によれば、固定子4の積層による段差部は硬度の高い炭素鋼で形成した円筒形状部材3の内周面と接触し、フレーム2の内周面は表面が平滑な円筒形状部材3の外周面と接触するため、固定子4および円筒形状部材3を、直接アルミニウム合金のフレーム2に圧入してもフレーム2の損傷を防止できる。また、焼嵌めを行うことがないため、焼嵌め費用を不要にできる。
 また、円筒形状部材3のフランジ部18がフレーム2とヒートシンク41とで挟持されて軸方向に固定されているため、固定子4をフレーム2による径方向(図1中円B内参照)からの保持する力に軸方向(図1中円A内参照)の保持力も加わり、全体として保持力が向上するため、フレーム2を薄肉化でき回転電機の径方向寸法の小型化が可能となる。
実施の形態2.
 以下に、本実施の形態2に係る制御装置一体型回転電機を図3および図4に基づいて説明する。本実施の形態2も実施の形態1と同様、車両に搭載する電動パワーステアリングに適用した例を示しており、回転電機本体と制御装置とを備えている制御装置一体型回転電機である。
 図3は実施の形態2に係る制御装置一体型回転電機の構造を示した断面図である。円筒形状部材30には、胴体部17の内径より内径の大きい固定子導入部19がフランジ部18側に形成されている。円筒形状部材30の固定子導入部19は、胴体部17が固定子4と接している部位よりリア方向に延在して、胴体部17とフランジ部18との間に形成される。すなわち、固定子導入部19を形成することで、フランジ部18の形成された円筒形状部材30の端部における内径は、胴体部17の内径より大きくなっている。その他の構成は実施の形態1と同様である。
 図4は、図3の制御装置一体型回転電機において円筒形状部材30に固定子4を圧入する工程を示した断面図である。組み立て後の固定子4と円筒形状部材30とが圧入関係となるように、組み立て前の固定子4の外径は円筒形状部材3の胴体部17の内径よりも大きい。そのため、固定子4を円筒形状部材30のフランジ部側から圧入する際、固定子4の外周端部の底面及び角部と円筒形状部材30のフランジ部18と接触し、フランジ部18を変形等損傷させる虞がある。円筒形状部材30の固定子4と接する胴体部17よりリア方向側に固定子4の外径よりも内径の大きい固定子導入部19を形成しておくことで、固定子4を円筒形状部材30に圧入する際のフランジ部18の損傷を防止できる。
 フランジ部の損傷を防止することで、円筒形状部材3のフランジ部18をフレーム2とヒートシンク41で挟み込んだ固定部が堅実となる。
 図4では矢印方向に示すように、保持された円筒形状部材30に固定子4を圧入したが、固定子4を保持し、固定子4に円筒形状部材30を圧入してもよい。また、フレーム2に円筒形状部材3を圧入した後、固定子4を円筒形状部材3に圧入することもできる。いずれの場合も、円筒形状部材30に固定子導入部19が形成されている方が、圧入工程でのフランジ部18の損傷を防止できる。
 以上のとおり、実施の形態2では、実施の形態1と同様の効果を有する。さらに、制御装置一体型回転電機の製造時の圧入工程において、円筒形状部材30のフランジ部の損傷を防止でき、円筒形状部材3のフランジ部18をフレーム2とヒートシンク41で挟み込んだ固定部が堅固となるという効果を有する。
実施の形態3.
 実施の形態1および2に係る制御装置一体型回転電機の円筒形状部材は切れ目のない筒状であったが、本実施の形態3では、軸方向に切欠き部を有する円筒形状部材の例について説明する。
 図5は、本実施の形態3に係る円筒形状部材31の構造を示した斜視図で、例えば、実施の形態1および2で例示した制御装置一体型回転電機に用いられる。
 円筒形状部材31は、軸方向に貫通する切欠き部20を有する。すなわち、切欠き部20は円筒形状部材31の両端に亘って軸方向に形成されている。制御装置一体型回転電機の製造時に、フレーム2に円筒形状部材31を圧入するが、円筒形状部材31の径を縮小する方向に荷重をかけながら圧入することで、圧入力を下げることが可能となり組立が容易となる効果が得られる。
 なお、図5は実施の形態1の図2で示した円筒形状部材3に切欠き部20を設けたものを例示したが、実施の形態2の図4で示される、固定子導入部19の形成された円筒形状部材30に軸方向に切欠き部を設けてもよい。
 以上のように、本実施の形態3によれば、実施の形態1および2と同様の効果を奏するとともに、組立が容易になるという効果が得られる。
実施の形態4.
 実施の形態1から3に係る制御装置一体型回転電機の円筒形状部材はフランジ部が円筒形状部材の端部の周囲に亘って形成されていた。本実施の形態4では、端部の周囲の一部にフランジ部を有する円筒形状部材の例について説明する。
 図6は、本実施の形態4に係る円筒形状部材32の構造を示した斜視図で、例えば、実施の形態1および2で例示した制御装置一体型回転電機に用いられる。
 円筒形状部材32は、炭素鋼の鋼板を加工して形成されており、リア方向側の端部に設けられるフランジ部18aが複数の箇所に分割して形成されている。
 また、円筒形状部材32は、後述する工程により、炭素鋼板を加工して形成されるため、溶接部21を有する。
 図7Aから図7Dは、図6の円筒形状部材32の製造工程の一例を示すものである。
 図7Aにおいて、円筒形状部材32を形成する炭素鋼板22を準備する。図7Bにおいて、胴体部17を形成する部位22aの一辺に、打ち抜き加工あるいは切断加工によりフランジ部18aとなる部位22bを複数形成する。図7Cに示すように、部位22aを円筒状に加工して部位22aの二つの短辺を溶接する。図7Dに示すように、部位22bを折り曲げてフランジ部18aを形成する。
 以上の構成によれば、円筒形状部材32の端部の周囲の一部にフランジ部18aを形成しているので、実施の形態1と同様の効果を有する。すなわち、固定子4および円筒形状部材32を、直接アルミニウム合金のフレーム2に圧入してもフレーム2の損傷を防止できる。また、焼嵌めを行うことがないため、焼嵌め費用を不要にできる。
 また、円筒形状部材32のフランジ部18aをフレーム2とヒートシンク41で挟み込んで軸方向に固定する、固定子4をフレーム2による径方向からの保持に加えて、軸方向でも保持するため、全体として保持力が向上するため、フレーム2を薄肉化でき回転電機の径方向寸法の小型化が可能となる。
 図8は本実施の形態4に係る円筒形状部材の別の例を示す斜視図である。図において、円筒形状部材33はリア方向側の端部に胴体部17の内径よりも内径の大きい固定子導入部19aが複数の箇所に分割して形成され、それぞれの固定子導入部19aの先端にフランジ部18aが形成されている。
 この円筒形状部材33は、先に説明した図7Aから図7Dと同様な製造工程にて製造することができる。図7Bで、部位22bの形状は固定子導入部19aを考慮して加工される。また、図7Dで、固定子導入部19aとフランジ部18aの形状は部位22bを二段階に折り曲げて形成する。
 以上の構成によれば、実施の形態1および実施の形態2と同様の効果を有する。さらに円筒形状部材3を形成する鋼板の面積が低減して、軽量化が可能となる。
 本実施の形態では、円筒形状部材32、33に固定子4を圧入することを前提に説明したが、固定子4に円筒形状部材32、33を圧入してもよい。また、フレーム2に円筒形状部材32、33を圧入した後に固定子4を円筒形状部材32、33に圧入することもできる。
 フレーム2に円筒形状部材32、33を圧入する場合には、図7Cにおいて、円筒形状部材32、33を炭素鋼の鋼板から形成する際、部位22aの二つの短辺を溶接しないでおくとよい。円筒形状部材32、33の径を縮小する方向に荷重をかけながら圧入することができ、圧入力を下げて組立を容易とする効果が得られる。
 以上のとおり、実施の形態4で示した円筒形状部材を実施の形態1または2に例示した制御一体型回転電機に適用すれば、実施の形態1から3と同様の効果を有する。すなわち、制御一体型回転電機の製造工程で、フレームと固定子との間に円筒形状部材を介して圧入するため、圧入時にはフレームの内周面は表面が平滑な円筒形状部材の胴体部の外周面と接触することになる。これにより、フレーム2が軽量なアルミニウム系材料であっても損傷することなく、焼嵌めによる圧入が不要となり設備費用を削減できる。さらに、円筒形状部材のフランジ部をフレームとヒートシンクで挟み込んで固定しているため、保持力が向上してフレームの薄肉化が可能となり、回転電機の径方向寸法を小型化できる。
 さらに、実施の形態4では、実施の形態1から3の円筒形状部材より軽量化できる。
 なお、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 1:回転電機、 2:フレーム、 3、30、31、32、33:円筒形状部材、 4:固定子、 5:インシュレータ、 6:固定子巻線、 7:ターミナル、 8:ホルダ、 9:回転子軸、 10:回転子、 11:磁石、 12:軸受、 13:軸受、 14:軸受ホルダ、 16:ボス、 17:胴体部、 18、18a:フランジ部、 19、19a:固定子導入部、 20:切欠き部、 21:溶接部、 22:鋼板、 22a:胴体部形成部位、 22b:フランジ部形成部位、 40:制御装置、 41:ヒートシンク、 42:電力変換装置、 100:制御装置一体型回転電機。

Claims (5)

  1.  回転子軸に固定された回転子と、電磁積層鋼板を積層して形成され前記回転子と離間してかつ囲むように配置された固定子と、前記固定子に巻装された固定子巻線と、前記固定子に接して配置された円筒形状部材と、前記円筒形状部材に接して配置され前記固定子を保持するフレームと、前記フレームに内接するヒートシンクを有し前記固定子巻線に電力を供給する制御装置とを備え、前記円筒形状部材は一端にフランジ部を有し、前記フランジ部が前記フレームと前記ヒートシンクに挟持されていることを特徴とする制御装置一体型回転電機。
  2.  前記フランジ部は前記円筒形状部材の端部の全周に亘って形成されていることを特徴とする請求項1に記載の制御装置一体型回転電機。
  3.  前記フランジ部は前記円筒形状部材の端部に複数箇所に分割して形成されていることを特徴とする請求項1に記載の制御装置一体型回転電機。
  4.  前記円筒形状部材の胴体部の内径よりも前記フランジ部を形成する端部の内径の方が大であることを特徴とする請求項1から3のいずれか一項に記載の制御装置一体型回転電機。
  5.  前記円筒形状部材の両端に亘って軸方向に切欠き部を有することを特徴とする請求項1から4のいずれか一項に記載の制御装置一体型回転電機。
PCT/JP2018/004157 2018-02-07 2018-02-07 制御装置一体型回転電機 WO2019155541A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019570191A JP6877596B2 (ja) 2018-02-07 2018-02-07 制御装置一体型回転電機
US16/759,443 US11641143B2 (en) 2018-02-07 2018-02-07 Control device-integrated rotary electric machine
CN201880087706.2A CN111656652A (zh) 2018-02-07 2018-02-07 控制装置一体化旋转电机
PCT/JP2018/004157 WO2019155541A1 (ja) 2018-02-07 2018-02-07 制御装置一体型回転電機
EP18905638.5A EP3751713B1 (en) 2018-02-07 2018-02-07 Control device-integrated rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/004157 WO2019155541A1 (ja) 2018-02-07 2018-02-07 制御装置一体型回転電機

Publications (1)

Publication Number Publication Date
WO2019155541A1 true WO2019155541A1 (ja) 2019-08-15

Family

ID=67548926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004157 WO2019155541A1 (ja) 2018-02-07 2018-02-07 制御装置一体型回転電機

Country Status (5)

Country Link
US (1) US11641143B2 (ja)
EP (1) EP3751713B1 (ja)
JP (1) JP6877596B2 (ja)
CN (1) CN111656652A (ja)
WO (1) WO2019155541A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865345A (zh) * 2019-11-12 2021-05-28 三菱电机株式会社 旋转电机
US11476735B2 (en) * 2019-05-16 2022-10-18 Makita Corporation Electric work machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018928B (zh) * 2019-05-31 2023-06-27 日本电产株式会社 马达及包含该马达的电气设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060760A (ja) * 2007-09-03 2009-03-19 Jtekt Corp 電動モータ
JP2012075319A (ja) * 2009-03-31 2012-04-12 Denso Corp 回転電機の固定子
WO2014033833A1 (ja) * 2012-08-28 2014-03-06 三菱電機株式会社 電動式駆動装置および電動式駆動装置の製造方法
WO2014054155A1 (ja) * 2012-10-04 2014-04-10 三菱電機株式会社 駆動制御装置一体型回転電機
JP2014165986A (ja) * 2013-02-22 2014-09-08 Mitsubishi Electric Corp 回転電機
WO2014188803A1 (ja) 2013-05-21 2014-11-27 日立オートモティブシステムズ株式会社 電力変換装置
WO2016006435A1 (ja) * 2014-07-10 2016-01-14 ボッシュ株式会社 モータモジュール、及びabs液圧ユニット
JP2016201904A (ja) * 2015-04-10 2016-12-01 三菱電機株式会社 電動パワーステアリング装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011217434A (ja) * 2010-03-31 2011-10-27 Honda Motor Co Ltd 電動機
US20130259720A1 (en) * 2010-08-25 2013-10-03 Kyle D. Mills Electric Water Pump With Stator Cooling
JP5649737B2 (ja) * 2011-09-20 2015-01-07 三菱電機株式会社 機電一体型モジュール
JP5990896B2 (ja) * 2011-11-25 2016-09-14 株式会社ジェイテクト 電動モータおよびこれを備える電動ユニット
JP5859031B2 (ja) * 2012-02-07 2016-02-10 三菱電機株式会社 機電一体モジュール
JP5840151B2 (ja) * 2013-01-17 2016-01-06 三菱電機株式会社 回転電機
JP5850263B2 (ja) * 2013-05-17 2016-02-03 株式会社デンソー 駆動装置
JP6318056B2 (ja) * 2014-09-05 2018-04-25 日立オートモティブシステムズ株式会社 回転電機のハウジング、およびこれを備えた回転電機
JP2016140147A (ja) * 2015-01-26 2016-08-04 株式会社デンソー 回転電機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060760A (ja) * 2007-09-03 2009-03-19 Jtekt Corp 電動モータ
JP2012075319A (ja) * 2009-03-31 2012-04-12 Denso Corp 回転電機の固定子
WO2014033833A1 (ja) * 2012-08-28 2014-03-06 三菱電機株式会社 電動式駆動装置および電動式駆動装置の製造方法
WO2014054155A1 (ja) * 2012-10-04 2014-04-10 三菱電機株式会社 駆動制御装置一体型回転電機
JP2014165986A (ja) * 2013-02-22 2014-09-08 Mitsubishi Electric Corp 回転電機
WO2014188803A1 (ja) 2013-05-21 2014-11-27 日立オートモティブシステムズ株式会社 電力変換装置
WO2016006435A1 (ja) * 2014-07-10 2016-01-14 ボッシュ株式会社 モータモジュール、及びabs液圧ユニット
JP2016201904A (ja) * 2015-04-10 2016-12-01 三菱電機株式会社 電動パワーステアリング装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3751713A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11476735B2 (en) * 2019-05-16 2022-10-18 Makita Corporation Electric work machine
CN112865345A (zh) * 2019-11-12 2021-05-28 三菱电机株式会社 旋转电机
US11271457B2 (en) * 2019-11-12 2022-03-08 Mitsubishi Electric Corporation Rotating electrical machine
CN112865345B (zh) * 2019-11-12 2024-05-10 三菱电机株式会社 旋转电机

Also Published As

Publication number Publication date
EP3751713A1 (en) 2020-12-16
JPWO2019155541A1 (ja) 2020-10-22
EP3751713B1 (en) 2022-08-17
US11641143B2 (en) 2023-05-02
US20200287428A1 (en) 2020-09-10
JP6877596B2 (ja) 2021-05-26
EP3751713A4 (en) 2021-01-20
CN111656652A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
US8258670B2 (en) Motor including supporting portion contacting stator
JP2012082792A (ja) 電動圧縮機
WO2011080817A1 (ja) ステータコアの固定構造およびそれを備えた回転電機
WO2019155541A1 (ja) 制御装置一体型回転電機
JP6238054B2 (ja) インナーロータ型モータ
JP2009142031A (ja) 回転電機用ステータ
JP5379568B2 (ja) 回転電機用ロータの製造方法
JP5245435B2 (ja) モータ
JP2020005442A (ja) 回転電機の回転子
JP2008312348A (ja) 電動モータ
JP7195338B2 (ja) 乗り物用制御装置一体型回転電機
JP5495045B2 (ja) 回転電機の回転子
JP5864839B2 (ja) 電動パワーステアリング装置用左右回転型ブラシレスモータの製造方法
JP2020078099A (ja) 回転電機
JP6947015B2 (ja) ロータコアの取付構造
JP5915096B2 (ja) 回転電機
JP4186833B2 (ja) タンデム式回転電機
JP2017093263A (ja) 回転電機
JP2009183058A (ja) ステータコアの固定方法、及びブラシレスモータ
WO2019064376A1 (ja) 回転電機
JP6910413B2 (ja) 回転電機
CN114467242B (zh) 旋转电机
JP4395141B2 (ja) モータのハウジング固定構造
JP6910414B2 (ja) 回転電機
JP6173407B2 (ja) 電動パワーステアリング装置用ブラシレスモータ製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019570191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018905638

Country of ref document: EP

Effective date: 20200907